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A wing area of aircraft

Ap, area of propeller

B constant defined on page 6
Cy, lift coefficient

Cp drag coefficient

D drag

E Weierstrass function
defined on page 7

F functional form
defined on page 6

=4 acceleration due to
gravity, 32.2 ft/sec?

G quantity to be optimized

H Hamiltonian function
defined on page 7

K thrust/weight
L lift
m mass

n lift/weight

P power input to air

r (thrust minus drag) /weight
R thrust minus drag .
t time

T thrust

u dimensionless velocity

v velocity

vy reference velocity

LIST OF SYMBOLS

W weight of aircraft

b4 range coordinate
altitude coordinate

o real variable defined on page 4

8 real variable defined on page 4
constant defined on page 11

Y flight path angle

r real variable defined on page 4

n dimensionless altitude

A Lagrange multiplier

£ dimensionless range

Po sea level density of atmosphere

o ratio of atmospheric density to
sea level density

T dimensionless time

Hu, change in velocity of airstream
across propeller

Subscripts

1 initial conditions

2 final conditions

no non-optimal

o optimal

Notation

A prime denotes differentiation with
respect to non-dimensional time.

A dot denotes differentiation with
respect to time.
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ABSTRACT

General equations which describe optimum flight trajectories in a plane
for an assumed model aircraft are obtained in this paper by the use of the
methods of calculus of variations. These general equations are presented in
a form applicable for analog computer solution., A few typical two point mini-
mum time trajectories are obtained using the analog computer for thrust only,

drag only, and thrust and drag cases. Two interesting features are illustrat-
ed by these results.

1. Optimal trajectories do not exist to all physically obtainable
endpoints in the plane.

2. For the cases which include drag, if the endpoint is a sufficient
distance from the origin, then a portion of the flight trajectory
is flown in a quasi-steady manner,

The sensitivity of the solutions to certain unknown constants as a function

of endpoint location is illustrated and discussed. Also some methods of making
approximations to an optimal trajectory are outlined.
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APPLICATIONS OF THE CALCULUS OF VARIATIONS TO AIRCRAFT PERFORMANCE

by T. L. Vincent, F. Lutze, T. Ishihara

The University of Arizona

INTRODUCTION

When a person is in control of a vehicle, he is usually able to travel
along one of an infinite number of paths and bring himself and his vehicle to
one of any number of final states. He must, however, operate the vehicle within
certain bounds which restrict his maneuvers, Briefly, he is limited to operate
within the laws of nature, govermment, and self-preservation,

It is quite natural to ask if it is possible to operate a given vehicle
in an optimum fashion and still obey all of the above mentioned laws. Since
the formal procedure for obtaining an answer based on analysis is usually quite
formidable, answers to questions of this type are often obtained in an intuitive
and/or semi-analytical way with practical experience being used, if possible, as
a guide. However, an analytical optimal control solution, if only to a much
simplified case of the original problem, is of considerable value since this
program should give considerable insight into the nature of the optimization and
will give an upper or lower bound to which intuitive or other sub-optimal con-
trol programs may be compared. In this way the significance of an optimization
or the gains to be made by an optimization are apparent.

An aircraft capable of control may be flown in an optimal fashion with
considerable advantage. The determination of the flight trajectory and the
corresponding control program which results in optimum performance for a simpli-
fied model aircraft is the subject of this paper. It is well known that the
calculus of variations may be used for the analysis of this problem. Among the
first individuals to set up problems in aircraft performance using the calculus
of variations were Hestenesl and Garfinkel? in 1951. Later Cicala3 and Miele%
set up aircraft performance problems using a particular case of the general
mathematical problem from the calculus of variations known as the problem of
Mayer. The Mayer formulation has been highly popular ever since because of its
generality and adaption to the concepts of state and control variables. The
Mayer formulation will be used in this paper.

There is no particular difficulty in setting up a problem in optimal flight
mechanics and displaying the optimizing conditions which must be met along an
optimal trajectory. The essential steps used in order to arrive at this state
of analysis are to describe mathematically the quantity to be optimized and the
applicable constraint conditions, define an augmented function in terms of these
conditions, and then utilize the results of the theory of the calculus of varia-
tions to write down the Euler-Lagrange equations and associated optimizing
conditions. There are numerous papers which illustrate the procedures mentioned
above?. However, due to the very complex nature of the optimizing conditions,
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there are very few papers on aircraft performance in which the solution to the
optimizing equations is obtained.

In order to make a problem in flight mechanics tractable analytically,
using the indirect methods of the calculus of variations, certain approximations
and assumptions will usually have to be made. For example the thrust of a tur-
bojet engine or the drag coefficient of an aircraft may have to be assumed con-
stant throughout the flight. Under these assumptions, an analysis is made by
operating on the principle that the form of an optimal trajectory is not micro-
scopically dependent on relatively small changes that would actually take place
in these parameters. In comparison, the direct methods of dynamic programming
or steepest ascent when applied to problems in flight mechanics can and usually
do include the details of engine data, etc. The intent of this paper is to
present analytical solutions to simplified yet realistic aircraft models so that
an understanding of the significance or physical meaning associated with an
optimal solution will be made apparent. Rather than investigate the details of
a particular optimal flight, general results will be obtained in terms of per-
formance parameters such as wing loading, thrust to weight ratio, etc. If
general principles governing optimal flight are to be obtained, they most natu-
rally arise from an analytical indirect approach.

