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ABSTRACT 
1 .  

# c 

This report  describes the f i r s t  half of a program for the de- 

velopment of a linear ion thrustor and a cesium feed system for possible 

satellite control systems application. 

voted to cyclic tests of two thrustors with cesium and development of 
a liquid-transfer cesium feed system for zero-gravity applications in 

space. Related tasks a r e  directed toward determining the thrustor 

vibration sensitivity and advanced development of the thrustor, and 

demonstrating a two-thrustor station with electrostatic ion b t a m  de - 
flection. 

The major effort is being de- 



I. INTRODUCTION AND SUMMARY 

The purpose of this program is to continue development of a 

0.3 millipound force cesium-contact, linear s t r ip  ion thrustor in 

conjunction with a liquid cesium feed system which will lead to de+ 

velopment of a satellite control system. 

tasks a r e  (1) thrustor vibration analysis and test; (2) long-duration 

cyclic thrustor tests with cesium; (3) liquid cesium feed system de- 

velopment; (4) fabricatioq.. of ,two single -thrustor stations . 

using the new zero-gravity feed system; and (5) advanced develop- 

ment of the thrustor, including demonstration of a two-engine station 

having beam deflection capability for thrust vector control. 

During the f i r s t  s ix  months of the contract, considerable effort 

Specific major contractual 

was necessarily devoted to the fabrication and construction of the ex- 

perimental hardware. 

most of the experimental data will be generated and available only 

during the second hair' of the contract period. 

Because of the long duration of many of the tests, 

An analysis of thrustor vibration sensitivity has been completed. 

Initial tests were conducted with the thrustor on a vibration shake table. 

The thrustor electrodes were instrumented with low mass accelerom- 

e te rs  so that quantitative data could be obtained for correlation with 

the theoretical results. 

and experiment was good; the few deviations were traced to a change 

in the shape of the focus electrode, which is the main structural  

member in the present thrustor design. The analysis will be modi- 

fied to account for this discrepancy between the mathematical model 

and the rea l  iQn engine. 

In general, the correlation between theory 

1 

L 



Prior to testing two thrustors for 50, 000 cycles each with a 

cesium ion beam, a number of preparatory tasks were necessary. In 

particular, one of the 2 foot diameter by 6 foot long vacuum chambers 

was modified to permit operation of two ion thrustors in the one facility. 

This was accomplished principally by including a vacuum lock a t  one 

end of the chamber, so that the two ion thrustors can be separated into 

their own vacuum environment and removed for any necessary repairs.  

An automatic console has been constructed and checked out for auto- 

matically cycling the two thrustors during the life test. In addition, an 

improved solenoid-valve cesium feed system was designed for use with 

the thrustors that a r e  to be cycled. 

month report period all  of these i tems, including the two thrustors,  were 

completed and ready for integration. 

At  the conclusion of this f i r s t  s ix  

Design of the liquid cesium feed system has been established and 

subjected to detailed thermodynamic analysis. 

that the vaporizer section of the feed tube could be heated to operating 

temperature in approximately 15 seconds, which is within the warmup 

time of the ionizer itself. In addition, the vaporizer could be cooled 

within 10 seconds to a temperature corresponding to 1 percent of the 

peak vapor flow. These results indicate that rapid startup and shut- 

down can be achieved. In order to maintain cesium in a clean state 

during storage and prior to use, a passive burst  disc using a frangible 

diaphragm has been designed and is on order .  If one atmosphere of an 

inert  gas, such a s  argon, is placed on the internal side of the burst  

disc, i t  is possible to maintain the cesium feed system hermetically 

sealed during all handling and storage operations. 

comes available only when a vacuum is pulled on the downstream side, 

bur sting the diaphragm 

This analysis showed 

The cesium be- 

A number of experiments have been conducted for thermal im- 

provement of the thrustor. The results a r e  promising for further r e -  

ductions of ionizer heater power requirements. A new structural  de- 

sign for the thrustor has been established in order  to improve its high 

voltage integrity. In particular, the high voltage insulators in the 

I 
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modified design a re  referenced with respect to ground in order to r e -  

duce the voltage standoff requirement on eachlinsulator. 

the insulators a re  positioned more favorably for  minimizing surface 

leakage effects resulting from cesium deposition. 

In addition, 

Electrolytic tankcsirnukition studie-s were condx ted  to define 

the ion optical characteristics of both the present thrustor electrode 

structure and several possible electrode modifications. 

that in the present design, the neutralizer filament is  swamped in a 

negative electric field. 

was shown to provide a superior electrode structure. 

It was found 

The addition of a grounded decel electrode 

The study of a double-beam station with electrostatic beam de- 

flection capability in each thrustor has been included in this contrac- 

tual effort .  

be deflected to angles greater than 10 degrees from the normal beam 

axis. 

be directed perpendicular to the normal thrustrvector. 

single l inear-strip thrustor could be used for both station keeping and 

attitude control about one axis. 

the ionizers in one plane, but with the electrode structures perpen- 

dicular to each other, two-axis control f rom a single station is possible. 

Using this concept, one two-thrustor station with electrostatic beam 

deflection performs the functions of five separate static thrustors. 

Analysis and experiment has shown that the ion beam may 

With this amount of deflection a large fraction of the thrustccan 

Therefore, a 

If two such thrustors a r e  mounted with 

3 



11. THRUSTOR VIBRATION ANALYSIS AND TEST 

Vibration tests to determine the mechanical integrity of a sub- 

systepia following design changes are often tedimns, time consuming, 

and expensive. 

computer program could quantitatively evaluate a mathematical model 

of the device or subsystem subject to excitation accelerations specified 

a s  a function of frequency. Such a digital computer program has been 

developed at  Hughes. The purpose of this portion of the contract is to 

prove the applicability of this computer program to analysis of the dy- 

namical eehavior oPhm e u s t o r  systems. Therefore, a detailed analytic 

study of the vibration sensitivity of the linear s t r ip  ion thrustor has been 

completed. 

the principal vibration modes and resonances which occur during actual 

vibration tests of a thrustor. Once verified, the computer program can 

be used to confirm any design changes which may subsequently occur 

in a development program without.requiring repeated vibration tests.  

These disadvantages u&W$ be eliminated i f  a proven 

The computer results are  to be verified by determining 

This should significantly reduce the time and expense involved in vi- 

bration qualification. 

The program was run using the Linear Elastic Structural 

Analysis Routine (LESAR) in conjunction with the IBM 7094 digital 

computer. 

technique. 

of a structure subjected to any arbitrary time dependent input force. 

The forces may act either separately or simultaneously a t  the selected 

reference stations. 

with up to 102 degrees of freedom. 

constraints 'may-Be put into any station. 

constraints is  quite essential since it permits "blanking" out normal 

modes which a r e  not excited by the particular forcing function. The 

contributions of up to twelve normal modes may be used for the r e -  

sponse calculations if  necessary. 

This routine is essentially a stiffness matr ix  normal mode 

The program is  capable of solving the dynamic responses 

1 

LESAR will handle three-dimensional structures 

Displacement and/or rotational 

This imposition of a rb i t ra ry  

5 



Results of the program include the following: 

a. 

b. 

Natural frequencies and the corresponding mode shapes. 

Displacements, velocities, and accelerations at  each 

station and for all degrees of freedom at  points selected 

in time. 

torsional moments a re  also found a t  the times of interest. 

Maximum values of the forces and moments of (b) and 

the time a t  which they occur. 

Axial and shearing forces and bending and 

C. 

A mathematical dynamic model of the ion thrustor used in the 

study was simulated by a series of lumped masses connected by elastic 

members, a s  shown in F ig .  1. The neutralizer filament assembly was 

treated separately, since it was assumed that this assembly would have 

little dynamic effect on the res t  of the system because of its relatively 

small mass. The model was assumed to have a damping coefficient of 

1% of critical for all modes and to be fixed a t  two points on the focus 

electrode. (The mounting as  taken in the model was not the same as  

on the test thrustor because of an engineering change that had taken 

place. The actual mounting was a s  shown in phantom lines in F ig .  1 . )  

The computer study has shown that the f i r s t  two natural f re-  

quencies of the thrustor, excluding the neutralizer assembly, should 

occur a t  1774 cycles per second (cps) and 2473 cps. In these modes 

the neutralizer bar experiences relatively large motion with respect 

to the rest  of the system. 

frequency of 200 t p s  became apparent. 

ference in mounting between the model and the tes t  specimen. 

model is  being changed to simulate the new mounting configuration and 

the computer program will  be rerun to determine whether the analysis 

predicts the 200 cps resonant frequency. 

In actual vibration tests a f i rs t  resonant 

This was attributed to the dif- 

The . 

The test procedure used consisted of mounting the unit to an 

aluminum fixture on an MB Electronics Model C-10 vibration exciter 

(see F i g .  2). Two G E C  Model 4-275 miniature, 1. 5 gram (g) accel- 
erometers were located a t  various locations on the thrustor a s  shown 

in Fig. 3, to measure response. One Endevco Model 2213 accelerometer 

6 
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Fig. 1. Model used for the mathematical analysis 
of ion thrustor vibration sensitivity. 
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Fig. 2. Photograph of ion thrustor mounted on vibration table. 
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F i g .  3 .  Location of accelerometers during vibration tests. 
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was located on the fixture to measure input accelerations. 

accelerometer signals, plus the shaker drive oscillator signal and a 

voice identification channel, were recorded on Frequency Modulation 

(FM) tape a t  a tape speed of 15 inches/second (in./sec). 

gram is shown in Fig .  4. 

The three 

A block dia- 

The test  consisted of four 10 minute (min) sweeps. For  each 

sweep the rate  was as follows: 50 to 800 cps logarithmically in 4 min 

followed by 800 to 4000 cps logarithmically in 6 min. During the f i r s t  

sweep no accelerometers were mounted on the thrustor. 

audio observations: of' the thrustor during the vibration sweep were 

made, and possible resonant conditions were noted. 

made at  the noted frequencies, and the input level was increased to 

tune in the particular frequency mode. 

Visual and 

Dwells were then 

During the las t  three sweeps the two response accelerometers 

were located a s  indicated in F ig .  3 ,  and an x-'y plot was made of the 

accelerometer output versus frequency. 

locate resonant points and dwells were made at these points to de- 

termine exact response magnitude. 

all sweeps but was increased to 3 g during dwells to locate exact f r e -  

quencies. 

