TECHNICAL REPORT
RESEARCH TO DETERMINE FAILURE MODES FOR TRANSISTORS
CONTRACT NAS8-11059

Editor: B. Bair
Contributors: A. Fox, E. A. Herr, A. Poe, R. Quick, I. Smith

General Electric Company Semiconductor Products Department Syracuse, New York

Abstract

ABSIRACT

This report presents the results obtained from an investigation of the reliability of 1,500 diffused planar transistors of the 2NT18A type, manufactured by three separate processes. The transistors were subjected to a series of stress conditions in a number of screens and a matrix life test plan. The stresses included temperature, temperature and bias, power dissipation and centrifuge step stressing of sufficient magnitude to produce failures. The failures were analyzed to assign failure modes and determine whether they were a function of material, process or design. In analyzing this data, an evaluation was made of the performance of devices during the stress screens and under power operating conditions for three thousand hours. A number of charts, graphs and tables were prepared to show population trends, effectiveness of stress screens, burn-in, truncation and noise screening. The failure analysis procedure, failure mode chart and the relation of the failure mechanisms and stress conditions were shown. A number of detailed failure analysis investigations and reports were made to show the relationship of stress, manufacturing process and performance of the devices. Failure rate comparisons were made of the three processes before and after screening. Several recommendations are developed for screening techniques to remove failure modes as they are related to the manufacturing process.

This report shows that it is possible to develop effective and economical reliability screens related to the manufacturing process used for this diffused planar transistor. Some areas for manufacturing process improvement are also indicated.

TABLE OF CONTENTS

Page
SUMMARY 1
SECTION I. PROGRAM RESULTS
A. Review of Program 4
B. Test Results 7
C. Recommended Screens 13
SECTION II. SCREEN RESULIS
A. Introduction 18
B. High Stress Screen 19
C. Moderate Stress Screen 20
D. Centrifuge Screen 22
E. Control Lot 23
F. Stress Screen Yields 23
G. Truncation Screen 24
SECTION III. LIFE TEST RESULTS
A. Introduction 29
B. High Stress Screen 30
C. Moderate Stress Screen 31
D. Centrifuge Screen 32
E. Control Lot 32
F. All Processes Combined 33
SECTION IV. FAILURE MECHANISMS AND ANALYSIS
A. Physical Nature of Failure Mechanisms 34
B. Failure Mode Chart 41
C. Failure Analysis Procedure 54
D. Failure Analysis Summary 56
E. Failure Analysis Reports 73
F. Program Failure Response Code 142Page
SECIION V. NOISE STUDY
A. Results of the Noise Study 114
B. Noise Study Literature Search 146
C. Noise Screening Related to Manufacturing Processes 147
D. Noise Current Effectiveness 148
E. Low Frequency Noise Screening Effectiveness 149
SECHION VI. FROCESS DETAILS
A. Electrical Specification 151
B. Process Differences 156
C. Fhysical and Fabrication Details 157
D. Photographs of the Physical Appearance of the Peilets 158
TABLES 159
FIGURES 309
BIBLIOGRAPHY 317

LIST OF ILLISSTRATIONS

Table THtle Page
13000 HOUR LIFE TEST FAIIURE RATES 159
2-5 3000 hour IIfe test resuigs aflizr screhens 160
6-10 CENIRIFUGE FAIIURES AFITER SCREENS AND IITFE MWST. 164
11-24 RESSONSES TO HIGH SITESS SCREEN. 169
25-37 RESPONSES TO MODERATE STRESS SCREEN 183
38-51 RESPONSES TO CENIRTHUGE STRESS SCREAN 196
52-61 RESPONSES FOR THE CONIROL LOT. 210
62-67 RESPONSES TO LIFE TEEST AFTER HIGH STRESS SCRBEN 220
68-73 RESPONSES TO IIFE TEST AFITER MODERATE STRESS SCREEN 238
74-79 RESPONSES TO LITE TESTI AFIER CENTRIFUGE STRESS SCREAKN 259
80-85 RESPONSES TO LTIFE THEST FOR THE CONTROL LOT. 280
86 SCREREN, BURN-IN AND LIFE TEST YIELDS 301
87 TEST MATRIX CELL NOMBER ASSIGMMENT 302
88-91 TRUNCATTION SCREEENING TABIES. 303
Figure THtle Page
1-2 FAIIJRE ANALYSIS FTOW CHARTS. 309
3-8 NOISE SIUDY FIGORES 311

DEFINITIONS OF SYMBOLS

FAILIURE RESPONSE CATEGORIES

Symbol
1

2
3 Parameter within a catastrophic limit
4 Parameter beyond a catastrophic limit

Electrical Definition of Symbol Limits

Parameter	1	2	3	4
$\mathrm{I}_{\text {CBO }}$	10 nA	10-100 nA	100-1000 nA	>1 uA
$I_{\text {EBO }}$	10 nA	10-100 nA	100-1000 nA	>1 uA
${ }^{\text {BV }}$ CEO	40 V	$30-40 \mathrm{~V}$	20-30 V	$<20 \mathrm{~V}$
${ }^{\text {BV }}$ CEO \% Shift	15%	25 \%	50%	>50\%
$\mathrm{h}_{\text {FE }}$	40-120	$\begin{aligned} & 35-40 \& \\ & 120-150 \end{aligned}$	$\begin{aligned} & 28-35 \& \\ & 150-180 \end{aligned}$	$\begin{aligned} & <28 \text { or } \\ & >180 \end{aligned}$
$\mathrm{h}_{\text {FE }} \%$ Shift	15%	15-25 \%	25-50 \%	$>50 \%$
$\mathrm{V}_{\text {CE (sat) }}$ \% Shift	15 \%	15-25 \%	25-50 \%	> 50%
$\mathrm{V}_{\text {BE (sat) }}$ \% Shift	15%	15-25 \%	25-50 \%	>50 \%

RESEARCH TO DETERMTNE FAILURE MODES FOR TRANSISTORS

CONTRACT NAS8-11059

SUMMARY

A detailed investigation for determining the reliability of a total of 1500 diffused planar transistors of the 2N718A type manufactured by three different processes was conducted. Each process lot was divided into several sub-lots which were subjected to several levels of stress screening followed by a number of accelerated life tests. The matrix of screens included: High Stress Screen, Moderate Stress Screen, Centrifuge Stress Screen, Burn-In Screen and Control Lot. The stress levels and time durations were selected to produce failures according to four defined failure criteria levels. An analysis of the failures produced was made and a failure mode was assigned.

A test of the electrical parameters listed on the 2N718A specification sheet was the criterion used for selecting the devices stressed on this program. The High Stress Screen consisted of 168 hours of stress at an ambient temperature of $250^{\circ} \mathrm{C}$ with a reverse bias of 30 volts. This was followed by 168 hours of storage at $300^{\circ} \mathrm{C}$ and then $20,000 \mathrm{G}$ centrifuge. The Moderate Stress Screen consisted of 168 hours of stress at an ambient temperature of $200^{\circ} \mathrm{C}$ with a reverse bias of 30 volts, followed by 168 hours of storage at $200^{\circ} \mathrm{C}$ and then $20,000 \mathrm{G}$ centrifuge. A Centrifuge Screen was also used which consisted of a single $20,000 \mathrm{G}$ centrifuge stress. A Control Lot was formed which was not screened with any of the above screens.

Following these stresses, the sub-lots were further divided and placed on a 3,000 hour life test at several levels. The operating life test levels were 800 mW at T_{A} of $25^{\circ} \mathrm{C}, 700 \mathrm{~mW}$ at T_{A} of $25^{\circ} \mathrm{C}, 500 \mathrm{~mW}$ at T_{A} of $25^{\circ} \mathrm{C}, 400 \mathrm{~mW}$ at T_{A} of $150^{\circ} \mathrm{C}$ and 200 mW at T_{A} of $150^{\circ} \mathrm{C}$. Data readouts were taken at $0,168,340,680$, 1000, 1500, 2000 and 3000 hours.

The four defined failure criteria levels are listed in the definitions and symbols and correspond to devices which pass the specification limit, end of life limit, catastrophic limit and that are beyond the catastrophic limit.

The failures that were produced were examined in sufficient detail to determine whether they were a function of material, process or design. The dominant failure mode found in all three processes was surface inversion. Devices from all the processes were subject to an increase in $I_{C B O}$ when they were placed on a reverse voltage and temperature stress. The devices from Process B withstood this stress better than devices from the other processes indicating that the guard ring was stopping the inversion layer in the collector region. Devices from Process C also suffered from microcracks indicating that the process of bonding leads to the pellet had not been optimized and was not in good enough control to prevent strains during bonding. Detailed Failure Analysis Reports are included for other less dominant failure modes for suggested process improvements.

The large amount of data from the matrix test plan was assembled and summarized in a series of tables and figures. The tables permit a direct comparison of the several processes for response to stress, parameter distribution and distribution shifts with stress time as well as other significant functions. Analysis based on the test
results of this program indicate the advantages of a stress screen for reliability improvement of these devices. A recommended stress screen is given in this report. Comparisons of the failure rates obtained on operating life tests for about three thousand hours of test time are also shown. Several distribution graphs are included to how the tability of the primary parameters $I_{\text {cso }}$ and $h_{\text {Hill }}$ of the population of devices under several levels of operating power.

A. REVIEW OF PROGRAM

This program consisted of a detailed study for determining the reiiability of a total of 1,500 diffused planar transistors of the 2NTIBA type, manufactured by three different processes. A review of the electrical specification for the transistor type, phptographs of the internal construction of the three devices, and details of the differences of the devices are in Section VI of this report. Tests were designed to determine modes of failure, process capabilities and to investigate stress screening techniques for detecting the presence of each mode of failure. Each process lot was divided into several sub lots which were then subjected to a testing matrix.

As an initial step in the program all of the devices were tested for hermetic seal by using the Radiflo test method. The test was conducted to a sensitivity of 1×10^{-10} standard cc/sec. leak rate. The electrical parameters of all of the devices according to the specification test conditions were also measured. The Noise Figure measurement for each transistor was also taken on the Quan-Tech Noise Figure Analyzer. One Noise Figure measurement is included as a part of the specification, but three more were added to aid in the determination of the applicability of Noise Figure screening as a reliability screen.

The next step involved a determination of the dominant failure mechanisms for devices manufactured by each of the three processes. It was also desired to determine the stresses to which each process would respond most readily. The population of units was sampled and placed in a step-stress matrix. The stresses involved temperature only, temperature and reverse voltage, power, centrifuge and shock and vibration. The initial step-stress matrix was continued at levels high enough to produce failures in the devices.

Mne detailed anaiysis of the failures produced in the step-stress matrix was included in a previous Quarterly Report. It was determined that Process A units had surface related faidures as tre most dominant railure mechanism. There were also a few instances or filure due to goin in the bace lat migrating and alioying into the pellet go that tie coilector was shorted to the base. The Process B units also had surface reisted failures and were found to have lead separation from the post \because the header as the dominant failure mechanism. Many of these leads appeared to be almost cut through due to the bonding pressure when the lead was applied. There were also two inubinces of the pellet separating from the header. The Process C units showed bulk degradation as the most dominant failure mechanism. When enaiyzed most of these units showed micro-cracks under the lead bond connections. This may have been due to excessive lead bonding pressure. The Process C units also had failure mechanisms related to surface degradation.

From an analysis of the data, three screening stresses were then derived. A High Stress Screen consisted of 168 hours of stress at an ambient temperature of $250^{\circ} \mathrm{C}$ with a reverse bias of 30 Volts. This was followed by 168 hours of storage at $300^{\circ} \mathrm{C}$, which was then followed by a $20,000 G$ centrifuge stress. A Moderate Stress Screen was designed which consisted of 168 hours of stress at an ambient temperature of $200^{\circ} \mathrm{C}$ with a reverse bias of 30 Volts, followed by 268 hours of storage at $200^{\circ} \mathrm{C}$ and then a $20,000 \mathrm{G}$ centrifuge stress. A Centrifuge Screen was also used which consisted of a single $20,000 \mathrm{G}$ centrifuge stress. A Control Lot was formed which was not screened with any of the above stress screens.

The units which had not been used on the step-stress matrix were then divided into four parts. Each of these parts was placed on one of five levels of a 3,000 hour life test. The life test levels were 800 milliwatts at an ambient temperature (T_{A}) of $25^{\circ} \mathrm{C}$, 100 milliwatts at a T_{A} of $25^{\circ} \mathrm{C}$, 500 milliwatts at a T_{A} of $25^{\circ} \mathrm{C}$, 400 milliwatts at a T_{A} of $150^{\circ} \mathrm{C}$ and 200 milliwatts at T_{A} of $150^{\circ} \mathrm{C}$. Data were read out on critical parameters at $0,168,340,680,1,000$,

2,500, 2,000 and 3,000 hours. Four failure response categories were derived so that the electrically defined failures could be located at each readout time in the life test. Ir generai, the units were rot actuaily ret:oved from life test, but were left on test to determine in further ciegradation occurred. These failure response categories are Leientified as $1,2,3$ and 4 and correspond to units that met the ginal specifications, units that would have met normal high re: ability end-of-life requirements, units that met catastrophic limits, and units that shifted beyond catastrophic limits. Thus, each response category identified a further degree of siift of the critical parameters.

This form of the test matrix resulted in 20 individual test cells for each of the processes. Since less tian 500 units of each type were available, the total number of devices in each life test cell was necessarily reduced to a small number. This meant that the overall statistical confidence that could be placed in the results of any one of the life test cells was comparatively low. However, the trend of the response to the life test could be determined and when the data from the cells were suitably combined, reasonably confident estimates could be made of the response of each of the three processes.

The failures that were produced were examined in sufficient detail to determine whether the failure was a function of material, process, or design. The data accumulated from the matrix test plan was assembled and summarized in a series of tables and figures. The tables follow the text of this report and are reviewed in detail in the appropriate sections of the report. In general, the organization is such that each of the three processes may be compared for the same life test cell.

When the life tests were all completed the survivors were run through another centrifuge stress test. This gave information about any apparent hardening of the bonds, however, it also masked some 6
of the results that might have been found from failure analysis, since some of the units were catastrophically destroyed in this second centrifuge stress.
B. TEST RESJLTS

1. General. Table 1 shows the calculated failure rates for all of tis life test conditions and for the various stress screens. The several life test conditions were also summarized to show an overall failure rate following a stress screen and a life test.

The failure rate calculations are ali based on the poisson distribution with a consequent assumption of a constant failure rate in time. The calculations were all made for 350% confiaence level. It should be pointed out that only trends may be derived from this information since some of the total unit hours of test were quite small. The Poisson distribution type of calculation is supposed to be independent of the number of test hours or the number of units involved. However, it is known that semiconductor devices are subject to certain random failures, and this type of failure mode reduces confidence in some of the life test results. It is certain that this accounts for some of the high failure rates which appear in the table. It is anticipated that these failure rates would not be as high if a larger sample size were usea.

Tables 2 through 5 show the number of units submitted to the several screens, the number that fell out according to each response category during the screen, and the number of devices that failed in each of the response categories during the life test.

Tables 6 through 10 show the results of the centrifuge stress test that followed the life test. Again, the tables are organized according to the process and the life test conditions showing the number of units submitted to the centrifuge test and the number that failed after 20,000 G's and 150,000 G's.

It was decided to assess the effect of considering the first 168 hours of each life test as an additional burn-in screen. Therefore, the number of units that failed during the burn-in period is also included in Tables 2 through 5. The second failure rate calculation in Tabie 1 shows the reduction in the failure rate that would be observed if the failed units had been removed at the end of the 168 hours of burn-in.
2. Failure Rates. The failure rates colculated and shown in Table 1 are based on the data which is contained in Tables 2, 3, 4 and 5. For example, Table 2 contains the number of units and the number of failures that occurred on the 3,000 hour iife test. These units had previousiy"been subjected to the High Stress Screen. Process A units were divided in the five life test conditions as shown in Table 2. Under the 200 milliwatt life test condition, 28 units were submitted to the High Stress Screen. At the end of the screen, 6 of these units were rejected. Thus, 22 units were started on the 3,000 hour life test. At the end of 168 hours of burn-in, one unit was detected as a failure. At the end of the 3,000 hour life test one additional failure was found. A total of 66,000 unit test hours were accumulated. With the two failures, the expected failure rate calculated was 4.7% per 1,000 hours at a 60% confidence level. This is the first failure rate (FRI). When using the burn-in as a screen, one failure would have been removed from the lot before the life test. Therefore, only one failure would have occurred during the life test. However, the total number of test hours must also be reduced to $21 \mathrm{X}(3000-168)$ or 59,472 unit hours. Using the one failure produced, the second expected failure rate (FR2) would be 3.4% per 1,000 hours at the 60% confidence level. This procedure was repeated for each of the other processes and life test cells and for each of the stress screens. In several of the cells the burn-in screen would not have eliminated any units and thus the two failure rates are the same.
a. Figh Stress Screen. The High Stress Screen was
darasing for Process B and C Units, since the life test results show higher failure rates for units that survive the screen than for those which were not subjected to the screen. The Process A units which survived the screen snowed a slight reduction in failure rate but When the data associated with the stress screen responses were analyzed, it was seen that the Process A units showed more significent movements When sunjected to the High Stress Screen than for the other screens. Therefore, it was concluded that the High Stress Screen actually resulted in destructive degradation of the units. The table below shows the summary of results of the High Stress Screen. The tabulation was obtained by adding together the unit hours and the number of failures for each of the life test conditions.

LIFE TEST FAILURES AFTER HIGH STRESS SCREEN

	Process A	Process B	Process C
Test, K-hours	375	360	24
Total Failures	11	42	5
Failure Rate 1	3.3	12	26
Test, K-hours	368	278	17.5
Post Burn-in Failures	10	20	4
Failure Rate 2	3.1	7.8	30

b. Moderate Stress Screen. The Moderate Stress Screen appeared to be quite successful in reducing the failure rate observed for Process A and Process B devices. In most of the life test matrix cells a substantial reduction in the failure rate was observed.

For the Process C units, the moderate stress screen did not show the same precise pattern. On the two higher power life test conditions, a reduction was observed in the failure rate of those units which survived the screen compared to those units which were not subjected to the screen. However, the other life test condibions showeu that the screen actually appeared to increase the failure rate; thus, indicating
some potential damage to the units. When the response pattern of the devices which were subjected to the screen (Table 3) is compared to the recponse pattern of the devices which were not screened (Table 5) it is seen that approximately the same failure pattern occurs. Thus, it seems reasonable to conclude that Process C devices will have a certain number of failures on these kinds of life tests and that these failures will occur in screened or non-screened devices.

The general response pattern, and the apparent lack of damage leads to the conclusion that the Moderate Stress Screen could be used on these devices without degrading them. The following table provides a summary of the failure rates for the Moderate Stress Screen:

LIFE TEST FAILURES AFTER MODERATE STRESS SCREEN

	Process A	Process B	Process C
Test, K-hours	486	438	321
Total Failures	7	19	33
Failure Rate 1	1.7	4.7	11
	481	395	271
Test, K-hours	6	10	22
Post Burn-in Failures	1.5	2.9	8.8
Failure Rate 2			

c. Centrifuge Screen. The Centrifuge Screen did not appear to have any significant effect upon Process A Transistors. The failure rate observed was slightly reduced in some of the life test cells, but was also slightly increased in the 200 milliwatt cell. It is not felt that much significance can be placed on these results because of the small magnitudes.

For the Process B transistors, the Centrifuge Screen appears to be destinctive for all but two of the life test cells. For the 500 milliwatt and 400 milliwatt life test cells a reduction in the observed failure rate is seen when centrifuge screening is used.

For Process C transistors the Centrifuge Screen seemed to be destructive for all life test cells except at the 700 milliwatt level, which showed a reduction in the failure rate over the devices in the control lot. These resuits will de discussed more thoroughly in the next section of this report. The following table provides a summary of the life test results for the Centrifuge Screen:

IIFE TEST FAILURES AFTER CENTRIFUGE SCREEN

	Process A	Process B	Process C
Test, K-hours	255	240	273
Total Failures	8	20	29
Failure Rate 1	3.7	9.0	11
Test, K-hours	255	194	205
Post Burn-in Failures	8	9	13
Failure Rate 2	3.7	5.4	7.1

d. Control Lot. The units which were not subjected to any stress screen were regarded as the Control Lot for the matrix of life test cells. The failure rates are shown in a similar manner as for the other stress screen devices. The data in Table 5 indicated that a substantial number of units for Process C transistors failed when they were screened to the initial specification parameters. Of the failures that were found in this electrical parameter screening test, approximately half exceeded the maximum limit for $I_{C B O}$ and the other half exceeded the maximum limit for $h_{F E}$. The $h_{F E}$ failures were probably due to instrumentation differences. The $I_{C B O}$ failures could well have been due to the storage time between the manufacturer's
initial screening and the time of the program screen. There was a slight tendency observed for the $I_{\text {CBO }}$ to increase on some units during the time of storage for the Process C devices. The observed failure rates are sumarized for the control Lot devices below:

LIFE TEST RESULTS - CONTROL LOT

	Process A	Process B	Process C
Test, K-hours	234	213	
Total Failures	8	14	306
Failure Rate 1	4.0	6.6	32
Test, K-hours	228	202	11
Post Burn-in Failures	7	8	227
Failure Rate 2	3.7	4.6	5.6

e. Burn-in. The use of the first 168 hours of life test as an additional burn-in screen has been discussed previously. When the failure rate data was analyzed, it was found that burn-in had almost no effect on the devices made by Process A. For the Process B devices, the failure rates observed could be reduced by using the first 168 hours of the life test as an additional screen in almost all cases. This indicated that the movement of the distribution of the parameters which had been started by the stress screen was not complete and that the first 168 hours of life test could be used to screen out units that changed. The Process C devices also showed a reduction in the observed failure rate by using the first 168 hours of life test as an additional screen.
3. Centrifuge Failures After Life Test. After the completion of the life tests, all of the surviving devices were subjected to a two level centrifuge test. The test was designed to stress units in the Y_{1} axis, the axis which would tend to pull the lead bond away from the
pelles. The devices were first stressed at $20,000 \mathrm{G}$ and then were stressed at 150,000G. After each stress, the devices were measured and considered to have failed if they exhibited an electrical open following the test. Tables 6 through 9 contain the data for all stresses combined, as well as the summary of the combined life test results: It was felt that this type of test following the 3,000 ncur life test would reveal any tendency of devices from the several prosesses to show the formation of intermetallic compounds, generally cailed purpie plague. The junction temperatures of the devices. were high enough in several of the life tests so that $2 r y$ tenoency to produce the intermetallic compounds should have occurred on the iife tests. The results in the centrifuge tables do not show any sucin pattern of failure. Some of the devices do indeed fail, however, others survive even the $150,000 \mathrm{G}$ centrifuge test quite successfully. The Centrifuge Screen before the life test was not effective in removing devices which failed centrifuge following the life test.

There was no observable basic difference in the performance of devices made by the three processes when subjected to this kind of test. Approximately 90% of the devices for any of the three processes were capable of surviving a $20,000 G$ centrifuge test after a 3,000 hour life test. When the stress was raised to 150,000 's, approximately half of the units were still able to survive.

C. RECOMMENDED SCREENS

1. General. The purpose of any screen is to remove those devices which may fail at some point in time. It is also required that the devices that pass the screen are not degraded. A recommended screen is not normally developed by a direct comparison of arbitrarily defined failure rates observed on some set of life tests. It is more important to observe the general population response trends to the screen and to factor in the results of failure
analysis so that it may be determined whether or not the occurrence of a failure mechanism has been reduced by the proposed screening procedure. The recommended screening procedures developed are based upon an analysis of the failures produced and the population response trends noted in the appropriate tables and graphs in this report.
2. Process A. The High Stress Screen results showed a reduction in the failure rate for Process A devices; however, when the observed population shifts were examined, it was found that this screen produced the largest amount of shift. It was therefore, concluded, that the High Stress Screen was moderately damaging to Process A devices. The Moderate Stress Screen resulted in a reduction of the failure rate. The Centrifuge Stress Screen showed little real effect on the failure rate. It did not seem to be damaging to the units. It was also found that the burn-in test following the stress screen resulted in a small reduction of the failure rate.
3. Process B. The High Stress Screen was found to be definitely damaging for Process B devices. The Moderate Stress Screen resulted in a reduction in the failure rate with no apparent damage. The Centrifuge Screen showed an apparent decrease in the failure rate for the 400 and 500 milliwatt life tests, but this reduction was small and the population shift data indicated that the test should be considered at least moderately destructive for these devices. The use of an additional 168 hours of the life test as a burn-in following the stress screening resulted in a reduction of the failure rate for these devices.
4. Process C. Once again, the High Stress Screen proved to be damaging for the devices subjected to it. The Moderate Stress Screen resulted in a somewhat indeterminate answer since the failure rate was improved for some of the test cells and was not significantly improved for others. When the population response pattern was analyzed, it appeared that this screen would result in general improvement in the performance of devices during a life test. The Centrifuge Screen
appeared to be destructive in all cases. Once again, adding 168 hours of burn-in following the stress screen resulted in a reduction of the observed failure rate.
5. All Processes Combined. When the observed life test failures and the observed response of the population parameters were examined in combination, the test data indicated that the Moderate Stress Screen was successful in reducing the potential failure rate of the devices surviving the screen. It was successful for all of the processes to some degree and did not appear to induce any failures. The performance of the lot subjected to this screen may be further improved by operating the devices for 168 hours as an additional burn-in. Therefore, the most effective screen found in the test program for devices made by these three processes was:
a) Reverse bias of 30 volts at an ambient temperature of $200^{\circ} \mathrm{C}$ for 168 hours.
b) Storage at $200^{\circ} \mathrm{C}$ for 168 hours.
c) Centrifuge stress at 20,000 G's $^{\prime}$ in Y_{1} plane.
d) Operating life tests at rated power to obtain the maximum device junction temperature for 168 hours.

Since the devices showed evidence of channel formation and then cure, it is felt that the recommended stress screen above can be improved. The information obtained from many other physics of failure studies also tends to support this argument. It should also be noted that centrifuge testing, particularly as a 100% screen, is a slow and comparatively expensive process. Centrifuge screening tends to be relatively inefficient unless there is a manufacturing defect in the devices. Centrifuge stressing should be done as a sample test to prove the device performance and not be used as a screening test on this type of small geometry pellet.

When ail of the Failure Analysis data were examined, the dominant failure mechanism for all three processes was surface related deeradation. This was often evidenced by the formation of surface channels. The screening technique should include some test for the icientification and removal of devices which exhibit channeling. Such a test would require stressing the units for a period of 168 hours at an ambient temperature of $200^{\circ} \mathrm{C}$ with a reverse bias of 30 volts. At the end of this time period, the heater in the oven should be turned off, but the voltage stress should be left on the units until they have cooled to room temperature. This procedure will assure that any channels that have been formed will remain. The units should be read out for the leakage current, at the rated voltage, and those showing any significant shift should be screened from the lot. The specification limit for the collector cutoff current, $I_{\text {CBO }}$, is 10 nanoamperes at a collector to base voltage of 60 volts. The recommended screening limit should be based on the individual device shift in leakage current. A recommended limit is to allow an increase in leakage current of 5 to 10 times the initial reading. This leakage current measurement must be made within a maximum period of 12 hours after the devices have been cooled to room temperature.

It could be possible to apply the truncation screening technique discussed in Section II.G. to an inspection lot. Truncation screening is most applicable to parameter distributions which are highly tailed or which exhibit a definite bi-modal distribution. The technique is difficult to specify since it is dependent on the shape of the parameter distributions rather than the parameter values. The dependence of truncation screening on the distribution shape means that individual data must be taken and the distribution characteristics must be determined. The resultant characteristic must be analyzed and a decision made to determine the truncation point. All of these steps add cost to the devices and the lot processing could become very
expensive, particularly if the lot contains a large number of devices.

If it was determined that a pattern existed which was susceptible to truncation screening, and if this pattern was representative of the production, then it might be possible to translate the truncation point into a specification limit. The truncation point would be a function $c i$ the manufacturing process and would almost certainly be aifferent for each process, which would make it difficult to apply.

Therefore, a practical and efficient screening procedure would include the following steps:
(a) Serialize, or otherwise identify the devices, and measure $I_{C B O}$.
(b) Stress the devices for 168 hours at an ambient temperature of $200^{\circ} \mathrm{C}$ with a reverse bias of 30 volts. Allow the devices to return to rom temperature leaving the reverse bias on.
(c) Measure $I_{C B O}$ and reject all devices which show an increase greater than 10 times the initial reading. This measurement must be completed within 12 hours after the time the devices have cooled to room temperature.
(d) Place the devices on an operating life test for 168 hours. The life test conditions should assure that the junction temperature is close to the maximum rating.
(e) Measure the devices, reject and remove any devices which exceed the specification limits.
(f) The lot may now be tested in accordance with normal lot inspection and acceptance procedures.

SECIION II - STRESS SCREEN RESULTS

A. INTRODUCTION

This section discusses the response of the devices to the several screens used before the life tests were started. The data associated with this section eppear in Tables 11 through and including 61. The tables were organized to show comparisons of the three processes for a given parameter for each step of the various screens. Comparisons are shown of the stability of the population of devices as each step of the stress screen was performed.

$\frac{\text { Tables }}{}$	$\frac{1}{\text { Subject }}$
$11-24$	High Stress Screen
$25-37$	Moderate Stress Screen
$38-51$	Centrifuge Screen
$52-61$	Control Lot

The tables are arranged so that information is shown in the order of Process A, B, and C for the following order of parameters $I_{C B O}, h_{\text {FE' }}$ BV $_{\text {CEO' }} I_{E B O}, V_{C E}$ (sat), and $V_{B E}$ (sat) . The values of $I_{C B O}$ and $h_{\text {FE }}$ are shown for the processes in all screens. The other electrical parameters are shown only for Process B and C. This format was chosen based on the results of the initial evaluation, which indicated that some parameter movement might be seen in the tests in these combinations.

Each of the tables shows the process involved, the screen, the parameters, the details of the stress, and a graph of the percentile shift at the end of each step in the screen, as well as a set of tabulated values for these shifts.

B. HIGH STRESS SCREEN

The High Stress Screen consisted of three steps. The first step subjected the units to a reverse bias of 30 volts for a period of 168 hours at an ambient temperature of $250^{\circ} \mathrm{C}$. The second step subjected the units to a 168 hour bake at $300^{\circ} \mathrm{C}$. The inal step subjected the units to a $25,000 \mathrm{G}$ centrifuge test in the Y_{1} plane.

1. Process A. The $I_{\text {CBO }}$ response of the Process A units to the High Stress Screen is shown in Table II. Examination of the graph shows that Process A units increased in leakage current significantly after the first portion of the stress, recovered to essentially initial values after the bake portion and then increased slightly after the centrifuge test. The device response followed the pattern that would be expected for units that exhibited a surface inversion type of failure mechanism.

The $h_{\text {FE }}$ shift, in Table 14, supports this analysis. The $h_{\text {FE }}$ was measured at a relatively high collector current and, hence, would not reflect small changes in $I_{C B O}$.
2. Process B. The $I_{C B O}$ shift (Table 12) and the $h_{F E}$ shift (Table 15) again indicated surface inversion as the dominant failure mechanism. The $\mathrm{BV}_{\mathrm{CEO}}$ (Table 17), $\mathrm{I}_{\text {EBO }}$ (Table 19), and the saturation voltage data (Tables 21, 23) all tended to confirm the assignment of a surface inversion failure mechanism. It should be noted that the Process B units showed the response pattern to a lesser degree than the Process A units.
3. Process C. The Process C units showed a steadily increasing leakage current (Table 13) as a result of the several
stress steps. The leakage current increased so rapidly after the second stress that the screening was discontinued at that point since it was not desired to destroy all of the units. The Process C units appeared to be increasing in leakage current with stress because of the presence of microcracks under the lead bonds. The presence of these cracks is discussed in more detail in the failure analysis section of the report.

The failure mechanisms for Process C units seemed to be a combination of surface inversion and microcracks. This was confirmed by the shift in $I_{C B O}$ shown in Table $13, \mathrm{~h}_{\mathrm{FE}}$ in Table $16, \mathrm{BV}_{\mathrm{CEO}}$ in Table 18, $\mathrm{I}_{\text {EBO }}$ in Table 20, $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ in Table 22 and $\mathrm{V}_{\mathrm{BE} \text { (sat) }}$ in Table 24.
4. All Processes Combined. The High Stress Screen showed the presence of surface inversion for all three processes, and microcracks for Process C. The $I_{\text {CBO }}$ response was the most significant. When the data was analyzed in detail, it was seen that the screen degraded the devices. This analysis was generally confirmed when the failure rates were calculated for the devices after they had been on life test.

C. MODERATE STRESS SCREEN

Like the High Stress Screen, the Moderate Stress Screen was composed of three steps. The first step subjected the units to a reverse bias of 30 volts for 168 hours at an ambient temperature of $200^{\circ} \mathrm{C}$. The second step was a high temperature bake for 168 hours at $200^{\circ} \mathrm{C}$. The last step was a $25,000 \mathrm{G}$ centrifuge stress in the Y_{1} plane.

1. Process A. The $I_{C B O}$ distribution shift for the Process A units is shown in Table 25. As in the High Stress Screen, the
population shifted upward after the reverse bias and temperature stress, recovered during the bake stress and then increased slightly following the centrifuge stress. The device response was again typical of the pattern expected for a surface inversion failure mechanism.

The $h_{\text {FE }}$ shift (Table 28) supports this analysis. Again, the measurement was performed at a relatively high collector current and did not reflect smali changes in $I_{C B O}$.
2. Process B. The previous response pattern was again repeated. The $I_{C B O}$ (Table 26), h_{FE} (Table 29), $\mathrm{BV}_{\mathrm{CEO}}$ (Table 3I), and saturation voltages (Tables 34 and 36) data all reinforced the conclusion that the dominant failure mechanism was related to surface inversion. For this screen, the response was approximately equal to the response of the Process A units.
3. Process C. The $I_{\text {CBO }}$ response for the Process C units (Table 27) showed a definite pattern of shift and cure for the Moderate Stress Screen. The pattern was still typical of a surface inversion. However, the Process C units were not subjected to the Centrifuge Stress since 16% of the units were removed after the bake and it was not desired to risk losing more units in this third step of the Moderate Stress Screen. The $h_{\text {FE }}$ distribution (Table 30) did not change significantly throughout the several steps of the stress screen.

The $\mathrm{BV}_{\text {CEO }}$ response to the Moderate Stress Screen is shown in Table 32. The significant change was in the lower 10% of the distribution, which showed a rather large decrease in $\mathrm{BV}_{\text {CEO }}$ following the first stress. However, these units generally recovered during the second stress. This represented another confirmation of surface
inversion. The $I_{\text {EBO }}$ distribution (Table 33), the $V_{C E(s a t)}$ distribution (Table 35) and the $\mathrm{V}_{\mathrm{BE} \text { (sat) }}$ distribution (Table 37) showed shifts following the stresses which continued to support surface inversion as the dominant failure mechanism.
4. All Processes Combined. As in the High Stress Screen, the Moderate Stress Screen showed the presence of surface inversion for all three processes. There was also a possibility of microcracks being present in the Process C devices. The most significant response was seen in $I_{\text {CBO }}$ again. The screen did not appear to have damaged the devices and this analysis was generally confirmed by the life test results.

D. CENTIRIFUGE SCREFR

The Centrifuge Screen consisted of one single step in which the devices were subjected to a $25,000 \mathrm{G}$ centrifuge stress in the Y_{1} plane:

The $I_{\text {CBO }}$ response to the stress is shown in Tables 38,39 , and 40. In each case the value increased after the stress, but this increase was in the order of a nanoampere and, hence, is not regarded as being significant.

The $h_{F E}$ distributions shown in Tables 41, 42, and 43 also showed some small movement of the population. The total movement was not significantly above normal measurement accuracy and was regarded as insignificant.

The distribution of $\mathrm{BV}_{\text {CEO }}$ in Tables 44 , and $45, \mathrm{I}_{\text {EBO }}$ in Tables 46 and $47, \mathrm{~V}_{\mathrm{CE}(\text { sat })}$ in Tables 48 and 49 , and $\mathrm{V}_{\mathrm{BE} \text { (sat) }}$ in Tables 50 and 51 , all showed very slight population movement after the centrifuge stress. The movement was small, and there was no significant pattern. Some evidence was noted that the devices
responded differently after being subjected to a life test. Thus, in comparison with the Control Lot, some degradation was introduced, but the degree and the precise degradation was difficuit to assess from the sample sizes available.
E. CONTROL LOT

The Control Lot was held in an unscreened condition. It was read three times corresponding approximately to the reading times that were used for the devices being subjected to the other screens. Thus, there was an initial reading, a second reading approximately seven weeks later and a third reading approximately ten weeks after the initial reading. It was expected that no significant distribution shifts would show during this time span since the devices were stored at a room temperature ambient.

