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ABSTRACT 

Experimental plasma physics deals both with atomic and collective 

processes, i.e., with two- and three-body interactions of particles and 

photons s. many-body interactions over distances of order a Debye length 
or cyclotron radius. 

measuring atomic radiation and collision coefficients which are important 

in stellar atmospheres, dilute plasmas in space, and high temperature 

plasmas on earth. 

Two of the Institute’s laboratories are engaged in 

Radiative transition probabilities will be measured for spectral 

lines of several light elements; e.g., CI, C I I ,  SI, SII, NeI, AI, AII, 

between 2000 and 12000 A. Other elements and shorter wavelengths will 

follow this initial program. The spectroscopic source is a gas-driven 

shock tube which operates up to 15000 K with at least 100 microseconds 

of steady conditions behind the reflected shock. Particular attention has 

been paid to direct measurement of the gas properties, rather than relying 

on shock wave theory alone. Data are presented on excitation temperature, 

measured by the line-reversal technique. 

employed for this and other purposes are also described. 
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The flash lamp and fibre-optics 
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I. Introduction 

Events taking place at the atomic level of matter are not only 

of great interest in themselves, but also important on a larger scale 

where they can both influence the behavior of many-particle systems and 

often tell us what is going on in these systems. This is particularly 

truc in plasmas, where the light emitted by constituent atoms, ions and 

electrons contains a great deal of information about the plasma state, 

and this state is governed by collision interactions of particles which 

may have been accelerated by plasma waves or other large scale events. 

T h i s  interplay between few-particle and many-particle phenomena is 

important in space plasmas, such as the earth's ionosphere, comet tails, 

and as far as we know all zones of the atmospheres of the sun and other 

stars. In earth bound plasmas, and high temperature gases generally, 

we can find examples in controlled or uncontrolled fusion devices, rocket 

exhausts, MHD power generators, and the plasmas used for basic research 

such as those described in this session by Dr. Lashinsky and by Dr. Kolb. 

* 
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Research; now supported by the Office of Space Science and Applications, 
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A specific case of great interest is the stellar plasma, which 

sends its light to us over great distances -- an elaborate code describing 

what elements are present and how much of each, the density of electrons, 

the temperature (if it can be defined) and variations of all these quanti- 

ties in space and time. 

atomic constants governing both radiation and collision; the better one 

can read it, the more can be said about the abundances of the elements on 

a universal scale and the probable evolution of the universe. 

Reading this code requires that we know the 

Two of the Institute's laboratories are studying atomic processes 

of interest in plasma physics. The first category I will discuss in 

Section 2 is heavy particle collisions, currently between 100 and 1000 

electron volts and later on as low as we can achieve, hopefully in the 

1 to 10 eV range. Several topics are currently under study but the 

furthest advanced is the measurement of electron capture by hydrogen 

ions in various gases. The bulk of this work has been done by Dr. D. W. 

Koopman, Mr. P. G. Cable, and Mr. M. Kat0 -- with the assistance of 
Dr. K. W. Ogilvie (Goddard Space Flight Center), Mr. H. J. Zwally, 

Mr. J. Brecht and myself. 

Section 3 will treat the current state of research on transition 

probabilities for atomic line radiation, or more precisely the first re- 

sults of the plasma-diagnostic procedures being applied to the shock tube 

which is our spectroscopic source. This gas-driven shock tube easily 

achieves temperatures up to 15000 K and electron densities up to 10 

so that many lines of light elements can be observed both in emission and 

0 17 cm-3 
Y 
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absorption, under known conditions. The principal researchers have been 

Dr. G.  Charatis, Mr. M. H. Miller and Mr. G .  Mabry, and assistance has 

come from Dr. D. W. Koopman and myself, Mr. P. W. Murphy, Mr. J. R. W. Hunter 

and Mr. S. McPhillips. 