The x-y plot was then used to 

The input amplitude was l g in 

The transmissibility data shown in F i g s .  5 through 10 show 

that the entire thrustor has a fundamental resonant frequency a t  200 cps 

when a two-point mount is used. 

ment between the computer study (see Appendix A) and the low f r e -  

quency test results is caused by the difference in mounting. 

now being investigated and will be studied in the next period, together 

with tests of a thrustor with a four-point mounting arrangement. 

It is believed that the lack of agree-  

This is 

10 
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111. LONG-DURATION CYCLIC TESTS 

The purpose of this task is to demonstrate that the linear ion 

thrustor electrical design is suitable for repeated thrust  operation. 

This is to be verified by cyclic operation of two thrustors,  each for 

50,000 beam-on cycles. 

control mode of operation as follows : a nominal 20 sec warmup 

period, a 10 sec thrust period a t  a level of 0.3 millipound force 

(mlbf), and a 3 min off period. Warmup is required to be consistent 

with a warmup energy of 0.60 watt-hour (W-hr) to an ionizer tem- 

perature of 1100 degrees Centigrade (OC). 
A. THRUSTORS 

Each tes t  cycle is to simulate the attitude- 

Two thrustors of the LD design, designated LD-4 and LD-5, 

have been fabricated for long-duration cyclic testing. 

4.6 centimeter (cm) thrustor is  a scaled down version of the Model 

LB (8 cm) thrustor, for which a complete set of drawings was sub- 

A?.litted -;-,der Cr\ntrrrrt NAS 3-4117, and utilizes a short  F-2 type - ' 

heater.  

density (2.86 inicrorr (p) average particle size) porous tungsten ionizers. 

Accel electrodes a r e  of the laminated copper and stainless steel con- 

struction used in previous life tests. Neutralizer filaments a r e  car -  

burized thoriated tungsten. 

accompanying neutral detector is shown in Fig.  11. 

B. LABORATORY FEED SYSTEM 

The Model LD, 

Both LD-4 and LD-5 use Philips, Mod E, 82 percent (%) 

A photograph of thrustor LD-4 and its 

The original planning for  this thrustor test  anticipated the use 

of several  250 g capacity laboratory-type cesium feed systems avail- 

able f rom a previous program. 

system requirement was reviewed, and i t  was concluded that a new 

feed system was needed. The available laboratory feed system had 

two disadvantages when considered for use on the cyclic life test: 

(1 )  it was sensitive to attitude, thus restricting engine installation in 

the vacuum facility; (2) the cycle life of the solenoid valve was too 

short .  

Early in the program the cesium feed 

19 



Fig.  11. Photograph of ion thrustor L D - 4  
and accompanying neutral detector. 
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I 
A new vapor-transfer cesium feed system was designed and 

fabricated with the following features : 
Cesium capacity: 80 g 
Thermal time constant: 10 min maximum (max) (for 

1% beam change) 

Operating temperature 3 OO°C 

Insensitive to attitude 

Minimum length feed tube to thrustor 

Al l  heaters brazed in place 

No super heater 

Hermetic seal  and piercing mechanism 

Solenoid on/off vapor flow control 

This feed system, shown in Figs. 12 through 14, is essentially 

a new arrangement of previously developed components and techniques. 

In order to reduce thermal mass and improve thermal efficiency, the 

solenoid-operated feed valve i s  in the center of an annular capillary 

reservoir.  

station assembly, a piercing mechanism, and a heater complete the 

feed system. 

A hermetic seal  to protect the cesium during storage and 

The solenoid valve is similar to that developed for the 250 g 
laboratory feed system; some modifications were made to improve 

valve reliability and cycle life. 

avoid exposure of the valve plunger cavity to a i r  when the system was 

let  down to ambient conditions. This redesign has the added advantage 

of minimizing the volume of thec-c-esium’fhw Wth’bCtween the valve and 

the thrustor. 

improve valve reliability. 

designed to improve its cyclic life. 

The cesium flow path was altered to 

In addition, coil potting techniques were modified to 

The remaining changes in the valve were 

A minimal solenoid valve improvement program, supported by 

design and engineering effort ,  was started to verify valve redesigns. 

This phase of the work was not intended to produce a new valve design, 

but rather to define and eliminate valve failure modes, thus increasing 

valve reliability and life. A more comprehensive program of solenoid 

valve development and reliability testing is required than can be done 

under this contract. 

21 
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Fig. 12. Schematic of improved solenoid-valve feed 
system for use in thrustor cyclic tests.  
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F i g .  13. Photograph of redesigned solenoid valve. 
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Fig .  14. Photograph of 80 g solenoid-  
valve c e s i u m  feed  s y s t e m .  

24 



All tests were conducted under the temperature and vacuum 

conditions which the valve w i l l  experience in use, but without cesium 

in the lines. 

Review of previous valve failures experienced with the basic valve 

showed that four failure modes were likely to be dominant: (1) insulation 

breakdown in the ceramic coil potting material; (2) galling between the 

valve plunger and valve bore; (3) deformation of the valve seat; and 

(4) deformation of the plunger where it is attached to the valvular ele- 

ment. 

without introducing any evidence of others. 

established the effectiveness of the several  proposed valve modifications 

outlined below. 

Figure 15 shows one of the development valves under test. 

Preliminary life testing verified the las t  three failure modes 

Subsequent life testing 

Potting technique : Change to eliminate crossed turns 

where electrical leads a re  brought 

out of valve 

Obtain magnet wire with substantially 

better quality ceramic insulation 

Apply precision hard chrome plating 

to plunger 

Change material  ta increase hardness 

from Rockwell scale C (RC) 43 to 

RC 57 

Galling : 

Valve seat 
deformation : 

Plunger deformation: 

Reduce valve spring force from 

7 pounds (lb) to 3 lb 

Modify plunger to incorporate hardened 

retainer for the valvular element and 

to improve method of retention. 

Tests of these modifications were limited to available valve bodies. 

Over 10,000 cycles were accumulated without failure of the new valve 

seat  or plunger. 

they became available so that the first  feed system delivered for thrustor 

tes t  has an intermediate configuration, while the second feed system 

includes all  the design improvements. 

changes i s  being fabricated for life test next month. 

Modified parts were incorporated in feed systems a s  

A new valve including all  of the 
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F i g .  15. Experimental arrangement for thermal-vacuum 
evaluation of cyclic life of redesigned solenoid 
valve. 
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The hermetic seal  and piercing mechanism used on this new 

feed system was developed under Contract NAS 3-4117 and has been 

incorporated without significant change. Filler material  used in the 

annular capillary.! reservoir is the same 10% dense nickel Feltmetal 

used for previous programs. 

convenient mechanical arrangement which results in a unit with a 

capacity of '80 g, of cesium. 

The reservoir was sized to provide a 

Reservoir filling procedure consists of evacuating the reservoir ,  

then using atmospheric pressure (argon) to force the desired quantity 

of liquid cesium into the capillary-r filler, and finally backfilling the 

reservoir with argon to a pressure of 1 atm. The reservoir is then 

sealed with the piercing mechanism. 

been completed, and two more a re  being fabricated. 

C. TEST CHAMBER MODIFICATION 

Two of these 35ed systems have 

For  the Cy&c operation of two thrustors, modifications were 

made Cim the 2G- vacuum chamber. 

Analyzer (RGA! and vacuum lock were added. 

In particular a CEC Residual Gas 

A double ended collector 

assembly was constructed, and the pumping system was trapped. 

new chamber is showzllirr Fig. 14. 

The 

The modifications to the chamber consisted of adding two 4 in. 

diameter view ports for observing the thrustors and making optical 

pyrometer measurements, and one 6 in. port for mounting a neutral 

detector. New view ports through the cryowall were aligned with the 

new ports in the tank wall, and externally operated shutters were pro- 

vided. 

The RGA lock assembly was mounted on an existing 6 in. port. 

The RGA lock is provided with an evacuation valve and a small  ion 

pump so that it may be isolated from the chamber when the RGA is 

not in use or  the chamber is vented. 

The thrustor vacuum lock is designed so that either thrustor m a y  

be removed from the test  chamber without the other being exposed to 

atmospheric pressure.  

long e m b e r  which is separated from the 2 foot diameter chamber by 

The lock consists of a 12 in. diameter by 12 in. 
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Fig .  16. Photograph of modified vacuum chamber. 
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a 10 in. diameter gate valve. 

4 in. diameter view port, an evacuation valve, and a combination ion- 

sublimation pump. 

sure  nearly to that of the main chamber so that no large pressure r i se  

occurs when the 10 in. gate valve is opened. 

The lock chamber is equipped with a 

The ion-sublimation pump reduces the lock pres - 

The collector assembly consists of a chevron baffle which is 

common to both engines and a series of truncated cone baffles mounted 

on a frame which is isolated f rom the cryowall by teflon support pads. 

The collector assembly i s  constructed of oxygen free copper and the 

chevrons and cones a re  of 1/32 in. sheet. 

The chamber is pumped by a 10 in. oil diffusion pump using 

Don Corning (DC) 705 oil. 

an ambient or  splash baffle and a combination liquid nitrogen (LN2) 

and zeolite trap. 

a 10 in. right angle valve. 

heaters, thermocouples, and a gas purge valve. 

pump is trapped with an uncooled zeolite trap. 

line is provided to rough the thrustor vacuum lock. 

Trapping of the diffusion pump consists of 

The pumping system is isolated from the chamber by 

The LNZ-zeolite t rap  features bakeout 

The chamber roughing 

An auxiliary roughing 

In operation the thrustor vacuum lock indicated a pressure of 
-6 approximately 1 x 10 Torr after an overnight pumpdown (empty, 

no thrustor). With the chamber indicating 5 x 10 Torr ,  the lock 

valve was opened a t  this pressure. A pressure r i se  in the chamber to 

2 x Torr  was observed. During a longer pumpdown period 

(24 hours) a lock pressure of less than 1 x Torr  was indicated 

which should have less  effect on the main chamber pressure when the 

lock valve is opened. 

- 8  
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D. AUTOMATIC CYCLIC LIFE TEST CONSOLE 

This console was designed to operate two ion rocket thrustors,  of 

the l inear-strip type. 

operating each thrustor during cyclic life tests. 

The console is fully automated for alternately 

The following power conditioning modules a r e  contained within 

the console (see F i g .  17): 

1. 