The $I_{\text {CBO }}$ distribution shown in Tables 52, 53, and 54 indicated shifts but these were generally less than one nanoampere and are insignificant.

The $h_{\text {FE }}$ distributions are shown in Tables 55, 56, and 57. Once again some small amount of shift seemed to be taking place, but the magnitude was not significant.

The other parameters were read out only for the Process C devices. Since rejects had been found in this lot during the initial testing, it was decided to check to determine if any shift was taking place. The $\mathrm{BV}_{\text {CEO }}$ in Table 58, the $\mathrm{I}_{\text {EBO }}$ in Table 59, the $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ in Table 60 and $\mathrm{V}_{\mathrm{BE} \text { (sat) }}$ in Table 61 did not show any significant amount of change through the ten week period.
F. STRESS SCREEAN YIELDS

An assessment was made of the number of devices that could have
been screened out oy applying the various stress screens. The data in Table 86 shows the number of devices that were started into the screen and the number that were rejected accoraing to the various response categories after the screen. It will be noted, that some of the devices that could have been rejected by the screen were placed on life tests. This was done to determine whether or not these devices would continue to shift throughout the life test.

G. TRUNCATION SCREEN

Truncation screening has been discussed in Quarterly Reports \#2, \#3, and \#4 and in the report Non-Destructive Reliabiility Screening of Electronic Parts, reference 19, pp. 4-29.

One form of truncation screening employs a "pulled-in" limit rather than the usual specification limit. Thus, initial limits would be selected so that units outside a normal distribution pattern would be removed from the lot by means of the initial screening. This form of reliability screening has many desirable characteristics if techniques can be developed for its application. Some of the complications of truncation screening, as applied to noise measurements, are shown in Section V of this report.

If the same reasoning is applied to units which failed during a test, an evaluation of the effects of truncation screening can be provided. In the evaluation process, application of the initial limits plus a 25% shift limit was used to truncate the distribution after the various steps of the stress.

It may also be hypothesized that any out of normal condition within a device will cause one or more of the parameters to have a bi-modal distribution. When this correlation is established,
elimination of the upper (or lower) percentiles of the distribution can remove one part of the bi-modal distribution and would be expectea to result in performance improvement on life test.

This study uses the term truncation screening to apply to the removal of units in the outer limits of the aistrioution rather than units in the outer limits of the 2N718A specification values. The essentiai difference can be illustrated by reference to $V_{C E(s a t)}{ }^{*}$ The $2 N 718 A$ specification gives a iimit of i. 5 voits. The full distribution of all three processes was enciosed in the range of 85 to 450 millivolts with Process A rañing Irom 150 to 409 millivolts and Processes B and C ranging from 80 to 265 millivolts. The use of 1.5 volts as a test limit for screening is not useful since all devices would have easily met this limit.

This means that a particular lot of devices could have a distribution which was generally quite narrow and also have one or two devices that were significantly separated from the rest of the distribution. All of these devices could meet the specification limit. In general, the devices separated from the balance of the distribution would be regarded as unusual, and truncation could screen out these devices. This technique is applicable to the lot being examined at any one time.

Normal lot-to-lot variations of a single process can cause a small shift in the distribution due to small variations in diffusion time or temperature, resistivity of the original crystal, or many other reasons which have no relation to reliability.

The units listed in Table 88 passed the Moderate Stress Screen and then failed on life test. The tabulated values are the percentiles of the parameter distribution of the devices. The table can be used to estimate the reduction in the total lot that would
result from screening out more of these failures. For example, if it had been decided to screen out the upper and lower ten percent of devices for each of the parameters listed, fifteen out of nineteen of the devices would have been screened out.

An assessment, was made of the capability of using a Truncation Screen as a substitute for stress screening. Table 89 was prepared similar to Table 88 to demonstrate this technique. The table shows that all o. the units which later failed the $T_{\text {EBO }}$ limits could have been screened out initially by screening out the upper ten percent of the distribution. If this had been done, all of the $I_{\text {CBO }}$ failures would also have been removed. The high frequency noise test could also have been effective. However, the unitis that co.ld have been removed by a Noise Figure screen could also have been removed more easily and economically by the $I_{\text {EBO }}$ screen.

The results of applying truncation screening to all failures believed to be free from damage due to stress screen or life test power levels are shown in Table 90. All three processes show evidence of damage at the 500 milliwatt levels due to the transient triggered thermal runaway condition. The 500 milliwatt life test circuits did not have the diode protection against transients and thermal runaway which is normally used in life tests. All three processes also showed evidence of damage due to the High Stress Screen. In addition, Process C devices showed evidence of damage due to high temperatures on life test. When the data was analyzed in detail, it was found that screening out the upper and lower 3% of the h_{FE} distribution would have removed 15% of the later failures at a cost of 6% of the units in the lot.

Successive truncation of this lot could detect 37% of all the
failures. The truncation screening would be performed at the following points:

$\mathrm{I}_{\text {EBO }}$	© 97th percentile	3 units eliminated
${ }^{\text {BV }} \mathrm{CEO}$	(8) 95th percentile	5 units eliminated
h_{FE}	(8) 95th percentile	4 units eliminated
h_{FE}	© 5th percentile	3 units eliminatẹd
$\mathrm{v}_{\text {CE (sat) }}$	@ 95th percentile	4 units eliminated
		19 units or 37\% of

If the percentages are multiplied, a yield of 79% s indicated. However, some duplication of failures does exist and the actual screening yield would be closer to 90%. This means that 19 of 51 failures could be eliminated by screening out about 58 of 578 units. The screen would be expensive since about 39 good units would be screened out to remove the 19 units which failed.

Table 91 summarizes the results that could be obtained by truncation screening for h_{FE} and several noise parameters. Screening at the 95th percentile of the $h_{\text {FE }}$ distribution would be very effective for Process A units, effective for Process B units and ineffective for Process C units. Screening to the 5th percentile of the $h_{\text {FE }}$ distribution would be effective for Process A and C. Other individual and combined screens can be assessed in a similar fashion.

Devices which had been placed on the 500 milliwatt life test, or the High Stress Screen, did not have the same response to truncation screening. That is, devices stressed in the tests that
were damaging responded differently to truncation screening than the devices stressed in non-damaging tests. When the data were analyzed, it was found that there was little difference between the failed units and the entire population. If the upper and lower 15th percentiles of the $I_{C B O}$ distribution for the Control Lot were screened, no significant results would be produced. There is some evidence that successive truncation could be effective but the main conclusion drawn is that a separate failure mode was induced in the damaging tests which reduced the effectiveness of the Truncation Screen.

From the foregoing analysis, it may be seen that the application of truncation screening is limited. Comparatively elaborate data analysis techniques must be employed, and the resultant parameter characteristics must be shown to be bi-modal or highly tailed. In addition, the Truncation Screen would have to be separately established for each manufacturing process to achieve maximum effectiveness. The last requirement would result in a cumbersome and confusing specification. It is concluded, therefore, that the potential advantages of truncation screening are overcome by the disadvantages. It is felt that any attempt to make use of general truncation techniques would result in inefficient screens, as well as limited specifications.

A. INTRODUCTION

It was realized that an important factor influercing the results to be obtained on the life tests was the actual junction temperature O_{i}^{2} tine devices under the operating life test conditions. To assess the variation of the junction temperature, measurements were made of the thermal resistance of a sample of the devices which would be put on life tests. The thermal resistance was measured in accordance with standard JEDEC measurement methods. Although the thermal resistance of the samples was found to vary, the range was amall. In fact, there was a small enough variation to make the assumption that ail of the devices would be operating at about the same junction temperature under the same stress conditions.

The life test tables and graphs show parameter response data for $I_{\text {CBO }}$ and $h_{F E}$ for each stress screen and process. The High Stress Screen life test data are shown first, followed by the data for the Moderate Stress Screen, the Centrifuge Stress Screen and the Control Lot. For each screen, the $I_{C B O}$ data for each life test measurement are presented first and are followed by a graph of these responses. The $h_{F E}$ data and graph are next. With this organization, the parameter response to one of the screens and life tests can be readily compared for the three manufacturing processes.

As discussed in Section I, the statistical confidence that could be placed in the results of any one of the life test cells was comparatively low. The trend of the response to the life test could be determined, and reasonably confident estimates could be made of the response of each of the three processes, when the data from the cells were suitably combined.

The failures that were produced were examined in sufficient detail
to determine whether the failure was a function of material, process, or design. However, when the life tests were ali compieted, the survivors were subjected to another centrifuge test. Information was obtained about any apparent hardening of the bonds but the failed units were catastrophically destroyed. Thus, some of the results that might have been found from failure analysis were masked. The failure analy sis procedures and some representative, detailed failure analysis reports are contained in Section IV of this report.

The life tests for this program were 3000 hours ir bength at the following conditions:

$$
\begin{aligned}
& \text { 1. } \text { Power }=800 \mathrm{~mW}, \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \text { 2. } \text { Power }=700 \mathrm{~mW}, \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \text { 3. } \text { Power }=500 \mathrm{~mW}, \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \text { 4. } \text { Power }=400 \mathrm{~mW}, \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C} \\
& \text { 5. } \text { Power }=200 \mathrm{~mW}, \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}
\end{aligned}
$$

B. HIGH STRESS SCREEN

The High Stress Screen consisted of 168 hours of stress at an embient temperature of $250^{\circ} \mathrm{C}$ with a reverse bias of 30 volts. This was followed by 168 hours of storage at $300^{\circ} \mathrm{C}$, which was then followed by a $20,000 \mathrm{G}$ centrifuge stress. A portion of the devices from each of the three processes were stressed through this screen, and were then divided into sublots and placed on life test. Devices from Process A and B were placed on each of the five life test conditions. The devices from Process C were represented only in the room temperature life tests since the High Stress Screen had proved damaging, and comparatively few Process C units were subjected to it. Eliminating two of the life test cells was more practical than a further reduction of the number of units in each cell. The life test data 30
and graphs are contained in Tables 62 through 67.
The $I_{C B O}$ distribution for Process A and B devices shifted during the life test in a fashion that indicated surface related, or channeling, failures. The magnitude of the shifts also tended to indicate that the screen had resultea in some degradation of the devices. The Process C urits showed over an order of magnitude greater shifts. The response fettern for Process C tended to confirm the previous analysis which indicated the presence of microcracks and that the High Stress Screen degraded these devices. The $h_{F E}$ distributions remained comparatively stable throughout the life tests, a pattern that was in agreement with the presence of surface inversion as the dcainant failure mechanism.

The estimated failure rates calculated for the devices are shown in Table 1, and have been discussed in detail in Section I.B.

C. MODERATE STRESS SCREEN

The Moderate Stress Screen consisted of 168 hours of stress at an ambient temperature of $200^{\circ} \mathrm{C}$ with a reverse bias of 30 volts, followed by 168 hours of storage at $200^{\circ} \mathrm{C}$ and then a $20,000 \mathrm{G}$ centrifuge stress. Once again, a portion of the devices from each of the three processes were stressed through the screen, and were then divided into sub-lots and placed on life test. The life test data and graphs are contained in Table 68 through 73.

The $I_{\text {CBO }}$ distribution shift for Process A and B devices was less than the shift for the High Stress Screen, but still indicated a surface related failure mechanism. There did not appear to be any destructive degradation of the devices. The Process C units showed significantly less shift than had been shown for the High Stress Screen, but the shift was greater than that for the Process A and B units. Thus, the Process C units still exhibited the presence of microcracks as
well as a surface related failure mechanism. For this set of life tests, the Process B units were the most stable. The $h_{F E}$ distributions again remained comparatively stable throughout the life tests.

The estimated failure rates calculated for the devices are also in Tabie I and have been discussed in Section I.B. The Moderate Stress Screen and life test resulted in lower estimated failure rates than those calculated for the High Stress Screen and life test.

D. CENTRIFUGE SCREEN

The Centrifuge Screen consisted of a single, $20,000 \mathrm{G}$ centrifuge stress. A portion of the devices from each of the three processes were stressed through the screen, and were then divided into sub-lots and placed on life test. The life test data and graphs are contained in Tables 74 through 79.

The $I_{\text {CBO }}$ distribution for all three processes did not show a large shift on life test. The shift pattern indicates that some degradation may have resulted from the screen, but the amount of degradation is difficult to assess from the sample sizes used. The Process C units showed the greatest shift, and the response to the Centrifuge Screen tended to confirm the presence of microcracks. The amount of shift on h_{FE} tended to confirm the analysis.

The estimated failure rates calculated for the units are in Table I, again, and were discussed in Section I.B. The Centrifuge Screen and life test resulted in higher failure rates than those calculated for the Moderate Stress Screen and life test.

E. CONTROL LOT

The Control Lot was held in an unscreened condition. This portion of the devices was measured electrically three times, corresponding to the measurement times of the screened devices. The lot was 32
then divided into sub-lots and placed on life test. The life test data and graphs are contained in Tables 80 through 85.

The $I_{\text {CBO }}$ distribution for all three processes responded in a fashion which indicated the presence of channeling, a surface related failure mechanism. The Process C units continued to show the largest shift. The $\int_{f E}$ distribution generally showed more shift than had been observed for the screened devices, which was in accord with the expected results.

The estimated failure rates, in Table l, were discussed in Section I.B. and were generally higher than those calculated for the Moderate Stress Screen and life test.

F. ALL PROCESSES COMBINED

Throughout the stress screens and life tests, the dominant failure mechanism found in all three processes was related to surface degradation, or channeling. The Process C devices also were found to have microcracks under the lead bonds. The failure rates which were estimated from the life test results were considered to be reasonable when the failure criteria, sample sizes and stress levels of the tests were all considered.

The process strengths that were demonstrated in the program were the good process control evident in the Process A units and the guard ring structure of the Process B units. The potential process improvements would add the guard ring to the Process A and B units and tighten the process control for the Process B and C units.

A. PHYSICAL NATURE OF FAILURE MECHANISMS

1. Type A - Surface Defects. Most failures of this type are attributed to inversion layers or accumulated surface charges on the coilector-base junction. Reverse bias voltages, such as those applied in power dissipation tests, will set up surface fringe fields across the junction similar to those in a parallel plate capacitor. The fringe field can then line up dipole atoms or ions on the dielectric SiO_{2} surface or within the passivation layer so that (-) charges face the collector surface and (+) charges are aligned facing the base.

As the sketch shows, the + charges lined up on the base side of the surface will electrostatically attract electrons from the bulk. The accumulated charge may build up sufficiently at the surface to cause inversion of the " P " material to " N ". A similar effect of opposite polarity can take place on the collector surface. Note that when the inversion layer grows to meet the base ring, a direct path from the collector to the base exists. Under reverse bias, this narrow surface channel effectively becomes thinner and eventually pinches 34
off as the space charge region gets wider with voltage. This effect gives the $I_{C B O}$ characteristic a high saturating type of slope.

Since the mobility of the charges under the electric field will increase with temperature, the Type A failure mechanism is acceleratea when voltage is applied under high temperature conditions.

Units with Type A behavior can usually be completely recovered by heating without bias. The heat apparently serves to redistribute and disperse the aligned charges so that the unit recovers to the original characteristics.

If the oxide condition, or internal ambient, is such that the surface potential under thermal equilibrium conditions is extremely on the " N " side, a device may have low leakage before a high temperature test but will develop a Type A leakage characteristic as charges align to their equilibrium " N " condition under high temperature. In this case, both the base and collector surface potentials will have shifted toward " N ". Thus, an " N " inversion on the base and an N+ accumulation on the collector will lead to Type A leakage, together with a reduced or degraded $\mathrm{BV}_{\mathrm{CBO}}$ (now determined by the collector $N+$ resistivity). Measurement of $\mathrm{BV}_{\mathrm{CBO}}$ after power tests or other tests applying reverse bias to the collector-base junction have maximum values determined by the bulk resistivity or junction defect spots. This occurs because the collector tends to be pushed toward "P" or high resistivity "N" by the reverse bias.

Emitter-base surfaces influenced by a positive field grid bias (N type) have been shown to result in an h_{FE} degradation. Thus, it may be assumed that an " N " type inversion on the base, reaching into the emitter-base junction area will degrade $h_{F E}$: Temperature-induced surface failures, which may have uniformly influenced oxides toward " N ", will have degraded h_{FE} levels along
with Type A collector-base characteristics. The observed $I_{\text {EBO }}$ may rise to fairly high levels if the emitter-base inversion is severe. The $h_{F E}$ response is an especially sensitive indicator at low current levels, where the recombination at the emitter-base surface produces a higher proportion of the total current.

Devices which show an $h_{F E}$ degradation can frequently be recovered by heating in ambients such as air, oxygen, or nitrogen under conditions which reverse the mobile surface condition.
2. Type B-Bulk Degradation. Type B degradation is usually characterized by a relatively high leakage current at high collectorbase voltages. At voltages of $1 V$ or less, leakages may be low (0.5nA or less) as compared to Type A rejects, which run from 10nA to 10uA at low voltages. It has also been found that these units are relatively unrecoverable by heating. A small improvement may often be seen, but this improvement is insignificant when compared with the 3-5 order of magnitude improvement for the Type A degradation.

Visual examination of Type B units may reveal the location of a bulk defect or failure. For example, visible "hot spots" in the aluminum contacts often can be found, indicating that high current concentrations developed during the test period.

Collector-base junction irregularities associated with microcracks, and characterized by sharp breaks in the normally smooth junction profile, have been made visible on units (by sectioning and staining) which have never been placed on any electrical stress. This further supports the theory that Type B rejects can be initiated at weak junction points produced by some processing fault. The fact that randam sectioning can find these defects indicates that, in some cases, the numerical density of these defects can be high.

An interesting point is that the deep dips or spikes in the junctions of some rejects seem to be located under the aluminum base ring. Microcracks or defects in other locations produce only slight irregularities. Deep collector-base junction irregularities have never been spotted under the aluminum contact area of the emitter. This suggests that surface deposited aluminum can penetrate the full length of a relatively long microcrack and then diffuse but as a "P" cylindér into the lightly-doped " N " collector material surrounding the microcrack.

The thermal conditions of the aluminum alloying process are apparently sufficient to cause this defect. The sketch shows an example of the defect.

Ball bonding may also contribute to this failure mode by introducing additional cracks at the pressure areas. The thermal and electrical stresses present in high power life tests may then be sufficient to cause further metallic migrations with time, until the runaway conditions result.

The absence of visible deep spikes in the emitter areas may be explained by examining the behavior of the emitter dopant. The
dopant is present in very heavy concentrations at the emitter and may be carried along with the aluminum migration processes previously described. The presence of this compensating impurity prevents inversion of the " N " type collector. In fact, if the concentration of the dopant exceeds that of the aluminum at the collectorbase junction, the collector-base junction should slope upward towards the surface. A large or heavily-doped concentration penetrating to the collector may be expected to create an "N" type pipe coupling the emitter to the collector. These conditions should result in a failure mode which would appear as collector-to-emitter shorts or as low voltage breakdown types limited by punch-through into the emitter, Type B-3-b.

Type B failures which show evidence of having been through a severe runaway condition, can sometimes be traced to defective life test circuitry, high voltage spikes and transients, in which case the failure would be reclassified as Type F.

Cracked pellets lead to another form of Type B-2 failure, evidenced by an $I_{C B O}$ increase. Damaged junctions which may be caused during scribing and separating operations, are especially sensitive to electrical stresses. Cracks may propagate from any rough broken edges into junction areas, usually following the natural (111) cleavage planes. Cracks and chips may also be caused by rough handing during pellet mount or wire bonding operations.
3. Type C - Opens. Type C-1 failures are opens where the aluminum has peeled away following the stress. The basic cause of failure in this case is poor alloying of the aluminum to the silicon. When tensile stresses cause localized separation of the aluminum from the silicon surfaces, the resulting flexing of the brittle intermetallic phases causes these areas to fail in the vicinity of the bond area. The gold bond to the aluminum may remain
relatively intact and a bare silicon surface is exposed.
Type C-6 failures result from intermetallic deterioration. It has been found that opens formed on high temperature tests almost always oecur at the point of contact between the gold wires and the aiuminum contacts. Gold interdiffuses rapidly with aluminum at temperatures as low as $200^{\circ} \mathrm{C}$. A gold-aluminum phase diagram shows that a series of intermetallic compounds and alloys are formed, ranging through the entire percent composition range. Some of these intermetallic compounds are brittle and have crystalline volumes considerably different than the elements that compose them. This contributes to deterioration of the interiface and weakening of the bond.

It must be emphasized, however, that intermetallics are universally present on all devices and do not by themselves cause failure. Failures will be observed only if certain defects are present which exaggerate the effect of the intermetallic compounds. Prolonged aging of devices at $300^{\circ} \mathrm{C}$ does not necessarily produce severe loss of mechanical strength under normal use conditions, with properly made bonds.

Type c-6-b failures are demonstrated by increases in V_{CE} (sat) which occur as contact resistances change. If high temperature storage results in severe metallurgical degradation of the emitter bond, both $\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}$ and $\mathrm{V}_{\mathrm{BE}(\text { sat })}$ will increase proportionally to the voltages developed in these bonds. This degradation can sometimes be seen before a complete open of the Type C-6-a occurs. A deterioration of the pellet mount due to the effects of severe oxidizing conditions (water vapor at high temperatures) will result in $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ increase and little change in V_{BE} (sat) ${ }^{-}$

The Type C-5-a failure may leave the same type of metallurgical trace characteristic of a C-6 intermetallic deterioration. A grey
or black patch may be left on the aluminum pattern and the gold bond may be separated cleanly from the aluminum at the gold aluminum interface. In this type of failure, however, the original gold-aluminum contact area is considered to have been insufficient to withstand subsequent stresses. This may happen with offside base bonding, in which the gold ball bond does not uniformly contact the full width of the base ring. The contact area will also be reduced if the bonding temperature or pressure is low, if surfaces are dirty or oxidized, or if the reducing gas coverage is poor.
4. Type D - Faulty Post Bond Assembly. The wire bond to the gold post may separate if the post surface is contaminated or very thin, or if bonding pressure is low or the gas cover is inadequate. This is categorized as a Type D-l failure.

An internal short, Type D-3 failure, can occur when the package construction requires internal wires to be in close proximity to the posts, pellet edges or metal walls. Large mechanical stresses such as centrifuge or ribration, or wire sagging effects after long thermal exposure may cause the internal components to short.
5. Type E - Humidity \& Hermeticity. Type E leakage increases may be summarized as package hermeticity defects not affected by pellet quality. These leakage increases are divided in several categories and represent conductivity increases due to the permeation of water (or any other conductive fluid) into the inner air space of the device. Permeation can occur through pinholes left by defective hermetic welding (Type E-l). When condensation occurs in the device, rather than being confined to external surfaces, relatively long bake times are usually required to out-diffuse the moisture and to recover the original leakage characteristics.

Type E-5 leakage differs from other Type E's in the retention of
water (or another conductive material) between external electrical contacts rather than on internal surfaces. Exposure to salt spray atmospheres may cause corrosion products, such as iron or kovar rust paths to bridge across contacts. These salts are reiatively insoluble and cannot be removed by the water rinse that follows salt spray testing.

These external leakage effects increase with higher humidity conditions. Thus, measurements made in a hot numid room may have a considerably higher leakage level than if the test was performed in a dry atmosphere. Type E-5-a leakage can be eliminatea by chemical washing and drying without resorting to extensive bakeouts. Thus, Type E-5-a leakage can be detected by elimination of humidity response after an acid dip, hot water wash and dry gas blow-off.
6. Type F - Improper Measurement Techniques. Type F failures are frequently identifiable from visual evidence of unusual situations such as melted open wires. This class of failure generally results from an error in handling, an error in test equipment accuracy or calibration, or transients in the test equipment. An analysis of the circuitry involved generally reveals that the visually evident failure would have been impossible to obtain if the device had been properly connected to a circuit in good operating condition.

B. FAILURE MODE CHART

The next several pages contain Failure Mode Charts which have been developed to define and illustrate failure mode categories, failure mechanisms and failure causes. The charts also show the most likely failure indicator and the stress which generally causes the failure. The failure code shown in the charts is used in all the Failure Analysis Reports.

The Failure Mode Charts were originally developed to cover all
the possible failures of silicon planar transistors and thus contain some failure codes which were not observed in the failures produced in this program.
FAILURE MODE CHART. SILICON PLANAR TRANSISTOR.

FAILURE MODE CATEGORY	FAILURE INDICATOR \& STRESS CAUSING FAILURE	FAILURE MODE	FAILURE MECHANISM	FAILURE CAUSES
APelletSurfaceDegradation	$I_{C O}^{\text {increase }} \begin{aligned} & \text { with high }\end{aligned}$ $\mathrm{BV}_{\mathrm{CBO}}$ Degradation in h_{FE} (at low I_{C} levels) $I_{C O}$ increases ${ }^{\mathrm{BV}} \mathrm{CBO}^{\text {dëgrading }}$ Induced by Reverse Bias with high temperature Power stresses with reverse bles High temperature alone	(1). Inherently unstable oxide passivation	Ionizable states built into oxide structure	(1) Mon-optimum diffusion and oxide growth baking
			causes the following to occur:	Inadequate cleaning steps
			p inversion of collector or n inversion of base	prior to oxide growth operations
			Surface recombination velocity increase at EB juinction. Base usually going toward n potential	
			Accumulation layer' collector surface going n	
		Surface: Surface		Organic and KPR residues
		contamination	surface initiates oxide ionization	[2] Inorganic fonizable salts
			Gas ambient	Insufficient outgassing
			contamination	Poor hermetic seal
				Contamination of cap weld flush
		Surface oxide defects	Damaged passivation susceptible to	Etch processes pitting of Si and SiO_{2}
			ionization degradation	Non-uniform oxides

FAILURE MODE CHART SILICON PLANAR TRANSISTOR.

FAILIJRE MODE CHART ...- SILICON PLANAR IRANSISTOR

:SIIICON PLANAR TRANSISTOR.

Ш甘甘H

$\begin{aligned} & \text { FAILURE } \\ & \text { MODE } \\ & \text { CATEGORY } \end{aligned}$	FAILURE INDICATOR \& STRESS CAUSING FAILURE	FAILURE MODE	FAILURE MECHANISM	FAILURE CAUSES
Feulty bond to pellet	Mechanical stresses Vibration Shock Centrifuge	\square Faulty deposition of contacts	Aluminum bond to silicon substrate is inadequate Aluminum peels off with open bond	Vacuum deposition out of control
				2 Deposition or alloy furnace gas contaminated
				Alloy temperature-time cycle inadequate
				Silicon substrate insufficiently etched
				Silicon substrate contaminated
	Leading to open base or emitter	$[2]$Cracks insilicon -metal bond	La Open occurs with silicon chips adhering to pulled-off wire	Bond pressure too high
				Wire material - wrong composition (too hard)
				Processing accidents with bonding tools
		Voids inbondbin	Aluminum or siliconmissing in openbond area.	Aluminum accidentally scratched away in processing
				\square Silicor chipped out by processing aceidents
	Mechanical stresses and/or very long high temperature storage Leading to open base or emitter	Separation	Ball bond still	Accidental processing damage to wire section
		of bond from wire	adhering to pellet wire broken off above it	2 Metallurgical weakness in the wire section resulting from intermetallic diffusion of aluminum into wire

SILICON PLANAR TRANSISTOR

$\begin{aligned} & \text { FAILLURE } \\ & \text { MODE } \\ & \text { CATEGORY } \end{aligned}$	FAILURE INDICATOR \& STRESS CAUSING FAILURE	$\begin{aligned} & \text { FAILURE } \\ & \text { MODE } \end{aligned}$	FAILURE MECHANISM	FAILURE CAUSES
C Farilty band to Pellet (Continued)	Open base or emitter due to mechanical stresses	[5] Separation of ball bond from metallized surface	\square Bond area is insufficient - or poor adhesion over adequate bond area	1 Bond placed off center
				2 Metallizing too thin
				3 Bonding operation out of
				gas cover or
				$4 \begin{aligned} & \text { Insufficient temperature - } \\ & \text { time cycle }\end{aligned}$
				5 $\begin{array}{l}\text { Contact metallizing surface } \\ \text { is oxidized or }\end{array}$ 6
				$\begin{array}{\|c} 6 \\ \begin{array}{c} \text { Contaminated (Organic } \\ \text { material especially) } \end{array} \\ \hline \end{array}$
			Defects causing overstress condition of bond	1 Oversize wire used
				2 Bail size and weight too large
	Open base or emitter - or ∇ (SAT) parameters increasing due to long high temperature storage, mechanical shock, very high power operation \& mechanical stress	[6]"PurplePlague"deterioration	Bond initially strong deteriorating to open at bond to aluminum interface	1 Intermetallic diffusion causing Au - Al brittle compound formation
			Ohmic contact resistance develops in Au - Al bond interface	

FAILURE MODE CHART

FAILURBMEE CHART SIHICQNTANAR TRANSI:TOR

FAILURE MODE CATEGORY	FAILURE INDICATOR \& STRESS CAUSING FAILURE	FAILURE MODE	FAIIURE MECHANISM	FAILURE CAUSES
Faulty bond to post assembly	Open base or emitter due to mechanical stresses	```I Faulty wire to post connection```	Separation at bondpost interface	I Post surface contaminated 2 Bond made on post area having insufficient gold 3 Bond wire contaminated 4 Bond wire - wrong composition 5 Bond operation out of control (ime - temperature) 6 Bond damaged in process
	Parameters -non-functioning	2 Improper lead routing	a Base bond placed on emftter post or vice versa	1 Bond operator error
	Internal shorts - intermittence due to mechan1cal stresses or long term temperature exposure	$\begin{gathered} 3 \\ \text { Iead wires } \\ \text { internally } \\ \text { shorting } \end{gathered}$	a Wires touching collector post or pellet edge	1 Wires placed too close to collector edge 2 Wires excessively long 3 Header design does not allow sufficient room for movement
	Open base or emitter due to mechanical stresses or	4 Broken wire	a Wire broken in round section	1 Usually due to accidental damage to wire section 2 Crystal growth and plane slippage in wire
	very long high temperature exposure		b Bond adhering to post - wire is broken in or just above bond	1 Bondlng pressure tempr:"ature too high - overly th:A wire section squeezed out

FAILURE MODE CHART. SILICON PLANAR TRANSISTORS.

FAILUFE MODE: CATEGCRY	FAILURE INDICATOR \& STRESS CAUSING FAILURE	FAILURE MODE	FAILURE MECHANISM	FAILURE CAUSES
Improper Packaging	Tests involving liquids or $\mathrm{H}_{2} \mathrm{O}$ cause high ICBO, $\mathrm{I}_{\mathrm{EBO}}, \mathrm{h}_{\mathrm{FE}}$ or Result in chemical and physical deterioration to internal components	[1] Faulty cap to header seal	\square Leak in header - cap seal	1 Welder out of control 2 Cap or header plating not und form 3 Damaged package or cap
			Hermeticity failure at cap weld due to mechanical or thermal shocks	1 Hermetic seal OK after fabrication but opens up after mechanical or thermal shocks due to welding under marginal or less than optimum conditions
		Faulty terminal to insulator seal	Glass to metal oxide seal leaks	$\frac{1}{2}$ Defective header
			$[b]$ Glass or ceramic insul- ator cracked \& leaking	processing steps
		Faulty header to insulator seal	[a] Glass to metal oxide seal leaks	1 Defective header
				$2 \begin{aligned} & \text { Metal oxide seal damaged by } \\ & \text { processing steps }\end{aligned}$
				3 Seal broken by handling
			External terminal broken off	1 Defective headers
	High humidity ambient or tests involving liquids cause high $I_{C B O}$, IEBO	External surface contamination	Conductive external surface paths on device	1 Rust and other salts across external contacts
				$2 \begin{aligned} & \text { Excessive porosity and } \mathrm{H}_{2} \mathrm{O} \\ & \text { retention in ceramic }\end{aligned}$
				3 Plating on terminals inadequate
		Marking deterioration	Markings illegible	
		$\text { Finish }[7]$	Plating inadequate	1 Defective plating

SILICON PLAi:AR TRANSISTORS.

C. FAILURE ANALYSIS PFOCEDURE

Six general basic categories of failures have been defined in the failure mode charts. Preliminary analysis procedures have been developed to determine these categories within about 48 hours of log-in of rejects in the Reject Analysis Laboratory. The detailed analysis procedures required to determine the cause of failure then can be efficiently scheduled for groups of units and completion of analysis effected as rapidiy as possiole.

The basic categories or Preliminary Analysis Codes are defined as:

Type A. Surface degradation - a reversible effect due to the influence of relatively mobile charges and ions in the surface.

Type B. Pellet degraded permanently and irreversibly - damage may be a crack or internal alloy.

Type C. Pellet bond problems - usually open or defective wire or pellet mount.
Type D. Faulty bond to post assembly - opens or wires mechanically contacting internal components.
Type E. Package problems - hermeticity of header construction failure.
Type F. Failure due to improper handling.

The flow charts presented as Figures 1 and 2 follow the handing of failures through preliminary analysis and through final analysis procedures. The initial electrical measurements made in the laboratory on all D.C. parameters shown in the verification measurements are usually enough to assign a Preliminary Analysis Code.

Type A failures are further identified and characterized by the response to bake-out, and treatment in chemicals. A dew point apparatus is used for cold temperature measurements and for identification of hermeticity failures. This apparatus has been specifically 54
developed for the detection of small quantities of water. A special test proceâure for the determination of susceptibility of devices to collector or base inversion has also been worked out. In addition, a mass spectrometer facility has been utilized to confirm the presence of water when it is indicated by electrical measurements, and to detect gas impurities. For example, carbon dioxide, hydrogen, oxygen and argon have been identified.

The initial characterization of Type E failures is often similar to varieties of surface degradation initiated by contaminants, since contaminants entering through hermeticity defects will affect pellet behavior in the same manner as contaminants trapped in a hermetic device. Radiflo, dew point, floating emitter potential and fluorescent penetrant dye (Zyglo) tests are used to make a positive identification of this type of defect.

Type B and D failures are classed together since the electrical characteristics are often (not always) catastrophic in nature. Thus, initial analysis identifications are not always possible until the units are decapped and visually examined. Sectioning procedires have been developed for alloy shorts and electrochemical methods have been developed for removal of bonded wires without physical damage to the brittle semiconductor beneath the wire. Special etches are also used to show up dislocation and crystalline defect lines.

Devices which show Type C, D, E and F failures may be open electrically and therefore are not identifiable until units are decapped and examined. F type shorts are frequently identifiable from visual evidence of unusual situations such as shorts across the emitter-base junction, or melted open wires, or even by examination of test data before and after verification.

The test data for all the failures produced in the test program were analyzeã to determine the general failure mechanism. Representative samples of each type of failure mechanism were then analyzed in detail. These detailed analyses are summarized in this paragraph.

1. Process A. Three of the failures that were analyzed showed failure mechanisms related to impurities introduced in different areas of fabrication.

Unit Al55 showed a tendancy toward surface inversion. The surface inversion tendancy is related to the method of oxide growth, the density of oxide vacancies and gettering impurities from diffusion and oxidation steps and the number of mobile ions introduced into the oxide by processing. Complete elimination of this type of failure would require considerable experimentation with basic processes.

The iailure in Unit A353 may be related to impurities introduced into the gold plating by the vendor supplying headers and can be controlled to some extent by rigid vendor control, QC vigilance, and process control. This failure occurred after a relatively long period under high temperature stress.

The failure in Unit A419 indicated a process defect in degassing or decontaminating of parts. The presence of water in this device was detected by dew point testing and electrical analysis.

SUMMARY OF FAILURE AIVALYSES FOR PROCESS A UNITS

Unit	Primary Parameter Failed	Test Causing Failure	Failure Description	Failure Code
A353	$\mathrm{V}_{\text {SAT }} \quad 40$	$400 \mathrm{~mW}, 150^{\circ} \mathrm{C}$ 1500 hr	The collector contact resistance increased by about 13 ohms due to separation between the silicon and the eutectic bond.	$\mathrm{c}-7-\mathrm{b}$
A528	$I_{\text {EBO }}$	$300^{\circ} \mathrm{C}$ bake 168 hr	High $I_{\text {EBO }}$ leakage due to a bridge of aluminum running from base ring to the emitter-base junction. Conductive leakage developed from ring through emitter oxide - faulty deposition processing.	Faulty Processing
A419	$I_{\text {CBO }}$	$400 \mathrm{~mW}, 150^{\circ} \mathrm{C}$ 1500 hr	Leakage found to be due to a high humidity inside the device, as much as 90 mm pressure under heat. The sou of $\mathrm{H}_{2} \mathrm{O}$ was faulty outgassing parts in manufacturing - not hermeticity leak.	$A-2-b$ ree of a
A155	$I_{\text {CBO }}$	$500 \mathrm{~mW}, 25^{\circ} \mathrm{C}$ 1000 hr	A collector inversion layer formed under reverse bias power. No defect noted in passivation.	$\mathrm{A}-1-\mathrm{a}$

| Unit | Primary
 Parameter
 Failed | Test
 Causing | Failure |
| :--- | :--- | :--- | :--- | :--- |

A557	$\begin{aligned} & \mathrm{h}_{\mathrm{FE}} \\ & \mathrm{I}_{\mathrm{EBO}} \end{aligned}$	$\begin{aligned} & 500 \mathrm{~mW}, 25^{\circ} \mathrm{C} \\ & 1000 \mathrm{hr} \end{aligned}$	A runaway condition had re- B-2-a sulted in a metal bridge across the emitter-base junction. Oxide chips and strains were found in this same area and are believed to have made device more sensitive to this type of runaway.
A74	--	$\begin{aligned} & 700 \mathrm{~mW}, 25^{\circ} \mathrm{C} \\ & 340 \mathrm{hr} . \end{aligned}$	Analysis indicated the data Not at 340 hours was erroneous. Legitimate Unit had not degraded. All readings subsequent to 340 hours were valid.