11. Collision Cross Sections 

Heavy particle interactions form an important, and sometimes 

dominant, class of events in plasmas, and are very hard to treat theoreti- 

cally. One realizes at the outset that a complete description of two 

atomic systems in collision must, at least in some ranges of energy, reckon 

with molecular properties, namely the properties of the molecule capable 

of even a transient existence in the collision. Moreover, the generally 

high rate of approach of the collision partners makes it unclear what 

molecular problem to solve. Since &e customary hierarchy of energy L e v ~ l  

types (Born-Oppenheimer approximation) is turned over, one is left with 

only rough ideas as to what to expect An early attempt at an overall 

view was Massey' s "adiabatic ~riterion"~ which predicts maximum charge- 

exchange cross sections for that energy which makes the collision duration 

comparable to a quantum mechanical transition time, h:'AE, where h is 

Planck's constant and AE is the energy change or extent of inelasticity 

in the collision process. This idea is borne out by a striking number of 

4 cases of charge-exchange . 

The experiments reported below are in the transition region 

between non-adiabatic and adiabatic (sufficiently slow collisions that 
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atoms smoothly adjust to each other's presence). This energy range is most 

important to understand well, though it falls below many cross-section maxima, 

because (i) reaction rates between species in a plasma are integrals of cross- 

sections weighted by particle distribution functions, and (ii) most plasmas 

have distribution functions which peak in or below this energy range. 

We have begun to study several types of heavy particle collisions 

(single ion - atom, single ion - molecule, multiple ion - atom) while 
pursuing one type to the place where the results can be compared with previous 

work. We report here the latter results on electron capture by H+ and 

H2 

the developmental work that has gone before . 
+ in argon in the energy range 100 - 1000 eV, while indicating some of 

5 

Figure 1 shows a typical system in which an ion beam can be 

generated, analyzed, controlled and detected. This top view shows two 

diffusion pumps and a bell-jar as the main vacuum components. From left to 

right we have an electron-bombardment ion sour~e~'~, a "Wien filter" or gx€? 

velocity selector, an electrostatic energy analyzer8 and a detector' capable 

of recording single ions even at energies of lev. 

This system has proved very useful for learning how to carry out 

beam operations properly and for testing various components. 

fications stand between it and the hydrogen-argon measurements, but not 

such drastic ones as to vitiate the experience gained here. 

Several modi- 

Figure 2 shows the combined energy -- velocity analysis of the 

ion beam in the prototype system, where the data points correspond to 
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simultaneous settings of the energy analyzer and velocity selector. The 

+ three mass groups evident here are H+, H2 and heavy particles such as 
+ 

N2 ; each follows the expected relation between particle energy and velocity- 

1 squared. This graph shows that we could in principle use either the proton 

or H2+ beams for meaningful collision experiments over the indicated 

energy range. 
I 

A s  a practical matter, however, the ion currents here were too 

low for the type of scattering geometry to be used first, so that a higher 

current, RF ion source (ORTEC) was used. Radio frequency ion sources are 

commonly employed in van de Graaf accelerators and typically consume tens 

of watts of RF power in the frequency range of tens of megacycles. In the 

energy range of interest to us, typical total ion-output currents were in 

the range 1 - 10 microamperes; the source has magnetic focussing and is 

electrically isolated for greater control over the mean particle energy. 

Careful shielding is required to keep rectified RF out of oscilloscopes and 

sensitive electrometer circuits. 

Electrometers are used for measuring currents in the scattering 

chamber shown in Figure 3 .  This chamber 'OY1' takes the place of the single- 

ion detector on the right of the bell-jar in Figure 1. Its purpose is to 

provide a low pressure gas target for the main beam in such a way that cross- 

currents due to scattering can be collected while the rest of the vacuum 

system is at a sufficiently low pressure as not to perturb the ion beam. 

Typically we would have a 500-eV proton beam entering this chamber through 



the slit below, and the internal chamber pressure would be about one micron 

Torr) of argon. Two principal reactions ensue: the one of interest 

here is electron capture by the proton, yielding a fast neutral hydrogen 

atom, plus a slow argon ion which is easily swept up by the weak electric 

field put across the chamber. The electron capture cross section is given 

by the ratio of scattered-to-incident currents, divided by the number of 

argon scattering centers per cm2 in the "line of sight" of a typical proton. 