2. One Feed Valve power supply: 0 to 60 Vdc a t  1 A I 
3 .  

4. 
5. One Accel power supply: 

6. 
7. 

These power supplies receive their input f rom two Space Electric 

One Ionizer Heater power supply: 0 to 30 Vac a t  5A 

One Neutralizer Heater power supply: 

One Main Drive power supply: 

0 to 15 Vac at 0 . 5  A 

0 to t 5  kV a t  60 mA 

0 to - 5  kV a t  30 mA 

0 to 30 Vac a t  1 A 

0 to 20 Vac a t  3A 

Two Boiler Heater power supplies : 

Two Feed Tube Heater power supplies: 

Rocket Test (SERT)-I 2 kc square-wave inverters.  

inverters is furnished from t 3 0  volt direct  current  (Vdc) and t 5 0  Vdc 

regulated power supplies built into the console 

The input to these 

Included in the console a r e  a l l  the circuits and controls necessary 

to provide the following functions : 

1. Pr imary  power ON-OFF switching 

2.  Automatic or  manual mode selection 

3 .  Automatic thrus tor station cycling and voltage application 

in the automatic mode 

Manual thrustor station selection and manual voltage 

application in the manual mode 

Manual ON-OFF control of each power supply and in- 

dependent output level adjustment of each voltage for 

both thrustor stations 

Servo control of the boiler heater input power to main- 

tain the beam current  a t  the preselected level. 

4. 

5. 

6. 
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The control unit contains the cycle t imers  for automatic control 

of the console. 

below. 

begins with all time shared power supplies connected to Station I. 

A standard two-thrystor automitic cycle is described 

For  the purpose of this discussion, it is  assumed that the cycle 

Time (in seconds) 

0 The Ionizer Heater power supply is turned on. The 

Station I Ionizer Heater Warm U p  potentiometer con- 

trols the power to the Ionizer. 

18 a. 

b. 

C.  

d. 

20 

22 

3 0  

The Ionizer Heater power supply is switched from warm 

up to regulate. 

trols the power to the ionizer heater. 

The Main Drive supply is turned on. The voltage level 

is controlled b y  the Station I Main Drive potentiometer. 

The Accel supply is turned on. 

controlled by the Station I Accel potentiometer. 

The Neutralizer Heater supply is turned on. 

level is controlled by the Station I Neutralizer Heater 

potentiometer . 

The Station I Regulate potentiometer con- 

The voltage level is 

The voltage 

The Feed Valve power supply is turned on. 

level is controlled by the Station I Feed Valve potentiom- 
eter.  

The voltage 

Station I beam current  level is sensed by the Station I 

boiler control circuitry. 

control voltage is changed if  the beam is not a t  the pre-  

selected level. 

The Station I boiler power 

Al l  shared supplies a r e  turned off.t(the Boiler Heater and 

Feed Tube: Heater .supplies for  both engines remain on 

during thrus tor ,cyclicL_opeL:ation). 

disconnected f rom their respective power supplies and 

Station I controls a r e  
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105 

Station 11 controls are  connected. The outputs of the 

shared power supplies a r e  switched from Station I to 

Station II. 

cycle. 

The console i s  now ready for the Station U 

The Ionizer Heater power supply is turned on. 

Station I1 Warm Up potentiometer controls the power 

to the ionizer. 

The 

123 a. The Ionizer Heater power supply is switched from 

The Station I11 Regulate po- warm up to regulate. 

tentiometer controls the power to the ionizer heater. 

The Main Drive supply i s  turned on. 

is controlled by the Station I1 Main Drive potentiometer. 

The Accel supply is turned on. 

controlled by the Station 11 Accel potentiometer. 

The Neutralizer Heater power supply is turned on. 

The voltage level is controlled by the Station I1 Neu- 

b. The voltage level 

C. The voltage level is 

d. 

t r a l i z e r  Hezter  petenticmeter. 

125 

127 

135 

The Feed Valve power supply is turned on. 

level is controlled by the Station I1 Feed Valve potentiom- 

eter. 

The voltage 

Station I1 beam current level is  sensed by the Station I1 
boiler control circuitry. 

control voltage is changed if  the beam is not a t  the pre- 

selected level. 

The Station I1 boiler power 

All  shared supplies are  turned off. The console con- 

t ro l  circuits and output connections a r e  switched back 

to the Station I condition. 

The console contains all instrumentation necessary to read out 

all voltages supplied by the power conditioning to the thr$star. 

couple meters  and a recorder which can continuously monitor up to 

eight channels of information a r e  also included. There a r e  two cycle 

counters, -two feed valve cycle counters, and two elapsed time meters 

which indicate beam-on time for each &hS.izlator. A pbtggraph  Wthe  

completed console is shown in  Fig.  18. 

Six thermo- 
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F i g .  18. Photograph of automatic cyclic tes t  console. 
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The cyclic life test  console operates unattended virtually 100% 
All heater supplies a r e  fused a t  100% overload to protect of the time. 

them in the event of a short. 

a r e  se t  a t  approximately 15 to 20% overload, so that an a r c  or a short  

wi l l  t r ip  off the inverter. One second later,  voltage w i l l  be reapplied 

and i f  the condition persists, a ser ies  of tr ips w i l l  result. The ser ies  

is short  because during any given cycle only 12 sec elapse from regulate, 

when the high voltage is applied initially, to when the station is switched 

off, independent of arcing. 

low and the power dissipation during arcing so  small, no damage wi l l  

be done to the console should such a malfunction occur. 

Since 2 sec must elapse from high voltage application until the 

Overload trips on the high voltage supplies 

Because the duty cycle of the supplies is so 

feed valve opens, no cesium can flow during prolonged arcing. 

tends to clean up any cesium induced malfunction. 

circuit  is not activated until 4 sec after the feed valve opens, and if  i t  

is not activated the power to the reservoir is gradually reduced, r e s e r -  

voir temperature wi l l  gradually decline, further inhibiting cesium flow. 

This has the effect of shutting down the thrustor and aiso reduces the 

effects of excess cesium, as might be produced i f  the feed valve stuck 

open. 

This 

Since the sample 

If the feed valve remains shut, the console simply continues 

cycling and the reservoir temperature w i l l  rise to the allowable maxi- 

mum because no beam current  would be registered during the sample 

portion of the cycle. 

the normal  operating point. 

cycle, the beam current would be high and the sample circuit would r e -  

duce reservoir  power, or arcing w i l l  occur which also effects a r e s e r -  

voir power reduction as described above. 

locked to the vacuum gauge and wi l l  completely shut down if  there is 

an indication that pressure is  above the gauge setting. 

The upper limit is usually set a few degrees above 

Should the valve reactivate during a later 

The console is also inter-  

3 5  



IV. LIQUID CESIUM FEED SYSTEM 

A. INTRODUCTION 

This contract task i s  directed toward development of a valve- 

less liquid-transfer cesium feed system optimized for both laboratory 

and zero-gravity space applications. 

discussedlm Section II. B, where the feed system was designed for the 

specific task of laboratory thrustor testing. 

This effort differs from that 

The feed system discussed in this section is being developed to 

provide a controllable cesium vapor flow to an ion thrustor operating in 

either a steady state or pulsed mode. 

meet the following basic system requirements : 

This feed system is designed to 

1. 

2. 

3 .  minimum standby power 

4. storage capacity: 2 lb cesium 

5. minimum weight . 

operable in a zero-gravity space environment 

operable in any attitude in a laboratory environment 

Before actual design work was begun, a l i terature study w a s  under- 

taken to establish the present state of the a r t  in cesium feed systems 

and to avoid duplication of previous effort. 

ture reviewed. 

system analysis continued with particular emphasis on defining the 

requisite component functions and anticipated problem areas .  The 

basic component functions a re  as follows : 

Appendix B lists the l i tera- 

Following the literature review, the preliminary feed 

1. liquid storage reservoir 

2. liquid transfer mechanism 

3.  

4. vaporizer 

5. vapor flow control 

6. 

hermetic seal  (for handling and storage protection) 

rapid on/off vapor flow control 
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Primary consideration was given to cesium feed systems which 

provide passive cesium control. 

is the unit developed by Hughes Research Laboratories (HRL) under 

Contract NAS 3-2510 and that developed by Electro-Optical Systems 

(EOS) under Contract NAS 3-2516. Also  considered were feed systems 

utilizing spring force or other means to maintain liquid pressure,  with 

a thermally controlled impedance for vapor -flow -rate control. 

Typical of this class of feed system 

In the simplest feed system design considered, only three of 

the above functions a r e  separately identifiable, while the others a re  

provided by the inherent characteristics of the components used. 

system consists of a liquid-cesium storage reservoir,  a hermetic seal ,  

and a porous-metal vaporizer. 

from the storage tank to the vaporizer and both proportional and on/off 

control of cesium vapor flow would be achieved by thermal control of 

the vaporizer. The key element in the design is the vaporizer, since 

its characteristics determine both liquid storage and transfer com- 

ponent requirements and vapor -flow control component requirements. 

This 

Liquid cesium would be transferred 

Analytical investigation of the feed system continued with a 

thorough study of the three reservoir types : bellows tank, porous 

metal lined tank, and solid porous metal tank. All  three concepts 

utilized a similar porous -metal vaporizer where the cesium is changed 

from the liquid to the vapor state. 

The bellows tank using the bellows spiing force a s  an expulsion 

mechanism, creates excessive pressure in its filled position. Liquid 

cesium would be forced through the vaporizer when heat was removed; 

therefore, it is essential to include a solenoid valve in such a system. 

The porous metal lined system was studied with liquid cesium in 

the center of the reservoir and a porous metal lining with graded cap- 
illary 

cesium into the even smaller pore size vaporizer region. 

also presents a pressure head behind the vaporizer which can force 

liquid cesium through the vaporizer when heat is  removed. 

pore sizes serving as  a surface-tension pump to force the liquid 

This system 

I 
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The third, and most promising, system is  a hybrid. The r e s e r -  

voir is filled with a graded large-pore porous metal, with a small-pore 

porous metal wick through the center of the storage medium. 

vides capillary suspension and a surface-tension pump action in the 

reservoir,  in addition to flow through the wick into the vaporizer for an  

acceleration range greater than - 1 gravity (g) to t1 g. 

heat sinking the vaporizer in conjunction with thermal shielding the 

reservoir and vaporizer, the flow and rapid on-off control requirements 

can be met by controlling the heat input to the vaporizer. 

