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ABSTRACT

This report covers the derivation of a method of analysis for straight
and curved partial-tension-field beams subjected to lateral pressure.
In practical beams, the webs resist some diagonal compressive stress
after buckling and thus act in an intermediate range between shear-resis-
tant webs and pure-tension-field webs. These beams aretermed partial-

tension-field beams. The design and analysis of beams subjected to
vertical stress is satisfactorily covered by the work done by Kuhn and
Peterson. However, when the additional loading environment of lateral

pressure is superimposed on the web of a beam in the partial-tension-
field state, the effects on the stress field can only be approximated,
resulting in undue conservatism. The method developed shows how the
combination of shear and lateral loading affects both the web and uprights.
The method relies principally on and is an extension of the work
presented by Mr. Paul Kuhn in Stresses in Aircraft and Shell Structures,
McGraw-Hill Book Co., Inc., 1956. The procedure covers both straight
and curved beams, and illustrative numerical examples are provided.
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SYMEBOLS
a Edge dimension of plate, in.
A Area, in. 2
AFI, Flange area, in. 2
Ay Upright area, in. 2
Avye Equivalent upright area, in. 2
b Edge dimension of plate, in.
C; (i=1, 2, 3) Stress concentration coefficients
c Distance from neutral axis to outer fiber, in.
d Distance between uprights in straight beam; distance between
flanges in curved beam, in.
e Eccentricity, in.
E Young's modulus, psi
F Force in flange, 1b
G Shear modulus, psi
Gp Modified shear modulus (pure diagonal tension), psi
G Modified shear modulus (postbuckling), psi
g6 Vertical beam loading, lb/in.
h Distance between flanges in straight beam; distance between
uprights in curved beam, in.
H .Tensile load in catenary, 1b
Ha’ Hb Force in the a and b directions, respectively, 1b

- vii -
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Radius of gyration, in.; integer

Moment of inertia of upper flange cross section with respect to
centroidal axis, in.

Moment of inertia of lower flange cross section with respect to
centroidal axis, in. 4

Diagonal tension factor
Constant

Buckling coefficient

Distance between uprights, in.

Effective column length, in.

Moment, lb/in.

Pressure, psi

Partial pressure in the a direction, psi
Partial pressure in the b direction, psi
Critical external pressure on curved web, psi
Force in upright, 1b

Force in flange, 1b

Distributed loading, 1b/in.

Radii, in.

Vertical load, lb; initial length of catenary, in.
Web thickness, in.

R+ 6, in.

Deflection, in.

Diagonal tension angle, degrees

Angle, degrees; or coefficient.
- viii -
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Other symbols are defined as they appear in the text.

Empirical stress correction factor
Radius of gyration, in.

Deflection, in,

Stress in the a, b directions, respectively, psi

Compressive stress, psi
Tensile stress, psi

Stress in upright, psi

Stress in flange, psi

Crippling stress, psi

Maximum stress in upright, psi
Pressure ratio, pa/p

Pressure ratio, py/p

Angle; coefficient

Shear stress, psi

. NORTH AMERICAN AVIATION, INC. @ SPACE and INFORMATION SYSTEMS DIVISION

Shear stress corresponding to final vertical loading,

Critical shear stress, psi

Combined loading critical shear, psi
Poisson's ratio

Leads to

- ix -
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INTRODUCTION

Numerous theories and experimental test results are available in the
literature on the strength analysis and stability analysis of tension field and
partial-tension-field beams. The work of Kuhn (Reference 1) and Wagner
(References 2, 3, and 4) is perhaps best known. The analysis of flat plates
subjected to lateral pressure was investigated by Moness {Reference 5).
Levy, Goldenberg, and Fibritosky (Reference 6) experimentally investigated
the simply supported, long-rectangular, stiffened plate under combined axial
load and normal pressure. Woolley, Corrick, and Levy (Reference 7)studied
clamped-end conditions.

The above works omit treatment of combined vertical-lateral pressure
loading. The objective of this study is to develop an analytical procedure
for the analysis of straight and curved partial-tension-field beams subjected
to combined vertical and lateral pressure loadings. The analysis is general
in nature and is applicable to a variety of boundary conditions. The methods
are valid for simple beams, cantilever beams, continuous beams, and other

beam systems as long as the structure is properly idealized for the partial-
tension-field beam analysis.

The first section of this study is a presentation of the state of the art
of the theory for partial-tension-field beams which are loaded vertically.
The second section deals with the lateral loading alone. The third section
presents the stresses and deformations due to the interaction of vertical
and lateral loading acting simultaneously. The fourth section presents the
curved partial-tension-field beams. The appendix offers a set of illustrative
examples, some derivations, and the necessary IBM 7094 computer programs
to simplify the numerical solution of some parts of analysis.
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I. PARTIAL-TENSION-FIELD BEAMS SUBJECTED TO VERTICAL LOADINGS

INTRODUCTION

This section presents a summary of the current theory of partial-
tension-field beams subjected to vertical loadings. The design and analysis
of partial-tension-field beams under vertical loadings are well established.
The complete tension-web theory was developed by Wagner (References 2, 3,
and 4) and partial-tension-field beam theory by Kuhn (Reference 1). There are
other works in the same field, but in general they are usually extensions
of the theories of Wagner and Kuhn. A summary of the available theory
is needed as the basic foundation for the analysis of the interaction of the
vertical loading with the lateral pressure loading, to be treated later.

N

WEBS

State of Stresses in the Web

Assume a rectangular web which is loaded by pure shear,T.
Figure 1 shows a family of Mohr circles for this loading condition. When
the shear stress,7,increases, the stress field for each increment can be
pictorially represented by a Mohr circle. Each circle is equivalent to a
certain fixed value of shear stress, Ts-

From Figure 1 note that an element of the web oriented at an angle
of 45 degrees will be subjected to an orthogonal system of axial stresses,
one tension and the other compression. When the shear stress, 7,reaches
a critical value of shear stress, 7_,the thin sheet buckles due to excessive
diagonal compressive stress. Increases in applied load above this value

are carried by diagonal tension stress in the web.

To facilitate analysis the nominal web shear, 7,is divided into a ''true
shear'' part,7g,and a diagonal tension part,74;.

Tt = KT g = (1-k) 7 (For 72 7.)

SID 66-135
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+0

TENSION

) /
COMPRERSIO

Family of Mohr Cirlces

Figure 1.

where k is the diagonal-tension factor. For a given web system under a
given load, the value of k is given by an empirical expression

T cr

T)(Forrér )
Cr

k = tanh (0. 5 log

The ratio 7/T.y is called the loading ratio and is a ratio of the total applied
load relative to that portion of the total load carried by the web in pure

shear. Againto facilitate analysis, introduce the identity

SID 66-135 ‘
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Two stages in the web behavior can be recognized: a prebuckling stage

. and a postbuckling stage. The prebuckling stage (Figure 1) is characterized
by the following relationship:

= =7 <
0 =0, for¢ =1

where 0 is the principal compression stress } inclined at 45 degrees
0, is the principal tension stress to the horizontal

The postbuckling stage is characterized by the following relationship:
1< €é< oo

A pure tension field condition can be approached only in extremely
thin sheets. The analytical model (Figure 2) is assumed to carry only loads
which are oriented in the diagonal direction, which is at an angle o ; the
angle o is the actual inclination of the buckles, approximately equal to 45
degrees. The principal stressesfora pure diagonaltensionfieldare as follows:

0'l=0 UZ;ZT

TENSION

_2T
Sin 2a

o= 45°
———— et

92

* o2

Figure 2. Mohr Circle for a Pure Tension Field

-5 -
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A pure tension-field condition never exists in actual structures. When the
web buckles, the shear stresses at buckling will not disappear, but remain
as the tension stresses increase (Figure 3). This condition may be repre-
sented by the superposition of the Mohr circles shown in Figures 1 and 2.
Consequently, it is assumed that as the loading increases, the stress-

field changes as is shown in Figure 1. When buckling occurs, the process
is continued as is shown in Figure 3.

cr

- .

09 =2T-T¢r

o= +(]-k)“r

o= -(1-k) r

2T
9= Sin 2at

Figure 3. Superposition of Mohr Circles

-6 -
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The following relations characterize the behavior shown in Figure 3:

For intermediate levels of loading, the behavior is shown by the
family of Mohr circles shown in Figure 4.

COMPRESSION &# TENSION

BUCKLING

Figure 4. Family of Mohr Circles for Intermediate
Levels of Loading

For the postbuckling case in which the loading ratia is larger than
unity (1 < £ < @), and the shear stress is larger than the critical shear
stress (T >7.,) the empirical diagonal tension factor k applies.
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Figure 5 is helpful to determine k as function of the parameter T/Tep
With the aid of the factor k the two components of any value of 7 can be
determined from Figure 1 and from Figure 2. The results can be
superimposed according to Figure 3.

Consequently, according to Figure 3, the principal compression
stress is
o= 7(1-k) sin 2«

and tension stress is

2
oy = —Tﬁ—+ 7(1-k) sin 2«
sin 2«

It is assumed that flanges are sufficiently rigid to produce essentially a
uniform stress in the web.

The angle & is close to 45 degrees and usually varies from 41 to
49 degrees. This does not significantly affect the stresses o and o;.
This variation is mostly a function of rigidity of stiffeners and flanges.

If the uprights and flanges are considered rigid (Reference 8), then
a = 45 degrees,

where

1
il

modulus of elasticity of material of web

3
3
I

= modulus of elasticity of material flanges

SID 66-135
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/ y
CURVE B,
= / <
s s
x 0.5 0.2 x
152 &)
X -~
CURYE A
0.4 0.1
0.3 0
0 1 2 3 4 5 CURVE A
5 10 15 20 2 30 CURVE B
T/Ter
Figure 5. Graph of T/Tcr Versus k
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Est = modulus of elasticity of material of stiffeners
d = distance between the uprights

A, = areas of flanges

Ay = area of stiffeners
t = thickness of web

h = distance between the centers of gravity of flanges

If the flanges are sufficiently rigid, which is usually the case, the
following simplified formula (Reference 8) can be used:

Figures 6 and 7 simplify the computations connected with the above
formula.

The formulas for « are correct only for the ideal case of a pure
tension field condition. For a partial tension field, the following formula
(Reference 8) applies:

2 1
tan « = k tan «
1 4 AU
l_e_+ 0.5 (1-k) [(1-k) .2k
dt sin 2 «
where
2
B e
Ay, - AU[I +(—5) ]

()
Il

eccentricity of stiffener

radius of gyration about area of web.

©
1

Figure 8 diagrams the solution of this equation.

- 10 -
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Flange deflection reduces the tensile stresses in the span between the

stiffeners. This makes the distribution of stresses unequal as shown in

Figure 9.

\BUCKLES
e’

Figure 9. Unequal Distribution of Stresses

The maximum value of diagonal tensile stresses will be

max 2kt
ag = - in 2 —_—
t (1-k)7 sin 2a + Cy o ia

where C| is a coefficient given in Figure 10, as a function of parameter wd.

This parameter (Reference 8) is as given below:

4
t
wd =1, 25d sin«
¢h(1w t I )

Where Iy and I are the moments of inertia of the upper and lower flanges
For the prebuckling stage, the shear modulus G of the material

central axis.
For the condition of pure tension, the following equation

usually is used.
is recommended to determine shear modulus Gp in the postbuckling stage

- 14 -
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2.6

2.5

N
>

2.3 wd  sinhwd +sin wd

Cy = _—
2 cosh wd - cos wd

2.2

2.1

2.0

1.9
G

1.8

1.7

\k\LKL

wd

Figure 10. Coefficient C; Versus wd
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2 G
2
sin 2«
This formula is graphically presented in Figure 11. For the post-

buckling stage of the partial tension field beams, the following relation is
used (Reference 1):

1
G* G G

0.8

0.7

0.6 —]

TN
1) |UO
N—’

%
| )
\
J

Gp 2

Figure 11. Effective Shear Modulus for the Case of
Pure Diagonal Tension

- 16 -
SID 66-135




NORTH AMERICAN AVIATION, INC. @ SPACE and INFORMATION SYSTEMS DIVISION

where G* is a modified shear modulus (Reference 8), then

G*® = G

(l—k)+%k sinZ 2

A plot of the above equation is shown in Figure 12. An additional
coefficient will be introduced, which accounts for the reduction of the web
strength due to rivet- or bolt-holes (Reference 8).

ol
"

diameter of hole

-+
1]

distance of holes

The principal tensile stress o, then becomes

T 2k
O, =— - i a, -

where 0y, is allowable stress (ultimate).
BUCKLING STRESS OF THE WEB

The following formula is suggested by Kuhn (Reference 1):

e Y 1 a 3]
rer =Kas E(%) [ Ry, + = (Rq - Rp) (5) (1-2)
where
kss = coefficient obtained from Figure 13.
Ry and R, = empirical restraint coefficients for the vertical and

horizontal edges of the web-panel, respectively, as
given in Figure 14.
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d = distance between the centers of gravity of the stiffeners
h = distance between the centers of gravity of flanges.

The formula is written for the case d < h. Otherwise, interchange
d and h. For simply supported edges, use R = 1. 0; for clamped edges,
use R = 1.62.

For h and d, use ''clear'" values where '"clear' values are the distance
between flange edges. This is a deviation from the normal designation. The

elastic stress, calculated with formula (1-2), shall be converted to v, by
considering plasticity correction, which is also presented in Figure 15.

The graphs presented in Reference 1, page 58, will simplify the
calculation considerably. These graphs are also given in Figures 13, 14,
and 15. The graphs for allowable stress T for aluminum (Figure 16) are
given also. The k shown in Figure 16 is obtained from the equation on

page 4 or from Figure 5,
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UPRIGHTS
The uprights will be loaded according to the applicable postbuckling
theory, either tension field or partial tension field.
PURE DIAGONAL TENSION
For the case of pure diagonal tension, Wagner's (References 2, 3,

and 4) method of analysis is applicable. Hence, the force in the upright Py
which is applied by the web is

P. = -S%tana

where
S = shear force in the bay under consideration
d = spacing of uprights
h = distance between the centroids of flanges

Substituting 7= S/ht, then

7dt

()'u = tan @

where Ay  is the area of upright. If the upright is eccentric with respect
to the web, then

Ay = the area of upright

]
1]

the eccentricity

the radius of gyration of the area of upright with respect to the
web centerline

©
1
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On the basis of tests of Kuhn (Reference 1), the reduced, or effective,
column length of the uprights may be taken as

Le =‘—‘-’_b“"—when d<l1l.5h

\/4 - 2d/h

L. =h whend >1.5h

INCOMPLETE DIAGONAL TENSION FIELD

For the case of incomplete diagonal tension, Kuhn's method of
determining upright loading is applicable. For this case it is consistent
to assume that the web may also carry compressive stresses parallel to
the uprights. In other words, some effective width of web should be assumed
to be stressed with the uprights. The effective width working with the
uprights was determined experimentally by Kuhn to be

d

€
—_= 0, -
3 5(1-k)

where d, is the effective width. Correspondingly,

k 7tan «

9y = A, /dt T 0.5 (1-K)
e

oy is an average stress value along the length of the upright and is
considered adequate as a basis for computing the column strength of the
upright.

For investigation of the crippling strength of an upright, the maximum
stress of oy .. is needed, which occurs at midheight on the upright. The
graph given by Kuhn (Reference 1) is helpful for obtaining stress ratio
UUmax/(TU versus d/h for various values of k. (Sece Figure 17.) The effec-
tive length of the upright is given by

Le: h ford <1.5h
\/1+k2(3-ﬁ)
hu
- 26 -
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and

Lo =h ford> 1.5 h

T,
Umax

Figure 17. Ratio of Maximum to Average Stiffener Stress

Kuhn has stated that the nature of "column behavior' of single uprights
p is problematical, because excessive bowing rather than actual failures
usually occurs. Consequently, it is recommended that the following limits
be imposed:

4 1. oy < column yield stress

2. The ratio oy AUe/AU < allowable stress for a column with the

slenderness ratio h/2p.
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Usually, however, the columns fail by forced crippling. For this type
of failure, TUmax is used as a criterion

(o g
U <O
max o
where 0, is allowable stress
2 1
=t —
3( Y3
o, =Ck <T) kips/inch?
where
C =21 for 2024-T3 double uprights

for 7075-T6 double uprights
26
for 2024-T3 single uprights

32.5 for 7075-T6 single uprights

If o is above the proportional limit, multiply it by Eg ./E taken from
compression stress-strain curves.

Crippling

The above criterion was derived from the test data for uprights of
angles, lipped-angle, and Z and lipped Z sections. Therefore, the empirical
formula may be very conservative for hat sections since there are no out-
standing free legs. The ultimate crippling stress of a closed section can be
obtained by considering the local buckling behavior. Local upright buckling
failure may exist when the legs or walls of the uprights are very thin. The
stresses that would cause local buckling can be determined by determining
the crippling stress when the upright is treated as a free column. The
latter statement is applicable especially when the upright leg thickness is
greater than the web thickness and when Au/tyd is greater than approximately
0.2 thickness (where ty, is the web thickness in inches and d is the distance
in inches between uprights). (See Table 1 obtained from Reference 9).

If the ratio of Ay/tyd is less than 0.2 for the section, then it is
recommended that the interaction loads from the web to the upright be
considered. By considering the combined web-upright-failure, we have
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the case of "general elastic instability, ' since buckles occur in the uprights
as well as the web. The general instability of web and upright for

Ay/twd = 0.2 can be analyzed as a simply supported plate with longitudinal
stiffeners (Figure 18). The critical stress can be represented

(Reference 9) by

2
o =KL (1-3)

where
Et

D = flexural rigidity = in. /1b

- W
12 (1-1)
# = Poisson's ratio

E = elastic modulus of elasticity, 1b/in.2

K = buckling coefficient (shown in Table 1).

et

Figure 18. Simply Supported Plate With Longitudinal Stiffener
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The values of buckling coefficient K are presented for various values
of h/d ratios applicable to partial tension field beams and Ay/tyd = 0.2

The buckling criteria for Ay/twd > 0.2 is generally governed by the
upright crippling. The ultimate crippling stress of a section (Reference 10)
is

™Mz
...:D
q

ccC

(1-4)

'[\’]Z
>

-
1
—

-

where Occy is the crippling stress (psi) of each of the several elements

Aj is the corresponding cross-sectional areas (in.z) and N is the number of
elements of the upright cross section. Typical ultimate crippling curves
for bare 7075-T6 aluminum alloy sheet are presented in Figure 19.
Figures 19 through 21 show the relative influence of thermal soak environ-
ment (Reference 10),

To assure conservatism it is necessary to take Occi = O for the
upright leg that is attached to the web, In this manner, the effect of the
diagonal tension folds are properly accounted for. All other upright
members (i. e., the outstanding leg of an angle-shaped stiffener) should

have 0., determined from Figures 19 through 21 when using aluminum
alloy 7075-T6.

Upright Instability as a Column Failure

Column failure criteria will govern when the stress in the upright
oy equals the column-failing stress of the upright section. The slender
ratio to be used is d/2p (Reference 1). The buckling of the upright is
enhanced by the lateral load imposed by the web action. For end-restrained
web bay, a restraint coefficient (reduction in allowable stress) of at least
3.75 based upon tests should be used, compared to 4. 0 based upon Moore
and Westcoat (Reference 11).

Summary for the Design of Upright

The design of uprights is based upon satisfying

> k > oy > Oy

cr max

cr
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The following must be satisfied:

1.

oy < column yield stress
O’UAU
—Kmi < allowable stress for a column with the slenderness
U ratio hu/Zp
oy < o, for open upright sections where
max
LI
3, ul/3

o= Ck (T)

K7T2D AU _
oz < o__= for < 0.2
U cr 2 d
max dt w
w
N
iglAl Tec f Ay 0.2
UUmax < Ter 7 lv;:l °oF twd ~
e M
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FLANGES
PURE DIAGONAL TENSION
The force in flange is
“Fh T2 €
Substituting
S
T = —
ht
ht
then Opy, =— ZAL cot « (1-1)

The vertical component of the web stresses o acting on the flanges
cause bending of the flanges between uprights. The flanges can be considered
as continuous beams supported by the uprights. The primary maximum
moment occurs at the uprights and is

Sdzta.n o

max M' = Y

At midbay the moment will be

M = max MY/2

Because of redistribution of stresses in the web, maxM will also be modified
with indicated factor C3 which is obtained from the graphs (Figure 22).

max M = (C3) (max M')

2S
0’ma.x =(1+ CZ) ht sin 2«

C3 is a function of flange-flexibility parameter wd:
4
1 1\t
wd = 0.45d 64'—1—)—1;
t c
Where t and c denote the tension and compression flanges respectively.
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1.2
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-
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"
1 ]
0 |
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wd
Figure 22. Stress Concentration Factors Cp and C3

INCOMPLETE DIAGONAL TENSION

The stress in the flange for the incomplete diagonal tension field beam

(Reference 1)is as follows:

k 7 cot &

o = -
F <2AFL/ht>+ 0.5(1-k)

This formula shall be used instead of Equation 1-1. All other formulas

remain the same.
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CONCLUSION

This concludes the summary of the state of the art. Additional infor-
mations may be found in References 12, 13, 14, 15, 16, and 17. The
formulas and graphs which are presented cover the analysis of partial-tension-
field beams that are loaded vertically. The next chapter deals with lateral
loading only, so that both loadings can be combined later. The appropriate
formulas and methods will be selected from existing literature.
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11. ANALYSIS OF PARTIAL-TENSION-FIELD BEAMS SUBJECTED
TO LATERAL PRESSURE LOADINGS

WEBS LOADED LATERALLY

INTRODUCTION

In this section the procedures to be used to determine the stresses
and deformations in partial-tension-field beams subjected to lateral pressure
are developed.

STRUCTURAL SYSTEM

Under the application of lateral loading, the thin web is treated as a
plate which is attached to the flanges and uprights. Depending on the flexi-
bility of the uprights, the web can be analyzed as a plate resting on rigid
beams (or on the beams of negligible flexibility) or a plate, which is con-
tinuous over flexible beams (uprights). The flanges in this case always can
be assumed to be rigid. Figure 23 illustrates the structural system con-
sisting of a plate (web), crossbeams (uprights), and beams (flanges).

UPRIGHTS (TYPICAL)

/

$
\[\

WEB

'V

4
\FLANGE (TOP AND BOTTOM)

Figure 23. Structural System
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In this report, webs thatare able to resist bending are designated as
thin webs. Such webs can be limited approximately by the relationship
b/t < 150, where b and t are the longer side of web and thickness of web,
respectively., The more exact limitation with corresponding explanation is
given later in connection with Figure 24. Several solutions exist for this
case, all based on small deflection theory. Webs which are unable to take
bending are designated as very thin webs. For very thin webs, lateral loads
are resisted by membrane stresses. The very thin webs are limited approxi-
mately by the relationship b/t = 400. The division into the two categories is
also dependent on the loading intensity as will be explained later in connec-
tion with the Figure 24. There are numerous solutions for the first category.
There are very few solutions for the second category and these are based on
large deflection theory. There is a gap between these two categories which
has no solution. The analyst must use his own judgment whether to use the
thin or very thin solutions. This report deals primarily with very thin webs
that are in a range of b/t = 1000. But for the sake of completeness the case
of the thin web shall be considered also.

THIN WEBS

Several methods are presented in the literature which handle this
problem. Inthe case where the web is thin, uprights and flanges for this
partial loading are relatively rigid. The flat web is actually a two-
dimensional equivalent of the beam (which is really a one-dimensional
element)., The flat web resists lateral loads, p,by means of direct stresses:

shear stresses, bending stresses, and torsional stresses.

In the usual derivation of the differential equations for a flat plate, the
following assumptions are made:

1. The material is homogeneous, isotropic, and elastic.

2. The least lateral dimension of the plate is at least 10 times the
thickness. (In this case, the web is much thinner than that.)

3. A vertical element of the plate, before the bending, remains
perpendicular to the middle surface of the plate after the bending.

4, Strains are small.

5. Strain of the middle surface is negligible.

To meet these assumptions, the deflections of the piate must be
small when compared to the thickness. Sometimes the allowable limit of the

deflections for validity of the thin plate equations is referred to as one-
twentieth of the plate thickness; although, for most engineering problems,
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the calculated deflections, moments, and stresses are probably sufficiently
accurate even though the deflections may be considerably larger. Some
references suggest limiting the deflection to less than one-fifth of the plate
thickness; this is a reasonable assumption.

Timoshenko's Method

ILimited test data show that Timoshenko's thin plate equations
(References 18 and 19) describe the behavior of plates reasonably well,
Some error in deflection occurs at low loads since it is very difficult to
obtain initially flat plates as structural elements. The low loads have a
tendency to straighten out any initial waviness in the plate causing consider-
able error in the measured deflections. The equations, however, give
reasonably accurate values for the stresses up to the proportional limit
of the material. Beyond that stress the equations are not correct.

Timoshenko's method is recommended for plate analysis when the
deflection will be small when compared to the thickness. The web is con-
sidered to be a rectangular plate with the edges clamped. This is a good
approximation for webs stiffened with the equally spaced stiffeners because
the rotation at the stiffeners by symetry is zero. Simply supported boundary
conditions are considered also. Figure 25 shows designations for the plate.
The following formulas are derived for thin plates (with the aforementioned
characteristics) loaded with a uniformly distributed lateral pressure. The
maximum deflection at the middle of the plate is:

4
o :a_&_

Et3

<—-—b———-‘

Figure 25. Axis Notation
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The maximum moments in planes parallel to xz and yz axes, respectively,
for the point (x = b/2, y = a/2), are

2
M = Bpb” (in.-1b/in.)
max

2
M = B, pb (in.-1b/in.)
Ymax

The maximum shearing stresses are:

Q =ypb (lb/in.) at (x =b/2, y = a/2)

Q =‘)’1pb(1b/in.)at(x=b/2,y=a)

The maximum vertical reactive forces along the side x = o or b are

v =8pb (Ib/in.) at (x = b/2, y = a/2)
xmax

The values of the vertical reaction at the corner of the plate is
2
R =rpb™ (ib)

For all coefficients as listed above (a, B, 7, g) see Figures 26 and 27, as
given for the ''built in'' plates and "'simply supported'' plates.