Only plane motion of an aircraft operating within the atmosphere will be
discussed, Furthermore, the earth will be assumed to be flat with a constant
gravitational force. The aircraft will be considered to be a particle of con-
stant mass operating under gravitational, thrust, lift, and drag forces.

The quantity to be optimized will be assumed as expressible in the form
G(x,y,v,Y,t) where

coordinate in horizontal direction
coordinate in vertical direction
velocity of vehicle

flight path angle

time

rted 4 K

The equations of constraint consist of Newton's second law of motion and related
kinematical conditions plus certain inequality constraints which result from
design limitations of the aircraft and limitations to the possible flight regime
as dictated by the laws mentioned on page 1.

Flight trajectories which satisfy the necessary optimizing conditions as
set forth in the next section will be referred to as optimal trajectories.
DEVELOPMENT OF OPTIMIZING CONDITIONS
Equations of Constraint

The analysis of optimal aircraft performance will be confined to an air-
craft assumed to operate in a plane under the forces shown on page 3.



mg
Where:
T = thrust. It will be assumed that the thrust for the various types of
aircraft can be expressed as a function of velocity and height only, with no

control possible.

D = drag. In general the drag force is a function of height, velocity
and 1ift. In this analysis the dependence of drag on lift will be omitted.

L= 1ift. Lift 1s in general a function of height, velocity and lift
coefficient.

mg = weight of the aircraft. The mass of the aircraft will be assumed
constant.

For a high speed aircraft the 1lift, drag, and thrust would be more properly
expressed in terms of Mach number. However, for simplification in order to make
the comparison between high speed and low speed aircraft more direct, the atmos-
phere will be assumed to be isothermal. 1In this case 1lift, drag, and thrust be-
come velocity dependent for both high and low speed flight.

The quantity to be optimized as a result of flight will be assumed to be
as expressible in the form

G(x,y,v,Y,t) 2 (2.1)

The initial values of x,y,v,y, and t will all be assumed as fixed. The subscript
2 refers to final values. For example a maximum range problem is given by G = x,.

Let T(v,y) - D(v,y) = R(v,y), then the equations of motion in the tangential
and normal directions may be written as follows:

mv = R(y,v) - mg siny , (2.2)
avy = L(y,v,C;) - mg cosy , (2.3)
with the following kinematical relations between the variables:
X = v cosy , (2.4)
y = v siny . (2.5)

These four equations are written using the assumptions already listed, and they



represent dynamical bounds on the possible motion of the aircraft as required
by the laws of physics. They contain five dependent variables x,y,v,y, and Cj,
so that one degree of freedom remains for control. In this case the control
variable is Cp, and the four state variables are x,y,v, and vy.

If the aircraft is to be flown in an allowable fashion, additional in-
equality conditions must be included in the statement of the problem.

In order to determine the effect of realistic constraints of this type
on an optimal trajectory, the constraints on the state variables will be given
by the following inequalities

y2 0, (2.6)
Votall £V < Vpax . Q.7

The amount of lift which can be generated is limited by the inequality constraint
on the control variable Cj,,

Cimin < CL £ CLmax . (2.8)

For the purposes of analysis, the three inequalities given by Equations (2.6),
(2.7), and (2.8) may be expressed in terms of equalities by the method suggested
by Hancock®, New real variables, O, B, and [ are introduced as follows:

y =&, (2.9)
(Vpax "V = Vgea11) =‘BZ ’ (2.10)
(Crmax - €L (C1~Crmin) = I 2 - (2.11)

Since a?, 52, and [,2 are always positive, Equations (2.9), (2.10), and (2.11)
express the same inequalities as Equations (2.6), (2.7), and (2.8).

A general problem in optimal aircraft performance for the assumed mathe-
matical model aircraft may be formulated as follows:
Extremize the function

G(x,y,v,Y,t) |, » (2.12)
subject to constraints

v = R/m - g siny , (2.13)

y = L/mv - g cosy/v , (2.14)

X = v cosy , (2.15)

y = v siny , (2.16)

y = U? ) (2.17)



(Vpax = VI - Vgea11) = B,

2
(cl'max - C)(Cy, - CLmin) = [<,

(2.18)

(2.19)

In order to compare optimal performance between various aircraft, the above

equations will be put into dimensionless form. If a reference velocity

is de-~

fined by the velocity of an aircraft in steady level flight at Cy = 1 and

given by
2 2W
Ve ¥ PoA
where Wi = initial weight of the aircraft,

A = wing area of the aircraft,
po = sea level density,

then the following non-dimensional parameters may be defined:

Non-dimensional velocity u = v/vy ,
" range E = g:c/vl% »
" altitude n = g(y-yl)/v% ,
n time T = gt/v, ,
" 1ift n = LM, ,
" T-D r = R/W; .

In terms of these dimensionaless variables, Equations (2.12) through (2.
be written as follows:

G(E,n,u,v,7) |,

u' = r - siny ,

v' = nfu - cosy/u ,
¢’ = u cosy,

u siny ,

s-
"

QN
]

n + wllvrz P)

(upax = W(u = ugip) ,

Crpay = €L~ Oy )

5 m
N
L]

(2.20)

(2.21)
(2.22)
(2.23)
(2.24)
(2.25)
(2.26)

19) may

(2.27)
(2.28)
(2.29)
(2.30)
(2.31)
(2.32)
(2.33)

(2.34)



The four state variables E,n,u and y and the four control variables C;,Q,B and
[ , are subject to seven equations of constraint, leaving one degree of freedom
for optimal control.

