
N A S A

PC:
U

C O N T R A C T O R - , .

R E P O R T

LOAN COPY: RETURN io

YlRTLAND AFB, N MEX
AFWL (WLiL-2)

MAMOS:

A MONITOR SYSTEM UNDER
IBSYS FOR THE IBM 7090/7094

by Alfred E, Beam

Prepared by
UNIVERSITY OF MARYLAND
College Park, Md.

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C . MAY 1966

https://ntrs.nasa.gov/search.jsp?R=19660017936 2020-03-16T19:11:22+00:00Z

~~

TECH LIBRARY KAFB, NY I

-

NASA CR-488

MAMOS:

A MONITOR SYSTEM UNDER IBSYS FOR THE IBM 7090/7094

By Alfred E. Beam

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

Prepared under Grant No. NsG-398 by
UNIVERSITY OF MARYLAND

College Park, Md.

fo r

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151 - Price $7.00

Abstract

This report describes an operating system which operates on the
IBM 7090/7094 under the IBSYS or DC-IBSYS Monitor. The system processes
jobs written in the MAD language, ALGOL language, FORTRAN language, and
UMAP language. The processors of the system are among the fastest currently
available. A very extensive library of programs is also provided. The
system is especially useful for processing student jobs.

iii

Abstract
Acknowledgements

TABLE OF CONTENTS

Page
iii
vii

2. "OS System Operation And Installation Options
2.1 Introduction
2.2 The " O S Distribution Tape
2.3 "OS Operating Arrangement
2.4 Options And Assembly Parameters

3. "OS Monitor System Under IBSYS
3.1 Introduction
3.2 "OS Control Cards And Their Functions

3.3 MAD Under "OS

3.4 ALGOL Under "OS

Job Deck

MAD Job Decks And Examples

References To Hardware Representation
ALGOL Job Decks And Examples
'CODE' Procedure
ALGOL Input/Output

PING PONG
TEACHER And UNKNOWN Jobs
FORTRAN I1 To MAD Translator
Regression Job
Example

Low Core Package (10s)
Logical Input/Output Units
Non-Data Selects
Data Selects
Input On SYSIN1
Output On SYSOUl

Routines For 1/0 Unit Tables
Octal Core Dump
System Records
Pause Routine
Floating Point Trap'
Subroutine Trace

3.5 "OS Job Deck Composition In General

3.6 MAMOS Organization And Coding Information

output on SYSPP1

1.1-1
1 . l - 1
1.2-1

2.1-1
2.1-1
2.2-1
2.3-1
2.4-1

3.1-1
3.1-1
3.2-1
3.2-4
3.3-1
3.3-2
3.4-1
3.4-2
3.4-7
3.4-9
3.4-10
3.5-1
3.5-3
3.5-5
3.5-6
3.5-8
3.5-20
3.6-1
3.6-2
3.6-3
3.6-4
3.6-5
3.6-9
3.6-10
3.6-10
3.6-12
3.6-14
3.6-14
3.6-15
3.6-16
3.6-16

V

3.7

TABLE OF CONTEWS - Continued
Page

UMAP Assembler Under " 0 s
Symbols
Elements, Terms, And Expressions
UMAP Card Format
Qualifiers
Literals
Error Cornnents And Error Flags
Pseudo-Operations
MACROS
Combined Operations Table

3.8 "OS Library Of Subroutines

3.7-1
3.7-3
3.7-5
3.7-10
3.7-15
3.7-17
3.7-24
3.7-26
3.7-55
3.7-92

3.8-1

vi

Acknowledgements

In the past months there have been many man hours expended in the
preparation of the completed version of "OS. I would like to express
my deep appreciation to the many people who have so freely contributed
their time and effort in the preparation of "OS and without whose help,
completion of the system would not have been possible.

Much credit for the system must be given to the staff of the
University of Michigan Computing Center, for without the many components
of the Michigan Executive System which were adapted for the MAMOS monitor,
MAMOS would not be worthy of being called a system. I am very grateful
to Professor Bernard Galler of the University of Michigan for making the
entire Michigan Executive System and write-ups available to the Computer
Science Center.

Many thanks are due to the staff of the University of Illinois
Digital Computer Laboratory for their contribucion of the ALCOR-Illinois
ALGOL compiler which was made a component of "OS.

I would like to express my thanks to Messrs. John Bielec, George
Lindamood, William Cleveland, Howard Wactlar, and Dr. Earl Schweppe who
were very helpful in checking various parts of the system through their
early use of "OS. Special thanks go to Mr. Robert Herbold for his ex-
cellent help in finding some very elusive bugs, and to Mr. John Montague
for writing some subroutines and several test programs for the general
check-out of the system. Also to Mr. Gunter Meyer for writing some sub-
routines.

Early use of "OS in courses taught by Dr. Earl Schweppe, Dr.
Howard Tompkins, and the faculty of the Electrical Engineering Department
greatly aided in checking out the system.

It is a pleasure to acknowledge also the valuable assistance rendered
to "OS by a number of other installations. In particular to Mr. William
Cahill, Head of the Mathematics and Computing Branch of the Theoretical Di-
vision of the Goddard Space Flight Center for the use of his installation in
checking "OS under the Direct Coupled System (E-IBSYS). Also to Messrs.
Nate Dillard and Sam Wax of the above installation for their aid in getting
MAMOS edited into their system. To Dr. Robert F. Rosin of the Yale Computing
Center for early use of MAMOS under DC-IBSYS and detection of some errors in
the sys tem.

Finally, many thanks to Mr. Jack Otley for his general assistance and in
particular for getting together the description of the "OS library; and
to Mrs. Stella Tobin, Miss Alexandra Sieg, and Miss Carol Fung for typing
the write-up.

Vii

1.1-1

1 The " O S Monitor And JOB Definition

1.1 Introduction

This write-up describes the 7090/7094 "OS Monitor. MAMOS is a
sub-monitor in that it operates under the IBM Basic Monitor (IBSYS).

MAMOS operates under 7090/7094 IBSYS which has at least eight IBM
729 tape units, or under IBSYS for IBM 704X to 709Y direct coupled systems.

"OS processes programs written in the MAD language, the FORTRAN I1
language, ALGOL language, and the UMAP language. UMAP is very similar to the
FAP language under the FORTRAN I1 Monitor. Other language translators will
be added to "OS in the future.

Chapter 3 of this write-up contains a "OS description which is written
for the general user. There are several references to section 1.2 in Chapter 3 ,
and except for section 1.2 the general user may ignore the first 2 chapters of
this write-up.

Chapter 2 is written mainly for the systems programmer.

. -

1.2-1

1.2 Sub-system Selection and Job Identification

A deck of cards [DECK1 is defined here as a card deck arranged in
such a manner that when operated upon by "OS, it produces the desired
result for the user.

A job deck [JOB1 is defined as one or more IBSYS control cards
followed by a [DECK]. The IBSYS control cards are described in IBM 7090/7094
Operating Systems Basic Monitor (IBSYS).

Individual installations have several options in their use of the IBSYS
control cards and it is impossible to describe, in general, the specific IBSYS
cards required for a [JOB]. Hence a [JOB] is now defined for "OS as it
operates under IBSYS at the University of Maryland Computer Science Center.

A job deck [JOB] is defined as two IBSYS control cards followed by
[DECK] as follows.

$EXECUTE "OS
$ID name*task*options$any comment

[DECK]

1.2-2

$MECUTE is punched in card columns 1-8 and the system name "OS
is punched starting in card column 16. This card is used by IBSYS to locate
on the system tape, call in, and relinquish control to "OS.

The second card above is the job (or identification) card, and it
serves two purposes.

1) It is a signal for the beginning of a job,

2) It provides information for accounting.

The job card has $ID punched in card columns 1-3 and the name, task, and
optional fields are punched in card columns 7-66. The fields are separated
by an asterisk (*).

The dollar ($) character and the asterisk (*) character are not allowed
within any of the fields. Any desired comment may follow the dollar sign which
terminates the fields.

The name and task fields are described as follows.

i) name field: This field consists of the users last name followed
by any other identifying characters (except $ and *) the user may
wish to use. The name field can be from 6 to 18 characters in
length.

ii) task field: This field consists of 10 characters having the
form xxx/yy/zzz where

xxx is the department identification.
yy is the year the task was established.
z z z is the task serial number.

There are 6 optional fields which may be specified:

time field: This field consists of a decimal integer followed by
by the character S (for seconds) or the character M (for minutes).
The specified time is the maximum time which the program will be
allowed to run during execution. If the time specified is exceeded,
then execution is terminated and processing of the next job is begun.

print field: This field consists of a decimal integer followed
by the character P (for pages). The specified number of pages is
the maximum number of pages allowed to be written on the output tape
during execution.

punch field: This field consists of a decimal integer followed
by the character C (for cards). The specified number of cards is
the maximum number of cards allowed to be written on the punch tape
during execution.

1.2-3

dump field: This field consists of two decimal integers sepa-
rated by a slash and the second integer is followed by the
character D (for dump). The two integers may be any values
between 0 and 32767, and they specify lower and upper limits of
an IBSYS dump which will be taken if certain error conditions
occur.

tapes field: This field consists of a word beginning with the
character T (for tape). This field causes an on-line message
to be printed for the operators. The message is followed by a
pause so that the operators can save any tapes the user may have
requested to be saved at the beginning of his job. The message
is printed and the pause occurs just before the next job is
signed on. This provides a safe-guard against missing a pro-
gramed pause and the next job over-writing save tapes.

punch delete field: This field consists of a word beginning
with the character N (for NODECK). If this field is given, it
specifies that the information written on the punch tape during
the job is not desired as part of the job output.

The order of the 6 optional fields is not important. They are iden-
tified strictly by the first non-decimal character following an asterisk.
Hence rather than the characters S, M, P, C, D, T, and N; the words SECONDS,
MINUTES, PAGES, CARDS, DUMP, TAPES, and NODECK could be used as long as the
desired specifications do not go beyond column 66 on the $ID card. Blanks
are ignored.

The dump option on the $ID card will cause a dump to be given in
case of excessive execution time or program hang-up.

If the estimates are not given by the user, then up to 30 seconds
of execution time, 10 pages of printed output, and 20 punched cards are given.
These numbers may change in the future.

Examples of $ID Cards

$ID MARSIE,J.Q.*XXX/YY/ZZZ*20S*15PkNODECK*4096/8192DMP$Tl

The above card specifies that the maximum execution time is to be
20 seconds and the maximum output during execution will be 15 pages (at 60
lines/ page). If the execution lasts more than 20 seconds then a core dump
from 4096 to 8192 is to be given. No punched output is given.

$ID DOTES * xXx/YY/ZZZ*3M*lOCRD *TAPES $T2
The above card specifies that the maximum execution time is to be

3 minutes, and that any punched output during compilation/assembly plus up
to 10 cards during execution is to be given as part of the job output.
Also there is to be a tape-save message and pause just before signing on
the next job.

1.2-4

When the user submits a job to the Computer Science Center for process-
ing, he also fills out a Run Submittal Card and the dispatcher prefaces the
job deck with this card. The Run Submittal Card is prepunched with information
which is used by the card-to-tape program when it prepares the job on tape for
processing by the 7090/7094. The card-to-tape program, on recognizing the
Run Submittal Card, inserts an end of file and the IBSYS control Card $JOB on
tape in front of the job deck. After the job is completely processed, the
Run Submittal Card is retained by the Computer Science Center.

If the user wishes to submit 2 or more job decks as a single deck he
should separate the decks with an end of file card and a $ J O B card. The end
of file card should not have punching other than 7 and 8 punches in column 1.

2.1-1

2 "OS System Operation And Installation Options

2.1 Introduction

" O S is a very efficient job processor when properly placed on IBSYS
Operating System Tapes. There are several options available to the individual
installation as to where the system should reside on the operating system
tapes. The speed of operation f o r tape systems is highly dependent on the
placement of "OS.

NO change is necessary to make the distributed version of "OS operate
under direct coupled IBSYS (X-IBSYS).

Simple parameters are provided to allow "OS to operate under various
situations.

I

2.2 The " O S D i s t r i b u t i o n Tape

"OS i s d i s t r i b u t e d as s e v e r a l f i l e s , t a k i n g a l m o s t a f u l l reel of
t a p e . The f i l e s are as fol lows.

FILE 1 : Version 12 IBSYS and DUMP records , a lmost as d i s t r i b u t e d by
IBM. Tapes are a l l set f o r h i g h d e n s i t y . IBEDT i s n o t a v a i l -
a b l e o n t h e tape.

FILE 2-4: " 0 s as an operat ing sub-monitor under IBSYS. The Contents of
t h e 3 f i l e s are desc r ibed below.

FILE 5 : A "os j ob wh ich ed i t s t he "OS l i b r a r y . The binary decks as
d a t a are i n c l u d e d i n t h e j o b .

FILE 6 : A "OS job which produces absolute binary cards for the IBSYS
MADTRAN record.

FILE 7 : The symbol i c ca rds fo r t he "OS system. The f i l e was produced
by FAP update , hence b locked records cons is t o f up to 16 ca rds
p e r record. The f i l e may be used as an update input t ape , o r i t
may be used as an input (SYSIN1) t ape t o "OS.

FILE 8 : The two IBSYS c o n t r o l c a r d s : $IBSYS and $STOP .

2.3-1

2.3 “ O S Operating Arrangement

As distributed, “ 0 s (as an operating sub-monitor) consists of 3
consecutive files of the IBSYS Operating Systems Tape. The 3 files are
organized as followa. The first word in the list gives the name of the
record which ie used in editing.

“ O S : Input/output supervisor.
End of file
mm1 : “ 4 0 s Monitor, Loader, and Accounting programs.
MADcPL : MAD Compiler.
UMAPAS : WAP Assembler.
ALWO1 : ALGOL Compiler - part 1.
ALW02 : ALGOL Compiler - part 2.
ALW03 : ALGOL Compiler - part 3.
~LD004 : ALGOL Compiler - part 4 .
ALW05 : Short dumny record.
LIBHED : Library header record.
The “ 0 s library consisting of many records.
End of file
COPIES : Record used to make copies of job output.
MADTRN : MADTRAN Translator.
End of file

All of the above programs are written in UMAP except MADTRN and a
few of the library routines, which are written in the MAD language.

If the system is assembled, the binary output must be rearranged a
little before doing an edit to produce ” O S as an operating sub-monitor.

The binary cards labeled COPIES which are part of the Monitor Assembly
must be placed in proper position for the COPIES record.

The relocatable binary decks of MADlXAN must be run in a special program
to punch out absolute binary for the IBSYS record MADTRN.

The low core library subroutine should be placed at the end of the library,
and the library should be rearranged so that the most frequently used
routines are at the beginning of the deck.

A library edit run must be made with the relocatable subroutine decks
as data. The run produces a file on SYSCK2 which is suitable for a
*DUP into the IBSYS Operating System.

It is hoped that the above steps will not be necessary for most instal-
lations since the operating system as-distributed already has a good library
arrangement.

Relocatable Program Decks For The Library

There are more than 100 subrou t ines i n t h e l i b r a r y . F i l e 5 of the
d i s t r i b u t i o n t a p e c o n t a i n s t h e r e l o c a t a b l e b i n a r y d e c k s f o r t h e l i b r a r y as
d a t a f o r t h e l i b r a r y e d i t o r . The e d i t o r p r o d u c e s a f i l e o f r e c o r d s which
i s t h e n e d i t e d i n t o IBSYS. The form of f i l e 5 i s as fol lows.