Exact Solution

An exact solution is available which considers the continuity of the plate
(web) in the x directions and which also takes into consideration the flexibility
of the cross-beam (uprights in our case). This problem was solved by
Tadahiko Kawai and Bruno Thurlimann in References 20 and 21, The solution
is extremely complex and consequently, is not of much use to a practical
analyst.
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Figure 26. Coefficients for Plate Having Built=-In Edges
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UNIFORMLY DISTRIBUTED LOADING
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Figure 27. Coefficients for Simply Supported Plate
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Summary and Conclusions

A method of analysis has been presented to predict the behavior of the
webs under lateral pressure loadings in the prebuckling regime. The analysis
is based upon the plate theory presented in References 18 and 19. The theory
assumes that the deflections of the plate are small and that membrane stresses
are neglected. This analysis should adequately describe the prebuckling
behavior of beam webs which are within the thickness limitations previously
discussed.

VERY THIN WEBS

Very thin webs offer a negligible resistance to bending and can be

approximated by a membrane. The membrane is considered to be supported
on four sides (flanges and uprights).

Square and Rectangular Membrane

Formulas for the membrane solution were derived for isotropic
material by Prof. L. FOppl and are given in Reference 22. These formulas

(Figure 28) were extended for application to rectangular membrane in
References 19, 23, and 24.

plb/ 2 a a>b

Figure 28. Square and Rectangular Membrane

The latter solution seems to give good agreement with the limited test
values available, over a wider range of pressure. Also, since the formulas
give larger and consequently more conservative values, it is suggested that
they be used for the design of such membranes until more accurate test data
are available.
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For the deflection in the center of the panel

3
- ‘/.&
5-n1a Tt , a>b

and for the stresses in the center of the panel:

where
tz

Similarly, for the stresses in the center of the short sides of the rectangle,
the following is given:

and these formulas are applicable for the point, defined with the coordinates
x =b/2, y =oor a,.

For the center of the long sides, they correspond to the coordinates
X =oorb, y=a/2, will be

o =n, NT

H
3
-~
w
B

o
y
The values UA (i=1, 2, . . ., 7) are the coefficients, functions of
a/b ratio and they are given in Figure 29. An additional graph, given in
Figure 30, shows how the membrane theory agrees with the limited test
results. The test specimenusedwasan aluminum-alloy plate 23. 6 x 23. 6 in,
and 0. 055 in. thick., The modulus of elasticity for this aluminum was
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Figure 29. Coefficients for Uniformly Loaded Membrane
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Figure 30. Comparison of Experimental and Theoretical Deflections
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10.5 x 10° 1b/in. 2. The plate was clamped at the edges, causing slight con-
servatism in the analytical results. The membrane equations will be
assumed to be valied when the maximum deflection is equal or greater than
ten times the thickness of the plate. In reality, however, these equations
can be used whenever the deflection exceeds the thickness of the plate.

To determine which theory is to be used, b/t versus pressure is given
(Figure 24), where, b is the smaller side of the plate, and t is the thickness.
Figure 24 includes two sets of curves; one indicates the range of small
deflection theory (thin plates), and the other the large deflection (membrane)
theory which corresponds to the very thin plates. A design engineer, having
the loading,p 1b/in. 2, will be able to immediately choose the corresponding
thickness, t,and design the web as a membrane or as a plate. If, however,
the thickness, t,is prescribed in advance, the plate should be checked by both
of above described theories and the more conservative result accepted.

CONCLUSION

In this section the behavior of webs under the influence of lateral
loadings only has been studied. Distinction between thin and very thin webs
was described. The discussion was applicable to all commonly used metallic
structural materials,
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UPRIGHTS AND FLANGES

INTRODUCTION

This section will consider tension-field beams under the influence of
lateral loads without the presence of other loading. The response of uprights
to lateral pressure loading on the beam will be discussed. Strength of up-
rights and the buckling of uprights will be analyzed. Similar discussions
are provided for flanges.

ANALYSIS OF UPRIGHTS

Upright loading exists because of the application of lateral loads to the
plane web system. The tensile stresses which exist in the thin webs tend to
pull the flanges of the beam together, inducing compressive stresses in the
uprights. The lateral load also induces bending stresses in the uprights as
well as the flanges bending them out of the plane. As the lateral loads are
increased, the loads may be reached where upright failure occurs due to
compressive failure or column failure. At this stage, the partial-tension-
field beam is considered to have failed.

Analysis Consideration for Uprights Other Than Stability Considerations

The stresses in the uprights for those uprights that are located on
each side of the web can be determined from the elementary strength of
materials when the tension field beam is subjected to lateral loads. Hence,
upright stresses become

o =4 I\-—/II—C— + = (2-1)
e
where
I = cross-sectional moment of inertia, in.
M = bending moment, 1b/in.

distance from the neutral axis to the outer most fiber, in.

(¢}
i

P = compression load in the upright due to tension in the web, 1b

cross sectional effective area of upright, in.

>
n
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-

When the uprights are positioned only on one side of the web, then
effective area to be used is

A to (2-2)
=TT o2 a-2
€ £
1+ (8)
where
. . .2
Ay = cross-sectional area of upright, in.
e = distance from the web to the centroid of upright, in.
p = centroidal radius of gyration of the upright for bending normal to

the plane of the web, in.

The moment of inertia is to be taken about the bending axis of the
upright whether single or double uprights, First, consider the particular
case of square panels, i.e., d = h, then the distribution of lateral load to
the flanges and upright is shown in Figure 31.

where
q, =Ppd
z
and
_pd
9 T2
W

For triangular distribution of the load acting on the upright, the up-
right (Figure 31(a)) can be considered as a beam column. For design
purposes, the upright is taken to be pin-ended since the upright attachment
to flange section and torsional restraint is small in most flange sections of
diagonal tension field beams. The equations describing the behavior of the
upright shown in Figure 3] are well known (Reference 25). The bending
moment is then

x X
- C sin=— X4 6 2-
M ! s1nj + C2 cos : (q) (2-3)
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Figure 31. Forces Acting on Uprights (a) and Flanges (b)

C)e—

T

where f(q) is a term containing q and j, x, and h but no axial load or end
moments, Here x is the coordinate axis that measures distance along the
upright height, and j ="EI/PU . The values of C and f(q) are as follows:

h
For x>?

2qj3 2qjx%
h cog— h
2]
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h
For x>7
3 h h
2qj cosj— —4qj3sin?j— 2 x
C,=—— C,=——— fa)=2qj (1-9 (2-5)
hcos—
2j
where
2 EI
) =5 (2-6)
U

The force PU caused by the lateral load p can be determined from the web
loading, T, . The force, T,,(See Figure 32) caused by the tension in the web
is a function of the slope at each station along the upright and flange. For
the very thin web system, the value of T,, can be obtained from the tensile
stress distribution in the web system.

FLANGE

WEB DEFLECTED

Figure 32. Web Tensile Force Creating Compressive Force in Uprights

The vertical load Py induced in the upright due to only lateral-pressure is in
almost all cases very small and can be neglected. The forces acting on
upright for a rectangular web panel cannow be approximated by those shown
in Figure 33 where q = pd.
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: Figure 33. Upright Reaction

The reactions and deflection (Reference 26) for the case shown above are
provided in Table 2.

One can use Table 2 to solve for the reaction for the case of triangular
distribution by letting C = 0 and a = h/2.

With the aid of Table 2, the bending stress in the upright becomes

o - 4 Mc
bend I

where
c = distance between neutral axis to outermost fiber of upright, in.
I = cross-sectional moment of inertia of upright, in.
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Table 2. Reaction and Deflections of Uprights

. _ _ g(h-a)
Reaction HA = HB = >
Location Shear Bending Moment
2 3
= - 3x = . ax
x<a Qx HA 2a Mx HAX 6ba
2 2
_ _qc _gh"})3a _, 2
X = a Ql > I\/I1 == [ o 4 (h) ]
qc qxcxc.
x> a Qx—T—q(x-a) MX:M1+ >
2 2
h B s _a”
) Q =0 Mmax_q(S 6)
4 2 4
: - _9h — 402 a
Deflection Wohax = T920ET [25 40(h) + 16(h) ]

Stability Consideration for Uprights

For laterally loaded partial-tension-field beams, the uprights are
generally not subject to stability failure. The compressive load on the
uprights due to lateral loading is generally extremely small in comparison
to upright bending, and for design purposes it can be neglected.

The bending moment induces compressive stresses on one side and
tensile stresses on the opposite side. If the uprights have very thin free
edges on the compressive side, then local crippling may occur. This should
be checked using the method outlined in Section L.

ANALYSIS OF THE FLANGES

The strength analysis of the flanges can be made using the elementary
beam formulas or truss formulas. The stresses obtained are then combined
with the local bending stresses caused by the tension in the web system,

The local bending stresses are obtained by dividing the local bending
moments by the section moduli of the individual flanges.
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Strength Analysis of Flanges

The tensile force existing in the very thin web produces an approxi-
mate triangular load distribution on the flange. Consider only one bay as
shown in Figure 34. The flange can be considered as a fixed-end beam with
the end located at the upright-flange junction. The reactions for such a case
are as follows (Reference 27):

5q d2

M =—2
o 96 (2-9)
R = 1 d 2-10
o~ 79 (2-10)

which says that the maximum bending stresses exist at the upright flange
junction region,

L. .
/ 7
AN IS ] S | BN P %—
/ — e — ~ — / V4
% ; ; =
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/ ; [ - P
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/ ; \\ -
/ — —_ —— S | —
/ z ~ - N >\‘ \< ~, 7 \E
% N w ¥

UPRRIGHT

Figure 34. Strength Analysis of Flanges

The lateral deflection of the flange in the direction of the applied
lateral pressure can be considered as a beam under triangular load and
concentrated load as shown in Figure 35, :
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The reaction on the flange due to lateral pressure p is shown in
Figure 35. In addition to the triangular load q (x) existing due to the load
on the web, there exist concentrated lateral forces H caused by the reaction
at the upright ends. Here q (x) is taken to be triangular load as a function
of x, i.e., distance along the flange length.

ARRERE

&«
&
[

Hj H2 H3

q(x)

7 | .8

Figure 35. Reactions Acting on Flange Due to Lateral Pressure

Stability Consideration for Flanges

Lateral Instability of Flange

The lateral load acting on the beam induces compression and tension
on the flange portion as shown in Figure 36. Since compressive force exist
in the flange portion, this section must be investigated for stress and
instability, The flange portion may be treated as a bending moment M
caused by the lateral loading of the beam acting in its plane. This bending
moment may buckle the flange out of the plane, i.e., sideways.

The bending moment must be less than the critical bending moment,
otherwise, out-of-plane flange buckling will occur. The critical buckling
moment for pin-end beam of Figure 37 is (Reference 28).

- 60 -
SID 66-135




NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

UPRIGHT

Figure 36. Laterally Loaded Tension Field Beam

myJGIEL_
M =z—2= (2-11)
cr L

where
G = shear modulus, psi
J = torsional constant, in.
E = elastic modulus, psi
I = moment of inertia with respect to z-axis (Figure 37), in. 4
L = length of the beam between lateral supports, in.
GJ = torsional rigidity, 1lb/in, 2
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Figure 37. Moment of Inertia of Flange With Respect to Z-Axis, in, 4

The addition of lateral supports between end span will reduce the
effective length and add some torsional restraint thus increasing the critical
bending moment level. Since it is unlikely for the flange to buckle in this
mode, the conservative assumption that uprights do not influence the buckling
level is suggested. This is especailly appropriate since experimental data
approaches the pin-end upright case rather than the fixed-end case.

Twisting of Flange

The maximum shear stress in the flange (Figure 38) due to twisting
is (Reference 28).

T = 31T (2-12)
max 2
at

f

where

a = flange width, in.

flange thickness, in.

te
T = maximum twisting moment, in. /1b
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7 — SN

Fiéure 38. Maximum Shear Stress in the Flange Due to Twisting

The distributed twisting moment Mt is

t
_(PA (._f) in. -1b/in.
M, = (ZL) 2 ( )
therefore,
MtL pAtf
= = in. -1b -
T .« > 5 (in ) (2-13)

where A = hL is the area in which the pressure is acting.

The maximum T that can be applied is when T nax is taken to be
equal to material allowable. Hence,

when T is less than Tmax the flange section being studied will not fail in
torsion.
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CONCLUSION

The methods for analyzing the uprights and flanges of a partial-

tension-field beam subjected to lateral pressure loading have been developed
in this section, The failure of uprights is due primarily to excessive bending

such that the material allowable stress is exceeded. Crippling of the
uprights should also be checked. For the flange portion, the stresses and
the instability modes should be checked using the equations provided.
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111, PARTIAL-TENSION-FIELD BEAMS LOADED
VERTICALLY AND LATERALLY

Sections I and II have treated the behavior of partial-tension-field
beams subjected to vertical loading or to lateral pressure loading. In this
chapter analysis methods are developed which define response of partial-
tension-field beams when these loadings are applied simultaneously.

WEBS

INTERACTION BETWEEN VERTICAL AND LATERAL LOADINGS

It is assumed that both vertical and lateral loadings act simul-
taneously on the beam. Both sets of stresses, as shown in the Figures 39
and 40, must be considered simultaneously.

In the prebuckled stage web stresses can be determined by simple
superposition methods. It is noted that the compression in the diagonal
direction, which causes buckles to form and the transition into the post-
buckling stage, is diminished by the addition of the tension component
resulting from the lateral loading. Consequently, the load range in which
prebuckling analysis applies is increased. However, the post buckled case
is of greater interest. '

Postbuckled Stage

Under the application of vertical loads on the beam, the web will be
stressed in shear. At the critical value of shear stress, 7.y, the web will
buckle. This is because the shear stress can be resolved into a compression
stress, 0,in the diagonal direction causing buckling. The critical buckling
value of shear stress, 7.,» can be calculated knowing the material, size,
and thickness of the web. The web can carry applied shear larger than the
buckling shear by tension field behavior since the structural model changes
when the web buckles.

Figure 41, diagram A, shows the increase of compression and tension
stresses as a function of T, which is a function of the vertical loading.

- 65 -
SID 66-135




NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

194 2%

6 =- (I-k),

BUCKLES

Figure 39. Stresses Due to Vertical Loading
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Figure 40, Stresses Due to Lateral Loading
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Figure 41. Diagrams of Stresses Versus Loadings

After o, is reached, buckling occurs, and the compression stress
will not be increased significantly. The tension stress, which is inclined
at 90 degrees to the compression stress, will continue to increase (at a
larger rate) because the model has now changed and nearly all increments
of loading will be taken by tensional resistance of the web. Figure 41,
diagram B, shows a similar relation between the lateral loading and the
corresponding tensile stresses o] and 0, as a function of lateral loading,
which isdesignated by p (pressure).

To preclude web buckling, the combined interaction must satisfy the
relationship:

Ao = - + 0 <
C

2

and this can be presented by the compression stress which is shown in
Figure 42.

- 67 -
SID 66-135



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

(4
WITHOUT LATERAL LOADING,
/ BUCKLING WOULD OCCUR HERE
(N4
/
/
/
/
/
T
x —
< o
s°
o L
©
<<
Bb J
-
e T cr —————o=] -r* > T, P
T*

Figure 42. Combined Compression Stresses in Web

It is evident from this graph that the stability of the web increases due to
lateral pressure, and buckling is postponed.

Interpretation of the Postbuckled Stage

The buckled web consists of a set of wrinkles that are oriented in the
diagonal direction. The cross section through this set will indicate a
wrinkled section which is similar to a corrugated metallic sheet. The
corrugations are very small. The most fundamental question is: Which
structural model is reasonable to use for the prediction of stresses in the
buckled web that takes postbuckling stresses by diagonal tension. Test
results and the observations of buckled webs are of significant help, showing
that the compression stress o . that caused buckling does not disappear with
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the change of the model, but either remains constant or slightly increases
with the increment of loading.

The aforementioned corrugation can not provide significant additional
bending rigidity because of the negligibly small height of the corrugations.
The small bending rigidity is negligible in comparison with the axial rigidity
as shown in Figure 43.

o g
, BENDING / TENSION

JAVAVEFE

A SECTION B BENDING C AXIAL TENSION STRESS
STRESS

PIENSION > 7BENDING

Figure 43, Stresses in Tensile Direction of Buckled Web

It is assumed that the buckled web can be idealized by a set of cate-
naries in the diagonal direction because of the negligible bending rigidity.
The next section will describe the application of the physical model
represented by the catenary.

ANALYSIS OF THE POSTBUCKLED WEB

Inextensible and Extensible Catenary

The web in the postbuckled state will be idealized in this analysis as
a system of catenaries oriented along the wrinkles. The catenaries are
assumed to carry the lateral pressure in the postbuckled stage.

The method of determining the stresses and deformations of an
inextensible catenary is well known. Less known, however, is the case
where the extensibility of the catenary is considered. Since the material is
already wrinkled in the web of the partial-tension-field beam in the
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postbuckling stage, it can be assumed that the deformations may be of
considerable magnitude. In the case of a very thin web, the large deflection
theory to determine the stresses in a membrane has already been dealt with,
The extensible catenary actually presents another case of geometrical non-
linearity (loading versus deflection); consequently, the linear approach can
not be utilized,

This method of analysis was presented in Reference 28, which was
later extended and modified considerably by NAA-S&ID. Figure 44 represents
a general case of an extensible catenary that is loaded unsymmetrically.
The distance between the loadings is arbitrary and the supports are on
different elevations.

VA
Vs

LEVEL

Figure 44. Unsymmetrically Loaded Catenary
(General Case)

For our present purpose, it would be adequate to treat the simplest
case of the catenary. This has the supports on the same level and is loaded
with a uniformly distributed loading. Instead, we will describe the more
general case as presented in Figure 44. This will be useful for possible
future extension of this work, For instance, if hydrostatic pressure or
some other distribution of the pressure is of interest, it is still pos sible to
use this approach.

Suppose S is the known original length of the cable before it is placed
in the position between the supports A and B. The equilibrium shape is not
known at all; this depends upon the loading. A slight change in the loading
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will be immediately followed by a change in the shape of the catenary.
Under the loading shown in Figure 44, it can be observed that the
deflected shape of the catenary depends only on the distribution of load,

not on the magnitude. The stresses in the catenary depend upon both
distribution and magnitude of the applied loads. If the extensibility is not
negligible during loading, every point@ will continue to change its vertical
and horizontal coordinates. When the loading P; reaches the final value,
the shape of the catenary will be different from the original shape assumed
by catenary at the beginning of the loading process. This final shape is
designated as the extensible shape. The shape as it was originally noted at
the beginning of the process is called the inextensible shape.

Under vertical loading, the horizontal movements of the load applica-
tion points @ on catenary are small in comparison with the vertical move-
ments and, consequently, will be neglected. The following additional desig-
nations are made:

Qi = angle between the catenary in the ith bay and the horizontal
A = area of the cross section of the catenary
E = modulus of elasticity for the catenary
M, = bending moment at the ith 10ad due to the force system, if H =0
H = horizontal component of reaction at supports A and B.
V = vertical reaction at A and B due to the loading.
F, = vertical shear force in the ith bay
S = initial length of catenary
d. = initial location of the loaded point@measured from the reference
line AB. This value is not known in the beginning of the calcula-
tion, and is the function of S and loading P;.

The reactions VA and VB are determined as follows:

h
R, +H—=R, k6 +aH

Va=ERy L A
V_ =R -H—E-:R -a H

B B L B
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where h/L = ¢ and Rp and Rp are the reactions of the simply supported
beam of span L loaded with applied loading.

The following formulas are known:

My
4G =7

M, - M,
F o= i i-1
R

Fi
t 9, =—

If the angle of inclination 8, is not too large, instead of using the

known relation Sec Oi = 1 + tan? Gi, an approximate relation will be used:

F
1 2 1 i
Sec 6, ~ 1+ tan 6, = 1+7<‘ﬁ+°‘>

2

In Reference 29 Pippard shows how the error varies with the angle 6:

: Sec @ Error
0 tan 6 Accurate Approximate (%)
0 0 1.0 1.0 0
10 0.1763 1.0154 1,0155 0.01
20 0.3639 1.0642 1.0662 0.19
30 0.5773 1, 1547 1. 1667 1,04
45 1,0 1.4142 1, 5000 6.07
60 1.7320 2.0 2.5 25.0
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Further, Pippard shows that the total length of the catenary when
strained is

1 2
L(l + 5o ) + LZ- (3-1)
2H

where

z =Zj:(’1 - li_l)Fiz (3-2)

If the tension in the catenary in the ith bay is designated by T;, the increase
in the length in this bay is

T.(l. -4 )Sec 0.
i1 i-1 i
AE

T, = H Sec 0., = VH2+F_2
1 1 1

the increase in the length of the catenary is

n
H 2
AR . ("Qi —li_l)Sec Qi

Since

The strained length is given by the following formula

H 2 Z
S+ﬁ L(l+a«a )+?] (3-3)

Equating (3-1) and (3-3) leads to the cubic equation:

1 2

3 AE{S-L(1+—2-a)}+Z(2H-AE)=o

2H L(1 + &%) + 20°

The term AE is much larger than the term H; therefore, the following
approximation can be written:

2H3L(l+a2)+2H2AE{S-L(1+-—;—az)}—ZAE=o (3-4)
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For any specified length of cable and distribution of load, H can be
determined from Equation 3-4. Now assume that the cable is already preten-
sioned with a load Hy before any lateral load is applied. For this case,
Equation 3-4 is modified to

2 3 2 AE
2L(l+a )(H -HHO'ZTI_IO>-ZAE:O (3-5)

because the extended length of the cable is equal to the span L, modified with
the inclination factor (1 +-21-a2)

1 2
L(1+5a) =5 1+H°(l+§a)
z “' 7 AE
If __AE 1, E tion 3-5 may b i lified:
N HO ~ 1, Equa ay be simplified:
2. .3 2
2L(1 +a”) (H” - H'H ) - ZAE = o (3-6)

H is the final tension under load (H, is included in H). If the loads
and spacings are both equal and A and B are at the same level (D = o,
a = o, Pi = P) then

3 2

2 2 3
AEP (n - 1) _ 4 547 \/AEPZ(n - 1)

24
n denotes the number of equal bays in the catenary.

H =

If the loading is continuous and of uniform intensity p along the length
AB, the shearing force at a distance X from A is

)49

then
L 2.3 2
2 2 1 2 Lo(1 +
Z =p°(1+a°) f(EL-x) dx =& fz « ) (3-7)
(o)
3 2.2
3 2
- Y2ERP L 347 JAEPL
24
_74-
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When H is known, the initial location of the loaded points below the
reference line may be found from d; = M;j/H and, consequently, the loaded
shape of the catenary determined. For determination of M; the following
method may be of help:

94

o3

a2

3
- L
®

<
1}

5
< P1a1+P2a2+P3a3+P4a4; Fv= zpi
1

M\Z_i- = Pl(al +e) + Pz(az +e)+ P3(a3 + e) + P4(a4 +e)+ P5e
= (Plal+P2a2+ +P4a4)+ (Ple+ +P4e)+P5e
N . _ 5
M_ ez P,
y i
1
Consequently,

M— = M_+ eF_
vi X v

The moments can be calculated from this equation.
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Consider the case of an equally distributed loading p on a catenary
which is initially prestressed with load HO before the loading p is applied.

From Equation 3-7
2 2
2I(] 4+ « )(I—I3 -H Ho) - ZAE = o,

where

This leads to:

2.3 2
21,1 +a2) (H3 _ HZH ) - pL(1+a )AE”:
o 12
After algebraic manipulation, this becomes:
2.2
3 2 p L AE
H - HoH - >4 = o0
Designate Ho = -a,,
2_2
p L AE -a
24 T o
Then the cubic equation will be:
H3+aH2+a = 0. (3-8)
2 o

To determine the unknown value for the tension H in the cable, which
is pretensioned with H  and loaded with p, the roots of Equation 3-8 must
be found.

Denote:

Lo
1l
Oﬁ| —
T
(ON]
»
Ov
1
o
w
!
ho]
3%
C
[§S]
>
1
1
N
My
o]
SNS—
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Then:
6
H
3. (o
1 =°\3
2 3 6
2_2
rZ N pZLZAE _ (B L AE Ho + Ho
- 48 : 48 3 3
Adding the above cquations:
2_2 2_2 H 3
3+r2_pLAE pLAE_2 o
q 48 48 3

This is the governing equation for behavior of the catenary. The value of

the quantity in the bracket will now be examined.

2_2

p L AE

48

Defining this quantity asA :

3

e

If A > 0, there exists one real root and pair of complex conjugate roots.
The above inequality may be expressed as: pZLZAE > 3.56 Ho3. If,

however, p2LZAE < 3,56 HO3 then all

roots are real. To facilitate calcu-

lation of the roots, designate the following quantities:

[ 3 2 ]1/3
S1 =]lr+ §Yq +r
1/3
3 3
_ pZLZAE Ho + oL AE pZLZAE I_Io
- 48 T 7 TP 48 18 13.5
12 1/3
S_=|r -( 3 + rz) ]
Z - q
3 1/3
> 3
) szZAE H) L/ AE JPZL AE H)
= X PLY 48 48 13.5
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with these designations, the roots can be given in the general form:

az Ho
Hy =) +8,) - =5 =5, +8) + =~
H__51+32+Ho+iV3(sl-sz)
2~ 2 3 2
H__Sl+sz+Ho_iV3(S _s)
3" 2 3 S B
This leads to:
H 3
H =S, +S, + —
172179273
H oS i¥3 -1 < V341 +Ho | 5o0)
2= ™1 2 2 2 3
g oo s iV3 -1 5 V341 +Ho
3772 2 1 2 3 J

It is evident that the direct solution of Equations 3-5 and 3-8 appear to be
involved; consequently, it may be simpler in some cases to solve these
equations by a trial and error approach., The solution of the cubic equation
is programmed for the IBM 7094 as part of the catenary analysis program
discussed in Appendix C.