Necessary Optimal Conditions
If the following function is defined:

F = }‘.g(u cosy - £') + Ay(u siny - n') + Ay(r - siny - u') + }\.Y(-E- - SOSY - yY)

u

2l - L o)+ nplB? - £w] +2 P2 - sep] (2.35)

r
where £(u) = (uyax - u)(u - upjip) ,

g(cp) = (G - CL(Cy - oL ;)

then the necessary Euler-Lagrange optimizing conditions are given by

OF d_ BF
ij-. d'r yl i 1,2,0..,8 (2-36)
Written out, Equations (2.36) are
E: A =0, (2.37)
or on 1
n: )‘uan xy-a-——-xa+xn=0, (2.38)
3 _5_ Bn af 1
u A cosy+)\,qsin'y+)\.ua %Y( g- - M55t N = 0,(2.39)
. - - S_i_l ' =
Y i Agu siny + Mu cosy - Ay cosy + My ~ Ay 0, (2.40)
. on 1 d
C: Y ECL a - M Cr o, (2.41)
a: 20nxg=0, (2.42)
B : ZB%'B =0 s (2.43)
[ : 2['>\,. =0 . (2.44)
The above set of equations has the following first integral given by
F OF o B i=1,2 8 2.4
'ay! ¥yi = 2 = Llylyeee, (2.45)
i



or xgg' + kﬁn' + Au' + xyy' =B , (2.46)
which may be written as
kgu cosy + Apu siny + M(r - siny) + xy(ﬁ»- Eﬁé!) =B . (2.46a)

The end values of the state variables on the minimizing arc must satisfy the
transversality condition

[Bdr + dG + 33_}‘3 dyy ]2 =0 1=1,2,...,8 (2.47)
i

and for the problem as formulated this condition takes the form
2 .
trans: [ Bar + d6 - Agdt - Apdn - Aydu - Ay ]“ =0 . (2.472)

Often an extremal curve is composed of more than one arc, forming a cusp, and/or
is partially composed of boundary curves resulting from constraints on the state
and control variables. The following corner condition must be satisfied at
boundary points or at points of discontinuity:

[ dF +
_Bd-'r+dG+5;i dyi]_-so , 1 =1,2,...,8 (2.48)
o +

or Bdt + dG - AgdE - Ay dn - M\ydu - xydy:] =0 , (2.49)

Along a minimizing arc, the following Weierstrass function must be everywhere
greater than or equal to zero.

] ] OF
E=Fuy - Fo = Uino = Yio) S;T

i

>0, 1i=1,2,...,8 (2.50)

(o]

where '"no" refers to the function evaluated for non-optimal but permissible
control, The subscript o refers to optimal control. For the problem as formu-
lated F = 0 so that the above condition takes the form

Metho + Ma'no + Nufio + MyYhio 2 NgEd + Mmug + Myud + AYS (2.51)
which is equivalent to requiring that the function

H = xgg' + xnn' + \ut + )wy' s (2.52)
take on a minimum with respect to optimal control.

The [/ Equation (2.44) can be satisfied by either /= 0 or Ap= 0. If
[ = 0 then it follows from Equation (2.34) that the 1lift program is given by
either Cy = C; or Cy, = chin . If Ap= 0 then the flight program consists



of intermediate lift coefficients. Note that in this case the Cj, Equation
(2.41) reduces to :

nl
)\Y BC_L u 0, (2.53)
which implies that = 0, hy = 0 then the normal equation of motion (2.29)

becomes uncoupled from the other equations of constraint, and therefore the
flight path angle, instead of the 1lift coefficient may be considered as the con-
trol variable.

The B Equation (2.43) can be satisfied by either B = 0 or Ag = 0. If
B = 0 it follows from Equation (2.33) that the velocity program is given by
either u = uUpay Or u = upjp. If Ag = 0 then the flight program comsists of
intermediate velocities.

Similarly the altitude program consists of intermediate altitudes or is

given by
2

n=-ye/lv .

An optimal trajectory may be comprised of six types of arcs:

(i) arcs of intermediate velocity, altitude, and lift coefficients
(ii) maximum lift coefficient arcs
(iii) wminimum lift coefficient arcs
(iv) maximum velocity arcs
(v) minimum velocity arcs
(vi) minimum altitude arcs

The order in which these arcs are joined to form an optimal trajectory is de-
termined by using the Weierstrass condition and the corner conditions.

Unbounded Solutions

In general an optimum trajectory is composed of arcs where the variables
take on values inside their region of definition (i.e., arcs i) plus arcs along
the boundaries of the regions of definition (arcs ii - vi). However, for com-
parison purposes it is of interest to investigate first optimal maneuvers which
are unbounded. The unbounded trajectory will provide an upper or lower limit
to the solution of bounded optimal trajectories, and the unbounded solution may
also give considerable insight into the form of a bounded solution,

By setting

M =Ag=Ap=A =0, (2.54)
the optimizing equations for unbounded flight which minimize G(&,n,u, r) are
obtained and are summarized below.