This pro- 

By properly 

Previous HRL feed systems have been variable-position inter - 
face systems, in which the liquid vapor interface migrates toward the 

fuel supply and away from the heater element a s  the fuel is consumed. 

This type of system results in a high standby power requirement, since 

the entire feed system must be maintained a t  vaporizer temperature 

unless startup times on the order of several  hours can be tolerated. 

Movement of the interface is caused by a force imbalance acting upon 

the effective cross  section of the liquid cesium at the interface. 

this type uf design, the vapor pressure forces dominate the capillary 

forces and result in a net force directed toward the fuel supply. 

In 

The new HRL feed system design should result  in the capillary 

forces  dominating the vapor pressure forces, causing the fuel to mi- 

grate toward the end of the vaporizer wick and maintain a constant 

heat load on the heater element. 

should be stationary throughout the fuel cycle. 

requires that the capillary forces always be larger than the vapor 

pressure  forces for all  conditions of operation. A detailed discussion 

of the vaporizer wick design and its limitations is presented in Section 

Therefore, the liquid vapor interface 

The feed system design 

IV-B-2. 
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B. DESIGN CONSIDERATIONS 

The most promising feed system concept defined during the r e -  

view of both new designs and prior a r t  was reduced to the specific con- 

figuration shown in F i g .  19 and subjected to detailed analysis. 

In order to meet the basic system requirements, the following 

constraints were imposed upon the system design: 

1. 

2. 

3 .  

Operation in a zero-g space environment. 

Operation in a f l  g laboratory environment. 

Fas t  response of vapor flow, i. e. , maximum vapor flow 

within 20 sec of command and complete shutdown of 

vapor flow within 20 sec of command. 

Cesium vapor flow for 0 .3  mlb of thrust. 4. 
5. Valveless vapor transfer system. 

6. Minimum electrical heater power requirement for "full" 

and "depleted" cesium supply. 

Stable liquid-vapor interface at  prescribed operating 

location. 

Utilization of a single heating element to generate cesium 

vapor pressure and utilization of waste heat to maintain 

cesium in the storage supply in a liquid state. 

7 .  

8. 

1. Description of Feed System Elements 

The primary elements in the "zero-g" feed system a re  the * 
stainless steel fuel container, the graded low-density nickel Feltmetal 

storage matrix within the container, Lthe high-density nickel Feltmetal 

wick, an electron bombardment vaporizer heating element, the one -shot 

burst-disc diaphragm, the radiative heat shielding, and the heat r e -  
jection surface. 

v 
Trademark of the Huyck Gorp. 

wires which is  pressed and sintered to produce a random matrix of 

controlled pore size. 

Feltmetal i s  an aggregate of fine nickel 

40 
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The fuel container and the large -pore-size nickel Feltmetal 

filler provide a high capacity storage volume for the cesium fuel while 

providing sufficient surface tension to retain the liquid cesium within 

the container, regardless of attitude. 

provides the capillary pumping action which draws f rom the fuel supply 

contained within the large -pore Feltmetal storage. 

pumping action, the small-pore Feltmetal wick should maintain a com- 

pletely wetted condition throughout the fuel cycle. 

The small-pore Feltmetal wick 

Through capillary 

The thermal profile of the system was designed using analog 

computer programming of the system physical equations to provide an 

optimum thermal gradient. 

system thermodynamic response. 

will provide instantaneous power availibility and removal to the vaporizer 

section for on-off control of cesium vapor flow. 

the vaporizer section include vaporizer heater power and the heat con- 

ducted down the feed tube from the ionizer manifold: The excess heat 

from the vaporizer and thrustor manifold a r e  conducted into the storage 

chamber to maintain the cesium in a liquid state,  

This design method yielded an  optimum 

The electron bombardment heater 

Heat contributions to 

The pressure feedback passage can provide relief f rom the 

vapor pressure forces acting on the liquid metal  c ross  section within 

the vaporizer and assis ts  in removal of contaminants f rom the surfaces 

of the porous-metal matrix. 

tube passage (normally sealed) just prior to system startup. 

heat shielding provides design operation management of the feed system 

total electrical. power requirement. 

signed to provide an optimum temperature gradient along the feed sys-  

tem during operation. 

The one-shot burst  disc opens the feed 

Radiative 

The heat rejection a rea  is de- 

2. Description of Operation 

A block diagram of the cesium feed system is shown in F i g .  20. 

The system provides liquid-metal storage,  liquid-vapor separation, and 

fine flow control of vapor. 

the large pore Feltmetal section and is drawn upon by capillary pumping 

action a s  a function of the engine demand through the fine pore Feltmetal 
wick. 

The liquid metal  is normally contained in 

42 



m 
A 
m 
a 
a, 
P) 
w 

E 

4 

rd 
k 
50 
rd 

0 
N 

43 



Cesium vapor flow control is attained by temperature control 

of the vaporizer section as a function of engine beam current  demand. 

The provision of a low mass vaporizer section allows fast heatup and 

cooldown and therefore relatively f a s t  startup, control, and shutdown 

operations. When 

the electron bombardment heater is deactivated, the vaporizer section 

of the wick rapidly cools to condense the cesium vapor and shut off the 

vapor flow. 

the control temperature drops below the liquid metal  vaporization 

temperature (approximately 450 /Kelvin) anddie  ce'sium is condensed into 

the liquid state. 

liquid metal f rom leaving the vaporizeq wick. 

The vaporizer section also acts as  a shutoff valve. 

Complete shutdown of the vapor flow is accomplished when 

0 

Capillary action in the Feltmetal wick prevents the 

This feed system concept allows a single storage reservoir  for  

a number of vaporizers by the simple addition of more wicks. Separate 

adjustment of the vaporizer temperatures permits individual mass flow 

control of metal vapor to a number of thrustors,  a s  well a s  individual 

engine shutdown. Feltmetal storage also provides protection against 

micrometeorite penetration and ultimate total loss of the fuel supply, 

as could result  in a metal  bellows arrangement. 

3 .  Vaporizer Design and Analysis 

In a capillary pumping system, such as that designed for the 

zero-g feed system, the capillary forces of the liquid cesium must  

dominate the vapor pressure forces. Otherwise, the liquid vapor in- 

terface will tend to migrate toward the fuel supply and/or away from 

the heater section of the wick. 

increasing heater power requirement as the interface moves away from 

the heater section, and will ultimately resul t  in premature vapor shut- 

down. Therefore, for a minimum-power vaporizer with fast  response, 

the liquid vapor interface must be precisely located and must not de- 

viate f rom this location throughout the fuel cycle or  lifetime. 

This interface instability will cause an 
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A design analysis was made to determine the capillary force 

characteristics of cesium as the wetting agent in various types of porous 

nickel. 

vided by the Huyck Corporation. 

pore size versus Feltmetal density. Also shown is the relative dis- 

tribution of 80% of the pore size population, and the maximum and mini- 

mum pore size for various densities of Type A30 Nickel Feltmetal 

supplied by Huyck. 

a r e  for 15%, 20%, 30%, 40%, and 60% dense Type A30 Feltmetal. 

All  other graphical information was determined by either interpolation 

or extrapolation of the given vendor data. 

The Feltmetal selected for use in the feed system will be pro- 

Figure 21 shows a graph of average 

Six data points a r e  provided by the supplier. These 

Consider now the use of the graphical information supplied in 

Fig.  21. 

with 80% of the pore size population within the range of 4 to 13 p. 

average pore size for the 60% dense Feltmetal is '7.p. ,..Preli&%nary 

analysis indicates that the finest Feltmetal material  should be used for 

the wick in order to provide maximum capillary force and that coarse 

mater ia l  should be used for the storage element in order to provide 

a maximum storage volume and still meet the environmental require- 

ment. 

For  60% dense Feltmetal, the pore size ranges from 0 to 25 p, 

The 

Consider now the design of a vaporizer wick which will produce 

a capillary force greater than the vapor pressure force. 

pressure is derived by Carman 

liquid multiplied by the casiae of the contast angle of thq,Liquid divided 

by the hydrduLic radius 'normal to flow, i. e . ,  

Capillary * 
as equal to the surface tension of the 

COS e P = y  
C m 

* 
P. C. Carman, Flow of Gases through Porous Media (Academic 

P r e s s ,  New York, 1956). 
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where 

y r surface tension of the wetting agent 

0 = contact angle of the wetting agent 

m =- hydraulic radius normal to flow. 
Hydraulic radius is defined a s  

cross  sectional area normal to flow m r  
wetted perimeter 

or  

volume filled with liquid m -  
wetted surface 

Because the nickel Feltmetal is basically a random matrix of 

sintered wires, an accurate calculation for hydraulic radius becomes 

exceedingly complex. 

calculate a simple bolution based on a worst-condition analysis. 

analyzing the definition of hydraulic radius and its relationship to the 

capillary pressure,  it is noted that in order to maximize capillary 

pressure,  the hydraulic radius should be minimized. If one con- 

cludes that the sintered wires comprising the Feltmetal can be con- 

sidered as cylindrical geometry then for a given average pore size 

it is concluded that small  spheres provide a minimum wetted surface 

a rea  per unit of filled volume compared with cylinders. Since a 

sphere has minimum surface a rea  per unit volume, a cylinder must 

exhibit more surface area regardless of twisted configuration. 

a worst-case design can be established by considering that the Felt- 

metal  is composed of tiny spheres. 

Therefore, an approach to the problem is to 

In 

Thus 

Carman further defines kydraulic radius by considering the 

porous media as uniform spheres. Substituting, 

m = E / S  

s = S0(l  - E )  

S = 6/d (for uniform spheres only) 
0 
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Equation (1) can be rewritten a s  : 

L 

P =  6 y ( l  - E )  cos 0 
C Ed (4) 

where 

E E porosity 

S 

d z diameter of sphere, cm. 

particle surface for unit volume of bed 

The following conditions have been assumed for problem solution. 
-3 d = 2.5 x 10 c m  (diameter of Type A30 Feltmetal wire) 

E = 0.2 and 0.8 (coarse and fine Feltmetal) 

8 = 3O'deg. 