Numerical Example

A simple example will be calculated (Figure 45) where loading and
dimensions are given,

Then 2H3L + 2H2AE(S - L) + Z(2H - AE) = o which is the equation
to determine H for this case.
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|
1K
(TYP)
@
@ 1.0
TYP @
2K
K
Figure 45, Numerical Example
2 2
AN | P. F, F, ARFE. M =M +eF
i i i i n n-1 n-1
A -2 0 0
0.5 -2 4 2
1 +1 -1=-1
1 -1 1 1
2 +1 -1-1==-2
1 0 0 0
3 +1 -2+4+0=-2
1 +1 1 1
4 +1 -2+1=-1
0.5 +2 4 2
B -2 -1 + 1=20
0 0
Z =6

Collect the terms:

%5:0.65 S = 4.60 L=4
1.15
0.50
2.30
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Assume: A =0.5 in2
E = 8000 1b/in?
AE = 4000 1b.
7 =6

This leads to:

H3+0.60H2+ 1.50H=3x103

The solution is H = 1. 00,
Now the new extensible shape can be easily found:

Yi = Mi/H

Actually, the buckled web consists of a set of many catenaries., If
we want the stress/strain conditions in every strip, many calculations must
be performed. The cubic equation to determine H can be solved with the
trial and error method which is time consuming. If the time element is
pressing, it would be useful to have a FORTRAN program. A program of
this type is written and is discussed in Appendix C of this report.

Reactions on Uprights

If the buckled web is idealized by a set of catenaries in the diagonal
direction, it will deliver to the uprights an inclined reaction which can be
resolved into a horizontal component H and vertical component V. Each
strip of the web, which is idealized by a catenary, will deliver this reaction.
The FORTRAN Program, presented in Appendix C, will compute a set of
reactions which correspond, as assumed, with each catenary.
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FAILURE CRITERIA

It is apparent that the controlling factor in any case is the tension
strength of the web, which is the ultimate limit to the loads carried by the
beam. If only vertical loading is dealt with, then in the postbuckling stage,
the web is stressed largely in tension and actual stress must be smaller
than the strength of the material: v 0 3ctual < %yltimater L the web is
loaded up to Oylt, Do additional load can be accepted. The lateral loading
also leads to the axially loaded catenary. In this case must be z% 5.t <%ylte

If both vertical and lateral loadings are present, +

2 o
V act H(ract< ulte

For the case of a beam loaded with both vertical and lateral load, the
nondimensional graph shown in Figure 46 is used.

ACTUAL

ASSUMED

v@act
ult

h%act

Tyl

Figure 46. Interaction Graph

The straight line assumption is a reasonable simplification. In
reality, the interaction curve is slightly curved because of the geometrical
nonlinearity connected with the stresses and deflections of the catenary.
However, assume that this effect is small. The straight line is also a
conservative assumption because in an extensible catenary the extensibility
reduces the stresses,
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SIMULTANEOUS APPLICATION OF VERTICAL AND LATERAL LOADINGS

The basic assumption made by Paul Kuhn in Reference 1 is that all
stresses that were developed in the prebuckling stage remain ''frozen' in
the web after buckling. After buckling occurre , the rate of increase of
these stresses will be changed, so that the compression stresses will con-
tinue to increase but at a smaller rate than before buckling. The tension
stresses, however, increase ata larger rate.

The question of increase of the compression stresses after buckling
is disputable. Several investigators claimed that the compression stress
after buckling remains constant. Wagner even suggested that the compres-
sion stresses drastically decrease, which leads to the safe conclusion to
neglect them.

The behavior of stresses/deformations due to the lateral loading must
be consistent with the assumption that was made by investigation of stresses/
deformations due to vertical loading. Kuhn shows in Reference 1 that his
assumption was made in accordance with numerous test results. Since
this work is a continuation of the excellent work performed by Kuhn on
vertical loading, it is logical to keep the same assumptions. This was done
in the beginning of this section and all stresses that were developed in the web
in the prebuckling stage were assumed to be frozen in the web. An increase
in the vertical or lateral loading supplied just additional components to the
frozen state of the stresses. This structural model, however, leads to the
conclusion that the sequence of loading slightly influences the results. This
influence from the practical point of view is not too significant, and from the
theoretical point of view it is open to question,

Many arguments may be presented in favor or against the assumption
that the sequence of loading influences the final state of stress. In reality,
only a well performed testing program may prove it one way or another.
Unfortunately, no such program is possible under this study. Consequently,
it is difficult to answer this question with complete certainty.

Consequently, two procedures are outlined here. The first procedure
is consistent with the assumption of frozen stresses; the second procedure
deviates from this assumption, as will be explained later. The second
procedure is independent of the path of loading and is consistent with the law
of conservation of energy.
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First Procedure

Since vertical and lateral loadings are applied simultaneously, buckling
of the web may occur under some critical combination of shear and pressure
(T*, p*) where

T

postponed critical shear due to the presence of p* (T* > Ter)

P* = part of lateral loading (p* < P,) which supports the web at

buckling when 7

is reached.

There are an infinite number of combinations of load (T*, p*) under
which buckling occurs. It is necessary to select in advance any value
T st cr OF P* < Py under which it is desired to get the web buckled. If
T * is given in advance, then a corresponding p* can be determined. If p*
* can be determined.

is selected v*
The characteristic equation for buckling is:

T*z T + 0_::: (3_10)
cr

Io
<

where o™ is the tension in the compression (diagonal) direction, and depends
on the lateral pressure loading.

This procedure takes into account the sequence of loading. The load
deformation relationships are not linear; and the previously assumed linear
variation of the stresses was a simplification, useful for small lateral
loadings. This simplification will be removed here.

In the prebuckling stage + - due to vertical loading only was determined.
Two approaches can be used: <

1. Determine the lateral loading p* which buckles the web in com-

KA
()

bination with the assumed shear stress,T ™,

3 ats
b

From Equation 3-10: ¢ = 7" - o... Now v shall be transformed
into components in a and b direction where a and b are the hori-
zontal and vertical dimensions of the web respectively. In connec-
tion with Figure 47 the following formula can be used:

2 .2
=9 cos O+0,sin 6 -21 sin® cos®
a b Xy

5 (3-11)
T=(oc - o0,)sin® cos® + T (cos @ - sin 0)
a b xy
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$

L

t_" (
"fﬁé\ &

Q

LT

T

I

T T

Figure 47, Stressed Element

T can be neglected because Txy for our case is small., Conse-
quently, the equation can be written:

b s s
0 b

o "A=c¢ ¥1=0"cos0x1cos@
a a

St b 2
g cos ©

Q
1]

Since 0 = 45° the expression for the buckling stress in the
a-direction is

o, ¥ =0% x 0,712 = 0,505 0% = 0,50

In order to find corresponding p* the following formula is used:

o

2
% S| 2 (larger side of plate)
a =" 2 P E

2
t

and M , as function of the parameter a/b (where a > b) shall be
obtained from Figure 29.
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2.
0.25
™
-
+ |~
~N
-
"
« 0.20
0.15
1

Then:

o “t
sk a

nZ (long side)

Determine the shear stress T+ which bucbkles the web in combina-
tion with the assumed lateral pressure p".
2 az :
U=(p') E — to p” corresponds; a > b
t
From Equation 3-10
S 1 3
=— ("N M
7or Ty rhs) §U
Figure 48 leads to determination of the factor B = 1/2(712 + 1 3)
as function of a/b (a > b).
\ a>b
\\
.00 1.25 1.50 1.75 2.00

a/b

Figure 48, Coefficient g8
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Then
—_— Ter o ¥ 3
Y = - n =1+ £ Ju
Ter Ter Ter Ter
Finally
TT=Y T (3-12)

cr

Approaches 1 and 2 lead to a critical combination which causes
buckling: (7%, p*). Since the critical combination under which the buckling
occurred is determined, the corresponded k factor can be found, which is
designated by k* in order to show that this factor is actually a function of
TO/T* rather than TO/Tcr. The rest of lateral loading (if any)

is taken by the set of catenaries. The rest of the vertical loading which is
taken by the set of catenaries (changed model after buckling) corresponds
to the difference (T5 - 7). Then in the usual manner

The compressive stress in diagonal direction:

1. Due to vertical loading:

g =-7T (1 - k>'<) sin 2@
c o

2. Due to lateral loading:

e

¢ = function of ( o O'b)
Finally:
o =T “K')sin2at o (3-13)
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The tensile stresses, which are taken by set of catenaries:

1. Due to vertical loading:

. 2K T

° sk
o - —— (1L .
II sin 2 @ +TO(1 k') sin2a+ ©

ate
pd

(3-14)

This stress component can be interpreted as a prestress in
the catenaries.

1
2. Due to the lateral loading, the stress 911 is increased in the

following manner:

The prestressed catenary has to support the rest of the lateral
loading which was not taken during the prebuckling stage:

1 sk

P =p, - P

The appropriate formula given before, or the FORTRAN program
leads to the determination of the tensile stress 0y and final lateral
deflection y. The input to the FORTRAN program is as follows:

The catenary, which h'a.s a length equal to the length of the diagonal,
is prestressed with Ho =01 /A, loaded with p”, and has the initial deflection
6 from the prebuckling stage. The output will be final tensile prestressing
H which leads to the final tensile stress in catenary 0y; = H/1.t, and the
final deflection vy.

The most important sequences of loading considered in the numerical
examples are as follows:

1. Vertical and lateral loadings are concurrently applied in a linear
manner.

2. Full vertical load is applied, followed by lateral load.
3. Full lateral load is applied, followed by vertical load.

From this study and as a result of many numerical examples, it was
concluded that the sequence of loading has little effect on the results. The
difference in results appears to be primarily due to the change of structural
model from a plate to a set of catenaries with the preservation of the
frozen stresses that existed at buckling, For a practical engineer these
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differences are small. This discrepancy may be eliminated if the assump-
tion of frozen stresses is slightly revised for lateral loading. The revised
procedure follows,

Recommended Procedure

The physical behavior is reviewed first as was done on Figure 19.

It seems reasonable to assume, after buckling, that the entire lateral
pressure load is carried by the catenaries. Consequently, at buckling the
stresses due to lateral loading that existed in the prebuckling stage disappear
and a new uniaxial stress system will develop. Since all of the lateral
loading is taken now by the system of the catenaries, the compressive
stresses in the diagonal direction due to lateral loading will be zero during
the entire postbuckling stage. Figure 49 illustrates this, As before, the

STRESS DUE TO VERTICAL

LOADING

COMPRESSION DIRECTION

UNIAXIAL STRESS
DUE TO LATERAL
/ LOADING
r

T*

Figure 49, Compression Stresses Due to Vertical and Lateral Loading
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lateral loading postpones buckling to an elevated value of shear, designated

by 7. However, when buckling occurs the compressive component is the
same as if the lateral loading were not present:

O”I: O'C-—-—To(l—k) sin 2 @

where k is the function of TO/ T.p &S Was shown previously.

It is noted that at buckling there is a sudden drop in this compression
stress. In the prebuckling stage, as before, the compression stress is

where )

b 1
¢ =71, where +< +7™; o =

C H 1 —2'(Ua+6b)

A
for o a and o, use the formulas from Section II:

=7 J3U n J3U
TaT 2 T3

A similar discontinuity in the tension stresses appears at buckling as is
evident from Figure 50,

In the presence of lateral loading buckling is postponed (line a, b)
and will occur at point b. After buckling the system changes and the tensile
stress due to vertical loading immediately increases (point C). The tensile -
stress continues to follow the line determined by the vertical loading. Con-
sequently, the tension stress due to vertical loading in the postbuckling
stage is:

2k T

1
=0 =

o
T — 1 -Kk)sin2«
-7t Bmze T Toll Tk sin
The entire lateral loading p, is taken by a system of catenaries, shown in
Figure 50. Again at buckling a discontinuity occurs because of the change
in the structural model.
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DIRECTION

TENSION

A. DUE TO VERTICAL LOADING IN PRESENCE OF LATERAL LOADING

DIRECTION

TENSION

8. DUE TO LATERAL LOADING IN PRESENCE OF VERTICAL LOADING

Figure 50. Tension Stresses Due to Vertical and Lateral Loading
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To determine the total tensile stress in the postbuckling range a
catenary model is analyzed as before. The length of the corresponding
diagonal is used for the span. The prestress Hy=011 A the loading pg,
which is a total lateral loading; the initial deflectlon is 6 = o in accordance
with this assumption., The FORTRAN program or the corresponding formula
leads to the determination of oj7 (actually, the output of the FORTRAN is
H, then o0;; = H/1xt) and final deflection y.

In the prebuckling state

=0 a
11 )
where )
g =T <T™
t
ag zl((T +U')

H1 ~2'"7a b

for o, and o, see formulas in the Section II.

It is evident that this procedure is independent of the path of the
loading. In this case the system clearly follows the law of conservation of
energy.

Consequently, there is no necessity to determine the critical combina-
tion (7%, p") under which buckling occurs because this combination does not
affect the final stresses, All that is needed is to examine whether the beam
is in the pre- or postbuckling range and then to use the corresponding set
of formulas,

In the Summary the analysis procedure is outlined. If for some reason
the analyst wants to postpone buckling during loading, the entire p will be
applied first and then T will be determined in the previously outlined
manner.

In Appendix B the procedure is illustrated with numerical example.

All cases examined described the approximate behavior of the partial-
tension-field beam webs under combined loading conditions. For simplicity,
a linear relation was assumed between increment of loadings, strains, and
stresses. This relation may not be linear for certain loading and material
combinations. In these cases, the tangent modulus will be used, and the
curves representing the interaction diagrams will be curved lines rather
than straight. The general approach holds for this case, also.
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SUMMARY OF PROCEDURES
The procedure for the analysis of webs of partial-tension-field beams
under vertical and lateral loading is summarized in the following section.

The following formulas are presented for the analysis of the web.

Vertical Loading

The applied shear
T =V/th
o

The critical shear

t 2 1 d 3
T = E —_— — i
cr T K B Rptz Rg=R) P
1f the web is in the prebuckling stage, T, < T.,.

then

If the web is in the postbuckling stage, T, > T .y

then compute:

To
k = tanh (0.5 log —7;——)
cr

To compute the effective area of the stiffener:

2
e
AU :AU[1+(__j——) ]

e

To determine the angle, «, use the parameter AUe /dt with Figure 8 (using
AUe instead of AU as indicated in graph). Then compute the stresses:

o =—7T (l-k) sin2«
C (o]

) Zk‘ro

O =—
t sin 2o

+ T (1-k) sin2«
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Lateral Loading

Depending upon the loading, py, and the ratio, b/t, from Figure 24,
utilizing the ratio of the web size, a/b, determine if a thin web or very thin
web is being dealt with and use the formulas for thin plates or membranes,
respectively,

These formulas give the stresses o, and 0,. With the corresponding
Mohr circles or using the formulas, find 0} and {0, for diagonal direction.

Also, find the deflection in the middle of the plate, v.

Vertical and Lateral Loading

Check the compression stress in the diagonal direction.

if
7 T u o-ll < |er
we are in the prebuckling stage. Then
9 final = %c ¥ 171
% final~ %t u 72

using Mohr's circle determine o ax which must be = o ultimate tensile.
m
1f
- o
lo-c H 1| > ITcrl
we are then in the postbuckling stage.

First Procedure

It is desired that buckling shall occur at 7 prescribed in advance.
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Then

P = n, (longer side)

In this way the critical combination ( 'r"‘, pq\) is obtained.

It is desired that buckling shall occur at p"\ prescribed in advance.

Then
x (longer side)
e
U=(p) E-82
t

a/b = B (Figure 48, page 85)

- ;/—U‘)T
T cr
cr

In this way the critical combination ( T, pm) is obtained.

Having the critical combination ( T, pm) in both cases as was shown

above, proceed as follows:

The deflection

longer side)

3 b
= 1 p (
o "'71 (longer side) ‘/ o

will correspond to p*

where " is obtained from Figure 29.
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Then the following lateral loading is taken by catenaries:

stresses:

e = -7 (L-K)sin2a+ o

. 2k T

(o] sk sk
[on = —_—t - 1 o
I T To(l k') sin2a +

Now using the computer program or the formulas with the following inputs:
prestressing Hj = 01 A lateral loading p'', initial deflection §, o1 and the
final deflection, y can be obtained. Figure 51 clarifies usage of this
procedure.

Recommended Procedure

It is assumed that the vertical and lateral loads are given. If

a-c_-Ho-l = Ter
we are in the prebuckling stage.
Then
=— o +
71 % u%1
= +
nT %" 4%
where
= O i((r t+ 0o )
n?1 " w272

Q mq

n I

3 =
w W]
ﬁ w

d 3T

b

2
ZE( longer side)

1:.?.

U=p
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If

o _Ho-ll > ‘Tcrl

we are in the postbuckling stage.

There are many combinations of T and p"‘ under which the web may buckle.
The method for selecting the proper combination was previously explained.
If the analyst is interested only in the final results, this comblnatlon is not
important and the analysis can be continued without t *, p

To/ L leads to the determination of k

The compression stress is

= — 1-Kk)si o
oy To( )sin 2

The final tension stress, ¢ ], is obtained as a result of the computer pro-
gram or use of corresponding formulas. In order to use the computer
program, the prestress load is to be used:

H =0 _A
o II
where
2kT
e —— 2 1 - k) sin 2@
UII sin 20'+To(

A

1'"xt

The total lateral load p, shall be used for the loading p. Initial deflection
is & = o. The output of the computer program is H = UII/A, and the final
deflection is y, Figure 52 clarifies usage of this procedure.

CONCLUSIONS

The analysis of the simultaneous action of vertical and lateral loadings
on partial-tension-field beams is presented in this section. For this
analysis only straight beams were considered. Curved beams will be
considered in Section IV,
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ls desired thal buckling shall occur
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Enter FORTRAN
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Ho, 8=0,Loading p,,
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®
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Figure 52. Recommended Procedure for Web Analysis

- 99,100 -@
SID 66-135



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

UPRIGHTS AND FLANGES

INTRODUCTION

The analysis and testing of partial-tension-field beams subjected to
combined lateral and shear load has not previously been fully investigated.
Kuhn, Peterson, and Levin (Reference 30) experimentally investigated shear
loading. The test results were evaluated, and empirical relations were
generated to analyze the partial-tension-field beam. The results are pre-
sented in Reference 30. A few theoretical considerations on the behavior of
the web-upright flange under shear were investigated by various investigators.
A significant analytical contribution was made by Denke (References 31 and 32)
who used a strain energy approach to the tension-field beam subjected to
shear loading. '

Local phenomena associated with some of the phases were analytically
considered by Denke. The effect of compressibility of the web that reduces
the compressive strength in the upright is considered. The effects of
diagonal-tension-field wrinkles on the bending of the uprights are also con-
sidered. In addition, the effects of cap bending between stiffeners and of
flange and upright axial deformation were treated.

This section will consider the effect of the combined loading, i.e.,
lateral pressure and vertical loading on the partial-tension-field beam. Both
stress analysis and a method for determining stability criteria for the upright
are included in this section.

STRENGTH ANALYSIS OF UPRIGHTS

Consider the general case for which the web panels are rectangular.
The tension-field beam (Figure 53 ) that is being considered here is subjected
to both lateral pressure p and vertical load V at any stage of web behavior,
but within the stability criteria of the upright. The stability criteria of the
uprights will be discussed in the next section.

Double Uprights

Double uprights exist when uprights are located on both sides of the
web., The upright can be analyzed as a beam column subjected to the various
combinations of loading shown in Figures 53 through 58. The loading q(x)
shown in Figures 54, 57, and 58 (xz plane) is that due to lateral pressure p.
For design purposes, the trapezoidal distribution is represented by a
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Figure 53. Tension-Field Beam Under Loading
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Figure 54. Upright Load- Figure 55. Upright Figure 56. Upright
ing Due to Lateral Pressure Loading Due to Loading Due to Vertical
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1 X X
pP= P] + P2
P= P‘ + Pz l_‘Ro
} [
C Fy . . Fo
C2 Q, q5(X) = R,COS T \\“:

C; Q2 N\ i~

' I~

Q3 )

R ] Qi B RV

‘ | WA
9 () =q,, SIN TX ] —~
h F
Fo o

N
-

— L
P=h*P P=P +P,

Figure 57. Combined Loading Figure 58, Combined Loading
on Upright, xz Plane on Upright, xy Plane

sinusoidal loading with intensity q,o acting on the upright in the direction of the
applied lateral pressure load p. Thus, the distributed load can be represented

by
ql(x) =q, sin /h

From simple geometry, the area of the trapezoid to the area of the
sine curve is such that

_prd (h - d/2)
zo 2h

a

The distributed lateral forces (horizontal forces shown by Figure 58) repre-
sent the horizontal components of the net diagonal web forces acting on the
upright. The intensity of this distributed force is R,. For design purposes
the distributed force can be represented by

q(x) = Ro Coslh)-f- = (crt tW cos o + O'th sin q) cos%—

where 0 and 0 are tensile and compressive web stresses, t;, is the web
thickness, o the diagonal fold angle (measured from flange), and force acts

in the xy plane..
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The concentrated lateral forces, Q1> QZ’ Q3, . » Q4, represent the
horizontal components of the diagonal web fold tension forces acting at the
various locations, Cy, C,, C3,. .., C;, respectively, on the upright (see
Figure 59). Thus, the forces, Q1, Q, Q3,. .., Qj, are considered as the
components of the forces acting in the direction of the lateral pressure, i.e.,

- ; LI 1
Ql = T1 51nd)1 + 'I‘1 sin d)l

O
I

. v '
5 'I‘2 s1n¢>2+T2 s1n<1)2

....................

where Tl, TZ’ T3,. .., Ti and Tll, T2 s T3', e ey Ti' are the tensile
forces in the web due to the shear force V and the lateral pressure p for the
left and right side of the upright, respectively (Figure 59, diagram A). The
values of Tl' Trye v vy T; and Tl', TZ" . e Ti' and their corresponding
slopes ¢, ¢,,..., ¢; and b1’ ([)2', c ey d)i', respectively, can be deter-
mined from the catenary analysis. However, these angles are relatively
small such that sin ¢; = d)i and sin d)'l = Cb'l But for flat beams these are
usually extremely small and generally neglected. Hence, Q1 Q. .., Q;
are all zero,

P

T TR
£ A ; 17} / j T Q,

/ T / a.

d /

r/ / i q (x)

N _

Figure 59. Lateral and Compressive Loads Acting on the Uprights
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The vertical load at the ends of the upright is that due to P, and P,
where P is defined as follows:

P, 1is the upright compression load due to tension in the web during
lateral loading.

P2 is the upright compression load due to vertical loading after the
web buckles.

The distributed compressive force acting along the length of the upright
is that due to the vertical component of the net forces acting on the upright
due to the diagonal web-fold tensions. For design purposes, the distributed
axial forces are taken to be distributed according to Figure 60, diagram B,
i.e.,the intensity of the force is F and is compressive (directed towards
the center of upright). The force decreases linearly to zero at the center
of the upright when the spacing of the uprights are uniform and such that
d =2 h and with complete diagonal folds. In almost all previous works in
the literature, the distributed forces are assumed to be added and positioned
as a concentrated force at the ends of the upright. Hence, for d < h spacing
of uprights and very incompletely developed diagonals, it is suggested that
the distributed forces be added and taken at the ends to be conservative.

Figure 60. Net Diagonal Forces for d<h and d>h
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The consideration that the web adds restraint to the deflection
behavior of the upright can be considered as an elastic foundation effect.
The elastic foundation modulus 8 has the units of force per square length.
The reaction to the upright at any cross section of the upright is propor-
tional to the deflection at that section,

The upright boundary is assumed to be simple support since experi-
mental evidence for vertically loaded uprights more closely approach this
boundary rather than fixed or partially fixed. Figure 61 shows (Reference
33) comparison between simple supports, fixed supports, experimental
results.

12

\
10 THEORY, CLAMPED ENDS
/
8
:Z—U- 6 T~ \
UE
| THEORY, PINNED ENDS
4 \
\\
\
| \T —
'\
EXPERIMENT —
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2.0

Figure 61, Comparison Between Theory and Experiment
for Buckling of Upright
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The deflection (Figure 62) at any section along the upright in the

<« direction of the lateral load (z -direction) is
. >h > 11 h + 2s1n h + ... + is1n sin"
PchZ . P Foh 5 Tr2 1 h
P 4P T2 3
cr cr
(3-15)
where
2
™ EI
P = >
cr o
e

h = upright free length, in.

E = modulus of elasticity of upright material, psi

-
1l

cross sectional moment of inertia of upright, in4.

and L. is the effective length of the upright determined empirically as in
Reference 30. See Appendix B.

Figure 62, Lateral Deflection of Upright
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h

e:
2 d
1+k -2—
J + (3 Zh)

L (3-16)

ford < 1.5h and for d > 1.5h, LL =h where d is the upright spacing in
inches and k is the empirical constant defined by

To
'k = tanh(O. 5 log )

TCI'

Whenever

e I (2) (-
4 Sy 3

is less than P_. there is a finite deflection. The deflection can readily be
computed for any P/P., and Foh/4 by using Figure 63. The curves in

Figure 63 were determined by defining the amplification factor, A . as
follows: y
for d>h:
1
Amplification factor = Asym = . P - F.h (2 )/ﬁz ) l) (3-17)
Pcr 41‘:,cr n2/\3
for d<h
_ 1
Asym - ] P
P
cr

where P accounts for Fo at the ends of the upright to assure a conservative
design.

The deflection of the upright can now be simply expressed as

2hA g h

N wC. X
7 = sym °2_ 4+ Y Q. sin 1] sinlZ (3-18)
2 2 , i

P T i=1

Ccr
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Figure 63. Amplification Factor for Symmetrical Deflection
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The corresponding slope and bending stress at any section of the upright
can be determined from

2A m qth N [Tci T
g =—2Y + Y Q. sin cos —— (3-19) .
2 2 - 1 h h
P i=1
cr
and
2EI A m qO h N WCi
_ y 8y Z . . T
= + . -_— —_ 3-20
%end P h Z 2 2. Qsin——|sin— ( )
cr y i=1
y
where
IY
Zy: =

is the sectonal modulus. The maximum bending stress occurs at the mid-
height of the upright, i.e., x = h/2 such that sin mh/2h = 1 in the a above
equation.