3 : kg = constant , (2.55)
n : A\, Or/om + Ny =0, (2.56)
u 1 A cosy g siny + Ay Or/Ou + Ay = 0 , (2.57)



Y i -Agu siny + Ay u cosy - My cosy =0, (2.58)

1st ¢ xg u cosy + Ay u siny + A (xr-siny) = B , (2.59)
Trans: (Bdt + dG - Ay dg = Ay dn - Agdw) |2 =0, (2.60)
Corner: (Bdt + 4G - ngg o Ny dn - Audu)lt =0, (2.61)
Welerstrass: kggﬁo + Mhfio + MUfio = MES + Myng + Maud (2.62)

Equation (2.62) is equivalent to requiring that the function
H= xgu cosy + Ay u siny + My (x=-siny) (2.63)
be a minimum with respect to the control variable y . Thus it is necessary that
OH/dy = 0, (2.64)
and

328/3y2 >0 . (2.65)

The first condition is identically satisfied along an optimal trajectory
by Equation (2.58).

The second condition may be written as
-Agu cosy - M u siny + Ny siny >0 . (2.66)
If the y Equation (2.58) is solved for Xn to give
M = Mfu + Ag tany , (2.67)
and substituted into Equation (2.66), it reduces to
-Mu secy > 0 . (2.68)

Thus secy must maintain a sign opposite to the constant Mg throughout the
trajectory.

If equality can occur in Equation (2.68) then the minimizing arc may have
a corner at such a point. Thus if Ay # O the solution will have no corners.
Solving for the control variable from the y Equation (2.58) gives
Agtany = An - Mfu . (2.69)
Differentiating with respect to t yields
agsec?y ¥ = AL - (uA) - AuD/u? (2.70)

then substituting for xﬁ > A} , and u' from Equations (2.56), (2.57) and (2.28)



and introducing the lst integral Equation (2.59) results in the following
expression:

Kgseczy Y' =2y (1/u %E - %ﬁ) + B/u?2 ., (2.71)

Substituting Equation (2.67) into the 1st integral Equation (2.59) gives
™, = (B - Agu secy) . (2.72)

If r = O then u secy = B/\,, a constant which represents an optimal con-
dition for an aircraft if thrus% equals drag, or when T = D = 0 . This latter
case corresponds to the well-known brachistochrone problem.

If A = 0 and r # 0 then Equations (2.71) and (2.72) may be combined to

give
Ba(ru) o(ru) | (2.73)
n ou

The condition Ay = 0 is required by the transversality condition if no final
restriction is imposed on & . With A, = 0 the additional solution cosy = 0 is
obtained from Equation (2.58). Since’in this case a corner may exist in the

solution both cosy = 0 and Equation (2.73) are usually needed for a solution6.

If r # 0 and A, # O then Equation (2.72) may be solved for A\; and substi-
tuted into Equation”(2.71) and rearranged to give

y' = czsx { 2(u gz ) ar)(B cosx 1) + thzsxi, . (2.74)

If the function G does not explicitly contain time and if the final time
is unrestricted then from the transversality condition Equation (2.60), B = 0
and Equation (2.74) reduces to

Y= - 2351 {% (u g— w2 gE } (2.75)

The solution of the optimizing Equation (2.75) in conjunction with the con-~

straint Equations (2.28), (2.30), and (2.31) form a one parameter family of

curves with y; as the parameter. The value of y; used for a particular pro-
blem will depend upon both G and the end conditions.

If the function G = 1 then from the transversality condition Equation
(2.60), B = -1 and Equation (2.74) may be written as

= .cosy{l, or zar __x cosy
Y m {r(u Se 52 € e +1) + }\gu} . (2.76)

10
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Since cosy must maintain a constant sign throughout the trajectory, if
endpoints in the &,n plane are chosen to the right of the initial point
then it follows from Equations (2.68) that kg is negative.

The solution of the optimizing Equation (2.76) in conjunction with
the constraint Equations (2.28), (2.30), and (2.31) form a two parameter
family of curves with y; and A\, as the parameters. The choice of y;, and
Kg depend upon the restrictions imposed on the end conditions.

Since A; is a constant, cosy is required by Equation (2.68) to remain
positive throughout an optimaltrajectory.

Performance Characteristics

The optimizing Equation (2.76) is a function of the performance charac-
teristics of a particular aircraft introduced through the quantity

r = I-D
W

Thus r must be expressed functionally before a solution can be obtained.

The drag to weight ratio may be expressed in terms of a drag coeffici-
ent as

pvZCpA

2.
pom ’ (2.77)

D
-_—=
W

where in general Cp is a function of either the Reynolds number or Mach
number, depending on the flight regime. Density variations up to 50,000
ft. can be accurately approximated by the expression p = pge”™ Y where

g = 1/30,100. In terms of non-dimensional parameters Equation (2.77) re-
duces to

2

D/W=ocCpu (2.78)
where
P - - -Bv,’n
o= =g By e 241 e = . (2.79)
Po &

The relationship for the thrust to initial weight ratio for an aircraft
depends upon the power plant. An approximate expression for the thrust to
weight ratio for various aircraft can be obtained from simple momentum con-
sideration and are summarized in the following table:

11
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TABLE 1
Power Plant Relations

Power Plant T/Wl Assumptions and Comments

Rocket T/Wy =K Exit pressure is assumed to be
ambient and exit velocity is
assumed constant.

Ramjet T/Wl = Kou? Exhaust velocity is assumed to
be proportional to the free
stream velocity.