The surface tension of cesium a t  the interface is a function of 

temperature at  the interface. 

versus temperature. 

the capillary pressure in Torr  under the assumption that the Feltmetal 

is comprised of either uniform sized spheres or  a uniform sized bundle 

of straight capillary tubes. 

preferred because it yields the worst-case design. However, the 

straight capillary tube assumption is also presented for  completeness : 

Figure 22  shows cesium surface tension 

The following equations present expressions for 

The uniform sized sphere assumption is 

p C = ,w , Torr  (uniform sized spheres) (5) 

4y C O S  e Torr  (uniform sized capillary tubes) (6) 
) '  

P =  
d2 (1*335 C 

d = sphere diameter 

5 E capillary tube diameter. 
1 -  
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Fig.  22. Surface tension of cesium versus temperature. 
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Figure 23 presents graphs of equations (5) and (6) for constant values 

of porosity E or average tube diameter d2 versus vaporizer tem- 

perature. Also plotted on this graph is  the cesium vapor pressure 

curve. 

For  any given cross  section, the vapor pressure must not ex- 

The unstable region shown ceed the capillary pressure for stability. 

in Fig.  23 is  defined a s  the region where, for  a given temperature and 

pore size the vapor pressure exceeds the capillary pressure. 

on the graph, for the fine-pore Feltmetal (E 

sure is  in excess of 180 Torr a t  a vapor pressure of 10 Torr .  

As noted 

= 0 .2 ) ,  the capillary pres-  

The graph also shows comparisons of uniform sphere size 

versus capillary tube size. 

grains at  a porosity of 0.3 is identical to a bundle of capillary tubes 

with a diameter of 7. 0 p. 

4. Burst Disc 

For instance, the curve for uniform sphere 

A requirement of this feed system is  that the cesium in the 

reservoir must be protected f rom atmosphere during storage and ~ 

assembly. 

mechanical piercing mechanism for this purpose. 

Previous feed systems have used a diaphragm and an electro- 

A smaller,  lighter, 

and simpler device was considered desirable for this system. 

A study of available burst  discs a s  a replacement for the Hughes 

designed piercing mechanism demonstrated the necessity of designing 

this component specifically for the low burst  differential pressure of 

14 pounds per square inch (psi) and the package requirements of the 

feed system. 

prospective vendors to manufacture such a device. 

vendor capability in this area indicates that the concept is  technically 

feasible. 

Preliminary negotiations were undertaken with two 

Evaluation of the 

A vendor sample of a low-pressure burst  disc was received 

and tested. 

sistently in  the range of 13.2 

shows this burst  disc assembly after rupture of the diaphragm. 

that the disc ruptures by tearing with no resultant loose pieces. 

The results were satisfactory with burst  pressure con- 

5 psia during 20 tests. Figure 24 

Note 

50 



Fig .  23. Approximate liquid cesium capillary pressures for uniform 
tubes and for uniform spherical-grain porous nickel. 
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F i g .  24. Burst disc assembly after rupture of diaphragm. 



When the cesium reservoir is to be filled, the las t  step will  be 

to backfill with argon to a pressure of 1 atm. 

will be sealed with the burst  disc which will rupture when the ion engine 

system is exposed to tank or  space vacuum. 

The feed system then 

C. THERMODYNAMIC ANALYSIS 

The first phase of the dynamic studies involving the liquid feed 

system necessarily required analog computer simulation of heat trans- 

fer and thermodynamic properties of the feed system design. 

result  of the analog study, design criteria were established for the de- 

vice which should provide fas t  thermal response for a l l  conditions of 
operation. 

thermodynamic model based on the design presented in Fig.  19. 
C presents the complete analysis of the original feed system design 

which includes the feed system, schematic diagram, thermodynamic 

model, physical equations and coefficients describing the thermodynamic 

model, nomenclature, component sizings, and the analog computer 

mechanization of the mathematical model. Ths e d y  difference he- 

tween the design and the original model is that the contoured heat sink 

has been eliminated. This decision was based on the analytic results. 

As a 

Figure 25 shows the present configuration of the feed system 

Appendix 

Consider now the results of the computer simulation. 

illustrates the cesium vaporizer temperature response for thrustor 

manifold demands of 1, 10, and 20 Torr vapor pressure for engine 

"pulse on" and "pulse off" times of 150 sec. This simulates a hy- 

pothetical pulse mode condition of operation. Initial system tempera- 

ture was assumed to be 300°K for  all cases. For  cyclic operation, the 

vaporizer section average temperature r ises  a t  a rate of approximately 

40 K/hour but appears to be approaching an equilibrium condition. In 
this case,  an ionizer heat contribution of 1 W was assumed to be con- 

ducted down the feedlube.. Figure 27 shows the feed system response 

for  the system with a "full charge" and a "depleted charge" of liquid 

cesium. 

down" time of approximately 15 sec utilizing an electron bombardment 

heater to supply power to the vaporizer section. 

Figure 26 

0 

The computer results indicate an average "startup" and "shut- 

A large increase in 
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F i g .  25. Liquid cesium feed system thermodynamic model. 
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I '  
system response time occurs i f  a conventional coaxial heater is used 

instead of the electron bombardment heater. 

assumed instantaneous application-an~-rem~alrdf vaporizer heat, .the 

results of the dynamic studies must be interpreted as  optimistic; longer 

system response times should be expected for less ideal heating ele- 

ments. 

loop controlled to 10 ,Torr (65OOK). 
less system was assumed to approximately 450 K, or 0.03 Torr .  As  

noted in Fig.  27, the cesium vapor pressure can be reduced to 1% of 

the steady state value (10 Torr)  in about 8 sec for the "full" case and 

in about 10 sec for the llempty" o r  depleted-supply case. This rapid 

response shows that pulse-mode operation'is feasible for an ion thrustor 

coupled to this type of "valveless" feed system. 

the fuel supply, a steady state heat contribution of 1 W from the ionizer 

manifold was assumed. 

Since the analytical model 

For  the case shown in Fig. 27, vapor pressure was closed- 

Turnoff temperature for the valve- 
0 

For each condition of 

Figures 28 and 29 a re  presented to illustrate the relative dy- 

namic behavior of the following system parameters : 

Channel Parameter  

1 Vaporizer heater power, W 

2 Ionizer heat contribution, W 

3 

4 Temperature Node (2)' OK 

5 Temperature Node (3), K 

Vaporizer temperature, Node (1), OK 

0 

In both Figs .  28 and 29, the power input demand for "turn on" is a 

function of the command level of thrust. 

vaporizer power is terminated abruptly. 

system is thus closed-loop controlled around the thrust  level command. 

For  instance, Figs .  28 and 29 show the vaporizer temperature response 

to a demand engine manifold pressure of approximately 3 . 2  Torr  

(T3 = 600OK). Average "turn on" and "turn off" times a re  about 15 sec. 

These data represent the "closed loop" control system. 

For  the "turn off" condition, 

The response of the feed 
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ZFigure 28 pre.sents the case where heat f rom the ionizer mani- 

fold provides a 1. 5 W contribution. 

which the heat contribution from the ionizer (Channel 2') to the vaporizer 

is near zero. 

Figure 29 illustrates the case in 

,These results show that low ionizer manifold heat has a 

negligible effect on feed system transient response. 

Figure 30 presents the transient response of the vaporizer a s  

a function of various ionizer heat contributions and power demand. 

that with a heat contribution f rom the ionizer of approximately 5. 25  W, 

the vapor pressure cannot be reduced to less  than 0.03 Torr .  

it is important that the feed system be designed for minimal heat con- 

tribution from the ionizer. 

power requirement at 10 Torr  vapor pressure for various ionizer heat 

contributions. To attain the fast  transient response shown in previbus 

figures,  the heater element must be capable of providing an instan- 

taneous 40 W of power to the vaporizer section. 

halved after about 4 sec. 

needed to reduce the cesium vapor flow to 1% of its normal level. 

addition, it can be noted from either F i g .  30 or  31 that the over-all 

feed system time constant (y) is approximately 3. 7 sec;  therefore, the 

approximate time to steady state is 

Note 

Therefore, 

Figure 31 shows the closed loop heater 

The power demand is 

Figure 30 shows that a time of 8. 5 sec. is 

In 

4y = 4 (3.7 sec) = 15 sec. 

This feed system concept suggests that it would be possible for 

ts s 

a single storage element to provide cesium to a number of vaporizer 

wicks. Fine flow control of the individual vaporizer sections permits 

the individual mass  flow control of vapor to a number of thrustors,  a s  

well a s  individual thrustor startup and shutdown. 
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V .  THR US TOR ADVANCED DEVELOPMENT 

This phase of the contract effort is concerned with those ad- 

vanced developments which a re  pertinent to upgrading of the thrustor 

thermal, mechanical, and electrical design and performance. Included 

in this task is the design, fabrication, and test  of a two-thrustor beam- 

deflection station, including feed system. 

A. THERMAL IMPROVEMENT 

The initial steady-state thermal tests on a Model LD thrustor, to 

determine whether a more effective heat shielding technique is  feasible, 

have been completed. 

will be concluded during the next reporting period. 

The results to date a re  promising, and this effort 

The focus electrode was modified for the thermal tests a s  illus- 

trated in F i g .  32. The side facing the ionizer manifold was relieved in 

an area 0.030 in. deep and 0.275 in. wide on either side of the ionizer. 

Two layers  of molybdenum shielding and three layers of Fiberfrax 

(A1 0 

surface of the electrode remained undisturbed. 

tended to reduce the radiation to the focus electrode, which along with 

the accel electrode forms a double heat shield between parts of the 

. .  and Si0 ) were inserted into the space while  the tiitica? cptical 2 3  2 
This change was in- 

ionizer assembly and the ambient thermal environment. 

Figure 33 shows the results of testing to date. Normal LD 

engine performance utilizing several layers of molybdenum shields 

is consistently in the range of 0.75 2 €11 5 0 . 8 0 ,  where E is the 

ionizer on emissivity and T-, is the heater efficiency. 

to a configuration of alternate layers of molybdenum shields and 

Fiberfrax totaling approximately 3/8 in. thick, plus the insertion of 

focus electrode shields, the thermal performance improved to 

E / T - ,  = 0.70 .  This represents a saving of about 15% in heater power. 

A spread in the data.results because of a 15 C temperature gradient 

between the hottest and coolest portions of the ionizer. 