To the bending stress Oponq We add compressive stresses due to O¢
and o, (compressive and tensile stresses in the web) of

P
Tcomp A (3-21)

where

A=A, +0.5¢t d(l-k)

for d<h (Figure 60, diagram A)

gt dsina ot dcosa gt dtaneg sina dt dtana cosa

p = tw " cCw ' tw . cCw )

2 2 2 2

Or , -~
ot dsina (1 +tana) ot dcosa(l +tana)
P - tw + cCw
2 2
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for d>h (Figure 60, diagram B)

. h . h
ot dsina ot dcosa ot — sina+ gt —cos «
t cCw tw cCw

w 2 2
P b3 * 2 * 2 P
or
o-tw sina h o‘ctw cos & h
P (d +—Z—) £ — (d +—2)

The total stress in the upright due to out-of-plane deflection becomes

= O -
Uy bendy +0-cornp (3-22)

Whenever o is greater than the material allowable properties, then material
failure will exist in the upright such that large lateral deformation will exist,
In addition to Ty there exists some tendency to have a bending stress O 7.
The in-plane deflection y caused by the lateral pressure loading p and
vertical loading V (Figure 64) can be determined from

-

1L

—_— y

Figure 64. Net Horizontal Component of Diagonal Tension Forces
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where
A
Anti 2 Roh . 27X 3-.23
y = > 3 sin m (3-23)
87w P
cr
ford<h
_ 1
AAnti - ] P
T 4P
cr
for d<h
AAnti = 1 >
! P _ _Foh 1 4 )
4P 4P 2 3
cr cr \8m
The bending stress in the upright is
o EI zZ Ant1 2
— . X
bendz = ZhP Z [ R h] sin (3-24)

and to this the compressive stress due to o, and o, is added, i.e., Equation
3-21.

The total upright stress due to in-plane deflection of upright is

"2 7 "bend v Ucomp (3-25)

The stress can be readily computed with the aid of Figure 65,

Single Uprights

Single uprights exist when all of the uprights are positioned only on one
side of the web. For this case an eccentric load on the upright due to com-
pressive force P and F, is obtained. The deflection caused by the eccen-
tricity can be accounted for by making use of the theory of superposition.
Thus, it is known that the deflection due to eccentric loading is

M = (P-t—%l)e

where e is the eccentricity, in.
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Figure 65. Amplification Factor for Antisymmetrical Deflection
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For a simple beam-column (Reference 34)the deflection is

[0 0]
2 1 nwTx
4 Mh i
e E , - o) STy (3-26)
T EI n=1,3,5
where
P
o =
P
cr

Consider now the case for which web restraint exists, Equation 3-26
is modified and web restraint is accounted for and is added to Equation 3-18
by applying the principle of superposition. Thus, the deflection for single
upright case becomes

2h Asym [qoz h 2Mm § TTCi ] TX

_ s b ain 2 (3-27)

Z > > + o + “ Qi sin h sin o
cr T

The maximum stress occurs at midheight, x = h/2 or sin mx/h = 1.
The slope and stresses for single upright becomes, respectively

2 A m qg 0 2MT + zN: TTCi ' F T™X

_ Sy oz s 1 : (3-28

) 5 = 5 + T & Qi sin. — cos = )
c

and
®

2EI A h N
- B y sym Cloz 2Mm N
bend z P__ h 2 h Z

where Z‘s is the section modulus for single uprights.

In addition the bending stress, there exists a compression stress due
to compressive loads P and F | and the local stresses due to local effects.
Thus, the combined stress about the y axis is

o =g + 0o +0 (3-30)

b
ysingle endsingle COMPsingle localsingle
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where

 om and o local
psingle single

are given by Equations 3-21 and 3-23 and A(area) in the equations to be used
is for single upright area. Equation 3-30 is for symmetrical bending about
y axis., For antisymmetric bending existing due to diagonal tension being

formed, the stress is given by Equation 3-25 with I, and areas taken for
single uprights.

Local Stresses Due to Influence of Diagonal Web Folds On the Bending
Stresses of Uprights

The influence of the diagonal web folds on the buckling stress of
upright (Figure 66) can be studied by considering that the diagonal tension
folds produces local bending due to the distributed shear stress induced into
the upright by the web system. The distributed load can be considered

4

h

% DIAGONAL WEB FOLDS
d

FLANGE

\

)

UPRIGHT

Figure 66, Buckled Web
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(for design purposes) as a sinusoidal distribution since the web buckled folds
resemble a sinusoidal distribution. By considering only one-half wave
lengths A ¢ as the length and the upright as a beam-column subjected to
sinusoidal loading (Reference 31),

L me Mo
Mm = 5 5=+ T (3-31)
T }_ cos '2—
- .2 J
J
where
L = length
Mo = bending moment applied at ends (due to eccentric load)
I = moment of inertia of upright
P = upright load
. L JEI
i
Q = maximum load per inch of sinusoidal distribution

Xm

The bending moment causes a bending stress of

t L°Q ot A zo
W xm/ w v v
oo ZE — (3-32)
v 2 <Ls>(r
™ - —_— v
p —
E
where
o b ~ stress due to bending moment
v

t = web thickness
W

- 116 -
SID 66-135




* NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

Z = section modulus

P = radius of gyration = ~I/A

A = cross-sectional area of upright

z = eccentricity of the axis of the upright with respect to
middle plane of the web.

N\ = distance between web fold crest
o = angle of diagonal folds relative to flange

When the load is acting through the center-line, i.e., symmetric stiffeners,
z = o and

2
Etw L xm/tw

- =2 E (3-33)

T e

STABILITY CONSIDERATION FOR UPRIGHTS

The stability criterion for the upright can be categorized into four
classes: upright buckling, including effective sheet behavior; upright bowing,
including effective sheet behavior; torsional stability; and local buckling
phenomena. To ensure that stability conditions are satisfied, all of the
various buckling criteria should be investigated.
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Upright Buckling Including Effective Web Behavior

Upright buckling takes place as a '"snap' or bifurcation phenomenon
when the axial compression loads are equal or greater than P i.e
cr’ "0

2
Foh (2 (v )
P S\ — -
+ =7 (n2> T -1z P, (3-34)
where
2
T
pcr: EZI
L
e

Equation 3-34 is for the symmetric buckle shape. For antisymmetric buckle
shape, the buckling criterion is

P Foh 1 4n” }
3 : z)(5 1)z P__ (3-35)
s

Upright Bowing Including Effective Web Behavior

When upright bowing exists due to combinations of lateral and vertical
loadings, then the stress level due to bending and compression should not
exceed the 0y g, level. Generally Udesign is the 0.2% yield point 9f tl?.e
upright material with some additional safefy factor. The stressocriteria
then is expressed as

o << O .
design

where

T = a-bending * Ucomp " %local

where Obendine’ T comp’ and Tiocal aT€ given by Equations 3.—20, 3—21: and
3-32 respectively, for symmetrical bowing shape. For antisymmetrical
bowing shape Gbepding’ O comp and %loca are given by Equations 3-21, 3-2..4
and 3-32 respectively. Thus, for bowing in two degrees of freedom, bending
about y axis and z axis of the upright must be checked. Furthermore, the
stability type of problem existing here is that due to excessive deflection with-
out additional load once the stress level in the upright approaches the yield
point of the upright material.
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Torsional Stability

For partial-tension-field beams, the web adds restraint to the twisting
of uprights. The in-plane web restraint is the largest restraint that the web
gives to the uprights. Hence, the most typical rotation of uprights is that in
which the rotation takes place in the plane of the web, The differential
equation describing the behavior of columns attached to a sheet were developed
by Goodier and the results are presented in Reference 9).

By making use of the bending moments in the upright as

d w d v
M =FEI —— + EI (3-36)
y y dXZ yz dXZ
2 2
d v d w
= B —X _
Mz z dXZ * E:Iyz dXZ (3-37)

the differential equations become (Reference 9 )

2 4 2

4
d w d w d ¢ d¢

Elyd4+sz'Elyz(zo’hz’dzL'Pyodz‘o (3-38)
X X X X

and

4 I 2
21d’ ¢ o 2 \d'¢
C1+E1z (z -h ) —~—d4-<c -5 P+Pz0-th>d—2
x b'e

4 2

d w d w _
_Elyz (Zo-hz)d4 -Pyo d 2 =0 (3-39)
x x

where C = GJ the torsional rigidity and C; = EC,, the warping rigidity. The
other dimensions are defined in Figure 67,

For partial-tension-field beams, the uprights can be considered as
simple supports, since test results show that the simple support system
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Figure 67. Torsional Stability
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more closely approach test results than fixed ends. Thus, the solution
takes the form

. X
w = AZ sin —-— (3-40)
o= A, sini-;li (3-41)

since these functions satisfy the boundary conditions for simple support.
Upon substituting Equations 3-40 and 3-41 into the differential equations

2 - 2

m s

_ - A - |E -h \— - = 3-42
(EI 5 P) 5 Iyz (zo z) 5 PyO]A3 0 ( )

Y'h h
, ]
EI (2 -h )= +Py |A
yz(o Z)Z Yol 2
h
72 2 2 I > 5
+ lc. s + EI -h\ — — - =
17,2 z(zo z) S tC-x P Pr - Ph | A0

For nontrivial solution, the coefficients of A, and A3 are not equal
to zero and the determinant is made equal to zero to determine the
critical buckling load.

Many of the upright cross sections in partial-tension-field beams
are generally symmetrical about some axis. Consider, for example, the
I, channel and T sections for uprights. For symmetry we have I =0

and y_ = 0 (see Figure 68). 4

~N

The critical loads become

2
<EI E—Z - >A2 =0 (3-43)

TTZ 172 IoP 2 2
c " +EI (z-h) =~ +C-—— +Pz -Ph |A =0 (3-44)
1 .2 z o z A o) z 3

h h'2
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N

Figure 68. Symmetrical Cross-Sectional Uprights

Equation 3-43 gives the Euler-type buckling in the plane of symmetry
and the value of I , including some effective web sheet, gives
Equation 3-43 as 4

P - y (3-45)

where

L = (3'46)
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for d<1. 5h and for d >1. 5h, L, = h Equation 3- 44 gives the torsional
buckling criteria for which the axis of rotation lies in the plane of the web
sheet as (Reference 9).

P = 5 (3-47)

The section properties Cw and J needed to determine the warping rigidity
and torsional rigidity as shown in Figure 69 (from Reference 9),

Local Buckling Phenomena

Whenever the outstanding leg of an upright is relatively thin (same
order as the web), local buckling generally takes place. To ensure that
local buckling does not take place, the empirical crippling criteria
(Reference 1) can be used.

¢ 1/3
- ck 2/3 <—”> , ksi (3-48)
o] t
w
where
C =21 for 2024-T3 double uprights
C =26 for 7075-T6 double uprights
C =26 for 2024-T3 single uprights
C =32.5 for 7075-T6 single uprights

For closed uprights like the hat section, it is suggested that
Equations 1-3 or ]-4 of Section 1 be used. Use Equation 1-3 when
investigating for AU/twd < 0.2 while Equation 1-4 should be investigated
for Ay/t,d > 0.2.
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Figure 69. Section Properties

- 124 -
SID 66-135




NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

STRENGTH ANALYSIS OF FLANGES

The flange is generally the stiffest member of a partial-tension-field
beam. The strength analysis of the flange can be approached from the
elementary strength analysis of beams subjected to lateral and vertical
loads. By considering the flange as a continuous beam on elastic supports
(uprights), the bending moment in the flange at the upright can be obtained
by adding qu/ 12 to that bending moment expressed by Reference 30 such
as that

2 2
M _C Sd tana qd
max ~ °3  12h t13

where the first term is that due to vertical shear load; and the second
term is that due to lateral pressure causing tension in the web. The
buckling stress in the upright is then

M c
max
o == I
FL
where

c = distance from neutral axis to outer fiber of flange, in.
IFL = cross sectional moment of inertia of the flange, ind
S = shear force in bay under consideration

In addition to the bending stress in the flange there is a compressive stress
in the flange of Reference 1,

k T ht,, coto
-
C " 2Ap + 0.5(J-K)

where
T = is the shear in the panel under consideration
A = is the flange cross section.

The stresses due to bending and compression must be less than the
design allowable.

- 125 -
SID 66-135



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

STABILITY CONSIDERATION FOR FLANGES

The general stability of the partial-tension-field beam should be
checked when subjected to any vertical loading or any axial compressive
loading that may induce compressive stresses in the flange member. The
type of instability involved is one that the beam deflects out of the plane of
the web. The method of determining the allowable flexural compressive
stress is Reference 35,

2
6 d
o =39x10 (I —2\/1+0.078%‘IL2
Y osy, I d
yy
for the loading shown in Figure 70.

—_—— - T~ — X-—
—— - \T' LATERAL DEFLECTION OF
E = = — f COMPRESSION FLANGE

v

T r
Iy

Figure 70, Determination of the Allowable Flexural Compressive Stress

The simplified formula to predict lateral stability that neglects the
effect of loading is given by Reference 36. Such simplifications are in
common use and are presented as

102, 000
Oc = 2

KL

T

for
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and
o =B _D_I_{_L..
C r
for
KL _ ¢
r

where B, C, and D are defined by the mechanical properties shown in

Figure 71 and can be obtained from Figures 20 and 21 for 7075-Tb6 as
a typical aluminum alloy.

Figure 71. Column Strength Curve

The numerical values for K are defined as follows:

K = 0.5 fixed ends

K = 0.7 one end fixed and one end pinned
K = 1.0 pinned ends

K = 2.0 one end fixed and one end free

- 127 -
SID 66-135




NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

The values for r (radius of gyration) to be used is as follows:

(a) Symmetrical I and channel beams and girders, supported at ends

2 W
2 SIY \/c_,) +0.0387 (KL)%
C

(b) Cantilever I sections and channels loaded at free end

2
r =1.28 __\/Ig_x_ ‘[Cs + 0.038J (KL)2
c

(c) Cantilever I sections and channels loaded uniformily along
length of beam

‘/ Cs + 0.038J7 (KL)2
c

where

Iy = moment of inertia, in.

Sc = section modulus for beam about axis normal to web, in.
CS = torsion warping constant defined by Figure 69 (defined as CW
in Figure 69), in.
J = torsional constant, in,

L = lateral unsupported length, in,
SUMMARY AND CONCLUSIONS

The structural behavior of uprights and flanges of the partial-tension-
field beam subjected to combined lateral pressure and vertical load is pre-
sented. Formulas and graphical aids have been included in determining the
stresses and stability of the uprights and flanges. Accuracy of the basic
assumptions has been included. Empirical effect has been included in the
analysis by taking into account the behavior of diagonal web folds as bracing
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effect for the upright for partial-tension-field beams. The equations can
readily be applied for pure diagonal-tension-field beam by letting the
diagonal tension factor be equal to unity. Both single- and double-upright
arrangements have been considered.

The analysis of the flange is based upon the application of elementary
strength analysis when considering the effect of lateral loads, The analysis
of partial-tension-field beams subjected to vertical loading has been analyzed
similar to the earlier researchers,

The energy method is applied to formulate the equations describing
the behavior of the uprights. The total energy of the system consisted of
the strain energy of the upright bending, strain energy of the web system,
potential energy of the in-plane forces, and the potential energy of lateral
loads. The arbitrary deflection coefficients are determined from appli-
cation of the stationary potential. Both symmetric and antisymmetric
deflections were considered. The bending stress was obtained from the
deflection function. The compressive stress was then added to the bending
stress to determine the total stress in the upright,

The buckling criteria for the upright was determined by letting the
denominator of the deflection function approach zero. Empirical effect on
the stability of uprights was considered by letting the elastic restraint of
the upright-web system be represented by the critical load as determined
from a previously published test. The symmetrical buckling mode has
been defined as one that gives critical load when the upright deflects out of
the plane of the web. For antisymmetric buckling mode, the level of
buckling was found to be approximately four times that of the symmetric
mode. Here, antisymmetric buckling is one that considers an upright to
buckle in two half waves in the plane of the web system.

Other buckling phenomena included the determination of forced
crippling, crippling, and torsional buckling criteria.
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IV. CURVED BEAMS

) INTRODUCTION

! The cases for straight beams which were considered in the first three
sections are special or limiting to curved beams. The radius of curvature,
R, approaches infinity for straight beams.

In this section, a method of analysis is developed for analyzing curved
partial-tension-field beams. As in the case of straight beams, vertical
loading and lateral pressure are the loadings considered. The analysis
procedure is general. Curved-beam analysis methods closely follow those
developed for straight beams, though some alterations are made necessary
by geometrical load- and stress-distribution variations brought about by
beam curvature.

Most of the straight-beam nomenclature is directly applicable to
curved beams. Panel dimensions, h and d, and the diagonal tension angle, «,
are defined in Figure 72. The basic assumptions used for straight beams
are also used for curved beams, i.e., heavy flanges, relatively heavy
uprights, and thin webs.

A new consideration is the treatment of curved beams with finite
values or R/t 21000, The beam radius of curvature R is finite for a
curved beam,

It is assumed that the analyst is familiar with structural analysis of
curved beams and that, for any statically determinate or indeterminate beam,
he can determine (1) bending moment, (2) torsional moment, and (3) shear
at any section of the curved beam. Axial loads on the beam are considered
in the analysis by assuming that all of the axial load is carried in the
flanges of the beam.
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CURVED-BEAM AND LOADING CONFIGURATIONS CONSIDERED

In this study, beams under consideration are limited to those having
beam height (dimension d in Figure 72) relatively small compared to length
or circumferential dimension. Two flanges, one upper and one lower, are
connected by vertical uprights that separate the web panels.

A beam of this type will normally be supported laterally at the ends
and at intermediate points along the flanges. Lateral support could be
furnished by crossbeams or by bulkheads. Pressure-tight bulkheads may
introduce axial-stress components in the web and uprights when the struc-
ture is subjected to pressure loading; however, this effect will not be
considered.

Curved beams with two loading conditions (vertical and lateral
pressure), and combinations of these, are investigated in this study. The
two types of loading are as follows:

1. Vertical beam loading includes any vertical (in plane of the
web) loading applied to the flanges. This loading may be in the
form of concentrated loads or, may be applied as distributed
loading along the flanges. The beam flanges are considered to
be relatively stiff, so that all vertical loadings applied to them
will be carried over to adjacent uprights. Due to beam curvature,
loading eccentricities will set up a torsional moment in the beam
cross section. This torsion will be counteracted by the flanges.

2. Lateral pressure loading will be applied primarily to the web
panels.

Two phases of loading will be considered, (1) prebuckling, and (2) post-
buckling. For the prebuckling phase, the stress distributions in webs, web-
attachment joints, flanges, and uprights are straightforward. The
occurrence of web buckling will be predicted under combined loading. After
this nonlinear perturbation, postbuckling development of diagonal tension will
be investigated during load build-up to failure.

The modes of failure covered are as follows:

Web material ruptured in tension, including rivet or fastening failure
at web connections to flange or upright
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Upright failure by column buckling, bending, or forced crippling
Flange failure by the same mechanisms as the uprights

Due to curvature, structural-system analysis is more complicated in
the curved-beam than in the straight-beam case. A three-dimensional
rather than a two-dimensional deflection system results from the curvature.
As seen in Figure 72, the eccentricity of loading produces overall torsion
in the beam, This torsional moment is carried by the forces labeled Sy/d
applied to the flanges. This is in addition to the beam bending and shear
effects produced in straight beams. As in the case of the straight beam,
loads will be assumed to be carried as follows:

Beam bending will be resisted by flanges only.
Shear load will be supported by webs only.

Beam torsion will be reacted by the flanges only,
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N2

CURVED VERSUS STRAIGHT BEAM COMPARISON

Curvature makes it possible for the web to support a higher pre-
buckling shear load than the flat web panels of the straight beam. In
general, the higher the curvature, the more load may be carried; as
increased curvature, tends to stabilize the web, This curvature effect
delays buckling of the web under shear loading. Buckling may also be
delayed by internal lateral pressure. Conversely, external lateral
pressure will tend to decrease the buckling shear load.

Above the buckling shear load, a thin curved web will tend to deflect
toward a flat panel configuration. It is expected that this phenomenon would
be accompanied by a marked, incremental, vertical beam deflection as the
curved diagonal-tension panel elements straighten out. In the postbuckling
phase, the curved beam web panel (buckled into a flat configuration) should
react to either internal or external lateral pressure loading in a manner
roughly parallel to the straight beam web-panel behavior. Diagonal-tension
stresses (in diagonal catenaries) will continue to build up with vertical and/or
pressure loading until the web ruptures.

External pressure will tend to reverse web-panel curvature and,
depending on the panel-aspect ratio, the loads will be carried to the
uprights and flanges by catenaries with reversed curvature. If the panel
is narrow, the more closely spaced edge members of the panel will support
the majority of the load,

The uprights will support essentially the same types and components
of loading as for the straight-beam case. One additional component will be
the radial load caused by web-sheet loads acting at panel-intersection angles,
brought about by the postbuckled polygon shape (Figure 73, diagram C).
This shape results from the web panels buckling into approximately flat-sheet
elements between uprights.

The main differences in flange loading between the straight- and
curved-beam configurations will be caused by the beam torsion introduced
by the loading, (Figure 72). Also, lateral pressure loading will produce
axial loads in the curved flanges; while in straight beams, the primary loads
in the flange will be lateral and vertical bending only,
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CURVED WEBS

The thin sheet serving as web in semitension field beams will sustain
only a limited amount of shear and/or compressive stress without buckling.
Added loading with internal lateral pressure will cause a postponement of
buckling until higher shear loads are applied. Conversely, external
pressure reduces the amount of shear the web is able to withstand at
buckling.

Two phases of web loading may be defined (1) prebuckling, and (2)post-
buckling; these are separated by the web buckling phenomenon. The two
phases will be considered first for beam vertical loading only, then lateral
pressure loading only, and finally for combined loading with various loading
sequences.

VERTICAL LOADING

This loading may be a concentrated vertical load, such as S in
Figure 72, or any distributed vertical loading along the flange. It will be
assumed that all loading between uprights will be transferred to adjacent
uprights by relatively stiff flanges. If the loaded flanges were not stiff, the
loading would still be transferred to adjacent uprights, but the flange
deflection under load would cause a change in stress distribution in the
web. The web cannot support significant in-plane compressive
stresses, but panel boundary or edge movement would affect web stress
distribution.

Prebuckling Stage

Under beam vertical loading, the web panel will be required to support
only shear loading. If the joints between the uprights and flanges are
pinned, web shear stress in the loading configuration of Figure 72,
diagramA.

= S (4-1)
dt
For the thin web sheet considered,
A = crtl= o, (4-2)

where oy and O; are oriented in diagonal directions.
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Mohr's circle demonstrates this stress condition in Figure 1. As
vertical beam loading increases, web-shear stress, 7, the principal tensile
stress, O, at 45 degrees, and the principal compressive stress, oo in
the orthogonal direction, all increase in proportion, until the buckling load
is reached.

Web-Buckling Phenomenon

At buckling, a radical redistribution of stress occurs and a new
mathematical model is required. Mohr's circle no longer portrays the
stress system. As in the case for straight beams in Section I,

(Reference 30, Part I) furnishes a direct approach to predicting the buckling
shear, Ty,
™ 5 Eh2

5 0 =0
cr lZRZZZ

(4-3)

where kg is found from Figures 74 and 75, and

2

h
Z = —— 4 - wl.
R, Lo

These curves are based on simple-support edge conditions. For the
relatively thin webs used in diagonal-tension-web beams, the effects of
edge restraint die out rather quickly away from the edge due to low sheet
bending stiffness. On this basis, these curves are applicable to curved
webs with any degree of edge restraint up to the limit of fixed or "built-in"
panel edges.

An alternate theoretical approach from a more recent work by a
Russian author, V. A, Marjin (Reference 37), is presented. The buckling
parameters of curved plates, using both small and large deflection theory,
are portrayed in Figures 76 and 77. The variation between the two
approaches is readily apparent by comparing curves of the two graphs.
Some ''thin'' web configurations may be best handled as shown in Figure 76;
while the "very thin' web should conform more closely to the curves of
Figure 77.

The Kuhn approach (Reference 1) is based primarily on empirical data.
Having available the above-mentioned methods for determination of the
critical shear in the curved web, the analyst may choose one of them which
appears most appropriate to the specific configuration being analyzed.
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Postbuckling Stage

In curved semitension-field beams with usual geometric proportions,
the web will tend to buckle into flat panels between the uprights. This
results in a polygon shaped section (Figure 73, diagram C), Tension in the
thin-web diagonal-tension elements tends to pull the web into a flat panel,
and diagonal buckle waves across the panel tend to stiffen the panel as sheet
material moves out of the neutral plane of the sheet. As the wave crests
move out of the neutral plane, higher bending moment of inertia in the
direction of the ridges is produced in the sheet.

As the diagonal section of the curved sheet buckles, it tends to move
into the plane of the chord (Chy of Figure 78). The lengthening of the
chordal distance is accompanied by relatively high panel-shear deformation.
As the panel frame distorts into parallelogram shape, high tensile stresses
at angle a will be set up in the larger opposite corners of the panel (upper
left and lower right corners in Figure 78) because of ''gusset'' effects,

- | /// \ 6=R(I-cos—g-—')=r2 (1-cos %Z)
/

Figure 78. Geometric Relationships of Diagonal Tension Strips
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The flat panel buckled configuration will be somewhat modified near
the flanges, as the flanges will be stiff enough to restrain sheet edge shape
in these areas to the original lateral curvature. The edge-curvature effect
decreases as R/t increases from the lower limit of 1000, and as the sheet
becomes thinner, therefore decreasing sheet-bending-stiffness effects.

From the geometry in Figure 78, the change in chord length may be
computed to be

h
Rsin—— (Y]
— 2R 2
AChZ = -2 (4-4)
. 6
sin « sin 2
2
where
2
| 2
| 1-K
| _ -1 1\ -1 (4-5)
@, = cos 2
2 2
1+K
1
and
(1 cos i) sing
h 2R
K, = h (4-6)
2R

This derivation is based on the assumption that the shape of the curved
cylindrical section at angle a approximates a circular arc which is defined
by chord Eﬁz and §. Also the assumption is made that « may be measured
by the angle between the chords. This approximation becomes less valid at
large ratios of h/R. The center dimension, 8, is equal to the center dis-
tance between Ch; and the associated arc of the curved web panel
(Figure 78). A curve defining the relationship between @3 and h/R is
shown in Figure 79,
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For reference, the radius, r,, may be defined by

462
Sil+— 2 2
) Ch2 ) Ch2 + 48
T2 7 2\ 86
4%
2 —2
Ch‘2
2 2
—}Tl 0
+ 4 JR\1l - cos ‘T
_ sSing
i s8R (1 o)
- COSs 2
2
29
sin 3 6,
R + R {1l -cos — (4-7)
. 2 2
- sin a

01
2 (l - COSs '—Z—)

The beam is assumed to deflect sufficiently that the buckled-flat-panel
A C—hz strains are absorbed, and the loading maintains its original value as
it moves during beam deflection. Under these conditions, the opposite
larger corners of the panel will show higher-than-average stresses due to
the gusset effect. As a result, the upright will tend to deflect in a modified
S shape. The definition of these stresses appears to be a complex task, and
it is probably not very significant in the overall analysis. On this basis,
they will be disregarded in this study.