Turbo ject T/Wl = Ko The change in velocity through
the engine 1is assumed to de-
crease as the free stream
velocity increases.

Piston engine 1 p/wl The velocity change across the
or turboprop T/Wl = G:Z;———) propellor is assumed to be
r o/2 zero. For high speed flight

Mu, may be set equal to zero.
9 4P
where (2u + Aug)“Mug

]
W

poApovr

where K = Constant

P = power input to the air (P = power available x propeller efficiency)
Aug, = change in velocity upstream and downstream of the propeller
A, = area of the propeller

It is apparent from the relations of Table 1 and Equation (2.77) that,
except for a piston engine aircraft at low speeds, the expressions for thrust
and drag are quite well-behavedfunctions of altitude and velocity (assuming
that the drag coefficient is constant). However, even these simplified equa-
tions when substituted into the optimizing Equation (2.76) yield a complicated
non-linear equation to be solved in conjunction with the non-linear equations
of constraint. Since general shapes and trends assoclated with an optimization
problem are of interest, further approximations and assumptions may be made to
simplify the analysis but still retain the nature of the effects of aerodynamic,
thrust, and gravity forces on the trajectory.

The thrust and drag variations with altitude are small if the optimum
trajectory lies within a small height variation, and in this case the density
may be considered constant by setting o = 1. This assumption will be used
even for large height variations in order to simplify the analysis and obtain

12



a first approximation to an optimal solution. Note that with o = 1 the thrust
expressions for the rocket and turbojet aircraft are identical and the expres-
sion for r becomes ’

r =K - Cpu? . (2.80)

The difference between high and low performance aircraft may be approximated
by adjusting the thrust to initial weight ratios between high and low values.

Minimum Time Solutions
If the final range is specified, then the optimizing condition for a mini-
mum time solution is given by Equation (2.76). If the end conditions on 1 and
u are either left free or specified then using the transversality condition
and Equations (2.67) and (2.72) the Lagrange multiplied Mg can be expressed in
terms of end conditions as listed below:

TABLE 2

Endpoint Conditions and Corresponding xg

Range, ¢ Altitude, n Velocity, u A
1. Fixed ixed 2282 L
. Fixe Free Fixe Ae g (rzsinyz — 1)
2. Fixed Free Free xg = constant such that
tany, = 0
cosya
3. Fixed Fixed Free kg = - U5
4. Fixed Fixed Fixed Kg = constant such that
Uy = Ufixed

The form of a minimum time solution is independent of whichever case is chosen
and only case 3 will be considered in detail in thils paper. The optimizing
condition for a minimum time, fixed coordinate endpoint trajectory with the
final velocity free, operating in a uniform gravitational field with tangential
forces given by Equation (2.80) is determined from Equation (2.76) which reduces
to

2Cpu? ¥
v o 4 COSY cosy, _ cos
Y + = { K-Cpu“ a+ xgu) Agu } ’ (2.81)
where cosy
2
)\.g = - u2 - (2.82)

13

.



Equation (2.81) is to be solved in conjunction with the equations of constraint.

u' =K - Cnu2 - siny , (2.83)
n' = u siny . (2.85)

METHOD OF SOLUTION AND RESULTS
The Brachistochrone Problem

Equations (2.81), (2.82), (2.83), and (2.84) are four first order non-linear
differential equations in the four variables y,u,t, and n. Four constants of
integration and a value for A, are needed in order to completely determine a
solution. For a performance Eype of problem, three of the constants of integra-
tion are the known initial conditions on the state variables £, n, and u. The
fourth constant of integration yj is unknown and must be determined by using a
trial and error procedure. In order to solve the two point minimum time problem,
it is necessary to not only guess the initial value for the flight path angle
Y1, but to guess a value for A; as well and adjust them until a trajectory passes
through the desired endpoint with the proper conditions associated with the value
of A for that trajectory. In order to obtain some insight as to the effect of
Y3 and Ay on a solution, the above problem may be reduced to the familiar
Brachistochrone problem by setting thrust and drag equal to zero. With r = 0O
the optimizing condition is obtained from Equations (2.71) and (2.72) which may
be combined to give

v == (3.1)

Equations (2.83), (2.84), and (2.85) become

u' = -siny , (3.2)
£' = u cosy, (3.3)
n' = u siny . (3.4)

Although A, has been eliminated from the equations, y; is still a function of

the endpoint location, and Equations (3.1), (3.2), (3.3), and (3.4) are still to
be solved by trial and error methods. The initial flight path angle y; may be
adjusted by trial and error, and the equations integrated until the optimal
trajectory curve goes through the specified endpoint. This procedure is readily
adaptable to analog computer methods. The difficulties which arise by using
trial and error techniques to solve boundary value problems are easily visualized
from the results of analog computer solutioms.

Figure 1, for example, illustrates how the solution to the brachistochrone
problem from Equations (3.1), (3.2), (3.3), and (3.4) is affected by varying

14
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initial flight path angle Y1- Although the curves in Figure 1 represent the
optimum trajectories for each initial flight path angle, they also have the
unique property of brachistochronic curves in that they represent the loci of
optimal endpoints. In other words, for a given initial angle, the optimal
trajectory represents the locus of all possible endpoints that can be reached
in an optimal fashion starting with that initial angle.