The other important reaction to consider is ionization, which could contri- 

bute spurious effects to electron capture measurements; however, an ionizing 

proton will simply create an electron-argon ion pair and continue on through 

the chamber with slightly reduced energy. Both the electron and ion will 

be collected, so that neither will contribute to the - net positive current 

observed flowing to the collection plates. In other words, we are using 

the chamber in a mode which baiances oiit lonizstinn ci.irrents, leaving only 

the electron-capture contribution. Almost needless to say, this mode of 

operation requires great caution about collection of charged particles, 

production of secondary electrons, etc. 

reflects our degree of control over these effects at the time the data 

The scatter in our results probably 

were collected. 

+ At a given proton or H2 energy, the electron-capture current 

IC and the main beam current Io are measured as functions of chamber 

pressure, so that zero-levels can be subtracted away (due to leakage current 

in the scattering chamber) and that the. thinness of the gas target can be 

verified. Figure 4 shows data €or H+ and H2+ over a range of incident 
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ion energies, and illustrates the method of data reduction already alluded 

to. Each of our data boxes contains 4 to 8 different pressure runs by 

various operators. The widths of the boxes are not due to uncertainities 

in energy, but indicate rather the energy spread in groups of results 

chosen for averaging together; the scatter of results even at one energy 

was comparable to what is shown here (20-25%). 

The proton data are similar to earlier results, 11912y13 but suggest 

a stronger dependence of the cross section on energy than has been seen 

before. The matter is clouded by a degree of scatter which is quite common 

in cross section experiments. Probable error is often not clearly specified 

in the literature, but the scatter of all these measurements seems to be 

comparable to ours. Our immediate plans are to reduce the random errors 

dne to background gas and leakage currents, and to examine several rare 

gases for significantly steeper cross section curves than have been measured 

before. A s  implied early in this section, such results would seriously 

affect calculated reaction rates for charge exchange in plasmas having 

most of their particles in the lower energy range under discussion. 

A s  for the H2+ results, we cannot yet make a clear comparison 

+ 
because of the possibilities of beam contamination due to 

+ states of 

is now fairly widely realized that many absolute cross section measurements 

have been influenced to an uncertain degree by atomic excitation, so that 

redeterminations by factors of 2 and 3 would not be surprising. 

to return to the study of molecular hydrogen ions after completing beam- 

manipulation sections for higher H2+ purity and longer times of flight. 

H3 or  excited 

H2 ; the latter feature may also affect the earlier work. It 

We expect 
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+ 
Our present data on H2 may 

electrons14 to a degree which 

be affected by the production of secondary 

may require more elaborate precautions. 

In this section we have seen that there is a great practical need 

for good cross section data, particularly at low energy, and that there is 

an intrinsic physical interest particularly for heavy particle interactions. 

That charge-exchange cross sections rise rapidly to maxima in the kilovolt 

range seems to be due to the mutual interaction of many particles which, so 

to speak, do not have time to adjust to the rapid onset of perturbation. 

To pass beyond a picturesque description to a grasp of the simultaneous 

quantum processes involved has proved to be very difficult. Further experi- 

mental work - particularly at low energy - seems mandatory in view of the 

theoretical difficulties and experimental disagreements. 

111. Atomic Transition ProbabilLtLes 

We are measuring atomic transition probabilities, using a gas- 

driven shock tube as a spectroscopic source. Since such instruments can 

generate a plasma of known conditions and composition, and our observing 

instruments record atomic line intensities, one has only to divide, as it 

were, the line intensity by the number of atoms in the upper energy level 

in order to find the inherent probability (per atom in the excited state) 

for the line to be emitted. Once in possession of such atomic constants 

for a given element, an astrophysicist can use the line intensity seen in 

a distant source as a measure of the elemental abundance in that source. 

Reliable calculation of line strengths is still difficult in general, S O  

empirical determination of them is desirable, at the very least, and 



. 
- 9 -  

mandatory in many cases. 

General accounts of this type of experimental astrophysics have 

appeared in recent years 15-19, and the shock tube has played a prominent 

role in this field 

light elements ( e . g . ,  neutral and singly-ionized carbon and sulphur), 

between 2500 and 10,000 A ,  on new diagnostic techniques and instrumentation, 

and on preparations for future work in the vacuum ultraviolet. We report 

here the first results of experiments to check on plasma conditions in the 

shock tube. In refined form, these will be coupled with line-intensity 

measurements to give the final data on atomic transition probabilities. 