The lateral angle between buckled, adjacent flat panels of the curved
beam will have some effect on the web stresses. However, in this config-
uration, the stiff uprights will minimize the effect, and for the present
analysis, web in-plane stresses are computed by essentially the same
methods as for straight beams (simple-support edge conditions).

The development of the stress system under increasing loading as
explained in Section I is applicable, The compressive stress, o, which
is perpendicular to the diagonal-tension elements, will maintain
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approximately the same value as at web buckling during additional load
application. The value of oc from Kuhn (Reference 1) is

o= -To(l-k) sin2a . (4-8)

The trigonometric factor is applied, because of the difference between
the 45-degree pure-shear-induced principal stresses, and the angle, «, of
the diagonal tension elements. A shear stress component is built up as «
varies from 45 degrees. At o = 30 degrees, the shear component is about
25 percent of the compressive stress component,

The tensile stress along the diagonal tension elements at the angle a.
may be calculated from

2k T,

= T - i 4-9
o, sin2a+ O(1 k) sin 2 a ( )

where T = S/dt for the loading in Figure 72. The discussion of the last
paragraph relative to the trigonometric factor applies also to the trigonometric
factor in the second term of Equation 4-9.

The value of k, the diagonal tension factor, is found from the following
equation (Reference 30, Part 1).

T
td o
k = tanh <0. 5+ 300 ﬁ{) 10g ;-—C—;: (4_10)

This equation may be solved with the aid of Figure 80.

The value of @ ppT, the angle of pure diagonal tension, may be found
from Figure 81. The structural geometric and loading configurations must
be known, along with Young's Modulus of the web material.

The diagonal tension angle, a, for less than fully developed diagonal
tension, is a function of k, the diagonal-tension factor. A curve of empirical
data from Reference 30, PartlI, is shown in Figure 81C. This shows the
relation of a/aPDT to k. Reference 30, Part I states that the value of a
found from this curve should be within 2 or 3 degrees of the final computed
value, using the iterative procedure prescribed in that report.

These stress formulas may be applied up to ultimate loading. Web
loading is limited by the attainment of ultimate tensile stress in the sheet.
The ultimate stress will often occur at the web attachment joint to the
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Figure 8l. Angle of Pure Diagonal Tension (Sheet 1 of 2)
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Figure 81. Angle of Pure Diagonal Tension (Sheet 2 of 2)

uprights or flanges. This is due to the stress concentrations normally
associated with structural joints,

The ultimate shear stress in the curved web, T,11» may be calculated
from the empirical equation of Reference 1.

T — -
11" Ty (0-65+4) (4-11)

where the flat web value, T}, for 2024-T3 or 7075-T6 aluminum alloy is
found from Figure 82, and Ais calculated from the empirical expression

A A

+ 0.1 tanh —2 (4-12)

= 0. h
A 0.3 tan at hi

The correction factor, A, for curved webs may be read from Figure 83.

It is noted that 7,)] can exceed T**,)]) because the quantity A can
exceed the value 0.35 if the flanges and uprights are heavy. The explana-
tion lies in the fact that a grid system of uprights and flanges can absorb
some shear; the effect is analogous to the portal-frame effect in plane-web
systems.,
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Figure 83. Correction for Allowable Ultimate Shear Stress in Curved Webs

The value of Tzll found in Figure 82 should be adjusted according to
the ultimate-stress values of the particular materials used. The data of
the figure is based on stress values noted in the title. The value of T:ll
then should be modified by multiplying the graph value by the ratio of actual

ultimate stress to the value noted in the applicable part of Figure 82.

The empirical value of T 2;11' the basic allowable, may be modified

according to Reference 1 by the following consideration relative to flange-
web and upright-web joints:

1. Joint bolts just snug, heavy washers under bolt heads, or web
sheet between flange angles: use basic allowable.

2. Bolts just snug, bolt heads bearing directly on sheet: reduce
basic allowable 10 percent.

3. Rivets tight: increase basic allowable 10 percent.
4. Rivets assumed loosened in service: use basic allowable.
These rules hold if allowable bearing stresses of the rivets or bolts

on the sheet are not exceeded. Also, they are not applicable to counter-
sunk rivets,
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LATERAL LOADING - INTERNAL PRESSURE

Internal lateral loading will be defined as uniformly distributed pres-
sure loading acting in the radial direction from the center of curvature. The
curved web will be considered to be of cylindrical shape. In general, the
web is a ''thin'" or "very thin'" curved plate, simply supported on all four
sides by uprights and flanges.

This static system is different from the usual cylinder, which has
known membrane loads, (pr and pr/2), due to either internal or external
pressure. Boundary conditions make the curved plate work differently
from a cylinder. Due to pressurization, the curvature will change, and in
the direction parallel with uprights, curvature will be introduced. There-
fore, we have a surface with double curvature.

Figure 84 illustrates deformations of both a long cylinder and a
simply supported cuved plate. The difference of the resulting surface is
evident, The cylinder will be deformed into a similar cylindrical surface
(if observation is made at a significant distance from the bulkheads), but
the curved cylindrical web will be deformed into a new surface of double
curvature. Consequently it is not desirable to use formulas for the deter-
mination of stresses based on pressurized cylinders.

Unfortunately, it is not a simple problem to derive the formulas for
such curved plates. There appears to be no coverage in the literature on
this subject.

Of some significance for this work is the ''very thin' curved plate
analysis. A search of theliterature discloses the work of Foppl (Reference 22),
who solved the case of 'very thin'' rectangular plates (without curvature),
simply supported on all four sides, under normal loading. This method is
presented in Section II and is applied to rectangular webs without curvature.
The flat web case, however, can be regarded as a special case (R =w)ofa
curved plate.

Here an attempt is made to devise a method for the determination of
approximate stresses and deformations in curved, simply supported, ""'very
thin'' sheets. Advantage will be taken of the theory of catenaries and the
Marcus theory for analyzing rectangular plates.

The theory of Marcus is unique and simple. He considers two mutually
perpendicular fibers of the plate, located parallel to the sides and passing
thru the center of the plate. He applied his method to ''thin plates. " The
total lateral-pressure loading, p, is separated by Marcus into two unknown
components, pa and ph; where pa is the partial loading applicable to the
strip in the '"a'" direction and pp the partial loading applicable to the strip in
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Figure 84. Comparison of Deformations Due to Internal Pressure,
Cylinders, and Curved Simply Supported Sheets

the "b" direction. The equation p = p, + pp holds. Then he determined the
deflections of both strips in terms of pa and py, and equated the two expres-
sions, From this equation, in combination with the equation p = pa + Pp» he
was able to determine py and pp. This leads tothe coefficients N (i =a,b)
such that:

Pa = NaP (4-13)

Pp = MpP (4-14)
Having pa and pp,» Marcus treated each strip as a beam in the usual manner
to find the stresses and deflections. This method gives good agreement

with test results and other theories of plates which could be checked.

We can use the same approach here for curved, simply supported,
'very thin' webs, loaded laterally with internal pressure. The only differ-
ence will be in the configuration of the selected strips. Figure 85 shows
two central strips under partial loadings p, and p,,. Each strip, however,
will be represented not as a beam but as a catenary. Axial extensibility and
membrane-type of stresses will be considered.
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Figure 85. Curved "Very Thin'' Plate, Simply Supported on
All Four Sides

In the b direction, the catenary will be without initial deflection and
will be loaded with the normal pressure loading pp. In the a direction, the
catenary will be loaded radially with the partial loading p, and will be
initially of circular shape. Dotted lines show the assumed deflections due
to the loadings p, and p,. The deflection may be determined for each
catenary. The extensibility of the material must be considered. Central
deflections can be equalized, and this leads to the determination of P and Pp-
Then, using the usual approach, the tensile stress in each catenary may be
specified.

The derivation is rather simple, but proof will not be presented for
justification of this approach, as there is no other existing procedure for

comparison.

However, we can make a comparison for the special case of a rec-
tangular flat membrane (R = @) using Foppl's procedure.

Square Plate

For a square plate, 2 = b, py = py = 0.5 p. The tension in the catenary
of unit width is given as:

H = 0,347 %/ AE pazaz (4-15)
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Deflection:

M
y = —» where M = the moment in the middle of the span of the

H
catenary.

Y s
(8)0. 347 a AE paz 2’

aZ
Pa

2.78 4 A.Epaza2

Rectangular Plate

The system is shown in Figure 86 .

p = LOADING

t = THICKNESS b

=

Figure 86. Rectangular Plate

P,TP, =P
pa’
a
Ma— 8
2
b
Pp
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Deflections:
Ma paaL2
Ya T ®H T Tem (4-21)
a a
2
Mb pbb
y, = = (4-22)
b Hb 8Hb

where H and Hb are internal tensions in a and b directions. From the
developed catenary theory, these values are found to be:

3 )
H_ = 0. 347J AE paaz (4-23)

H, = 0.347 a AE pr2 (4-24)
b b
Deflections of both catenaries must be equal.
Ya = Yb (4-25)
2
bZ

(4-26)
(0. 347)8JAEp a (o 347)8J AE pb

If Equation 4-18 is considered together with Equation 4-26, it will lead to
the following results:

pa =1 ap and pb = bp (4-27)
where
4 4
b a
n = ————andn = (4-28)
a a4+b4 b a4+b4

These results are the same as for a "thin plate' determined by
Marcus, except that, in this case, py and py apply to the catenaries.
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To demonstrate ranges of representative values formn, andnb,
Table 3 was prepared for a range of panel aspect ratios.

Table 3. Representative Values of Mg and Ny
for a Range of Panel Aspect Ratios

Panel Aspect Ratios, a/b
blr |tz s nals|e|1.7]1.8]1.9] 20
n_|o.5[0.408]|0.325]0.260]0.220[0.165]0.133|0. 108]0. 088 0. 070|0. 059

M, 10.50.592]0.675|0.740|0.798|0.835|0.867(0.892/0.912/0.930|0. 941

H = 0.347 V3 AE pza2 and H
a a b

The tensile stresses are:

0.347¢ AE peb (4-29)

g = Ha/A and 0 = Hb/A (4-30)
Deflection:
2
P2 P b )
= = (4-31
Y T TRH, T 8H,

Results of the above derivation are compared with Foppl's theory for
several(50) examples (Figure 87). The ratios of the sides of the flat plates
are chosed between 0. 75 to 1, 50.

Figure 30 shows the comparison of the Foppl theory with test results.
We can see that the Foppl theory leads to results which are about 20 percent
higher for pressure loading from 0 to 20 psi.

The results obtained with the catenary method are lower than Foppl's
results and correspondingly closer to the test results., Comparison (Foppl's
theory versus catenary approach) graphs for deflection and stresses o,
and 0 are given in Figure 87. This comparison gives us some confidence
that the approach leads to reasonable results. After this conclusion, we
proceed to the curved '"very thin'' plate,
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Curved Plate

Reference is made to Figure 85 and the corresponding discussion
given with this figure. For the strip in the b direction, we have the formula
for deflection. For the a direction, such a formula may be derived. In
connection with Figure 88, the following nomenclature is used:

S = initial length of catenary

h = initial deflection of the catenary
p = loading on catenary

£ = span between the supports

R = radius

h'=h+8

Figure 88. Catenary Loaded Radially

Due to the loading, p, the catenary will deflect an additional distance, 5, and
initial length S will be increased by AS.

_ PRS ' )
AS = Fi’ St=S5 + AS (4-32)

The value of h will be increased toh'. The following geometric relation is
known between S', h', and £:

22, 16,2 (4-33)

St = 3
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From this formula, h' can be determined:

h' =

Actual deflection is:

where h=R - d

Finally:

0. 433‘/(8‘)2 -4 2

6=

0. 433‘/(s+

pRS\2 2 1. [ 2 2
—EA> -2 +2 R -2 -R

(4-34)

(4-35)

(4-36)

(4-37)

The shorter radius, r<R, corresponds to the deflected shape and must

be determined in order to find stresses in the deformed catenary.

Figure 89

shows the relation of deformed catenary shape with respect to undeformed.

(0, 0)

B
(-g, R cos'2')

Figure 89,

—

(0, R+8)

Relationship Between the Deformed and the Undeformed

Catenary
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The equation of the deformed shape is assumed to be:

x2 + (y - b)z = r2 (4-38)

Alsor=R+ 5-b

Designate R + 6§ = u,

The coordinates of the point (—*L R cos E—) can now be used in connection with

the Equation 4-38, 2
2 2
(-2‘-) + (R c:os—‘z3 - b) = 12 = (u-b)° (4-39)
From this equation can be determined:
2
uz - R2 cosz-—g - ::—-
b = 5 (4-40)
2 (u - R cos -2-)
Consequently
.2 - R cos E - 12 S
r =u - ) °= 180°— 4-41
2 (u - R cos ﬁ-) ° R ( )
2
The new tension in the catenary will be:
H
H=pr or ¢ = x (4-42)

The solution of the problem can now be attempted, Assume the internal
pressure to be p. The unknown loading which is prescribed for b direction is
Py The unknown loading which is defined for a direction is P,- Then the
maximum deflection for the central strip in the b direction is:

pbb2
= (4-43)

yb -
2.78# AE pbzbz
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Maximum deflection of strip a:

p,R2\e 5 ) [(n2 o2
Y, © 0.433V + a2 — -2 +§ 4R -2 - R (4-44)
where a = s,

Necessary condition, Yy, =Y

a

p, b p_Ra\2 )
3b — - 0.433‘}(a+ ;’:‘A—> _9°
2.78{AE p,b

(4-45)
+ 1 4R2-£2- R
ZV
Also P, = PPy
This leads to:
p,b° (p-py)Ra’l2
- a
b - 0.433\[[a +———b——J T W AT
3 2.2 Ea 2 4-46
2.78\/Aprb (4-46)
where
b = 2R sinE—
2
a
e = 180 R

Equation 4-46, however, is not easily solved, because of the large
numbers and small differences involved. Consequently, it would be difficult
to obtain with the slide rule a solution as a result of trial and error process.
For this purpose, however, a FORTRAN program is added in the appendix
which automatically leads to the required solution.

The input:

a length of curved side, in.

b length of straight side, in.
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R = radius of curvature, in.
E = Young's modulus, psi.
t = thickness, in.

p = total loading, Ib.

The output will be:

Py = partial loading assigned to b direction

From the above equation, Pp can be determined. Having Pb =NpPs
we can perform calculation of both catenaries:

pbb2
y = (4'47)
b 3 2.2
2.78 J AE p/b
H = 0,347 § AE sz (4-48)
b Py
2
uZ - R cosz'“z“‘ -'.’4!“‘—
u-
Ha = pa 6 (4-49)
2 (u- R cos =
2
where
o o S
B° = 180 =
u = R+ 6
P, = P"Pb
Finally
H H
o =P, =2 (4-50)
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This state of stress is shown in Figure 90 and represents the membrane
o internal pressurization at the middle-point of the plate, in
There is no theory nor test results at this time with
derived approach. However, since this approach
=w, we will assume that the

stresses due t
the prebuckling stage.
which we can compare the
was satisfactory for the special case at R
results also are satisfactory for R F®.

%b

L~

Figure 90. Stresses in Prebuckled Web Due to Internal Pressure
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LATERAL LOADING - EXTERNAL PRESSURE

Under external lateral-pressure loading on the curved panel, it will
be assumed that lateral loading is acting in the inward radial direction
toward the center of curvature. Only uniformly distributed loading will
be considered.

It can be noted that this problem is different from the previous
problem because the strip through the center of the web panel, oriented
parallel with the flanges, is curved and obviously stressed in compression.
The orthogonal strip, which is parallel to the uprights, is still stressed
in tension and does not differ from the previous case for internal pressure.

The preceding discussion also applies here: The curved plate cannot
be treated exactly as a cylinder.

Prebuckling stage

Assuming that the modulii of elasticity for tension and compression
are approximately equal, we may conclude that the behavior of the plate
will be similar to the previous case. Consequently, in the prebuckling
stage we will assume the same distribution coefficients 7; as in the case
of internal pressurization. The only difference will be that the curved
strip will be stressed in compression, but the orthogonal straight strip,
as before, will be stresséd in tension. Consequently, Equation 4-46 will
apply for determination of the partial loadings, p, and p,. The stresses
will be numerically equal to the previously established stresses, except for
the curved strip, where the stress will be compression (negative sign):

> = -2 g =42 (4-51)

Buckling

The critical external pressure which will cause buckling of a cylin-
drical surface can be assumed, with reasonable accuracy, to be approxi-
mately equal to that critical external pressure, derived by von Mises
(Reference 38), which is:

pe - 2E h +2Em2 ng1+2“ "Tm |n
cr 32 ( % ) 2 |53
a(n%l)[l +(“—‘)2J 3 \m-1 1 +(%§-)
Ta (4-52)
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This formula is not very practical because of complexity and the number
of required algebraic manipulations. Since usage of this formula appears
impractical, no further usage will be made of it at present. Instead, a
much simpler formula (4-53) can be recommended, It results in solutions
in good agreement with the above formula of von Mises.

2

pe - =2 Et [t 4-53
cr 5\ 3/4aR YR (4-53)
3 V6 \l-u
where
p ::r = critical external pressurization, psi
u = Poisson's ratio
E = modulus of elasticity, psi
t = thickness of the wall, in.

d = length of upright, in.

R = radius of curvature, in.

with p = 0.3, the equation reduces to:
Et2 t (4-54)
Per = %2R YR

Up to this level, stresses in the web are still determinable by the method
described for the prebuckling stage. '

Postbuckling Stage

After buckling occurs, complete collapse of the sheet does not occur,
but the model will be changed. When panels buckle, which are relatively long
in the curved (or circumferential) direction, the strips oriented longitudi-
nally (or inthe direction of the uprights) will support most of the pressure
loading. The relatively longer curved lateral strips are much more flexible
due to both added length and curvature.

In the case of the web panel short in the circumferential direction and
long in the longitudinal direction, the short curved elements will buckle into
reversed curvature and support most of the external pressure load by
tension in the elements,

4
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In the usual practical case, these two extremes will seldom occur.
There will be some distribution of loading between the orthogonal strips
depending on such parameters as web panel aspect ratio, curvature,
R/t, etc.

Consequently, depending on the ratio of the sides of the curved sheet,
a/b, two possibilities exist. One possibility holds that the ratio of sides
of the plate is such that the strip, b, cannot develop a deflection of the
magnitude to permit the strip, a, to take the new (reversed) shape of
catenary, which is stressed in tension. In this case, the whole loading,
after buckling occurs, will be carried by the set of strips in the b direction,
and will be carried exclusively to the flanges. In the absence of a more
accurate study of this local phenomenon, it is assumed that the total loading
will be taken by strips b and transferred to the flanges, and the distribution
will follow a triangular or trapezoidal shape. The other possibility is that
the new interaction of two catenaries may be calculated in the manner given
for internal-pressure lateral loading of curved webs,

COMBINED VERTICAL AND LATERAL LOADING

Separate applications of vertical and lateral pressure loadings have
been previously discussed. In this section, the interaction effects due to
combined simultaneous loading will be studied. Simultaneous loadings
primarily affect the web.

Superimposition

In the prebuckling stage, stresses throughout the beam will be well
below yield stresses. Thus, stresses caused by vertical loading and
lateral pressure may be superimposed by algebraic addition for all ele-
ments of the beam.

This approximation should be fairly good. Thin plate deflections are
usually not linear, but deviations from linearity in the case of aluminum
(Reference 19, page 291) for relatively low loading are not significant (Fig-
ure 30). Since web stresses are caused by both vertical and pressure loadings,
it seems reasonable to superimpose these stresses. The procedure may be
applied in the same manner as for flat webs, as described in Section III.
Compressive web stress in the diagonal direction may be found from

g _ = OE: + O (4-55)

where 0. is the compressive stress due to vertical loading

(1] =] =|71]) »
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and 19H results from lateral pressure loading., For example, assume
that horizontal and vertical stresses are o, and 0}, respectively, found
by the procedure for lateral loading - external pressure,

2 .2
1= % Cos o+ o Sin « (4-56)
For o = 45 degrees, Equation 4-56 will be
5 0.5 Ta + %
H(Tl = 0. O’a + O, O'b = -‘—2‘-— (4-57)

Similarly, tensile stress in the diagonal direction, o°;; may be
defined by

o._=0 + 0O (4-58)

where o is the tensile stress due to vertical loading, and 201y is the stress
in the same direction (45 degrees) due to lateral pressure loadings, deter-
mined in a similar fashion to 10y, using the same formulas but using the
complementary angle.

The web-buckling phenomenon divides the prebuckling and post-
buckling phases. Figure 91 illustrates Oy versus T for superimposed
vertical and lateral pressure loading, showing the effects of internal and
external pressure on buckling, The prediction of web buckling under
combined loading may be made with an interaction formula from Refer-
ence 39, (Equation 4-59 in the following postbuckling discussion). At
buckling, the analytical structural model changes to a set of catenaries
as in the noncurved web case. The presence of internal pressure will
postpone web buckling, while external pressure will decrease web stability
and therefore hasten buckling. The external lateral pressure case involves
a more complex buckling system due to the additional ''snap-through'
buckling caused by the direction of the pressure. This buckling phenome-
non is shown in Figure 91, diagram B as the first perturbation as T
increases.

There are two possible buckling sequences for the combined-loading,
external-pressure case. In one case (Figure 91, diagram B), the curved
web snap-through due to pressure will occur before critical shear loa.dT'Cr
is reached. After snap-through, the curved web has reversed curva-
ture. After this happens, the curved web will become a web stressed in
tension and will follow the usual path, until 1 o0ccurs. Then the shear load
will tend to pull the web panel into a flat configuration, while lateral pres-
sure will be taken by set of prestressed catenaries.
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Figure 91, Effect of Pressure on Curved Web Shear Buckling
(Sheet 1 of 2)
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In the second case (Figure 91, diagram C), shear buckling, - " into
diagonal-tension elements occurs prior to the pressure load causing
snap-through or pressure buckling. At the time of buckling, the web tends

o §
j~a——SECOND BUCKLING PHENOMENON
T _ ~
-
-~
-~
AN
) I
N SUSSUONUNSNONNNANYY
\W
' A —
0 = N T
T.cr \
[t ——— ‘rcr ———.w
[=+—— 7', AND FORCED FIRST BUCKLING
PHENOMENON TO HAPPEN

SIMULTANEOUSLY
C. Shear Buckle Before '"Snap Through'

Figure 91. Effect of Pressure on Curved Web Shear Buckling (Sheet 2 of 2)

to pull into a flat plane, and external pressure then tends to induce reverse
curvature in the buckled plate. Pressure buckling or snap~through occurs
simultaneously with the diagonal-tension buckle. It is expected that a
relatively large shear deflection will occur at web buckling due to the curved
diagonal tension elements straightening out,

In both cases, as can be seen from Figure 91 the behavior of externally
pressurized webs after snap-through occurs is similar to the behavior of
internally pressurized webs. The change of curvature makes the web
internally pressurized., If the horizontal dimension is larger than the vertical
dimension, snap-through buckling may not occur at all.

For the postbuckling regime, the structural model of the web changes
to diagonal-tension elements. Lateral pressure is assumed to raise the
tensile stress in these elements (because the whole load will be taken by
tensile elements in one direction) without affecting the orthogonal compressive
stresses.

Determination of Final Critical Buckling Combination

Combined-loading buckling may be predicted through the use of the
following equation (References 372and 38):

<T* P _1 4-5
Ter + p° - (4-59)
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where 7., is found as explained in this Section (See Web- Buckling Phenomenon)
and p is the applied lateral pressure with a positive sign for internal pressure
and negative sign for external pressure.

The value of p? _ (an external pressure with negative sign value)
remains to be found to enable use of the equation to predict T*, A method
of calculating p ¢, is described under Lateral Loading - External Pressure.
The derivation of the method is based on lateral pressure only, with no
longitudinal load. A pressurized cylinder may have longitudinal shell
stresses due to pressure on the bulkheads, In this study, however, no
effort is made to define these effects. It is assumed that the curved beams
under study have no pressure-induced stress components in the axial
(vertical) direction.

It may be noted that Equation 4-59 permits the determination of
critical stresses without the necessity of using superimposition, as
described in Section II and used for straight beams. This simplifies the
combined-loading analysis procedure considerably.

Postbuckling Stage

As in the case of the straight beam, it will be assumed that the
compressive stress in the web increases with shear loading up to the
buckling load, and then stays approximately constant (the increase is
small) as the diagonal-tension elements are stressed with higher loading
(Figure 42). The principal compressive stress in this case increases
slowly under postbuckling conditions, Equation 4-8 defines the contribution of
vertical loading. The contribution of the lateral loading will be HO‘I*.

Finally, the compressive stress will be

op=- ‘ro(l-km) sin 2a + Ho'l* (4-60)

ate
b

where k is a function of T, /T., obtainable from Figure 80.
The tensile stress due to vertical loading is:

(4-61)

where T is a fictitious shear due to total vertical loading, if buckling were
prevented; 7, = P/dt, where d is the height of the web. The tension stress
in the diagonal element consists of two components, one due to applied shear
load on the web panel, and another due to lateral pressure. The contribution
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due to lateral loading which carries over from the prebuckling stage is
#92*. The stress H‘TZ* results from that part of the lateral pressure
loading applied up to buckling, p'. The remainder of the lateral loading is
caused by pressure component

p'=p-p (4-62)

This load is reacted by the diagonal strips of the postbuckled model,
Consequently, each catenary will be:

e
b

! 0
1. Loaded with p'' while initially prestressed with 0"} =0, + 1>

2. Deflected an amount, y, due to lateral pressure loading, p'

In Section III, methods of analyzing the catenaries are defined,
direct formulas are given, and FORTRAN solutions are provided for
more complex problems. The results in either case will include the
required tensile stress, oy (Pu =H/A), and the deflection, vy.