Because of energy considerations, it is clear that no trajectory and hence

no optimal endpoint can lie above the line 2
1
TNmax 2

The region above this line is therefore called an unattainable or "forbidden"
region. All points below this line may be reached in an optimal fashion where
the trajectories are a function of the initial flight path angle.

Por the purpose of discussion, three regions are indicated in Figure 1.
In the first region, it is necessary to vary the initial flight path angle, vyj,
throughout its entire range from -90° to + 90° in order to cover the entire
area with optimal trajectories. Imn region II, however, the entire area can be
covered by varying y; between -90° and +60°, Finally, in region III, which in-
cludes the entire remaining portion of the plane, initial flight path angles
need only be varied from -90% to -45°, Since fewer initial angles are needed
to cover greater areas, as indicated above, the solution becomes more sensitive
to this initial condition as the distance from the origin increases. As a re-
sult, in order to reach an endpoint that is at a considerable distance from the
origin, the initial values of the flight path angle, y], must be specified to
a large number of significant figures. If an endpoint is to be reached within
certain prescribed tolerances, then endpoints at relatively large distances will
require greater accuracy than an analog computer or even a digital computer can

supply.

Thus for trajectories of short length, an analog computer solution to the
fixed endpoint brachistochrone problem can be obtained by making trial and error
adjustments to the initial flight path angle until a trajectory passes through
the selected endpoint. Although this iterative procedure cannot be successfully
used for problems with long trajectories, the form of the solution can still be
obtained by observing the results of varying y), through a finite number of
values of y; as is shown in Figure 1. For any given endpoint, an approximate
value for y, can be determined, and the shape of the actual trajectory can be
approximate& by visual interpolation.

With the brachistochrone problem as a model, it is easier to consider the
more general fixed endpoint minimum time problem which includes the effects of
thrust and drag, In this case, the optimizing equation is given by Equation
(2.81), and the equations of constraint are given by Equations (2.83), (2.84),
and (2.85). It is evident that in addition to the difficulties encountered with
choosing y;, as mentioned in the case of the brachistochrone problem, there will
be further difficulties associated with the choice of the constant A.. The
process of iterating with y; and hg in order to determine an optimal trajectory

16



which goes through a given endpoint can become a nearly impossible task for
trajectories of considerable length. As a result, instead of solving the two
point boundary value problem as such, the optimizing equations are integrated
in a manner similar to that described for the brachistochrone problem. For
each initial flight path angle, a range of values for the constant A; are
chosen, and a set of trajectory curves generated. The value of S§8X° is moni-
tored (Equation 2.82), and when it reaches the assigned value of -A;, the tra-
Jectory is terminated. In this manner, the complete region of space in which
solutions are possible can be determined, and a manifold of optimal trajectories
is generated.

Time Optimal Trajectories with Constant Thrust

The brachistochrone problem represents an aircraft performing under the
influence of gravity alone., If thrust is included, the problem becomes con=
siderably more difficult due to the fact that the constant Ag enters into the
problen. The optimizing equation for an aircraft operating under thrust and
gravity forces only, can be determined from Equation (2.81) by setting Cp = O.
The optimizing equation becomes

v o . Cosy ] cosy
Y - { N u} (3.5)
€
and the velocity equation becomes
u' =K - siny . (3.6)

The kinematic relations, Equations (3.3) and (3.4), remain the same.

Using the method outlined above for the general case, optimal trajectories
generated for the thrust-only case are shown in Figures 2 and 3. For each
initial angle, a range of A\,'s are selected, and the corresponding trajectories
are plotted. At the same time a second set of plots of a "cut off" parameter,

cosy
Kgu ’
is made (Figure 3). When the "cut off" parameter equals unity, the condition
cosyr
e e uy

is satisfied and the integration is terminated. If -xg is picked such that
cosyi
b |
then the "cut off" parameter never approaches unity as shown in Pigure 3. Thus
-xg is limited to values within a certain restricted range. Specifically, -Ag

cosy
must vary between a1 and zero.

’

'k§>
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The locus of optimal endpoints that can be reached by varying A through-
out its permissible range for a given initial flight path angle is shown in
Figure 2. Unlike the brachistochrone problem, the locus of optimal endpoints
does not coincide with the optimal trajectories. Also, the locus of optimal
endpoints for each initial angle forms a closed loop. In addition all the loops
are very nearly tangent to each other at the upper point where they meet the 3
axis forming bounding region of space, in which optimal solution exist. This
situation is similar to the brachistochrone problem, but unlike the brachisto-
chrone problem, the aircraft simulated in this thrust-only case can reach points
outside the bounded region.

The endpoints at a considerable distance from the origin are not only in-
creasingly sensitive to the initial flight path angle y;, but also to the con-
gstant Ax. This is easily seen by comparing the areas between the loops at
various distances from the origin, recalling the range limitations on A, and
noting the lengths of the loops in Figure 2. For example, the area in which
endpoints are obtained starting with y] between -60° and -70° is more than twice
as large as the area in which endpoints are obtained starting with y; between
+90° and -60°. All the points on the relatively short 0° locus can be reached
by varying -A; between 0 and 0.5. Whereas all the points on the much longer 70°
locus are reached by varying -xg between a smaller range of 0 to 0.171.