2. Process B. The detailed analysis of the Process B devices showed $h_{F E}$ degradation and lead bond problems.
a. $h_{f E}$ Degradation. The first four devices in the summary showed that high power stressing resulted in considerable changes in the emitter-base surface potentials of the devices.

Large changes in $h_{F E}$ and ${ }^{B V_{C E O}}$ result from these shifts in base surface potentials. $\mathrm{BV}_{\mathrm{CEO}}$ is inversely related to $\dot{\mathrm{h}}_{\mathrm{FE}}$

$$
\mathrm{BV}_{\mathrm{CEO}} \approx \mathrm{BV}_{\mathrm{CBO}} / \sqrt[n]{h_{\mathrm{FE}}} \quad \text { (See Bibliography, Ref.20). }
$$

A change of the P base surface toward intrinsic or N potential will usually result in $n_{F E}$ degraãation and $\overline{B V}_{C E O}$ increase (Ünits $\overline{\mathrm{B}}-3 \hat{0} 5$,

359, 543) while a snift of the base surface potential toward P will usually raise gain and decrease $B V_{C E O}$ (Unit B-5il).

Several factors contributed to make this device sensitive to $h_{F E}$ shifts under power tests.
(1) The geometry of the Process B device was considerably smaller than either the Process A or C, resulting in emitter areas of 46 and $176 \mathrm{mil}^{2}$. Thus, for the same power levels, current densities and localized emitter junction temperatures were considerably higher for Process B devices, even though the long emitter perimeter allowed more efficient current distribution than the circular geometries of the Process A and C devices. Unit B-305 is a device in which the emitter ran exceptionally hot. The appearance indicated that localized temperatures $>550^{\circ} \mathrm{C}$ had been reached, causing the silicon to begin alloying into the aluminum and resulting in an emitter-base short. The 700 mW life test circuit was in the common base configuration with the base protected against runaway by a diode. An emitter current of 35 mA was designed in by the $R_{E}=286 \Omega$. As the device heated up in test, the $h_{f b}$ could have $=I\left(I_{B}=0\right)$ and the unit went into an $I_{C E O}$ mode at a voltage $=\left(V_{C B}+V_{E}\right)=30$ volts.

Simplified 700 mW Life Test Circuit
$I_{\text {CEO }}$ could then have risen to any level determined only by the device and resistor in series. Calculations showed that at an $I_{E}=52.5 \mathrm{~mA}$, a maximum possible power of $788 \mathrm{~mW}\left(\mathrm{~V}_{\mathrm{CB}}=15 \mathrm{~V} \mathrm{x}\right.$ 52.5 mA) was dissipated by the collector-base junction. The emitter current may have increased even further, with less total runaway
dissipation by the device. However, at some point, the safe current handling capacity of the emitter was exceeded, especially if current hogging at a secondary breakdown spot served to concentrate the emitter current even further.
(2) The basic oxide growth process of the Process B devices may have left an excessively high positive space charge (N potential) at the Sip 2 - Si interface. Many factors coula have contributed to this condition, such as the method of growth (O_{2} or $\mathrm{H}_{2} \mathrm{O}$) and the temperature of oxidation.
(3) The changes in base surface potential noted also indicated the presence of sufficient numbers of ions which could have moved under bias fields or by thermal diffusion to the $S i O_{2}-S i$ interface to change surface potentials toward N. Sodium is an ion noted most frequently in the literature with this capability.

Unit $\mathrm{B}-541$ was of interest because it illustrated an h_{FE} instability in which the N oxide potential was moving steadily toward P with a resulting improvement in gain. An oxygen ambient has been noted to have this affect, both in the literature and in our labs. Mobile plus ions or plus oxide vacancy sites in the oxide apparently are tied up by the oxygen ambient. For this device, the cause was defective hermeticity.

The Process B devices above are free from any surface effects causing degradation at the collector-base junction. There appeared to be insufficient densities of mobile plus ions to cause complete inversion of the P surface (required for large increases of $I_{C B O}$) and the guard ring design may have been effective toward stopping any collector inversion from reaching the high recombination centers at the pellet edge.
b. Bond Problems. A second pattern of failures was seen in the analysis for the two open gold-aluminum post bonds (B-446 and 515). The use of aluminum wires, while relieving any intermetallic problems in high temperature storage or operation at the pellet, transfers these problems to the posts.

Aluminum wires are much more difficult to bond consistently than gold wires. The oxide problem results in occasional weak initial contacts (Unit B-446). Also, the bonding pressures required for aluminum are higher and result in bond sections which are much more flattened and thinned out than corresponding gold wire TCB sections. The thin sections are then especially susceptible to gold intermetallic diffusion penetration from the gold post and break off readily under shock (Unit B-515). The advantages of aluminum bonding, with good process control, may overcome any of these disadvantages.

SUMMARY OF FAILURE ANALYSES FOR PROCESS B UNITS

Unit	Primary Parameter Failed	Tests Causing Failure	$\begin{array}{ll}\text { Failure Description } & \text { Failure } \\ \text { Code }\end{array}$
B-305	$\begin{array}{ll} h_{\text {FE }} & 7 \\ I_{\text {EBO }} & I \end{array}$	$700 \mathrm{~mW}, 25^{\circ} \mathrm{C}$ 168 hr	An emitter-base high resistance short developed by migration of metal down into the emitter-base junction. Emitter area showed very hot running. The circuit allowed up to 788 mW dissipation if $h_{f o}$ goes to 1.0 during life test.
B-359	$\mathrm{h}_{\mathrm{FE}} \quad 7$	$700 \mathrm{~mW}, 25^{\circ} \mathrm{C}$ 680 hr .	$h_{F E}$ degradation due to relatively A-I-a unstable surface at emitter-base junction under bias fields. Related to mobile ions in oxide (Surface potential changes).

SUMMARY OF FAILURE ANALYSES FOR PROCESS B UNITS

Unit	Primary Tests Parameter Causing Failed Failure	Failure Description $\quad \begin{aligned} & \text { Failure } \\ & \text { Code }\end{aligned}$
B-54I	$\begin{array}{ll} \mathrm{h}_{\mathrm{FE}} \quad 800 \mathrm{~mW}, 25^{\circ} \mathrm{C} \\ & 168 \mathrm{hr} \end{array}$	h_{FE} increasing during test due A-1-a, to hermeticity leak in glass E-2-a bead. Emitter-base surface potential is unstable and recombination velocity decreases in oxygen ambient.
B-543	$\begin{array}{ll} \mathrm{h}_{\mathrm{FE}} \quad & 700 \mathrm{~mW}, 25^{\circ} \mathrm{C} \\ & 2000 \mathrm{hr} . \end{array}$	```h}\mp@subsup{h}{FE}{}\mathrm{ degradation-unstable emit- A-1-a ter-base surface potential under power biases.```
B-354	$\begin{array}{ll} \mathrm{I}_{\mathrm{CBO}} \quad & 500 \mathrm{~mW}, 25^{\circ} \mathrm{C} \\ & 168 \mathrm{hr} . \end{array}$	A 3 Megohm short developed during life test due to a filament connecting intermittently from the aluminum base ring to the pellet edge.
B-446	$\begin{array}{ll} \text { Open } & 800 \mathrm{~mW}, 25^{\circ} \mathrm{C} \\ \text { Base } & 2000 \mathrm{hr} \end{array}$	The gold-aluminum contact at the post opened up. Analysis (lack of intermetallic compounds) indicated a poor initial bond had been made which fatigued open under repeated stress cycles.
B-515	Open $\quad 700 \mathrm{~mW}, 25^{\circ} \mathrm{C}$ Emitter 680 hr .	```Gold-aluminum post bond over D-1-a squeezed on edge of post. In- termetallic formations caused intermittent open.```

Unit	Primary Parameter Tests Failed Fausing	Failure Description	Failure
			Code

$B-450$	Open ex- $700 \mathrm{~mW}, 25^{\circ} \mathrm{C}$	Fatigue of terminal finally \quad E-4-a
ternal $\quad 2000 \mathrm{hr}$	broke off emitter.	
lead		

3. Process C. The Process C device was subject to a failure mechanism not seen in the Process A and B devices. Microcracks were found penetrating the junctions surrounding the ball bond intermetallic formations in these units.

The following is a description of the techniques which were used to identify and document this unique failure type, coded as $\mathrm{B}-2-\mathrm{a}$, in units $\mathrm{C}-98$ through $\mathrm{C}-576$.
a. Electrical Identification. The electrical behavior of devices having cracks through the junctions usually has the behavior characteristics given in the table below. These characteristics are also symptoms of the various other effects listed.

3. Ex- Ohmic $I_{\text {CBO }}>I_{\text {CBO }}$ Responds Recovers Normal Normal
ternal bead conduction.
drifts down

4. In-	Unstabige	$>I_{\text {CBO }}$
ternal	up or	
bead con-	down	
duction \&		
high $H_{2} \mathrm{O}$		
ambient.		

drift down

Responds Same unstable down

None
Same
Walkout Normal
or
Degraded let Con- up or tion.
6. Low Reach Through Voltage
$=I_{\text {CBO }}$

Stable $\quad>I_{\text {CBO }}$

Responds Same Soft Normal stable
b. Decapping - and Electrical Tests. The Process C devices, when decapped, had a very significant response to ambients: $I_{C B O}$ and E_{F} drifting to high levels in lab or high humidity air and recovering under dry ambients, a behavior which can again be interpreted as being due to cracks or to the presence of hygroscopic conductive salts across the header beads. Emitter cracks (2 in Table) could be definitely identified at this stage by disconnecting the emitter wire to post bond. Complete recovery of any E_{F} response at this point confirms an emitter crack in the pellet. This is shown in the diagram below, where $R_{C E}, R_{E}$ and R_{S} are all in parallel with the E_{F} meter.

64
$R_{C E}$ - the effective resistance of the crack penetrating both junctions.
R_{E} - resistance of glass bead.- emitter post
R_{S} - due to conduction across the face of the pellet.
R_{B} - resistance of glass bead - base post

When the base is grounded, R_{S} Sdue to contamination or even inversion conduction across the entire pellet surface) is completely shunted out to ground.

Disconnecting the emitter-post contact eliminates the $R_{C E}$ path so that R_{E} is then measured alone. In Units $C-98, C-400$ and $C-505$, this procedure identified the existence of $R_{C E}$, the unstable component due to cracks through both junctions. $R_{C B}$ may also be isolated from
R_{B} (the base bead leakage) by breaking the post bond.

Devices C-147, C-293 and C-576 did not fail any parameters on test. They are included here because in lab tests on "good" Process C devices, severe crack characteristics usually appeared after a $300^{\circ} \mathrm{C}$ overnight bake on decapped devices, indicating failure under this relatively mild thermal shock. It must be emphasized at this point that the dry nitrogen ambient inside the device stabilizes the characteristics considerably. Exposure to air brings out the unstable high leakage drift.

Cracks were not seen in any of the devices by pellet examination, even under high power microscopy.
c. Etching. Chemical and electro-chemical removal of the contacts was then used to identify cracks under the contacts.
(1) A $10 \% \mathrm{NaOH}$ etch was used to remove the aluminum contacts. Patterns remaining in the silicon beneath the aluminum indicated that a relatively heavy coat, probably at least 1 micron thick, of aluminum is alloyed into the silicon at temperatures over $550^{\circ} \mathrm{C}$. . See the deep patterns left in the failure analysis photographs for C-147, C-293, and C-301. The cracks were still not visible.
(2) The bonds and gold-aluminum intermetallics were removed electrolytically in a KOH-KCN solution at +3 volts, which selectively etched off wires (either base or emitter). A non-selective gold etch, such as aqua regia, will usually destroy the header mount making further handling of the pellet difficult. The photographs in the failure analysis report for Unit A-557 show the progressive removal of metal by this technique. The mechanical removal of wires would introduce cracks and defeat the purpose of this investigation.

This etch technique finally revealed cracks growing peripherally around the bonds and just under the black outer edge of the intermetallic growth areas surrounding the bonds. See the photographs in the failure analyses for Units C-363 (base and emitter), C-147 (base) and C-293 (base). In the last two cases, the cracks penetrated the silicon outside of the aluminum contact areas and were unmistakable.
a. Sections. Sections were made to further study the penetration of the cracks and to reveal the construction details of these devices.

The photographs for Unit C-576 showed cracks and pertinent details most clearly. The section through an electrically indicated cracked emitter shows cracks penetrating diagonally inward and ending less than 0.9 mil from the top surface. The photos also show the collector diffusion depth to have been very shallow for a large area device (about 0.2 mil), and a relatively deep penetration (1 mil) of intermetallic compound - most probably $\mathrm{Au}_{5} \mathrm{Al}_{2}$ under the bond and $A u_{2} A l$ in the sides (See Bibliography-2l). Two photos of ball bonds made to Process A units aged for equivalent time periods are shown for comparison.

Section studies were also made for Units C-400 and C-293.
e. Oxide Thickness. Oxide thicknesses were studied to see if there was any relation to this mechanism. A thick oxide structure, for example, would be expected to put more strain on the thermally mismatched silicon beneath it than the thin 10 15,000 \AA films used in the Process A and B devices.

Photographs of Unit C-301 show the technique used to measure oxide thickness. Half the pellet was masked against an $H F$ etch and then the interference fringes of the undercut mask boundary were counted and the top surface colors noted.

The thickness was then estimated from a set of standards or calculated from the formula:
$\mathrm{d}=\frac{\mathrm{n} \lambda}{4 \mu} \quad$ where λ is the wave length of light used estimated with good accuracy in white light at $5400 \AA$ (green band)
$\mu=1.5$, the index of refraction of SiO_{2} $\mathrm{n}=1,3,5,7$ for each fringe counted $\alpha=$ thickness of oxide in \AA.

The Process C device oxide proved to be generally thinner than the Process A and B which had been measured previously (in the First Quarterly Report). An interesting difference between Process A and C devices was that the Process C device emitter oxide is thicker than the uniform thickness base-collector oxide. By comparison, Process A devices were fabricated with the collector oxide thicker than the base oxide which was thicker than the emitter oxide.

Comparable oxide thicknesses are:

	Process A	Process C (Unit C-301)
Collector	$12000 \AA$	$6300 \AA$
Base	8500	6300
Emitter	5000	7100

Measurements of other Process C devices gave even thinner oxide values. From these measurements of Process C units, a process of oxidation can be assumed. Following diffusion of the base and emitter, all masking oxides were stripped off and the full thicknesses of the passivation oxide were grown onto the clean silicon. Heavily doped silicon (emitters) will grow a thicker oxide skin under the same oxidizing conditions as can be estimated from work
reported by Deal and Sklar (Ref. 22), showing plots of oxide growth on phosphorous doped silicon at the low temperature of $920^{\circ} \mathrm{C}$ in wet oxygen to gifve about $7100 \AA$ on $1.5 \times 10^{20} / \mathrm{cm}^{3}$ (comparable to emitter concentration) to aoout $6000 \AA$ for 10^{16} to $10^{18} / \mathrm{cm}^{3}$ material (collector-base toping).

Thus, there is no evidence to believe the oxide growth technique contributed to abnormal strains in the silicon surface.
f. Theory Developed - B-2-a Failures. The investigations described above have led to the development of the foilowing theory:

The gold-aluminum intermetallics found in the bond sections were as much as 1 mil thick probably due to the availability of aluminum from the heavily.deposited contacts which were alloyed deeply to the silicon. Like other gold intermetallics, the physical properties of these compounds are hard and strong. Thermal expansion coefficients of one of the intermetallics, $A u_{2} A l$, which is likely to be present in the bond can be calculated from a paper by Bernstein (Ref. 23), as $14.8 \times 10^{-6} /{ }^{\circ} \mathrm{C}$, this being extremely mismatched from Si at $4.2 \times 10^{-6} /{ }^{\circ} \mathrm{C}$.

During contraction from $300^{\circ} \mathrm{C}$, the massive, hard intermetallic section which was well bonded into the underlying silicon, in an area extending 5 to 9 mils , puts the silicon surface into severe tension and produces the fractures as shown.

Si

This type of failure was not able to be demonstrated when a small sample of experimental ball bonded devices were fabricated.
g. Defects. Three more of the failures which were analyzed showed characteristics related to buik defects. unit $\mathbb{C}-233$, called a B-2-a failure, is not like those discussed previously. In this case, microcracks appeared in the junction area some distance from the zonus.

SUMMARY OF ANALYSES FOR PROCESS C UNITS

Unit	Primary Parameters Failed	Test Causing Failure	Failure Description	Failure Code
C-98	$\begin{aligned} & \mathrm{I}_{\mathrm{CBO}} \\ & 680 \mathrm{hr}, \\ & \mathrm{~h}_{\mathrm{FE}} \\ & 2000 \mathrm{hr} \end{aligned}$	$\begin{aligned} & 200^{\circ} \mathrm{C} \& \\ & 400 \mathrm{~mW} \\ & 150^{\circ} \mathrm{C} \end{aligned}$	$I_{C B O}, I_{\text {CES }}$ parameters very unstable, $h_{F E}$ degraded. Analysis indicated emitter and collector junctions were cracked. Cracks were not made visible.	B-2-a
c-363	$\begin{aligned} & I_{\text {CBO }} \\ & 2000 \mathrm{hr} \end{aligned}$	$\begin{aligned} & 700 \mathrm{~mW}, \\ & 25^{\circ} \mathrm{C} \end{aligned}$	Behavior of device indicated cracks in collector-base junction. Etching off contacts revealed microcracks under bonds.	B-2-a
C-400	$\begin{aligned} & I_{\mathrm{CBO}} \\ & 1000 \mathrm{hr} \end{aligned}$	$\begin{aligned} & 200^{\circ} \mathrm{C} \\ & 500 \mathrm{~mW} \\ & 25^{\circ} \mathrm{C} \end{aligned}$	Analysis indicated probability of crack in junctions. A small crack located by sectioning through the emitter bond.	B-2-a
C-505	$\begin{aligned} & I_{\mathrm{CBO}} \\ & 3000 \mathrm{hr} \\ & \& \mathrm{~h}_{\mathrm{FE}} \\ & \text { degraded } \\ & 25 \% \end{aligned}$	$200^{\circ} \mathrm{C}$ and 500 mW , $25^{\circ} \mathrm{C}$	Analysis indicated a probable crack through the emitter bond. The crack was not made visible in tests.	B-2-a
70				

Unit	Primary Prameter Failed	Test Causing Failure	Failure Description

Unit	Primary Parameter Failed	Test Causing Failure	Failure Description	Failure Code
C-406	$\begin{aligned} & I_{\text {CBO }} \\ & 340 \mathrm{hrs} \end{aligned}$	$\begin{aligned} & 700 \mathrm{~mW}, \\ & 25^{\circ} \mathrm{C} \end{aligned}$	Header found severely contaminated. Impurity gases contributed to the formation of an inversion layer.	A-2-b
C-275	Collector base short 340 hrs	400 mW , $150^{\circ} \mathrm{C}$	A collector-base short of 14Ω was caused by faulty processing and the placement of the base wire against the pellet edge.	D-3-a
c-61	$\begin{aligned} & I_{\text {CBO }} \\ & 680 \mathrm{hr} \end{aligned}$	400 mW , $150^{\circ} \mathrm{C}$	Analysis indicated the 680 hr readout was faulty. Unit had not degraded.	Not Legiti- mate
Unit	Life Tests Device Pas Without. Fa	sed ilure	Analysis \& Behavior in Lab	Failure Code
C-147	$\begin{aligned} & 200^{\circ} \mathrm{C} \text { and } \\ & 3000 \mathrm{hrs} \end{aligned}$	$500 \mathrm{~mW},$	A bake at $300^{\circ} \mathrm{C}$ in lab and decapping severely degraded $I_{\text {CBO }}$ and $\mathrm{BV}_{\mathrm{CBO}}$ breakdown. Etching off of contacts showed a microcrack had developed just outside of the junction under the base intermetallic.	Not degraded on test. Degraded in Lab.

Unit	Life Tests Device Passed Without Failure	Analysis \& Behavior in La	Failure Code
C-293	$250^{\circ} \mathrm{C}, 300^{\circ} \mathrm{C}$ and 500 mW , 3000 hrs .	After lab bake and decap, severe degradation of $I_{C B O}$ was noted. Photos and sections of contact areas showed a considerable crack around the intermetallic growth of the base bond, penetrating collector-base junction.	Not degraded on test.
C-576	$\begin{aligned} & 250^{\circ} \mathrm{C}, 300^{\circ} \mathrm{C} \\ & 500 \mathrm{~mW}, \\ & 3000 \mathrm{hrs} . \end{aligned}$	After lab bake and decap operations, $h_{F E}, I_{C B O}, E_{F}$ badly degraded and acted "cracked". Section made through the emitter bond clearly defined a fracture under the emitter bond intermetallic, passing through the junctions.	Not de- graded on test. Degraded in lab.
C-301	$250^{\circ} \mathrm{C}, 300^{\circ} \mathrm{C}$ and 500 mW 3000 hrs .	Unit did not degrade in lab bakeouts. Device used for study of oxide thickness.	Not degraded on test or in Lab.

E. FAILURE ANALYSIS REPORTS

The Failure Analysis Reports included in this report are representative of the failure analyses conducted for the program.

Each report contains:

1. The device and process identification.
2. The Test Cell number.
3. The Failure Mode Category.
4. A sumpary of the Failure Analysis.
5. A detailed description of the analysis which includes graphs, tables and device photographs, as applicable.

FAILURE ANALYSIS REPORT

Unit No.	Test Cell No.	Process	Failure Mode Category A 74

Summary of Analysis:
The device was determined to be good and the failure indication on life test was in error.
$h_{F E}$ shift at the $250^{\circ} \mathrm{C}$ @ 30 V and $300^{\circ} \mathrm{C}$ may be calibration error. Unit stable throughout 700 mW test. h_{FE} and $\mathrm{V}_{\mathrm{SAT}}$ reading at 340 hours indicating a short, appears to be equipment error.

Unit was very stable upon receipt for failure analysis. The unit has been determined to be 'no failure'.

Prepared by:
$\frac{\text { Al/ ed Pare }}{\text { Failure Analysis Engineer }}$
Date:

FAILURE ANALYSIS REPORT

Unit No.	Test Cell No. A 155	Process A	Failure Mode Category A-1-a

Summary of Analysis: Device failed $I_{\text {CBO }}$ at the 168 hour readout of the life test. Failure was caused GB mobile ions in the oxide.

h_{FE} Behavior - Stable. Control reading (83) is probably faulty, probably a calibration error. ${ }^{\text {CV }}$ CEO remains stable.

Laboratory Measurements:
$I_{\text {CBO }}$ failing at 168 hour

Collector breakdown high due to surface inversion.

After bake @ $300^{\circ} \mathrm{C}$ 102V

Inversion layer gone. Collector resistivity back to low resistivity N with resulting dec.in breakdown.

Prepared by:

> Alfred Par

$$
\text { Date: } 10 / 4 / 65
$$

Visual inspection of pellet does not show any defect spot at or near the collector-base junction (see photo).

This unit failed due to presence of mobile ions in the oxide which could move in the $20 V$ field of the life test.

FAILURE ANALYSIS REPORT

Sheet 1 of \qquad

Unit No.

A 353
Test Cell No.
Process
Failure Mode Category
419-204
A
$C-7-b$
Summary of Analysis: The cause of failure of this unit had been determined to be a degraded collector contact causing an increase in collector contact resistance. Unit failed for $V_{C E}(S A T)$ at the end of the 3000 hour life test.
$V_{C E(S A T)}$ increase is usually due to an increase in contact resistances, emitter or collector. Stability of $V_{B E}(S A T)$ indicates the collector contact is probably degraded.

Laboratory Measurements:
A series of measurements were made in which resistances of contacts are measured directly. Circuit for this measurement:

The resistive component results in a drop greater than 800 mV being measured in the degraded device.

Prepared by: \qquad Date: \qquad
\qquad

Photo 1
x Unit developed a high $V_{C E}(S A T)$ after 3000 hours, $400 \mathrm{~mW}, 150^{\circ} \mathrm{C}$ operation. Measurements indicated a 14 ohm resistance developed in the collector. Section was made through pellet as shown in photo 1 and photo 2.

Photo 2 - Section
Voids are seen, although, not enough to explain a 14 ohm increase. The original wetting appears to be satisfactory, sufficient Au-Si eutectic. However, a thin hair line separation must be developing between eutectic and silicon. $300^{\circ} \mathrm{C}$ bake has 'nealea' separation.

FAILURE ANALYSIS REPORT

Section through collector contacts shows:
a. A few gas pockets - voids.
b. Adequate amount of silicon-gold eutectic soldering was performed initially.
c. High resistance is in a hairline separation between Si and eutectic due to:

1. Slow chemical erosion of header salts and Si.
2. High temperature acceleration at this area (power + high ambient).
3. Possible Si-Ni eutectic embrittlement brought about by high temperature.

Conclusion:
Collector contact resistance increased due to thermal fatigue and cycling of Si, Si-Au eutectic interface. Interface weakened by long time high temperature deterıoration in presence of entrapped plating salts.

FAILURE ANALYSIS REPORT
Sheet 1 of \qquad

Unit No.	Test Cell No.	Process	Failure Mode Category
A419	$419-204$	A	A-2-b

Summary of Analysis: The cause of this failure has been determined to be degradation due to $\mathrm{H}_{2} \mathrm{O}$ vapor pressure in the device, approximately 92 mm at $50^{\circ} \mathrm{C}$. The failure indicator was an $I_{\text {CBO }}$ degradation at the 1500 hour life test readout.
h_{FE} behavior:

Note initial shifts after $300^{\circ} \mathrm{C}$ to 20 kg and into power stress. No electrical stress was invoived. Shift was possibly due to calibration error a $300^{\circ} \mathrm{C}$ measurement point. $I_{\text {CBO }}$ was unstable at the 680 hour point.

Laboratory Measurements:
Indications of a conductive (ionic leakage) condition in device.

Prepared by: $\frac{\text { Al/zed loe }}{\text { Failure Analysis Engineer }}$ Date: 10/21/65

FAILURE ANALYSIS REPORT

Sheet

\qquad of \qquad

The following tests were performed to trace the presence of $\mathrm{H}_{2} \mathrm{O}$ inside the transistor.

Initial Tests:

Curve tracer reverse leakage was very unstable. Mobile surface charges were characteristic of wet surfaces, cracks or extremely contaminated surfaces.

LEakage and Floating Emitter Potentials:

6Mohm impedance Millivac Millivac $V_{C B}$
0
1
10

I_{CO}	E_{F}
-0.9 na	4.0 mV
2.5 na	2.0 mV
14.0 na	100 mV
16.0 na	1.7 V

Current and voltage indication with $O V_{\text {r }}$ indicated galvanic action inside transistor, which was an indication of liquid on metal parts. High floating emitter response again indicated $\mathrm{H}_{2} \mathrm{O}$ or cracks.

Hermeticity Tests:

Hermeticity Tests were performed to determine if $H_{2} \mathrm{O}$ leaked in from outside. The results were as follows:
(1) Radiflo $10^{-9} \mathrm{cc} / \mathrm{sec}$
(2) 4 hour laboratory boil test

No leak
Showed no change in parameters.

FAILURE ANALYSIS REPORT
Sheet \qquad of 6

Dewpoint Test: This test was performed to check the level of $\mathrm{H}_{\mathrm{O}} \mathrm{O}$ contamination. The graphs of $I_{\text {CB }}$ versus temperature (0 to $70^{\circ} \mathrm{C}$) were prepared during the analysis. The graphs show that the low point of the leakage current occurred at $50^{\circ} \mathrm{C}$ which represented the elimination of the $H_{2} 0$ component of the leakage current.
-40

C - B LEAKAGE - In Nanoamperes.
GRAPH OF EXPECTED ITO LEAKAGE
OF DEVICE CONTAINING $\mathrm{H}_{2} \mathrm{O}$ IN
CAP EQUIVALENT TO SATURATED VAPOR PRESSURE AT $50^{\circ} \mathrm{C}$.

(3) Sum of (1) plus
(4) Experimentally determined leakage for this unit.
Calculated leakage due to $\mathrm{H}_{2} \mathrm{O}$ - normal ized at $25 \mathrm{nA} ., 25^{\circ} \mathrm{C}$ Assuming a constant salt content in $\mathrm{H}_{2} \mathrm{O}$ and complete evaporation of all liquid at $50^{\circ} \mathrm{C}$.

FAILURE ANALYSIS REPORT
 Sheet
 \qquad of 6

$\mathrm{I}_{\mathrm{CBO}}$ behavior with $\mathrm{H}_{2} \mathrm{O}$:
$I_{\text {CBS }}$ is made up of at least two components. It was assumed that ${ }^{\text {COO }}$ channel current component was present since channels were dispersed by the wet condition without a voltage stress.
a) The first component is from charge generation of carriers in the depletion layer, the normal junction reverse current which increases exponentially according to the equation.

$$
\mathrm{I}_{\mathrm{cg}}=\mathrm{KT} 3 / 2 \quad e^{-\mathrm{EG} / 2 \mathrm{k} T(\operatorname{Ref} .1) \quad} \begin{aligned}
& \mathrm{K} \text { is a constant } \\
& \mathrm{T} \text { is }{ }^{\circ} \mathrm{Kelvin}
\end{aligned}
$$

Curve 1 shows a normalized plot of $\mathrm{E}_{\mathrm{G}}=1.21 \mathrm{ev}$ $I_{\text {sj }}$ vs - a typical charge genera$S_{i}^{G}=$ band gap energy tigon starting with a value of Ina © $k^{1}=$ Boltzmann's con$25^{\circ} \mathrm{C}$. stan
$\mathrm{ev} / \mathrm{o}_{\mathrm{K}}$
b) The second component is from conduction through layers of condensed $H_{2} O$. This will contribute a large leakage component if the $H_{0} O$ has condensed on a critical surface such as the glass beads of the header and if any salts are present (most likely even on cleanest parts). If it is assumed from the low point in tie $D \in w$ point test that all the $\mathrm{H}_{2} \mathrm{O}$ has evaporated at $50^{\circ} \mathrm{C}$, it is possible to estimate how much condensation takes place at lower temperatures. If conductivity of the solution, or condensed $H_{2} O$, would remain constant with temperature the conductance or leakage through the $\mathrm{H}_{2} \mathrm{O}$ would be directly proportional to the amount of $\mathrm{H}_{2} \mathrm{O}$ condensed. The amount of $\mathrm{H}_{2} \mathrm{O}$ condensed is estimated as the saturated vapor pressure @ $50^{\circ} \mathrm{C}$ minus the vapor pressure at any lower temperature. Thus, $H_{2} 0$ cond. $=92.5 \mathrm{~mm}-\mathrm{Vp}_{\mathrm{T}}$.

However, $H_{2} O$ conductivity falls very rapidly with decreasing temperature so that the decreasing temperature, while causing more $\mathrm{H}_{2} \mathrm{O}$ to be deposited, is being compensated by the decreaseing equivalent conduction of the $\mathrm{H}_{2} \mathrm{O}$.

Thus, a figure of merit for the level of $H_{2} O$ leakage component $=$ Quantity $H_{2} O$ condensed x conductivity $=$ ($92.5-v p_{\mathrm{T}}$) $\times \mathrm{L}$

FAILURE ANALYSIS REPORT

Sheet \qquad of \qquad

In the following calculation, conductivity (L) is estimated as follows:

A 1 ppm solution of NaCl is assumed to be formed by the condensed liquid. 1 ppm of NaCl is a concentration of 1.71 x 10^{-2} milli equivalent/liter - the constant factor to be multiplied by $_$. , the equivalent NaCl conductance at any temperature, to give umho/cm ($\mathrm{I}_{\mathrm{NaCl}}$) the conductance of the NaCl ions directly. Total conductance L is the sum of the NaCl and $\mathrm{H}_{2} \mathrm{O}$ ion conductances. Total $\mathrm{L}_{\mathrm{T}}=1.71\left(10^{-2}\right)(\wedge)+\mathrm{L}_{\mathrm{H}_{2} \mathrm{O}}$ (at any temperature).

$\stackrel{\text { Temp }}{ }{ }^{\circ} \mathrm{C}$	mm say Ref. 2	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O} \\ & \text { conden } \\ & \text { sed } \\ & (92.5- \\ & \mathrm{vp}) \end{aligned}$	$\left\lvert\, \begin{gathered} \frac{\mathrm{L}_{\mathrm{H}} \mathrm{O}}{} \\ \frac{\mathrm{mmho}}{\mathrm{Cm}} \\ \mathrm{Ref} .3 \end{gathered}\right.$	$\frac{\text { cm }}{\substack{\text { g equiv } \\ \text { Ref. } 4}}$	$\left\{\begin{array}{l} \mathrm{L}_{\mathrm{NaCl}} \\ \frac{\mathrm{umbo}}{\mathrm{~cm}} \\ .0172 \end{array}\right.$		Leakage $\begin{aligned} & \mathrm{I}_{\mathrm{H}_{2} \mathrm{O}} \\ & =\mathrm{L} x\left(\mathrm{H}_{2} \mathrm{O}\right. \\ & \text { condensed }) \end{aligned}$
0	4.57	87.9 mm	. 012	67	1.15	1.16	102
10	9.2	83.3	. 0227	90	1.54	1.56	130
15	12.8	79.7	. 031	102	1.75	1.78	142
20	17.5	75	. 0435	113.8	1.94	1.98	148
25	23.7	68.8	. 055	126.4	2.17	2.22	153
30	31.8	60.7	. 077	140	2.4	2.47	150
35	42.1	50.4	. 091	153	2.62	2.71	136
40	55.3	37.2	. 111	168	. 2.88	2.99	111.0
45	71.9	20.6	. 142	183	3.14	3.28	67.6
50	92.5	0	. 18	198	$3 \cdot 381$	3.56	0

The last column is then normalized at a leakage value of 25 na @ $25^{\circ} \mathrm{C}$ for plotting as Curve 2.

Ref. 1: A. B. Phillips Transistor Engineering pg. 132 McGraw Hill.

Ref. 2: Handbook Phys. \& Chem.
Ref. 3: Conductivity of Pure $\mathrm{H}_{2} \mathrm{O}$ - Mixed Bed Deionization of $\mathrm{H}_{2} \mathrm{O}$ - Monet Chem. Eng. Progress Vol. 52 \#7, Pg. 301.
Ref. 4: Equivalent conductance of Na Cl from Handbook of Phys. \& Chem., Pg. 2357 - Calculated from ion conductances.

FAILURE ANALYSIS REPORT

Sheet \qquad of Final

The plot of this expected leakage, last column and Curve (2), vs. temperature gives a peak value at about $25^{\circ} \mathrm{C}$. A difference between the experimental curve (4) and the theoretical curve expected from the sum of $H_{2} O$ leakage $+I_{c g}$ Curve (3), can be compensated for if a constant salt conceffration (1ppm) is not assumed, but the interaction of different concentrations in different areas is assumed. In practice, low temperature condensation must be more complete than that above $25^{\circ} \mathrm{C}$, thus raising conduction (L) at lower temperatures.

Further Confirming Observations:
Following dew point tests the device was decapped. The cap was found to be oxidized, again confirming the presence of oxidizing gases, such as $\mathrm{H}_{2} \mathrm{O}$. $\mathrm{H}_{2} \mathrm{O}$ ordinarily will oxidize nickel very slowly. This unit, however, had undergone many hours of high temperature stressing.

FAILURE ANALYSIS REPORT

Sheet 1 of 2

Unit No.

A 528
Test Cell No.
419-201

Process
A
Failure Mode Category
Faulty Processing

Summary of Analysis: The cause of failure was a bulk degradation. The failure indicator was $I_{E B O}$ degradation after the initial step of stress screen.