The resulting stress, 0, must be less then the ultimate stress, 0 ¢,
where 0y, includes stress concentration effects of web-upright and web-
flange attachments.
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SEQUENCE OF LOADING APPLICATION

A study of the interaction between vertical and lateral pressure loading
leads to the fundamental conclusion that, due to the presence of lateral
loading, the buckling of flat web may be postponed until higher shear loads
are applied.

When combined loading reaches the buckling level, the structural
analytical model changes, and loading beyond this level will be taken by a
different structural model. The new model is represented by a diagonal set
of catenaries.

Before buckling occurs, the loads are resisted by plate-action, which
is a two-dimensional system. The plate resists the loading by in-plane
two-directional stresses and, due to the loading, is stressed and strained
in shear. After buckling occurs, the system immediately changes into a
one-dimensional system, a set of catenaries, which then continues to take
the rest of the loading (small additional compression in the postbuckling
stage due to vertical loading is not significant). Generally, the catenaries
are more flexible than the plate, as they are stressed in only one direction.
Lateral deflections will therefore be larger.

Consequently, the following conclusion can be made: after buckling
occurs, compression (in the diagonal direction) will not continue to increase
significantly (Wagner even recommends that this increase be disregarded).
The tension (in the diagonal direction) will continue to increase, faster than
in the prebuckling stage. Deflection due to the lateral loading also will
increase faster, because the system is one-dimensional.

This leads to the conclusion that the rate of increase of stresses and
deformations will be generally changed at the buckling level. The total
loading at the buckling level may be divided into two components: the first
part resisted by plate-shearing stress (prebuckling stage) and the second
part resisted by catenary action (postbuckling stage).

It has been demonstrated that the amount of lateral loading influences
the buckling level. With additional internal pressure, the buckling shear
level will be raised. Buckling will occur later, and consequently less load
remains to be taken by the catenary system.
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OUTLINE OF CURVED WEB ANALYSIS PROCEDURE

The procedures discussed in this section follow the approach that was
taken for the analysis of straight beams. The first procedure discussed is
the analysis of curved beams which assumes that the prebuckling principal
compression stresses are ''frozen'' for the analysis of postbuckling behavior.
This procedure is presented as background information.

The recommended procedure is not dependent on the assumption of
frozen stresses for the lateral-pressure loadings. It is assumed that all of
the postbuckling pressure loads are taken by the catenaries. The analysis
depends only on the final shears and pressures. The law of conservation of
energy vigorously holds for the nonlinear analysis.

First Procedure

Assume a partial-tension-field beam system loaded with vertical
loading, gy, and internal pressure loading, py. The beam geometric data,
material properties, and static load systems are known. In any section of
the beam, we can determine bending moment, torsional moment, and shear.
Only shear will be required for web analysis.

1. The first step will be to determine the following:

2.2
+ =K _TT_% (Equation 4-3)
cr S 12R"Z
2
p:r - _0.92—=% E}; {—Et{— (4-63)
_1.S | .
To dt c| ~ t

Now itis possible to determine whether the web are in the prebuckling
or the postbuckling stage. The critical combination (77, p “) is selected
under which we prefer to have the web buckled. Initial application of internal
pressure, p, postpones buckling. So, one way to determine buckhng phase
would be to enter into the interaction equation the whole p, or any p" < pg at
which we would prefer to have the web buckled (See Equation 4-59)

\2 c (4-64)

\ “er)
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From this equation T* will be determined.
If ™ < To, the web is in the postbuckling range.

If ™ > 7., the web is in the prebuckling range.

o’

It may be that we want to have the web buckled at certain T* < To.
From the interaction equation, we can determine the corresponding p*.

If p* < Pgo» the web is in the postbuckling range.
If p:‘c > po, the web is in the prebuckling range.

Consequently, both methods give the critical combination (™, p*)
under which the web buckles, and the change in the system occurs.

If the prebuckling stage governs, then, from Equation 4-46, Py will be
determined.

Then, determine:
Hb using Equation 4-48
Ha using Equation 4-49

o using Equation 4-50

T using Equation 4-50

Finally, determine [0, and 1% with Equation 4-56. The lateral
deflection then is given by

2
P, Db
5= 3 = (4-64)
2.78 {AEp b
b
The compression stress in diagonal direction is given by
g =0 + g ’
I c HY1 (4-65)
The tension stress is given by
n = %t u% (4-60)
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Thus, the state of stress in the web is determined by (04, 0}, T1,).

If, however, the postbuckling range governs, then the following method
leads to the required results,

Using p* in connection with Equation 4-46, determine p* and p*.
. b a
Then determine

Hb using Equation 4-48

Ha using Equation 4-49.

o
f using Equation 4-50.

Now, using Equation 4-56, the ''"frozen stresses'' can be determined.

Ho'l and HO'Z

Then we are dealing with the changed model which is not curved any
more but is a set of pretensioned catenaries.

T,/Tcr leads to determination of k" with Figure 80 and the graph in
Figure 81 leads to determination of angle & opr which will be modified.

The final compression stress then is determined with the formula

o =-T (1-k )sin 2 a+Ho"1"

(4-67)
The tension component 0 ; is determined with the FORTRAN program

or with the corresponding formula for the pretensioned catenary. The length

of this catenary is slightly increased due to straightening effect, as described

in this Section under '"Postbuckling Stage.' The prestressing is Hop= yyx1lxt
where
2k T ° '
L k™) si -
I : + To(l <" ) sin 2 a + 42 (4-68)
sin 2 «

The initial deflection is

Py p?

5% - > o (4-69)
2.78 ¥ AEp, b
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The output of the program is
Tension Stress,an, (actually H = GIIA)
Final lateral deflection, vy.
A "flow-diagram' (Figure 92 ) illustrates the method.

This concludes the determination of stresses and deflections in the web
of a curved beam, which is loaded simultaneously with vertical loads and
lateral pressure. The resulting solution is unique and independent of the path
of loading. If the results are found to be dependent on the sequence of loading,
it is because of the assumption of ''frozen'' stresses.

The analysis will not be very different if external pressure instead of
internal pressure is involved.

Some modifications are required as shown in the section on Lateral
Loading - External Pressure, page 167.

Recommended Procedure

In Section III, it was stated it may be necessary to revise the
assumption of the frozen state of stresses that remains after the buckling
occurs. The same philosophy can be applied here too.

The governing principle now is that after final buckling occurs, the
whole lateral loading will be taken by the set of the catenaries. Then the
system will be perfectly conservative, and the results will not depend on the
path. It will also eliminate the necessity for determination of the critical
combination (t¥, p¥).

The revised procedure then will be outlined as follows:

a. Determine as before

. con 4-
T using Equation 4-3

po using Equation 4-54

o| = = Io-cl = lo-tl , using Equation 4-1
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b. As before, determine if the web is in a prebuckling or postbuckling
range. Prebuckling range may be extended by application of
more lateral loading. Consequently, any p* <p, can be selected
under which it is desirable to get the web buckled. This selected
value of p* will be entered into the equation of interaction:

Sl S S .
pe 5 - (Equation 4-59)

From this equation 7% will be determined. If T% < L is obtained,
the web is in the postbuckling range. If % > T, is obtained, the web is in
the prebuckling range.

c. If in the prebuckling range, determine the loading 128 and p_ using
Equation 4-46. Then find: 2

Hb using Equation 4-48

Ha using Equation 4-49.
Ty and o using Equation 4-50

Now the state of the stresses is given by

(O—b’ O-a, TO) &‘
and the horizontal deflection
P, b°
& = (Equation 4-64)
2.78 3 AEplz)b2

d. If in the postbuckling stage, proceed as follows: determine ratio
T O/T cr and find the corresponding k using Figure 80. Then,

with Figure 81 determine @ ppr. This value should be slightly
modified, considering curvature.

Then, the final compressive stress is 0y = -T (1-k) Sin 2 a (in
diagonal direction). The tension stress is determined from the FORTRAN
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program or corresponding formulas.

3 - \
Prestressing H0 =0

x1lxt

where
2k

1 _

T smzalt To(lK sin2a

Initial deflection 6 = o

Loading on catenary is total p .

SPACE and INFORMATION SYSTEMS DIVISION

The input will be:

(Equation 4-9)

The length of catenary shall be diagonal length in accordance with the
angle a and modified due to straightening of the fiber as is shown in the

beginning of this section.

The output will be:

H-= G'HA > final tensional stress in diagonal direction

y = lateral deflection

For better illustration of this procedure a flow diagram is included.
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SUMMARY

First Procedure

The first step will be to determine 7., (Equation 4-3) and pg,
(Equation 4-54).

S

TheanOI :I I

I: | T CI = Io-tlEquation 4-1,

Substitute P, = pq‘ in Equation 4-59

2 3
T
+ f =1
Tcr pcr

To calculate the associated T'P.

Ifr < T the web is in the postbuckling range.

If v 2 T, the web is in the prebuckling range.

ale
b4

Alternately, substitute T = 1" and determine the associated p’p.
If p’r< P the web is in the postbuckling range.
If pﬂ‘z P the web is in the prebuckling range.

For prebuckling phase, calculate

Py Equation 4-46
Hb Equation 4-48
H Equation 4-49
a
o Y Equation 4-50
1% 2"h Equation 4-56
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For the postbuckling phase, calculate

s
-

Pb and pa

ale

- . _ :}:‘ . 3
crI To (1-k ) sin2¢a +H<71

Equation 4-46

Equation 4-48

Equation 4-49

Equation 4-50

Equation 4-56

Equation 4-10

Figure 81

The tension stress o I will be determined with the aid of the
FORTRAN program %or analyzing catenaries:

s
¢ 2k T
o

= 4+ 7 (l-k":)sin20+ o
o H

’11 ° sin 2@

Initial deflection,

*

¥*

2

) 3
2.73‘/
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FORTRAN program output will be the tension stress o1 (actually
H = O'HA) and deflection y (see flow diagram, Figure 92).

Recommended Procedure

The analytical procedure follows:

Determine

T Equation 4-3
cr

P, Equation 4-54
T —I S I— o | =|o E ti 4-1
lol_tT—lc|—|t| quation ==

Define buckling phase, pre-or postbuckling., As in the procedure,
internal pressure increases buckling load. (See Equation 4-59.)

T:}: 2 ES
cr PCI‘

If P, is substituted for p*, an associated T is found.

If v < T the web is in the postbuckling phase.
If 2 T the web is in the prebuckling phase.

If in the prebuckling range of loading, determine p_ and py using
Equation 4-46.

Then find:

Hb Equation 4-48
Ha Equation 4-49
o and oy Equation 4-50

The state of stress in the web is defined by T O and T and
maximum lateral deflection is
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CURVED BEAM PARAMETERS

I Geometrg
A, d
R t
2. Material Properties
E Gtg
M GCru
3. Loading

Vertical , g,
Lateral | P,

4.Derived Loads
Bending moment , Mg

Torsional moment | My
Web shear, T,

BUCKLING CRITERIA TO DEFINE

l.Compute :
mPute o
cr S 12 R2Z2

if t:< Ty web is in prebuckling
oR ¥ TZT,,webisin postbucklin

b) Substitute T=T%in equation
fp> P, webisin prebuckli
If p< p,,webisin postbuckli

BUCKLED STAGE l

phb’

DETERMINE * FROZ EN" COMPONENT

IAE - 0.
278 JAE pZb? ~ 0433
Find Hg= 0347 VAEpE? b?

*
Ha= pg

where _g° =180 w_S'R

\/P* (p* 'P:)Ra,f 22‘
AE

~ 7 VART-#F -R

2
u2 - R®cos? 24‘}}
2(u-Rcos 4)

u-

Pa” P-Pe

u =R+g*
«_ pgb?
8= ZrE VT
¢_Heo
Gy = 3 ¢
&>~ o
a * A
G = G cos?ar + G sin

Gy Gacosd %-"‘) +Ggsin(¥ %)
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LOADING DETERMINE G; , Gy
b? (P-Pp)Ra .,
2TBVRERT LT 0‘433\/[“* AE ]"!
= 3V4RZ-£% -R
. H 3 212
% In: PREBUCKLING STAGE Find Hy= 0347 V/AE pf o? s P2
u2-R*os?5 - 5
H,= u- Z 4
| stage. - Pa[ Z(u-Rcos-'g) J
9 stage. ‘ Pa™ P-Pp
where Q°= '801%?
1q stage. w=R+§
ng stage. 2
— 5 - 555 VAEpoot
Gb= %‘b
Go= he

ETERMINE k ,

. k... from Figure 80
2. o«...... from Figure 81

A
G; =Gt B,cos’k* B, sin2a

=3 b dhd Gt* GQCOSz (%’ 'd)i' Gbanlrw -q)

l_>

ULATE Gy , H,

R «
2= L5t T,0-k ") sin2av G ¥

,= Gg (L)

F
]

Input ; Hy,E, length
of Catenary,!oading &

Y
CALCULATE Gy ,
6= -T w4+ Kla s g

OBTAIN Gy, y

def lection.

Figure 92. Curved Web

Yy, deflection

e m e e —— g,

Ang.lg'rs"is Flow Diagram With "Frozen Compressive »

Stress'' Considered {Background
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2
pbb

6:
2.78 d AE p2 b2

b
If in the postbuckling range, determine

k

Figure 80
ppT*? Figure 81
o0 =T, (1-k) sin 2a (Diagonal Compression)

crH obtainable by FORTRAN Program or formulas:

1 2k TO
1 - ° - 3
(1) GII_sinZoz+ -ro(l k) sin2 ¢
1
(2) Hoz«ruxl”xt

(3) Initial deflection, &= 0, loading, p,, and initial length of
catenary, 6,rp from Equations 4-5, 4-7.

(4) Output of program or formulas is; oy = final tension stress
in catenary; y = maximum lateral deflection

A flow diagram summarizes this procedure (Figure 93).
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CURVED BEAM PARAMETERS

I. Geometry
A,  d
R t
2.Material Properties
E G‘ts
M Giu
3. Loading
Vertical , g

Lateral , P,

4.Derived Loads
Bending moment | Mg

Torsional moment | M,
Web shear , T,

BUCKLING CRITERIA TO DEFINE LOADING

|.Compute :
tcr = kg 12 R2Z2

2. Substitute above values and p=p, into:
A
T, TPS
if 'C:< T,. webis in prebuckling stage.
f T>T,,webisin postbuckling stage.
OR
b) Substitute T =T%*n equation
K p>p,,webisin prebuckiing stage.
W p< p,,webisin postbuckling stage.

/90 .
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DETERMINE &, , 64

2
L— (P-Po)
2]8%—?: ol 0.433 [a+ S

V4RT-27 -R
3
V/AE pZ &%

2.p2. 2748 |
Hazpa [u- uz RCOS 2/3 4
(u-RcosT)

2

y

|

~ N

- Find Hy,=034

SE

PREBUCKLING PHA

BUCKLED PHASE l
A————

Y

Po = P-Pyp

-

where 3°= '801:'5—R
u=R+§

A Ca R 1
Ou =6+ B, cos?u+ G, sin? }
Lu=6+6, cosz(-} -e()+6'bl

DETERMINE ‘l
E%k from Figure g0
Ter |

« from Figure g/ %
S1=-T,(I-k)sin2« |

6’1;= %;—;; +To(1-k) sin 2«

Ho= Gy (t)(1)
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C:= ~GctiG,
Sp - Gt’nsz

s

Enter FORTRAN OBTAIN Gy , g
program with prestressing H
Ho, 6= 0,|oqding P.» Gq = A

diagonal length of
Catenary,and
Area A=
t«

Y, deflection.

ecommended Procedure for Curved Web Analysis ;
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UPRIGHTS AND FLANGES

STRUCTURAL ANALYSIS OF UPRIGHTS

The stress analysis and stability consideration of the uprights for
curved partial-tension-field beams are identical to that of straight beams
with the addition of the component of web forces acting out of the flat-plane
web system (Figure 73). The method of analysis developed in Appendix A
for the upright is general, and the out-of-plane components have been
accounted for. The analysis of the upright reduces to that of Kuhn, with the
slightly modified:

values for p., in Asym and Aantisym
A = 1 5 (4-70)
TR LB P2\
P T 2\ zZ\3 C
cr 4p
cr
where the critical axial upright load becomes
2
P = _I_%_ (4-71)
cr L
e

where

L = d (4-72)
e
2 2h
® - ———
Jl + k (3 3 )
Note: Valid for h<l. 5d; for h>1.5d, Lg = d.

- td To
k* = tanh [(0 5+ 300R—};)10g :r-;-] (4-73)

cr

With
1. If d<h, replace d/y by h/4.

2. If h/d (or d/h) is larger than 2, use 2 (Figure 94).
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UPRIGHT- 3
N

\cuRvED FLANGE : P
Figure 94. Symmetric Mode

For antisymmetrical deflection shape

antisym - (4-74)
) P Fod 1 4Tr2 1
4P 4P 2J\"3
cr cr \8m
The bending stresses due to lateral load can be expressed as
- ZEIyAsyrn 9, d N wC,
. i
= 4-75
bend 5 az 5 + E Qn51n = ( )
sym cr y i=1
EI A
T _ z antisym| 2 q_ d
bend = T 2ap 2z [3n oy (4-76)
antisym Cr gz
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To this bending stress, add the compressive stress as defined in
Reference 1 ,

k* cota
°c *7% (4-77)
u
—+ 0. -k*
vl 5 (1-k*)

where A is the area of upright (Figure 95).

B

_AN HA X X! Hp ANE
2/2

Figure 95. Antisymmetric Mode

To assure structural integrity of the uprights, the bending plus compressive
stresses as determined from Equations 4-75 and 4-77 for out-of-plane

upright deflection and from Equations 4-76 and 4-77 for tangent-in-plane of
web should be less than the design allowable. Furthermore, the stability
criteria as determined from Equations 4-71 through 4-73, inclusive, must
not be violated. For local stability criteria, the crippling is determined
from Equation 3-35 in Section III and from Equations 1-3 or 1-4 of Section I,

STRENGTH ANALYSIS OF FLANGES

The load acting on the flange (ring) due to lateral pressure is shown

in Figure 96.
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A o
__‘\ b /" A

il

P

Figure 96. Flange I.oad Distribution

DEFLECTED
SHAPE

In this study, webs with R/{ 21000 are being investigated. It is still
conceivable to have a relatively small radius. Considering the flange portion
for one panel, the reactions and bending moments are given in Figure 97.

See Reference 16, Making use of the elementary beam theory, determine the
bending stress oy ,.q due to lateral pressure on the curved beam as

+ M
(rbend - __—I_C— (4-78)
where
¢ = distance from neutral axis to outer fiber, in.
1 = cross-sectional moment of inertia about bending cross section, in.
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To this bending stress add the compressive stress in the flange due to
diagonal tension (Reference 1 ) expressed as

UC kT tan «

FL T & (4-79)
+ 0.5(1 - k%)

dt

where d and o are defined in Figure 94, and t is web thickness.
)
VZ [

s/

)@
/
P I’%Y,’
DEFLECTION SHAPE

Figure 97, Curved Flange Under Triangular Loading

idn

4

A =38 =2

4
(4-80)
H =5
v, B -]
Ato G
M, B - AF) -]
BtoG
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SUMMARY AND CONCLUSIONS

In this section a systematic procedure was presented for analysis of
curved, partial-tension-field beams. Curved-beam analysis follows the
straight beam procedures closely in the areas of flange and upright. Addi-
tional torsion and axial loads occur in the flange due to beam curvature, and
a radial loading component is applied to uprights due to the postbuckling
polygon shape of the curved web. These loads are accounted for in the
equations developed for straight-beam analysis.

For the webs, new curves of buckling coefficients are provided. Also,
the direction of lateral pressure (internal or external) will affect web buckling.
After buckling, the catenary model will apply as in the case of the flat webs
covered in Section III.

The sequence of a curved-beam analysis is summarized in the flow
diagram of Figures 92 and 93.

None of the proposed methods were verified with test results. The
case of external pressure requires more development and justification by a
test program. Thus, the procedures as outlined in this chapter should be
verified by a test program,
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OVERALL CONCLUSIONS AND RECOMMENDATIONS

A reasonable procedure has been developed for the analysis of straight
and curved partial-tension-field beams under combined vertical and lateral
pressure loading. The procedure is based on extensions of existing empiri-
cal and analytical data and procedures. Little test data are available which
is applicable to this particular combined loading configuration. Therefore,
the procedures should be used with caution until confirming test data become
available.

The work performed under this contract is a step, or contribution to
development of more general partical tension field webs theory which will be
applicable to partial tension field behavior of stiffened cylindrical shell struc-
tures of boosters and other aerospace vehicles. The procedure is currently
restricted to beams loaded vertically and laterally. Use was made of com-
puter programs in order to simplify certain steps of the analysis. It is
possible to rewrite the entire procedure for digital computer solution. This
would make the whole procedure automatic.

In addition to the actual program of study the state-of-the-art documented
in domestic and foreign literature was reviewed in Section I. The following
additional areas of study are recommended:

GENERAL TEST PROGRAM

Of first importance is a general test program to check the validity of
the assumptions made in developing the procedures of this study. Interaction
effects of the two types of loading under various combinations of loading and
for various structural geometries are of primary interest.

The effect on k, the diagonal tension factor, of various combinations of
loading can be investigated to provide further understanding of the diagonal
tension phenomenon. This factor is probably affected by combinations of
loading as well as geometric factors.

APPLICATION TO CURVED BEAMS

The above general program should be applied separately to curved beams.
Concurrent analytical effort and testing is desirable due to the mutual support
required on each area by the other. Analytical predictions require validation
by test programs.
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BIAXIAL COMPRESSION IN WEBS

Under certain loading conditions, particularly with flexible flanges or
uprights, biaxial compression exists in the webs. It appears that no work
has been done in this area.

DEEP OR "HIGH" PARTIAL-TENSION-FIELD BEAMS

Unusual geometry such as a very deep beam changes the web boundary
conditions sufficiently that further study is required to define stress
distributions.

Intrapanel auxiliary uprights and flanges provide a parametric approach
to designing optimum beams. Uprights or flanges may be either continuous
or discontinuous.

All combinations of loading require analytical investigation with con-
current tests performed to check assumptions used in the development and
validity of the final equations.

The deep, curved-beam configuration differs sufficiently from the
straight beam that a separate analysis and test program is justified. Included
in this area is the investigation of curved beams as elements of cylinders
and conical sections, Longitudinal stresses induced by pressure against the
ends of a closed cylinder (bulkhead effect) require investigation.

a. Deep or "High'" Beam b. Unpressurized c. Pressurized
Liquid Tank Cylinder
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PLASTIC BEHAVIOR

At high web loadings, where tension-field beams are most efficient
structurally, the material will usually be well within the plasticity range.
The effect of combined loading should be investigated. Considering the
state of the art in plasticity, this program should have most of the emphasis
placed on strain instrumentation and testing.

FORCED-CRIPPLING OF STIFFENERS

Flange and upright considerations are of fundamental importance in
optimum weight beam analyses. Forced crippling appears to be the most
important failure mode. Unfortunately, a forced-crippling theory is not
generally established. A comprehensive study of forced crippling of
stiffeners attached to buckled sheets should result in lighter weight structures.

LOAD CARRYING FRAMES IN BUCKLED WEBS

It is expected that further study in this area should yield better analysis
techniques and lighter structures.
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APPENDIX A

DERIVATION

The upright (Figure 57) can be analyzed as a beam column with the
Fourier series method of analysis. Normally, the external forces acting on
the upright are conservative. The principle of stationary potential energy
can be applied to establish the coefficients in the Fourier series for the
deflection of the upright. The condition for termwise differentiation of the
Fourier series must not be violated. The deflection function then can be
expressed as

y = - b, sin — (Al)
n=1
where
b, = any arbitrary coefficient
n = an integer
h = the upright height, inches
For a simple support system, the boundary conditions are defined by
soos [320
Elizl=0at |xf° (A2)
dxz x=h
where
E = modulus of elasticity of upright material, psi
I = cross-sectional moment of inertia of upright, inche st
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The deflection function expressed by Equation Al is shown to be termwise
differentiable in Reference 40. The first and second derivatives of y with
respect to x are

«
d nmx
&y = ;— > n bn cos o
n=1
[o0]
2 2
dy -m nwx
—_= n by, sin (A3)
dx%  he o1

The expressions for the strain energy of bending, potential energy of the
inplane force p, the potential energy of the lateral loads Qj, Qp, . . . , and
the potential energy of the distributed load q(x) can be obtained directly from
Reference 41. The strain energy of the elastic foundation effect and the
potential energy of the axial effect can be obtained from Reference 9.