For this purpose, the shock tube has two great advantages over many other 

light sources: the plasma possesses a high degree of uniformity along a 

line of sight perpendicular to the tube axis, and there exists a well 

defined and extensive theory for the plasma state to be achieved as a 

function of shock velocity. 

. Our present emphasis is on the spectra of the 20-24 

0 

Figure 5 shows the shock-reflection end, or "test-section", of 

our shock tube. When the tube is fired by release of the high pressure 

"driver gas" several meters upstream, a shockwave runs through the test 

gas into this chamber and reflects from the end wall. Having thus been 

twice compressed by strong shock waves, the test gas is elevated in tempera- 

ture to 10,000-15,000°K and rendered highly luminous. It is stationary at 

these conditions for about 100 microseconds. Subsequent wave interactions 

further increase the gas temperature, so that one would see here a succession 

of thermodynamic states which must be time resolved in order that we have a 

well defined state for spectroscopic analysis. 
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Typical time-resolved emission spectra are shown in Figure 6, with 

time increasing downward and wavelength increasing from the blue (left) to 

the red (right). The bulk of the test gas is neon in both cases, while we 

have added of order 1% H S and CH in the upper and lower experiments, 

respectively. In both, then, we naturally see the blue-green Balmer line 

Hp (4861 i) and the familiar red lines of neon. There is an evident time- 

development toward brighter spectra and hotter states, as multiply-reflected 

shocks compress the gas behind the first reflected shock wave. The quench- 

ing of luminosity is due to mixing with the cold driver gas which finally 

2 4 

expands down the entire length of the shock tube. Prior to any atomic 

emission, one sees the Swan bands of at the primary and reflected 

shock waves25 when methane is used as the spectroscopic additive. 

C2 

Behind the first reflected shock in the methane case, we see 
0 0 

characteristic lines of atomic carbon at 5380 A, 5052 A ,  etc. They are 

absent when hydrogen sulphide is used; instead we then see strong lines of 

neutral sulphur, such as 4695 A and more diffuse members of the same multiplet. 
0 

We have made a great number of hydrodynamic measurements which verify 

that the gas behind the first reflected shock is close to the thermal state 

predicted by shock wave theory. These include reflected shock velocity and 

absolute pressure, and extend the range of previous checks of this type . 
The absolute pressure in question is usually about 10 atmospheres, and the 

temperature above 10,000 K - conditions which, together with the amount of 
spectroscopic additive, usually guarantee a steady state in local thermo- 

dynamic equilibrium, even though the available times are in the 100 micro- 

16 

0 

second range. 
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Passing to spectroscopic measurements of the plasma state, already 

one such is implicit in the diffuse character of the 

evident in Figure 6. 

particularly susceptible to the Stark effect - which manifests itself here 

as a broadening related directly to the density of charged particles in the 

gas1'. 

using to measure electron density from the H profile. For now it should 

suffice to point out that such measurements do indeed provide a check on 

the ionization temperature of the shock tube plasma. 

% lines which is 

The hydrogen atom, being a one-electron system,is 

Toward the end of this section, I will discuss the methods we are 

B 

A direct measurement of excitation temperature is provided by the 

method of spectral line-reversalZ6. 

source of continuous radiation be placed behind the shock tube test section 

Fr! FLgnre 5. Given the appropriate windows, a spectroscopically equipped 

observer on the near side of the tube would see emission spectra of the type 

shown in Figure 6 only if the background radiation were held down to a low 

level. If the background continuum were then turned up, so to speak, so 

that its brightness exceeded the Planck (black body) function appropriate to 

the shock tube temperature, our observer would then see the shock tube spectra 

in absorption against the intense background. 

source that one finds the reversal point from bright-line to dark-line spectra, 

one puts in evidence the shock tube's Planck function - which is to say its 
temperature - without recourse to any atomic constants save the velocity of 

light and Planck's constant. 