Data Indication:
$I_{\text {EBB }}$ degraded after the first step stress. Although $h_{F E}$ shows a severe drop after the $250^{\circ} \mathrm{C}-30 \mathrm{~V}$ stress, $\mathrm{BV}_{\mathrm{CEO}}$ does not show any corresponding increase. Thus, the failure does not tie in with a real surface degradation of the emitter junction. In subsequent tests, $h_{F E}$ recovered while the $I_{E B O}$ failure still persists, indicating the probability of a bulk leakage characteristic.

Lab measurements show this condition also. A persistent bulk degradation condition appears to be indicated. Surface recombination (h_{FE}) is not degraded, but $5 \mathrm{~V} \mathrm{I}_{\mathrm{EBO}}$ condition is increased.

Prepared by:
$\frac{\text { Alfred Pac }}{\text { Faillare Analysis Engineer }}$
Date:

Bridge from manufacturing process. Leakage developed through thin emitter oxide.

Decapping:

See photo. Bulk degradation is an aluminum bridge extending from base ring to EB junction. High $I_{E B O}$ leakage is through the emitter oxide. The bridge is not a gold alloy and is not under the oxide. A $10 \% \mathrm{KOH}$ rinse was able to completely dissolve the bridge. Leakage developed by a metallic diffusion mechanism at high temperature through the thin emitter oxide.

Conclusion:

Definite failure would be screened out by second step stress. Noise at 100 kc is very low (in the 5 th percientile) on initial. test but became average during the test.

FAILURE ANALYSIS REPORT

Unit No.	Test Cell No.	Process	Failure Mode Category
A 557	$419-203$	A	B-2-a

Summary of Analysis: The cause of this failure has been determined to be an emitter-base short. The failure indicator was an h_{FE} degradation at the 1000 hour life test readout.

Data indicates $h_{F E}$ failure at 1000 hours, 500 mW life test. Test Data ($I_{\text {EDO }}$): Indicates a dead short, 2 ohms. Decap:

A gold bridge has been biased from the base bond into the emit-ter-base junction (see photos). This is usually due to a runaway condition. In this case, oxide chips are seen in this area (see photo 1).

Photo 1.

Prepared by:

Date: \qquad
\qquad

Photo 1:
Base bond area after test. Note gold bridge (see arrow) causing emitter-base short and an apparent oxide defect above it. The gold bridge did not initiate in the chipped section.

Photo 2
Etching:
Photos 2 and 3 show extensive chipping from TCB operation. Removal of metal shows cracks have propagated into the silicon. Source of $h_{\text {FE }}$ degradation and eventual short is this area of cracked and ${ }^{\mathrm{FE}}$ strained Silicon. Photo 2 shows intermediate etch operation. Selective etching of base wire in KCN - KOH solution 3 volts (+) on base.

Smaller darker area is area of original bond.

Boundary of Au-Al intermetallic growth

Gold bridge under oxide (a runaway)

Photo 3 - Etch completed

FAILURE ANALYSIS REPORT

Photo 3:
Complete removal of metal in base bond area is shown. Short has appeared in this area in which a number of oxide chips have been identified growing out of the bond operation.

Conclusions:
Emitter-base shorts on life tests are caused by transients or by increases in I_{E} which will set up a reverse bias on the emitterbase junction. It is assumed in this case, that emitter-base runaway was accelerated or occurred at an earlier voltage than would have been the case for a device with no strains caused by the bond operation.

FAILURE ANALYSIS REPORT	Sheet 1 of _2 2		
Unit \&o.	Test Cell No.	Process	Failure Mode Category
B 305	$419-232$	B	B-3-a

Summary of Analysis: Failure was caused by a bulk alloy degradation which resulted in an $I_{\text {EBO }}$ failure at the 1500 hour point of the life test.

Test Data Indications
All readings at 3000 hour appear to be faulty. Unexplainable $h^{\text {FF }}$ increase at 0 hour - no correlation with BV ${ }_{C E O}$. Degradation aE 168 hour. Data correlates $B V$ CEO increase and $h_{F E}$ down severely. I ${ }_{\text {FBD }}$ not degraded untif CEO_{500} hour. $\mathrm{V}_{\mathrm{SAT}} \mathrm{FE}_{\mathrm{degraded}}$ at 2000 and $3000^{\text {Bh }}$ hour readout.

Failure Analysis Laboratory Investigation:
$I_{\text {EBO }}$ measures as severely degraded. A bakeout at $300^{\circ} \mathrm{C}$, decapp1ng and repeat baking did"not change $I_{E B O^{\circ}}$ A bulk alloy type degradation was indicated. This must have started at 168 hours and progressed throughout the 700 mW test.

Prepared by:

Date: \qquad

FAILURE ANALYSIS REPORT

Photo shows emitter region has been operating at a very much higher temperature than the base. The aluminum is completely eroded off by chemical oxidation or by thermal operation at temperatures greater than $550^{\circ} \mathrm{C}$. Destruction of aluminum is partially responsible for $\mathrm{V}_{\mathrm{SAT}}$ increase.

FAILURE ANALYSIS REPORT

Sheet 1 of 2

Unit No.	Test Cell No.	Process	Failure Mode Category
B 354	$419-233$	B	E-8-b

Summary of Analysis: Failure was caused by an embedded conductive filament from collector to base. The failure was indicated as an $I_{\text {CBS }}$ failure at the 168 hour readout on life test.

Test Data:
Data indicated the existence of a collector-base short of about 3 megohms. $\mathrm{BV}_{\mathrm{CEO}}$ equals approximately 7 V at $100 \mu \mathrm{a}$ due to the intense emitter forward bias effect of the collector-base resistance. $h_{\text {FE }}$ is slightly increased at $20 \mathrm{ma} \cdot I_{C}$ and 5 V . An increase of $100 \mu \mathrm{a}$ at the 20 ma level is barely detectible.

Failure Analysis Laboratory Investigation:
Lab measurement indicated no failure, not short in any respect. The unit was decapped. Investigation and measurements could not locate any intermittence or faulty placement of wires which could intermittently short to case or pellet. Wires were spaced away from the pellet and case. $\mathrm{H}_{2} \mathrm{O}$ tests on pellet showed it to be extremely stable in $I_{C B O}, h_{F E}$ and other parameters. Pellet instability due to surface sensitivity is therefore unlikely.

Pellet inspection and etching (see photos on sheet 2) finally showed the problem to be a filament of conductive material firmly imbedded in the aluminum base and shorting into the pellet edge.

Prepared by:

FAILURE ANALYSIS REPORT

Sheet_2 of Final

Pellet data indicated short. Lab electrical tests showed all parameters stable, low leakage and pellet very stable to $\mathrm{H}_{2} \mathrm{O}$ vapor and electrical stressing. Wires were all well placed and could not have intermittently shorted.
Note the filament resting to the left of the emitter wire approximately 0.15 mil wide and running from collector edge to base.

Pellet was washed in solvents, $\mathrm{H}_{2} \mathrm{O}$, filament still intact. Following a $10 \% \mathrm{NaOH}-30 \mathrm{sec}$. etch, filament is seen to have moved toward the right. The lower edge is still intact contacting the base ring area. It is evident how a 3 megohm short developed from C to B. The filament appears. to have been an organic fiber which carbonized in power testing and became conductive.

To further identify material of filament, $\mathrm{HCL}, \mathrm{H}_{2} \mathrm{SO}_{4} ; \mathrm{HNO}_{3}$ solutions were used to clean surface. All failed to remove the filament. Finally a dilute HF wash lifted it off and left a clean undamaged oxide structure under it. Filament is probably organic, cellulose lint, from chemical reactions and appearance.

FAILURE ANALYSIS REPORT

Sheet 1 of 2

Unit No.	Test Cell No.	Process	Failure Mode Category
B 359	$419-222$	B	A-1-a

Summary of Analysis: The failure indicator was an $h_{F E}$ and $\mathrm{BV}_{\mathrm{CEO}}$ degradation at the 680 hour life test readout.

Data shows $h_{F E}$ degradation at 680 hours after previous history of improving.

Laboratory Investigation:

Confirmed degraded h_{FE}			
h_{FE} on receipt	2	100 na I_{C} 47	BV CEO 120 V
After $300^{\circ} \mathrm{C}, 20$ hour bake	8.2	73	95 V
After decap and bake	14.5	95	90 V

Unit is showing steady improvement in $h_{F E}$ in laboratory measurements

Prepared by:

Date: \qquad

Visual inspection of pellet shows normal appearance.
i

FAILURE ANALYSIS REPORT

Unit No.	Test Cell No.	Process	Failure Mode Category
B 446	$419-231$	B	D-1-a

Summary of Analysis: The cause of this failure has been determined to be base lead opening at the 2000 hour readout of the life test. The failure indicator was an $h_{F E}$ degradation.
Test Data:
At Step 5 - high $h_{F E}$ reading is inconsistent and probably incorrect. Data after Step 11 is consistent and indicates an open base at 2000 hour readout. $I_{C O}$ readings are equipment leakage, $h_{F E}$ reading 20 is an automatic indication of unit with no $h_{F E} \cdot V_{\text {(SASS) }}$ are not readable. $\mathrm{BV}_{\mathrm{CEO}}$ not involving base still reads.
Failure Analysis Laboratory Investigation:
Decapping shows a poor bond had been made on the base post. Very little intermetallic formation is in evidence at all three bond marks. No real contact had been made to gold. Probably due to contamination on post or oxide on aluminum. (See photos)

Photo 1

Prepared by:
 Date: $8 / 27 / 65$

FAILURE ANALYSIS REPORT

\qquad of Final

Base post with pressure points from wire bonding showing. Lack of intermetallic formations indicates poor initial contact had been made.

Photo 2

Enlarged photo of emitter post. Aluminum emitter wire still bonded to gold plated post. Hote no Au-Al intermetallic is in evidence.

Photo 3

FAILURE ANALYSIS REPORT sheet 1 of Final

Unit No.	Test Cell No.	Process	Failure Mode Category
B 450	$419-222$	B	Not a failure

Summary of Analysis: This device failed because the external emitter lead broke off. The device was not otherwise damaged.

Collector-Base parameters were satisfactory. $\quad\left(B V_{C B O}=122 \mathrm{~V}\right.$,

The failure was determined to be metal fatigue.

Prepared by:
Aloud Poe
Fail/are Analysis Engineer
Date: $8 / 27 / 65$

FAILURE ANALYSIS REPORT

Sheet 1 of \qquad

Unit No.	Test Cell No.	Process	Failure Mode Category
B 515	$419 \div 227$	B	D-1-a

Summary of Analysis: The cause of this failure has been determined to be a high resistance (Gold post - Aluminum wire) contact at emitter. The failure indicator was an intermittent $h_{F E}$ and $V_{S A T}$ condition.

Indication of an intermittent condition leading to catastrophic performance was seen after the 700 mW stress at the 680 hour readout. At this time, indication of a shorted collector to emitter is observed but no $I_{\text {IBO }}$. At the 1000 hour readout, the unit appears to recover. After 20 kg centrifuge, the collector to emitter appears to be open. $V_{S A T}$ data indicates an increase in contact resistance.

Laboratory measurements:
Unit was baked for 16 hours at $300^{\circ} \mathrm{C}$ to determine $h_{F E}$ behavior. Emitter post contact opened completely under this stress. $h_{F E}$ increased from its slightly degraded value by re-establishing emitter contact with a probe. The cause of intermittence was determined to be a poor emitter post contact.

Prepared by: Date:

FAILURE ANALYSIS REPORT Sheet_2 of Final

Photo of Emitter Post \& Bond.

FAILURE ANALYSIS REPORT

Sheet 1 of 2

Unit No. B 541	Test Cell No. $419-231$	Process B	Failure Mode Category A-1-a, E-2-a

Summary of Analysis: Failure was caused by a hermetic seal leak and was indicated by a steadily increasing $h_{F E}$ on life test.

Data:
Data indicates a steady increase in $h_{F E}$. Increasing h_{FE} in a device frequently is indicative of operation under an oxygen or air ambient, ie, a hermetic leaker will frequently indicate this behavior.

Hermetic Tests:
Step 1. 4 hour boil in $H_{2} \mathrm{O}$. Floating E potential and $I_{\text {CB }}$ response gave a positive indication of leak.
Step 2. HCL rinse to remove surface salts. Unit further degraded. Indication of HEl trapped in deep pore.
Step 3. Visual inspection shows glass cracked at emitter.

Prepared by:
Aired Pore
Failure Analysis Engineer
Date: \qquad $9 / 14 / 65$

FAILURE ANALYSIS REPORT Sheet 2 of Final

Photo 1
Step 4. Decap (see photo 1). Shows cap oxidized confirming leak. Pellet has not been damaged visually by exposure to ambient.
E_{F} readings and visual inspection indicate h_{FE} increase caused by leak in glass bead.

FAILURE ANALYSIS REPORT

Sheet 1 of 2

Unit No.	Test Cell No.	Process	Failure Mode Category
B 543	$419-222$	B	A-1-a

Summary of Analysis: Failure was caused by a surface change in the bess, indicated as $h_{F E}$ failure at the 2000 hour readout on life test.

Data indicated severe $h_{F E}$ degradation at 3000 hour. $h_{F E}$ below readable level of 20.

Failure Analysis Laboratory investigation:
Test data indicated severe $h_{F E}$ degradation. Laboratory tests confirmed h_{FE} degradation.
 repeat bake-uncapped

Prepared by:
Date:

FAILURE ANALYSIS REPORT \qquad 2 of \qquad 2

The $h_{F E}$ degradation under high power represents a surface change in the base, toward N potential. The laboratory bakes represent surface potential changes back to the original condition. h_{FE} in air recovers more effectively than $h_{F E}$ in cap. Breakdown voltages also follow the $h_{F E}$ recovery and redistribution of charges on the collector surface.

FAILURE ANALYSIS REPORT Sheet 1 of 2

Unit No.	Test Cell No.	Process	Failure Mode Category
C 61	$419-247$	C	Not a failure

Summary of Analysis: Analysis of test and laboratory data indicates that this unit did not fail. The test readout (680 hour, 400 mW @ $150^{\circ} \mathrm{C}$) was obviously in error.

Test data analysis:
400 mW @ $150^{\circ} \mathrm{C}$

The only serious deviation from consistent data was the 680 hour readout. The following readouts of the same test stress were normal.

The 680 hour readout data was:
Normal

I_{CBO}	297 na	less than 1 na
$\mathrm{BV}_{\mathrm{CEO}}$	63 V	110 V
$\mathrm{~h}_{\mathrm{FE}}$ e 20 ma	96.6	59
$\mathrm{~V}_{\mathrm{CE} \text { (sat) }}$.097 V	.116 V

prepared by: Ached
Failure Analysis Engineer
Date: \qquad

FAILURE ANALYSIS REPORT

A drop in $V_{\text {CE }}$ sat) of this magnitude is virtually impossible unless the unit is SHOrted from collector to emitter. An increase in h, ${ }^{\text {SE }}$ as indicated, goes along with a decrease in $B V_{C E O}$ and again would go along with a collector - emitter increase in conductance, but by a much higher resistance.

For example:
For the $\Delta B V_{C E O} \quad R_{C E}=\frac{63 V}{.1 m a}=630,000$ ohms

For $\Delta h_{F E}$

Note: At $0 V_{C B}$, base lines $V_{C B}$ coincide for collector to emitter short.

The different I_{B} readings represent a shift in base line due to a collector to emitter short approximately equal to

$$
R_{C E}=\frac{5.0 \mathrm{~V}}{7.3 \mathrm{ma}}=685 \mathrm{ohms}
$$

The calculated $R_{C E}$ shorts for the $\Delta h_{F E}$ and $\Delta \dot{B V}_{C E O}$ do not coincide. Therefore the 680 hour readings must be assumed to be erroneous.

FAILURE ANALYSIS REPORT

Sheet 1 of \qquad 2

Unit No.
C 98
Test Cell No.
419-247
Process
Failure Mode Category
C
B-2-a

Summary of Analysis: The cause of this failure has been determined to be a cracked junction under the intermetallic formations of the bonds. The failure indicator was an $I_{\text {CBO }}$ degradation at the 680 hour readout on life test.

Laboratory Analysis:
All electrical data in laboratory indicates a cracked junction, through the emitter. This includes:

1. degraded $h_{F E}$ at low currents
2. unstable emitter-base reverse characteristic
3. unstable $I_{C B O}$ and $I_{\text {CES }}$ reverse characteristic and $I_{C E S}$ not coinciding with $I_{\text {BO }}$

Readings confirmed on decapped, baked unit. High leakage was not caused by $\mathrm{H}_{2} 0$ across glass beads of header. This was confirmed by disconnecting the emitter wire $-\mathrm{E}_{\mathrm{F}}$ disappeared.

Prepared by:

Date:

FAILURE ANALYSIS REPORT Sheet 2 or Final

FAILURE ANALYSIS REPORT

Sheet 1 of 3

Unit No.	Test Cell No. $410-246$	Process	Failure Mode Category Did not fail in Lift Test B-2-a in Lab Tests

Summary of Analysis: The cause of degradation in lab tests has been determined to be a crack which developed near the periphery of the gold-aluminum base bond intermetallic, apparently from differential expansions and contractions of the intermetallic and silicon beneath it.
$h_{F E}$

Test data analysis:
Data indicated small shifts in $h_{F F}$ at $200^{\circ} \mathrm{C} @ 30 \mathrm{~V}$ and 20 kg levels. Centrifuge should have no effect on $h_{F E} \quad V_{B E}$ (sat) readings are within the emitter specification of $15-25 \%$ shift.

Laboratory measurements:
$h_{F E}:$ Emitter junction stable throughout laboratory tests. No indication of cracks.
$I_{\text {CEO }}$ stable in bakeout at $300^{\circ} \mathrm{C}$. Unit was decapped. In air bake, the unit was very unstable.

Etching off leads and contact showed a small crack in base, not in emitter. (see photos)

Prepared by:
$\frac{\text { Adored are }}{\text { Failure Analysis Engineer }}$
Date: \qquad

Conclusions:

Unit did not really degrade in life tests. Laboratory tests in uncapped condition rather than in capped ambient failed unit because of crack in junction area.

;
Unit did not show a degraded $I_{\text {CBO }}$ in life tests. Some shift in $h_{\text {FE }}$ was due to surface potential changes. At the $200^{\circ} \mathrm{C}$ e 30 V stress $h_{\text {FE }} \mathrm{FE}$ increased 12.5\%. This was within limits. In laboratory tests, severe degradation and $I_{C B O}$ instability was seen after $300^{\circ} \mathrm{C}$ bake in air.

Etching in KOH and KCN to remove contact metals. A small knob of gold is still present in emitter contact area. Pitting indicates deep alloying of Eluminum to silicon.

Note small crack just under base contact bond. This was responsible for $I_{C B O}$ degradation. No cracks were seen in the emitter.

Discussion of results:
This device was stable under life tests performed at $200^{\circ} \mathrm{C}$ or less. In laboratory, the device was heated to $300^{\circ} \mathrm{C}$ and then showed the severe degradation indicated by devices from process C. The characteristics were very unstable indicating cracks in junctions.

Etching showed the crack developed near the periphery of the gold-aluminum intermetallic apparently from differential expansions and contractions of the intermetallic and silicon beneath it.

FAILURE ANALYSIS REPORT

Unit No.	Test Cell No.	Process	Failure Mode Category
C 182	$419-256$	C	A-5-a

Summary of Analysis: The cause of this failure has been determined to be the effect of a 'microplasma site' in the collector-base junction. The failure was indicated as a BV $C E O$ shift at the 340 hour readout of the life test.

Test Data Analysis:
Increase in $B V_{C E O}$ was seen in data during life test.
Laboratory Measurements:
Unit had a very low breakdown due to a microplasma type characteristic. $\mathrm{BV}_{\mathrm{CEO}}$ 'snapped in' at this same artifically low breakdown voltage. It is normal for $\mathrm{BV}_{\mathrm{CBO}}$ to vary by as much as lOW in life tests due to minor surface potential changes. In this case, ${ }^{\text {CV }}$ CEO followed these minor changes directly. BV CEO was not increasing as a result of gain degradation which is the usual mechanism for $B V_{C E O}$ shifting:

Bakeout at $300^{\circ} \mathrm{C}$ moved BV CBO from 78 V to 63 V . As in the life test, $B V_{\text {CEO }}$ followed this move in $B V_{C B O}$

Visual inspection clearly showed a "microplasma site". A severe dislocation seen in the collector-base junction completely distorted the diffusion pattern. Small changes in surface potential at this site caused appreciable changes in the avalanche voltage.

Prepared by:

Failure Analysis Engineer

Date: \qquad

FAILURE ANALYSIS REPORT

Junction defect
causing microplasma like degradation in breakdown.

FAILURE ANALYSIS REPORT

Sheet 1 of \qquad

Unit No.	Test Cell No.	Process	Failure Mode Category
$C 233$	$419-246$	C	B-2-a

Summary of Analysis: The cause of this failure has been determined to be a crack in the collector-base junction. The failure indicator was an $I_{\text {CBO }}$ degradation at the 168 hour life test readout.

Test Data Analysis:
$I_{C B O}$ indicated trouble in the power test, 168 hour readout.
Laboratory Measurements:
$I_{C B O}$ measurements show severe inversion layer condition.
$\mathrm{BV}_{\text {CEO }}$ degraded - follows from high leakage $I_{C B O}$.
Bake: Collector junction completely recovered. After exposure to air, unit started to take on severe instability characteristic of "C" devices. $I_{C B O}$ drift (no $I_{C E S}$ drift or $h_{F E}$ change) indicated the collector-base junction was cracked.

Prepared by:

Allied Po Failure Analysis Engineer

Date:

Decapped unit:

Cracks have appeared inside of pellet, not under bond as in other "C" units. These cracks believed to have been in device originally, contributing to "surface degradation" of unit.

Summary of Analysis: The cause of this failure has been determined to be a short between the base wire and pellet edge. The failure indicator was an $I_{C B O}$ degradation at the 340 hour life test readout. Test Data Analysis:

Data indicates an apparent short at the 340 hour readout during the 400 mW test.
Laboratory Measurements:
Confirmed a collector-base short of approximately 14 ohms. Decapped Unit:

Examination showed the base wire in contact with pellet edge. Confirms level of short measured. After probing wire of pellet, the unit completely recovered. Short occurred by wire sagging down during heat-power tests.

Prepared by:

Date:

FAILURE ANALYSIS REPORT
Sheet 1 of 3

Unit No.	Test Cell No.	Process	Failure Mode Category
C 288	$419-255$	C	A-5-a

Summary of Analysis: The cause of this failure has been determined to be a defect in the base aluminum ring - probably a microcrack or faulty diffusion site which caused localized current hogging and $I_{\text {CB }}$ increase by surface inversion at this "hot spot".

Test data analysis:
At the start of the test, a high value of $B V_{C E O}$ (140V) and a low value of $h_{F F}(=80)$, indicated a degraded condition of gain. During life test $\underset{\text { at }}{ } 700 \mathrm{~mW}$, emitter-base surface potential changes improved gain, concurently lowering $\mathrm{BV}_{\mathrm{CEO}}$. Evidentially the 1000 hour readout is faulty.
$I_{\text {CBO }}$ was failing at 168 hours of 700 mW stress. $\mathrm{I}_{\mathrm{Cl}} \quad 12 \mu \mathrm{a}$ Laboratory measurements:

On receipt, $I_{\text {CBS }}$ characteristics
$V_{C B}$ showed an inversion layer, high $\mathrm{BV}_{\mathrm{CBO}}$ showed collector is inverted to intrinsic resistivity.

After $300^{\circ} \mathrm{C}$ for 16 hours bake

Prepared by:
Date:

FAILURE ANALYSIS REPORT

Sheet_2_of 3
$I_{\text {CBO }}$ level has recovered - inversion layer is gone. The collector isB back to N surface potential sending avalanche breakdown to 170V. Bakeout reveals a microplasma type defect may be the source of the high leakage seen after power life.

Visual inspection and voltage drive under reverse bias revealed a "hot spot" location in the aluminum ring. This area was responsible for current hogging during life test and is the probable location of inversion layer due to high local temperature operation.

Photo 1

Photo 1 shows device after life test and stressing in the laboratory at 2 watt level (see collector-base area). A short occurred in the aluminum ring just under the emitter wire and a bridge blasted across, base to emitter, at the base bond. This permanent damage occurred at power levels far below the capability of good devices. Base was in series with a 5 K ohm resistance.

The base burn-out was the site of the microplasma like breakdown noted in the electrical characteristics. This area acted as a current hog during both life testing and during burn-out in the laboratory. Current density in this spot was high enough to raise local temperature greater than $575^{\circ} \mathrm{C}$ (the eutectic temperature of aluminum-silicon). Inversion occurred at this area during life test also due to the higher operating temperature. Inversion was " P " surface on collector since this would act to remove effective

FAILURE ANALYSIS REPORT

 of Finaljunction from this localized defect area. After "recovery bake" in laboratory, junction moved back to original metallurgical location, intersecting the defect area again and giving the "microplasma" type breakdown noted.

Photo 2
Photo 2 shows device after etch in $10 \% \mathrm{NaOH}$ to clear away aluminum. Emitter wire has been moved to fully expose the "hot spot' in the aluminum ring.

Aluminum smear in the original photo 1 did not contribute appreciably to failure.

Emitter-base short bridge occurred after the collector-base short and is not related to any reliability degradation in this case.

FAILURE ANALYSIS REPORT

Sheet 1 of 4

Unit Fo.	Test Cell No.	Process	Failure Mode Category
C 293	$419-242$	C	Not a Failure

Summary of Analysis: This unit did not fail during the High Stress Screen or the 700 mW life test. A Laboratory analysis was undertaken to determine if any differences could be detected between this unit and other Process C devices, a majority of which failed under high stress level tests.
$h_{\text {FE }}$
Behavior in Test

63

Conclusion: The mechanism which caused the other highly stressed units to fail (microcrack formation under the bonds) was also found in this device. In this case, the microcrack condition did not cause degradation of the parameters, although laboratory measurements at current levels lower than those used in parameter tests indicated the presence of these cracks.
Laboratory Measurements:

Initial Measurements

1) The $h_{F E}$, at the $100 \mu \mathrm{~A}$ level of I_{C}, was noted to appear degraded. This is a possible symptom of microcracks in the emitter.
Prepared by:
$\frac{\text { ACNed are }}{\text { Failure Analysis Engineer }}$
Date: \qquad

FAILURE ANALYSIS REPORT

Sheet 2 of 4
2) After a $300^{\circ} \mathrm{C}$ bake (similar to the stress screen), there was a large improvement noted in the $100 \mu \mathrm{~A} \mathrm{~h}_{\mathrm{FE}}$.
3) After decap and exposure to air: $B V_{C B O}$ was considerably degraded.
4) After $300^{\circ} \mathrm{C}$ bake in air: Extreme instability of I was noted. Devices acted cracked in the collector-base. junction.
5) Photos: Etch photos were taken. Cracks appeared under bond - sections were taken.

Photo 1. Mag 103X

Unit showed characteristics of a cracked collector-base junction. No cracks are visible in this photo. The following phótos show cracks surrounding bonds, shown up after chemical removal of deeply alloyed aluminum contacts.

FAILURE ANALYSIS REPORT

Photo 2. Mag 148x

Note cracks surrounding the base bond under the intermetallic formation of photo 1 . Aluminum and intermetallics were chemically removed by a cyanide etch.

Section to show up cracks was made as shown in following photos.

FAILURE ANALYSIS REPORT \qquad

Photo 3

This is a top view of the photo 4 specimen potted in translucent compound to show exactly where the section intersected the specimen surface. Note cracks.

Cross section through base bond of C 293. Section shows intersection of cracks at surface with dimensions corresponding to those in photo 2. Intermetallic growth greater than 1 mil high.

FAILURE ANALYSIS REPORT

Unit No.	Test Cell No.	Process	Failure Mode Category
C 301	$419-242$	C	Not a failure
Summary of Analysis: This device did not fail.			

Test data analysis:
$\Delta h_{F E}$ change between $300^{\circ} \mathrm{C}$ bake and 20 kg stress indicates calibration error rather than a real change.

This device, a survivor of high stress testing, was used to study the oxide structures of the Process C units.

Prepared by: $\frac{A / 2 e d / a c}{\text { Failure Analysis Engineer }}$
Date: \qquad 10/20/65

FAILURE ANALYSIS REPORT

Proto 1

Photo 1 is of a "C" type unit used for oxide thickness studies. This particular device survived $300^{\circ} \mathrm{C}$ bake without developing "crack" electrical characteristics.
\qquad

Masked by wax

To determine oxide thicknesses, the left side of the pellet was coated with parafin wax and the unit then etched in concentrated BF for 25 seconds. SiO_{2} is completely removed in the unmasked area and the heavy undercutting action of the acid makes counting of interference fringes and calculation of BiO_{2} thickness relatively easy.

Note 1: The dark area inside the emitter is not residual sio but an electrochemical deposition of Si film into NT^{T} areat from the HF reaction.

Note 2: The aluminum ring is very deeply alloyed into the silicon and so has not been appreciably removed by the HF treatment.

FAILURE ANALYSIS REPORT

 of FinalNote 3: The collector and base oxides appear to be identical both being 4 interference fringes deep and purple in color - 6300 angstroms.

The emitter oxide is a shade of green thicker than the base collector - $4 \frac{3}{4}$ fringes or about 7100 angstroms thick.

FAILURE ANALYSIS REPORT

Sheet 1 of \qquad

Unit Ho.	Test Cell No.	Process	Failure Mode Category
C 363	$419-255$	C	B-2-a

Summary of Analysis: The cause of this failure has been determined to be cracks in base and emitter bond area. Device was indicated to be an $I_{\text {CBO }}$ failure at the 2000 hour life test readout.

Test Data Analysis:
The very high $h_{F E}$ reading and the high $B V_{C E O}$ reading were contradictory and could very safely be assumed to be incorrect. The contradiction was probably due to faulty equipment. The high $I_{\text {CBC }}$ indicated a real degradation, which probably was due to cracks.

Laboratory Analysis:
Baked at $300^{\circ} \mathrm{C}$ 。 $\mathrm{I}_{\mathrm{CBO}}$ now unstable, h_{FE} improved. No E_{F} or other indications of cracks.

Etch (KOH and KCN); Cracks in base of emitter area were visible (see photos). Emitter bond cracks probably did not penetrate.
Prepared by: $\frac{A / 2 e d \text { Failure Analysis Engineer }}{\text { Fate: } 10 / 1 / 65}$

After decapping - no defects visible to explain increase in $I_{\text {CBO }}$ after 700 mW stress and instability in air after bake.

Bond area cracks

After etching both wires and contacts of pellet using KCN and KOH.

- Cracks in contact surface were visible in base surrounding pellet ball bond. These are probably deep enough to penetrate the collector-base junction. Similar crack areas in emitter were probably more shallow. No emitter cracks were indicated electrically.

FAILURE ANALYSIS REPORT

Sheet 1 of 3

Unit No.	Test Cell No.	Process	Failure Mode Category
C 400	$419-246$	C	B-2-a

Summary of Analysis: The cause of this failure has been determined to be a crack extending across both junctions of the unit. The failure indicator was a small $I_{C B O}$ degradation at the 1000 hour life test readout.
-

- $\quad \hat{h}_{\mathrm{FE}}$

Behavior in Test

Test Data Analysis:
Test data indicated that this unit operated normally until the final 150 kg centrifuge stress. This condition was similar to other failures observed for this process type and was indicative of cracks in the bond area.

Laboratory Analysis:
Failure analysis procedure for this failure was similar to others for this process type, which were concluded to be a crack in a junction. The unit was decapped and sections were made. Visual inspection (see photos) concluded a crack was the cause of this failure.

Prepared by:

$$
\frac{\text { Allied Poe }}{\text { Failure Analysis Engineer }}
$$

Date: \qquad

FAILURE ANALYSIS REPORT

Electrical evidence of cracks in emitter not confirmed by visual inspection.

Photo 2 Mag 60.7X
Photo 2 is a section through both bonds which shows:

1. Separation between Si-Au eutectic solder and header metal. $V_{S A T}$ data does not show this characteristic.

FAILURE ANALYSIS REPORT

2. Shows very shallow diffusion being used.
3. Photo 3 shows a crack under emitter bond, indicated by electrical parameters.

Photo 3 Mag 401X

Concludions:
Slight crack found in analysis contributes to degradation of $I_{\text {CBO }}$ limits. Crack condition characteristic of Process C devices.

FAILURE ANALYSIS REPORT

Sheet 1 of \qquad

Unit No.	Test Cell No.	Process	Failure Mode Category
C 406	$419-255$	C	A-2-b

Summary of Analysis: Device began to show $I_{\text {CBS }}$ degradation of the surface inversion layer type at the 168 hour readout of the life test.

$h_{F E}$ behavior indicates favorable surface potential improvement up to 1000 and 1500 hours. The unit started to degrade slightly after this time. $B V_{C E O}$ is increased corresponding to $h_{F E}$ decrease.
$I_{\text {CO }}$ degradation noted early in 700 mW stress.
Laboratory Measurements:
Shows a typical inversion layer.

Prepared by:
Alfred Poe
Failure Analysis Engineer
Date: \qquad

FAILURE ANALYSIS REPORT

\qquad
Sheet 2 of Final

Severely contaminated header gases and migrating ions will contribute to inversion layer formation

Stains

Photo 1
Decapped:
Note that the header is severely contaminated (photo 1). Device is cracked. However, crack is so severe it is hard to belleve characteristics could have been so good. An emitter crack with no floating emitter response at high voltage is very rare. It will be assumed that the crack occurred in the decap operation. Extreme contamination will contribute to inversion.

Severe crack - assumed caused in decap operation.

FAILURE ANALYSIS REPORT

Sheet 1 of 2

Unit No.	Test Cell No.	Process	Failure Mode Category
C 505	$419-246$	C	B-2-a

Summary of Analysis: The cause of this failure has been determined to be due to junction microcracks developing the bond areas under the gold-aluminum intermetallics. These have resulted in the degrading $h_{F E}$ shown in the chart and increasing $I_{\text {CEO }}$ during 500 mW testing.
h_{FE}

Test Data Analysis:
Gain $h_{\text {FE }}$ started to shift in life test at 1000 hour readout., with ${ }^{\mathrm{FE}} \mathrm{CE}$ increasing and $h_{\text {FE }}$ dropping.
At end ${ }^{\circ}{ }^{2}$ test, $I_{C B O}$ and $h_{F E}$ beth degraded.
Laboratory Measurements:
Although h_{FE} severely degraded, no emitter crack was evident in data.
$300^{\circ} \mathrm{C}$ bake: h_{FE} worse. No emitter crack evident.
Decal and $300^{\circ} \mathrm{C}$ bake: Emitter cracks now in evidence. Strong E_{F} response.

Prepared by:
Alfred Per
Date: \qquad
Failure Analysis Engineer

FAILURE ANALYSIS REPORT Sheet
 \qquad of
 \qquad
 \qquad

Collector oxide stained by uneven defective etch techniques

FAILURE ANALYSIS REPORT

Sheet 1 of 3

Unit No.	Test Cell No.	Process	Failure Mode Category
C 576	$419-242$	C	Not a failure

Summary of Analysis: This unit did not fail during the High Stress Screen or the 700 mW life test. A Laboratory analysis was undertaken to determine if any differences could be detected between this unit and other Process C devices, a majority of which failed under high stress level tests. The mechanism which caused the other highly stressed units to fail (microcracks under the bonds) was also found in this unit. In this case, the microcrack condition did not cause parameter degradation.

\[

\]

Test Data Analysis:
$h_{F E}$ deviations were within specification. Many units measured showed the same pattern of deviation. 150 kg centrifuge reading probably was faulty. Tests did not degrade this device, since all the variations were within the specification.

Laboratory Measurements:

1) Slight E_{F} indication (symptom of cracks)
2) Unit was decapped. Degrading E_{F} was noted. Bake at $300^{\circ} \mathrm{C}$ caused breakdown, $h_{F F}$, floating emitter potential degradation. Emitter cracks became larger or more severe, as a result of this treatment.

Prepared by:

Date:

FAILURE ANALYSIS REPORT

\qquad 3

Photo shows stained header. This contemination did not degrade device.

Section made through emitter

Photo of pellet (photo 1) giving electrical indications of cracked emitter and collector junction. Crack is not visible in photo. Section was made as shown.

FAILURE ANALYSIS REPORT

- Photo 2

Photo 2 shows a section through the bond which reveals a crack under the intermetallic formations of the bond. Intermetallic $\left(\mathrm{Au}_{5} \mathrm{Al}_{2}\right)$ under bond was over 1 . mil thick. The fracture had the appearance of being caused by contraction of metal over it, placing the silicon in tension during the cool from $300^{\circ} \mathrm{C}$.