$ J O B
$EXECUTE "OS

$ EXECUTE

$ DATA

718 end of f i l e c a r d

$ I D

[b ina ry p rog ram deck fo r t he l i b ra ry ed i to r]

[r e l o c a t a b l e b i n a r y p r o g r a m d e c k s f o r t h e l i b r a r y]

A s po in ted ou t before , the a r rangement o f the decks i s d i f f e r e n t from
the o rde r o f t he symbol i c p rog rams fo r t he l i b ra ry .

I f f i l e 5 i s run as a j o b , t h e e d i t e d l i b r a r y w i l l be put on SYSCK2 as
o n e f i l e . The f i l e i s of the form required by t h e "OS l o a d e r , a n d a l s o i n
a f o r m s u i t a b l e f o r e d i t i n g i n t o most IBSYS Operating Systems by means of the
*DUP con t ro l ca rd . The re may be some DC-IBSYS systems which w i l l no t accept
t h e l i b r a r y i n t h e a b o v e form. I n t h e case o f t he DC-IBSYS systems which re-
q u i r e t h e f i r s t word of a l i b r a r y r e c o r d = t o be a n IOCP, a simple copy and
modify w i l l produce an accep tab le fo rma t . The l i b ra ry f i l e wh ich i s i n t h e
t h i r d f i l e o f t h e d i s t r i b u t i o n t a p e h a s a l r e a d y g o n e . t h r o u g h s u c h a transform-
a t i o n a n d i t i s hoped t h a t t h e f o r m a t i s a c c e p t a b l e t o a l l IBSYS systems. The
f o r m a t o f t h e f i r s t word of each record i s IORT 4096,0,N where N i s t h e
number of words i n t h e r e c o r d . The second word of the record i s a BCD name.
The "OS l o a d e r i g n o r e s t h e f i r s t two words of a l i b r a r y r e c o r d .

The UMAP program which was used to produce the a l t e r e d f i l e i s
given below, and provides an example of the use of the basic 110 routine
of "OS. The program assumes that tape mounting and saving instructions
are given elsewhere.

$MECUTE "OS

$ ASSEMBLE, EXECUTE
$ I D

TITLE
READ STZ

CALL
T I X
T I X
T I X
ZET
TRA
TRA *

LIN IOBT *
EOR ALS

STD
STD
TRA

EOF STL
TRA

*

*
LOUT IOBT *
WD1 TXH

*
EOFS PZE
A BSS
WRITE CLA

S T 0
CALL
T I X
T I X
T I X
TRA *

SYS CALL
T I X
CALL
TIX
CALL
T I X
CALL
END

F I X L I B FOR D-C IBSYS
EOFS
RDSBIN
EOR,O, 10 I N ON SYSCK2
L I N , 7 , O
EOF,O,O
EOFS
SYS
WRITE

A,O,-1

1 8
LOUT
W Dl
194

EOFS
1 ,4

A,O,**

4096,0,**

0
20000
WD1
A
WRSBIN

LOUT,7,0

READ

0 , 0 , 1 1

0,090

WEFTAP
o,o, 1 1

o,o, 1 1

0,0,10

RUNTAP

RUNTAP

SYSTEM

**= RECORD LENGTH

MAX. REC. LENGTH I S 200000

OUT ON SYSCKl
7 TO FORCE WAIT

PUT EOF ON SYSCK1

UNLOAD SYSCKl

UNLOAD SYSCK2

END THE JOB

READING COMMAND

USERS EOR TRAP TIME
ROUTINE TO SET UP
THE RECORD LENGTH.

USERS EOF TRAP TIME
ROUTINE .
**= RECORD LENGTH

2.3-4

The Job To Produce A n IBSYS Record For MADTRAN

F i l e 6 o f t h e d i s t r i b u t i o n t a p e c o n s i s t s o f a job which when run,
produces an a b s o l u t e b i n a r y d e c k f o r MADTRAN on SYSPPl. The output deck
i s i n a f o r m s u i t a b l e f o r e d i t i n g i n t o IBSYS as the MADTRN record. The
MADTRN r e c o r d i n f i l e 4 o f t h e d i s t r i b u t i o n t a p e was produced by running
t h i s j o b . The form of f i l e 6 i s as fol lows.

$ J O B
$EXECUTE “OS

$ ASSEMBLE, EXECUTE
$ I D

[Symbolic main program for MADTRAN]
[Relocatable binary programs for MADTRAN]

$ DATA
718 end of f i l e

The main program above has i n i t a one-time only program which
punches out the absolute binary deck.

There are s e v e r a l ways to accompl i sh t he above , bu t t h i s method
usua l ly p roduces less binary cards and hence a shorter system record.
The symbolic program above could be modified to produce absolute decks
f o r o t h e r t r a n s l a t o r s w h i c h are w r i t t e n as relocatable programs.

The Symbolic Programs For The MAMOS System

F i l e 7 o f t h e d i s t r i b u t i o n t a p e c o n t a i n s a l l o f t he cu r ren t MAMOS
sys tem in symbol ic form. The f i l e was produced by FAP update, and cards
are blocked up t o 16 ca rds p e r record. The e n t i r e s y s t e m may be assembled
by making a copy of f i l e s 7 and 8 on SYSIN1 and making a run, using the
f i r s t 4 f i l e s o f t h e d i s t r i b u t i o n tape a s t h e IBSYS Operating System. Such
an assembly w i l l produce much ou tpu t on SYSOUl and about 2 boxes of binary
cards on SYSPPl.

A b a s i c FAP update deck i s l i s t e d below f o r t h o s e who wish to update
and assemble the system. It i s assumed t h a t t h e FAP update input tape i s
p o s i t i o n e d i n f r o n t o f f i l e 7 on SYSCK2 and a s c r a t c h (f o r FAP update ou tput)
i s ready on SYSCKl. It i s f u r t h e r assumed t h a t FORTRAN I1 l o g i c a l numbers
9 and 10 r e fe r t o SYSCKl and SYSCK2 re spec t ive ly .

2.3-5

File 7 consists of 22 programs, followed by the library. The programs,
in order, are as follows.

Program Program

"OS
MONITOR and
LOADER
DOGTAG
MAD 1
MAD2
MAD3
UMAP
ALGOL 1
ALGOL 2
ALGOL 3
ALGOL 4

ALW05 (a durmny record)
LIBHED (small record)
DUMLIB (small record)
MADTW (main program)
MADTW (written in MAD)
mRAN (written in MAD)
MADTRAN (written in MAD)
MADTRAN (written in MAD)
MADTRAN (written in MAD)
LIBRARY WRITER
LIBRARY (about 150 programs)

2.3-6

B a s i c UPDATE For "OS

1 8 16
$EXECUTE FORTRAN C
$ I D *
*
*
*
* *
*
*

*

*

*

*

*

*

*
$ $

NAMJ3*001/65/003 $ 0
MOUNT TAPE XXXX ON FORTRAN I1 TAPE 10 = SYSCK2 L
MOUNT SCRATCH ON FORTRAN I1 LOGICAL TAPE 9 = SYSCK1 U
AFTER THE UPDATE USE SYSCK1 AS SYSIN1 TO PRODUCE A NEW M
ASSEMBLY OF "OS N

7
PAUSE 3
FAP

UPDATE 10,9, , D
REWIND 9
REWIND 10
ENDUP

UPDATE 1 0 , 9 , , D
END END OF MADTRAN DRIVER

FAP

ENDUP
FAP

UPDATE 1 0 , 9 , U , D

ENDUP

UPDATE 1 0 , 9 , , D
END
ENDUP

UPDATE 1 0 , 9 , U , D

ENDUP

UPDATE 1 0 , 9 , , D
END END OF REGRESSION PROGRAM
ENDUP

UPDATE 1 0 , 9 , U , D

ENDUP

UPDATE 1 0 , 9 , , D

ENDFIL 9

END OF FUNCTION

FAP

FAP

END OF FUNCTION

FAP

FAP

END OF FUNCTION

FAP

END OF "OS LIBRARY

M2499990

M2522980

S 2 8 0 2 3 4 0

S 2 9 0 2 2 6 0

T 3 9 2 5 7 0 0

T 4 0 0 0 8 9 0

xxxooooo

c
2.3-7

The above update is basic to the "OS symbolics because of the block-
ing. Assemblies are much faster when the system is updated in blocked form.
There are several MAD programs in the system and this is the reason for
switching from blocked to un-blocked output.

UMAF' is the only translator under "OS which, at present, accepts
blocked input.

It should be mentioned that the DOGTAG program (fourth program of
file 7) is not used at all in the distributed version of "OS and it may be
deleted. DOGTAG was included because it is the accounting program used at
the University cf Maryland Computer Science Center, but its function is entirely
deleted by parameter. DOGTAG, when used, is a floating program which is
inserted into any available space in every sub-monitor under IBSYS. It then
becomes a sub-monitor's responsibility to insure that DOGTAG is in core
whenever a $JOB or $ID card is read. After processing $ J O B and/or $ID the
particular copy of DOGTAG can be wiped out. The advantages of this method
are :

1) Many functions can be carried out without taking core away from the
user.

2) The permanent core requirements for a partial SYSIDR routine, time
trap routine, etc., are small and the required core can be merged
with IBSYS-IOU in the first 2K of core.

L

-

2.4-1

2.4 Options And Assembly Parameters

There are several options in "OS which may be effected by assembly
parameter or in some cases by simple patches.

Arrangement of "OS On The Operating System Tapes

As distributed, MAMOS is rather inefficient for small job processing,
since the library must be found and repositioned for each execution.
Operation is greatly improved by placing the MAMOS library on a second
library tape (SYSLB2). A further improvement is obtained when the "OS
library is made the first file on SYSLB2.

The placing of the MAMOS library on SYSLB2 may be accomplished by an
IBSYS edit and changing one parameter in the MAMOS record. The parameter
(called LIBDIF) may be reset either by assembly or by patching. As distrib-
uted, LIBDIF (at octal location 3727) is zero. If the library is moved to
SYSLB2 then LIBDIF should have the form

where F is the number of files in front of the "OS library on SYSLB2 which
is logical tape 8. Logical tape 8 may be redefined to be any other SYSLBi
by changing the master 1/0 unit table entry for logical tape 8.

"OS can operate from any of the four library tapes. Logical tape
1=SYSLB1 in the master 1/0 unit table is automatically adjusted to be the
actual SYSLBi on which MAMOS resides.

An IBSYS edit to place the "OS library as the first file on SYSLB2
could be as follows.

*MODIFY
3727 *OCT

*AFTER
*DUP
*INSERT

4061 +OCT
4060 *OCT
100 *om

*INSERT

"0 s
20001 0000000
LIBHED
SYSLBl,SYSLB2,1
DUMLIB
2464444331 22
000000000014
002000000115
FILEMK

In the above, it is assumed that SYSLB2 is attached properly in IBSYS
and that SYSLB1, and SYSLB2 are properly positioned prior to reaching the
above edit cards. The DUMLIB record which is inserted above could be the
DUMLIB assembly of the symbolic program mentioned previously.

2.4-2

Blocked Output Option For Translators

As distributed, all printed output on SYSOUl is single record buffered,
one print line per record. A considerable improvement in operation is achieved
if the peripheral processor can handle blocked output. In "OS, the option
to allow blocked output for translators is provided. The option is activated
by reassembly of the MAMOS record with the parameter OUlBUF (at octal location
3 7 2 3) set non-zero. Patching of OUlBUF is also possible.

If blocking is activated, then a physical record will consist of up to
660 characters, with each print line (except the last) followed by a record
mark (octal 72 in 7090/7094).

Processor Calls To SYSIDR

As distributed, various processors of MAMOS make calls to SYSIDR. The
calling sequence is as follows.

T SX SYSIDR,4
P ON O,i,O
Re turn

where i=l to sign on a compiler.
2 to sign on an assembler.
3 to sign on a loader.
4 to sign on execution.
5 to sign on end of job process (including dumps).
6 to sign on between segment processing.

The installation which has an accounting routine that is unable to
handle the above calls should disable them by reassembling the "OS record
with the parameter PROCON defined as

PROCON EQU 0

rather than its distributed definition as

PROCON EQU 1 .

rather than

NOIDOK EQU 1 .

2.4-3

Option Of Putting The $ID Card on SYSPP1

AS distributed, "OS puts the $ID card on the punch tape (syspp1) for
identification of the punched output. To delete this, reassemble the Monitor
record with the definition of PNCHID being

PNCHID EQU 0

rather than

PNCHID EQU 1

Option Of Putting The $JOB Card On SYSPP1

If desired, MAMOS will put the $ J O B card (if any) on SYSPP1 for ident-
ification of punched output. To activate this option, define PNCHJB in the
Monitor as 1 rather than 0 and reassemble the Monitor. If the $ J O B card is
put on SYSPP1, it is done just before going to the IBSYS entry SYSRPT.

Options When There Is No Accounting Routine (SYSIDR)

There are several parameters defined in the Monitor record in case an
installation does not have an accounting routine. If any of these parameters
are changed then the Monitor record should be reassembled. These options have
no meaning for those installations which have their own accounting routines.
~ 1 1 of the parameters are defined by the pseudo-operation EQU and the first
possible value of each symbol is the value in the distributed version of "0s.

O F F J O B = 2

= 1

= o

ONJOB = 2

= 1

= o

OFFID

ONID

if "OS is to print $ J O B cards on SYSOUl on a new page.

if "OS is to print $ J O B cards on SYSOUl under double space
control.

if MAMOS is not to print $ J O B cards on SYSOU1.

if MAMOS is to print $ J O B cards on-line on a new page.

if "OS is to print $JOB cards on-line under single space
control.

if MAMOS is not to print $ J O B cards on-line.

is defined in the same manner as O F F J O B except it applies to
$ID cards.

is defined in the same manner as ONJOB except it applies to
$ID cards.

Separation Of Jobs On SYSOU1

As distributed, "OS puts an end of file in front of each job's
output on SYSOU1. To delete these file marks, redefine JOBEOF as

JOBEOF EQU 0

rather than

JOBEOF EQU 1

and reassemble the Monitor record. The end of file (if JOBEOF = 1) is
written just before going to the IBSYS entry SYSRPT.

If the above parameter change is made then the $ COPIES specification
will not be effective, since copies of job output is made by back-spacing
the output to the beginning of the job output.

It should be remembered that the COPIES record is obtained as part of
the Monitor assembly, and if the Monitor is reassembled and storage is changed,
then the binary cards for the COPIES record must be re-edited into IBSYS.

IBSYS Control Cards ($JOB, $EXECUTE, $ID)

It is possible to run "OS jobs headed by IBSYS cards as follows.

$JOB
$EXECUTE "OS
$ID c DECK]
or

$MECUTE "OS
$ ID
[DECK]

or

$JOB
$EXECUTE "OS
[DECK]

There should never be trouble when the first two arrangements are
used. The third arrangement will give trouble on DC-IBSYS when UNKNOWN
jobs are run, because results from a previous TEACHER job will be lost.

When "OS reads a $JOB it does all things described in the IBSYS
manual except to kill executions of sub-jobs when a previous sub-job fails.
The reason for not including this feature was to allow more flexibility in
setting up student jobs.