Since the sensitivity of any given trajectory endpoint to the two constants
Y1 and A, greatly increases with the distance from the origin, the two point
boundary value problem, as such, is virtually impossible to solve for long tra-
jectories. However in a manner analogous to the brachistochrone problem an
approximation of the shape of the trajectory as well as initial flight path
angle and A; can be made from Figure 2.

The lift coefficients (C;) required to fly a couple of typical trajectories
for the thrust-only case are shown in Figure 4. It can be seen that the range
of 1lift coefficient requirements for this case lies within the capabilities of
most aircraft.

Time Optimal Trajectories with Drag

The optimizing equation for a glider type of aircraft can be obtained from
Equation (2.81) by setting K = 0, The optimizing equation in this case becomes

Y = - cosy 2 + 3 cosy (3.7)
u AU ?
3
with the velocity equation given by
u' = - Cpu? - siny . (3.8)

The kinematic relations, Equations (3.3) and (3.4), remain the same.

Solutions to the drag-only case from Equations (3.7), (3.8), (3.3), and
(3.4) are obtained in the same manner as for the thrust-only case and typical
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‘trajectories and their associated cut off parameters are shown in Pigures 5 and
6. The loci of optimal endpoints for each initial flight path angle obtained
by varying the constant A\ are shown in Figure 5.

As in the brachistochrone problem and for the same energy consideration,
there is a region of unattainable points and hence a "forbidden" region in
which there are no possible endpoints. Unlike the thrust-only case, the loci
are not closed loops but a manifold of similarly shaped curves which extend to
infinity. The further an endpoint is from the origin along any given locus of
endpoints, the smaller will be the value of A, for the corresponding optimum
trajectory. In the limit the value of A, asymptotically approaches a fixed
value which is dependent upon the initial conditions. If A; is selected below
this value, the cut-off parameter will not approach unity (éigure 6). The tra-
jectory in this case is a diving one. Furthermore, the value of Ag cannot be
chosen greater than cosy;

u1
and have the cut-1lff criteria satisfied. Figure 7 indicates the approximate
range through which At is allowed to vary for a given initial angle. It is
evident from Figure 7 that the sensitivity of a solution to A; is increased
for the lower initial flight path angles. At considerable distances from the

origin all solutions are extremely sensitive to Ae due to the asymptotic na-
ture of Ag.

2

Again the sensitivity of the solution to both y; and A\; virtually prevents
the two point boundary value problem from being solved by iteration. However,
approximate trajectories can be obtained from Figure 5.

All of the loci in Figure 5 become straight lines at some distance from
the origin. Long flight trajectories also have a linear portion to them at
approximately the same slope as their corresponding loci. Along the flattened
portion of the trajectory, the flight path angle and velocity are nearly con-
stant. Hence the aircraft may be considered to be flying in a quasi-steady
manner. As the length of the trajectory increases, the quasi-steady portion
increases, and the trajectory becomes a short dive at the beginning, a short
climb at the end with the middle portion flown at a constant flight path angle.
A plot of the final locus angle to the initial flight path angle is given in
Figure 13.

The 1lift coefficient Cj, necessary to fly a few typical trajectories for
the drag only case are shown in Figure 8. It can be seen that during the early
part of the trajectory, the range of required lift coefficients is within the
capabilities of most aircraft. During the short climb at the end of the optimal
trajectories, the lift coefficient has a tendency to increase appreciably due
to the rapid loss of velocity.

Time Optimal Trajectories with Thrust and Drag

The optimization equation for the general case of an aircraft with thrust
and drag is given by Equation (2.81) with the equation of motion and kinematical
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constraint equations given by Equations (2.83), (2.84), and (2.85). Solutions
to these equations are obtained in a manner similar to that for the drag-only
case as shown in Figures 9 and 10. However, the solution procedure is somewhat
complicated by the fact that at certain points along some of the trajectories
thrust and drag are equal. At these points

cosY _

Xgu

This condition had previously been used as the criterion for cut off. In this
case, however, the transversality condition requirement A,;, = O is not satisfied.
When either A\y2 = 0 or r = 0 is substituted into Equation %2.72)

Thy = (B - Agu secy) (3.9)
along with the time optimal condition B = -1, the condition

u

is obtained. Thus the proper cut-off condition occurs when - Eigz is equal to
unity and r # O, E

Some computational difficulties are encountered with the optimizing equation

cos 2CDp2 cosy. cosy
y' =<2 { — AH5RY - : (3.11)

as r approaches zero. However, y' does not become infinite as r approaches zero
as can be seen if xg is eliminated from Equation (3.1l) by using Equation (3.9)
-with B = -1,

2Cpudn, + 1
v . cosY D
Y u 5 1+ Ny z ’ (3.12)
and taking the limit as r —» 0 which gives
cos
v == g ZCDU.Z YW | % . (3.13)

Both analog and digital computer results using Equation (3.11) are unreliable if
r approaches or passes through zero. This difficulty can often be avoided on
the digital computer if the time increments in the vicinity of r = 0 are taken
large.

The loci of optimal endpoints for various initial flight path angles are
shown in Figure 9. The curves are of similar shape to the drag only case and
extend to infinity. At some distance from the origin, they all tend to approach
straight lines, each at a different slope. This slope is plotted to the initial
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flight path angle as shown in Figure 13, Trajectories shown in Figﬁre 9 are
similar to the drag trajectories in that each has a quasi-steady portion.