Type A unit after $300^{\circ} \mathrm{C}$ @ 1000 hour bake

Gold ball bonds were made to A type units and aged. Sections show that the thickness of the intermetallics under bond was 0.25 mil at left and 0.4 at right - less than that formed with C devices. Collector-base junction $=0.32 \mathrm{mil}$.

F. PROGRAM FAILURE RESPONSE CODE

A Failure Response Code, which would be different from the Failure Mode Code, was developed as a convenient means of noting the device response to stress. The meaning of each digit in the code is defined in the following table:

First Group

I	$I_{\text {CBO }}$
2	$I_{\text {EBO }}$
9	BV $_{\text {CEO }}$
13	$\mathrm{~h}_{\mathrm{FE}}$
15	$\mathrm{~V}_{\mathrm{CE}}$ (SAT)
16	$\mathrm{~V}_{\mathrm{BE}}(\mathrm{SAT})$

660 Noise 100 cps , ImA

Second Group
1 Initial Value
2 After lst step
2S lst Step Shift
3 After 3rd Step
3S 3rd Step Shift
4 After 4th Step
4S 4th Step Shift
661 Noise 1000 cps , ImA
662 Noise $1000 \mathrm{cps}, 30 \mathrm{~mA}$
663 Noise $100 \mathrm{Kc}, 30 \mathrm{~mA}$
In Addition, the second group is extended to include Steps 5 through 16 using $5 \mathrm{~S}, 6 \mathrm{~S}$, etc. as the shift items for each step. The second group is extended as follows:

5	$=00$ hours Life Test Readout
6	$=170$ hours Life Test Readout
7	$=340$ hours Life Test Readout
8	$=680$ hours Life Test Readout
9	$=1,000$ hours Life Test Readout
10	$=1,500$ hours Life Test Readout
11	$=2,000$ hours Life Test Readout
12	$=3,000$ hours Life Test Readout
13	$=30 \mathrm{Kg}$ Centrifuge Test Following Life Test
14	$=50 \mathrm{Kg}$ Centrifuge Test Following Life Test
15	$=90 \mathrm{Kg}$ Centrifuge Test Following Life Test
16	$=150 \mathrm{Kg}$ Centrifuge Test Following Life Test

The failure response categories identified as $1,2,3$ and 4 correspond to units that meet the original specifications, units that would meet a normal high reliability end-of-life requirements, 142
units that meet catastrophic limits, and units that shifted beyond catastrophic limits. Thus, each response category identifies a further degree of shift of these critical parameters. The specification limits, or percent shift, which define the response categories are listed in the following table:

	1	2	3	4
$\mathrm{I}_{\text {CBO }}$	10 nA	10-100nA	100-1000nA	$>1 \mathrm{uA}$
$\mathrm{I}_{\text {EBO }}$	10 nA	10-100nA	$100-1000 \mathrm{nA}$	1 uA
$\mathrm{BV}_{\text {CEO }}$	40 V	30-40V	20-30V	< 20 V
BV $\mathrm{CEO}^{\%}$ Shift	15\%	25\%	50\%	> 50\%
h_{FE}	40-120	35-40 \&	28-35 \&	< 28 or
		120-150	150-180	> 180
$\mathrm{h}_{\mathrm{FE}} \%$ Shift	15\%	15-25\%	25-50\%	> 50%
$\mathrm{V}_{\text {CE }}$ (SAT) \% Shirt		15-25\%	25-50\%	> 50\%
$V_{\text {BE }}$ (SAT) \% Shift	15\%	15-25\%	25-50\%	> 50\%

The Failure Response Code is only useful when the raw data is being analyzed, and is included here for completeness. An example of the use of the code is given for the Process A devices which were screened out and not placed on life test.

UNIT NO.	FAILURE RESPONSE CODE
A240	$(1-2-4)$
A285	$(1-2-3)$
AI10	$(1-2-4)(9-2 S-3)(9-2 S-2)$
A186	$(1-2-4)(9-2 S-3)$
A294	$(2-1-3)(2-2-3)(2-3-4)$
A192	$(1-2-4)(9-2-4)$

SECTION V. NOISE STUDY

A. RESULTS OF THE NOISE STUDY

1. Screening to Noise Limits. Figure 3 shows the

 cumulative distribution of noise current for units later found to be good and for those later found to be bad. From this Figure it is possible to see that a limit of 5 picoamperes would have removed 10% of the bad units and 5% of the good units. Progressive lowering of the screening limit could have removed 40% of the bad and 18% of the good. Thus, screening to noise could have removed approximately twice as large a percentage of units which would have later failed as the percentage of units that would have been removed that would not have failed.When the noise was measured after a period of operation, the screen was improved. Figure 4 shows the distribution of the noise readings after the transistor was operated. In this case, a limit of 5 picoamperes would have removed 2% of the good units and 18% of the bad units. At 4 picoamperes, the ratio became 7% of good units versus 42% of bad units. This method is roughly twice as effective as the initial screen.

A test at these low collector currents can result in transistor noise which is comparable to the test equipment noise. A review of the specifications and performance of the QuanTech Noise Analyzer showed that the flattening of the distribution below 3 picoamperes is probably caused by equipment input noise. The use of a higher noise measurement frequency improves the equipment noise ratio but decreases the effectiveness in detecting unreliability. Figure 5 shows the noise distribution comparison of good and failed units when the same transistors are measured initially at 1000 cycles.
2. Correlation of Noise and Transistor Parameters. Noise
is not equally effective as a screen for all failure modes. Figure 6 144
shows the distribution of noise values found for units which later failed $h_{F E}$ and for those which later failed $V_{C E(S A T)}$. The units which later failed $V_{C E}(S A T)$ showed a much lower noise than was expected from the total distribution. The units which later failed $h_{F E}$ did not have the high noise values expected, but did have a significant difference in the mean noise values.

A period of operation is required to produce the higher noise levels found in the units which degrade. Figure 7 shows the effect of a period of operation. When compared with Figure 6, it can be seen that noise increased on all failures, but $V_{C E}$ (SAT) failures had less than the expected noise and $h_{F E}$ failures had more than the expected noise. The $V_{C E}$ (SAT) relation suggests the need for exploring initial noise for very low noise units.
3. Comparative Screening. If the collector current is increased from 5 microamperes to 1 milliampere, and the 100 cycle noise current is used, the ability of an initial test to eliminate units which would later fail can be improved. The following table of values for a lot stressed to a 45 percent failure, shows $I_{\text {CBO }}$ to be the most effective screen. $V_{B E}(S A T) ;$ the upper limit of $h_{F E}$; 1000~, 30 mA noise; 100 cycle; and 1000 cycle, 5 microampere noise could also be effective.

Parameter Measured
No screen
$\mathrm{I}_{\mathrm{CBO}}$ @ $\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$
$I_{E B O}$ ¢ $V_{E B}=5 \mathrm{~V}$
$\mathrm{BV}_{\mathrm{CEO}}$ ¢ $\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA}$
h_{FE} Q $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, I_{C}=20 \mathrm{~mA}$
$V_{C E}(S A T) ~ Q I_{C}=50 \mathrm{~mA}, I_{B}=5 \mathrm{~mA}$
$V_{B E}(S A T) @ I_{C}=50 \mathrm{~mA}, I_{B}=5 \mathrm{~mA}$
$\begin{aligned} & I_{\text {I }} \text { 5ua, } 100 \mathrm{cps}, \mathrm{BW}=20 \mathrm{cps} \\ & 1000 \mathrm{cps}, \mathrm{BW}=200 \mathrm{cps} \end{aligned}$
$\begin{aligned} I_{n} e 30 \mathrm{~mA}, & 1000 \mathrm{cps}, \mathrm{BW}=200 \mathrm{cps} \\ & 100 \mathrm{kc}, \mathrm{BW}=20 \mathrm{kc} \end{aligned}$
$\%$ Bad in Lot $=45$.

\% of lot \% Bad of Rejected Rejected 0 15 15 15 7 8 $8 \quad 75$ 955 1250 $7 \quad 71$

The noise current at 1,000 cycles and 30 mA showed the greatest screening effectiveness as an individual test, but every unit which was eliminated by the screen could have been eliminated by either the $I_{C B O}$ or the 100 cycle noise screen. Therefore the 1,000 cycle, 30 mA noise test would not be economic. Screening to other parameters such as $I_{E B O},{B V_{C E O}} V_{C E(S A T)}$ and noise at $5 u A, 1000$ cycle would not improve the efficiency.
B. NOISE SIUDY LITERATURE SEARCH

Refer to the Bibliography for the complete literature references shown below.

Noise readings made at the time of the initial test on transistors which later fail tend to have a higher noise current than units which will not fail. Noise can be due to two or more factors within the device. One such factor could be the flicker noise generated by contacts.

Van der Ziel, (1) reporting on the work of Williams and Thatcher (2) and on the work of Christenson and Pearson (3) reports that when flicker noise is measured in semiconductors; it often masks the noise found in the material. The work was based on research samples available in 1959 and present technology would keep the contact noise lower in most cases, but any poor contact could develop flicker noise. Other details in (1) show that flicker noise has been associated with contacts between grains of a mater1al. Pearson, (13) has established that a wet atmosphere can also cause flicker noise. It could be expected that flicker noise due to damp atmospheres would contribute to the total noise measured in a semiconductor.

Brophy \& Bess, (14) (15) (16), have shown that stress and high temperature can cause noise due to the plastic deformation of the crystal. Process C was shown to have stress cracks under the lead bonds. It could be expected that the stresses set up by the
lead bonding operation would cause flicker noise. The cracks themselves, if partially developed, could be expected to contribute to the noise by the same mechanism as contacts between grains.

Brophy also found, (17), that noise is caused by the "Seebeck" or thermoelectric effect. Hot spots, which are often observable visually or photographically due to light emission, would also cause fluctuations in temperature generating thermoelectric noise voltages. Slow states of charges upon the surface, (18), are also a cause of flicker noise. Noise could thus be expected to be associated with any form of ion contamination in the can or in the surface layers of the oxides.

It was not the purpose of this contract to re-investigate the noise phenomenon, but the literature showed many mechanisms that produce noise which could be associated with failure mechanisms. From a practical standpoint, no semiconductor could be completely free from such mechanisms and would also generate noise due to those mechanisms which have no relation to reliability.
C. NOISE SCREENING REIATED TO MANUFACTURING PROCESSES

One value of noise would not be suitable for application to all vendors and processes supplied to a single specification. Figure 8 shows the comparative, cumulative distribution of noise readings for the three different processes. Process C was expected to have the greatest failure rate. Quarterly Report 3, Section 7, showed that Processes A and B. had small failure rates but relatively high noise when compared with Process C. Paragraph 7.11 of the 3rd Quarterly Report, shows the effectiveness of screening to the upper 85 th percentile of noise.

If all three lots were screened to the 85 th percentile (52 picoamperes) of Process C, 30% of Process A and 32% of Process B would be rejected. In any direct comparison, the most reliable
transistor lots could have the highest rejection to a noise specification.

The relations shown are characteristic of noise relationships for different processes. In normal production experience, the distribution of any parameter may shift from time to time, due to small manufacturing variations. The semiconductor yield is dependent upon many variables, and frequently the step taken to "correct" one parameter will shift the distribution of other parameters. If all the parameters were screened to remove the top 15% for the purpose of improving reliability, it would probably be impossible for any manufacturer to meet the total specification.

If all of the sources of failure, or noise sources were removed, the manufacturer would be unnecessarily penalized for the extra effort by the loss of 15% of the good units. Also, if a distribution is cut in the center for any reason, the top 15% could be the center of the original distribution, and this screen would be inefficient since it would remove more good units than bad units.

D. NOISE CURRENT EFFECTIVENESS

Figure 6 shows the 100 cps noise current distribution values, before the first stress, for all units, for units which failed $V_{C E(S A T)}$, and for units which failed $h_{F E}$. Figure 7 shows the 100 cycle noise current distribution for all units, for the units which later failed $h_{F E}$, and for the units which later failed $V_{C E(S A T)}$ after the first stress.

The noise found in the V_{CE} (SAT) failures for the initial measurement was relatively low in comparison with all units. There may be a reason for less noise at the higher $\mathrm{V}_{\mathrm{CE}}(\mathrm{SAT})$ values, but this could not be determined. Figure 7 shows that 20% of the units which failed $\mathrm{V}_{\mathrm{CE}(\mathrm{SAT})}$ had higher noise after
the initial period of operation, and that this noise was less than the noise observed in the entire distribution. In the case of the $h_{F E}$ failures, noise for a substantial portion of the units was higher than the noise for the entire distribution. Thus, it may be concluded that noise current associated with failure tended to increase following a period of operation.

This analysis tended to confirm the suggested relation between noise and hot spots. If a hot spot were present due to a microplasma, degradation would be expected after a small amount of operation, and could be associated with an $h_{F E}$ degradation. A larger sample experiment would be necessary to confirm this effect.
E. LOW FREQUENCY NOISE SCREENING EFFECTIVENESS

Low frequency noise as a means of detecting failures was expected to show the best results. This was due to the assumption that low frequency noise is associated with slow surface states.

Van der Zeil (1, page 52) reasons that slow states are stored charges and that the charge leaks away with a time constant related to resistivity and charge. This theory is confirmed by observing the behavior pattern of the low frequency meter (100 cycle) on the Noise Analyzer which is very unsteady on some transistors. Fluctuation in the 100 cycle meter can approximately double during the observation time.

Assuming that the slow surface states have a time period of seconds or minutes, it is possible to understand the erratic action of the meter. This also agrees with the observation of the distribution of noise readings at different frequencies for units which later failed. For example, at the 100 cycle noise reading, Process B showed the clearest distinction between noise in units which failed and in those which did not fail. Operation of the unit increased
the noise generated by the mechanism associated with degradation. A review of previous Quarterly Reports showed that discrete shifts occur in some transistors and that these shifts are also very similar to the behavior of the 100 cycle noise meter.

The analysis thus tended to confirm that noise at lower frequencies should be expected to be present in transistors having failure mechanisms such as contact noise and hot spots, where current would shift abruptly from one path to another.

A. ELECTRICAL SPECIFICATION

The transistors investigated were purchased to the JEDEC registered specification for the 2N718A. The three devices investigated represent three variations to meet the same specification. These are:

Process A - Double Diffused, with Au to Al contacts.

Process B - Double Diffused epitaxial, with Al to Al contacts.

Process C - Triple Diffused, with Au to Al contacts.

Joint Electron Device Engineering Council

REGISTRATION DATA
2N718A

General Description
This transistor is an NPN double diffused silicon general purpose
transistor designed for a wide variety of high performance amplifiers and high speed switching applications.

Absolute Maximum Ratings
A. Maximum Temperature

1. Storage Temperature
2. Junction Temperature, T_{j} operating
3. Total Dissipation at case temperature $25^{\circ} \mathrm{C}$
at case temperature $100^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+300^{\circ} \mathrm{C}$
at ambient temperature $25^{\circ} \mathrm{C}$
$+200^{\circ} \mathrm{C}$ Max.
1.8 Watts
1.0 Watts
0.5 Watts

B. Maximum Voltage

Electrical Characteristics at $25^{\circ} \mathrm{C}$

A. Static Characteristics
 Min. Max.

1. Collector Current, $\mathrm{I}_{\text {CBO }}$ - 10 nA

Collector Voltage, $\mathrm{V}_{\mathrm{CB}}=60 \mathrm{~V}$.
2. Gollector Current, $I_{\text {CBO }}$

- $\quad 10 u A$

Collector Voltage, $\mathrm{V}_{\mathrm{CB}}=60 \mathrm{~V}$.

$$
\mathrm{T}_{\mathrm{A}}=+150^{\circ} \mathrm{C}
$$

3. Collector Breakdown Voltage, $\mathrm{BV}_{\mathrm{CBO}}$

75 v -

$$
I_{C}=100 u \mathrm{u}
$$

4. Emitter Current, $I_{\text {EBO }}$ 10 nA

Emitter Voltage, $V_{E B}=+5 \mathrm{~V}$.

5. Emitter Breakdown Voltage, $\mathrm{BV}_{\text {FBO }}$

$$
I_{E}=100 u A, I_{C}=0
$$

6. Collector to Enitter Sustaining Voltage, $V_{\text {CER (sust.) }}$ +50 V -

$$
\left(\mathrm{R}_{\mathrm{BE}} \leq 100 \mathrm{hms}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \text { pulsed }\right)
$$

7. Collector Saturation Voltage, V_{CE} (SAT) $+1.5 \mathrm{~V}$
8. Base Saturation Voltage, $\mathrm{V}_{\mathrm{BE}}(\mathrm{SAT})$ $-\quad+1.3 \mathrm{~V}$

$$
I_{B}=15 \mathrm{~mA}, I_{C}=150 \mathrm{~mA}
$$

B. Small Signal Characteristics

1. Small Signal Current Gain, $h_{\text {fe }}$

$$
\begin{array}{lll}
I_{C}=1 \mathrm{~mA}, V_{C}=5 \mathrm{~V} & 30 & 100 \\
I_{C}=5 \mathrm{~mA}, V_{C}=10 \mathrm{~V} & 35 & 150
\end{array}
$$

2. Input Resistance, $h_{i b}$

$$
\begin{array}{ll}
I_{C}=1 \mathrm{~mA}, \nabla_{C}=5 \mathrm{~V} & 24 \\
I_{C}=5 \mathrm{~mA}, \nabla_{C}=10 \mathrm{~V} & 4
\end{array}
$$

3. Voltage Feedback Ratio, h_{rb}

$$
\begin{array}{lll}
I_{C}=1 \mathrm{~mA}, V_{C}=5 \mathrm{~V} & - & 3 \times 10^{-4} \\
I_{C}=1 \mathrm{~mA}, V_{C}=10 \mathrm{~V} & - & 3 \times 10^{-4}
\end{array}
$$

4. Output Conductance, $h_{o b}$

$$
\begin{array}{lll}
I_{C}=1 \mathrm{~mA}, V_{C}=5 \mathrm{~V} & 0.1 \mu \mathrm{mho} & 0.5 \mu \mathrm{mho} \\
I_{C}=5 \mathrm{~mA}, \nabla_{C}=10 \mathrm{~V} & 0.1 \mu \mathrm{mho} & 1.0 \mu \mathrm{mho}
\end{array}
$$

5. High Frequency Current Gain, h_{fe}

$$
3.0
$$

$$
I_{C}=50 \mathrm{~mA}, V_{C}=10 \mathrm{~V}, \mathrm{P}=20 \mathrm{MC}
$$

6. Output Capacitance, C_{Ob}

$$
I_{F}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CB}}=10 \mathrm{~V}
$$

7. Input Capacitance, $C_{i b}$

$$
I_{C}=0 \mathrm{~mA}, V_{E B}=-0.5 \mathrm{~V}
$$

8. Noise Figure, NF

$$
\begin{aligned}
& I_{\mathbf{C}}=.3 \mathrm{~mA}, V_{\mathbf{C}}=10 \mathrm{~V}, \mathbf{f}=1000 \mathrm{cps} \\
& R_{G}=510 \Omega, 1 \text { cycle bandwidth }
\end{aligned}
$$

Min.
Max.
C. Large Signal Characteristics

1. D.C. Pulse Current Gain, h FE $\quad 40 \quad 120$

$$
I_{C}=150 \mathrm{~mA}, \quad V_{C E}=10 \mathrm{~V}
$$

2. D.C. Pulse Current Gain, h 20

$$
I_{C}=500 \mathrm{~mA}, \nabla_{C E}=10 \mathrm{~V}
$$

3. D.C. Current Gain, $h_{\text {FE }}$

$$
\begin{aligned}
& I_{C}=10 \mathrm{~mA}, V_{C E}=10 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C} \\
& I_{C}=10 \mathrm{~mA}, V_{C E}=10 \mathrm{~V}, \mathrm{~T}=-55^{\circ} \mathrm{C}
\end{aligned}
$$

4. D.C. Current Gain, $\mathrm{h}_{\mathrm{FS}} 20$

$$
I_{C}=0.1 \mathrm{~mA}, \nabla_{C E}=10 \mathrm{~V}
$$

5. Switching Time $t_{d}+t_{r}+t_{f}$

Thermal Characteristics

A. Thermal Resistance, Junction to Case, ${ }^{\circ} \mathrm{J}-\mathrm{C}$ - $97.0^{\circ} \mathrm{C} / \mathrm{W}$

Packaging
A. JEDEC TO - 18
B. Lead Connections:

1. Lead 1 - Bitter
2. Lead 2 - Base
3. Lead 3-Collector (Connected to Case)

B. PROCESS DIFFERENCES

Units made by the three separate processes as supplied by NASA were electrically measured, then opened and analyzed to determine any differences which could change the effectiveness of the screening methods being studied.

The following table shows a summary of the physical measurements:

Pellet Size - Mil	32×32	25×25	40×40
C.B. Dia. - Mil	24	17 Tip to Tip	27 Teardrop
E.B. Dia. - Mil	15	10.7 " " "	15
E Contact Dia. - Mil	13		10
Base Area Mil ${ }^{2}$	542	169	616
Emit Area Mil ${ }^{2}$	176	46	176
Emit Perimeter - Mil	47	37.2	47
Contacts	Alum	Alum	Alum
wire	2 Mil Au	0.05 Mil Al	2 Mil Au
Caps	Nickel	Nickel	Nickel
Gas Analysis N_{2}	98%	99\%	98\%
0_{2}	0	0	1\%
CO_{2}	2\%	0.1\%	1\%
Ar	-	0.25\%	0.25\%
Volume (micron liters)	27	23	44

C. PHYSICAL AND FABRICATION DETAILS

		PROCESS A	PROCESS B	PROCESS
1.	Header and Cap	T0-18 Header	T0-18 Header	T0-46 Header
		TO-18 Cap	т0-18 Cap	T0-18 Cap
				(Gas Volume is Larger)
2.	Oxide	Base 8-9000 ${ }_{\text {A }}$	- 7000 A	
	Thickness	Emitter - $5000 \AA$	- 7500 A	
3.	Bonding	Wedge	Wedge	Ball

D. PHOTOGRAPHS OF THE PHYSICAL APPEARANCE OF THE PELLETS.

Pracess a

PRBCESS B

TABLE 1.

STRESS SCREEN		$\begin{gathered} \mathrm{P}=800 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \mathrm{P}=700 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \mathrm{P}=500 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$			$\begin{array}{\|c\|} \hline \mathrm{P}=4,00 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \\ \hline \end{array}$			$\begin{gathered} \mathrm{P}=200 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \end{gathered}$		
		Unit Khr	$\begin{array}{r} \mathrm{FR} \\ 1 \\ \hline \end{array}$	$\begin{array}{r} \mathrm{FR} \\ 2 \\ \hline \end{array}$	Unit Khr	$\begin{array}{r} \mathrm{FR} \\ 1 \\ \hline \end{array}$	$\begin{array}{r} \text { FR } \\ \hline 2 \end{array}$	$\begin{aligned} & \text { Unit } \\ & \mathrm{Khr} \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{FR} \\ 1 \\ \hline \end{array}$	$\begin{array}{r} \mathrm{FR} \\ 2 \\ \hline \end{array}$	Unit Khr	$\begin{array}{r} \hline \mathrm{FF} \\ 1 \\ \hline \end{array}$	$\begin{array}{r} \mathrm{FR} \\ 2 \\ \hline \end{array}$	Unit Khr	$\begin{gathered} \mathrm{FR} \\ 1 \\ \hline \end{gathered}$	$\begin{array}{r} \text { FB } \\ 2 \\ \hline \end{array}$
	HIGH	39	7.9	7.9	66	1.4	1.4	168	2.5	2.5	36	14	14	66	4.7	3.4
\sim	MODERATE	39	2.4	2.4	87	1.1	1.1	231	2.3	2.3	42	7.4	5.4	87	2.3	2.3
${ }^{3}$	CENTRIFUGE	21	9.6	9.6	48	4.2	4.2	117	5.4	5.4	21	4.4	4.4	48	4.2	4.2
品	NONE	21	9.6	9.6	42	4.7	4.7	108	6.8	6.2	21	4.4	4.4	42	2.2	2.2
	HIGH	18	23	18	54	19	14	171	10	8.6	39	16	11	78	13	5.8
${ }_{4}$	MODERATE	39	21	18	81	5.2	4.2	201	4.1	1.8	39	5.2	5.2	78	2.6	2.6
O	CENTRIFUGE	21	30	29	39	16	11	117	7.2	3.3	21	9.6	9.6	42	7.4	5.5
品	NONE	18	17	17	39	7.9	7.9	99	8.4	3.9	18	17	12	39	5.2	2.7
	HIGH	3	67	67	15	2.1	24	6	51	51	－－	－－－	－－	－－	－－	－－
4	MODERATE	30	14	14	63	2.1	20	162	6.4	3.2	12	43	43	54	12	9.1
島	CENTRIFUGE	27	31	31	48	11	7.8	123	6.8	5.0	27	27	24	48	13	2.9
品	NONE	24	31	29	54	25	23	150	4.9	0.7	27	23	14	51	8.1	4.7

[^0]TABIE 2.
3000 HOUR LIFE TEST RESULTS AFTER HIGH STRESS SCREEN

	$\begin{gathered} \mathrm{P}=800 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$					$\begin{gathered} \mathrm{P}=700 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$					$\begin{gathered} \mathrm{P}=500 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$					$\begin{gathered} \mathrm{P}=400 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \end{gathered}$					$\begin{gathered} \mathrm{P}=200 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \end{gathered}$				
	Good	Response Category				Good	Response Category				Good	Response Category				Good	Response Category				Good	Response Category			
Start High		1	2	3	4		1	2	3	4		1	2	3	4		1	2	3	4		1	2	3	4
<4 Stress Screen	14					26					73					14					28				
0 End High $\mathrm{c})$ Stress Screen	13			1		22	2	1.		1	56	13	4			12	1			1	22	4			2
F4 End Burn-in	13					22					56					12					21.		$\stackrel{1}{ }$		
End Life Test	11				2.	22					53		1		2	8		2	1	1	20		. 7		
$\left\lvert\, \begin{aligned} & \text { Start High } \\ & \text { Stress Screen } \end{aligned}\right.$	10					22					70					13					28				
$\begin{array}{\|l\|l\|} \hline 0 & \text { End High } \\ \text { 兄 } & \text { Stress Screen } \end{array}$	6			1.	3	18		1	1	2	57		7	2	4	13					26		2		
fr End Burn-in	4		1		1	13		2	3		52		3		2	10		3			19		6		1.
End Life Test	3		1			9		2		2	41		2	1	8	8		1		1	17		2		
$\text { , }\left\|\begin{array}{l} \text { Start High } \\ \text { Stress Screen } \end{array}\right\|$	6					16					6														
Nnd High Stress Screen	1			1	4	5		2	4	5	2		1	1	2										
End Burn-in	1					3	1		1.		2														
End Life Test	0				1	2		1			0		1	1				,							

TABLE 3.
3000 HOUR LIFE TEST RESULTS AFTER MODERATE STRESS SCREEN

		$\begin{gathered} \mathrm{P}=800 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$					$\begin{gathered} \mathrm{P}=700 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$					$\begin{gathered} \mathrm{P}=500 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$					$\begin{gathered} P=400 \mathrm{~mW} \\ V_{C B}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \end{gathered}$					$\begin{gathered} \mathrm{P}=200 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CF}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \end{gathered}$					
		Good	Response Category				Good	Response Category				Good	Response Category				Good	Response Category				Good	Response Category				
		1	2	3	4	1		2	3	4	1		2	3	4	1		2	3	4	1		2	3	4		
\checkmark	Start Moderate Stress Screen		13					29					78					14					29				
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	End Moderate Stress Screen	13					29					77	1				14					29					
只	End Burn-in	13					29					77					13^{\prime}		1			29					
	End Life Test	13					29					73		1		3	12				1.	28		1			
๓	Start Moderate Stress Screen	14					29					70					14					29					
Un	End Moderate Stress Screen	13				1	27	1		1		67		2		1	13				1	26		2		1	
$\frac{2}{2,}$	End Burn-in	10		2		1	26				1	62		4	1		13					26					
	End Life Test	6		2		2	24				2	60				2	12				1	25		1			
0	Start Moderate Stress Screen	14					28					79					14					28					
dr	End Moderate Stress Screen	10	1.		2	1	21		5	1	1	54	3	15	4	3	4			2	8	18		3	3	4	
-	End Burn-in	10					18		3			47	1	1	4	1	4					16		1		1	
	End Life Test	7		1.	1	1	9		1.	3	5	44		3			0			1	3	1.3		1		2	

TABLE 4.
3000 HOUR LIFE TEST RESULTS AFTER CENTRIFUGE ONLY SCREEN

	$\begin{gathered} \mathrm{P}=800 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$					$\begin{gathered} \mathrm{P}=700 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$					$\begin{gathered} \mathrm{P}=500 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$					$\begin{gathered} P=400 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \end{gathered}$					$\begin{gathered} \mathrm{P}=200 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \end{gathered}$				
	Good	Response Category				Good	Response Category				Good	Response Category				Good	Response Category				Good	Response Category			
		1	2	3	4		1	2	3	4		1	2	3	4		1	2	3	7		1	2	3	4
$\begin{aligned} & \text { Start Centrifuge } \\ & \text { Only Screen } \end{aligned}$	7					16					39					7					16				
4.2 End Centrifuge Only Screen	7					16					39					7					16				
吅，End Burn－in	7					16					38	1				7					16				
End Life Test	6				1	15		1			33				5	7					15		1		
Start Centrifuge ∞_{4} Only Screen	7					15					40					7					15				
U_{2} End Centrifuge （4）Only Screen	7					13			1	1	39		1			7					14	1			
䈟 End Burn－in	5				2	10				3	33	1	2		3	7					13			1	
End Life Test	2		1		2	8				2	31		1		1.	6		1			12			1	
Start Centrifuge c）Only Screen	10					19					52					10					20				
（4）End Centrifuge （a）Only Screen	9		1			16	1	1	1.		41	3	6	2		9	1				16	4			
保 End Burn－in	6		1		2	14		1		1	37	1	1		2	6		1	1	1	11		2		3
End Life Test	2		2		2	12				2	33		2	2		3		1	1	1	11				

		$\begin{gathered} \mathrm{P}=800 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$					$\begin{gathered} \mathrm{P}=700 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$					$\begin{gathered} \mathrm{P}=500 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$					$\begin{gathered} \mathrm{P}=400 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \end{gathered}$					$\begin{gathered} \mathrm{P}=200 \mathrm{~mW} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \end{gathered}$					
		Good	Response Category				Good	Response Category				Good	Response Category				Good	Response Catiegory				Good	Response Category				
		1	2	3	4	1		2	3	4	1		2	3	4	1		2	3	4	1		2	3	4		
	Start		7					14					38					7					14				
	Electrical Screen Rejects																										
C	End Burn-in	7					14					36	1			1	7					14					
5	End Life Test	6				1	13		1			31				5	7					14					
	Start	6					13					37					7					14					
P7	Electrical Screen Rejects																					13		1			
C	End Burn-in	6					13					33		1	1	2	6				1	12		1			
-	End Life Test	4		1		1	11		2			30		2		1	5				1	12					
	Start	10					20					55					10					20					
(2)	Electrical Screen Rejects	8			1	1	18	1			1	50	1	2		2	9		1			17	1	2			
$\left.\begin{aligned} & 0 \\ & \hat{p}_{1} \\ & \hline \end{aligned} \right\rvert\,$	End Burn-in	5		2	1		12			2	4	44		2	2	2	5		2		2	15		1	1		
	End Life Test	2		1	2		6		3	2	1	44					4			1		14				1	

TABLE 6.

Frocess	$\begin{aligned} & \text { Centrifuge } \\ & \text { Stress } \\ & \left(Y_{1}\right. \text { Axis) } \end{aligned}$	$\mathrm{P}=800 \mathrm{~mW}$	$\mathrm{P}=700 \mathrm{~mW}$	$\mathrm{P}=500 \mathrm{~mW}$	$\mathrm{P}=400 \mathrm{~mW}$	$\mathrm{F}=200 \mathrm{~mW}$
		$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$				
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
A	Initial	14	26	73	14	25
	End 20 Kg	4	4	8	1	1
	End 150 Kg	2	17	47	1	17
B	Initial	10	$2 ?$	70	13	28
	End 20 Kg	7	9	8	0	0
	End 150 Kg	0	8	1	0	0
C	Initial	--	6	16	--	6
	End 20 Kg		2	1		1
	End 150 Kg		3	11		4

Devices were considered to have failed if they exhibited an electrical open following the test. to the centrifuge test.
TABLE 7.

Process	Centrifuge Stress (Y_{1} Axis)	$\mathrm{P}=800 \mathrm{~mW}$	$\mathrm{P}=700 \mathrm{~mW}$	$\mathrm{P}=500 \mathrm{~mW}$	$\mathrm{P}=400 \mathrm{~mW}$	$\mathrm{F}=200 \mathrm{~mW}$
		$\mathrm{V}_{C B}=20 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
A	Initial	13	29	78	14	29
	End 20 Kg	2	0	5	1	0
	End 150 Kg	4	21.	55	2	21
B	Initial	14	29	70	14	29
	End 20 Kg	4	4	3	0	1
	End 150 Kg	0	19	49	4	22
C	Initial	14	28	79	10	28
	End 20 Kg	4	1	4	6	1
	End 150 Kg	1	21	55	1	20

Devices were considered to have failed if they exhibited an electrical open following the test. to the centrifuge test.
TABLE 8.

Process	Centrifuge Stress (Y_{1} Axis)	$\mathrm{P}=800 \mathrm{~mW}$	$P=700 \mathrm{~mW}$	$\mathrm{P}=500 \mathrm{~mW}$	$P=400 \mathrm{~mW}$	$\mathrm{P}=200 \mathrm{~mW}$
		$\mathrm{V}_{C B}=20 \mathrm{~V}$				
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
A	Initial	7	16	39	7	16
	End 20 Kg	1	1	5	0	1
	End 150 Kg	0	11	25	0	11
B	Initial	7	15	40	7	15
	End 20 Kg	4	4	4	0	0
	End 150 Kg	0	7	26	0	11
C	Initial	10	19	52	10	20
	End 20 Kg	6	1	2	3	1
	End 150 Kg	1	2	38	1	14

Bevices were considered to have failed if they exhibited an electrical open following the test.
The number of devices listed under Initial were the number of devices sub.jected to the centrifuge test.
TABLE 9.

Process	$\begin{gathered} \text { Centrifuge } \\ \text { Stress } \\ \left(Y_{1} \text { Axis }\right) \end{gathered}$	$\mathrm{P}=800 \mathrm{~mW}$	$P=700 \mathrm{~mW}$	$\mathrm{P}=500 \mathrm{~mW}$	$P=400 \mathrm{~mW}$	$F=200 \mathrm{~mW}$
		$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$	$\mathrm{V}_{C B}=20 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	${ }^{T} A=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
A	Initial	7	14	38	7	14
	End 20 Kg	1	0	4	0	0
	End 150 Kg	0	10	26	1	10
B	Initial	6	13	37	7	14
	End 20 Kg	3	1	3	2	0
	End 150 Kg	0	9	24	0	10
C	Initial	10	20	55	10	20
	End 20 Kg	5	1	4	5	2
	End 150 Kg	1	14	38	0	13

Devices were considered to have failed if they exhibited an electrical open following the test.
The number of devices listed under Initial were the number of devices subjected to the centrifuge test.
ALL STRESSES COMBINED CENTRIFUGE FAILURES AFTER STRESS SCREEN AND LIFE TEST

Process	Centrifuge Stress (Y_{1} Axis)	$\mathrm{P}=800 \mathrm{~mW}$	$1 \mathrm{p}=700 \mathrm{~mW}$	$\mathrm{P}=500 \mathrm{~mW}$	$\mathrm{P}=400 \mathrm{~mW}$	$P=200 \mathrm{~mW}$	AllLife TestsCombined
		$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$	$T_{C B}=20 \mathrm{~V}$	$\mathrm{V}_{C B}=20 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$	
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\because \mathrm{A}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	
A	Initial	41	85	228	42	84	480
	End 20 Kg	8	5	22	2	2	39
	End 150 Kg	6	59	153	4	59	281
B	Initial	37	79	21.7	41	86	460
	End 20 Kg	18	18	18	2	1	57
	End 150 Kg	0	43	100	4	43	190
C	Initial	34	73	202	30	74	413
	End 20 Kg	15	5	11	14	5	50
	End 150 Kg	3	40	142	2	51	238

Devices were considered to have fulled if they exhibited an electrical open following the test.
The number of devices listed under Initial were the number of devices subjected to the centrifuge test.

TABLE 12.
FROCESS: B.
HIGH STREESS SCREEN.
Stress $S_{1}=168$ hours at $250^{\circ} \mathrm{C}$., with $\mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}$.
Stress $S_{2}=168$ hours at $300^{\circ} \mathrm{C}$.
Stress $S_{3}=25 \mathrm{Kg}$. centrifuge $-Y_{1}$ plane only.