2.4-5

Reservation Of Upper Memory For Accounting Routines

As distributed, "OS uses all of core above (3721)8. There is a
parameter, called SYEND, in several programs, and the parameter may be de-
fined (by the EQU pseudo-op) as the number of cells (up to 500) which are
to be reserved in high core for accounting purposes. SYEND is currently
defined as zero, and appears in the Monitor, Loader, ALGOL-2, ALGOL-3, and
A)PTRA programs. A)PTRA is a library program which is used during execution
of ALGOL programs.

If SYEND is changed then the above programs must be reassembled. In
loading relocatable programs for execution, the loader gets its value of
SYEND from the IBSYS location SYSCOR.

The symbolic card labels of the cards containing SYEND EQU 0 are
M0200670,M0300170,M1400890,Ml600870, and T4700030.

3.1-1

3 "IS Monitor System Under IBSYS

3.1 Introduction

The 7090/7094 "0s Monitor System is a monitor system which
operates under IBSYS.

" O S has several components from the University of Michigan Executive
Syetem for the IBM 7090 Compute; (henceforth called MES), MES is one of the
most advanced monitors available for a two channel tape system. The main
disadvantage of MES is that it would be very hard to incorporate into the sye-
tern, the recent sub-monitors which are now available under IBSYS,

W s is an attempt to make available under IBSYS the most important
parts of MES; namely the very fast compiler, the assembler, the loader,
and the extensive library. The ALGOL Compiler is also under "OS. Other
translatore will be added to the " O S system in the future.

The object of this chapter is to provide necessary details and control
card descriptions for prograunners who will use various components of "OS.
The chapter is presented in sections which may be referred to as the need
arises.

Several examples of job decks are given in this chapter. In examples
which include IBSYS control cards, these cards are the ones used at the
University of Maryland Computer Science Center. The user at other installa-
tions should refer to section 1.2 for information on the required IBSYS
control cards.

Progrannaers who are only interested in writing and running MAD pro-
grams may turn immediately to section 3 .3 and ignore the rest of the
chapter .

Programtners who are only interested in writing and running ALGOL pro-
grams may turn immediately to section 3 . 4 .

3.2-1

3.2 " O S Control Cards and Their Functions

All " O S control carde have a dollar ($) sign in column 1 and the
control specification0 are punched in columns 2 through 64. If more than
one specification ie punched on a single control card they are separated
by conmas. The order in which specifications are punched is not important
and blanks are ignored.

Columna 65-72 may contain identification (of which the last 3 columns
are numeric) which will be used to identify binary cards produced by the
sy s tern.

The epecifications indicate to " O S what is to be done as the job is
processed. The specifications are divided into two groups, The first group
should appear at the beginning of the job deck to indicate over-all control
of the job. The second group describes what is to be done with individual
parts of the job deck.

First Group

EXECUTE

COPIES(N)

- DUMP

FULL DUMP

1/0 DUMP

SUB TRACE

REGRESSION

TEACHER

UNKNOWN

: Indicates that the object deck resulting from
processing of the job deck should be executed.
If an error occurs during processing, no execu-
tion will take place.

: Causes N-1 additional copies of the output to
be produced.

: Indicates that in case of trouble during execu-
tion, a dump of the program and erasable storage
is to be given.

1 Indicates that in case of trouble during execu-
tion, a dump of 0-4095, the program and erasable
storage is to be given.

: Indicates that a dump is to be given if an I/O
error occurs during execution.

: Indicates that during execution a print out
should be given of all subroutine entries,
except those subroutines called by library sub-
routines and those subroutines called implicitly
by subscription in MAD.
Indicates that the library subroutine for regres-
sion is to be automatically called in and control
given to the subroutine.

: Indicates that student jobs follow the job this
specification appears in.

: Indicates that the job is a student job and that
the job is to be combined with a tape prepared by
previous teacher job.

3.2-2

Second Group

COMPILE MAD

COMPILE AIGOL

MADTRAN

PRINT OBJECT

PUNCH OBJECT

B INARY

BINARY (N)

DATA -

CONDITIONAL

BREAK -

BREAK(N)

- HALT

:

:

:

:

1

:

Indicates that the MAD program which
follows ia to be compiled.

Indicates that the ALGOL program which
follows is to be compiled.

Indicates that the UMAP program which
follows is to be assembled.

Indicates that the following FORTRAN 11
Program is to be translated to MAD language
and then the MAD program is to be compiled.

Indicates that the object program which
results from the current MAD compilation is
to be printed.

Indicates that the object program generated
by the current $COMPILE MAD, $COMPILE ALGOL,
or $ASSEMBLE is to be punched in column-
binary form.

Indicates that only binary cards follow up
to the $DATA card.

Indicates that the binary program is to be
loaded from logical tape N after the execu-
tion tape is loaded. N may be 2 , 3 , 4 , 7 , or 9.

Indicates that the information which follows
is data. The $DATA must always precede the
first data card if data is present.

Indicates that the section of the job deck
which follows is to be completely by-passed
if the EXECUTE specification was not given or
if execution was deleted by some error which
occurred in an earlier compilation or assembly.

Indicates that the program from the job beginning
or a previous $BREAK up to this $BREAK is to be
considered as a core load to be used in a PING
PONG job. The program is written for later
execution as a systems record on logical tape 2.

Same as $BREAK except the system record is written
on logical tape N. N may be 2,4, or 9.

Indicates that the computer is to stop to allow
the operator to take action(s) indicated on pre-
vious comments card6 ($ in columns 1 and 2). The
$HAL,T is effective only if preceded by comments
cards, and should only be used if necessary.

3.2-3

Second Group (Continued)

CclMMmTS I Comnent cards have $ punched in both column
1 and 2. Any legal punching may appear in card
columns 3-72.

Note on EXECUTE and DATA specifications

The $EXECUTE and $DATA specifications may give trouble if MAMOS is
operating under DC-IBSYS, and either specification is punched starting in
Column 2. A convention of leaving Column 2 blank for the above specifica-
tione is desirable for DC-IBSYS users.

Termination of execution

Execution is normally terminated in one of the following ways:

1) B y trying to read more data than was supplied in the data deck.

2) B y the MAD statement EXECUTE SYSTEM. or symbolic instruction CALL SYSTEM .
3) By the MAD statement EXECUTE ERROR. or symbolic instruction CALL ERROR

Termination by 3) should be used if requested dumps are desired. Termi-
nation because of some error detected by the system is always through ERROR
routine.

3.2-4

Job Deck

A job deck for " O S begins with two IBSYS Control cards. These control
cards are described in eection 1.2. The two cards serve to tell the IBSYS
Monitor which subsystem (in thin cane "OS) is desired and to provide
accounting information for the job.

Following the IBSYS control cards are "OS control cards, MAD programs,
UMAP programs, ALGOL programs, object programs, and data cards.

A job deck is processed by " O S working its way through the deck, calling
in translators whenever specifications indicate their need. Binary programs
resulting from translations and from the job deck are stacked on logical tape 3.

When the $DATA specification or end of job deck is encountered, a check
is made to see if execu.tion ie still legal. If execution is not legal because
it was not requested or because of some error, then the job is terminated.

If execution is legal then the program which was stacked on logical tape
3 is loaded. Then the library is searched for any subroutines which are needed
by the program, and control is passed to the program for execution.

3.3-1

3.3 MAD Under " 0 s

MAD stands for Michigan Algorithm Decoder, MAD is a computer
program (based on ALGOL 58) which translates algebraic statements describing
algorithms to the equivalent machine instructions. A description of MAD may
be found in several publicationr, The reference which describes MAD as it
works under PuWoS ie the Michigan Algorithm Decoder, The University of
Michigan Computing Center by B. Arden, B, Galler and R. Graham. The above
authors also wrote the computer program for MAD.
HAMOS Control Carde

" O S control cards are identified by having a dollar ($) sign punched
in column 1. Control specification. are punched on the control cards in
columns 2 through 64. If more than one specification is punched on a single
control card, they are separated by conrmas. The specifications indicate to
" O S what is to be done as the job ia processed.

Necessary Control Specifications

$ COMPILE MAD

Every MAD source deck must be imediately preceded by this specification
which indicates to MAMOS that the MAD compiler is needed. Binary deck ident-
ification may appear in columna 65-72. Columns 70-72 must be numeric.

3 EXECUTE

The above specification must be used if execution of a program is desired.

$ DATA

If execution is desired and execution requires a data deck [DATA], then
the data deck must be preceded by the $DATA specification.

Optional Control Specifications

$ PRINT OBJECT

The above specification is used if it is desired to have printed, the
object program (in octal) which is generated by the MAD compiler. This option
is effective only for the HAD source deck which ilmwdiately follows the
specification.

$ PUNCH OBJECT

The above specification ie used if it is desired to get as part of the
output a binary deck of the object program generated by the MAD Compiler. This
option ia effective only for the MAD source deck which imediately follows the
specification.

There are savera1 other specifications available and these are described
in other sections.

3.3-2

Composition of Simple MAD Job Decks

The most simple application of MAD under MAMOS would consist of a
compilation of one MAD program. The job deck would be made up as follows:

$EXECUTE "OS
$ID NAME*TASK*OPTIONS$CO"ENT
$COMPILE MAD
[MAD program1

The output from the above job would consist of a listing of the pro-
gram and any diagnostics detected by the MAD compiler.

If we replaced the $COMPILE MAD card above with the card

$EXECUTE, COMPILE MAD

and if the MAD program compiled correctly, then execution of the compiled
program would be attempted. Output from the job would be the same as above,
plus any output generated during execution. Note that 2. or more specifica-
tions may appear on the same card as long as they don't go beyond column 6 4 .
It is assumed above that no data is required for execution of the program.

Example

The following example of a MAD job deck uses all of the 5 specifications
described above. The program reads the value X, computes F (X) = f i , then prints
X and P(X), These 3 operations continue until the data deck is all read in
and then the job is automatically terminated by MAMOS.

Computation of F(X) is done by means of an external function so there
will be two compilations by the MAD compiler. If there i s an error in either
compilation, then execution will not be permitted.

3.3-3

$ DATA
L 1.0
x 13.

In
which are
s p e c i f i e s

$EXECUTE "OS
$ I D MARSIEWTES*XXX/YY/ZZZ*5S+1P$COMHENT
$ COMPILE MAD,EXECUTE,DUMP .
$PRINT OBJECT, PUNCH OBJECT

WIN PROGRAH WHICH READS DATA, CALLS A
m C T I O N , AND PRINTS RESULTS

START READ DATA X
EXECUTE FUNCT. (X, FX)
PRINT RESULTS X,FX
TRANSFER TO START
END OF PROGRAM

$ COMPILE "),PRINT OBJECT
EXTERNAL FUNCTION(Z,W)
ENTRY TO FUNCT.
W= SQRT. (2)
FUNCTION RETURN
END OF FUNCTION

*
1415926 *

t he above example , t he f i r s t two ca rds are IBSYS c o n t r o l c a r d s
necessa ry fo r any j ob run under "OS. The $ I D card above
tha t execut ion of the p rogram is no t t o be a l lowed t o run more

than 5 seconds, and that no more than 1 page of output w i l l be genera ted
dur ing execut ion . See sec t ion 1.2 f o r a comple te descr ip t ion of the
$EXECUTE and $ I D I B S Y S c o n t r o l c a r d s .

T h e t h i r d s p e c i f i e s t h a t (1) A MAD program which follows is t o be
compiled, (2) Execution of the program is d e s i r e d , (3) I f t h e r e i s a n e r r o r
d e t e c t e d d u r i n g e x e c u t i o n , a dump of the program is des i r ed , (4) The binary
cards produced by the MAD compi la t ion are t o be l abe led i n columns 73-80 with
MAINOOO1, MAIN0002,.... The label which is used on output binary decks must
be punched i n columns 65-72 o f t he spec i f i ca t ion ca rd .

The f o u r t h c a r d s p e c i f i e s t h a t a n o c t a l p r i n t o u t o f t h e i n s t r u c t i o n s
produced by t h e MAD compi la t ion i s d e s i r e d , a n d a l s o a binary deck of the
object program is to be given as par t o f t he j ob ou tpu t .

The next 7 c a r d s make u p t h e f i r s t MAD source deck which is t o be
compiled, and the $ s p e c i f i c a t i o n w h i c h f o l l o w s s p e c i f i e s t h a t a MAD deck
which fol lows is to be compiled and an o c t a l p r i n t o u t o f c o m p i l e d i n s t r u c -
t i o n s is t o be given. Labeling i s a l s o s p e c i f i e d i n columns 65-72 b u t t h i s
is i n e f f e c t i v e s i n c e t h e PUNCH OBJECT s p e c i f i c a t i o n is not given.

The next 5 ca rds make up the second MAD source deck which is t o be
compiled, and the .$DATA s p e c i f i c a t i o n wh ich fo l lows spec i f i e s t ha t execu t ion ,
i f no er rors have been de tec ted , is t o begin.

MAIN0001

FUNCTOO 1

3.3-4

The final two cards make up the data deck to be used during
execution.

An outline is given below of the output produced when the above
job deck is run.

Printed output

1) The $ID and sign-on time,
2) The first MAMOS specifications.
3) A list of the first MAD source deck, and any detected errors in the

source deck.
4) A list of individual MAD statements and the instructions compiled for

each statement. This output is given only if there were no errors
detected in compilation.

5) The MAMOS specification card for the second MAD source deck is printed.
6) A list of the second MAD source deck, and any detected errors in the

source deck.
7) A list of individual MAD statements and the instructions compiled for

each statement. This output is given only if there were no errors
detected during compilation.

8) The $DATA specification is printed.
9) If no errors were detected in compilations then execution output is

printed consisting of 2 lines of X , F (X) . Also, just previous to the
execution results is a printed list of subroutines used and their
octal origins in core.

10) The requested program dump if an error occurs during executton.
1 1) The $ID and sign-off time.

Punched output

1) The $ID card and a binary deck of the instructions compiled for the
first MAD source deck. The binary deck is not given if an error is
detected during compilation of the first MAD source deck.

It should be noted in the above example that the specifications
EXECUTE and DUMP are effective for the entire job while the COMPILE MAD,
PRINT OBJECT, and PUNCH OBJECT specifications only apply to the MAD source
deck following the specifications, This is true also for the option of
putting binary card labeling information in columns 65-72 of a specification
card.

COMPILE MAD is the only necessary specification for any MAD
compilation.

Note on EXECUTE and DATA specifications

The $EXECUTE and $DATA specifications may give trouble if MAMOS is
operating under DC-IBSYS, and either specification is punched starting in
Column 2. A convention of leaving Column 2 blank for the above specifications
is desirable for DC-IBSYS users.

3.4-1

3.4 ALGOL Under "OS

ALGOL stands for Algorithmic Language.
ALGOL was first defined in 1958 (see the December 1958 issue of Comunica-
tions of the Association for Computing Machinery) and a new description of
ALGOL (called ALGOL-60) was published in 1960 (see the May 1960 issue of
Comnications of rhe Association for Computing Machinery). The Revised
Report on the Algorithmic Language ALGOL-60 was published in the January
1964 issue of Comnunications of the Association for Computing Machinery.

There are several ALGOL translators in use and development for
several machines.

The ALGOL translator which operates under "OS is the ALCOR -
University of Illinois ALGOL-60 Translator. The translator was written for
the IBM 7090/7094 by people of the University of Illinois and the ALCOR
group in Europe. A User's Manual for the ALCOR - University of Illinois
ALGOL-60 Translator has been written by E. L. Murphree, Jr. of the Universi-
ty of Illinois.