Imagine that a very bright (and variable) 

By so adjusting the external 

This is accomplished with our shock tube by means of a very bright, 

, whose continuum intensity varies in times suitably 27,28 pulsed flash lamp 
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short that reversal can be clearly observed once or several times during 

the 100 microsecond interval of interest. Essentially what one measures is 

the population ratio of the two atomic energy levels associated with the 

given spectral line. A good test of the customary equilibrium assumptions 

is that all lines of all elements shall demonstrate reversal at the same 

temperature and that this temperature shall correspond to the ionization 

and gas-kinetic temperatures found by other means. 

The first line-reversal results in the present program are shown 

in Figure 7. In the lower graph, reversal temperatures for neon lines behind 

the first reflected shock are compared to the temperatures predicted from 

shock tube theory and the primary shock Mach number. 

not precise, owing to low optical depth in the lines studied, the results 

are  definitely in the range hoped for. Much more precise measurements are 

now underway, in conjunction with definitive hydrodynamic calculations of 

real gas effects. A s  far as we are aware, these reversal measurements in 

the range 10,000-15,000 K are pioneering ones; we expect them to yield much 

valuable data in this and other laboratories. Given sufficient precision, 

they may offer the possibility of cross checking the radiative and thermal 

temperature scales in this range. 

Though the method is 

0 

Furthermore, the upper graph of Figure 7 suggests that useful 

0 gaseous states well above 15,000 K may be attained, in the same experiments, 

behind multiply-reflected shock waves. Of course it remains to be shown 

that this region is so free of inhomogeneities as the well-formed plasma 

behind the reflected shock. This too will be looked into further. 
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The present data on line-reversal also exemplify a trend in our 

work, namely to augment photographic procedures with multi-channel photo- 

electric recording. With conventional shock tubes, which cannot profitably 

be fired at one-minute intervals, photographic spectroscopy is practically 

essential for recording wide spectral ranges; its main drawback is the 

requirement of absolute, heterochromatic photodensitometry of films, which 

is tedious and gives intensity precisions of 5% at best. With several 

photoelectric channels, one can easily record a chosen subset of the data 

under higher precision without, however, depending solely on wavelength 

scans over a long series of experiments. The reversal measurements were 

made by means of slitted "light pipes" in the spectrographic image plane, 

each feeding its own photomultiplier. Some of the fiber bundles were 

located on spectral lines and others in the line-free continuum between. 

Spectral line profiles are also recorded with a multi-channel 

photoelectric device shown in Figure 8 (this is called a SQUID, for sequential 

image dissector). The essential feature of this device is that the clean 

geometry of a microscope cover-glass is combined with light pipe flexibility, 

so that many narrowly-spaced wavelength bands can be observed by a set of 

photomultipliers. Figure 8 shows the squid model now in use; the data given 

here were taken with a prototype that required considerable compensation for 

differing angular properties of the channels. 

TO check the operating principle of the squid, one channel was 

B studied with the usual laboratory light sources and then tuned over the H 

profile during the course of several similar shock tube runs. The results 
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are shown in Figure 9. 

and used in many experiments; two typical runs are given in Figure 10. 

all cases one can fit the data to expected profiles and thereby estimate 

the electron densities from the halfwidths''. 

comparable to calculated electron densities for shock tube runs of this 

type, so we have confirmed the expected range of conditions from yet 

another point of view. 

devices will soon be reported . 

Then the first multichannel squid was assembled 

In 

These estimates are indeed 

Further observations and developments with squid 

30 

In this section, we have seen that the conventional shock tube 

gives high temperature results for electron density and temperature that 

are within 20% of expectations. Thus an important step is made towards the 

study of light elements and their ions under those conditions. The necessary 

improvements of instruments are clear and are underway, so that new line- 

strength data will soon be available on such elements as sulphur, carbon 

and the halogens. We expect that these data will be useful for checking 

approximate methods of calculating line strengths and for measuring plasma 

conditions and elemental abundances in a variety of light sources. 

IV. Conclusion 

The Institute's experimental studies of collisional and radiative 

processes at the atomic level will continue along those lines of importance 

in understanding laboratory and astrophysical plasmas. Ample evidence 

exists for the dual character of plasma physics as a scientific discipline. 