TABLE 13.

PROCRBS: C. HIGH STRESS SCREEN. $I_{C B O} \text { DISTRIBUTION }\left(A T V_{C B}=60 \mathrm{~V} .\right)$				
	INITIAL	S_{1}	S_{2}	$\mathrm{S}_{3}{ }^{*}$
MTNIMUM	0.1	0.1	0.1	
5 FHRC ENTILE	0.1	0.2	0.1	
10 PIGRC ENTILE	0.1	0.2	0.1	
25 FPRC ENTILE	0.1	0.7	13.8	
50 FIRRC ENTILE	0.2	5.0	1 uA	
75 FFRCENTILE	0,4	830.0	17.1 uA	
90 FIMRC ENTILE	1.2	3.4 uA	100 UA	
95 FIURCENIILE	2.1	8.9 uA	100 uA	
MAXIMUM	c. 7	21.0 uA	100 uA	

Stress $S_{1}=168$ hours at $250^{\circ} \mathrm{C}$. with $V_{C B}=30 \mathrm{~V}$. Stress $S_{2}=168$ hours at $200^{\circ} \mathrm{C}$. $\quad \mathrm{CB}$
Stress $S_{3}=25 \mathrm{Kg}$. centrifuge $-Y_{1}$ plane only. * Summary Data for S_{3} stress not shown due to the severity of S_{2} stress and removal of 50% of devices.

$$
\begin{aligned}
& \text { table } 14 . \\
& \text { PROCESS: A. }
\end{aligned}
$$

TABLE 15.

PROCESS: B.

	INIITIAL	S_{1}	S_{2}	53
MTNTMUM	47.7	52.4	< 20	<20
5 PERCENTILE	63.2	62.3	50.6	57.7
10 PERC ENTILE	69.6	69.6	64.2	66.6
25 Percentile	'78.5	78.6	76.3	80.9
50 PFRC ENTILLE	87.7	88.0	91.2	95.4
75 PYRCENTILE	94.8	95.7	101.1	105.5
90 PYRCC ENTITE	100.5	101.8	110.0	113.1
95 PEIRC ENTILIE	102.1	104.2	117.8	119.5
MAXIMUM	121.9	107.6	186.8	163.5

Stress $S_{3}=25 \mathrm{Kg}$. centrifuge $-Y_{1}$ plane only.

TABLE 16.

* Surmary Data for S_{3} stress not shown due to the severity of S_{2} stress and removal of 50% of devices.

PROCEISS: C.
TABLE 18.
$V_{\text {CEO }}$ DISTRIBUTION (AT $\left.I_{C}=100 \mathrm{uA}.\right)$.
IVI山INI

	INITIAL	S_{1}	S_{2}	$S_{3}{ }^{*}$
MINMMM	56	4	0	
5 PERCENTILE	62	5	1	
10 PERCENTILE	64	40	8	
25 PERCENTILE	70	69	49	
50 PERCENTILE	80	84	71	
75 PERCENTILE	102	104	97	
90 PERCENTILE	27	130	114	
95 PERCENTILE	244	142	133	
MAXIMMM	252	174	$220 * *$	

HIGH STRESS GCREEN.

$I_{E B O}$ DISTRIBUTION (AT $\left.V_{E B}=5 \mathrm{~V}.\right)$.

	INITIAL	S_{1}	S_{2}	S_{3}
MINIMUM	<0.1	<0.1	<0.1	<0.1
5 PITRCENIILE	<0.1	<0.1	0.1	<0.1
10 PYRCENTILE	<0.1	0.1	0.2	<0.1
25 PURC ENTILE	0.1	0.2	0.3	0.2
50 PIRC ENTILE	0.5	0.6	0.8	0.6
75 PTTCENTILE	1.9	2.2	2.6	2.5
90 PYTRC ENTILLE	6.7	8.5	10.6	7.8
95 FMRCENTILE	16.2	22.3	34.3	19.5
MAXJMUM	104.1	61.3	240.2	237.6

Stress $S_{3}=25 \mathrm{Kg}$. centrifuge $-Y_{1}$ plane only.

PROCEISS: C.
HIGE STRESS SCREEN
TABLE 20.

-己己 'IGV
PROCESS: C.
HIGH SIRESS SCREENN,

$V_{C E}\left(S A^{\prime}\right]$) DISTRIBUTION (AT $\left.I_{C}=50 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}.\right)$.				
	INITITAL	${ }^{5} 1$	S_{2}	$\mathrm{S}_{3}{ }^{*}$
MLNIMUM	80	83	80	
5 PERCENTILE	84	84	88	
10 PFFCENTILE	87	88	91	
25 PERCENTILE	23	96	103	
50 PEFCENTILE	104	104	117	
75 PEFPCENTIILE	117	116	134	
90 PERCENTILE	125	129	165	
95 PERCENTILE	140	140	434	
MAXIMUM	146	148	10 V	

Stress $S_{1}=168$ hours at $250^{\circ} \mathrm{C}$., with $V_{C B}=30 \mathrm{~V}$.
Stress $S_{2}=168$ hours at $300^{\circ} \mathrm{C}$.
Stress $S_{3}=25 \mathrm{Kg}$. centrifuge $-Y_{1}$ plene only.

* Summary Data for S_{3} stress not shown due to the severity of
Sir, stress and removal of 50% of devices.

TABLE 23.

TABLE 28.

table 32.
PROCRSS: C.
MCDERATE STRESS SCREEN

	INITIAL	S_{1}	S_{2}	$S_{3}{ }^{*}$
MIN:CMUM	45.2	0.6	56	
5 PERCENTILE	58.0	3.3	58	
10 PYRCENTILE	60.0	31.3	62	
25 PMRCENTILE	68.0	67.0	69	
50 PERCENIILE	79.4	79.0	79	
75 PERCENTILE	96.4	99.6	97	
90 PERCENTILE	127.0	128.0	126	
95 PERCENIILE	143.0	142.0	138	
MAXIMUM	159.0	170.0	160	

Stre:ss $S_{1}=168$ hours at $200^{\circ} \mathrm{C}$., with $V_{C B}=30 \mathrm{~V}$
Stress $S_{2}=168$ hours at $200^{\circ} \mathrm{C}$.
Stress $S_{3}=25 \mathrm{Kg}$. centrifuge $-Y_{1}$ plane only.

* Surmary Data for S_{3} stress not shown due to removal of

table 33.

	INITIAL	S_{1}	S_{2}	$\mathrm{S}_{3}{ }^{*}$
MIN：MMUM	<0.1	<0.1	<0.1	
5 PJRCENTILE	<0.1	<0.1	<0.1	
10 PrRCENTITLE	＜ 0.1	<0.1	<0.1	
25 PYRCENITLE	0.1	0.1	0.1	
50 PriRCENTILE	0.5	0.6	0.6	
75 Phrcentitle	2.0	2.2	2.2	
90 Prrcentille	3.9	4.9	4.4	
95 PrRCENTILE	6.2	6.9	6.1	
MAXIMUM	9.2	11.2	9.4	

Stwess $\mathrm{S}_{2}=168$ hours at $200^{\circ} \mathrm{C}$.
Stwess $S_{3}=25 \mathrm{Kg}$ ．centrifuge－Y_{1} plane only．
＊Sunmary Data for S_{3} stress not shown due to removal of 16% of units after S_{2} stress．

TABLE 34.
 Stress $S_{1}=168$ hours at $200^{\circ} \mathrm{C}$., with $V_{C i}=30 \mathrm{~V}$. Stuess $S_{2}=168$ hours at $200^{\circ} \mathrm{C}$.
Stwess $S_{3}=25 \mathrm{Kg}$. centrifuge $-Y_{1}$ plane only.

table 36.

TABLE 37.
PROCESS: C.

- NaHMOS SSHMIS HIV\&HOOW
 gtyess $S_{1}=168$ hours at $200^{\circ} \mathrm{C}$. with $\mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}$. Stjess $S_{2}=168$ hours at $200^{\circ} \mathrm{C}$. Stress $S_{3}=25 \mathrm{Kg}$. centrifuge $-Y_{1}$ plane only.
$*$ Bummary Data for S_{3} stress not shown due to r 26% of units after S_{2} stress.

TABLE 39.

Stress $\mathrm{S}_{3}=25 \mathrm{Kg}$. centrifuge $-Y_{1}$ plane only.

-カ7 THEU
FFOCESS: B.

Stress $S_{3}=25 \mathrm{Kg}$. centrifuge $-Y_{1}$ plane only.

PROCESS: B.

- NHGHDS Kino wncitainio
E130 DIStribution (AT $V_{E F}=5 \mathrm{v}_{\mathrm{E}}$).

	INITIAL	53		
MINIMUM	<0.1	<0.1		
5 PFRCENTILE	<0.1	0.1		
LO PIRCENTILE	<0.1	0.2		
25 PERCENTILE	0.1	0.3		
50 PFRCENTILE	0.3	0.5		
75 PIRCENTILE	0.8	1.1		
90 PIRCENTILE	3.2	3.9		
95 PFRCENTILE	9.7	11.3		
MAXIMUM	27.9	31.5		

St, ers $\mathrm{S}_{3}=25 \mathrm{Kg}$. centrifuge - Y_{1} plane only.

I Cbo distriburion changes with life test.

	$\mathrm{I}_{\text {CBO }}$ ($\left.\mathrm{V}_{\text {CB }}=60 \mathrm{v}.\right)$ (Nanoamp								
HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	0.2	0.5	<0.1	<0.1	0.1	<0.1	<0.7		
5\%	0.2	0.6	<0.1	<0.1	0.1	<0.1	-0.1		
10\%	0.2	0.6	<0.1	<0.1	0.1	<0.1	<0.1		
25\%	0.3	0.7	0.2	0.1	0.2	0.1	<0.1		$\mathrm{P}=800 \mathrm{mw}$.
50\%	0.4	1.1	0.5	0.5	0.5	0.2	0.3		$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.7	1.5	0.8	0.9	0.9	0.6	0.5		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	1.3	2.0	1.4	1.3	1.3	1.0	0.9		
95\%	1.5	2.3	1.7	1.5	1.5	1.2	1.0		
Max	1.5	2.3	1.7	1.5	1.5	1.2	1.0		
Min	<0.1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	0.3	
5\%	<0.1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	0.3	
10\%	<0.1	0.4	-0.1	<0.1	<0.1	<0.1	<0.1	0.5	
25\%	0.1	0.7	0.1	0.1	0.2	<0.1	0.2	0.5	$\mathrm{P}=700 \mathrm{mw}$.
50\%	0.3	1.0	0.4	0.3	0.4	0.3	0.6	0.7	$\mathrm{v}_{\mathrm{CB}}=20 \mathrm{v}$.
175\%	1.0	1.9	1.3	1.2	1.3	0.9	2.4	1.4	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	1.4	2.7	2.6	2.1	2.6	1.8	7.9	2.6	$\mathrm{A}_{\mathrm{A}}=25{ }^{\text {a }}$
95\%	2.1	3.0	4.0	4.5	6.7	25.3	20.8	22.0	
Max	2.3	3.2	4.6	6.4	8.9	44.4	31.0	36.9	
Min	<0.1	<0.1	0.0	0.6	0.0	0.1	<0.1	0.1	
5\%	<0.1	<0.1	0.5	0.8	<0.1	<0.1	<0.1	<0.1	
10%	<0.1	<0.1	0.5	1.0	<0.1	0.2	<0.1	<0.1	
25\%	0.1	-0.1	0.6	1.0	0.1	0.3	0.1	<0.1	$\mathrm{P}=500 \mathrm{mw}$.
50\%	0.2	0.4	0.8	1.2	0.3	0.5	0.2	0.2	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.4	0.6	1.0	1.7	0.7	0.7	0.7	0.6	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	1.1	0.7	2.0	2.4	1.6	1.7	1.6	1.9	${ }^{\text {a }}$
95\%	1.4	1.1	2.5	3.3	2.8	2.1	2.7	5.7	
Max	2.5	101.2	32.9	10.2	21 mA	7.8	9.3	35.0	
Min	<0.1	0.4	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
5\%	<0.1	0.4	0.1	-0.1	<0.1	<0.1	<0.1	<0.1	
10\%	<0.1	0.5	0.1	0.1	0.1	<0.1	<0.1	<0.1	
25\%	<0.1	0.7	0.3	0.2	0.2	<0.1	<0.1	0.1	$P=400 \mathrm{~mW}$.
50\%	0.2	0.8	0.4	0.6	0.6	0.3	0.4	0.5	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{v}$.
75\%	0.4	1.3	0.7	1.0	3.4	1.0	1.4	22.4	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
90\%	0.8	3.0	3.2	5.1	14.6	47.3	157.9	627.7	
95\%	0.9	4.2	5.3	6.3	22.9	83.5	279.4		
Max	0.9	4.2	5.3	6.3	22.9	83.5	279.4	---	

TABLE 62. (CONTINUED).

HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	<0.1	0.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
5%	<0.1	0.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
10%	<0.1	0.6	0.1	<0.1	0.1	0.1	<0.1	0.1	
25%	<0.1	0.8	0.2	0.2	0.3	0.1	0.1	0.1	$\mathrm{P}=200 \mathrm{~mW}$.
50%	0.2	0.9	0.5	0.4	0.4	0.3	0.3	0.4	$V_{\mathrm{CB}}=20 \mathrm{~V}$.
75%	0.4	1.4	1.0	1.0	1.2	0.8	1.1	1.2	$\mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$.
90%	0.9	13.5	2.0	1.9	1.8	1.5	1.9	1.9	
95%	1.5	127.7	109.1	11.1	6.4	4.8	2.4	196.2	
Max	2.0	142.4	196.6	18.6	10.1	7.3	2.6	354.1	

$I_{\text {CBO }}$ DISTRIBUTION CHANGES WITH LIFE TEST.

	$I_{\text {CBO }}\left(\mathrm{V}_{\mathrm{CB}}=60 \mathrm{~V}.\right)$								
HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	<0.1	0.6	0.3	0.1	1.0	0.2	1.1	0.5	
5\%	<0.1	0.6	0.3	0.1	1.0	0.2	1.1	0.5	
10\%	0.1	0.6	0.3	0.1	1.0	0.2	1.1	0.5	
25\%	0.4	1.0	0.6	0.3	1.2	0.4	1.1	0.7	$\mathrm{P}=800 \mathrm{~mW}$.
50\%	0.8	2.9	1.8	1.0	3.0	0.5	1.9	1.2	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	1.7	14.2	7.8	3.2	7.7	2.2	2.9	2.2	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	3.3	98.2	47.5	39.1	54.4	2.8	3.5	926.1	
95\%	3.4	132.0	62.8	58.3	54.4	2.8	3.5	926.1	
Max	3.4	132.0	62.8	58.3	54.4	2.8	3.5	926.1	
Min	<0.1	0.5	0.1	<0.1	<0.1	0.6	<0.1	<0.1	
5\%	<0.1	0.5	0.1	<0.1	<0.1	0.6	<0.1	<0.1	
10\%	<0.1	0.5	0.2	0.2	0.1	0.7	0.2	<0.1	
25\%	0.1	0.9	0.5	0.3	0.2	1.0	0.2	0.2	$\mathrm{P}=700 \mathrm{~mW}$.
50\%	0.4	1.4	0.9	0.7	0.5	1.4	0.4	1.0	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	1.3	2.4	2.2	1.9	1.6	2.4	0.8	1.7	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	6.9	17.0	17.0	31.0	2.8	4.0	2.4	276.3	
95\%	557.8	94.2	322.1	678.2	124.1	141.6	46.0		
Max	>1 uA	123.1	531.6	---	223.1	165.7	80.0	---	
Min	0.1	n.f.	07	<0.1	0.7	-0.1	-0.1	$0 \cdot 2$	
5\%	0.2	0.8	1.1	0.4	0.2	0.1	<0.1	0.3	
10\%	0.3	1.1	1.3	0.5	0.4	0.2	0.1	0.4	
25\%	0.7	1.3	1.6	0.8	0.7	0.5	0.5	0.7	$\mathrm{P}=500 \mathrm{~mW}$.
50\%	1.0	1.9	2.2	1.6	1.3	1.1	1.1	1.4	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	2.5	3.6	3.4	3.0	2.7	2.5	2.4	3.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	3.2	4.6	6.5	7.8	7.8	3.3	3.6	5.8	
95\%	4.4	91.7	70.3	32.3	152.6	7.9	24.4	26.3	
Max	13.3	---	---	---		686.7	---	---	
Min	0.1	1.2	0.7	0.5	0.5	<0.1	0.3	0.5	
5\%	0.1	1.2	0.7	0.5	0.5	<0.1	0.3	0.5	
10\%	0.2	1.2	0.8	0.5	0.5	0.2	0.3	0.5	
25\%	0.5	1.5	1.1	0.9	0.8	0.8	0.5	0.8	$\mathrm{P}=400 \mathrm{~mW}$.
50\%	0.8	1.8	1.5	1.2	1.0	1.0	0.6	1.2	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	1.5	2.5	2.1	1.7	1.6	1.4	1.5	1.7	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
90\%	2.3	3.1	3.8	2.2	10.1	2.0	2.0	3.6	
95\%	2.5	3.2	4.6	2.5	15.5	2.2	2.2	4.2	
Max	2.5	3.2	4.6	2.5	15.5	2.2	2.2	4.2	

TABLE 63. (CONTINUED).

HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	0.3	0.6	0.5	0.3	0.2	0.2	1.0	0.4	
5%	0.3	0.7	0.5	0.4	0.2	0.2	1.0	0.4	
10%	0.4	0.9	0.7	0.5	0.3	0.3	1.0	0.5	
25%	1.1	1.5	1.2	1.1	0.7	0.5	1.6	1.3	$\mathrm{P}=200 \mathrm{~mW}$.
50%	2.0	2.7	2.4	2.0	1.8	1.3	2.3	2.0	$\mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75%	3.1	3.6	3.4	2.7	2.5	2.7	3.2	3.0	$\mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$.
00%	3.7	25.7	22.3	6.1	14.5	4.5	5.2	4.6	
95%	18.6	134.9	211.2	190.3	135.3	91.5	68.4	14.6	
Max	30.0	199.9	359.4	329.7	236.4	151.7	109.3	18.9	

226

ICBO DISTRIBUTION CHANGES WITH LIFE TEST.

	$I_{\text {CBO }}\left(\mathrm{V}_{\text {CB }}=60 \mathrm{v}.\right)$								
HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	0.2	1.1	0.6	0.6	0.4	0.4	0.8	<0.1	
5\%	0.2	1.1	0.6	0.6	0.4	0.4	0.8	<0.1	
10\%	0.2	1.1	0.6	0.6	0.4	0.4	0.8	<0.1	
25\%	0.2	9.7	41.3	39.7	9.0	0.5	1.3	1.1	$\mathrm{F}=800 \mathrm{~min}$.
50\%	504.4	50.0	91.6	71.5	68.8	131.2	33.1	13.7	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	$\rightarrow 1 \mathrm{uA}$	607.0	421.6	331.9	295.8	293.7	504.6	394.2	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	>1 uA	908.9	808.1	662.8	640.9	494.0	918.4	---	
95\%	$>1 \mathrm{uA}$	908.9	808.1	662.8	640.9	494.0	918.4	---	
Max	21 uA	908.9	808.1	662.8	640.9	494.0	918.4	---	
Min	<0.1	0.7	1.0	0.5	0.5	0.1	0.1	<0.1	
5\%	<0.1	0.7	1.0	0.5	0.5	0.1	0.1	<0.1	
10\%	<0.1	0.8	1.0	0.5	0.5	0.2	0.2	0.2	
25\%	0.2	1.0	1.3	0.6	0.7	0.7	0.5	1.0	$\mathrm{P}=700 \mathrm{~mW}$.
50\%	1.5	5.1	11.7	6.3	7.5	5.2	12.6	9.8	$\mathrm{V}_{\text {CB }}=20 \mathrm{~V}$.
75\%	533.1	94.9	57.5	77.9	106.3	83.4	125.9	129.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	$>1 \mathrm{uA}$	---	---	---	765.9	504.7	---	---	
95\%	>1 uA	---	---	---	765	-..	---	-.-	
Max	$\geq 1 \mathrm{UA}$	---	---	---	---	---	---		
Min	0.3	0.3	0.1	0.5	10.6	0.3	0.2	0.4	
5\%	0.3	0.3	0.1	0.5	10.6	0.3	0.2	0.4	
10\%	0.3	0.3	0.1	0.5	10.6	0.3	0.2	0.4	
25\%	0.3	0.5	2.1	6.7	24.2	7.2	5.3	7.8	$\mathrm{P}=500 \mathrm{~mW}$.
50\%	169.0	9.5	76.1	67.0	730.2	53.6	43.9	32.6	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	>1 uA	354.3	761.3	---	---	--	---	---	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	>1 UA	--	---	---	---	---	---		
95\%	$>1 \mathrm{uA}$	---	---	---	---	---	---	---	
Max	$>1 \mathrm{uA}$	---	---	---	---	---	---	---	

$h_{\text {FE }}$ DISTRIBUTION CHANGES WITH LIFE TEST.

	$\mathrm{h}_{\mathrm{FE}}\left(\mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA} ., \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}.\right)$								
HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	59	57	20	57	58	58	20		
5\%	59	57	20	57	58	58	20		
10\%	64	63	38	63	64	64	38		
25\%	78	80	74	80	81	81	81		$\mathrm{P}=800 \mathrm{~mW}$.
50\%	82	86	82	84	85	86	85		$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	91	93	93	92	93	95	98		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	102	103	98	101	102	103	104		
95\%	105	106	99	104	105	108	105		
Max	105	106	99	104	105	108	105		
Min	67	69	65	20	69	20	20	20	
5\%	68	69	65	41	70	20	20	20	
10\%	69	70	70	68	73	64	20	20	
25\%	74	74	73	72	76	73	71	70	$\mathrm{P}=700 \mathrm{~mW}$.
50\%	82	83	79	82	86	83	80	78	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	89	89	87	88	102	91	90	90	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	99	98	98	101	904	106	105	104	
95\%	105	104	106	104	978	113	116	121	
Max	106	106	107	106		118	125	134	
\cdots	5	40	20	20	20	20	20	20	
5\%	62	61	41	61	20	20	20	20	
10\%	69	65	64	65	51	53	53	53	
25\%	77	75	74	73	65	69	70	69	$\mathrm{P}=500 \mathrm{~mW}$.
50\%	86	83	84	82	76	78	79	80	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	92	86	90	89	84	90	91	90	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
90\%	99	97	97	99	99	99	101	100	
95\%	104	101	101	103	102	106	108	108	
Max	119	116	116	---	118	119	121	120	
Min	64	58	64	53	63	64	64	20	
5\%	64	58	64	53	63	64	64	20	
10\%	73	60	65	60	67	67	68	42	
25\%	84	81	86	81	87	88	89	83	$\mathrm{P}=400 \mathrm{~mW}$.
50\%	89	89	88	84	93	96	98	102	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	100	94	98	90	104	108	107	110	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
90\%	106	97	103	100	109	112	115	119	
95\%	107	97	104	104	109	115	118	119	
Max	107	97	104	104	109	115	118	119	

TABLE 65. (CONTINUED).

FRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	54	54	54	53	52	53	58	53	
5%	56	56	56	56	55	55	59	56	
10%	60	60	59	60	58	59	60	59	
25%	74	75	72	74	74	71	81	74	$\mathrm{P}=200 \mathrm{~mW}$.
50%	83	83	82	82	82	83	84	84	$\mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75%	90	90	88	89	87	88	96	89	$\mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$.
90%	104	99	98	104	102	104	1687	1055	
95%	118	115	114	120	119	117	6221	1278	
Max	122	123	124	125	123	117	7071	1349	

h_{FE} DISTRIBUTION CHANGES WITH LIFE TEST.

	$\mathrm{h}_{\mathrm{FE}}\left(\mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}.\right)$								
HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	67	20	67	20	68	20	34	20	
5\%	67	20	67	20	68	20	34	20	
10\%	68	40	68	20	68	20	34	20	
25\%	77	75	74	70	82	20	60	29	$\mathrm{P}=800 \mathrm{~mW}$.
50\%	92	96	92	96	99	86	98	75	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	110	108	109	115	113	109	121	106	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	151	119	158	159	122	124	129	131	
95\%	174	121	179	185	122	125	129	131	
Max	174	121	179	185	122	125	129	131	
Min	49	54	58	20	20	34	20	20	
5\%	50	56	59	20	20	38	20	20	
10\%	56	60	62	20	20	66	20	20	
25\%	86	83	84	86	86	89	23	86	$\mathrm{P}=700 \mathrm{~mW}$.
50\%	99	98	99	99	99	102	91	101	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	109	106	112	118	117	134	116	145	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
90\%	118	158	162	167	162	163	153	160	
95\%	128	175	180	634	178	183	168	179	
Max	131	185	189	---	187	186	177	179	
Min	55	72	20	69	20	20	20	20	
5\%	70	74	73	75	71	20	20	20	
10%	15	16	11	10	14	12	20	E0	
25\%	86	86	83	85	85	84	83	82	$\mathrm{P}=500 \mathrm{~mW}$.
50\%	99	99	95	99	97	97	98	97	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	109	111	106	111	111	113	112	113	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	115	117	115	121	117	124	123	122	
95\%	121	130	126	140	142	143	141	143	
Max	153	147	153	153	148	155	153	157	
Min	61	61	62	58	60	61	60	57	
5\%	61	61	62	58	60	61	60	57	
10\%	67	66	68	63	66	67	60	59	
25\%	82	85	87	82	86	87	87	88	$P=400 \mathrm{~mW}$.
50\%	99	94	100	89	97	98	98	100	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	112	108	107	103	109	110	111	112	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
90\%	130	129	145	145	153	178	183	188	
95\%	137	138	159	168	171	212	220	228	
Max	137	138	159	168	171	212	220	228	

TABLE 66. (CONTINUED).

HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	64	65	64	61	63	64	64	64	
5%	65	65	64	61	64	65	65	65	
10%	66	67	68	65	66	67	68	69	
25%	85	84	83	79	82	83	83	83	$\mathrm{P}=200 \mathrm{~mW}$.
50%	98	98	98	92	96	98	98	98	$\mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75%	112	108	107	100	110	110	111	111	$\mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
90%	118	115	114	107	117	119	119	120	
95d	125	116	120	112	120	124	123	126	
Max	129	117	122	115	121	127	125	128	

$h_{\text {FE }}$ DISTRIBUTION CHANGES WITH LIFE TEST.

	$\mathrm{h}_{\mathrm{FE}}\left(I_{\mathrm{C}}=20 \mathrm{~mA} ., \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}.\right)$								
HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	51	46	46	45	46	20	20		
5\%	51	46	46	45	46	20	20		
10\%	51	46	46	45	46	20	20		
25\%	55	51	50	49	49	43	20		$\mathrm{P}=800 \mathrm{~mW}$.
50\%	69	68	63	67	68	68	58		$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	89	82	79	82	84	84	93		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	129	115	107	114	117	119	117		
95\%	129	115	107	114	117	119	117		
Max	129	115	107	114	117	119	117		
Min	49	48	47	49	48	49	48	50	
5\%	49	48	47	49	48	49	48	50	
10\%	50	51	49	51	50	51	50	50	
25\%	55	54	53	54	54	54	54	53	$\mathrm{P}=700 \mathrm{mw}$.
50\%	69	69	68	69	69	69	67	68	$\mathrm{V}_{\text {CB }}=20 \mathrm{~V}$.
75\%	102	101	100	101	101	101	101	101	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	124	123	121	123	122	124	124	123	
95\%	131	130	128	131	129	131	130	129	
Max	131	130	128	131	129	131	130	129	
Min	43	43	37	32	31	31	29	28	
5\%	43	43	37	32	31	31	29	28	
10%	43	43	37	32	31	31	29	28	
25\%	53	52	51	47	48	49	49	48	$\mathrm{P}=500 \mathrm{mw}$.
50\%	64	66	67	64	67	68	70	71	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	86	81	81	78	81	83	85	84	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	111	108	108	103	105	108	114	109	
95\%	111	108	108	103	105	108	114	109	
Max	111	108	108	103	105	108	114	109	

$I_{\text {CBO }}$ DISTRIBUIION CHANGES WITH LIFE TEST.

HRS.	$I_{\text {CBO }}\left(\mathrm{V}_{\mathrm{CB}}=60 \mathrm{~V}.\right)$								
	INIT.	168	340	680	1000	1500	2000	3000	
Min	<0.1	<0.1	0.1	<0.1	0.2	<0.1	<0.1	<0.1	
5\%	<0.1	<0.1	0.1	<0.1	0.2	<0.1	<0.1	<0.1	
10\%	0.1	0.3	0.2	0.1	0.2	<0.1	<0.1	<0.1	
25\%	0.1	0.5	0.2	0.2	0.2	0.1	0.2	0.1	$\mathrm{P}=800 \mathrm{~mW}$.
50\%	0.3	0.9	0.4	0.4	0.4	0.5	0.3	0.4	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.5	1.9	1.7	1.5	1.6	1.2	2.7	3.2	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	1.5	4.9	4.9	3.0	2.5	1.9	7.5	6.5	
95\%	2.0	6.9	6.9	3.7	2.5	2.0	9.3	6.8	
Max	2.0	6.9	6.9	3.7	2.5	2.0	9.3	6.8	
Min	<0.1	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	0.3	
5\%	<0.1	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	0.4	
10\%	<0.1	0.6	<0.1	<0.1	<0.1	<0.1	<0.1	0.5	
25\%	0.1	0.7	0.1	0.1	0.1	0.1	<0.1	0.5	$\mathrm{P} \pm 700 \mathrm{~mW}$.
50\%	0.2	0.9	0.4	0.3	0.1	0.2	0.3	0.7	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.9	1.7	1.1	1.1	0.3	0.7	1.0	1.5	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	1.0	2.0	1.3	1.3	1.3	1.1	1.3	1.9	
95\%	1.9	2.9	2.3	2.2	2.2	1.9	2.1	3.2	
Max	2.7	3.7	3.1	3.0	3.0	2.4	2.7	3.4	
Min	<0.1	<0.1	0.4	0.8	<0.1	<0.1	<0.1	<0.1	
5\%	0.1	<0.1	0.4	0.9	<0.1	0.1	<0.1	<0.1	
10\%	U.i	<0.1	0.2	1.0	0.1	0.2	<0.1	<0.1	
25\%	0.2	0.1	0.7	1.1	0.3	0.3	0.1	0.1	$\mathrm{P}=500 \mathrm{~mW}$.
50\%	0.3	0.4	0.9	1.3	0.6	0.5	0.3	0.4	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.9	0.6	1.5	1.8	1.2	1.3	1.0	1.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	1.3	1.2	2.1	2.5	2.0	1.7	1.4	1.7	
95\%	2.4	2.3	3.4	3.4	3.8	2.7	2.1	2.6	
Max	26.5	7.4	3.5	4.5	71 UA	3.9	3.5	6.8	
Min	<0.1	0.6	<0.1	<0.1	0.1	<0.1	0.1	<0.1	
5\%	<0.1	0.6	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	
10\%	<0.1	0.6	<0.1	0.1	0.2	0.1	<0.1	0.1	
25\%	0.1	0.7	0.3	0.3	0.4	0.2	0.2	0.3	$\mathrm{P}=400 \mathrm{~mW}$.
50\%	0.3	0.9	0.5	0.4	0.6	0.3	0.4	0.6	$\mathrm{V}_{C B}=20 \mathrm{~V}$.
75\%	0.5	1.1	0.7	0.6	3.0	0.5	0.6	1.2	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
90\%	1.3	17.1	16.7	14.8	14.3	5.7	4.7	1.9	
95\%	1.3	32.1	31.7	27.8	16.3	10.0	7.7	2.3	
Max	1.3	32.1	31.7	27.8	16.3	10.0	7.7	2.3	

TABLE 68. (CONTINUED).

HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	<0.1	0.4	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
5\%	<0.1	0.5	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	
10\%	0.1	0.5	0.2	<0.1	0.1	<0.1	<0.1	<0.1	
25\%	0.2	0.7	0.2	0.2	0.2	0.1	0.1	0.1	$\mathrm{P}=200 \mathrm{~mW}$.
50\%	0.3	0.8	0.4	0.4	0.3	0.3	0.2	0.3	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.6	1.2	0.7	0.6	0.8	0.4	0.5	0.5	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
90\%	1.3	2.0	1.6	1.6	1.5	1.4	1.2	1.3	
95\%	2.0	4.6	2.1	2.1	5.9	1.6	1.8	1.8	
Max	2.3	6.3	2.4	2.5	9.5	1.8	2.0	2.2	

1

$I_{\text {Cbo }}$ DISTRIBUTION Changes with life test.

	$\mathrm{I}_{\text {CBO }}\left(\mathrm{V}_{\mathrm{CB}}=60 \mathrm{v}\right.$. $)$								
HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	0.2	0.9	0.3	0.2	0.3	<0.1	<0.1	0.6	
5\%	0.2	0.9	0.3	0.2	0.3	<0.1	<0.1	0.6	
10\%	0.3	0.9	0.3	0.3	0.4	0.1	0.2	0.6	
25\%	0.9	1.6	0.9	0.7	0.9	0.3	0.4	0.7	$\mathrm{P}=800 \mathrm{~mm}$.
50\%	1.5	1.8	1.2	1.0	1.2	1.0	1.0	1.0	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{v}$.
75\%	3.5	4.1	3.8	3.2	3.5	2.3	1.7	1.3	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	4.6	4.9	4.4	501.8	4.2	3.5	3.2	3.2	
95\%	4.6	5.0	4.4	--.	4.2	3.7	3.7	3.6	
Max	4.6	5.0	4.4	---	4.2	3.7	3.7	3.6	
Min	<0.1	0.8	0.2	0.2	0.4	<0.1	0.2	0.2	
5\%	0.2	0.9	0.3	0.2	0.4	<0.1	0.3	0.2	
10\%	0.4	0.9	0.4	0.3	0.5	0.1	0.3	0.2	
25\%	1.0	1.8	1.1	0.9	1.3	1.0	0.7	0.9	$\mathrm{P}=700 \mathrm{~mW}$.
50\%	2.2	3.4	2.8	1.8	2.0	1.6	1.0	1.3	$\mathrm{v}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	3.6	4.5	3.5	2.7	3.5	3.3	2.9	3.3	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	4.7	5.1	4.4	3.8	4.5	4.2	3.7	4.0	
95\%	4.9	9.8	6.9	3.9	4.8	502.7	3.9	4.4	
Max	5.0	14.4	9.2	3.9	4.8		3.9	4.5	
Min	0.2	0.9	1.3	0.4	0.3	0.2	0.3	0.5	
5\%	0.4	1.0	1.3	0.5	0.6	0.3	0.4	0.7	
10%	0.5	1.2	2.5	0.7	$2 \cdot 7$	0.5	0.6		
25\%	0.9	1.6	1.9	1.0	1.1	0.9	1.0	1.3	$\mathrm{P}=500 \mathrm{~min}$.
50\%	2.1	3.4	3.3	2.3	2.5	2.4	2.3	2.6	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	3.7	4.5	4.2	3.5	3.5	3.4	3.4	4.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	4.1	5.0	4.6	3.9	4.0	4.3	4.2	4.6	
95\%	4.5	13.2	13.9	17.9	18.7	5.1	5.6	9.7	
Max	4.8	196.4	121.8	57.6	29.4	34.2	38.3	31.1	
Min	0.2	0.7	0.5	0.3	0.1	0.2	<0.1	0.3	
5\%	0,2	0.7	0.5	0.3	0.1	0.2	<0.1	0.3	
10\%	0.2	0.8	0.5	0.4	0.1	0.3	0.1	0.4	
25\%	0.4	1.1	0.6	0.5	0.4	0.4	0.3	0.6	$\mathrm{P}=400 \mathrm{~mW}$.
50\%	1.9	2.5	2.2	1.8	1.3	1.6	1.6	0.8	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{v}$.
75\%	4.4	4.6	4.2	3.9	3.1	3.6	4.1	3.6	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
90\%	5.1 5.4	5.1 5.3	4.6 4.6	4.3 4.5	3.5 3.5	4.1 4.2	4.4 4.4 4.4	4.3	
Max	5.4	5.3	4.6	4.5	3.5	4.2	4.4	4.6	

TABLE 69. (CONTINUED).

HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	0.4	0.8	0.6	0.5	0.5	0.3	1.1	0.1	
5%	0.5	0.9	0.7	0.5	0.5	0.4	1.1	0.3	
10%	0.6	1.2	0.8	0.5	0.6	0.4	1.2	0.9	
25%	0.9	1.5	1.2	1.0	0.9	0.9	1.5	1.2	$\mathrm{P}=200 \mathrm{~mW}$.
$50 \%_{6}$	1.4	2.0	1.7	1.6	1.3	1.7	2.1	1.7	$\mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75%	3.2	3.7	3.7	3.4	2.9	3.3	3.7	3.7	$\mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$.
90%	3.8	4.2	4.6	5.0	4.0	4.3	4.5	4.3	
95%	4.6	4.8	5.6	7.0	6.8	29.3	7.2	7.1	
Max	4.8	5.0	6.1	7.9	9.0	52.1	7.7	9.5	

244

$I_{\text {CBO }}$ DISTRIBUTION CHANGES WITH LIFE TEST.

	$I_{\text {CBO }}\left(\mathrm{V}_{\mathrm{CB}}=60 \mathrm{~V}.\right)$								
HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	<0.1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
5\%	<0.1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
10\%	<0.1	0.4	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	
25\%	0.2	0.6	0.3	0.2	0.3	0.1	0.5	0.2	$\mathrm{P}=800 \mathrm{~mW}$.
50\%	0.5	0.9	1.0	0.6	0.7	0.8	1.9	1.8	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.8	2.1	2.1	1.8	1.9	1.4	30.1	14.6	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	1.0	124.3	379.2	405.1	440.2	512.4	592.2	331.9	
95\%	1.1	220.8	745.3	802.9	875.0	---	---	363.0	
Max	1.1	220.8	745.3	802.9	875.0	---	---	363.0	
Min	<0.1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	
5\%	<0.1	0.5	<0.1	<0.1	<0.1	<0.1	0.1	0.2	
10\%	<0.1	0.6	0.2	<0.1	0.2	<0.1	0.3	0.5	
25\%	<0.1	0.7	0.2	0.1	0.3	0.1	0.4	0.7	$\mathrm{P}=700 \mathrm{~mW}$.
50\%	0.1	0.9	0.5	0.3	0.4	0.4	1.0	1.6	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.2	1.4	1.2	1.2	1.5	3.3	204.9	562.4	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	0.6	3.6	31.2	44.3	58.5	581.0	---	---	
95\%	8.0	6.5	62.2	134.8	148.4	-..	---	---	
Max	14.0	7.0	73.8	174.5	187.0	---	---	---	
Min	<0.1	0.3	0.7	<0.1	<0.1	<0.1	<0.1	<0.1	
5\%	<0.7	0.4	0.8	<0.1	0.1	<0.1	<0.1	0.1	
10\%	<0.1	0.4	1.0	<0.1	0.1	<0.1	<0.1	-0.111	
25\%	<0.1	0.5	1.0	0.2	0.2	0.1	0.1	0.1	$\mathrm{P}=500 \mathrm{~mW}$.
50\%	<0.1	0.7	1.3	0.4	0.4	0.3	0.3	0.3	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.2	1.2	1.9	1.1	1.4	0.7	1.6	1.7	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	0.6	4.0	5.4	5.9	13.0	6.7	11.6	19.1	
95\%	2.3	23.7	22.2	31.3	45.3	17.9	24.5	102.9	
Max	7.6	58.1	179.1	938.0	---	---			
Min	<0.1	0.4	0.1	0.1	0.2	0.1	<0.1	<0.1	
5\%	<0.1	0.4	0.1	0.1	0.2	0.1	<0.1	<0.1	
10\%	<0.1	0.5	0.2	0.2	0.3	0.2	<0.1	<0.1	
25\%	<0.1	0.7	0.6	0.5	2.6	0.3	0.2	0.1	$P=400 \mathrm{mFW}$.
50\%	0.4	1.3	2.4	4.6	72.9	3.9	0.3	0.4	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.4	4.1	229.0	325.2	-	---	409.2	155.4	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
90\%	0.8	236.2	---	---	---	---	---	366.7	
95\%	0.9	417.0	---	---	---	---	---	451.8	
Max	0.9	417.0	---	---	---	---	---	451.8	

TABLE 70. (CONTINUED).

HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	<0.1	0.2	<0.1	$\times 0.1$	<0.1	<0.1	<0.1	<0.1	
5%	<0.1	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
10%	<0.1	0.5	<0.1	<0.1	0.1	<0.1	0.1	<0.1	
25%	0.1	0.7	<0.1	0.1	0.2	<0.1	0.2	0.1	$\mathrm{P}=200 \mathrm{~mW}$.
50%	0.2	0.9	0.4	0.5	0.4	0.2	0.3	0.5	$\mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75%	0.4	1.4	1.6	7.0	1.5	4.8	4.4	25.9	$\mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$.
90%	2.0	27.2	56.3	45.2	12.2	82.1	47.0	460.7	
95%	24.3	39.6	137.4	139.1	75.5	236.9	659.0	---	
Max	34.3	44.1	169.6	205.0	121.4	260.5	---	--	

248

$h_{F E}$ DISTRIBUTION CHANGES WITH LIFE TEST.

	$\mathrm{h}_{\mathrm{FE}}\left(\mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA} ., \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}.\right)$								
HRS.	INIT .	168	340	680	1000	1500	2000	3000	
Min	67	68	64	20	20	20	20	20	
5\%	67	68	64	20	20	20	20	20	
10\%	68	68	64	44	44	20	20	20	
25\%	73	74	75	70	71	66	55	66	$\mathrm{P}=800 \mathrm{~mW}$.
50\%	88	89	91	87	90	87	79	85	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	92	92	94	90	92	91	90	90	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
90\%	98	97	100	97	99	98	99	101	
95\%	100	98	102	99	101	99	102	105	
Max	100	98	102	99	101	99	102	105	
Min	62	60	63	63	63	62	60	20	
5\%	63	63	64	64	64	64	61	40	
10\%	67	66	67	66	66	67	66	63	
25\%	77	77	77	77	77	77	74	73	$\mathrm{P}=700 \mathrm{~mW}$.
50\%	84	83	84	84	85	85	83	83	$V_{C B}=20 \mathrm{~V}$.
75\%	90	90	89	90	92	91	90	88	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
90\%	98	94	92	99	99	100	98	99	
95\%	102	100	97	103	103	103	103	102	
Max	105	105	99	106	106	105	104	103	
Min	53	54	52	52	20	20	20	20	
5\%	64	64	62	62	20	52	20	20	
10%	68	65	64	64	54	57	54	54	
25\%	77	75	74	72	64	66	64	64	$\mathrm{P}=500 \mathrm{~mW}$.
50\%	87	82	83	80	77	80	79	79	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	92	90	91	87	89	91	89	89	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
90\%	97	96	96	91	95	97	95	95	${ }^{\text {A }}$
95\%	99	98	97	94	97	98	97	96	
Max	103	103	102	96	186	101	99	98	
Min	57	57	59	19	55	56	56	20	
5\%	57	57	59	19	55	56	56	20	
10\%	62	60	62	37	60	60	60	38	
25\%	67	66	66	59	65	66	66	66	$\mathrm{P}=400 \mathrm{~mW}$.
50\%	87	86	86	77	82	84	83	82	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	91	91	92	85	88	90	91	90	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
90\%	97	98	99	92	96	97	98	95	
95\%	98	98	100	93	97	98	100	97	
Max	98	98	100	93.	97	98	100	97	

TABLE 71. (CONTINUED).

HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	62	62	62			62	61	62	
5%	64	64	63			63	63	63	
10%	66	65	65			65	65	66	
25%	71	71	70			70	69	71	$\mathrm{P}=200 \mathrm{~mW}$.
50%	83	80	79			80	81	82	$\nabla_{\mathrm{CB}}=20 \mathrm{~V}$.
75%	89	87	86			87	87	88	$\mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$.
90%	98	96	95			97	95	97	
95%	102	100	99			99	101	102	
Max	102	101	101			101	101	102	

$h_{\text {FE }}$ DISTRIBUTION CHANGES WITH LIFE TEST.

	$\mathrm{h}_{\mathrm{FE}}\left(\mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA} ., \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}.\right)$								
HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	61	63	63	62	63	20	20	20	
5\%	61	63	63	62	63	20	20	20	
10\%	65	67	68	66	67	45	20	20	
25\%	77	78	79	77	78	79	74	60	$\mathrm{P}=800 \mathrm{~mW}$.
50\%	94	96	91	96	96	100	97	89	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	98	101	103	100	103	108	II2	114	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	104	111	113	112	113	116	124	679	
95\%	105	112	115	114	115	119	132	917	
Max	105	112	115	114	115	119	132	917	
Min	67	20	65	20	20	20	20	72	
5\%	69	44	69	20	44	20	20	75	
10\%	73	73	74	68	73	70	70	82	
25\%	85	84	85	82	85	86	85	89	$\mathrm{P}=700 \mathrm{~mW}$.
50\%	93	92	91	92	94	94	95	100	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	102	99	101	103	103	107	104	110	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	105	105	109	108	110	112	109	114	
95\%	108	106	112	112	115	116	113	116	
Max	109	107	115	115	116	117	116	117	
Min	36	47	20	57	57	58	20	20	
5\%	58	58	57	59	59	60	58	57	
10\%	67	70	56	59	69	70	58	65	
25\%	84	85	82	83	84	86	84	83	$\mathrm{P}=500 \mathrm{~mW}$.
50\%	93	93	91	93	93	96	97	96	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	101	101	96	100	94	102	103	104	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
90\%	103	106	103	106	106	107	106	108	
95\%	105	108	105	108	107	109	109	109	
Max	108	110	108	109	109	113	119	115	
Min	77	75	75	72	77	78	83	84	
5\%	77	75	75	72	77	78	83	84	.
10\%	77	76	75	73	77	78	83	84	
25\%	87	82	81	77	80	81	83	89	$P=400 \mathrm{~mW}$.
50\%	94	91	90	89	94	95	97	98	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	97	96	97	95	101	102	103	103	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
90\%	105	104	550	100	105	106	137	136	
95\%	106	108	---	103	108	108	164	162	
Max	106	108	---	103	108	108	164	162	

TABLE 72. (CONTINUED).

HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	56	56	20	20	20	20	55	20	
5\%	57	58	38	38	37	38	57	38	
10\%	70	68	59	59	58	59	68	59	
25\%	75	76	77	76	75	77	78	77	$\mathrm{P}=200 \mathrm{~mW}$.
50\%	88	87	86	88	87	87	89	89	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	97	97	95	97	96	98	98	98	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$.
90\%	107	108	105	106	106	103	109	108	${ }^{\text {A }}$
35\%	108	109	107	110	108	107	112	113	
Max	108	109	109	111	110	109	114	114	

$200 \mathrm{~mW} ., \quad 150^{\circ} \mathrm{C}$.

$h_{\text {FE }}$ DISIRIBUTION CHANGES WITH LIFE TEST.

	$\mathrm{h}_{\mathrm{FE}}\left(\mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA} ., \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}.\right)$								
HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	54	55	55	55	55	55	54	53	
5\%	54	55	55	55	55	55	54	53	
10\%	60	61	61	60	61	61	60	54	
25\%	66	67	68	67	68	68	67	59	$\mathrm{P}=800 \mathrm{~mW}$.
50\%	81	80	80	80	81	82	77	77	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	107	107	105	105	107	108	107	107	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
90\%	112	112	114	112	113	114	113	112	
95\%	114	115	116	115	115	116	115	113	
Max	114	115	116	115	115	116	115	113	
Min	55	56	20	56	57		44	46	
5\%	56	57	36	57	58		50	50	
10\%	59	60	57	60	61		57	57	
25\%	68	68	63	67	68		63	64	$\mathrm{P}=700 \mathrm{~mW}$.
50\%	90	89	81	87	88		87	87	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	110	110	105	109	111		109	112	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	132	134	120	133	136		134	134	
95\%	136	137	134	134	138		136	136	
Max	139	139	138	135	140		137	136	
Min		53	53	53	54	55	25		
5\%	57	57	56	56	57	57	53		
10%	60	61	61	60	62	63	56		
25\%	74	72	71	73	75	76	70		$\mathrm{P}=500 \mathrm{~mW}$.
50\%	84	84	82	84	85	87	80		$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	102	103	101	102	103	105	99		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	121	122	120	121	124	125	118		
95\%	133	132	130	128	134	138	129		
Max	139	141	139	134	141	143	134		
Min	59	20	20	19	20	20	20	20	
5\%	59	20	20	19	20	20	20	20	
10\%	60	39	39	33	27	30	20	20	
25\%	63	60	60	56	54	60	20	20	$\mathrm{P}=400 \mathrm{~mW}$.
50\%	104	92	84	76	78	93	58	45	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	118	115	112	101	105	114	126	84	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
90\%	121	120	121	109	117	249	149	111	
95\%	122	121	122	111	119	374	156	116	
Max	122	121	122	111	119	374	156	116	

TABLE 73. (CONTINUED).

HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	53	20	52	19	50	20	20	20	
5%	55	34	54	33	53	37	37	20	
10%	60	56	60	57	59	60	59	56	
25%	70	66	69	66	66	68	68	68	$\mathrm{P}=200 \mathrm{~mW}$.
50%	89	85	87	83	88	89	88	87	$\mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75%	104	103	104	100	103	106	105	103	$\mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$.
90%	116	117	115	111	113	117	115	118	
95%	123	123	122	118	119	123	121	124	
Max	127	127	126	122	123	127	125	128	

500 mW., $25^{\circ} \mathrm{C}$.

$I_{\text {CBO }}$ DISIRIBUTION CHANGES WITH LIFE TEST.

	$I_{\text {CBO }}\left(\mathrm{V}_{\mathrm{CB}}=60 \mathrm{v}.\right)$								
HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	0.1	0.5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
5\%	0.1	0.5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
10\%	0.1	0.5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
25\%	0.1	0.7	0.2	<0.1	0.1	0.1	0.3	<0.1	$\mathrm{P}=800 \mathrm{~mW}$.
50\%	0.4	0.8	0.4	0.2	0.3	0.2	0.3	0.1	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.7	1.0	0.8	0.5	1.2	0.5	1.5	1.6	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	1.9	2.2	1.8	1.5	1.7	1.0	2.6	3.2	
95\%	1.9	2.2	1.8	1.5	1.7	1.0	2.6	3.2	
Max	1.9	2.2	1.8	1.5	1.7	1.0	2.6	3.2	
Min	0.1	0.6	0.2	<0.1	0.1	<0.1	0.3	<0.1	
5\%	0.1	0.6	0.2	<0.1	0.1	<0.1	0.3	<0.1	
10\%	0.2	0.7	0.2	<0.1	0.2	<0.1	0.3	0.1	
25\%	0.3	0.8	0.2	0.1	0.3	0.2	0.4	0.4	$\mathrm{P}=700 \mathrm{~mW}$.
50\%	0.5	1.0	0.5	0.4	0.6	0.4	0.7	0.9	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	1.1	1.4	0.9	0.9	1.1	0.7	1.1	1.5	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	1.1	1.8	1.3	1.0	1.3	3.6	31.1	30.6	
95\%	1.4	1.9	1.4	1.0	1.3	9.5	40.3	92.5	
Max	1.4	1.9	1.4	1.0	1.3	9.5	40.3	92.5	
Min	0.1	<0.1	0.5	0.8	<0.1	<0.1	<0.1	<0.1	
5\%	0.1	<0. 1	0.5	0.8	<0.1	<0.1	<0.1	<0.1	
10\%	0.1	<0.1	0.5	1.0	0.1	0.1	<0.1	<0.1	
25\%	0.2	<0.1	0.7	1.0	0.2	0.1	0.1	<0.1	$P=500 \mathrm{~mW}$.
50\%	0.4	0.4	0.8	1.2	0.3	0.3	0.3	0.3	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.9	0.5	1.3	1.6	0.8	0.7	0.8	1.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	1.3	0.7	2.1	2.0	1.3	1.4	1.5	1.9	
95\%	1.6	2.2	2.3	2.6	1.5	1.6	3.4	---	
Max	1.8	4.1	4.0	4.0	3.3	3.4	---	---	
Min	0.2	0.5	0.2	0.3	<0.1	<0.1	<0.1	<0.1	
5\%	0.2	0.5	0.2	0.3	<0.1	<0.1	<0.1	<0.1	
10\%	0.2	0.5	0.2	0.3	<0.1	<0.1	<0.1	<0.1	
25\%	0.3	0.7	0.3	0.3	0.2	7.5	<0.1	<0.1	$\mathrm{P}=400 \mathrm{~mW}$.
50\%	0.3	0.9	0.4	0.3	0.3	25.0	0.2	0.5	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.4	0.9	0.7	0.6	0.5	40.0	0.4	1.0	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$.
90\%	0.7	1.2	0.7	0.7	0.8	70.0	1.0	9.6	
95\%	0.7	1.2	0.7	0.7	0.8	70.0	1.0	9.6	
Max	0.7	1.2	0.7	0.7	0.8	70.0	1.0	9.6	

TABLE 74. (CONTINUED).

HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	0.1	0.6	0.3	<0.1	0.1	<0.1	<0.1	<0.1	
5%	0.1	0.6	0.3	<0.1	0.1	<0.1	<0.1	<0.1	
10%	0.1	0.8	0.3	<0.1	0.1	<0.1	0.1	<0.1	
25%	0.3	0.9	0.6	0.3	0.2	0.2	0.3	0.1	$\mathrm{P}=200 \mathrm{~mW}$.
50%	0.4	1.1	0.8	0.5	0.4	0.4	0.5	0.4	$\mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75%	1.2	1.7	1.3	1.2	1.1	0.8	1.0	1.1	$\mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$.
90%	1.4	1.9	245.5	1.3	1.2	1.0	1.2	1.3	
95%	1.5	2.0	814.9	1.3	1.2	1.0	1.3	1.4	
Max	1.5	2.0	814.9	1.3	1.2	1.0	1.3	1.4	

$I_{\text {CBO }}$ DISTRIBUTION CHANGES WITH LIFE TEST.

	$I_{C B O}\left(\mathrm{~V}_{\text {CB }}=60 \mathrm{v}.\right)$								
HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	0.6	1.3	0.9	0.8	0.8	0.4	0.1	0.1	
5\%	0.6	1.3	0.9	0.8	0.8	0.4	<0.1	0.1	
10\%	0.6	1.3	0.9	0.8	0.8	0.4	<0.1	0.1	
25\%	1.6	1.9	1.7	0.9	1.3	1.0	<0.1	0.3	$\mathrm{P}=800 \mathrm{~mW}$.
50\%	3.2	3.3	3.1	2.6	$3 \cdot 3$	2.5	1.0	1.5	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	3.6	3.8	4.2	3.0	3.7	3.1	2.7	2.8	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	5.1	4.5	20.0	3.7	4.7	3.5	3.4	3.5	
95\%	5.1	4.5	20.0	3.7	4.7	3.5	3.4	3.5	
Max	5.1	4.5	20.0	3.7	4.7	3.5	3.4	3.5	
Min	0.4	0.9	0.5	0.5	0.1	0.1	<0.1	0.3	
5\%	0.4	0.9	0.5	0.5	0.1	0.1	<0.1	0.3	
10\%	0.5	1.1	0.6	0.6	0.2	0.3	0.2	0.4	
25\%	0.8	1.6	1.2	1.0	0.5	0.6	0.5	1.0	$\mathrm{P}=700 \mathrm{~mW}$.
50\%	1.3	2.1	1.7	1.5	1.3	1.3	1.0	1.2	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	2.6	3.2	3.0	2.7	2.8	6.1	10.3	11.3	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	3.2	363.8	140.1	34.2	38.4	---	408.0	---	
95\%	3.3	891.6	140.1	79.7	90.8	---	---	---	
Max	3.3	891.6	140.1	79.7	90.8	---	---	---	
Min	0.5	0.8	1.2	0.4	0.1	0.1	<0.1	0.1	
50,	0.5	$0 \cdot$	1.5	0.5	0.3	0.2	<0.1	$\bigcirc 6$	
10\%	0.7	1.2	1.6	0.7	0.5	0.5	0.3	1.0	
25\%	1.0	1.6	1.8	1.3	0.9	1.0	1.0	1.2	$\mathrm{P}=500 \mathrm{~mW}$.
50\%	1.8	2.6	2.9	2.3	1.7	1.6	1.5	1.6	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	3.7	4.3	4.2	3.9	3.0	3.6	3.3	3.9	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	4.3	5.8	5.2	4.5	3.7	4.3	3.7	4.3	
95\%	4.8	12.8	9.5	175.7	57.6	23.8	38.1	4.8	
Max	4.9	---	---	---	---	---	---	7.6	
Min	0.5	1.0	0.3	0.3	0.7	0.3	0.4	0.3	
5\%	0.5	1.0	0.3	0.3	0.7	0.3	0.4	0.3	
10\%	0.5	1.0	0.3	0.3	0.7	0.3	0.4	0.3	
25\%	0.8	1.3	0.9	0.7	0.7	0.7	0.8	0.4	$\mathrm{P}=400 \mathrm{~mW}$.
50\%	1.5	1.9	1.6	1.3	1.2	1.2	1.3	1.3	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	4.4	4.6	4.0	3.8	3.2	3.5	3.6	3.9	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
90\%	4.8	4.7	4.5	4.0	3.5	3.6	3.7	4.2	
95\%	4.8	4.7	4.5	4.0	3.5	3.6	3.7	4.2	
Max	4.8	4.7	4.5	4.0	3.5	3.6	3.7	4.2	

TABLE 75. (CONTINUED).

HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	0.6	1.4	1.0	0.8	0.7	0.2	0.5	<0.1	
5%	0.6	1.4	1.0	0.8	0.7	0.2	0.5	<0.1	
10%	0.7	1.4	1.0	0.9	0.8	0.2	0.6	0.5	
25%	1.3	1.7	1.3	1.2	1.0	0.7	1.1	1.0	$\mathrm{P}=200 \mathrm{~mW}$.
50%	2.0	2.5	2.3	2.3	1.7	1.9	2.0	1.6	$\mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75%	3.8	3.8	3.8	3.8	3.0	3.3	3.3	3.4	$\mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$.
90%	4.5	14.9	117.5	66.4	19.5	4.9	149.8	5.8	
95%	4.9	30.1	287.2	159.6	43.1	6.5	368.3	7.8	
Max	4.9	30.1	287.2	159.6	43.1	6.5	368.3	7.8	

$I_{\text {Cbo }}$ DISTRIBution Changes with life test.

	$\mathrm{I}_{\text {CBO }}\left(\mathrm{V}_{\mathrm{CB}}=60 \mathrm{v}\right.$.) (Nanoamperes).								
HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	<0.1	0.5	<0.1	<0.1	<0.1	<0.1	0.1	-0.1	
5\%	<0.1	0.5	<0.1	<0.1	<0.1	40.1	0.1	<0.1	
10\%	<0.1	0.5	<0.1	<0.1	-0.1	<0.1	0.1	<0.1	
25\%	0.2	0.6	0.2	0.3	0.2	<0.1	0.2	4.3	P 8000 mw .
50\%	0.3	1.2	0.6	0.7	1.6	1.4	1.7	27.7	$\mathrm{V}_{\text {CD }}=20 \mathrm{v}$.
75\%	0.4	5.8	15.5	19.4	80.4	57.3	53.2	216.7	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	4.0	60.0	251.1	249.0	254.9	356.6	258.7	936.7	
95\%	5.1	65.1	273.0	269.0	272.3	387.9	823.6		
Max	5.1	65.1	273.0	269.0	272.3	387.9	823.6		
Min	$\bigcirc 0.1$	0.6	<0.1	<0.1	0.1	0.3	<0.1	0.	
5\%	<0.1	0.6	<0.1	<0.1	0.1	0.3	$\bigcirc 0.1$	0.3	
10\%	<0.1	0.6	<0.1	<0.1	0.1	0.5	$\bigcirc 0.1$	0.5	
25\%	<0.1	0.7	0.1	< 0.1	0.2	1.0	<0.1	0.7	$\mathrm{P}=700 \mathrm{mWN}$.
50\%	$\bigcirc 0.1$	0.8	0.2	0.3	0.3	1.3	0.4	1.1	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.1	1.2	0.5	2.3	0.8	2.5	2.3	3.8	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	0.2	2.3	3.2	7.0	7.2	39.1	28.9	409.8	
95\%	1.2	30.6	6.9	10.3	9.4	623.7	951.4	972.5	
Max	1.3	32.1	7.1	10.5	9.5	623.7			
Min	$\bigcirc 0.1$	0.2	0.8	0.1	<0.1	$\bigcirc 0.1$	-0.1	0.3	
37	$\therefore 0.1$	0.3	0.3	0.1	$\bigcirc .1$	0.1	0.1	0.3	
10\%	$\bigcirc 0.1$	0.4	0.9	0.2	0.1	<0.1	0.1	0.3	
25\%	<0.1	0.5	1.0	0.3	0.3	0.1	0.2	0.5	$\mathrm{P}=500 \mathrm{mw}$.
50\%	<0.1	0.7	1.3	0.5	0.5	0.3	0.3	0.8	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.3	1.2	2.2	1.0	0.9	0.7	0.5	1.4	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	1.8	3.4	5.1	3.2	3.3	2.5	2.9	4.8	
95\%	3.4	5.7	7.8	41.5	26.1	3.9	6.6	61.8	
Max	6.3	662.4	13.5	116.0	206.3	11.5	292.7	215.7	
Min	-0.1	0.7	0.2	<0.1	0.2	<0.1	0.5	<0.1	
5\%	$\bigcirc 0.1$	0.7	0.2	<0.1	0.2	<0.1	0.5	<0.1	
10\%	<0.1	0.7	0.2	<0.1	0.2	<0.1	0.5	<0.1	
25\%	<0.1	0.8	0.3	0.2	0.4	0.1	0.6	0.3	$\mathrm{P}=400 \mathrm{~mW}$.
50\%	0.1	1.1	0.8	0.7	3.8	0.7	1.1	2.9	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.1	42.8	92.1	102.1	99.2	81.1	8.3	20.2	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
90\%	0.6	740.2	916.7	914.2	917.7	926.4	408.5	903.9	
95\%	0.7	813.6			-	---	408.5		
Max	0.7	813.6	---	---	---	---	408.5	---	

TABLE 76. (CONTINUED).

HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	<0.1	0.5	<0.1	0.1	0.1	<0.1	<0.1	<0.1	
5%	<0.1	0.5	<0.1	0.1	0.1	<0.1	<0.1	<0.1	
10%	<0.1	0.7	<0.1	0.2	0.1	<0.1	<0.1	<0.1	
25%	00.1	0.8	0.3	0.3	0.2	0.1	0.1	0.1	$\mathrm{P}=200 \mathrm{~mW}$.
50%	0.2	1.2	0.6	0.5	0.5	0.2	0.2	0.3	$\mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75%	0.4	1.7	1.7	1.4	3.1	1.2	0.8	0.9	$\mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$.
90%	2.3	9.0	8.4	4.8	31.3	3.9	3.8	5.6	
95%	3.4	950.4	950.3	950.2	951.6	6.2	64.7	322.4	
Max	3.4	--	---	---	---	6.3	67.9	339.1	

$h_{\text {FE }}$ DISTRIBUTION CHANGES WITH LIFE TEST.

	$\mathrm{h}_{\mathrm{FE}}\left(I_{C}=20 \mathrm{~mA} ., \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}.\right)$								
HRS.	INIT.	168	340	680	1000	1500	2000	3000	
$\begin{aligned} & \text { Min } \\ & 5 \% \\ & 10 \% \\ & 25 \% \\ & 50 \% \\ & 75 \% \\ & 90 \% \\ & 95 \% \\ & \operatorname{Max} \end{aligned}$	$\begin{array}{r} 62 \\ 62 \\ 62 \\ 76 \\ 90 \\ 93 \\ 101 \\ 101 \\ 101 \end{array}$	$\begin{array}{r} 63 \\ 63 \\ 63 \\ 80 \\ 91 \\ 94 \\ 101 \\ 101 \\ 101 \end{array}$	$\begin{array}{r} 57 \\ 57 \\ 57 \\ 71 \\ 77 \\ 86 \\ 101 \\ 101 \\ 101 \end{array}$	$\begin{aligned} & 62 \\ & 62 \\ & 62 \\ & 79 \\ & 87 \\ & 92 \\ & 99 \\ & 99 \\ & 99 \end{aligned}$	$\begin{array}{r} 63 \\ 63 \\ 63 \\ 81 \\ 91 \\ 94 \\ 101 \\ 101 \\ 101 \end{array}$	$\begin{array}{r} 63 \\ 63 \\ 63 \\ 80 \\ 91 \\ 93 \\ 101 \\ 101 \\ 101 \end{array}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 81 \\ & 91 \\ & 92 \\ & 99 \\ & 99 \\ & 99 \end{aligned}$	$\begin{array}{r} 20 \\ 20 \\ 20 \\ 80 \\ 89 \\ 101 \\ 855 \\ 855 \\ 855 \end{array}$	$\begin{aligned} & \mathrm{P}=800 \mathrm{~mW} . \\ & \mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V} . \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \end{aligned}$
$\begin{gathered} \text { Min } \\ 5 \% \\ 10 \% \\ 25 \% \\ 50 \% \\ 75 \% \\ 90 \% \\ 95 \% \\ \operatorname{Max} \end{gathered}$	$\begin{aligned} & 49 \\ & 49 \\ & 57 \\ & 71 \\ & 77 \\ & 87 \\ & 92 \\ & 94 \\ & 94 \end{aligned}$	$\begin{aligned} & 51 \\ & 51 \\ & 58 \\ & 75 \\ & 83 \\ & 93 \\ & 94 \\ & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 52 \\ & 52 \\ & 58 \\ & 75 \\ & 83 \\ & 93 \\ & 95 \\ & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 51 \\ & 51 \\ & 56 \\ & 73 \\ & 81 \\ & 91 \\ & 92 \\ & 94 \\ & 94 \end{aligned}$	$\begin{aligned} & 52 \\ & 52 \\ & 58 \\ & 74 \\ & 84 \\ & 92 \\ & 94 \\ & 95 \\ & 95 \end{aligned}$	50 50 57 74 84 92 95 96 96	20 20 41 68 83 92 94 95 95		$\begin{aligned} & \mathrm{P}=700 \mathrm{~mW} . \\ & \mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V} . \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \end{aligned}$
Min 5% 10% 25% 50% 75% 90% 95% Max	$\begin{aligned} & 59 \\ & 63 \\ & 65 \\ & 70 \\ & 80 \\ & 85 \\ & 91 \\ & 95 \\ & 99 \end{aligned}$	$\begin{array}{r} 56 \\ 50 \\ 65 \\ 71 \\ 82 \\ 86 \\ 93 \\ 100 \\ 106 \end{array}$	50 60 64 72 82 86 93 100 106	$\begin{array}{r} 58 \\ 63 \\ 53 \\ 70 \\ 78 \\ 87 \\ 94 \\ 98 \\ 103 \end{array}$	20 20 34 69 78 88 94 99 101	$\begin{array}{r} 20 \\ 20 \\ 20 \\ 68 \\ 80 \\ 89 \\ 94 \\ 99 \\ 104 \end{array}$	$\begin{array}{r} 20 \\ 20 \\ 20 \\ 70 \\ 84 \\ 91 \\ 98 \\ 101 \\ 107 \end{array}$	$\begin{array}{r} 20 \\ 20 \\ 20 \\ 68 \\ 83 \\ 92 \\ 98 \\ 105 \\ 116 \end{array}$	$\begin{aligned} & \mathrm{P}=500 \mathrm{~mW} . \\ & \mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V} . \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \end{aligned}$
Min 5% 10% 25% 50% 75% 90% 95% Max	$\begin{aligned} & 69 \\ & 69 \\ & 69 \\ & 72 \\ & 74 \\ & 84 \\ & 85 \\ & 85 \\ & 85 \end{aligned}$	69 69 69 73 78 88 91 91 91	65 65 65 67 72 80 81 81 81	61 61 61 63 69 76 77 77 77	67 67 67 73 77 87 89 89 89	65 65 65 69 77 82 87 87 87	$\begin{aligned} & 68 \\ & 68 \\ & 68 \\ & 73 \\ & 78 \\ & 87 \\ & 89 \\ & 89 \\ & 89 \end{aligned}$	68 68 68 73 78 88 90 90 90	$\begin{aligned} & \mathrm{P}=400 \mathrm{~mW} . \\ & \mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V} . \\ & \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C} \end{aligned}$

TABLE 77. (CONTINUED).

HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	66	69	64	20	20	20	47	20	
5%	66	69	64	20	20	20	47	20	
10%	67	69	64	53	52	20	59	39	
25%	73	74	70	71	69	67	71	70	$\mathrm{P}=200 \mathrm{~mW}$.
50%	79	81	80	80	78	76	82	80	$\mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75%	91	94	85	90	87	86	93	89	$\mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$.
90%	96	97	91	97	93	96	97	96	
95%	97	98	91	97	94	96	97	97	
Max	97	98	91	97	94	96	97	97	

$500 \mathrm{~mW} \cdot, 25^{\circ} \mathrm{C}$.

PROCESS B.
$h_{\text {FE }}$ DISIRIBUTION CHANGES WITH LIFE TEST.

	$\mathrm{h}_{\mathrm{FE}}\left(\mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA} ., \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}.\right)$								
HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	82	78	79	77	74	77	20	20	
5\%	82	78	79	77	74	77	20	20	
10\%	82	78	79	77	74	77	20	20	
25\%	82	87	86	88	89	92	20	20	$\mathrm{P}=800 \mathrm{~mW}$.
50\%	100	108	103	109	110	114	112	86	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	106	117	112	115	116	118	119	118	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	107	117	113	117	116	124	131	131	
95\%	107	117	113	117	116	124	131	131	
Max	107	117	113	117	116	124	131	131	
Min	76	58	57	61	20	20	20	20	
5\%	76	58	57	61	20	20	20	20	
10\%	78	68	68	66	20	20	20	24	
25\%	86	80	80	78	67	23	20	61	$\mathrm{P}=700 \mathrm{~mW}$.
50\%	93	90	91	94	95	95	82	95	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	100	98	99	101	99	101	101	105	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	106	102	104	109	110	109	109	592	
95\%	110	104	106	112	114	114	114	909	
Max	110	104	106	112	114	114	114	909	
Min	69	20	61	62	23	20	20	20	
5	69	60	68	68	68	25	24	20	
10%	75	74	73	73	70	70	69	69	
25\%	85	84	83	85	86	87	86	84	$\mathrm{P}=500 \mathrm{~mW}$.
50\%	90	92	91	90	91	93	91	92	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	97	99	97	97	95	100	99	101	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
90\%	99	103	100	100	101	107	105	109	
95\%	102	107	108	102	108	110	108	110	
Max	103	110	---	109	108	110	109	111	
Min	83	82	76	77	79	81	81	85	
5\%	83	82	76	77	79	81	81	85	
10%	83	82	76	77	79	81	81	85	
25\%	84	82	81	77	82	82	86	90	$\mathrm{P}=400 \mathrm{~mW}$.
50\%	94	94	93	87	87	92	91	94	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	99	98	97	94	100	105	109	114	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
90\%	103	101	98	100	105	108	113	128	
95\%	103	101	98	100	105	108	113	128	
Max	103	101	98	100	105	108	113	128	

TABLE 78. (CONTINUED).

HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	69	72	76	77	76	76	79	79	
5%	69	72	76	77	76	76	79	79	
10%	78	79	83	84	82	82	84	84	
25%	87	91	90	93	93	91	94	95	$\mathrm{P}=200 \mathrm{~mW}$.
50%	92	93	94	96	95	94	96	99	$\mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75%	96	96	97	99	96	96	99	100	$\mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$.
90%	98	102	98	101	100	101	103	103	
95%	101	103	98	102	101	102	103	103	
Max	101	103	98	102	101	102	103	103	

PROCESS C.
CENTRIFUGE ONLY SCREEN.
TABLE 79.
$h_{F E}$ DISTRIBUIION CHANGES WITH LIFE TEST.