Programmers who know ALGOL-60 as described in the Revised Report on
the Algorithmic Language ALGOL-60 should, with the aid of this section, be
able to write ALGOL programs and have them translated and executed under
MAMOS.

Restrictions on ALGOL programs

1) The ALGOL translator produces object code which uses floating point
instructions for both integer and real arithmetic. Hence, real
numbers R and integer numbers N must lie in the following range.

The internal representation of 9 is 777777777777 octal.
The internal representation of false is 000000000000 octal.

2) Large programs/arrays are limited by the core size of 32768
storage cells.

3) Extremely large programs may not be translated because of table
overflow during compilation.

4) Jhe to a limited character set for the 7090/7094, many of the
Reference ALGOL symbols are not available. Table 3.4-1 gives for
each Reference ALGOL symbol, its hardware ALGOL symbol. Some of the
hardware ALGOL symbols have alternate or "tolerated" symbols which
may be used if desired. The hardware ALGOL symbols and "tolerated' '
symbols must be used when writing ALGOL programs to be compiled by
the ALGOL translator which operates under "OS.

3.4-2

Table 3.4-1: REFERENCE TO HARDWARE REPRESENTATION

ALGOL Symbo 1 Symbol Name Hardware Symbol Tolerated

A l B l . ..\Z upper case alphabet A I B) ... \ Z

albl ...I2 lower case alphabet A(BI ... (Z

.-

0111 ... 19 nume ra 1 s 0111 . . . I 9

+ plus sign i-

- minus sign -
X
/

-

multiplication sign *
division sign /

integer division sign / /

colon ..
semi-colon . 9

left parenthesis (

right parenthesis 1

left bracket (I

right bracket I1

, comma Y

decimal point

.- ._
t

- <

- >

>

3

assignment sign

exponentiation

less than

less than or equal to

equal to

greater than or equal to

greater than

no t equal t o

logical equivalent

logical implies

.=
' POWER '

' LESS '
' NOT GREATER '

' EQUAL'

'NOT LESS'

GREATER I

'NOT EQUAL'

'EQUIV'

' IMPL'

- -
**

'LS '

' LQ'

'EQ'

'GQ '
'GR'

'NQ'

EQV'

' INP '

3.4-3

Table 3.4-1 : REFERENCE TO HARMARE REPRESENTATION - Continued

ALGOL Symbol

V
A
1
10

TI= I b
(

7

t r u e

f a l s e

-
-
go t o

i f

t hen

e l s e

f o r

do

-
__.

-
-
-
step

u n t i l

wh i l e

comment

beg in

end

boolean

i n t e g e r

real

a r r a y

swi t ch

L_

c_

Symbol Name

l o g i c a l o r

l o g i c a l a n d

l o g i c a l n e g a t i o n

base 10

blank space

l e f t s t r i n g q u o t e

r i g h t s t r i n g q u o t e

Boolean t rue

Boolean fa l se

' I

I '

Hardware Symbol To le ra t ed

' OR'

'AND'

'NOT '
' (apostrophe)

' (I

'1'

'TRUE'

'FALSE'

'GO T O '

' IF '

THEN I

ELSE

I FOR'

' DO'

STEP'

'UNTIL'

' WHILE '
' COMMENT '

BEGIN'

' END'
' BOOLEAN '

INTEGER I

' REAL'

'ARRAY'

' SWITCH'

3.4-4

Table 3.4-1: REFERENCE TO HARIMARE REPRESENTATION - Continued

ALGOL Symbol Hardware Symbol

procedure ' PROCEDURE '
s t r i n g ' STRING '
1 abe 1 LABEL'

va lue ' VALUE '
code CODE

f i n i s

-
-
-
- FINIS

The symbol 'CODE' i s used to replace the procedure body of a procedure
which i s compiled independently by ALGOL, o r some o t h e r t r a n s l a t o r .

3.4-5

D e f i n i t i o n o f a Source Program t o be Compiled by ALGOL under " 4 0 s

An ALGOL source program i s a program as de f ined in t he ALGOL r epor t
(s e c t i o n 4.1.1.) fol lowed by t h e word symbol 'FINIS', i.e.

<Algol source program> ::= <program, f i n i s

An ALGOL source program w i l l f a l l i n one of the fo l lowing ca tegor ies :

1) The source program m y be complete, i n which case i t w i l l contain any
necessary procedures . In other words , i f the p rogram i s c o r r e c t ; and
i t i s compiled and executed, then the desired resul t w i l l be produced.

2) The source program may be complete except for one or more procedure
bodies. This type of source program is produced when 'CODE' i s s u b s t i -
t u t e d f o r a procedure body.

3) The source program may be a procedure.

" Punching the ALGOL Source Program

An ALGOL source program i s punched i n c a r d columns 1-72 of as many
c a r d s as desired. Blanks are ignored (except for H f i e l d s in FORMAT procedures).
Card columns 73-80 are ignored by the ALGOL t r a n s l a t o r and these columns may be
u s e d f o r i d e n t i f i c a t i o n o r a n y o t h e r p u r p o s e , as long as any punching i n 73-80
cons is t s o f l ega l 7090/7094 BCD charac te rs . S ince ALGOL s ta tements are separa ted
by the semi-colon or word symbols, several statements (o r on ly par t o f a s ta tement)
may be punched on a s ing le ca rd . The last symbol punched i s 'FINIS'.

The deck of cards which results from punching an ALGOL source program
w i l l be c a l l e d a n ALGOL source deck.

3.4-6

”OS Control Cards

“OS control cards are identified by having a dollar ($> sign
punched in column 1. Control s.pecifications are punched on the control cards
in columns 2 through 6 4 . If more than one specification is punched on a single
control card, they are separated by comas. The specifications indicate to
“OS what is to be done as the job is processed.

Necessary Control Specifications

$ COMPILE ALGOL

Every ALGOL source deck must be immediately preceded by the above
specification which indicates to “OS that the ALGOL compiler is needed.

$ EXECUTE

The above specification must be used if execution of a program
is desired.

$ DATA

If execution is desired and execution requires a data deck [DATA],
then the data deck must be preceded by the $DATA specification.

Optional Control Specifications

$ PUNCH OBJECT

The above specification is used if it is desired to get as part of
the output a binary deck of the object programs generated by the ALGOL
compiler. The specification must be given €or every ALGOL source deck for
which a binary deck is desired.

Note on EXECUTE and DATA specifications

The $EXECUTE and $DATA specifications may give trouble if “0s is
operating under DC-IBSYS, and either specification is punched starting in
column 2. A convention of leaving Column 2 blank for the above specifications
is desirable for DC-IBSYS users.

r
3.4-7

Composition of Simple ALGOL Job Decks

The most simple application of ALGOL under "OS would consist of
a compilation of one ALGOL source program. The job deck would be made up
as follows:

$EXECUTE "0 s
$ID NAMEKTASK*OPTIONS $ COMMENT
$ COMPILE ALGOL

[Algol source deck]

The output from the above job would consist of a listing of the
source program and any diagnostics detected by the ALGOL compiler.

If we replaced the $ COMPILE ALGOL card above with the card

$ EXECUTE,COMPILE ALGOL

and if the ALGOL source program compiled correctly, then execution of the
compiled program would be attempted. Output from the job would be the same
as above, plus any output generated during execution. Note that 2 or more
specifications may appear on the same card as long as they don't go beyond
card column 64. It is assumed above that no data is required for execution
of the program.

Examp 1 e

The following example of an ALGOL job deck uses all of the 4 speci-
fications described above. The program reads the number X, computes y=F(X)
= f l then prints X and F(X). These 3 operations continue until the data
deck is all read in and then the job is automatically terminated by "OS.

Computation of F(X) is done by means of a procedure.

$EXECUTE "0 s
$ID DOSSIElrXXX/W/ZZZ*5S*lP$CO"E~
$COMPILE ALGOL, EXECUTE, PUNCH OBJECT

'BEGIN' 'COMMENT' SIMPLE EXAMPLE.,
'REAL' X,Y.,

L. .READ(X).
FOFX(X,Y). 9 PRINT(X,Y). 9

' END'
' FINIS '
'GO TO' L.,

$DATA
1.0,lO.O 0.31415927'1 10.000001'-1

The READ and PRINT procedures are described later.

In the above example, the first two cards are IBSYS control cards
which are necessary for any job run under "OS.

3.4-8

The $ I D card above spec i f ies tha t execut ion of the p rogram i s n o t t o be
al lowed to run more than 5 seconds, and that no more than 1 page of out-
pu t w i l l be gene ra t ed du r ing execu t ion . See s ec t ion 1.2 f o r a complete
d e s c r i p t i o n o f t h e QDCECUTE and $ I D IBSYS c o n t r o l c a r d s .

The t h i r d c a r d s p e c i f i e s t h a t (1) an ALGOL program which follows
is t o be compiled, (2) execut ion of the program i s des i red , and (3) t h e
binary cards produced by t h e ALGOL compi la t ion are t o be given as p a r t
of t he j ob ou tpu t .

The fou r th ca rd and a l l ca rds up t o bu t no t i nc lud ing t he $DATA
c a r d c o n s i s t o f t h e ALGOL source program which i s t o be compiled.

The $DATA c a r d s p e c i f i e s t h a t e x e c u t i o n , i f no errors have been
d e t e c t e d , i s t o begin.

The las t c a r d is a d a t a c a r d w h i c h h a s 4 va lues of X punched i n
a f r e e form.

P r i n t e d o u t p u t

1) The $ I D and sign-on information.
2) The "OS s p e c i f i c a t i o n s .
3) A l i s t o f t he ALGOL source program.
4) The $DATA ca rd is pr in t ed .
5) I f no e r r o r s were de tec t ed du r ing compi l a t ion t hen execu t ion ou t -

p u t c o n s i s t i n g o f 4 l i n e s o f X, F(X). A l s o , j u s t p r e v i o u s t o t h e
e x e c u t i o n r e s u l t s i s a p r i n t e d l i s t of subrout ines used and their
o c t a l o r i g i n s i n c o r e .

6) The $ I D and sign-off information.

Punched output

1) The $ I D card and a b inary deck of the ins t ruc t ions compi led for the
ALGOL source program. The binary deck i s n o t g i v e n i f a n e r r o r i s
de t ec t ed du r ing compi l a t ion o f t he ALGOL source program.

3.4-9

The 'CODE' Procedure

Procedures may be compiled independently of t h e ALGOL source program
which calls them.

An ALGOL program may cal l an independently compiled procedure by
means of a 'CODE' procedure. The 'CODE' procedure i s a regular p rocedure
w i t h t h e body of the p rocedure rep laced by t h e ALGOL symbol 'CODE'.

Thus the above example of a job deck cou ld be wr i t t en as fo l lows
t o produce the same r e s u l t s .

$EXECUTE "0 s
$ I D DOSSIEYXXX/W/ZZZ*5SECONDS*lPAGE$
$COMPILE A X O L , EXECUTE, PUNCH OBJECT

'BEGIN' 'COMMENT'SLMPLE EXAMPLE.,
'REAL'X,Y. ,
'PRoCEDURE'FOFX(X,Y).,'REAL'X,Y.,'CODE'.,

'GO TO' L., 'END' 'FINIS'
L.. READ (X). , FOFX(X,Y). , PRINT(X,Y). ,

$COMPILE ALGOL, PUNCH OBJECT
'PROCEDURE' FOFX(X,Y). , 'REAL'X,Y.,

I FINIS I

l ~ ~ ~ ~ ~ ' ~ . = ~ ~ ~ ~ (~) . , ' ~ ~ ' ~ ~ F X . , ,

$DATA
1.0,lO.O 0.31415927'1 10.000001'-1

R e s t r i c t i o n On 'CODE' Procedures

'CODE' p rocedure nams must be less than 7 c h a r a c t e r s i n l e n g t h .

INPUT/ OUTPUT

T h e f o l l o w i n g d e s c r i p t i o n o f i n p u t / o u t p u t f o r ALGOL programs i s
t a k e n a l m o s t e x c l u s i v e l y f r o m t h e I l l i n o i s Users Manual mentioned above.

INPUT/OUTPUT I N ALGOL PROGRAMS

There i s n o s p e c i f i c a t i o n i n t h e ALGOL Report for i npu t /ou tpu t
o p e r a t i o n s i n ALGOL. T h i s was no t an ove r s igh t on t he pa r t o f t he des ign ing
commit tee , but a r e s u l t o f i t s r e a l i z a t i o n t h a t i n p u t / o u t p u t o p e r a t i o n s v a r y
so much from one instal la t ion to another and f rom one computer to another
t h a t s p e c i f i c a t i o n s f o r i n p u t / o u t p u t were b e t t e r l e f t t o e a c h i n s t a l l a t i o n .
Hence, the ALGOL T r a n s l a t o r u s e s code procedures fo r i npu t /ou tpu t . The use
of these p rocedures i s d e s c r i b e d i n d e t a i l below.

Code Procedures for Input /Output .

There are s e v e r a l ALGOL code procedures which are a s soc ia t ed w i th
t h e i n p u t / o u t p u t o p e r a t i o n s p r e s e n t l y a v a i l a b l e t h r o u g h t h e ALGOL Trans la to r .
These bas ic 110 procedures are viewed i n t h e same l i g h t as s t a n d a r d f u n c t i o n s ;
t h a t i s , they are cons ide red t o have such impor t ance and un ive r sa l app l i cab i l i t y
t h a t t h e y are g l o b a l t o a l l ALGOL programs compiled by the Trans la tor . For the
u s e r t h i s means t h a t t h e r e i s no need to dec la re the input /output p rocedures .
I t fu r the r imp l i e s t ha t t he i den t i f i e r s u sed fo r t hese p rocedures mus t have t he
same r e s t r i c t e d u s e as those set a s i d e f o r t h e s t a n d a r d f u n c t i o n s , s i n , C O S ,

exp , etc. To use t he i den t i f i e r s fo r any o the r pu rpose can cause an e r ro r con -
d i t i o n . However, one can "submerge" any of these procedure names by dec la r ing
a p r o c e d u r e o r v a r i a b l e w i t h t h e same name, as one can do with ordinary ident-
i f i e r s i n n e s t e d b l o c k s .

For example,

bepin real a , b , c ;
r e a d (a , b) ;
c:= a + b;
p r i n t (a , b , c)

- end

shows the use of the r ead and p r in t code procedures . Nei ther has been de-
c l a r e d i n t h e e x a m p l e , s i n c e t h i s i s unnecessary.

On the o ther hand ,

begin real a , b , c , d ;
r ead (b) . be in

' - p r o c e d u r e r e a d (e , f) ;
real e , f . ,

e:= f t 2 ; read (a , b)
end;

read (d) ; c:= a + b;
p r i n t (a, b , c , d)

- end

s h o w s a n e n t i r e l y d i f f e r e n t u s e o f a dec lared procedure wi th the Same name
as read.

This procedure i s d e c l a r e d i n an inner block, used there , and i s no longer
d e f i n e d a f t e r ex i t f rom tha t b lock . Hence t h e statement "read (b)"
c a u s e s t h e number b t o be , read; "read (a ,b)" causes the calculat ion
a:= b t 2 t o b e made; and "read (d)" causes the number d t o be read.