From Reference 41 the strain energy of bending is

h 2.\ 2
1 d®y
Upg =5 El |[—) dx (A4)
2 o dx?2

or for constant cross-sectional area and material

EI -

Ug =—- T 5 n’b, sin | ax
2 2 n S0

n=1

or by expanding the equation and upon integration

4 «Q
UR = 5~ Z n bp (A5)
4h” ;o)

Since the integrals of the cross products resulting from squaring the series
cancel because of the relationships:

form #n

h h

. mmuX . nnx mmx nwx
sin sin dx = cos = cosde=0
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form=n

h

. mmrxX | nnx mmx nmx h
% sin sin dx = cos cos dx = —
h h o 2

‘o

where m and n are any positive integers,

The strain energy of the web system can be determined by considering
the web system giving elastic restraint having f as the equivalent modulus of
foundation. The reaction of the web at any cross section of the upright is
then proportional to the deflection at that section. The lateral reaction of an
element dx of the upright is By dx. Hence, theenergy of the elastic restraint

for the element dx is—ﬁ%—dx. The total strain energy Up of the elastic

restraint can be obtained by integrating over the entire length of upright.
Hence,

Uk =%S v dx (A6)
o

or

gh ~ 2
Ugp =— < bp (A7)
4 p=1
The potential energy of the axial load is
Qp= - PAh (A8)

\

where Ah = h - hy, By assuming that the upright bends without any change of
the center line length, Reference 4l indicates

hj =f—?ds
o S
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or

h 2
1 dy
Ahz—-S (__) dx (A9)
0]

The potential energy of the axial load becomes

P h T 2 nwx
QP:-?S - > n bp cos o ) dx
o n=1
or
2 ©
TP . 2.2
Qp = - m Zln bn (A10)
n=

From Reference 9, the potential energy of the distributed axial
compression load due to the tension in the diagonal web fold is

[e¢} [es] «©
Fo 2 [nlre 1 nm (rn2 + n‘?‘)
-—_ -—] -4 = = b bm
2 4 2 2, 2
n=1 n=1 m=1 (m* - n®)

QEp =

o (All)

where
(m + n) = an even integer

m#n

r
I

o = maximum distributed force due to net diagonal tension force
(Figure 98)
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\

Figure 98. In-plane Net Diagonal Tension Force

The application of Reference 41 to the upright for the potential energy
due to lateral loads Ql, Qz, Q3, . . . and that due to some distributed load

q(x) are, respectively

©® nwCy © nwC,
29 =-Q %? b, sin - Q, %‘, b, sin 0 (A12)
n=1 n=1
® ntC3y
- Q3 = b, sin hoC
n=1
and
© h
. nmx
Qq(x)= - Z by S q(x) sin dx (A13)
n=1 [e)
The summation of each of the energy system gives the total potential
IIas
II=Up+Ug +0p+ QFO + QQn + R2q(x) (Al4)
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or
4 [o 9] o0} (o]
m="TEL 5 ntpf+ 82 3 bﬁ-zhp = n? ba
4h” p=) n=1 =1
F ® 2_2 © @ 2, .2
-2 = be ot -% -4 x5 T byb m(min)
2
n=1 n=1 m=1 (mz - nZ)
@ nnC ® ntwC,
+ |-Q1 = bp sin - Q> x by sin -
n=1 n=1
® h
- 3 bnS q(x) sinThﬁdx (A15)
n=1 o

The coefficient b, can be obtained by the condition of stationary potential

I_I= 0 we have
i

energy. Hence, from

~4EI 4 Bh 2P n? nér2 1)
n bn+——bn--——bn-Fobn T"Z

2h3 2 2 h
2 2 ntC nwC
nm (m*“ + n%) . 1 : 2
+2 Fg =z by N 2 - [Q; sin + Q) sin o
m=1 (m“ - n%)
c h
nTw
+ Q3 sin 3 + .. -S q(x) sin 2T 4x = 0 (A16)
o
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Solving for b,

n -
ntC nrC

S q(x) sin 07X ax + Q) sin 1 + Qy sin 2 +...
o h h h

© 2 2
nm (m“ + n“)
b, = -2F, x b, : >
L m=1 (mZ - nZ) i
4 2. 2 F 2.2
TTEIn4_TTPn +;3_h_ o n"nm™ (A17)
2h3 2h 2 4 3

The summation in Equation A17 indicates that two groups of equations exist

since (m + n) is an even integer and m is not equal to n. One group has m
as an odd integer, e.g., n= 1.

r h mC C 1
. TX . 1 . T2
x) sin——dx + |Q; sin + Q5 sin + ...
S q(x) - < 1 = 2 = >

0

-2F, [——3 (10) bs + 2.(26) (26)b5 + 7 (50)b7 c
2 2 2
. (8) (24) (48) J
bl =
4 2 F 2_2
EI 4 P 2 ph 1
S S P [_—( T 1] (A18a)
213 2h 2 4 3
Similarly n = 3 and m is an odd integer
[ .h 3 ]
i ?ﬂ(dx + \Qjy sin >TC) F Q> sin "C2 +
o q(x) sin h 1 h 2 h « o .
1 4
-2 F, [bl 3(10) , 4, 15 (34) b, (21) (58) ]
‘ (8)% (16)% (40) J
b3 =
4 25212 F 2_2
T EI (3)4 _TP(3)" Bh "o <(3) L 1> | (A18b)
213 2h 2 4 3
- 207 -

SID 66-135




NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

The second group consists of m as an even integer and not equal to n with
(n + m) as an even integer. Hence, for n = 2 and m as an even integer

. ‘
S q(x) sin 27X 9x + <Q1 sin 2mC1 + Q2 sin 2nC2 + .. >
° h h h
L2 Fy |bg (B)20) L (12) (40)  y o (16) (68) .
‘ (12)% (32) (60)2 J
by =
4 2 2 F 2_2
mEL 4 _mP@)  Bh "o [m - 1] (Al9a)
o 2h 2 4 3

and similarly for n = 4 and m as an even integer

47C 47C
q(x) sin 27X 4x + <Q1 sin Ly Q, sin 2, .. >
A h
< :
-ZFO bzs_(_z_(i-l-bé)é‘}(#.'_'_.
{ (12)% (20)
by =
4 20, ,\2 F 2 2
TEL 44 _ mP(@)  Bh_ o ()T (A19b)
op3 2h 2 4 3

For a nontrivial solution b, is not equal to zero. Thus, two systems
of equations describe the buckled upright: Equation Al8 for the syrmmetrical
shape and Equation A19 for the antisymmetrical shape.

For the symmetrical mode, the deflection goes to infinity when the
denominator goes to zero. Hence, the symmetrical buckling criteria for the

upright becomes

TT4EI 4 T\’ZPn2 Bh Fo <n2Tr2 1) -0

n - + -
o33 2h 2 4 3
or
F_h 2 202 42
py_ o (2)\ (rf_ 1)\ _rm%En® h"p (A20)
s \.2 32 2 2.2
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The left-hand side of Equation A20 represents the loading function on the
upright and the right-hand side represents the elastic restraint of the upright-
web system. For a vertical loaded beam, Kuhn showed that P., is given by

TrZEI
P., = > (A21)
Le
where Lg is the effective upright length determined empirically as
h
Le = (A22)
d
\/1 + k2 <3 - 2———>
h
The critical buckling load in Equation A20 can now be expressed as
 m°EIn® . n p (423)
cr T T, TS5 5
h? w2 n

which indicates that an empirical p effect can be determined. Hence, the
governing equation used was for symmetrical buckling and that the buckling
occurs out of the plane (in the direction of the lateral load for lateral-
vertical, loaded-tension-field beams). Such a case exists when the lateral
load and/or vertical load is acting on the upright as shown in Figure 57.

Equation AZ23 shows the buckling takes place in the upright when
F,h 2
P+ (2} (2 1) ,p (A24)
4 e 3 n2

Whenever the load acting on the upright is less than P.;, then the upright
deflection in the direction of the lateral load is as follows:

[ T N Gy |
q(x) sin— dx + X Q; sin —
h < h
o) i=1
2h
z = sin — (A25)
P 2 h
cr ™

P Fh /2 xl ;

i P.r 4Pcr —y; 3
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The maximum deflection occurs at the mid-height, i.e., x =—such that
2

'ﬂ-l H
sin> = L. ence

h N
.oTX
S q(x) sin— dx + = Qj sin
2h o i=1

Zmax -
' pcr1T2 ] P Foh 2 e
Per 4Pcr \n2 3

Equation A26 was derived by only considering the first term in the deflection
The accuracy of this approximation is indicated for

wC.

1

(A26)

function, i.e., b].
loading condition shown in Figure 54 by considering only one term. From

Equations Al8a and Al8b two equations with two unknown coefficients b] and
Consider the case for which no distributed axial compression Fj exist.

bs.
Then from Equation Al7
b N ntC
m
S q(x) sin n}T;X dx + T Q; sin
Yo i=1
Pn 7 2 [2 P
n n” -
Per
d h N
an nTTCi

. nmx )
© S q(x) sin N dx + Z Qj sin——
i=1

h
h ==
where x >

Note that for n even there is no contribution towards the deflection since

.. nmw
sin — = 0 for n even.
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The maximum deflection in the direction of the lateral load is

" h
X N 'rrCi
q{x) sin—dx + X Qj sin
h . h
2h o i=1
Zmax_ 2 P
T Per 1-
i Per
h N
3mx . 3wC;
+ q(x) sin—-h dx + = Qj sin
o i=1

+ . ..

For a particular case, as an example,

q(x) = qo sin —T;i

or
h
S . X . nux h
qogz Sin—— sin =—_forn=1
o h
=0forn#¢1l
and
wC; hqg, m  dozh
Q; sin n = 5 sin?z >
and
nw
2 @© i ——
Zh qoz sSin >
Zmax
Trzpcr n=1 n? (nz— £
Pcr
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The relative accuracy of a one-term approximation for is as
follows: cr
P
Per 0 0.2 0.4 | 0.6 0.6 1.0
27 Per 2 1.237 1.6
> > > B 0.987|1.237 .653 (2.487 |9.986 ©
2h q,, n n- -
n=1 Pcr
ZTm Pcr
, n=1 only 1.00 [1.250 [1.667 {2.500 |10.00 ®
2
2h qOZ

To study the error associated with the effect of the distributed axial com-
pression force F,, refer to Timoshenko's case (Reference 9) for which
lateral loads are not existing. Reference 9 shows that for F, only, the

critical loads with the relative accuracy of a one-term approximation for
F_h
o are as follows:

4 cr
Foh
Coefficients Error
4 cr
b1l 2.15 4%
b and b3 2.06 <1%
bl: b3: b5 2. 06 <1(70

For q(x) to be approximated by qg,, sinl—x as the lateral load due to lateral

pressure p acting on the tension field beam:

h h
S (x) sin— dx S in? " d Poz
X —_— = s1in™ — ax =
o 4 h Yoz o h 2
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Thus, the deflection at any section along the upright is

- N -
qozh 1TCi
5 + Z Qj sin
, - _2h i=1
- 2 F_h 2
Pchr 1. P ) / o) 2 /1T _
| Por \4Pey) o2 \ 3 ]

and the deflection is positive in the direction of the load.
upright at any section 8 becomes

SPACE and INFORMATION SYSTEMS DIVISION

sin TX
in—
h

The slope of the

[ qo,h N T
> + = Qi sin
dz 2 i=1 ™
6 =— = CcOs
dx 7mP., 1. P /Foh \ 2 2 )
| Per \4pcr/ w2\ 3
The bending moment at any section becomes
- N -
9ozh LT O si TGy
— . sin
a%z ~2EL P = h ,
My = - EIy = sin—
dx? Peyh 1 - B Foh 2 “_2_1
] P., 4P,/ «2 \ 3 |
The maximum bending stress then becomes
[ N ]
qOZh = 'lTCi
+ Qi sin—5—
?.EI.y 2 i=1 ¢ h Tx
0y bend = sin 7
y ben
P_,hZ - P Foh 2 /WZ o h
| Per 4P \n2 ) \3 |
I

where Z :TY section modulus.

vh
X :—-Z—such that sin—=1.
p Foh

Teomp "X X

¥y = % bend ¥ "comp T Tlocal
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To this we add compressive stress of

and local stress of Tlocal such that the stresses become
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For stability consideration, note that when the denominator of the deflection
function goes to zero the deflection approaches infinity. Thus, when

or

where

ford <1.5h and ford >1.5 h, Le:h.

The lateral load distribution q(x) shown in Figure 99 can be represented
by

X
q(x) = doy COST

The deflection function from Equations Al and Al9a for n = 2 is

h N
2mx . 2nCy
q(x) sin dx + X Qj sin
o i=1 h . 2mx
y = sin
16 72 EI v¢ m%4 Bh Fo [4n h
- p+EB . AT
Zh 2 2h 2 "4 \ 3
or
- h N -
S()'Zﬂxc1+zc2'hci
q(x) sin = dx . sin
h b h i=1 h 2w (a27)
y = 3 sSin
STTZPcr 1 - P Foh 472 -1 h
| 4Pcr  4Pcr g | 3 ]
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t /FLANGE REACTION
P

HORIZONTAL COMPONENT

OF DIAGONAL TENSION
q (x) = LATERAL LOAD DISTRIBUTION

Rl

i

VERTICAL COMPONENT
OF DIAGONAL TENSION /f

oy

Figure 99. Lateral Loading of Upright in the Plane of the Web

!

The integral in the deflection function Equation A27 can be evaluated as

h

X 2mx

. 2
Soqoycosi—mn n dx::; -

hence N

2

— oy h+ Z Qj sin
3w %Y i=1 _ 2mx
Sin

h
y =

8l P o p _ Foh 1 a2
cr 1 1
4P_. 4P_. g.2\ 3

The slope and stress at any point x then becomes

[ Zh N ZTTC

—_ b : :

3y doy ¥ i=1 Qi sin h 2mx

0= cos ——
41rpcr P FOh 1 (471.2 ) 1 h

1 - -
4P .. 4Pcr 8l 3

-
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and

o N 1
2h 2mCy
—— oy t Z Qi sin

EI 3r doy T2  2ax
%z bending ~ sin
g thch . P ) Foh 1 <4rr2 > h
L 41:)cr 41:)cr 8'1r2 3

Again to this bending stress add the compressive stress due to axial loads to
get total stress as

z~ ‘z bending * Ucomp * ®local
The bending stress can be easily computed for

P_ Foh o1 [442 ,
- <
aP__  4P_.g.2 | 3

by use of Figure 99 where the amplification factor was defined as

. 3 . — _ 1
Amplification factor = Agnpti = 1 = Foh 472 )
4Pcr 4pcr 8112 3

where P_,. to be used here is that critical load necessary to buckle in the
first buckling mode, i.e., the critical buckling load required for antisym-
metric buckling (two half-waves) is greater than lowest symmetrical buckling
(one -half-wave) by a factor of four times when P acts alone.
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APPENDIX B
NUMERICAL EXAMPLES

STRAIGHT BEAM NUMERICAL EXAMPLE

Partial-tension-field beam is exposed to the vertical and lateral loading.
Determine the stresses in the web, considering different loading sequences.

SYSTEM

(TYP)

h=25FT

L = 8 SPACES AT 2.0 FT = 16.0 FT

The 7075-T6 aluminum alloy beam is symmetrical about G, The
thickness of the webs t = 0. 05 inch. For this example, assume the flanges
and stiffeners to be rigid enough in comparison with the web - flexibility.

LOADING

0.50 k per foot

Vertical loading: g

0. 10 psi

Lateral loading: p
STATICAL ANALYSIS

Shear diagram due to the vertical loading g:

I

4k

Reaction Rp glL/2 = 1/2 x 16 ft x 0.5

V, =Rp-ga=4-0.5x2-=3Kk

L

1

V2 Vl-ga:3-1=2k
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Vy =V, -ga=2- 1=1

1
(@)

Vy=Vy-ga=1-1

Moment diagram due to vertical loading:

M; = Rpxa - gaz/Z = 7k-ft

M, = Ra x 2a - g(2a)?/2 = 12K

M3 = similar = lSk

My = similar = l6k_ft

Check:

max M = My = gL2/8 = 0.5 x 16%/8 = 16K~1t

INVESTIGATION OF VERTICAL LOADING ONLY

Maximum shear for the first bay will be assumed as Vimax = 4K; for the
second bay, maximum shear will be assumed Vmax = 3k,

First Bay (see Figure 51).

4000

- 2680 psi
0.05 x 30 in. pst

T, 7 V/th =

The critical shear (see Equation 1-2) is:

2 g3
Ter = kgs E(—t&) [Rh +—§— (Rq - R}) (¥) ]

The web will be calculated as a very thin one (in accordance with
Figure 24),

T S
alt =555 = 480

Assuming a simple supporting on all four sides will be Rh = Rd =1.0.

Modulus of Elasticity: E = 10.3 x 10° psi.
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Determination of kgg from Figure 13, page 19 is as follows:

h _ 2.5 _
a°2.0°" 1.25=>kgg = 7.25
Consequently
6 [{0.05 c
Ter = 7-25x10.3x10 <m> -1 = 320 <2680 psi

The postbuckling range governs,
Determination of the factor k is as follows:
From the graph (Figure 5),

.
_©° _ 2680 _ o4k = 0,44
Ter 320

“

For a, assume 45 degrees in order to simplify the calculation
(see page 8).

0. = -T5 (1-k) sin 2a = -2680 x (1 -0.44) = -1500 psi
2 kT

ot =—2 + 1 (l-k)sin2a = 2 x 0.44 x 2680 + 1500 = + 3850 psi
sin 2a o 1

Second Bay (see Figure 51 for flow diagram. )

3000 1b
T, = V/th = ———-2_ = 2000 psi
° / 0.05 x 30 P

Factor k (Figure 5):

.
- 220 = 6,255k = 0.38, a = 45 degrees

Ter

In accordance with the equations on page 8,

oo =-To (1-k) sin 2a = -2000 x 0.62 = -1240 psi
2 kT, . 2 x 0.38 x 2000
o, = — + 1, (1-k) sin 2 = + 1240 = +2760 psi
t  sin 2a o 1
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INVESTIGATION OF THE LATERAL LOADING ONLY
(See Figure 51, page 97,and equations on page 49,)

2 h . 2 6 30 4
= ——— = = 9
U-=p E(t) 0.1 x 10.3 x 10 x<0.05> 37 x 10
3/ -
JU = 3330
Stresses: (From Figure 51, obtain n, and n3)
0y = M % = 0.26 x 3330 = 870 psi
3 .
o, = M3 \/i-J = 0.19 x 3330 = 635 psi
Corresponding with ¢ = 45 degrees
_ _ 870 + 635 _ .
T 755 psi

SIMULTANEOUS CONSIDERATION OF BOTH, VERTICAL AND LATERAL
LLOADING

First Bay
o.=1500
g%y = 755
745 >T..i¢ = 320 psi

(the post-buckling range governs)

The General Procedure ("'Frozen Stress' Assumption Valid)

Assume that both loadings will be applied at the same time, starting
from zero, and we want the web to buckle under 7% = 446 psi. Then
the corresponding p* will be determined. (See equations on page 9 and
Figure 51.)

oM = TH = TCI‘ = 446 -320 = 126 pSi
o, = o%/2 = 63 psi
v o'a* T oa b B
P™ 7 n, (longer side) \/Nz E ~
63 x 0.05 63 ‘
= - ) 6
0.26 x 30 in. \/0.26 < 10.3 x 106 - 0001 96 psi
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Consequently, by the catenary system, the following remaining lateral
loading will be taken (see page 95):

"

p' =p-pF=0.1 -0.00196 = 0.09804

To 2680
7 446 © 6.01 =%k = 0.37

The compressive stress will be

q
i

-7, (1-k*) sin 2a + oF

1

-2680 (1-0.37) + 126 = -1559

Tensile prestressing:

2k T . N
- — O TS (1-k") sin 20 + ¢" =

o
I sin 2a

=2 % 0.37 x 2680 |, 1405 4 126 = 3796 psi

1

H = or;IA = 3796 x 1 x 0.05 = 189 1b

Deflection at buckling:

p* (longer side)
= 1, (longer side) 3 =
1 Et

o
|

3/ 0.00196 x 30

5 = 0.0378 in.
V10.3 x 10¥ x 0,05

0.26 x 30

To find o}, enter the following data into the FORTRAN program:
1. Ho = 1891b

2. A =1 x 0.05 in.%

3. 5 = 0.0378 in.

4. p' = 0.09804 lb per inch

5. E = 10.3 x 10° psi
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The output is H = 250. 9 pounds; ymax = 0.05645

Consequently,

_250.9 _ 5018 psi
=7 = psi
II 0. 05

As sume that the beam is vertically preloaded. Then the web will
buckle at T~ = T.p. Total p will be applied to the postbuckling stage only.
Consequently: :

p=o0; o = o

-
° :23628(?:8.4 =k = 0.44
Ter
o = -1_ (l-k) sin 2a + o =
I o
-2680 (1-0,44) + 0 = -1500 psi
2 kT,
.9 - i =
oy *SinZa + T (1-k) sin 2«

2 x 0.44 x 2680
1

+ 1500 = + 3850

The component o will be obtained from the FORTRAN program with
the following input:

1. H, = 3850 x 1 x 0.05 = 193 1b
2. A =1 x 0.05 in.2

3. E =10.3 x 10° psi

4. 5 =0

5. p =0.11lb/in.%

The output is H= 199.41b; y = 0,07247 in. Consequently, o, =
199,4/1.0 x 0,05 = 3988 psi,
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Assume that the beam is laterally preloaded, then

3
ki
I
I

Ho-l 755 pSi

T = ¥ + Ter = 755 + 320 = 1075 pSi

T
__OT. — 2680 — 2'5 = k:,‘: - 0'2
T* 1075
o= T, (1-k*) sin 2o + ¥
= -2680 (1-0.2) + 755 = -1385 psi
/ — 2 k* TO sk . b
oy = +—sin20 t 7, (1-k™) sin 2a + o
=2 x O'le 2680 | 5680 x 0.8 + 755 = 3965 psi
In the above case, ‘TI/I = oy, because whole p was taken as prestressing.

Alternate General Procedure (""Frozen Stress'' Assumption Abolished)

(See page 95 and Figure 52, page 99.)

.
° _ 2680 _ g 40 =k = 0.44
Ter 320
v -To (1-k) sin 2o = -2680 (1-0.44) = -1500 psi
2 kT,
o = —-,—0 + 1 (1-k) sin 2e
11 sin 2« o

2 x 0.44 x 2680 + 1500 = +3850 psi

1

The component o;; will be obtained from the FORTRAN program with
the following input:

I. H, = 3850 x 1 x 0.05 in. =193 1b

2. A =1 x 0.05in.2
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0.1 1b per in. 2

w
T
I

4. & =0

The output is H = 199.4 1b; Y = 0.07247. Consequently, oy =
199.4/1 x 0. 05 = 3988 1b.

1240

Second Bay o
o _ 155
H 1 485 psi > 7o, = 320 psi  (See page 219.)
Postbuckling range governs

The analysis will not be provided since it is similar to the analysis
presented for the first bay.

Analysis of Uprights and Flanges

~—t = 0,05 IN.
w

—d
ad

L JL
il il

GIVEN: A, = 0.5 IN.?
9DESIGN 40 ksi
VERTICAL LOAD ONLY
A numerical example will be made to illustrate the equations to be used
for vertical loading. Consider double upright of "T'"' shape with cross

sectional area of 0.5 square inch.

Stress Consideration:

The stress in the upright due to partial tension diagonal folds (see
page 26) is as follows:

k
- _ T tan o (Bl)
U A
— U4+ 0.5 (1-k)
dty,
- 224 -
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where k = 0.44; 7 = 3850 psi; and @« = 45 degrees have been determined in
the web analysis, therefore,

o 0.44 (3850) tan 45 - 2430 psi

U 0.5
m + 0.5 (1-0.44) (compression)

The formula

where (see page 110):

A

A+ tgd (0.5) (1-k)

P

It

t,d (op sina + o, cos o) (for o = 45°)

presented in SectionIIl can also be used. From the analysis of the web

0T = + 3850 psi (tension diagonal fold direction)
e = - 1500 psi (compression perpendicular to
diagonal fold direction)
Hence
_ t.d (omp sina * o. cos )
Ty P w T c (B2)
A Ayt twd (0.5) (1-k)

(0. 05) (24) (3850 sin 45° - 1500 cos 45°
0.5 + 0.05 (24) (0.5) (1-0. 44)

- 2400 psi (compression)

Comparison between the two stresses show that only 1 percent variation
exists between the two techniques. This justification should be mentioned

since oy = —X is used for combined loading analysis. Since, o, is less than
U A U

o design, the upright will not fail due to stress.
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Stability Consideration

Column Behavior

The upright should be investigated for column buckling. The d/h ratio

d 2
is — = 24 = 0.8. Since d<1.5h, use (see page 26).
h 30
L, - h ) 30
2 2d 2 2 (24))
+ ok (3 __> + (0. 3. 2 (24)
\/1 )\ 1o+ (0,442 s
or

L, = 26.6 in.

The critical load using the effective length Le = 26. 6 inches is (See
Equation A 21, page 209.)

2

_m" EI
cr 2
Le
where
Given:
t ty —d b u '
0 i | IV t = 0.18 in.
ya l r ——t u
'f A I ‘)' .
? ﬁ ‘ T t b = 0.7 in.
b
i l"—i_ t, = 0.05 in.
Pb" E = 10.3 x 10° psi
aluminum ~ -2 X pst
b2ty tty,)>  (2b+ty)’ty
I = +
12 12
3 3
0.7 |2 (0.18 + 0. 05)] s [2 (0.7) + 0.05| (0.18)
B 12 12

4.97x 10-2 in.4
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Therefore
2 6 -2
P, = m” (10.3 x 107) (4.97 x 1077) = 7110 1b (compression)
(26. 6)%
or
. . Per P.,

cr A Ayg t+ 0.5 dty, (1-k)

7110
0.5 + 24 (0.05) (0.5) (1-0.44)

8500 psi

Since oy < Ty the upright will not buckle as a column.

Forced Crippling

1/3
t
o5 = ck2/3 <—;9—> ksi (See page 28.)

W

For double upright, ¢ = 26 (7075-T6 aluminum)

1/3
26 (0.44)2/3 <0' 18)

q
I

0. 050

23.0 ksi

o2
(o]

Since o < 0, the upright will not have forced crippling.

Crippling
First we must determine the range of g
W
Ay 0.5
T - = 0.41
tw 0. 05 (24)
- 227 -
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Since . Ud > 0.2, Equation 1-4, page 32, governs.
w
N
Al O—CCi
_oi=1
Occ ~ N
>
i=1

For Tecy of the leg attached to the web, we should use ¢, the forced crippling
value that considers the effect of the diagonal fields. The o¢c; for the out-

0.7
standing legs are taken from Figure 2l for T

——=———_— = 3,9 and is
u 0.18

Occy = 29 ksi.

Therefore,
2 [Al]

2 [a2] [oce,| = 2 0.7 (0. 18)] | 68 x 103

=2 [0.7 (0. 18)] ’23 x 103]

0— .
ccy

where the number 2 refers to two areas; i.e., one for each side of the web.

[07 0. 18] I23x 103] +2[o7 (0. 18)] l68x 103]

°c [07 018)]+2[07018)]

or

Cee = 45,500 psi

Since oy < T the upright of the outstanding leg will not cripple.

Torsional Instability (see Equation 3-47)

2 2
C1(F) +ELy (2o - hy)® (F)7+ C

cr: I > 5
(o]
—_— - 7 + h
A o Z
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where

Ay +twd 0.5 (1-k) = 0.836 in.2 (See page 110.)

>
H

@
i

GJ (See page 119.)

Ci =E Cy =0 (See pages 119 and 124.,)

2.
I, =1, +1Iy=2(4.97x10 )in.?
3 3
2bt3 + 2bt
J = b ; Y . 5.43 x10°3 in.4
. 1 ,
L Y x
{ ] 7

z

The preceding sketch shows that z;, = h_ = 0.