It is generally true that both two-body and collective particle interactions 

must be understood in order to have a complete picture, while one type of 



- 15 - 

process or the other may dominate in any particular case. Together with 

the Institute's theoretical and experimental studies of collective processes, 

we expect the atomic experiments introduced here to contribute valuable data 

for future developments in plasma physics. 
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FIGURE CAPTIONS 

Figure 1 Apparatus for producing and analyzing ion beams. From left to 
right, A and B show the electron-bombardment ion source, C a 
compound lens. P a pump-port, V a crossed-field velocity 
selector (2 x @, D two pairs of deflection plates, C another 
lens, P the main pumping port, E a cylindrical electrostatic 
energy analyzer, and K, F, S components of a single-ion detector. 
This apparatus was very useful for energy and mass analysis of 
beams and for systematic studies of beam current and geometry. 

1 

2 

Figure 2 Simultaneous energy-velocity analysis of ions emitted by electron- 
bombardment source running on hydrogen gas. Data collected by 
setting repeller voltage in ion source, finding the roughly 
equivalent energy analyzer voltage, then tuning the potential drop 
in the velocity selector (left-hand ordinate) to the peaks in ob- 
served i n current. 
order, H , H2+ and 0 
were about 40 eV for2H2+ aid 140 eV for H+ . 
entrance to energy analyzer roughly 1 cm. 

The ion groups shown here are, in ascending $ - N -k . The minimum observable ion energies 
Ion beam width at 

Figure 3 Gas cell for observing ionization and electron-capture currents 
due to primary ion beam passing through the gas. 
are measured as functions of primary beam type, current and 
energy and of gas pressure. 

Cross-currents 

+ 
Figure 4 Absolute electron-capture cross sections for H+ and H 

measured as indicated in text and in figure on right.2 Proton 
results suggest steeper energy dependence than observed in 
earlier work. Reliability of H results in doubt, due to 
possibilities of beam contaminazion and unaccounted- for secondary 
electron emission. 

in argon, 

Figure 5 Test section of spectroscopic shock tube with 1-ft. scale. Tube 
is 3" x 4" welded tube with inside seam removed; wall thickness 
3/16". Reinforcement with bars and jigs prevents elastic 
deformations due both to shock pressures and to the static 
pressures (500 - 1000 psi) following each experiment. Mountings 
for side windows and transducers are shown. "Driver gas" chamber 
( 4  meters upstream) not shown. 
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Figure 6 

Figure 7 

Figure 8 

Figure 9 
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Time-resolved emission spectra recorded near end of shock tube, 
using fl6.3 spectrograph and rotating-drum camera. Shock tube 
test gas is neon plus "spectroscopic additive"; additive was H S 
in upper picture and CH in the lower. Direction and extent 
of arrows show the time direction and duration of the state behind 
the first reflected shock. 
both films, while the upper shows one of the strong lines of 
neutral sulphur (4695 g), the lower several lines of neutral 
carbon and molecular bands of C2. 
yield brighter and wider lines and an enhanced recombination 
continuum. 

2 
4 

Hydrogen and red neon lines appear in 

Hotter gases at later times 

Comparison of predicted and observed line-reversal temperatures, 
demonstrating agreement t o  better than 20%. The case of principal 
interest is shown in the lower graph, behind the first reflected 
shock where most of the present spectroscopic work is done. 
Refined calculations and measurements will enable much more precise 
comparisons, both here and in upper graph where predicted temperature 
is rough approximation. 

Sequential image dissector (squid) for precise partition of spectral 
line profiles into narrow wavelength bands. Particular use for H 
profiles is indicated schematically. This method of joining glasQes 
to light-pipes used in second model of squid. 

Wavelength scan over H 5 -  profile in a set of similar experiments, 
using only one squid channel for preliminary tests. Theoretical 
profile shows expected nature of result. 

Figure 10 Typical H -profiles from two shock tube experiments, using first 
model of mtlti-channel squid. 
theoretical shapes as indicated gives agreement in electron 
densities to 20% or better. The error bars shown here arise from 
calibration difficulties, due in turn to details of light-pipe 
termination and consequent sensitivity to angular properties of 
illumination. Second model of squid (Figure8) superior in many 
respects. 

Scaling the observations to the 
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