S impl i f ied Input /Output

S ince ALGOL i s a l anguage des igned fo r exp res s ing a lgo r i thms i n
numer i ca l ana lys i s , i npu t and ou tpu t ope ra t ions are concerned mainly with
t h e t r a n s m i s s i o n of numerical data .

There are two input procedures and two output procedures designed
e s p e c i a l l y f o r t h e u s e r who does not have specif ic format requirements .

The two s impl i f ied input p rocedures are read and readmatrix, and both
a c c e p t d a t a i n a f r e e form. The form of the read procedure call i s

r e a d (a , b , c , . . .)
where a , b , c , . . . are v a r i a b l e s , e i t h e r s i m p l e o r s u b s c r i p t e d . The procedure
r eads one va r i ab le a t a time, so i f s u b s c r i p t e d v a r i a b l e s a p p e a r i n t h e l i s t ,
t h e n s u b s c r i p t s must be spec i f i ed . Fo r example, l e t a be an array of dimension
3 x 4 and b and c be s imple var iables . Then

r e a d (a , b y c)

i s i n c o r r e c t , w h i l e

read (a [1 ,2] , b , c)

i s accep tab le . O f c o u r s e , i n t h e l a s t c a s e , o n l y e l e m e n t a [1 ,2] w i l l be
r e a d , and n o t t h e e n t i r e a r r a y .

I f t h e u s e r h a s a n e n t i r e a r r a y t o b e r e a d , a second easy-to-use
procedure i s ava i l ab le , r eadmat r ix . The form of i t s c a l l i s

T h e i n p u t d a t a i n b o t h cases i s assumed t o b e in a f r e e form. The
d a t a can be any ALGOL number (s e e t h e ALGOL Report) and placed anywhere on a
c a r d . The numbers are s e p a r a t e d by th ree b l anks , a.comma, o r t h e end of the
card (column 72). Successive ca l l s f o r e i t h e r o f t h e p r o c e d u r e s d o e s n o t
i n i t i a t e reading f rom a new card; reading proceeds cont inuously f rom one
number K O t he nex t on a card and when t h a t c a r d i s exhausted (column 72) i t
p roceeds t o t he nex t .

3.4-12

The two output procedures for simplified use are print and printmatrix.
Tha form of the print call is

where E , E2, ... represent arithmetic expressions. Of course, an arithmetic
exprerslon may consist of simply a variable name, and in most cases it
probably will, so

print (area, depth, velocity * weight)
ir an acceptable print procedure call. All the output from such a call will
be printed on the off-line printer according to the standard format list

That is, 5 numbere per line will be printed, each with 7 digits to the right
of the decimal point, in what is connuonly called "scientific notation".
The number -3765.831 would appear in this notation as

- .3765831E 04
and the number .00376 becomes

.3760000E-02

The printmatrix procedure call is

printmatrix (a, b, c,. ..I

where a, b, c,... are names of arrays. Output is by rows in exactly the
same format a8 that of print, 5 ,zlements per line. The 3 x 4 array b
would be printed as

b33 b34

No alphabetic data can be input or output with any of the four
eimplified procedures.

For more control over the format of the input and output, other
proceduree are available and are described in the following sections.

r
3.4-13

A t t h i s p o i n t , i t a p p e a r s d e s i r a b l e t o b e g i n u s i n g c e r t a i n un-
f a m i l i a r terms and notat ion, such as "syntax" and "semantics" and
unconvent iona l b racke ts < > and ver t ical l i n e s 1. These conventions have
been borrowed from the f ield of l i n g u i s t i c s a n d are h i g h l y u s e f u l i n d e s c r i b -
i n g p r e c i s e l y how p a r t e of a language (and ALGOL is a language, however limited
i t may be) can be pu t toge ther t o mean something to someone o r somsthing. The
r eason for inc luding these convent ions here is mainly to be precise i n d e s c r i b i n g
c e r t a i n t h i n g s o m i t t e d by t h e ALGOL R e p o r t , b u t a l s o t o i n i t i a t e t h e ALGOL
beg inne r i n t he t e rmino logy o f t he ALGOL Report . Abili ty to read and understand
the Report w i l l b e i n d i s p e n s a b l e t o t h e a c t i v e ALGOL u s e r , so an a t tempt to
en t i r e ly avo id t he no ta t ion p rob lem would be f a l s e economy. I f t h e r e a d e r
keeps i n mind t hese i n t e rp re t a t ions o f t he symbol s , he shou ld p rog res s well.

: I= means "is' I

< > are s imply b racke ts tha t mean t h a t t h e terms enclosed by them
go toge the r t o fo rm a s i n g l e u n i t .

For e x m p l e ,

a n s i g n e d i n t e g e r > ;:= < d i g i t > 1 a n s i g n e d i n t e g e r > < d i g i t >

can be read "An uns igned i n t ege r i s e i t h e r a d i g i t o r a n e n t i t y composed
of an uns igned in teger fo l lowed by a d ig i t " . Th i s is s imple enough, but the
d e f i n i t i o n is s t r a n g e i n t h a t i t uses "uns igned in teger" to def ine
"unsigned integer" . This is a r e c u r s i v e d e f i n i t i o n and is qui te s imple
t o e x p l a i n a n u n s i g n e d i n t e g e r i s e i t h e r a s i n g l e d i g i t (0 ,1 ,2 , ..., 9) o r
a n e n t i t y composed of a d ig i t f o l lowing one o r more d i g i t s . With these con-
vent ions in mind , w e p roceed to an expos i t ion of t h e more comprehensive input
and output procedures.

The Format Procedure

The format p rocedure p rovides the bas ic in format ion to the input foutput
procedures for the placement and scal ing of information, whether it i s on a
c a r d image as i n p u t o r on a p r i n t e d page as output .

In the fo l lowing , the comple te syntax of the format p rocedure is given
i n t h e same n o t a t i o n u s e d f o r t h e ALGOL Report ; a discussion of the meanings
and uses o f the var ious cons t ruc t ions comple tes the coverage o f the format
procedure.

3.4-14

Syntax.

<format cal l>

<format l i s t>

<fo rma t s t r i ng>

<secondary l i s t >

<secondary>

<format primary>

< f i e l d s p e c i f i e r >

::= FORMAT (<integer expression>, <format l i s t>)

::= <format s t r ing> I <format l ist>, <format s t r ing>

::I <le f t s t r i ng quo te> <secondary l i s t> <r igh t - s t r i ng
q u o t o

1:- <secondary> I <secondary l i s t> , <secondary>

::I < f i e l d s p - z c i f i e r > I ((format primary>) I <unsigned
integer> (<format primary>)

::I < f i e l d s p e c i f i e r > 1 <format primary>, <field
s p e c i f i e r >

::= a -conve r s ion> I <E-conversion> I a - f i e l a
I Q I - f i e l h I <void-spec i f ica t ion> I <record
sepa ra to r>

Semantics.

<format call>: The form of the format procedure cal l is

where the E r e p r e s e n t s an in t ege r exp res s ion and t he l i s t of i n d e f i n i t e l e n g t h ,
A, B, C, ..., represents un i t s o f in format ion concern ing the form of da ta .
The in t ege r exp res s ion deno ted by E above i den t i f i e s a l o g i c a l t a p e u n i t
a v a i l a b l e t o t h e u s e r . It is t h e r e s p o n s i b i l i t y o f t h e u s e r t o s a t i s f y t h i s
requirement .

The tape numbers designated by t h e i n t e g e r e x p r e s s i o n E correspond t o
t h e MAMOS l o g i c a l t a p e u n i t s as fol lows:

- E

1
2
3
4
5
6
7
9

10
1 1

MAMOS Logical Unit

7 (i n p u t) o r 6 (output)
2
3
4
5
6
7
9

10
1 1

- Use

r egu la r i npu t (ou tpu t) t ape
s c r a t c h t a p e
s c r a t c h t a p e
s c r a t c h t a p e
r e g u l a r punch tape
r e g u l a r p r i n t t a p e
r egu la r i npu t t ape
s c r a t c h t a p e
s p e c i a l i n p u t / o u t p u t tape
spec ia l i npu t /ou tpu t t ape

The term " s c r a t c h t a p e " i n t h e t a b l e means tha t du r ing execu t ion
t h o s e t a p e s are a v a i l a b l e t o t h e u s e r f o r w h a t e v e r u s e h e w i s h e s .

3.4-15

The number E l l is a spec ia l a l l -purpose parameter which , when
used , au tomat i ca l ly causes des igna t ion o f t he r egu la r i npu t tape (l o g i c a l 7)
i f t h e ca l l i s r e a d f o r r e a d m a t r i x f , o r t h e r e g u l a r p r i n t t a p e (l o g i c a l 6) i f
t h e cal l i s p r i n t f o r p r i n t m a t r i x f .

<format list>: This i s a l i s t of ALGOL s t r i n g s s e p a r a t e d by commas. NO
f i x e d number o f s u c h s t r i n g s i s r equ i r ed i n a format ca l l , i n c o n t r a s t t o
the normal procedure call. That i s , the format procedure i s cons ide red t o
have an a r b i t r a r y number of formal parameters.

Each of the s t r ings must be enc losed i n s t r i ng quo te s , and might appear
as '('A, B , C,...')', where A , B, C , ... r e p r e s e n t s a l i s t (o f a r b i t r a r y l e n g t h)
of un i t s o f in format ion concern ing the form of da ta . These un i t s o f in format ion
are f i e l d - s p e c i f i e r s , w h i c h p r e s c r i b e a f o r m f o r d a t a , o r c o l l e c t i o n s o f f i e l d -
e p e c i f i e r s e n c l o s e d i n parentheses . The f i e l d - s p e c i f i e r s p r o v i d e f o r i n p u t o r
ou tpu t of (1) numer i ca l da t a i n t h e f a m i l i a r d e c i m a l n o t a t i o n as 123.76) o r
i n " s c i e n t i f i c n o t a t i o n " o r e x p o n e n t i a l form (as .12376 x 10 4 1,
(2) b lank f i e lds , and (3) alphabet ic-numeric information, such as t i t l e s ,
head ings , no te s t o t he u se r , e tc . , o r a c t as record separa tors .

<secondary>: The s e c o n d a r y e x i s t s f o r two important reasons. Both are
concerned with the use of a port ion of a format l i s t more than once for a
g iven i npu t o r ou tpu t p rocedure ca l l . To be r e a l i s t i c h e r e , w e must assume
t h a t t h e s e c o n d a r y c o n s i s t s o f s e v e r a l f i e l d - s p e c i f i e r s e n c l o s e d by parentheses ,
and perhaps preceded by an unsigned integer. Such a secondary might appear
as

and, except i n the case ment ioned below, the same e f f e c t a s

The o the r u se fo r t he s econda ry enc losed by parentheses occurs when
a n i n p u t o r o u t p u t p r o c e d u r e c a l l l i s t s more v a r i a b l e s t h a n a r e l i s t e d i n t h e
c o n t r o l l i n g f o r m a t p r o c e d u r e c a l l . When the format l i s t has been exhausted
b u t t h e i n p u t o r o u t p u t l i s t has no t , then cont ro i o f format goes back to the
l a s t l e f t pa ren thes i s be fo re t he end o f t he fo rma t l i s t , and input or output
p r o c e e d s a c c o r d i n g t o t h e f i e l d s p e c i f i e r s t o t h e r i g h t o f t h i s l e f t p a r e n t h e s i s .

<primary>: The p r imary cons i s t s o f a s i n g l e f i e l d s p e c i f i e r a r s e v e r a l f i e l d
s p e c i f i e r s s e p a r a t e d by c o m a s . It should be apparent that i n many cases a
pr imary is a l s o a secondary (e.g., when i t c o n s i s t s o f a s i n g l e f i e l d s p e c i f i e r) .

<record separa tor>: The record separa tor i s a s l a s h o r a se r i e s o f s l a shes .
S i n c e i n p u t i s i n the form of card images on magnet ic t ape , each s lash i n the
fo rma t l i s t causes reading of a new ca rd image ; fo r ou tpu t , e ach s l a sh causes
a new l ine o f p r i n t i n g o r p u n c h i n g t o b e s t a r t e d . T h e f i r s t f i e l d of t he new
r e c o r d i s t h a t s p e c i f i e d by t h e f i r s t f i e l d s p e c i f i e r f o l l o w i n g t h e r e c o r d
s e p a r a t o r . I n gene ra l , n success ive s l a shes w i l l cause n - 1 b l a n k l i n e s
o n t h e p r i n t e d o u t p u t , o r n - 1 success ive ca rds t o be ignored.

3.4-16

The format procedure ca l l must account for every column in the
u n i t r e c o r d w i t h w h i c h i t is concerned . Wi th input , the o r ig ina t ing medium
is a ca rd , SO every column on the card must be accounted for , beginning with
column 1 and cont inuing th rough the last column conta in ing in format ion of
i n t e r e s t . The Trans la tor assumes tha t unaccounted for co lumns remain ing to
t h e r i g h t i n a c a r d image are o f n o i n t e r e s t . For example,

FORMAT (7, ' (' F 10.4, 3 F 15.6, 5 X, F 10.4, 10 XI)')

a c c o u n t s f o r a l l 80 columns on the card, even though the l as t 10 (71-80)

t h i n g by
C O l U W S are t o be skipped and not read. We can accompl ish exac t ly the Same

FORMAT (7, '('F 10.4, 3 F 15.6, 5 X, F 10.4') ')

On the o ther hand , w e canno t i gnore l ead ing b l ank f i e lds (o r X- f i e lds ,
gene ra l ly) . Thus ,

FORMAT (7, ' (I F 10.4, 5 X, F 10.4') ')

and
FORMAT (7 , ' ('10 X, F 10.4, 5 X, F 10.4') ')

are no t equ iva len t .

The same g e n e r a l i d e a i s t r u e f o r o u t p u t , t h e e s s e n t i a l d i f f e r e n c e
be ing t he f ac t t ha t i n s t ead o f r ead ing ca rd images , w e are p r i n t i n g l i n e s o f
c h a r a c t e r s , 132 c h a r a c t e r s p e r l i n e , o r p u n c h i n g c a r d s , 80 columns per card,
and every space must be accounted for. Again a l l unspec i f i ed spaces t o t h e
r i g h t o f s p e c i f i e d f i e l d s are l e f t b l a n k . The f i r s t c h a r a c t e r o f e v e r y o u t p u t
r e c o r d w r i t t e n o n t h e r e g u l a r o u t p u t tape (l o g i c a l t a p e 6) is used as a c a r r i a g e
c o n t r o l c h a r a c t e r , a n d is not p r in ted . The c a r r i a g e c o n t r o l c h a r a c t e r s a r e as
fo l lows :

Character Meaning

blank
1
2
4
6
8
0 -
+
9

s i n g l e s p a c e
s k i p t o n e x t p a g e
s k i p t o n e x t h a l f p a g e
s k i p t o n e x t q u a r t e r page
s k i p t o n e x t s i x t h p a g e
s k i p t o n e x t s i x t h p a g e
double space
t r i p l e s p a c e
space suppress
suppress automatic page overf low.

r " .

3.4-17

F i e l d S p e c i f i e r s .

Syntax.