After the change 

0 
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Fig. 32.  Schematic diagram of focus electrode thermal shielding. 
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When the alternate layers of molybdenum and Fiberfrax were 

removed from around the manifold and only the focus shields and the 

inner and outer molybdenum shields were retained, the thrustor oper- 

ated as efficiently as  when several  layers of molybdenum shielding 

(no Fiberfrax) were present. 

initial tests is that the combination of metal shields and Fiberfrax is 

more efficient than metal shields alone. It remains to be determined 

whether the configuration of two molybdenum shields containing only 

Fiberfrax between them is as good a s  alternative layers of metal 

shielding and Fiberfrax.  When the best  combination of materials is 

found, the arrangement will be incorporated into future thrustor de- 

signs. Varying the shield thickness may produce additional benefits; 

however, the thickness of the side and end shielding is already a t  the 

maximum permitted by current structural  design. 

The tentative conclusion based on these 

B. ION OPTICS 

In order to correlate theory with the experimental effects ob- 

served following the 2000 hour life tes t  of the single-strip cesium- 

contact ion thrustor LXB-7, the paths of charged particles were studied 

on the trajectory ,tracer-analog cmmpnter. The results of these studies 

for the thrustor electrode configuration used for the 2000 hour tes t  is 

shown in Fig. 34. 

corresponds closely to that observed in the experimental thrustor. 

Note that the neutralizer wire,  in the absence of a decel electrode, is 

swamped in a negative potential electric field region. 

favorable circumstance for transfer of electrons from the neutralizer 

into the ion beam. 

to include a decel electrode in this modified Model 70 optical system 

in order to confine the negative equipotentials to a smaller volumetric 

region closer to the accel electrode. 

The region of charge exchange ion bombardment 

This i s  an un- 

F rom this point of view it appears highly desirable 
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Fig. 34. Charged particle trajectories in the l inear,  single-strip ion 
thrustor (Model 70 optics) used for the successful 2000 hour 
steady state life test. Solution i s  for 3/4 of full space charge.  
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With this in mind, the same electrode system was studied but 

with the addition of a decel electrode downstream from the accel elec- 

trode. 

charge a re  shown in F ig .  35. 

better defined and the negative equipotential lines do not extend to the 

region where a neutralizer filament would be placed. 

this system is better suited for transferring neutralizing electrons 

into the ion beam. 

by the fact that experimental engines a re  typically operated slightly 

flow-limited, rather than full space -charge-limited. Notice in F ig .  35 

that the charge exchange ion trajectories a r e  essentially unaffected 

by the presence of the decel electrode, and the ion bombardment is in 

the same general region 6f the accel electrode. 

a t  a half angle of about loo. 

divergence for  a different electrode structure,  a thin accel Model 70 

optical system was studied and the results a r e  shown in Fig. 3 6 .  Be- 

cause of the enhanced confinement of the negative equipotentials in the 

region of the accel electrode, it is  seen that the primary ions experi- 

ence a force which tends to spread the ion beam slightly more than 

that shown in Figs. 34 and 35. Furthermore,  the thin accel electrode 

system with a decel electrode results in a wider distribution of the 

charge exchange ions. 

both sides of the accel electrode and some bombardment of the decel 

electrode is experienced. This has an unfavorable effect on the long 

life capability of the ion thrustor. 

i t  appears that the thin accel electrode system is not desirable for use 

in operating ion khrustors intended for h n g  l i fe  applications and that 

addition of a decel electrode to the present electrode structure will im- 

prove the effectiveness of the neutralizer. 

The trajectory results for  simulation with 75%of full space 

It is  seen that the equipotentials a r e  

Consequently, 

The choice of 75% full space charge was dictated 

In Figs. 34 and 35 it is seen that the primary ion beam diverges 

In order to determine the change in beam 

In particular, the ion bombardment occurs on ? 

With &he above coilsidexations in mind, 
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Fig.  35.  Ion trajectories for the single-strip engine Model 
7 0  optics with the addition of a decel  electrode. 
Solution is for 3/4 of full space charge. 
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F i g .  36. Ion t r a j e c t o r i e s  in  a " th in-acce l"  Model 70 
opt ical  des ign  including d e c e l  e l ec t rode .  
Solution is f o r  3/4 of f u l l  s p a c e  c h a r g e .  
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C. ION BEAM DEFLECTION 

In order to apply linear-strip ion thrustors to a satellite attitude 

control station-keeping system, a minimum of s ix  thrlistors a r e  required 

for  the attitude control function and a t  least  two additional thrustors a r e  

needed to provide translation forces for station keeping. 

power requirements of such a system a r e  determined in part  by the 

energy needed to heat the cesium feed systems. 

design, the power requirements for any one reservoir with a 2 lb ca- 

pacity have been reduced to the order of 10 w. 
to operate several  thrustors from a single feed system since individual 

feed systems for each of the eight thrustors would result  in prohibitive 

standby power requirements. 

The standby 

Through careful thermal 

It is  clearly desirable 

Company funded work a t  Hughes Research Laboratories has 

shown that the beam from an ion thrustor can be deflected electro- 

statically in the accel structure. 

NASA in HRL Proposal No. 65M-49847/A8764. 
? & h r a - c d  since that  time has shown that the beam may be deflected 

to angles approaching 30 . 
be directed a t  right angles to the normal thrust  vector and a single 

l inear-s t r ip  thrustor can be used for  both station keeping and attitude 

control about one axis. If two such thrustors a r e  mounted with the 

ionizers in one plane and with the electrode structures perpendicular 

to  each other, two-axis control from a single station is possible. 

Figure 37 shows the general outline of such a station mounted to a 

single feed system. 

beam deflection performs the functions of five static thrustors.  

Much of this work was disclosed to 

Further work 

0 With this deflection, half of the thrust  can 

A single two-thrustor station with electrostatic 

Additional advantages to the two-thrustor station approach a r e  

summarized below: 

1. Redundant thrustor operation - Since the thrust from each 

engine is normally directed the same way, the thrustors 

can be operated alternately without changing the forces 

on the spacecraft. 
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F ig .  37. Isometric of two-thrustor station with 
electrostatic deflection of the ion beam. 
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2. Vernier control of translation force - In a spacecraft 

it may be highly desirable to correct  for minor mis-  

alignment in the thrust vector from an engine operating 

continuously. The direction of the thrust vector can be 

varied by ground command to a precision of better than 
0,Of.deg. 

3.  Control system simplification - Electrostatic beam con- 

Or01 permits a much faster and more flexible satellite 

control system than the original design based on static 

thrustors. 
dyne -cm can be a~comm6date_d,;-'the new ,system concept 

is applicable to a wide variety of satellites. 

Since disturbance torques as  high as 5000 

Ion beam deflection experiments have been conducted with the 

single-strip thrustor design. 

(5 cm long ionizer) was mounted in the 5 foot vacuum chamber. 

electrostatic fields for deflection were provided by a bias voltage 

applied between two lengthwise halves of a split accel electrode. 

decel electrode or neutralizer was present, but a ground plane was 

provided about 1/8 in. downstream from the accel electrode. 

measurement of deflection angles, nitrogen gas was leaked into the 

chamber to a total pressure of 8 x 10 Torr to permit photographic 

recording. 

10. 5 mA with a peak ion gun voltage a t  the acckl plane of 5 kV. 

beam voltage was 4 kV. The results of this experiment a re  shown in 

F i g .  38 ,  where deflection angle is plotted versus the normalized de- 

flection voltage and compared with theory. 

with the electrolytic tank analog computer theory is reasonably good. 

Additional data were taken without leaking nitrogen gas into the chamber 

to determine sensitivity of accel current to beam deflection voltage. 

It was shown that for a beam potential of 6 kV a t  the accel plane and 

deflection voltages from 0 to 700 V,  the accel current rose from 26pA 

In these experiments thrustor LC- 1 

The 

No 

For  

- 5  

The deflection angle data were taken a t  a beam current of 

Final 

It is seen that correlation 
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Fig.  38 .  Comparison of experiment and theory for ion 
beam deflection in the linear ion thrustor. 
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to 30 PA. The beam current was 14 .5  mA. 

data clearly demonstrates that in the present single -strip thrustor 

only a minor increase inLthe accel current occurs for deflection angles 

up to about loo. 

thrustor characteristics at deflection angles higher than loo. 

This set of experimental 

These experiments will be continued to determine 
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VI. CONCLUDING REMARKS 

The thrustor vibration tests conducted to date have shown a low 

frequency resonance a t  about 200 cycles when a two-point mounting is 

'used. It is expected that refining the mathematical model used in.the 

analysis a n d  repeating .the calculations &ill confirm the low- 

frequency experimental data. 

eliminating this low frequency resonance will be investigated, including 

the use of a four -point mounting structure. 

analytical and experimental results will permit rapid evaluation of 

design changes without the delays and expense often associated with 

vibration tests . 

At  that time a means for reducing or 

Correlation between the 

The major a rea  of uncertainty in this program is the dynamic 

behavior of the cesium feed system. The test  plan will be pursued 

vigorously in order to obtain experimental verification of the present 

design as  soon as possible. Studies 'indicate‘ that use of a thrustor at 

the output end of the cesium feed system provides theBess.i;@nd must 

sensitive detection method available. Consequently, stable operation 

of a single-strip ion thrustor attached to the new liquid-cesium feed 

system will provide the principal experimental verification of the feed 

system design. 

Advanced development toward improving the thermal performance 

Further- of the present thrustor appears promising and will be pursued. 

more,  the high voltage integrity of the present thrustor can be im- 

proved by rearranging the high voltage insulators. 

of the thrustor with the new high voltage structural  arrangement will 

be conducted to verify operation at 10 mA/cm . In agreement with the 

NASA Project Manager, it appears desirable to conduct a few thrustor 

An electrical  test  

2 

experiments using a different accel material  which has a sputtering 

yield lower than that of copper. 

to provide a comparison of thrustor performance for possible future 

steady-state life tests. 

The purpose of these experiments is  
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APPENDIX A 

THRUSTOR VIBRATION ANALYSIS 

Presented here a re  the results of a study of the dynamical be- 

havior of a linear s t r ip  ion thrustor for attitude control and station 

keeping. 

quencies with maximum expected deflection and accelerations a re  pre- 

s ented. 

Estimates of expected principal vibrational modes and fre-  

1. INTRODUCTION 

The objective of this study was to provide information concerning 

the dynamical behavior of the ion khrustor:urhen sGbjected to a :vibration 

environment. 

and for  comparison with vibration tests. 

This information will be used for design modifications 

Specifically this study pro- 

vidtfs : 

1. Estimates of resonance frequencies and mode shapes of 

i’ri~ thi-;dstcr asupportpij . hV I i t s  - - -  two a t t a b a t  points ozi the 

bottom plate. 