	$\mathrm{h}_{\mathrm{FE}}\left(\mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA} ., \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}.\right)$								
HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	49	50	49	50	51	51	42	20	
5\%	49	50	49	50	51	51	42	20	
10\%	50	50	50	50	51	51	42	20	
25\%	61	62	59	62	63	62	48	25	$\mathrm{P}=800 \mathrm{~mW}$.
50\%	77	78	73	79	80	78	66	53	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	88	88	82	88	89	88	80	80	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	106	109	101	110	111	110	104	103	
95\%	106	110	101	110	111	110	106	105	
Max	106	110	101	110	111	110	106	105	
Min	48	49	48	48	20	20	20	20	
5\%	48	49	48	48	21	20	20	21	
10\%	50	51	51	50	49	48	23	48	
25\%	58	59	58	59	58	57	57	58	$\mathrm{P}=700 \mathrm{~mW}$.
50\%	96	94	89	97	98	93	89	94	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	106	106	109	109	110	108	110	109	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	122	113	116	122	124	123	121	121	
95\%	125	124	125	128	130	128	127	128	
Max	125	124	125	128	130	128	128	128	
Min	48	49	49	49	50	50	49	51	
5\%	54	54	52	53	54	54	52	53	
10\%	59	59	58	55	59	60	57	59	
25\%	70	70	69	68	71	70	69	72	$\mathrm{P}=500 \mathrm{~mW}$.
50\%	86	85	82	85	86	87	84	86	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	108	106	106	108	109	111	107	110	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	124	123	122	121	126	128	123	126	
95\%	134	131	126	128	133	135	131	133	
Max	140	141	138	137	139	140	135	139	
Min	54	54	54	52	53	53		10	
5\%	54	54	54	52	53	53		20	
10\%	55	55	55	52	54	54		23	
25\%	71	71	71	63	69	68		54	$\mathrm{P}=400 \mathrm{~mW}$.
50\%	96	98	95	83	84	85		67	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	101	104	102	90	100	102		98	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$.
90\%	114	114	114	97	111	113		112	
95\%	115	115	116	98	112	114		113	
Max	115	115	116	98	112	114		113	

TABLE 79. (CONTINUED).

HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	51	51	51	20	20	20	20	20	
5%	51	51	51	21	21	21	21	21	
10%	52	53	53	51	49	51	51	51	
25%	63	60	63	59	57	58	58	58	$\mathrm{P}=200 \mathrm{~mW}$.
50%	102	102	103	104	100	95	95	95	$V_{C B}=20 \mathrm{~V}$.
75%	116	116	117	118	115	117	118	118	$\mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$.
90%	124	124	124	127	122	126	126	126	
95%	125	126	125	127	123	128	128	128	
Max	125	126	125	127	123	128	128	129	

$200 \mathrm{~mW} ., 150^{\circ} \mathrm{C}$.

PROCESS A.
CONTROL LOT.
TABLE 80.
$I_{\text {CBO }}$ DISTRIBUIIION CHANGES WITH LIFE TEST.

	$I_{\text {CBO }}\left(\nabla_{C B}=60 \mathrm{~V}.\right)$								
HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	0.3	0.6	0.2	<0.1	<0.1	<0.1	<0.1	0.1	
5\%	0.3	0.6	0.2	<0.1	-0.1	<0.1	-0.1	0.1	
10\%	0.3	0.6	0.2	<0.1	<0.1	<0.1	-0.1	0.1	
25\%	0.3	0.7	0.2	0.1	0.2	-0.1	0.5	0.2	$F=800 \mathrm{~mW}$.
50\%	0.4	1.1	0.6	0.3	0.3	0.1	0.7	0.3	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.7	1.3	0.6	0.6	1.0	0.3	1.5	0.7	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
190\%	1.1	1.5	1.1	2.0	1.5	0.7	1.5	1.1	
95\%	1.1	1.5	1.1	2.0	1.5	0.7	1.5	1.1	
Max	1.1	1.5	1.1	2.0	1.5	0.7	1.5	1.1	
Min	0.3	0.6	0.1	<0.1	<0.1	<0.1	-0.1	0.5	
5\%	0.3	0.6	0.1	<0.1	<0.1	<0.1	<0.1	0.5	
10\%	0.3	0.7	0.1	0.1	0.1	<0.1	0.1	0.5	
25\%	0.3	0.8	0.3	0.4	0.2	<0.1	0.3	0.5	$\mathrm{P}=700 \mathrm{~mW}$.
50\%	0.4	0.9	0.4	0.5	0.4	0.2	0.4	0.7	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.6	1.0	0.7	0.8	0.6	0.5	1.0	1.1	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	1.7	2.6	2.7	4.4	4.3	44.0	45.3	56.6	
95\%	2.1	3.4	3.5	5.7	5.9	85.5	88.2	110.5	
Max	2.1	3.4	3.5	5.7	5.9	85.5	88.2	110.5	
Min	0.1	<0.1	0.2	0.8	<0.1	<0.1	<0.1	<0.1	
5\%	0.1	<0.1	0.6	0.9	<0.1	<0.1	<0.1	<0.1	
10\%	0.2	<0.1	0.6	1.0	0.1	<0.1	0.1	<0.1	
25\%	0.2	0.3	0.7	1.0	0.2	0.1	0.2	0.2	$\mathrm{P}=500 \mathrm{~mW}$.
50\%	0.4	0.5	0.9	1.2	0.3	0.3	0.3	0.4	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.6	0.6	1.5	1.6	1.0	0.7	1.1	0.8	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	1.2	0.7	1.9	2.1	1.6	1.3	1.5	1.4	
95\%	1.4	17.8	31.5	42.5	766.0	37.5	43.8	51.5	
Max	1.7	275.2	589.0	809.0	$>1 \mathrm{uA}$	72.4	842.7	---	
Min	0.2	0.7	<0.1	0.3	0.2	<0.1	<0.1	0.2	
5\%	0.2	0.7	<0.1	0.3	0.2	<0.1	<0.1	0.2	
10\%	0.2	0.7	<0.1	0.3	0.2	<0.1	<0.1	0.2	
25\%	0.2	0.9	0.2	0.3	0.2	0.2	0.1	0.2	$\mathrm{P}=400 \mathrm{~mW}$.
50\%	0.4	1.2	0.4	0.4	0.4	0.3	0.3	0.4	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.6	1.4	0.6	0.5	0.5	0.3	0.8	0.7	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
90\%	0.8	3.0	0.8	1.0	1.4	1.3	1.7	1.7	
95\%	0.8	3.0	0.8	1.0	1.4	1.3	1.7	1.7	
Max	0.8	3.0	0.8	1.0	1.4	1.3	1.7	1.7	

TABLE 80. (CONTINUED).

HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	<0.1	0.6	0.1	0.2	0.1	<0.1	<0.1	0.1	
5\%	<0.1	0.6	0.1	0.2	0.1	<0.1	<0.1	0.1	
10\%	0.1	0.6	0.2	0.3	0.1	<0.1	<0.1	0.1	
25\%	0.2	0.8	0.4	0.3	0.3	0.2	0.1	0.3	$\mathrm{P}=200 \mathrm{~mW}$.
50\%	0.5	1.0	0.5	0.6	0.5	0.3	0.3	0.6	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.9	1.5	0.8	0.8	0.9	0.6	0.5	0.9	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
90\%	1.5	1.9	1.4	1.7	3.8	1.3	1.1	2.0	
95\%	1.7	2.1	1.7	2.0	6.2	1.6	1.4	2.0	
Max	1.7	2.1	1.7	2.0	6.2	1.6	1.4	2.0	

$I_{\text {CBO }}$ DISTRIBUIION CHANGES WITH LIFE TEST.

	$I_{C B O}\left(V_{C B}=60 \mathrm{v}.\right)$								
HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	0.7	1.0	1.8	<0.1	0.1	0.3	<0.1	0.7	
5\%	0.7	1.0	1.8	<0.1	0.1	0.3	<0.1	0.7	
10\%	0.7	1.0	1.8	<0.1	0.1	0.3	<0.1	0.7	
25\%	0.9	1.9	2.7	0.4	0.7	0.3	<0.1	0.8	$\mathrm{P}=800 \mathrm{~mW}$.
50\%	2.6	$3 \cdot 3$	3.5	2.4	1.9	0.8	1.5	1.3	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	3.9	3.7	3.9	2.9	3.4	3.1	3.0	8.1	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	4.0	3.8	4.1	3.0	3.5	93.5	55.0	10.3	
95\%	4.0	3.8	4.1	3.0	3.5	93.5	55.0	10.3	
Max	4.0	3.8	4.1	3.0	3.5	93.5	55.0	10.3	
Min	0.4	1.4	0.8	0.3	1.0	0.3	0.3	1.0	
5\%	0.4	1.4	0.8	0.3	1.0	0.3	0.3	1.0	
10\%	0.5	1.4	0.8	0.7	1.0	0.4	0.4	1.1	
25\%	1.4	2.1	1.6	1.4	1.3	0.6	0.7	2.0	$\mathrm{P}=700 \mathrm{~mW}$.
50%	3.0	4.1	3.4	3.0	3.7	3.2	2.7	3.5	$\mathrm{V}_{C B}=20 \mathrm{~V}$.
75\%	3.8	4.5	3.7	3.3	3.8	3.6	3.1	3.9	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	4.9	6.9	4.9	4.3	610.0	6.4	3.3	4.5	
95\%	5.4	9.1	5.9	4.8	700.0	6.8	3.3	4.7	
Max	5.4	9.1	5.9	4.8	700.0	6.8	3.3	4.7	
Min	0.2	0.4	1.3	0.2	0.3	0.1	$=0.1$	0.1	
5\%	0.4	0.4	1.4	0.6	0.5	0.4	0.1	0.4	
10\%	0.7	0.5	1.6	0.8	0.7	0.5	0.4	0.5	
25\%	1.0	1.2	1.8	1.0	1.0	0.8	0.7	1.2	$\mathrm{P}=500 \mathrm{~mW}$.
50\%	1.5	1.8	2.3	1.6	1.5	1.3	1.3	1.6	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	3.1	4.0	3.9	3.6	3.6	3.3	3.4	3.6	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	4.4	6.1	6.5	5.0	4.7	4.0	4.3	4.4	
95\%	5.0	110.1	124.5	105.3	108.4	104.5	104.2	5.8	
Max	5.6	---	---	---	---	-.-	---	10.1	
Min	0.2	0.9	0.3	0.4	0.2	<0.1	0.3	0.8	
5\%	0.2	0.9	0.3	0.4	0.2	<0.1	0.3	0.8	
10\%	0.2	0.9	0.3	0.4	0.2	<0.1	0.3	0.8	
25\%	0.6	1.3	0.7	0.7	0.6	0.5	0.6	0.9	$\mathrm{P}=400 \mathrm{~mW}$.
50\%	1.1	2.0	1.4	1.3	1.2	1.0	1.2	3.9	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	3.7	4.2	3.6	3.6	3.4	3.1	4.0	---	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
90\%	4.3	5.0	4.2	4.3	3.6	3.4	---	---	
95\%	4.3	5.0	4.2	4.3	3.6	3.4	---	---	
Max	4.3	5.0	4.2	4.3	3.6	3.4	---	---	

TABLE 81. (CONTINUED).

HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	0.3	0.9	0.5	0.6	0.4	0.4	1.1	0.4	
5%	0.3	0.9	0.5	0.6	0.4	0.4	1.1	0.4	
10%	0.4	1.1	0.7	0.6	0.5	0.5	1.2	0.5	
25%	1.0	1.4	1.2	1.1	1.0	0.9	1.7	1.0	$\mathrm{P}=200 \mathrm{~mW}$.
50%	1.2	1.9	1.9	1.8	1.7	1.6	2.5	2.1	$\mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75%	2.4	3.4	3.4	3.3	2.9	3.2	3.8	3.6	$\mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$.
90\%	3.5	4.2	6.2	5.6	4.4	3.9	5.4	13.6	
95%	3.8	4.5	8.2	7.0	4.6	4.1	6.3	15.7	
Max	3.8	4.5	8.2	7.0	4.6	4.1	6.3	15.7	

286

$I_{\text {Cbo }}$ DISTRIBUIION Changes WItH Life test.

	$I_{\text {CBO }}\left(\mathrm{V}_{\mathrm{CB}}=60 \mathrm{~V}.\right)$								
HRS :	INIT.	168	340	680	1000	1500	2000	3000	
Min	<0.1	0.6	0.1	0.1	0.1	<0.1	<0.1	<0.1	
5\%	<0.1	0.6	0.1	0.1	0.1	<0.1	<0.1	<0.1	
10\%	<0.1	0.6	0.1	0.1	0.1	<0.1	<0.1	<0.1	
25\%	<0.1	0.7	0.2	0.2	0.2	<0.1	0.1	0.2	$P=800 \mathrm{~mW}$.
50\%	0.1	1.0	0.2	0.4	0.4	0.2	1.6	4.9	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.3	1.5	0.3	0.6	0.6	1.7	43.9	147.1	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	0.4	3.5	900.0	1.8	1.8	3.3	912.4	926.4	
95\%	0.4	3.7	---	1.9	1.9	3.4		926.4	
Max	0.4	3.7	---	1.9	1.9	3.4	---	---	
Min	<0.1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
5\%	<0.1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
10\%	< 0.1	0.6	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	
25\%	<0.1	0.7	<0.1	0.1	0.1	<0.1	0.3	0.2	$\mathrm{P}=700 \mathrm{~mW}$.
50\%	<0.1	0.9	0.3	0.4	0.6	0.4	2.5	4.0	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$
75\%	0.2	1.7	1.3	2.2	2.5	2.4	67.6	345.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
90\%	0.5	20.2	174.4	96.4	120.2	81.3	918.7		${ }^{\text {A }}$
95\%	1.2	950.9	610.8	955.2	956.5	648.1	918.7	---	
Max	1.2	---	632.8			677.7	---	---	
Min	co.1	0.4	0.2	<0.1	0.1	<0.1	-0.1	0.2	
5\%	<0.1	0.5	0.8	<0.1	0.1	<0.1	<0.1	0.3	
10\%	<0.1	0.5	1.0	0.1	0.1	<0.1	<0.1	0.3	
25\%	<0.1	0.7	1.0	0.3	0.3	0.1	0.1	0.5	$P=500 \mathrm{~mW}$.
50\%	0.1	0.9	1.3	0.5	0.6	0.2	0.4	0.8	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.4	1.7	1.7	1.2	1.3	1.0	1.3	2.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
90\%	0.6	3.4	4.3	3.2	3.4	2.5	2.9	4.1	$\mathrm{I}_{\mathrm{A}}=2 \mathrm{~S}^{\text {c }}$
95\%	1.1	107.4	208.2	213.7	219.1	244.4	252.3	50.9	
Max	1.2		---	---	---	---	,	133.1	
Min	<0.1	0.6	0.2	<0.1	0.1	<0.1	0.5	0.1	
5\%	<0.1	0.6	0.2	<0.1	0.1	<0.1	0.5	0.1	
10\%	<0.1	0.6	0.2	<0.1	0.1	<0.1	0.5	0.1	
25\%	<0.1	0.8	0.4	0.2	0.2	0.1	0.7	0.3	$\mathrm{P}=400 \mathrm{~mW}$.
50\%	0.3	1.0	0.5	0.3	0.6	0.2	1.0	3.7	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	0.4	253.2	16.8	12.8	8.9	3.1	1.2	97.2	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
90\%	1.0	---	906.3	904.1	902.0	281.1	12.8	919.5	${ }^{\text {A }}$
95\%	1.0	---	-	904.1	---	311.5	12.8	919.5	
Max	1.0	---	---	---	---	311.5	12.8	---	

TABLE 82. (CONTINUED).

HRS.	INIT.	168	340	680	1000	1500	2000	3000
Min	<0.1	0.4	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
5%	<0.1	0.4	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
10%	<0.1	0.5	0.1	0.1	<0.1	<0.1	<0.1	<0.1
25%	0.1	0.6	0.3	0.2	0.2	<0.1	0.1	0.1
$5=200 \mathrm{~mW}$.								
50%	0.2	0.9	0.5	0.5	0.5	0.3	0.5	0.3
75%	0.6	1.5	1.5	1.8	161.1	1.0	1.3	1.4
$\mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}$.								
90%	1.9	23.1	2.9	4.4	---	2.2	3.0	5.1
95%	5.8	70.0	526.1	---	---	---	---	---
Max	5.8	70.0	526.1	---	---	--	--	$-\cdots$

h_{FE} DISTRIBUTION CHANGES WITH LIFE TEST.

	$\mathrm{h}_{\mathrm{FE}}\left(I_{C}=20 \mathrm{~mA} ., \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}.\right)$								
HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	74	74	68	73	75	73	20	20	
5\%	74	74	68	73	75	73	20	20	
10\%	74	74	68	73	75	73	20	20	
25\%	74	74	68	74	75	75	72	72	$\mathrm{P}=800 \mathrm{~mW}$.
50\%	78	79	70	80	81	80	81	80	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	84	87	78	86	87	82	87	86	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	85	87	79	87	88	83	87	87	
95\%	85	87	79	87	88	83	87	87	
Max	85	87	79	87	88	83	87	87	
Min	65	66	67	66	66	66	65		
5\%	65	66	67	66	66	66	65		
10\%	66	66	67	67	67	67	66		
25\%	67	69	69	69	68	68	67		$\mathrm{P}=700 \mathrm{~mW}$.
50\%	81	80	86	85	81	87	85		$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
175\%	88	89	90	89	89	89	89		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	89	92	92	91	91	93	93		
95\%	90	92	93	92	92	93	93		
Max	90	92	93	92	92	93	93		
Min	49	48	50	49	20	20	20	20	
5\%	59	62	63	60	20	20	20	20	
10\%	67	65	69	63	20	20	20	20	
25\%	72	71	75	70	65	65	66	64	$\mathrm{P}=500 \mathrm{~mW}$.
50\%	83	85	83	81	75	76	79	78	
75\%	89	91	93	86	86	87	90	88	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	93	96	99	91	94	95	97	93	
95\%	98	98	99	92	97	97	99	96	
Max	100	101	102	96	101	100	105	100	
Min	56	57	56	54	55	56	57	22	
5\%	56	57	56	54	55	56	57	22	
10\%	56	57	56	54	55	56	57	22	
25\%	63	63	63	60	61	62	63	56	P= 400 mW .
50\%	77	82	84	78	79	81	82	73	$\nabla_{C B}=20 \mathrm{~V}$.
75\%	81	85	85	80	82	83	84	91	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
90\%	91	92	91	87	89	91	91	541	
95\%	91	92	91	87	89	91	91	541	
Max	91	92	91	87	89	91	91	541	

TABLE 83. (CONTINUED).

HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	57	59	56	59	57	59	58	59	
5%	57	59	56	59	57	59	58	59	
10%	63	64	61	64	63	64	63	64	
25%	74	76	72	76	74	76	74	76	$\mathrm{P}=200 \mathrm{~mW}$.
50%	78	83	77	83	81	83	83	83	$\mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75%	83	88	87	87	86	87	87	87	$\mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$.
90%	96	92	89	91	90	91	460	92	
95%	99	94	89	94	92	94	829	94	
Max	99	94	89	94	92	94	829	94	

$h_{\text {FE }}$ DISTRIBUTION CHANGES WITH LIFE TEST.

	$\mathrm{h}_{\mathrm{FE}}\left(\mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA} ., \mathrm{v}_{\mathrm{CE}}=5 \mathrm{~V}.\right)$								
HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	69	71	20	20	20	20	20	90	
5\%	69	71	20	20	20	20	20	90	
10\%	69	71	20	20	20	20	20	90	
25\%	76	81	70	71	71	20	20	95	$\mathrm{P}=800 \mathrm{~mW}$.
50\%	85	87	89	90	91	93	91	110	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	95	101	102	106	107	112	110	117	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
90\%	100	104	106	107	108	115	116	120	
95\%	100	104	106	107	108	115	116	120	
Max	100	104	106	107	108	115	116	120	
Min	64	65	63	64	66	20	20	50	
5\%	64	65	63	64	66	20	20	50	
10\%	65	68	68	69	70	44	20	57	
25\%	77	77	76	76	77	75	65	79	$\mathrm{P}=700 \mathrm{~mW}$.
50\%	89	88	89	86	87	89	88	95	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	94	101	102	102	102	108	112	114	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	101	110	112	112	111	114	120	128	
95\%	105	111	114	115	113	115	124	128	
Max	105	111	114	115	113	115	124	128	
Min	61	61	20	25	25	20	20		
5\%	64	64	56	56	56	57	57		
10\%	76	75	72	71	71	71	71		
25\%	83	84	81	83	82	83	83		$\mathrm{P}=500 \mathrm{~mW}$.
50\%	89	93	88	93	90	93	92		$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	100	102	98	102	101	103	102		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	101	106	101	107	105	106	107		
95\%	103	120	109	110	107	110	110		
Max	105	113	110	114	111	114	113		
Min	61	60	61	19	20	20	20	20	
5\%	61	60	61	19	20	20	20	20	
10\%	61	60	61	19	20	20	20	20	
25\%	92	90	89	59	60	61	162	62	$P=400 \mathrm{~mW}$.
50\%	103	96	101	98	102	104	267	105	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	105	100	104	102	104	109	281	107	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$.
90\%	111	103	110	105	108	---	297	111	
95\%	111	103	110	105	108	---	297	111	
Max	111	103	110	105	108	---	297	111	

TABLE 84. (CONTINUED).

HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	57	56	55	55	54	54	55	54	
5%	57	56	55	55	54	54	55	54	
10%	60	58	59	59	58	58	59	58	
25%	78	78	76	78	75	75	77	79	$\mathrm{P}=200 \mathrm{~mW}$.
50%	92	90	89	90	88	88	90	91	$\mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75%	97	94	95	96	95	93	97	98	$\mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$.
90%	106	102	104	105	104	104	105	107	
95%	108	107	104	106	104	104	105	109	
Max	108	107	104	106	104	104	105	109	

$200 \mathrm{~mW} ., \quad 150^{\circ} \mathrm{C}$.

$h_{\text {FE }}$ DISTRIBUTION CHANGES WITH LIFE TEST.

	$\mathrm{h}_{\mathrm{FE}}\left(\mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA} ., \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}.\right)$								
HRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	51	53	43	49	51	52	48	24	
5\%	51	53	43	49	51	52	48	24	
10\%	52	54	43	50	51	52	49	25	
25\%	65	65	54	64	65	66	67	46	$\mathrm{P}=800 \mathrm{~mW}$.
50\%	89	91	61	89	89	83	91	76	$\nabla_{\text {CB }}=20 \mathrm{~V}$.
75\%	120	118	88	106	108	109	111	111	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	131	133	95	118	119	119	119	120	
95\%	131	134	96	119	120	120	119	121	
Max	131	134	96	119	120	120	119	121	
Min	36	49	48	48	20	20			
5\%	36	49	49	49	20	21			
10\%	48	58	58	58	28	49			
25\%	64	67	65	69	66	58			$\mathrm{P}=700 \mathrm{~mW}$.
50\%	84	85	84	87	88	97			$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	91	92	100	95	104	111			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	118	119	115	121	123	127			
95\%	126	123	122	126	128	130			
Max	126	123	122	126	128	130			
Min	52	53	20	53	54	53	53	20	
5\%	50	57	55	57	58	57	57	55	
10\%	60	63	60	63	64	63	64	61	
25\%	68	71	70	68	71	70	70	71	$P=500 \mathrm{~mW}$.
50\%	79	87	80	82	85	82	82	78	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	102	100	95	101	102	101	101	101	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
90\%	119	115	111	116	118	117	116	116	
95\%	126	126	128	126	128	127	127	121	
Max	140	141	---	139	142	140	141	142	
Min	41	49	40	32	32	33	33	20	
5\%	41	49	40	32	32	33	33	20	
10\%	42	50	41	33	33	34	33	21	
25\%	63	65	56	50	50	49	46	39	$\mathrm{P}=400 \mathrm{~mW}$.
50\%	81	82	77	77	80	82	87	74	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75\%	111	113	106	101	110	113	109	98	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
90\%	129	130	124	120	127	130	132	116	
95\%	131	131	126	122	128	131	132	117	
Max	131	131	126	122	128	131	132	117	

TABLE 85. (CONTINUED).

FRS.	INIT.	168	340	680	1000	1500	2000	3000	
Min	35	54	54	52	53	55	54	55	
5%	35	54	54	52	53	55	54	55	
10%	54	54	55	52	54	55	55	56	
25%	58	60	60	57	59	60	60	61	$\mathrm{P}=200 \mathrm{~mW}$.
50%	80	80	79	76	77	74	78	79	$\mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}$.
75%	104	107	104	104	107	110	111	113	$\mathrm{~T}_{\mathrm{A}}=1500^{\circ} \mathrm{C}$.
90%	120	116	114	110	119	122	121	142	
95%	120	121	120	114	126	132	135	159	
Max	120	121	120	114	126	132	135	159	

TABLE 86. SCREEN, BURN-IN AND LTFE TEST Y[ELDS.															
	HIGH STRESS SCREEN			MODERATE STRESS SCREEN				CENTRTFUGE SCREEN				$\begin{aligned} & \text { CONTROL } \\ & \text { LOT } \end{aligned}$			
	PROCESS			PROCESS				PROCESS				PROCESS			
	A	B	C OOMB	A	3	C	COMB INED	A	B	C	COMB INED	A	B	C	COMB- INED
STARITNG QUANTITY	161	154	56371	167	165	192	524	85	85	111	281	80	77	115	272
GOOD AFTER ELECTRICAL SCREEN	1.55	143	28326	163	156	163	482	85	84	111	280	80	77	115	272
STRESS 1 SCREEN 2 RESPONSE 3 BY CATESORY 4 GOOD AFTEFF STRESE SCREEN	$\begin{array}{r} 20 \\ 5 \\ 1 \\ 4 \\ 125 \end{array}$	$\begin{array}{r} 0 \\ 10 \\ 4 \\ 9 \\ 120 \end{array}$	0 20 3 13 6 11 12 24 8 253	$\begin{array}{r} 1 \\ 0 \\ 0 \\ 0 \\ 162 \end{array}$	$\begin{array}{r} 1 \\ 4 \\ 1 \\ 4 \\ 146 \end{array}$	$\begin{array}{r} 4 \\ 23 \\ 12 \\ 17 \\ 107 \end{array}$	$\begin{array}{r} 6 \\ 27 \\ 13 \\ 21 \\ 415 \end{array}$	0 0 0 0 85	1 1 1 1 80	9 8 3 0 91	$\begin{array}{r} 10 \\ 9 \\ 4 \\ 1 \\ 256 \end{array}$	0 0 0 0 80	$\begin{array}{r} 0 \\ 1 \\ 0 \\ 0 \\ 76 \end{array}$	3 5 1 4 102	3 6 1 4 258
BURN - IN 1 SCREEN 2 RESPONSE 3 BY CATEGORY 4 GOOD AFTIER BURN-IN	$\begin{array}{r} 0 \\ 1 \\ 0 \\ 0 \\ 124 \end{array}$	$\begin{array}{r} 0 \\ 1.5 \\ 3 \\ 4 \\ 98 \end{array}$	$\begin{array}{cr} 1 & 1 \\ 0 & 16 \\ 1 & 4 \\ 0 & 4 \\ 6 & 228 \end{array}$	$\begin{array}{r} 0 \\ 1 \\ 0 \\ 0 \\ 161 \end{array}$	$\begin{array}{r} 0 \\ 6 \\ 1 \\ 2 \\ 137 \end{array}$	$\begin{array}{r} 1 \\ 5 \\ 4 \\ 2 \\ 95 \end{array}$	$\begin{array}{r} 1 \\ 12 \\ 5 \\ 4 \\ 393 \end{array}$	1 0 0 0 84	1 2 1 8 68	1 6 1 9 74	$\begin{array}{r} 3 \\ 8 \\ 2 \\ 17 \\ 226 \end{array}$	1 0 0 1 78	$\begin{array}{r} 0 \\ 2 \\ 1 \\ 3 \\ 70 \end{array}$	0 7 6 8 81	1 9 7 12 229
LIFE 1 TEST 2 RESPOXSE 3 PY CATEGORY 4 GOOD AETER LIFE TEST	0 4 1 5 114	$\begin{array}{r} 0 \\ 8 \\ 1 . \\ 11 \\ 78 \end{array}$	0 0 2 14 1 3 1 17 2 194	0 2 0 4 1.55	0 3 0 7 127	0 6 5 11 73	$\begin{array}{r} 0 \\ 11 \\ 5 \\ 22 \\ 355 \end{array}$	0 2 0 6 76	0 3 1 5 59	0 5 3 5 61	$\begin{array}{r} 0 \\ 10 \\ 4 \\ 16 \\ 196 \end{array}$	0 1 0 6 71	0 5 0 3 62	0 4 5 2 70	0 10 5 11 203

TABLE 87

PROCESS	STRESS SCREEN TYPE	$\begin{aligned} & \text { SCREEN } \\ & \text { CELL } \\ & \text { NUMBER } \end{aligned}$	Life Test Cell Numbers ($\left.\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}\right)$				
			$\begin{aligned} & \mathrm{P}=800 \mathrm{~mW} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{F}=700 \mathrm{~mW} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & P=500 \mathrm{~mW} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{P}=400 \mathrm{~mW} \\ & \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{P}=200 \mathrm{~mW} \\ & \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C} \end{aligned}$
A	High	404-101	419-201	419-202	419-203	419-204	419-205
A	Moderate	-102	-206	-207	-208	-209	-210
A	Centrifuge	-103	-211	-212	-213	-214	-215
A	None	-104	-216	-217	-218	-219	-220
B	High	404-105	419-221	4194222	419-223	419-224	419-225
B	Moderate	-106	-226	-227	-228	-229	-230
B	Centrifuge	-107	-231	-232	-233	-234	-235
B	None	-108	-236	-237	-238	-239	-240
C	High	404-109	419-241	4.19-242	419-243	---	---
C	Moderate	-110	-244	-245	-246	419-247	419-248
C	Centrifuge	-111	-249	-250	-251	-252	-253
C	None	-112	-254	-255	-256	-257	-258

88 MTAV山

UNIT NUMBERS	$\mathrm{I}_{\text {CBO }}$	$I_{\text {EBO }}$	$\mathrm{BV}_{\text {CEO }}$	h_{FE}	$\mathrm{V}_{\text {CE }}$ (SAT)	$\mathrm{V}_{\mathrm{BE} \text { (SAT) }}$	$\mathrm{I}_{\text {NO }}$	I_{NL}	$\mathrm{I}_{\mathrm{N} 2}$	$\mathrm{I}_{\mathrm{N} 3}$	FAIL
201-1	65	85	54	62	44	60	35	55	45	65	$\mathrm{I}_{\text {CBO }}$
-7	85	35	19	12	75	50	80	70	85	95	$\mathrm{BV}_{\text {CEO }}$
204-3	35	40	91	35	69	55	80	90	75	45	$\mathrm{V}^{\text {CEO }}$
-4	30	70	45	79	62	60	55	35	40	50	$\mathrm{I}_{\text {CBO }}$.
256-14	91	50	9	67	66	30	30	30.	65	65	
209-12	45	75	78	97	50	75	80	65	50	50	h_{FE}
211-1	45	70	95	3	93	45	5	25	8	35	h_{FE}
216-1	60	50	62	33	66	94	50	40	30	50	$\mathrm{h}_{\text {FE }}$
228-28	35	15	58	23	70	60	50	50	70	60	$h_{\text {FE }}$
-5	65	64	55	6	94	60	85	80	85	97	$I_{\text {EBO }}$
226-2	93	40	43	93	45	16	0	50	30	15	$h_{\text {FE }}$
-10	90	25	53	83	81	25	30	35	35	30	$\mathrm{h}^{\text {rem}}$
2:29-14	100	15	3	97	20	4	10	15	10	15	$h_{\text {FE }}$
231-1	60	76	9	73	85	50	45	50	50	50	$h_{\text {FE }}$
-2	76	35	50	53	45	15	25	15	10	5	$h_{\text {FE }}$
232-5	50	55	97	17	70	75	90	85	65	90	$\mathrm{I}_{\mathrm{CBO}}$
2:33-21	56	50	30	87	79	56	75	50	95	50	h_{rl}
2.36-1	63	60	63	13	45	25	76	65	75	55	${ }^{\text {h }}$
239-1	83	15	9	73	25	30	10	10	10	5	$\mathrm{I}_{\text {CBO }}$

Note: Tabulated values are the percentiles of the parameter distribution.
FAILURES REMOVED BY THE TRUNCATION SCREENING OF INITIAL PARAMETEPS

table 89 (CONTINUED)
FAILURES REMOVED BY tHE TRUNCATION SCREENING OF INITIAL PARAMETERS

UN:TT NUMBERS	$\mathrm{I}_{\text {CBO }}$	$\mathrm{I}_{\text {EBO }}$	${ }^{\text {BV }}$ CEO	h_{FE}	$\mathrm{V}_{\text {CE (SAT }}$	$\mathrm{V}_{\text {BE }}$ (SAT)	I_{NO}	$\mathrm{I}_{\mathrm{N} 1}$	$\mathrm{I}_{\mathrm{N} 2}$	${ }^{\text {IN3 }}$
23:1-6										
23:-2		100								
232-4							97	95	97	97.
23:2-12					4					
232-7						0				
233-8			97		90	96				
233-1						9	10		0	
233-6		90								

Note: Tabulated values are the percentiles of the parameter distribution.

Note：Tabulated values are the percentiles of the parameter distribution．
TABLE 90 (CONTINUED)

UNIT NUMBERS	$\mathrm{I}_{\text {CBO }}$	$\mathrm{I}_{\text {EBO }}$	${ }^{B V_{C E O}}$	h_{FE}	$\mathrm{V}_{\text {CE }}$ (SAT)	$\mathrm{V}_{\text {BE }}(\mathrm{SAT})$	$I_{\text {NO }}$	$\mathrm{I}_{\mathrm{N} 1}$	$\mathrm{I}_{\mathrm{N} 2}$	$I_{\text {N3 }}$
245-5										
245-14										
245-17					99	4	93	$\frac{97}{5}$		95
245-22						4	7	5	7	
248-15					97					
248-28					97		10		3	3
248-1					10			10		3
248-22			92					-- -	\cdots	
248-11								10	-	
248-23								10		
248-14				4						
250-19			97	94	95					
250-10					9					--..-
250-11										- .
250-15								95		
253-9			93					9		
253-11										
255-10										,
255-16									-	- -
255-8										
255-13										
2.55-3	-		9							-
255-9				0			93		90	94
2.5'0-12									9	

Note: Tabulated values are the percentiles of the parameter distribution.

TRANSISTOR FAILURE ANAIYSIS FLOW CHART.

FIGURE 3

FIGURE 4

FIGURE 6

FIGURE 8

Bibliography -
(1) Van der Ziel, A., Fluctuation Phenemenon in Semiconductors London, Butterworth, 1959 pp 46-63
(2) Williams, N. H. and Thatcher, E. W., Phys. Rev., 40(1932) 121
(3) Christenson, C. S. and Pearson, G. L., Bell System Tech., Jan. 15 (936) 197
(4) Beiker, D., J. Appi. Phys., 25 (1954) 922
(5) Firle, T. and Winston, H., Appl. Phys., 26 (1955) 716259
(6) Rohm, B. V. and Templeton, I. M., Proc. Phys. Sec. Land, B66 (1953)
(7) Champlin, K. S., J. Appl. Phys., 50 (1959)
(8) Chenette, E. R., Measurement of the Correlation between Flicker Noise Sources in Transistors, Proc. I.R.E. 46, June 1958.
(9) Van der Ziel, A., Study of Noise in Semiconductor Devices, Signal Corps Contract DA 36-039 Sc-85374, University of Minnesota. Final Report page 25.
(10) Rose, D., J. Phys. Rev., 105 (1957) 413
(11) Chenette, E. R. and Van der Zlel, A., Accurate Noise Measurements on Transistors, IRE Transactions PGED-9, 123 (Mar 1962)
(12) Plumb, J. L. and Chenette, E. R., Filcker Noise in Junction Transistors, IRE Trans. PGED 10, Sept. 1963.
(13) Pearson, G. L., Montgomery, H. C. and Feldman, W. L., Jour. Appl. Physics, 27 (1956) 91.
(14) Brophy, J. J., J. Appl. Phys., 27 (1956) 1383
(15) Brophy, J. J., J. App1. Phys., 106 (1957) 675
(16) Bess, L., J. Appl. Pnys., 25 (1954) 1377
(17) Brophy, J. J., Phys. Rev., 106 (1957) 675

Bibliography Cont. -
(18) NcWhorter, A. L., I / P noise and Related Effects in Germanium, M.I.T. Lincoln Laboratory Report No. 80-May 1955.
(19) Berington, J. R. \& Ingle, L. V., Non-Destructive Reliability Screening of Hlectronic Parts, Technical Documentary Report No. RADC-TDR-64-311, Rome Air Development Center
(20̣) Phillips; A. B., Transistor Engineering, McGraw-표11 Book Co., Inc., 1962, pg. 210.
(21) Colteryahn and Kersey, Failure Mechanisms and Kinetics of Intermetallic Formation, Wescon Paper, August 1965.
(22) Deal and Sklar, Thermal Oxidation of Heavily Doped Silicon, J. Hlectrochem. Soc., Vol. 112, April 1965.
(23) Bernstein, L., Gold Alloying to Germanium, Silicon, and Aluminum-Silicon Eutectics, Semiconductor Products, August 1961, pg. 37.

[^0]: Unit Khr＝Accumulated test hours in thousands of hours．
 FR $1=$ Failure Rate in \％per 1000 hours， 60% Confidence Level－Total Failures．
 $\mathrm{FR} 2=$ Failure Rate in $\%$ per 1000 hours， 60% Confidence Level－Burn－in Failures removed．