-S-conversion> t t = F a n s i g n e d i n t e g e r > , < d i g i t > 1 a n s i g n e d i n t e g e r >

<E-converaion> t : = E a n s i g n e d i n t e g e r > . < d i g i t > I a n s i g n e d i n t e g e r >

F <unsigned integer> , < d i g i t >

E a n s i g n e d i n t e g e b . < d i g i t >

a - f iel& ::= a n s i g n e d i n t e g e r > X

a I - f i e l d > ::= <unsigned integer> H <prope r s t r i ng>

<record separa tor> ::I / I (r ecord separa tor>/

Semantics,

a - conve r s ion> .

The F -conve r s ion f i e ld spec i f i e r i s of the form nFw.d, where n ,
w , and d are uns igned i n t ege r s . I f n I 1 , i t may be omitted.

The n i n t h i s f i e l d s p e c i f i e r d e n o t e s t h e number of such
consecu t ive f i e lds ; hence 3F10.3 i s e q u i v a l e n t t o

F10.3,F10.3,F10.3,

and 1F10.3 i s equiva len t to s imply F10.3.

The w i n t h i s f i e l d s p e c i f i e r i n d i c a t e s t h e t o t a l w i d t h o f t h e
f i o l d i n number of characters. The appearance of numbers in the F-conversion
is the fami l ia r form of a sequence of dec imal d ig i t s in which- there a p p e a r s
one , and on ly one , dec imal po in t . Hence , the to ta l charac te rs in the f ie ld
must include the decimal point . A number i n t h i s c o n v e r s i o n may be e i t h e r
p l u s o r m i n u s , so w must a lso include one column count for the s ign.

F o r i n p u t t h e p l u s s i g n may o r may not be punched a t t h e d i s c r e t i o n
o f t h e u s e r ; t h e m i n u s s i g n must be punched and must precede the most
8 i g n i f i C - t d i g i t i n t h e f i e l d .

Fo r ou tpu t , t he p lus s ign w i l l no t be p r in ted ; the minus s ign w i l l
be p r i n t e d i n t h e f i rs t column to t h e l e f t o f t h e m o s t s i g n i f i c a n t d i g i t i n
t he f i e ld . Lead ing ze roes w i l l no t be p r in t ed ,

The d in t h e f i e l d s p e c i f i e r d e n o t e s t h e number o f d i g i t s t o t h e
r i g h t o f t h e d e c i m a l p o i n t . T h i s number does no t inc lude space f o r t h e
decimal p o i n t i t s e l f . d mus t no t be g rea t e r t han 20.

For examp le,
' format (6 , ' F 8.4, F 6.2, F 10.3)

2
8 p e c i f i e s a set o f t h r e e f i e l d s , o f 8 , 6, and 10 columns respectively.

3.4-18

In the first, 4 digits lie to the right of the decimal point (which takes
up one column itself). This leaves, of the original 8 columns, one more
for the sign and 2 for digits to the left of the decimal point. In the
second, 2 digits lie to the right of the decimal point and 2 to the left,
leaving, of the original 6 columns, one for the sign and one for the
decimal point. In the third, 3 digits lie to the right of the decimal
point and 5 to the left.

Suppose we wish to print -12.1372,
to the above format specification. With
printed line would look like this:

1-12.13721b21.63
I I
jfield 1 [field2

21.63, and + 17238.312 according
b representing blank spaces, our

lb17238.3121

' 1 field 3 I
I I

<E-conversion>.

The E-conversion field specifier is of the form nEw.d, where n ,
w and d are unsigned integers. As with the F-conversion, if n = 1,
it may be omitted.

The n in this field specifier denotes the number of such consecu-
tive fields; hence 3 E 13.7 is equivalent to

E 13.7, E 13.7, E 13.7,

and 1 E 13.7 is equivalent to E 13.7.

Again paralleling the F-conversion, the w denotes the entire width
of the field in number of characters. The appearance of numbers in the E-
conversion resembles the form widely known as "scientific notation," a
decimal fraction followed by an exponent of 10, as, for example,

.78325 x lo3.
The exact form of numbers in the E-conversion is

- +. dd ... dE+ee,
where d's represent decimal digits, the E implies "exponent follows" and
the ee represents a two digit exponent of 10. The two sign positions, one
for the number itself and one for the exponent, are indicated by 2. Note
that every number in this conversion has at least six columns of its field
used for 'bookkeeping' I symbols :

- + . E -tee
Hence, if a field were specified as E13.7, the field would be 13 columns
wide, only 7 of which can contain digits of the number put into this con-
version. Similarly, E14.9 is an invalid field specification, since only
14 - 6 I 8 columns are available for digits of the number. A specification
of E14.3 does not use all 8 of the columns available to it for placement of
significant digits of the number.

3.4-19

For example, i f w e want t o p l a c e -138,714.31 into E-conversion form
i n a f i e l d 14 columns wide., w e s p e c i f y E14.8, and w e have

-.13871431E 06.

A f i e l d s p e c i f i c a t i o n o f E12.6 r e s u l t s i n

-.138714E 06,

and one of E14.6 r e s u l t s i n

bb-.138714E 06

I n k o t h t h e s e last cases , i n fo rma t ion has been l o s t i n t he conve r s ion
(t h e last two d i g i t s , 31 , o f t he o r ig ina l number).

The F-conversion and E-conversion are the on ly conve r s ions p re sen t ly
provided wi th ALGOL for input /output o f numer ica l in format ion , and in tegers
as data have not been mentioned. There i s no s p e c i a l i n t e g e r c o n v e r s i o n , b u t
integers can be handled through e i ther the F-conversion or the E-conversion.
For example, the integer 317 becomes, in F5.0 conversion

bb317

It i s i m p o r t a n t t o n o t e t h a t t h e s i g n must be accounted for . The same
number i n E9.3 becomes

b.317E 03;

a n d i n t h i s case, w e have had t o p r o v i d e f o r t h e 6 charac te r spaces a lways
p re sen t i n t he E -conve r s ion , d must not be g r e a t e r t h a n 20.

The X- f i e ld spec i f i e r i s of the form nX, where n is an unsigned
i n t e g e r . The X-f ie ld i s a f i e l d of n blank spaces. The n cannot be
o m i t t e d , e v e n i f i t e q u a l s 1 .

The X-field makes i t easy t o space p r in t ed ou tpu t as des i red , and
permi ts sk ipping of unwanted in fomat ion on input cards. For example,
suppose w e h a v e c a r d s w i t h s i x 10-column f i e l d s (b e g i n n i n g i n colunm 1) and
w e w i sh t o r ead on ly f rom the s econd , t h i rd and f i f t h f i e lds . Assume t h e
d a t a i n t h e s e f i e l d s are i n F10.4 conversion. The f o r m a t c a l l w i l l look
l i k e t h i s :

FORMAT(6,'('10X, 2 F 10.4, lox, F 1 0 . 4 ') ')

A readf ca l l of
readf (A , B , C)

w i l l c a u s e t h e d a t a in f i e l d s 2, 3 and 5 t o b e s t o r e d as v a r i a b l e s A , B a n d
C , r e spec t ive ly . No te t ha t in t h e f o r m a t c a l l a b o v e , t h e s i x t h f i e l d h a s
not been accounted for , .md need n o t be.

3.4-20

The H-field specifier i8 o f the form

d e s . . .s,

where the n is an integer and the ss...~ is a proper string; i.e., the
S S . . . ~ is a list consisting of any n characters available in the character
set, except the escape symbols.

The use of the H-field is primarily to print labels, titles, variable
names, etc., so as to make interpretation of printed output easier.
For example,

FORMAT (7,'('23 HbCOHPUTEDbAVERAGESbbbb, F 12.4')').,
PRINTF (AVG)

will cause the 23 characters, including blanks, following H to be printed,
followed by the current value of the variable AVG in F12.4 conversion. If
AVG I -138.7642, we would have

bCOMPUTEDbAVERAGESbbbbbbbbl38.7642

as the printed output.

The user is responsible €or assuring that n is precisely the number
of characters he intends to be in the H-field.

The Input and Output Procedures.

The input and output procedures must each be preceded by a format
procedure call in order for the computer to be able to correctly position
and scale the input or output information, as the case may be. The set
of simplified input/output procedures assumes a standard format, so that
the user need not concern himeelf with providing formats for them. Indeed,
he cannot, since the simplified procedures ignore all formats. Complete
information on all input/output procedures follows.

Syntax.

<read call> ::I READ (<input list>)

<readf call> ::= READF (<input list>)

<readmatrix call> ::= READHATRIX (array identifier list>)

<readmatrixf call> ::I READMATRIXF (<array identifier list>)

<input list> ::I <variable> I <input list>, <variable>

Carray identifier list> ::r <array identifier> I <array identifier list>,
erray identifier>

r

3.4-21

Sennntica.

<read call>: The form of the read procedure cal l i s

r ead (a , b , c , ...I

where a, b, c , ... r e p r e s e n t s a list of var iab les , s imple o r subsc r ip t ed ,
s epa ra t ed by comas . They are read from card images on the input tape
(l o g i c a l 7) ignor ing any format ca l l s which may a p p e a r i n t h e program. The
procedure does not start reading au tomat ica l ly f rom a new card , bu t accepts
ALGOL numbers in any def ined form (see the ALGOL Repor t , sec t ion 2.5, Numbers),
s epa ra t ed by a cormna, t h ree b l anks , o r t he end o f a ca rd (column 72), con-
t i n u o u s l y u n t i l t h e i n p u t l i s t i s e x h a u s t e d . F u r t h e r c a l l s f o r t h e r e a d
procedure cause cont inua t ion of reading the same c a r d , n o t f o r a new card.

(readf ca l l> : The form of the readf procedure i s i d e n t i c a l t o t h a t o f t h e
r e a d c a l l . The difference between the two is tha t the readf p rocedure reads
inpu t acco rd ing t o t he last executed format procedure cal l .

<readmatr ix ca l l> : The form of the readmatr ix p rocedure ca l l i s

readmatr ix (a , b , c , ...)
where a, b, c , ... are a r r a y i d e n t i f i e r s . The procedure reads elements of
a n a r r a y i n s u c h a way t h a t t h e last index changes f i r s t , t h e n t h e preceding
one, etc. The e l emen t s a r e accep tab le i n any ALGOL number form, separa ted by
th ree b l anks , a comma, or the end of a card (column 72).

<readmatr ixf ca l l> : The form of the readmatr ixf p rocedure ca l l i s i d e n t i c a l
t o t h a t of t h e readmatrix. The difference between the two i s tha t t he r ead -
matr ixf procedure reads input according to the l as t executed format procedure
c a l l .

<input l ist>: The form of the input l i s t i s

where A, B , C , ... r ep resen t s a s e r i e s o f i d e n t i f i e r s . They may be simple
v a r i a b l e s o r e l e m e n t s o f a n a r r a y ; i n t h e la t ter c a s e , t h e s u b s c r i p t s must
be present , as f o r example A (/ 2 , 3 /) and B(/7,6/). The a r r a y i d e n t i f i e r
above , w i thou t t he subsc r ip t s , i s not acceptab le .

The user should keep in mind tha t t he fo rma t p rocedure ca l l no t on ly
con t ro l s t he fo rm o f t he da t a bu t a l so p re sc r ibes t he l og ica l t ape number
f rom which the data i s read.

< p r i n t call>

< p r i n t f c a l l >

<pr in tma t r ix call>

C p r i n t m a t r i x f c a l l >

<output l ist>

X : = PRINT (b u t p u t l i s t >)

1:- PRINTF (b u t p u t list>)

::= PRINTMATRIX (< a r r a y i d e n t i f i e r >)

::= PRINTMATRIXF (< a r r a y i d e n t i f i e r >)

::= a r i t h m e t i c e x p r e s s i o n > 1 <output list>,
a r i t h m e t i c e x p r e s s i o n >

3 . 4-22

Semantics.

<p r in t call>: The form of the print procedure cal l i s

p r i n t (E l , E2, . .>
where El , E2, D . . represent arithmetic exprasr ions. The procedure evaluates
t h e a r i t h t i c exprr8eiona a t execut ion time and p l aces t he r e su l t s on the
ou tpu t t ape fo r t he o f f - l i ne p r in t e r acco rd ing t o t he s t anda rd fo rma t l i s t

' l X , 5314.7'

<p r in t€ call>: The form of the p r in t f p rocedure cal l is

p r i n t f (E1, Egr

where the E,, E2, ... represent a r i thmet ic express ions . & s p i t e i t s name,
the procedure c m be used for var ious ou tput t asks , such as Plac ing in te r -
m e d i a t e r e s u l t s on s c r a t c h (u t i l i t y) t a p e s , p l a c i n g c a r d images on the punch
output t ape f o r punching into cards , or pr int ing output on the o f f - l i ne
pr in te r , depending upon t h e l o g i c a l t ape un i t p re sc r ibed by the l as t executed
format procedure cal l preceding the pr intf procedure cal l which a lso controls
the da ta t ransmi t ted .

<printmatrix>: The form of the pr intmatr ix procedure cal l is

pr in tma t r ix (a , b , c , ...I

where a, b, c, ... are a r r a y i d e n t i f i e r s . The elements of the array are
p r in t ed on the o f f - l ine p r in te r accord ing to the s tandard format l i s t

'lX,5E14.7'

Hence, the 2 x 3 matr ix a w i l l be pr inted as

<printmatrixf>x The form of the p r in tmat r ixf p rocedure ca l l i s

pr intmatr ixf (a , b , c , . . .)

<output list>: The output l i s t consis ts of ar i thmetic expressions of any
kind, separated by commas, but cannot be void. That is, an output procedure
such as

p r i n t f ()

is not val id , even though the control l ing format may cons i s t en t i r e ly o f an
H- f i e l d .

r
3.5-1

3.5 " O S job deck composition in general

This section describes the various compositions of legal "OS job
decks, The IBSYS control card $ID is not specified in full for the illus-

$ID card.
trations and the user should refer to section 1.2 for a description of the

I

The " O S specifications have been defined in section 3.2, but some
will be elaborated on in later sections.

DEFINITIONS

[SOURCE] will be used to indicate a deck which consists of at least
one "OS specification followed by a source program which requires
a translation by some translator of the " O S system,

[OBJECT] will be used to indicate a relocatable binary deck of a
type produced by the MM compiler, the FORTRAN I1 compiler, the ALGOL
compiler, or the UMAP assembler.

[E] will be used to indicate a data deck to be used by the program
during execution.

[CORELOAD] will be used to indicate a deck which consists of one or
more [SOURCEls and/or [OBJECTIS. The last card of a [CORELOAD] is the
specification card
$BREAK
or

[CORELOAD] is used in PING PONG jobs, and must contain one and only one
main program.

[BINARY] will be used to indicate a deck composed of the specification
card
$ BINARY
followed by one or more [OBJECTIS.

[Xli will be used to indicate the ith [X] in the job deck. X is
SOURCE, OBJECT, DATA, BINARY, or CORELOAD.

$ BREAK(N)

EXAMPLES OF A [SOURCE1

(1) The following deck is an example of a [SOURCE] which requires a MAD
compilation.

$ COMPILE MAD
EXECUTE SYSTEM. Could be any legal MAD
END OF PROGRAM 1 source deck.

The MAD program above does nothing useful but could be of any length
and complexity desired. Also, any or all of the specifications below could
be used. The allowable specifications are PRINT OBJECT, PUNCH OBJECT,
CONDITIONAL, and also binary card labeling information may be given in
columns 65-72 of a specification card.

3.5-2

(2) The following deck ir an axample of a [SOURCE] which requires a
UMAP amra~bly.