For G = 3.9 x 10° psi for 7075-T6 aluminum alloy

6 -3
p :3,9x10 (5.43 x 10 ): 1‘78x1051b

cr )
2(4.97 x 107%)
0. 836

and

P 5
_ ~ecr _ 1.78 x 107 _ 5 .
Oer TTA T 0 836 = 2.13 x 107 psi

the upright will definitely not fail in torsional buckling.

Since %y < Ocps

LATERAL LOADING ONLY

The same cross-sectional area of the upright will be used to illustrate
a numerical example for partial-tension-field beams subjected to only lateral
pressure of 0.1 psi.
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Stress Analysis

The distributed force acting on the upright as shown in the sketch below
isq=pdor q=0.1(24) = 2.4 1b/in.

o
pestt— || —Bo=d
Nfa

h =30 IN, p = 0.1 PSI

RARRRRARERE

d =24 IN,

From Table 2, (page 58) the bending moment in the upright is

or

2 2
M = 2.4 (302 _ 12%) - 213 in.-1b
u 8 6

The bending stress is

Mc _ 213 (0.7)

o - % = 3000 psi
bend I 4.97 x 102 ;
The tensile stress oy = 870 psi as calculated in the web analysis

induces compressive stress in the upright of

P ottwd 870 (0.050) (24) '
o ; = = = = 2100 psi
compression Ay AU 0.5

The total stress in upright is

g, a + o .
Umax bend compression

i

_ .2 .
+ = .
L 3000 2100 5100 lb per in.“ (compression)
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Since Cu L ax is less than (1) 0., due to column buckling (2) ¢, due to forced

crippling, (3) occ due to crippling, (4) ocr due to torsional buckling, and
(5) " Design design allowable, the upright will not fail.

COMBINED LOADING

Consider the combined loading of p = 0.1 psi and V = 0.5 k on the
partial-tension field beam.

Stress Analysis

Stress in the upright due to lateral deflection of the upright will first
be considered (deflection out of the plane of the web). The lateral load
intensity acting on the upright is (see page 103)

prd (h -—d—-)
q = 2
0oz 2h

or

(0. 1)m (24) (30 -3‘-*-)
doz ~ 2 (30)

= 2.26 1lb per in.

The bending stress at x = % (maximum stress point) from Equation 3-20
of Section III is

N .
ZEIY Asym Qoz b z Ty
o = + Q. sin
bend P h Z 2 n h
cr y i=1
Yy
where
A B 1
sym . P Foh 2 WZ ,
Pcr 4Pc:r TTZ 3
Q, = T siné + T, sin ¢y
, .y
Yy ¢
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Since the slope ¢, = ¢ = 0, Qp = 0.

The bending stress reduces to

Ecag, Asym

g =
bend P
cr
Yy

For d<h (since our d = 0. 8h) it is recommended that F, be included in P
where P is defined by (see page 110)

o _chth sin ¢ (1 + tan ¢) . O’thd cos a (1 + tan @)

2 2

Thus, for d<h, Agym reduces to

_ 1
Asym B P

From web analysis and FORTRAN
o = 5018 psi
o = -1559 psi

a = 45 degrees

5018 (0.05) (24) sin 45° (1 + tan 45°)
2

N (-1559) (0.05) (24) cos 45° (1 +tan 45°)
2

or

P = 2935 1b
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_10.3 x 100 (0.7) (2.26) (1.70)
“bend ~ 7110

= 3893 psi

P
The value of Agym can also be obtained from Figure63 for P = 0.32 and
F _h cr
2= 0.
4

The compressive stress for d<h is (see Equation 3-21 )

- p =_2935 - 3510 psi

_ P
Pcompression Tz Ayt 0.5¢t,d (1-k) 0.836

4 = “bend + Scompression - 3893 + 3510 = 7403 psi

The upright will not fail in strength since 0y < U Design: SilCe€ 0y < 0y Where
ocr = 8500 psi, the upright will not fail in column buckling. The upright will

not buckle in forced crippling, crippling, or torsional buckling since oy < 0,

0y < 0ccr and oy < Tor-

Now consider the stresses in the upright when the upright deflects in
the plane of the web,

Force intensity R, is (see page 103)

ROZO'Ttwcosa+ (yctwsina

R, = 5018 (0, 05) cos 45° - 1559 (0.05) sin 45°

or
RO = 122 1b/in.

h
At x =3~ (from Equation 3-24)

g = —_—
bend “onp_ z_ | 3w 3n P

z

V4

Elz Aanti [ 2 E Apnti Roc
— oh| =
cr
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where
Aanti = ! = 1.09 for d<h
1 - P
4 P.y
10.3 x 106 (1.09) (122) (0.7)
a. = = 14,298 psi
bend 3w 7110
oy =~ bend * ocompression 14,298 + 3510 = 17,808 psi

Since ¢ the upright will not fail due to material.

u < Pdesign’

Stability Criteria

The stress in the upright ((rU - 17, 808) must be less than the following
buckling criteria or failure will exist.

1. Column behavior for antisymmetric buckle shape
= 4 = 4 (8500) = 34,000 psi
TCr Anti Crsym ( ! ’
.. < T

cr .
U Anti

Therefore, upright will not fail in column buckling in the

antisymmetric mode.

2. Forced crippling
0y = 23,000 psi

g. <0
U o

Therefore, upright will not fail due to force crippling.

3. Crippling
Tee = 26,000 psi
(rU < Tcc
Therefore, upright will not fail due to crippling.
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4. Torsional instability
Oocr = 2.13 x 10° psi
oy < Ocr

Therefore, upright will not fail due to torsional instability.
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CURVED BEAM NUMERICAL EXAMPLE

To demonstrate the analysis procedure, a curved semitension
field beam web will be analyzed. It is assumed that the beam is a section
of a cylindrical structure loaded as shown in Figure 100.

The structural configuration is indicated as follows:

Geometry:
A =0.75in” R = 122.5 in.
Ay = 0.50 in? d =30 in.
t  =0.025 in. h = 24 in.

Double uprights and flanges with pinned joints.

Material properties (7075-T6 aluminum alloy):

p=0.32
Oty = 64.5 ksi
Lru 108-137 ksi (e/D = 1.5-2.0)
g = 72 ksi
E =10.3 x 10 psi
Loading:
2S5 = 40,000 1b
p = 1 psi (internal pressure)

Compute critical web shear buckling stress (no lateral pressure
loading) as follows:
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25
(TYPICAL AT 8 POINTS)

¥

[— h

—_
(TypicaL)

(o) OVERALL STRUCTURAL
LOADING CONFIGURATION

2S
(TYPICAL AT 8 POINTS)

A

A

(b) ANALYTICAL MODEL

\

Figure 100, Curved Beam Numerical Example Configuration
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LT’ Eh?®
T = _— i
cr S5 R2 72 (See Equation 4-3.)
d/h = 30/24 =1.25
2 2
Z=-uV1-pl= 1-(0.32)%
Rt 122.5 (0. 025)
=179
=41

ks (Figure 74)

4 3 1416)2 10.3 (10)6 (24)2
cr 12 (122.5)2 (179)2

417 psi

Compute p(c):r as follows:

o Etz t
pPY =-0.92 — \/— (See Equation 4-63.)
cr dR R
6 2
=.0.92 10.3 (10°) (0.025) 0.025
) 30 (122.5) 122.5
= -0.023 psi
At 2 p.v,
T .___'P N
< > o =1 (See Equation 4-59.)
T P
cr cr
__T*_. g + 1 =1
417 -0.023
T = /1 +43.48
417
™ = 2780 psi

S
Applied T=— = 20,000/(30) 0.025

= 26,700 psi
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Therefore, the web is buckled under this combination of loads. To
find the maximum internal pressure at which the applied vertical loading
will cause buckling, Equation 4-59 may be used again.

2

<26,700> L_PY
417 -0.023
P* = 0.023 (1 - 4090.)

94 psi

This is not a reasonable pressure because the membrane stresses of
the web would reach ultimate value before this pressure could be applied.

The value of the diagonal tension factor, k, is found by using Figure 80,

26, 700
_T._ :_f’_.._— = 64
To. 4L7
' td 0.025 (30)
300 5= = 300 ————————
Rh 122.5 (24)
= 0.0765

From Figure 80, k = 0.78

To compute the angle of diagonal tension, o, use Figure 81,

( 5 /10.3 (10
T 122 5 26,700

, 30(0.025)
V1 +Ryg 30(0.923)

0.75

= 2.72

24 (0.025)

1+Rs _ !t 0.5

1 +Rp 30 (0.025)
1 +—0.75

From Figure 81.

AppT = 43,3°
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To estimate @, use Figure 81(C).

For k=0.78

O‘/Q’PDT =0.95

a=0.95(43.4)
= 41.2°
. . . Ay _ = AFL
The data curve of this figure is based on s =1.00 = <
t t

In this case,

Ay _ 0.5 o
ht - 24 (0.025) _ O
and
Am =07 - go

—dt - 30 (0.025)

In computing stress in post-buckled catenary elements, the initial
conditions of the catenary are

Length (Figure 78):

Length =6, r;,
2\2
1 -
6, = cos™! [2 <____K__1_> -1} (See Equation 4-5.)
1 +K;2
(1 - cos 5 =
1-cos—5)sina
2R .
Ky = h (See Equation 4-6.)
sin SR

1 - et 2 . °
< COSs 2 5) sin 41.2

. 24
sin &
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_0.00486 (0.65869)
B 0.09691

= 0.0320123

1 -0.0010248\2
92=cos'1 2< > -1

1+0.0010248

= cos~1(0.9918164) = 7.33333 degrees

= 0,.12798 radians

Then, as per Equation 4-7, it follows

. 2 24
sin —_— 2
245 24
122, 56— + 122,.5 {1 - cos —
(0. 65869)% 245

281 in.

Initial length of the catenary element is

S=92r2

35.99 = 36. in.
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Initial stress in the catenary element is

1 Zk To . R
oy = S 3e + 75 (1-k)sin 2a (See Equation 4-9.)

_2(0.78) 26, 700
= T sin 82.4

+ 26,700 (1 - 0.78) sin (82.4)°

= 42,020 + 5,822

"

47, 840 psi

The initial catenary end load is 47,840 (0.025) = 119.6 1b.

Initial deflection (before panel buckles) is

h
Rl - cos —
2R
24

122.5 {1 - cos
245

0.587 in.

(o]
]

t

After buckling, the panel is flat and initial catenary deflection is
assumed to be zero before lateral pressure loading is applied.

Initial catenary conditions:

DISTRIBUTED LOADING = 1,0 LB/IN, V/
)/ %
/ w 1 w \ /
-

36 INCHES %

AN

Initial tension in the element equals 119.6 pounds (before pressure load is

applied); the element cross-section equals 1 x 0.025 in.; E = 10.3 (106) psi.
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This input data applied in the FORTRAN program of the appendix
produces the final element loading due to the total combined loading, and
the maximum element deflection. These values are:

H 289 ,
U1 = x>0 025" 11,560 psi
y = 0. 56 inches

The ultimate tensile stress of the material is 72 ksi. This value of
72 ksi must be reduced by any effect due to stress concentrations at the
edges of the sheet at the upright and flange attachments and compared to

I11-
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APPENDIX C

FORTRAN

FORTRAN IV PROGRAM FOR CATENARY ANALYSIS

The following paragraphs present the details on the use of the
FORTRAN IV IBM (7094) digital computer program developed for the
analysis of extensible catenary with an initial zero deflection which is pre-
stressed before the erection and then loaded with the arbitrary loading Pi'
The program also computes an approximate solution for a prestressed
extensible catenary with an initial deflection and arbitrary loadings.

The essential features of the S&ID catenary with vertical loading
analysis program (8 K-RB2) are described. The program may be used to
analyze the behavior of catenary under different loading. The description

of the method of analysis, assumptions, and input and output format explains

how the program operates.
ANALYSIS

A catenary system prestressed with applied loading and zero
deflection is shown in Figure 101. A prestressed catenary system with
applied loading and an initial deflection is shown in Figure 102. The
loading Py and distance Xy are arbitrary in both figures.

Xp Xy Xg X3 X4 XN

A\

O

Figure 10l. Prestressed Catenary System With Applied
Loading and Zero Deflection
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Ymcx

Py PN

Py Py

Figure 102. Prestressed Catenary System With Applied
Loading and An Initial Deflection

Utilizing the applied loading and distances, the FORTRAN IV program
computes the following numerical data:

a. Vertical Reactions
b. Shears
C. Moments

If the pretensioned catenary (with Hy) is erected before the loading
is applied, then the initial deflection is equal to zero. The program
computes the ""extensible' horizontal tension (H) from the equation

2L (H3 - H2 Hy) - ZAE =0 (C1)

by the cubic subroutine, and uses the horizontal tension to solve for the

deflection Y (I) = Moment/H, tension T = ‘/Shear2 + HZ, and total span
length S. The analysis is now completed for FigurelOl. The final
extensible shape of loaded catenary is determined.

In the second case when the initial deflection is not equal to zero the
program computes the inextensible horizontal tension due to loading Pj

without prestressing consideration.

Horizontal tension

M
H - —max (C2)
max
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Total span of inextensible length
S=S8+ EL (I) (C3)

The horizontal tension for the extensible catenary is now computed
from the cubic equation.

2H3L (1 +22) + 2 H2 EA [S—L(1+%02) +Z (2H - EA) =0 (C4)

by the cubic subroutine, considering loading P; only, without pretensioning.

This extensible horizontal tension is now added to the prestressing
extensible horizontal tension to obtain the final horizontal tension.

= C5
fina1 - 0+ Hy (C3)
Maximum final deflection
M
final —_max . v (C6)
ina Hehal max

PROGRAM DETAILS
Input Data

FigurelO3is a flow chart of the program. The source deck listing for
the program is shown in Figure 104. FigurelO5provides the input data.
FigurelO6gives the first example of some initial deflection. Figure 107
gives the example of initial zero deflection.

The input data cards will be sorted on columns 73 through 80 before
the analysis is begun. Therefore, any cards which have improper sequence
numbers will generate an error in the analysis.
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START

A

READ INPUT DATA
N, YMAX@, E, A, H, X (1), P(1)

\

PRINT INPUT DATA

COMPUTE
1. REACTION LOADS
2. SHEARS
3. MOMENTS

IF - TESTS
v “

INITIAL DEFLECTION

\

ZERO DEFLECTION

A
COMPUTE INEXTENSIBLE

1. HORIZONTAL TENSION
2. SPAN (LENGTH)

CALL CUBIC SUBROUTINE

COMPUTE !
1. HORIZONTAL TENSION
2. DEFLECTION < CALL CUBIC SUBROUTINE
3. MOMENT AND SHEAR
4, TENSION AND SPAN

PRINT
COMPUTE AND PRINT
1. HORIZONTAL TENSION
2. DEFLECTION »| 1. FINAL HORIZONTAL TENSION
3. MOMENT AND SHEAR 2, FINAL MAXIMUM DEFLECTION
+ TENSION AND SPAN 3. FINAL MAXIMUM TENSION

END END

Figure 103. Flow Chart of the Program
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Data Page 1
Card 20000001
Number of increments
Card 20000002
Maximum deflection
Modulus of elasticity
Area

Prestressing Tension

Card 20000003 or 4. . . i

SPACE and INFORMATION SYSTEMS DIVISION

Distance between applied load

Applied load

Output Format

Figures106and 107describe the output format of the program:

Output Data For Zero Deflection

Extensible catenary length
Horizontal tension

CAPY (I)
(deflection)

Load

Output Data For Initial Deflection

Inextensible catenary length
Horizontal tension
Shape

Extensible catenary length
Horizontal tension

CAPY (I) Load
Final horizontal tension

Final maximum deflection
Final maximum tension

- 257 -

Moment

Moment

Shear

Shear

SID 66-135



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION |

The FORTRAN program which determines the stress and deflection of
a pretensioned catenary with the initial deflection (due to unknown loading)
is an approximate one. The prerequisite for the usage of this program is
a comparatively large prestressing and very small lateral loading. These
prerequisites are always satisfied in the case of partial-tension-field beams.
The program will handle both components independently: pretensioning and
lateral loading. The resulting stresses will be added algebraically, and this
is an approximation. In reality the stresses will be smaller; consequently,
the program is on the safe side. The maximum deflection, however, will be
obtained by Equation C6.

The FORTRAN program which determines the stress and deflection of
a pretensioned catenary with zero initial deflection is an exact one. It may
be safely used instead of the first one, which was described above, if the
initial deflection is very small.

SUMMARY

Given the input data of area, length, deflection, applied load, and
initial tension, the FORTRAN IV program can compute two separate analyses
depending on "zero deflection' or ''initial deflection. ' The source deck of
the program takes less than thirty seconds execution time on the IBM 7094
and requires less than 400 lines printout per case.
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FORTRAN IV PROGRAM

A digital computer program has been developed for executing
Equation 4-46. A detailed description on the usage of the computer
program is presented in this Appendix.

ANALYSIS

The following equation is solved numerically with the IBM 7094
computer:

2 L 2
pbb J (l,-Pb)Ra 2 2 2
3 - 0.433 a + -2 =0.5y/4R" - 2" _R
2.?8\/Apr2b2 E A

(C7)

~——1 |

? g = 2R SIN %/2

\a_/

By setting Py equal to some initial value (input data), the IBM program
increments that value by the same amount each time until the equation is
equal on both sides, or within the calculated tolerance.

PROGRAM DETAILS

Input Data

This paragraph describes the input data required for execution of the
numerical procedure.

Data Page 1
Card 30000001

Number of Increments
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Card 30000002

Straight Length

Curved Length

Modulus of elasticity
Area

Radius of curvature
Amount Py is increased

Card 30000003
Tolerance

Output Format

This section describes the printout of the program.
2 2

Comparable value = 0.5 V4R™ - £ © _ R

Py (I) = Incremented input data

2
b (1. - py,) Ral2
S(I) = - 5 - 0.433 \/[a,+ b ] X (C8)

2.78 VAE p, % b EA

If the value calculated is within the given tolerance, the program will
print out only Py S and S.

SUMMARY

The FORTRAN IV program solves the algebraic equation. The source
deck of the program takes less than twenty seconds execution time on the
IBM 7094 and requires less than 300 lines printout per case. FigurelO8is
a listing of the source deck for algebraic equations. FigurelO9lists the
input data for algebraic equations. FigurellOlists the output data.
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wreq 1ndino ‘OT1 @am31g

Ou divé*e- c0-360ce
0U d4e9¢ ¢~ cU~-3001°¢
U0 d469¢*¢c- Cu=auu0°®e
Ul dLe9e*é- ¢U=-30Uub * ¢
00 s09¢*é- ¢0-300B ¢
00 dlic*é- PAVE I VIV YR
U0 3elce*l- CcU=-3009°%¢
00 a4%Lc*- CU-d0Us " ¢
00 3LLc*ce- cu-all%°®c
VU dolcti- c¢U=a0Ue "¢
00 3iuc i~ cU=-3aLuc ¢
VU 39Ycc- cu=30ul°*c
VU 398c¢°*C~ cCG=-3000°%¢
00 adbbe*d~- ¢U-a3ulb*1
00 3lec*dé~ cU~=300u°1
00 3vobl*cC~ PAVEETV [V
QU a3Lbc®d- <¢U-3009°1
gu H00e°*e- ¢O=-30us" 1
00 3Jele*l- cO=-4u0%° |
00 390¢ *c¢c- cU=-300c°1
VU 3Jo0e°C~ ¢0=-300c* i
00 Fele*e- ¢0~-4001° 1
[SIVER VA S A cu—abuu*l
00 31l e~ [AVE TV VAN
00 36lc e~ (VL ETVIVIVAS"]
V0 30k *c~ t0=-4000°%¢
00 d4tce*l- eU=3000°Y
00 3F09e*2- eU-30u0°®y
00 aLY9e ¢~ PV ETVIVIVAS
00 346 °*l~ [AVESTVIC VAR
U0 399 - el =3000°%¢
U0 abie*Z- c0=-3000°1
Uo dle% ¢~ be=-3Uul°v
(1)S {1)da

00 d%%e°*¢- = 31TVA 37dVavanb)

- 263 -
SID 66-135

i R Y S~ - O o)




NORTH AMERICAN AVIATION, INC.

10.

11.

12.

SPACE and INFORMATION SYSTEMS DIVISION

REFERENCES

Kuhn, Paul, Stresses in Aircraft and Shell Structures. New York:
McGraw-Hill Book Company, Inc. (1956).

Wagner, Herbert, Flat Sheet Metal Girders with Very Thin Metal Web.
Part I — General Theories and Assumptions, NACA TM 604, (1931).

Wagner, Herbert, Flat Sheet Metal Girders with Very Thin Metal Web.
Part II — Sheet Metal Girders with Spars Resistant to Bending. Oblique
Uprights — Stiffness. NACA TM 605 (1931).

Wagner, Herbert, Flat Sheet Metal Girders with Very Thin Metal Web.
Part III — Sheet Metal Girders with Spars Resistant to Bending., The
Stress in Uprights — Diagonal Tension Fields. NACA TM 606 (1931),
Moness, E., Flat Plates Under Normal Loads. Douglas Aircraft Co.,
Rept. 1862, Part I through VII

Levy, S., D. Goldenberg and G. Fibritosky. Simply Supported Long
Rectangular Plate Under Combined Axial Load and Normal Pressure.
NACA TN 949 (1944).

Woolley, R.M., J.N. Corrick, and S. Levy, Clamped Long Rectangular
Plate Under Combined Axial Load and Normal Pressure., NACA TN 1047,
(1946).

Arbuzov. ''Analysis of High Beams Based on Ultimate Condition, "
Oborongiz (1963), (In Russian).

Timoshenko, S.P., and J. M. Gere, Theory of Elastic Stability.
Second ed., New York: McGraw-Hill Book Company, Inc., (1961).

Structures Manual. NAA, S&ID.

Moore, R.L. and C. Westcoat. Torsion Tests of Stiffened Cylinders.
NACA W.R. No. 4E31, 1944.

Romashevski, A.J., "Investigation of Behavior of Beams Systems
With a Thin Web and Nonparallel Flanges."" CAGI, Trudi No.203 (1935),
(In Russian),

- 265 -
SID 66-135



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

13.

14.

15.

16.

17.

18.

19.

29.

21.

22,

23.

24,

25,

26.

27.

Romashevski, A.J., '"Investigation of Behavior of Beam With a Thin
Web.'" CAGI, Technical Notes No. 58 (1935)., (In Russian).

Strigunov, V.M., Theoretical and Experimental Investigation of
Behavior of Thin-Walled Beams, CAGI, Trudi No. 349 (1938). Thu

Strigunov, V.M., Investigation of Behavior and Method of Anal ysis
of a Beam on Two Supports, With Thin Web. CAGI, Technical Notes
No. 58 (1935).

Marinkovic, M., 'Statica Odredjenich Nosaca', Beograd (1952),
(In Serbian).

Heinrich Hertel. ''Leichtbau', Spring Verlog 1960.

Timoshenko, S. Theory of Plates and Shells. New York: McGraw-
Hill Book Company, Inc. (1940).

Sechler, E.E., and L. G, Dunn. Airplane Structural Analysis and
Design. New York: John Wiley & Sons, Inc., (1942).

Kauai Tadahiku, and Bruno Thurlinann. Influence Surfaces for

Moments in Slabs Continuous Over Flexible Cross Beams. International
Association for Bridges and Struct. Engineering, Zirich, Switzerland
(1957).

Thurlinann, Bruno. Influence Surfaces for Support Moments of
Continuous Slabs. Publication of International Association for Bridges
and Structural Engineering, Zurich Switzerland (1956).

Foppl, A. and Ludwig Foppl. Drang und Zwang. Minchen und Berlin:
Verlag von R. Oldenburg, (1941).

Uniformly Distributed Hydrostatic Pressure. NACA TM 965.

Flat Plates Under Normal Loads. Douglas Aircraft Co., Report 1862.

Niles, A.S. and J.S. Newell, "Airplane Structures,'' Vol, II, 1938,

Beton-Kalender, 1965, Taschenbuch fir Beton und Stahlbetonbau Sowie
die Verwandten Facher, Berlin — Munchen, p. 203.

Niles, A.J., and J.J. Newell, "Airplane Structures, ' Vol. I,
3rd Edition, 1943, p. 126.

- 266 -
SID 66-.135




" NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

28.

29.

30,

32,

33.

34.

35.

36.

37.

38.

39.

40.

41.

Wang, C. Applied Elasticity. New York: McGraw-Hill Book
Company, Inc., (1953).

Pippard, M. B. E., and J.F. Baker. The Analysis of Engineering
Structures, London: Edward Arnold & Co.

Kuhn, P., J.P. Peterson, and L.R. Levin. A Surhmary of Diagonal
Tension: Parts I and II. NACA T.N. 2661 and 2622.

Denke, Paul H. '"Strain Energy Analysis of Incomplete Tension Field
Web-Stiffener Combinations, ! J. Aeron. Sci., Vol. 11, No. 1, (1944)
pPp- 25-40,

Denke, Paul H. ''Analysis and Design of Stiffened Shear Webs, "
J. Aeron. Sci., Vol, 17, No. 4, (1950) pp. 216-231.

Kuhn, P., "Investigations on the Incompletely Developed Plane
Diagonal-Tension Field''. NASA Report No. 697 (1940).

Timoshenko, S.P. Theory of Elastic Stability. New York: McGraw-
Hill Book Company, Inc. (1936).

Moisseiff, L.S., Design Specifications for Bridges and Structures
of Aluminum Alloy 27S-T. Pittsburg: Aluminum Company of America
(1940).

Alcoa Structural Handbook. Aluminum Co. of America, Pittsburg,
Penna., (1956).

Marjin, V. A. 'Stability of Cylindrical Panel Against Shear",
Moscow (1959), (In Russian).

Marjin, V. A, '"Stability of Cylindrical Shell Against Torsion and
Internal Pressure'', Moscow (1959), (In Russian).

Gerard, G., and Herbert Becker. Handbook of Structural Stability.
Part III. "Buckling of Curved Plates and Shells'". NACA TN 3783
(August 1957).

Carslaw, H.S. Fourier's Series and Integrals. Third ed., Dover,
New York (1930).

Langhaar, H. L. Energy Methods in Applied Mechanics.
John Wiley & Sons, Inc. (1962).

- 267 -
SID 66-135