Estimates of dynamic deformation resulting f rom a 1 g 

input at  points where interference may be a problem. 

Transmissibility to a 1 g input of certain vital points in 

the system. 

2. 

3. 

- 
2. STRUCTURAL MODEL 

In the analysis, the neutralizer filament assembly was treated 

separately. 

namical effect on the r e s t  of the system because of its relatively small  

mass .  The results of this analysis a r e  discussed in Section 3. 

The ion engine (neglecting the neutralizer filament assembly) 

It was assumed that this assembly would have little dy- 

was simulated by a ser ies  of lumped masses  connected by elastic 

members  as shown in Fig.  A- 1. 

moments of inertia for each mass a r e  given in Table A-1. 
was assumed to have a damping coefficient of 1% of critical for all  

modes and to be fixed at  Stations 10 and 12. 

The weight breakdown and appropriate 

The model 
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Fig .  A -  l ( a ) .  Mathemat ica l  model  s imula t ing  s i n g l e - s t r i p  ion engine.  
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Location 

1 

2 

3 

4 

5 

6 
7 

8 

9 
10 

11 

12 

13 

14 

15 

16 
17 

18 

19 
20 

21 

22 

23 

24 

25 

TABLE A-I 
Weights and Moments of Inertia 

Weight, 

lb 

0.02464 

0.02700 

0.02700 

0.007 15 

0.000843 

0.01020 

0.000843 

0.00715 

0.0350 

0. 0350 

0.0763 

0.0350 

0. 0350 

0.10887 

0.0198 

0.0190 

0. 194 

0.0194 

0.0194 

0.0190 

0.00405 

0.00302 

0.00302 

0. 00302 

0. 00405 

I -  
lb-in, x1’2. 

0.0001928 

0.002065 

0.002065 

0.0001 103 

0.0000694 

0.0001 103 

0.0000694 

0.0001 103 

0. 001671 

0.001671 

0.00364 

0,001671 

0.001671 

0. 00520 

0. 000945 

0. 000927 

0.000945 

0.000927 

0.000945 

0. 000927 

0.0000152 

0.0000152 

0.0000152 

0.0000152 

0.0000152 

1x2 9 

lb-in. 2 

0.0001562 

0.00370 

0.00370 

0.000161 

0.000007 

0.000161 

0.000007 

0.000161 

0.00299 

0.00299 

0.00652 

0.00299 

0.00299 

0.00927 

0.00169 

0.00166 

0.00169 

0.00166 

0.00169 

0.00169 

0.0000552 

0.0000552 

0.0000552 

0.0000552 

0.0000552 

1x3 
2 lb -in. 

0.00515 

0.00191 

0.00191 

0.0000592 

0.0000694 

0.0000592 

0.0000694 

0.0000592 

0.001671 

0.0016;l 

0.00364 

0.001671 

0.001671 

0.00520 

0.000945 

0.000927 

0.000945 

0.000927 

0.000945 

0.000927 

0.0000468 

0.0000468 

0.0000468 

0.0000468 

0.0000468 
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3. NEUTRALIZER FILAMENTS ASSEMBLY 

In the analysis, the neutralizer filaments and leads were con- 

sidered separately from the res t  of the thrustor. 

of this assembly a re  summarized in Table A-11. 

loop in the neutralizer sping-lead it is  difficult to calculate its specific 

resonance frequency. 

Natural frequencies 

Because of the large 

The filament assembly is shown in F i g .  A-2. 

Neutralizer Filament 

Dummy Neutralizer Filament 

Neutralizer Lead 

Neutralizer Spring-Lead 

Dummy Filament Lead 

Dummy Filament Spring - Lead 

TABLE A-I1 

Natural Frequencies of Neutralizer Filaments Assembly 

422 cps 

188 cps 

4000 cps 

200 to 700 cps 

515 cps 

252 cps 

4. 

The first  two natural frequencies of the thrustor, excluding the 

In these modes neutralizer assembly, occur a t  1774 cps and 2473 cps. 

the neutralizer bar experiences rather large motion relative to the r e s t  

of the system; the mode shapes a r e  shown in F i g .  A-3. 

fourth mode of free vibration occur a t  2618 and 3569 cps; in both of these 

modes, the accelerator electrode experiences relatively large motion. 

The modes a re  shown in F ig .  A-4. 

The third and 

5. DEFORMATIONS 

Because of the high fundamental frequencies, the maximum de- 

Al l  maximum displacements occur a t  1774 cps. flection is very small. 

The largest displacement occurs in the center of the neutralizer bar 

with a magnitude of 0. 0003 in. for a 1 g excitation acceleration. The 
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TUIRD MODE 

FOURTH MOD€ 0 

Fig .  A-4 .  Accelerator electrode mode shapes for the third and 
fourth natural frequencies of the single-strip thrustor. 
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maximum relative displacement of the accelerator electrode to the 

ionizer electrode is 0. 000025 in. (for a 1 g excitation acceleration), 

and is shown in Fig .  A-5. 

ments at 1 g excitation, see Table A-111. 

For a complete list of maximum displace- 

6. TRANSMISSIBILITY 

The absolute value of the largest  transmissibility is plotted in 

Fig.  A-6. 
The maximum acceleration occurs in the center of the neutralizer bar 

This is also a response envelope for the entire system. 

at  1774 cps with a magnitude of 95 g'foi',a.B g qxcit5tion acceleratioin. 

7. CONCLUSION 

Based on outputs from LESAR I and I1 and hand calculations, 

the following conclusions a re  reached: 

1. The f i rs t  fundamental frequency of the thrustor assembly, 

excludipg the neutralizer filament assembly, is 1774 cps 

and occurs in the neutralizer bar.  

The f i rs t  fundamental frequency of the neutralizer f i la-  

ment assembly is  188 cps and occurs in the dummy 

filament. 

The relative displacement between the accelerator 

electrode and the ionizer electrode is  not more than 

0.000025 in. for a 1 g excitation acceleration. 

Maximum displacement occurs in the center of the 

neutralizer bar and is  0. 0003 in. for a 1 g excitation 

acceleration. 

2. 

3 .  

4. 
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fREQUENCY, cps 

Fig. A - 6 .  Response envelope for the entire single-strip ion engine. 
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TABLE A-III 
Maximum Displacements 

Location 

1 

2 

3 

4 

5 

6 

7 

8 

9 
10 

i i  

12 

13 

14 

15 

16 

17 

18 

19 
20 

21 

22 

23 

24 

25 

Displacement in X . 
Direction, l o w 4  ir?. 

0.77 

0.48 

0.48 

0. 50 

0. 72 

0.73 

0. 72 

0. 50 

1.36 

0 

Q. Q8 
0 

1.36 

1.66 
1.67 

1.54 

0.01 

0.01 

0.01 

1.54 

1.37 

2.29 

2.99 

2.29 

1.36 
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APPENDIX C 

i 

LIQUID CESIUM FEED SYSTEM THERMODYNAMIC ANALYSIS 

This Appendix presents the design, analysis, and analog com- 

puter mechanization of the heat transfer and thermodynamic equations 

fo r  the liquid cesium feed system. 

body of the report) is a result of the dynamic simulation of the 

mathematical model presented in this Appendix. 

design differs from the original in that the contoured heat sink was 

eliminated from the system design during the computer design study. 

The final design (presented in the 

The preferred 

This Appendix contains the original general model of the 

feed system. 

be low: 

The subjects presented in  this Appendix a re  listed 

1. Schematic diagram (Fig. C- 1) 

2. Thermodynamic model (Fig. C- 2) 

3. 
4. Gas diffusionmodel (Fig. C-3) 

5. Nomenclature list 

6. Component sizing s 

7. Analog computer mechanization (Fig. C-4 and C-5). 

Heat transfer and thermodynamic equations 
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1. 

2. 

3. 

4. 

5. 

6. 

7 .  

8. 

9. 

10. 

stem Thermodynamic Model 

1 

- K811 (T8 - T1l)  1 

1 
- K1012 ( T l o  - T12)J 



11. 

12. 

13. 

14. 

15. 

16. 

16a. 

17. 

18. 

. 
1 

T12 = ~(MC)I2 [K612 (T6 - T12) K1012 (TIO - T12) 

Q, = Heater Power = KHl (TH - T1) 

2Tr L, 
J - 

n LO. 5 (1 t V7/V3)] t 1  K37 - In (2) 

SS 
k (0. 1 kCs + 0.9 kNi) 

1 r 

2a L, -- 

3 - 
In[ 0.5' (1 + V9/V5)] 

Nil (0. 9 kCs + 0. 1 k t In (2) 
(0.1 kCs + 0.9 kNi) 

K59 - 
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+ . .  
lo* kCs  t 0. 9 kNi) ‘O- k C s  ’ O o l  kNi‘ 

L L 

ki *i Tr (d8 - d4) (0.9 kCs  f 0.1 kNi 
- 

L8 - L . = 5  K89 1 
20. 

Tr - 
22* K1012 - 5 L1 2 

kss 
t- %o 

2(0.9 kCs + 0. 1 kNi) 

2 
lr 

dl (0.1 kCs + 0.9 KNi 
24. K12 - K23 = K34 = K45 - - K56 - - 7 - 

L1 

1 1 - 
K612 - 4 Lh L1 2 

25. 
- 

+2k Nil s s  t 0 .9  k 2 ( o o  kCs  

+ -  2 (0.9 kCs t 0.1 k Ni’ kss 
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4. Gas Diffusion Equations 

mi a p i  
at 

- 2 
+ vxi ax KV pi  = - 

(One dimensional flow) a 

2 = diffusion coefficient ~ cm /sec Di 

V velocity of liquid-vapor interface - cm/sec xi 

3 concentration of mass N gms/cm Pi 

E657-12 \ COARSE FELT METAL STORAQE 

FELT 
M ETA 
WlCK 

L\ 

\ L I ou I O/VAPO R 
I NT ER FACE 

Fig. C - 3 .  Schematic fluid-dynamic model of vaporizer section. 
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Finite Di f f  e r enc e Approximation 

P i t  1 Pi P i -  I 
-0 

2 v p .  = 
1 

* 2  .. v pi  = 

v =  xi 

(backward difference approximation) 

(forward difference approximation) 

(average difference approximation) 

- u  - 
(central difference approximation) i t 1  a x  

X i t 1  , * i -  1 AX 

x 

Combining eqs. (C. l ) ,  (C. 2), (C. 3) ,  (C.4) yields 
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Diffusion Coefficient 

D. = K/E = permeability/porosity 
1 

B P  0 4 K = -  t 3 K o V  

(Pi t1  + Pi-1) = p. RT. (average pressure)  - (dyn/cm 2 ) 
2 1 1 

Hi = 

= 0.807 x (viscosity) - (dyn-sec/cm 2 ) 
1 

v. = 1, 260 (mean velocity cesium atom) - (cm/sec) 
1 1 

lr 4 2 Bo = 8 N r  (cm ) 

lr 3 K = - J1 N r  (cm) 0 2  

where 

= 0.9 J1 

r average radius of pores - (cm) 

.JV E number of pores per  unit area. 