Other epecificatione which may be ueed in the UMAP [SOURCE] are
PUNCH O B J E C T and CONDITIONAL, AhO, binary card labeling information may be
givan in column8 65-72 of a rpecification,

(3) The following deck ie an example of a [SOURCE] which requires a FORTRAN
I1 to MAD trrnelation by the MADTRAN tranelator, followed by a MAD compilation
of the UAD mource produced by -RAN.
$ luDTRAN
C FORTRAN PROGRAM TO DO NmHING. Could be almort any

CALL EXIT legal FORTRAN I1 rource
END deck.

Other rpecificatione which may be ueed are the same ae those options
allowed in example (1) above.

3.5-3

PING PONG

PING PONG is t he p rocess o f op t iona l ly ca l l i ng and pas s ing con t ro l
t o o n e of several complete programe ([CORELOADls) which comprise a PING
PONG job. A PING PONG j o b u s u a l l y is a j o b whose program is t o o l a r g e t o
f i t in c o r e memory a t one time. I f a large program can be broken into
segments o r [CORELOM]e which are independent of each o the r excep t fo r
comrmnication through a common area o f memory o r e x t e r n a l s t o r a g e , t h e n t h e
program may be run as a PING PONG job.

Each [CORELOAD] must log ica l ly end by e i t h e r c a l l i n g i n a n o t h e r
[COREMM] o r t e r m i n a t i n g t h e j o b . A l i b r a r y s u b r o u t i n e , w i t h two entries,
i s a v a i l a b l e f o r t h e p u r p o s e o f c a l l i n g i n a new coreload.

Before execut ion begins , the p rogram for each [CORELOMI i s stacked
o n l o g i c a l t a p e T where T i s s p e c i f i e d on t h e last card of a [CORELOAD], o r
i f n o t s p e c i f i e d T is assumed t o be l o g i c a l t a p e 2. I f T is s p e c i f i e d , i t
must be 2, 4 , o r 9. The o r d e r of s t a c k i n g on t h e tapes is i n t h e o r d e r t h e
[CORELOADls appear i n t h e j o b deck.

T o c a l l t h e n e x t [CORELOAD] i n s equence on l og ica l t a p e T , the fo l lowing
c a l l is given.

SEQPGM, (T) € o r MAD o r
CALL SEQPGM, T f o r UMAP.
To ca l l [CORELOAD] R o n l o g i c a l t a p e T , the fo l lowing

c a l l is given.

SELPCM. (R,T) f o r MAD o r
CALL SELPGM,R,T f o r UMAP.

I f T is o m i t t e d i n t h e a b o v e calls t h e n l o g i c a l t a p e 2 w i l l be used.

A t t h e start of execut ion a s p e c i f i c [CORELOAD] must be au tomat i ca l ly
chosen by MAMOS as t h e f i r s t [CORELOAD] to load and g ive concro l to . The
[CORELOAD] which is normally chosen as t h e f i r s t t o e x e c u t e is t h e f i r s t
one which phys ica l ly appears in the job deck . However, i f t h e $BREAK
s p e c i f i c a t i o n is omit ted f rom the las t [CORELOAD] in the job deck, then
t h a t [CORELOAD] is execu ted f i r s t , w i thou t be ing s t acked on a tape. Hence,
i n t h e later case t h e last [CORELOAD] could only be executed once.
An example of a PING PONG j o b is given later.

3.5-4

The c o n p o r i t i o n of a g e n e r a l j o b d e c k t o ba run under MAMOS is
now giTnn,

Non-PWC POHG job deck

[OBJECTIM
$BINARY

PLNG PONC job deck

$EXECUTE MAHOS
$ I D
$op t ions

.
$op t ions

[CORELOAD] 1 .
I COREL0ADlK

$DATA
[DATA]

The options above may be on a s many $ cards as desired. The allow-
able s p e c i f i c a t i o n s at t h i s p o i n t i n t h e j o b d e c k are EXECUTE, COPIES, DUMP,
FULL DUMP, 1/0 DUMP, SUB TRACE, HALT, and comments which appear on cards w i t h
$ $ in columns 1 and 2.

The TEACHER, UNKNOWN, and REGRESSION s p e c i f i c a t i o n s c o u l d a l s o be in-
c luded in the above l i s t , b u t s i n c e t h e s e t h r e e s p e c i f y s p e c i a l j o b s t h e y a r e
desc r ibed later.

TEACHER JOB

A TEACHER j o b i8 composed a8 follows.

$EXECUTE " O S

$TEACHER
$$ comnents if d e s i r e d

$ I D

[OBJECT]

.
[OBJECT 1,

[DATA]
$DATA

Execut ion of t h e TEACHER job causes a pseudo-input tape t o be w r i t t e n
o n l o g i c a l t a p e 10. The tape w i l l c o n s i s t of the object programs and data
s u p p l i e d w i t h t h e TEACHER job.

The above deck may c o n s i s t of one main program, any number of sub-
programs, and a da ta deck i f des i red . Any main o r sub-program must be i n
b ina ry form. A teacher job which suppl ies on ly $DATA and [DATA] is a l s o
permiss ib le .

UNKNOWN JOB

T h i s j o b is the type of job which fol lows a TEACHER job, and i s con-
nected to and uses the program(s) and or data which was put on logical t a p e
10 by t h e TEACHER job.

An UNKNOWN j o b is composed as fol lows.

$EXECUTE "OS

$op t ions
$ I D

$op t ions
$UNKNOWN

[SOURCE],

.

.

T h i s j o b is t h e same as the genera l job def ined prev ious ly except - -

1) There is no $DATA s p e c i f i c a t i o n o r [DATA].
2) The e p e c i f i c a t i o n UNKNOWN is used.

3.5-6

"'SRAN Under "OS

mRAN is a program written in MAD language which translates a
FORTRAN I1 source program into a MAD source program.

The $ MALYTRAN specification causes the following FORTRAN I1 source
program to be translated to a MAD source program. The MAD source is then
compiled by the MAD translator. In other words,

$ MADTRAN
[FORTRAN I1 source]

is equivalent to

$ COMPILE MAD
[MAD source]

when the FORTRAN 11, and MAD source decks do the same task. Of course the
object programs may not be physically the same.

The output of the MADTRAN translator consists of a listing of the
FORTRAN I1 source program, a table of corresponding MAD and FORTRAN state-
ment labels, a list of the function names used in the MAD program, and a
symbolic deck of the equivalent MAD program.

MAD statement labels of the form QQnnnn are created during the
translation. The user can specify a different alphabetic 2 character label of
the form XXnnnn by use of the statement

STATEMENT LABEL IS XX

This statement, if used, must precede the first statement of the FORTRAN I1
source program, and XX must be two alphabetic characters which never appear
in the FORTRAN program as a variable name of the form xxnnnn.

The output MAD source deck will normally have identification labels
in card colunrns 73-80 of the form ~Rnnnnn,nnnnn=00001,00002, The user
can specify a different card label by use of the statement

CARD ID IS xxxnnnnn

in which case the card label in 73-80 will be xxxnnnnn, xxxnnnnn+l,.. .. nnnnn
must be numeric. This statement, if used, must precede the first statement of
the FORTRAN program.

The output from the MAD compilation which automatically follows a
MADTRAN translation depends upon the specifications which are used. PRINT
OBJECT and PUNCH OBJECT have the same effect as when given for a MAD compilation.
The EXECUTE specification can also be used if desired.

3.5-7

Restrictions on MADTW

1) The FORTRAN I1 statements

SENSE LIGHT i
IF (SENSE LIGHT i) nl ,n2
IF (SENSE SWITCH i)n n
IF ACCUMULATOR OVERFpdnl, n2
IF QUOTIENT OVERFLOW n1,n2
IF DIVIDE CHECK nl,?

should be avoided if possible. MADTRAN will produce calls to a special
subroutine to accomplish the results of such statements, and the user of
these statements will have to supply the subroutine.

2) MAIJTRAN makes an assumption in its treatment of argument lists. If
an argument is the name of an array and appears unsubscripted in the list,
the zero element in the equivalent MAD array, hence the entire array, will
be the argument and it may be subscripted in the MAD external function.
If, however, the argument is a subscripted array name, the effective argument
in MAD will be the value of that element.

3) FORTRAN COMMON is assigned to the MAD PROGRAM COMMON. Equivalence is
handled as in MAD, so there is no reordering implied by the EQUIVALENCE
statement.

4) Arrays in MAD are stored by rows rather than by columns a s in FORTRAN 11.

5) MADTRAN does not handle double precision (D in column l) , Complex (I in
column 1), and Boolean (B in column 1) FORTRAN I1 statements.

6) The FORTRAN I1 source program must have

a) no m r e than
b) no more than
c) no more than
d) no more than
e) no more than

2000 statement labels.
1000 integer variables.
300 dimensioned variables.
1000 function names.
20 arguments in a one-line function definition.

7) FORTRAN I1 programs which use absolute logical tape numbers will have
to be changed to refer to the " O S logical numbers as follows.

SYSIN1 = logical tape 7 for regular input tape.
SYSOU1 = logical tape 6 for regular output tape.
SYSPPl = logical tape 5 for regular punch tape.

Logical tapes 2, 3 , 4 , 9 , 10, 11 are available for scratch or special input/
output.

8) The FORTRAN I1 PRINT and PUNCH statements do not at present compile
properly if there is no list in the statements.

3 , 5-8

REGRESSION JOB

A REGRESSION JOB is composed as follows:

$MECUTE " O S

$ REGRESSION, EXECUTE

$ DATA

$ ID

[Transformation if desired]

Control Card
Format Card(s)
Data Set(s)
Blank Data Set

The Regression program is written as a FORTRAN I1 subroutine and
it is called from the "OS library automatically. A description of the
program follows.

REGRESSION ANALYSIS PROGRAM

The objective of the regression analysis program is to generate a
linear regression equation of the form

(1) YdO+B1X1+BZX2+.. .+BKXK

from a set of N observations of a set of K independent variables (x ,x ,...X) and a single dependent variable Y.
1 2 K

The coefficients BO,B1, ..., BK are determined so that the regression
equation minimizes the sum of the squares of the deviations between the ob-
served and predicted values of Y. The method used is the stepwise regression
procedure which generates the expression (1), variable by variable, in order
of relative importance, until all significant variables are included in the
equation, according to the level of significance specified by the user.

This writeup includes both a simple linear regression procedure and a
procedure to utilize transformations of the variables (as desired by the user)
in forming the regression equation. Both programs have been combined into a
single program. The use of this program is described in two parts, but the
user must remember that the same program is used in each case, under the control
of the parameters supplied.

1. LINEAR STEPWISE REGRESSION PROGRAM

The most common use of the regression procedure is the generation of
a linear regression equation of the form (1). In this use, the variables are
treated without applying any transformation functions before forming the
regression equation,

3.5-9

CONTROL CARD

The Control Card is the first card of each problem presented to
the computer. By the use of the variables punched on the control card
the user may control the operation of the program on the data sets which
follow. The card is described below, field by field, giving the name of
the variable whose value is to be entered, the columns to be used and the
type of variable (i.e., integer (I) which must be punched without using the
decimal point charactere or floating point (F) which have the decimal
point character punched). Following this, a brief description of the
function of each variable is given.

VARIABLE NAMe COLUMNS FUNCTIONAL DESCRIPTION OF VARIABLES

TOL

FLVLIN

FOUT

PROBNO

NOVAR

NODATA

IFRTN

I W T

IFSTEP

1 - 10 F Tolerance (normally .OOl), used as a
bound on divisors used in matrix trans-
formations. No variable having diagonal
matrix element less than this value, at
any stage of analysis, may be entered in
the regression equation.

11 - 20 F

21 - 30 F

31 - 35 I

36 - 40 I

41 - 45 I

47 I

48

50

I

I

F level for entering variable (see
discussion of F level and significance).

F level for removing variable (must be
less than or equal to FLVLIN).

Problem number.

Total number of variables (including
dependent variable), must be less than or
equal to 101.

Number of data sets (N). (No practical
upper limit).

Blank or 0 causes the regression analysis
to attempt to process successive regression
problems from the input tape. (This is the
normal case), 1 causes a return to the call-
ing program at the completion of the current
problem. This is effective on every new
control card. (See the REGRESSION ANALYSIS
PROGRAM AS A SUBROUTINE).

Blank or 0 if weight factors given, 1 if
data sets are all of unit weight.

If data sets are all of unit weight. Blank
or 0 causes printing of each step of regres-
sion analysis, 1 suppresses this printing
(Final step is always printed).

3.5-10

VARIABLE NAHE COLUMNS TYPE

IFRAW 52 I

-

IFMEAN 5 4 I

IFRESID 56 I

I FC OR

IFPRED

IFCNST

IETERM

FORMAT

58

60

62

I

I

I

6 4 I

65 - 66 I

FUNCTIONAL DESCRIPTION OF VARIABLES

Blank or 0 causes printing of raw sums,
sums of squares and sums of cross pro-
ducts, 1 suppresses this printing.

Blank or 0 causes printing of means and
standard deviations, 1 suppresses this
printing.

Blank or 0 causes printing of residual
si lss of squares and cross products ad-
justed about the means, 1 suppresses this
printing.

Blank or 0 causes printing of simple
correlation matrix, 1 suppresses this
printing.

Blank or 0 causes the printing of a
table of input dependent variable values
(Y), the corresponding values predicted
by the final regression equation and the
deviations and percent deviations. 1
suppresses this calculation and printing.

Blank or 0 allows Bo in (1) to be corn-
p.Jted. 1 forces BO to have the value
zero and suppresses the computation of
the residual sums adjusted about the
means.

Blank or 0 causes printing of table of
input data values, 1 suppresses this
printing.

Number of format cards to immediately
follow this card. If blank or 0 or
negative, 1 format card is assumed.
Otherwise, format .LE. 10 with the value
punched in 65 - 66.

F LEVEL AND SIGNIFICANCE

In order to control the likelihood of committing an error in entering a
variable into the prediction equation when it is insignificant, or the error in
removing a variable from the equation when it is significant, the corresponding
F level8 (FLVLIN and FOUT) must be specified by the user. The appropriate pro-
cedure to be followed is given below.

(1) Choose a maximum allowable likelihood for committing the error
(e.g., .OS). Call this value P.

"~ ~

3.5-11

(2) Calculate the probable final nusber of degrees of freedom NDF
for analysis

N D F r N - K - 2

where N is the number of data sets (observations)
K is the number of variables finally entered in equation.
Conservatively, K may be taken as the number of independent
variables.

(3) Use Table 1, find the entry corresponding to the given P and NDF.
If the given P and NDF are not listed, the user may interpolate or
consult more detailed F tables in the various statistical tables.