In a manner similar to the drag-only case the constant A, along any given
locus of endpoints asymptotically approaches a fixed value. éontrary to the
drag-only case, this value is a maximum instead of a minimum, If ), is picked
above this maximum value the trajectory dives. The approximate region of valid
values for A, is shown in Figure 11l. Again it is easy to see that as in the
drag case, the solution is more sensitive to Ag at lower initial flight path
angles than higher ones although due to the asymptotic property of xg, all solu-
tions are sensitive to xg at large distances from the origin,

Figure 12 shows the lift coefficients Cj necessary to fly some typical tra-
jectories for the thrust and drag case. The range of the required 1lift coeffici-
ent is well within the capabilities of most aircraft.

DISCUSSION AND CONCLUSIONS

The aircraft in this paper was assumed to operate under thrust, drag, lift,
and gravity forces. For the cases in which thrust was set equal to zero, the
maximum energy of the aircraft is given by its initial kinetic plus potential
energy. The magnitude of the initial total energy determines a boundary of end-
points outside of which it is physically impossible to have a trajectory. For
the cases which include thrust, every point in the plane is a physically ob-
tainable point, even though a zigzag path may be necessary for an aircraft with
a thrust to weight ratio less than one to reach them. However, there is a
boundary outside of which optimum solutions are not obtained. The boundary of
optimal solutions for the thrust-only case is given by the locus of optimal
endpoints for y; = -90° and the boundary of optimal solutions for the thrust and
drag case is given by the locus of optimal endpoints for y, = +90°, Due to com-
putational complexities, these boundaries were not evaluated for Figures 2 and
9. However, the locus of optimal endpoints for the -70° case in Figure 2 and
the +60° case in Figure 9 very closely approximates the boundary of optimal
solutions.

It is evident from Figures 1 and 2 that when drag is not included in a
problem, there is no tendency for a portion of the flight trajectory to be lin-
ear. This quasi-steady effect appears only when velocity dependent drag is
introduced into the problem and is illustrated in Figures 5 and 9. A feature
of the flight trajectories which are partially quasi-steady is that the steady
part of the trajectory is preceded by a diving type of maneuver and followed by
a climbing type of maneuver. During the steady portion of the flight the
flight path slope and the slope of the corresponding locus of optimum endpoints
are nearly equal. The trajectory slope is slightly greater than the slope of
the locus for endpoints located a finite distance from the origin but approaches
the same slope as the endpoint is moved to infinity.

The parameter A. has a great influence on the length and shape of an opti-
mal trajectory. Values of At glven by the equation
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COSY].
Kg = - ul s (4-1)

represent the minimum value of xg for the thrust and drag case (with rj > 0) and

the maximum value of A, for the drag case (with rj; < 0). The number specified
by Equation (4.1) is the only value for the ratio Egﬁx for the brachistochrone

problem (with r = 0). In this respect the brachistochrone problem represents

the border line case between trajectories flown with thrust greater than drag

and vice versa. From Figures 5 and 9 or Figures 6 and 10, it is seen that for
trajectories of short length, A is very close in value to that given by Equation
(4.1). A consequence of this situation is that trajectories of short length ex~
hibit the characteristics of a brachistochrone solution in that the locus of
optimal endpoints nearly coincides with the trajectory itself. As a result, a
brachistochronic approximation can be used for generating short trajectories.
This approximation is obtained by setting

%ﬁi = -1 (4.2)
g
in Equation (2.81) to give
v'= 2 (4.3)

which is independent of A, and is precisely the optimizing condition for the
brachistochrone problem. ~ When Equation (4.3) is used as the optimizing con-
dition along with the equations of constraint (2.83), (2.84), and (2.85), a tra-
jectory solution which passes through the desired endpoint sufficiently ''close"
to the origin will be a good approximation to the true optimal trajectory.

For a given initial flight path angle, longer flight trajectories are ob-
tained for the drag-only case by decreasing the value of A\ from
cosyy
uy

and for the thrust and drag case by increasing the value of Xg from
COSYl
ui

In both cases the trajectory lengthens at an ever increasing rate as A, approaches
some fixed number. For example, in Figure 9, in order to lengthen the” y; = 0
trajectory from the point ¢ = 21.0, n = 7.7, to the point ¢ = 31.9, n = 10.5, the
multiplier Ag must be changed only the small amount of 0.000021 (digital computer
data). Beyond this point, the number of significant figures needed to specify

At increase at a fantastic rate. As a result it is simply not possible to solve
for an optimum trajectory with an endpoint a great distance from the origin by
directly integrating the optimizing equations using trial and error to determine
Y1 and xg. However, the fact that a good portion of an optimum trajectory to a
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distant point will be quasi-steady, can be used to construct an approximate
trajectory to any distant poilnt within the boundary of optimal solutions. This
may be done by using Figure 9 to estimate the value of y; and A; needed to
reach the selected endpoint. The optimizing equation can then "be integrated
untll the solution becomes quasi-steady. The steady portion of the solution can
then be extended until a zoom using the brachistochronic approximation will ex-~
tend the trajectory through the selected endpoint. The basis for using the
brachistochronic approximation in the final zoom is that at the endpoint

£osY . =1
)\gu

By modifying the brachistochronic approximation through the introduction
of an appropriate constant multiplying factor into Equation (3.1), trajectories
of considerable length can be approximated. Although at the present time this
method has not been used extensively, it appears that it may be of considerable
aid when generating trajectories including constraints,
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