Substituting into the diffusion equation 

D. 1 = 756 r r ( * k O .  1 5 r piR(CTyi OK) t I] sec - 
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5. Nomenclature for Cesium Liquid- Vapor Separator 

Symbol Description 

Surface a rea  of node i 
Ai 

Units 

2 cm 

Heat capacity of liquid cesium W- sec/g-OC ccsl  

C Heat capacity of cesium vapor W-  sec/g-OC 

Heat capacity of nickel W-sec/g-OC ‘Ni 
Heat capacity of 316 stainless steel W- sec/g-OC 

Diameter of node i cm 

csg 

css 
di 

E ss 
kc sl 

Emissivity of 316 stainless steel  - 
Thermal conductivity of liquid cesium W/cm-OC 

k Thermal conductivity of cesium vapor W/cm-OC 

Thermal conductivity of nickel W/cm-OC kNi 

Thermal conductivity of 316 stainless W/crn-OC 

csg 

steel  KSS 

Length cm Li 

Heat capacity of fine felt metal W- sec/OC (M ) ffm 

Heat capacity of coarse felt metal  W-sec/OC (MC)cfm 

Heat capacity of cesium vapor W- sec/OC 
\ (MCIcsg 

Heat capacity of liquid cesium W- sec/OC (MC)csl 

(MC)H Heat capacity of heater s t r ip  W-sec/OC 

pS 

Qs 

Ti 

Separator output vapor pressure Torr  

Radiant heat loss from node i W 

Separator input heater power (E /R) W 

*Ri 
2 

Temperature a t  node i OK 
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Svmbol 

TS 

00 
T 

V. 
I 

vfc 

Vff 

wcs 

U 

pcsg 

Pcsl 

Ni 

PSS 

Description 

Cesium vaporization temperature 

Background temperature 

Volume 

Void fraction, coarse felt metal 

Void fraction, fine felt metal 

Cesium flowrate 

Stefan- Boltzman constant 

Density cesium vapor 

Density liquid cesium 

Density nickel 

Density 316 stainless steel 

Units 

OK 

K 

cm 

0 

3 

g/sec 

W/cm - c 
g/cm 

g/cm 

g/cm 

g/cm 

2 0  

3 

3 

3 

3 
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I 

6. Ces ium Liquid-Vapor Sepa ra to r  Sizing List 

Symbol Value or Range 

0. 239 W-sec/g-OC 

C 0.156 W-sec/g-OC 

0.544 W-sec/g-OC 

ccsl 

c sg  

Ni 

0.502 W-sec/g-OC 

5.00 cm 

0. 22 
di 

E ss 
kcsl 0.0184 W/cm-OC 

k 0.000057 W/cm-OC 

kNi 0.0606 W/cm-OC 

kSS 0.0199 W/cm-OC 

c s g  

approx. 1-20 T o r r  

approx. 10 W 

pS 

QS 

TS approx. 551-680 OK 

approx. 300° K 

90% 

a3 T 

V f i  10% 



. 

,,nalog Computer Mechanization 

The analog computer mechanizations for  the zero-g feed 

system design study a r e  shown in Fig. C-4 and C-5. 

109 



0 
I 
c 
Y) 
(D 
W 

1 I 

110 

G a 
3 

4 4  
rn 
d 
M 
10 
e, a 
M 

0 
k 
Q) 
N 

k 
0 

W 

.r( 

I 

.r( 
c1 
fd 
N 

.r( 

2 
A u 
Q 

E 
k 
Q 
c, 
3 

$ 
0 u 
M 
0 
d 

2 
4 

* 
I 

c) 

M 
.,-I 

Gc 



1 1 1  



DISTRIBUTION LIST 

Addr e s s 

1. NASA Headquarters 
FOB-1OB 
600 Independence Avenue, S. W. 
Washington, D. C. 20546 
Attn: RNT/James Lazar 

2. NASA - Lewis Re search Center 
21000 Brookpark Road 
Cleveland, Ohio 44135 
Attn: Spacecraft Technology Procurement 

Technology Utilization Office 

Library (M.S. 3-7) 
Spacecraft Technology Division 
a. C. C. Conger (M.S. 54-1) 

c. J. T. Kotnik ( M . S .  54-3) 
d. D. M. Shellhammer (M.S. 54-3) 
Electrical  Propulsion Laboratory 
a. W. Moeckel (M.S. 3 0 1 - i j  
b. H. R. Kaufman (M.S. 301-4) 
c. E. A. Richley (M.S. 301-1) 
Report Control Office (M.S. 5-5) 

Section (Mc S. 54-2) 

(M.S. 3-19) 

b. D. L. Lockwood (M.S. 54-3) 

3 .  NASA Scientific and Technical Information 
Facility 

P. 0. Box33 
College Park,  Maryland 20740 
Attn : NASA Representative RQT - 2448 

4. NASA-Marshall Space Flight Center 
Huntsville, Alabama 3 58 12 
Attn: Ernest Stuhlinger (M-RP-DIR) 

5. Research and Technology Division 
Wright-Patterson AFB, Ohio 45433 
Attn: AFAPL (APIE-2)/R. F. Cooper 

6. AFWL 
Kirtland AFB, New Mexico 
Attn: WLPC/Capt. C. F. Ellis 

Semiannual 

1 

1 

1 
2 

1 
2 
1 
4 

1 

113 



Addr e s s Semiannual 

7. 

8. 

9. 

10. 

11. 

, 

12. 

13. 

14. 

15. 

Aerospace Corporation 
P. 0. Box 95085 
Los Angeles, California 90045 
Attn: Library/Technical Documents Group 

Jet  Propulsion Laboratory 
4800 Oak Grove Drive 
Pasadena, California 9 1103 
Attn: J .  W .  Stearns 

Elec tro-Optical Sys tems, Inc . 
300 North Halstead Street 
Pasadena, California 91 107 
Attn: R. C. Speiser 

TR W Inc . 
TRW Systems Group 
One Space Park  
Redondo Beach, California 
Attn: D. B. Langmuir 

Wes tinghouse As tronuclear Laboratories 
Electric Propulsion Labor ator y 
Pittsburgh, Pennsylvania 15234 
Attn: H. W.  Szymanowski 

General Electric Space 
Flight Propulsion Laboratory 
Cincinnati, Ohio 45215 
Attn: M. L. Bromberg 

Hiram College 
Department of Physics 
Hiram, Ohio 
Attn: Professor L. Shaffer 

Field Emission Corporation 
Melrose Avenue at Linke Street  
McMinnville, Oregon 97128 
Attn: L. W. Swanson 

Litton Precision Products 
960 Industrial Road 
San Carlos, California 
Attn: G. K. Wehner 

1 

1 

1 

1 

1 

1 

114 



I .  

Address Semi annual 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

Princeton University 
Department of Aeronautical Engineering 
Princeton, New Jersey  
Attn: Professor J .  B. Fenn 

University of California 
Space Science Laboratory 
Berkeley 4, California 
Attn: H. P. Smith 

Aer oje t -Gener a1 
Nucleonic Division 
San Ramon, California 
Attn: J. S. Luce 

North American Aviation, Inc. 
122 14 Lakewood Avenue 
Downe y, California 
Attn: Technical Information Office 

Department 4096-3 14 

NASA-Langley Research Center 
Langley Field Station 
Hampton, Virginia 23365 
Attn: Technical Library 

Colorado State University 
For t  Collins, Colorado 
Attn: L. Baldwin 

Roc ke tdyne 
6633 Canoga Avenue 
Canoga Park,  California 
Attn: J. F. Hon 

MSA Research Corporation 
Callery, Pennsylvania 
Attn: R .  C. Werner 

U. S. Atomic Energy Commission 
P. 0. Box62 
Oak Ridge, Tennessee 37831 
Attn: Division of Technical 

Information Extension 

1 

1 

1 

1 

1 

1 

1 

115 



Addr e s s S e miannua 1 

25. 

26. 

27. 

28 

2 9 .  

30.  

31. 

32. 

USAF 
Office of Scientific Research 
Washington, D. C. 20025 
Attn: M. Slawsky 

Cornel1 University 
Graduate School of Aeronautical Engineering 
Ithaca, New York 
Attn: E. L. Resler,  J r .  

The Martin Company 
P. 0. Box 5837 
Orlando, Florida 
Attn: Engineering Library MP30 

AVCO Corpora ti on 
Res ea r  ch and Advanced Development Division 
201 Lowell Street 
Wilmington, Mas s achus e t ts  
Attn: R. R. John 

R. J. Cybulski 

The Royal Institute of Technology 
Stockholm 70, Sweden 
Attn: B. Agduv, 

Swiss Federal kzs,titutii"'&Technology 
Zurich; Swi tde r land 
Attn: The-LibraYy ' 

Nagoya University, Chikusa-ku 
Institute of Plasma Physics 
Nuclear Fusion Research Group 
Re s e a rch  Information C e n te r 
Nagoya, Japan 
Attn: Y.  Y. Terashima 

Air Force Plant Representative 
Hughes Aircraft  Company 
Culver City, California 
Attn: RWRAAC-2 

R WRAPS - 9 

1 
1 

1 

1 

1 
1 

116 



NASA CONTRACTOR REPORT (3-54684 

DEVELOPMENT OF 

LINEAR STRIP I O N  THRUSTORS 

by J. R. Anderson, R. Kuberek, J. W. Heifer, 
J. D. Smith, S. A. Thompson, and M. I). Benton 

Hughes Research Laboratories 

The subJect repor t  was Incor rec t ly  numbered as  NASA CR-54684. Please 
change t h i s  number t o  NASA CR44685’on the  cover and t i t l e  page. 