TABLE 1 I F LEVELS

2
3
4
5
6
7
8
9
0
1
2
5
0
4
0
0
0
0

.00020

.00019

.00018

.00017

.00017 . 0001 7

.OD017

.00017

.00017

.00016

.00016

.00016

.00016

.00016

.00016
-00016
.00016
,00016
.Oil016

.0050

.0046
-0044
.0043
.0043
.0042
.0042
.0042
.0042
.0041
.0041
.0041
.0040
.0040
.0040
.0040
, 0040
.0039
.0039

.020

.019

.018

.017

.017

.017

.017

.017

.017

.017

.016

.016

.016

.016
,016
.016
.016
.016
.016

.667

.585

.549

.528

.515

.506

.499

.494

.490

.486

.484

.478

.472

.469

.466

.463

.461

.458

.455

PI .10

8.53
5.54
4.54
4.06
3.78
3.59
3.46
3.36
3.28
3.23
3.18
3.07
2.97
2.93
2.88
2.84
2.79
2.75
2.71

P= .05

18.5
10.1
7.71
6.61
5.99
5.59
5.32
5.12
4.96
4.84
4.75
4.54
4.35
4.26
4.17
4.08
4.00
3.92
3.84

Pm .025

38.5
17.4
12.2
10.0
8.81
8.07
7.57
7.21
6.94
6.72
6.55
6.20
5.87
5.72
5.57
5.42
5.29
5.15
5.02

Pa .01

98.5
34.1
21.2
16.3
13.7
12.2
11.3
10.6
10.0
9.65
9.33
8.68
8.10
7.82
7.56
7.31
7.08
6.85
6.63

PI .001

998.
167.
74.1
47.2
35.5
29.2
25.4
22.9
21 .o
19.7
18.6
16.6
14.8
14.0
13.3
12.6
12.0
11.4
10.8

The user should note that the likelihood of committing the converse
error (e.g., failing to enter a variable in the equation that is, in fact,
significant) increases as the likelihood of the first type of error decreases.
The values Corresponding to the .05 level are commonly employed.

The restriction is imposed that both F levels should be greater than
or equal to zero, and that the F level for entering variables be at least as
large as the F level for removing variables.

3.5-12

FORM OF INPUT DATA

The on ly r e s t r i c t ions on t he fo rm o f i npu t da t a are:

The f i r s t item (t h e l e f t m o s t item r e a d o f t h e f i r s t c a r d of each
obse rva t ion set) must be used as i d e n t i f i c a t i o n (a n o b s e r v a t i o n ,
o r case number) f o r t h i s d a t a set. Th i s means t h a t t h i s item
must be p o s i t i v e (g r e a t e r t h a n z e r o) f o r a l l a c t u a l d a t a sets,
and t h i s item i s not i n c l u d e d (f o r a n a l y s i s) among the independent
v a r i a b i e s .

The dependen t va r i ab le must be the las t one read by t h e input
format (i.e., the r igh tmost var iab le read on the last ca rd of the
d a t a s e t .) I f t h e d a t a is n o t i n t h e p r e s c r i b e d o r d e r , i t i s
n o t d i f f i c u l t t o write a special ZFNCT s u b r o u t i n e t o r e a r r a n g e i t .
See REGRESSION ANALYSIS WITH TRANSFORMED DATA sub-sec t ion .

I f t h e d a t a is weighted ind iv idua l ly (i.e., t h e v a r i a b l e IFWT =
0) , the weight must be the last item r e a d i n t h e e n t i r e d a t a set .

Fol lowing the last a c t u a l d a t a s e t , t h e u s e r e supply a complete

1 b l a n k c a r d , i f a real d a t a set t akes 2 cards, supply 2 b lanks ,
and so on) .

"- b l a n k d a t a set (e . g . , i f a real d a t a set occupies 1 card, supply

Of cour se , t he u se r mus t e s t ab l i sh a c o n s i s t e n t f o r m a t f o r a l l t h e d a t a sets.
That is, e a c h v a r i a b l e must a p p e a r i n t h e same f i e l d i n e a c h d a t a set . For
example, i f v a r i a b l e 1 0 o c c u r s i n c o l u m n s 43-45 i n t h e f i r s t d a t a s e t , i t must
a p p e a r i n 43-45 i n a l l d a t a sets.

After the da t a has been p repa red acco rd ing t o t he u se r ' s r equ i r emen t s ,
a fo rma t ca rd (o r ca rds) i s p r e p a r e d t o d e s c r i b e t h e l a y o u t o f t h e d a t a t o
the program. Since each problem is preceded by i t s own con t ro l ca rd and
a s s o c i a t e d f o r m a t , many d i f fe ren t p roblems may be p rocessed in one approach to
the computer.

FORMAT CARD

The d a t a i s desc r ibed t o t he p rog ram, va r i ab le by v a r i a b l e , f i e l d by
f i e l d , by wr i t i ng an appropr i a t e fo rma t . Eve ry item, i n c l u d i n g t h e o b s e r v a t i o n
number , t he i ndependen t va r i ab le s , t he dependen t va r i ab le and t he we igh t (i f any)
must be descr ibed in the format . Further , every item i s regarded as a f l o a t i n g
p o i n t number. Thus, only E f i e l d s o r F f i e l d s are allowed. Unused columns may
be sk ipped (t hus a l lowing a s ing le da t a deck t o be p repa red fo r s eve ra l p rob lem
r u n s) by u s i n g e i t h e r t h e FORTRAN s k i p o r t h e MAD skip. The user should become
fami l i a r w i th t he va r ious me thods o f wr i t i ng fo rma t s i n t he FORTRAN o r MAD manuals
The formats used by the regress ion procedure must begin wi th a l e f t p a r e n t h e s i s
(' (I 1 and te rmina te wi th a r i g h t p a r e n t h e s i s ")". The te rmina l * (a s t e r i s k)
u s e d i n MAD formats i s o m i t t e d i n f o r m a t s w r i t t e n f o r t h e r e g r e s s i o n program.

FORMAT CARD - Continued
In between the parentheses, F fields and skip fields, separated

by commar, dercribe the .data.

An F field is written
N F W.D where

N - No. of variables (fields) of the same size and
decimal places.
If 1, this may ba omitted.

F - The alphabetic character F.
W - The width of the field (i.e., the number of columns

ueed for the variable).

. - The decimal point (must be included in the count
"W", if it is punched in the data).

D - The number of places to ths right of the decimal
point. Used whenever no decimal point has been punched
in the data.

A skip field is written

NX or SN where
N - is the number of columns to be skipped.

X or S- The alphabetic character X or S.

If each data set uses mor2 tha:l u,le card, pmch a slash ' / ' I in the
format where the reading of the next card is to begin. In general, one should
not end a format with / unless he is very familiar with the behavior of the
input / output routines.

EXAMPLES t

1. Suppose each data set consists of 2 cards punched as follows.

1 st Card

Col. 1 - 4: Data identification.

Col. 5 - 34: Var. 1 - 6, each 5 digits with 4 decimal places.

Col. 35 - 361 To be ignored in the analysis.
Col. 37 - 39: Var. 7, 3 digits with no decimal places.

Col. 40 - 5 5 : To be ignored in analysis.

Col. 56 - 70: Var. 8 - 12, each 3 digits with 1 decimal place.

Col. 73 - 8 0 : Card identification (To be ignored).

3.5-14

Col. 73 - 80: C a r d i d e n t i f i c a t i o n (To be ignored).

The FORMAT would be wri t ten

(F4.0,6F5.4, S2, F3.0, 16X, 5F3.1/8F2.O,F4.2)

2. Suppose each card is punched with the data items occupying 10
colunrn f i e l d s , 7 p e r card. The format might be

(7F10.0)

If any o f t he da t a r equ i r ed places t o t h e r i g h t of the decimal , punching the
dec imal po in t in t he p rope r place i n t h e number on the ca rd w i l l o v e r r i d e t h e
f o n u a t s p e c i f i e d f o r t h a t number.

If a l l of t h e d a t a c o u l d be contained on one card, there is some
r e d u c t i o n i n e x e c u t i o n t i m e t h a t may be obtained by s h i f t i n g t h e v a r i a b l e s
onto one card. I f 2 ca rds are requ i r ed as i n example 1, t h e r e i s no advantage
i n s h i f t i n g t h e d a t a a r o u n d .

In genera l , the user should no t use the co lumns beyond 72 f o r d a t a .
If more columns are needed , u se add i t iona l ca rds . No te t ha t u se o f t he X
and S FORMATS may be used to cause an e f fec t ive rear rangement of t h e d a t a
without repunching the cards .

"

3.5-15

11. REGRESSION ANALYSIS WITH TRANSFORMED DATA

Sometimes the representation of the data may be greatly improved by
applying the regression analysis to transformations of the raw data. In
other words, a regression analysis will yield the best results when applied
to the correct model for the phenomena. Failure to achieve a good fit may,
thus, be due to either 1) Errors in the data, or 2) Errors in the model.
The user may supply a transformation function for his data by writing and
compiling a suitable subroutine. The subroutine, together with any required
specification cards, follows the $ REGRESSION, EXECUTE card.

The subroutines are written in the MAD language or equivalent language
and must conform to certain minor conventions. Also, a slight change in the
control card is needed to signal the need to use the transformation subroutine.

These details are given below.

CONTROL CARD CHANGES

The control card preparation follows the description given earlier
with 3 changes.

1 . The variable NOVAR, in Cols. 36-40, is now the integer number of
transformed variables (including the dependent variable, which
may also be a transformed variable, if desired).

2. A new variable NOX is punched in Cols. 67-70, which is the integer
number of raw data variables supplied (including the raw data
dependent variable).

3. The variable IFTERM, in Cols, 64, causes the printing of the
transformed data values if blank or 0. 1 suppresses this printing.

For example, suppose that 3 variables are supplied as raw data and that
transformations are desired as follows:

z1 = x1

z2 = x,
..

z3 = x;

z5 = x;
z = x;

z4 = x2

6

z7 = x3

In this case NOVAR = 7 , NOX = 3.

I

3.5-16

TRANSFORMATION SUBROUTINE ZFNCT

The t ransformat ion ZFNCT may b e w r i t t e n i n MAD o r a n e q u i v a l e n t
language, as t h e u s e r d e s i r e s . An example wr i t ten in MAD w i l l be g iven ,

The argument l i s t supp l i ed by t he ca l l i ng p rog ram is as fol lows.

OBSNO

X

XNUM

Z

ZNlTM

F IFWT

W W

F IFERR

- The obse rva t ion (case) number o f cu r ren t
set of r a w da ta .

- The base e lement of the raw d a t a v e c t o r . If
the sub rou t ine is w r i t t e n i n FORTRAN, t h i s is
t h e l o c a t i o n o f X(1 1. In MAD, t h i s i s the
l o c a t i o n o f X(0).

- The number of r a w d a t a e n t r i e s i n t h e X vec tor .
(In FORTRAN, t h e e n t r i e s l i e i n t h e X vec to r
from x(1) t h r u X(XNUM) - I n MAD, t h e e n t r i e s l i e
i n t h e X vector f rom X (0) t h r u X (X N u " l) .)

- The base element of the t ransformed da ta vec tor .
I f t h e s u b r o u t i n e i s w r i t t e n i n FORTRAN, t h i s i s
t h e l o c a t i o n o f Z(1). In MAD, t h i s is the loca-
t i o n of Z(0).

- The number o f t r a n s f o r m e d d a t a e n t r i e s i n t h e
2 vector . (In FORTRAN, t h e e n t r i e s l i e i n t h e Z
vector f rom Z (l) t h r u Z(ZNUM). I n MAD, t h e e n t r i e s
l i e i n t h e Z vector f rom Z(0) t h r u Z(ZNU"l).)

- A v a r i a b l e whose value is non-zero i f e a c h d a t a
set has an a s soc ia t ed we igh t r ead i n as p a r t of
da t a . The v a r i a b l e is zero i f each da t a set is
assumed t o have un i t weight .

- The weight assoc ia ted wi th the cur ren t da ta se t .

- A v a r i a b l e whose va lue is t o be set t o
1) O. , i f t he sub rou t ine has expe r i enced no e r ro r s

2) l., i f t h e s u b r o u t i n e h a s e x p e r i e n c e d a n
i n t h e t r a n s f o r m a t i o n o f t h e d a t a .

e r r o r that must terminate processing of
the problem.

minor e r ro r that can a l low the p rocess ing
to proceed. A comment w i l l be p r i n t e d t o
f l a g t h i s t y p e o f e r r o r .

3) -1., i f t h e s u b r o u t i n e h a s e x p e r i e n c e d a

It is t o be no ted t ha t of t hese parameters are f l o a t i n v p o i n t
va r i ab le s . Thus , i f t he sub rou t ine is w r i t t e n i n FORT-RAN, some o f t hese
v a r i a b l e s must be converted, i n t h e s u b r o u t i n e , t o FORTRAN i n t e g e r s i n o r d e r
t o be used i n computing subscr ipts .

3.5-17

The writing of ZFNCT subroutines may be clarified by means of
the following example.

Suppose that 3 raw data variables are supplied and that the loge(Xg)
is to be the dependent variable. Further, each of the other independent
variables are to be transformed according to the rules:

The MAD subroutine to perform this set of transformations may be
written as follows.

$ COMPILE MAD, PUNCH O N E C T

EXTERNAL FUNCTION (OBSNO, X, XNUM, Z , ZNUM, FIFWT, W H T , FIFERR)

ENTRY TO ZFNCT.

FIFERR I 0.

ZNUM I 0.

THROUGH LOOP, FOR I = O., I . , 1.GE.XNUM

THROUGH LOOP, FOR J = 1 , 1 , J .G.3

INTEGER J

LOOP ZNUM = ZNUM + 1

WHENEVER X(XNUM). LE. 0.

FIFERR = 1.

OTHERWISE

Z(ZNUM) = ELOG. (x(=)
END OF CONDITIONAL

FLINCTION RETURN

END OF FLINCTION

It should be apparent that the use of the ZFNCT subroutine allows the
user complete freedom in the transformation (sometimes called "EDITING") of
the data presented for analysis.

REPEATED USE OF DATA

The need t o make several ana lyses of t h e name b a s i c set o f da t a some-
times crises (e.g., u s i n g t h e s k i p ' t o select one of several dependent var iab les
punched i n t h e b a s i c d a t a set). One way t o a c c o m p l i s h t h i s would c o n s i s t o f
r e p r o d u c i n g t h e b a s i c d a t a d e c k as many times as i s requi red , and supply ing
t h e m u l t i p l e c o p i e s as ind ica t ed i n t he p rev ious s ec t ions . Ano the r way t h a t
avo ids t he r ep roduc t ion o f t he da t a i s the use o f a s p e c i a l v a r i a b l e , IFSAVE,
punched i n columns 71-72 of t h e c o n t r o l c a r d . T h i s v a r i a b l e f u n c t i o n as follows.

1. I f t h e v a l u e o f IFSAVE is b l a n k o r 0, t h e r e g r e s s i o n a n a l y s i s
p rogram expec t s t he da t a t o fo l low the fo rma t ca rd (s) i n t he u sua l
way. (This i s the normal s i tua t ion .)

2. I f t h e v a l u e o f IFSAVE i s -1 , t he r eg res s ion ana lys i s p rog ram
e x p e c t s t h e d a t a t o f o l l o w t h e f o r m a t c a r d (s) as usua l excep t t ha t
a c a r d w i t h a n a s t e r i s k "*" i n column 1 and the words "END OF
PROBLEM" i n c o l a . 2-72 must fol low the complete data deck, in-
c lud ing t he b l ank da t a set, but precede the next problem. In
t h i s case, a copy of the da ta is w r i t t e n (I n d e c i m a l mode, as ca rd
images) on log ica l t ape 4 fo r r epea ted u se . Then t ape 4 w i l l be
rewound and ana lysed accord ing to the cur ren t cont ro ls and format .

3. I f t h e v a l u e o f IFSAVE i s +1, t he r eg res s ion ana lys i s p rog ram w i l l
t ake t he da t a f rom log ica l t ape 4 a f t e r r e a d i n g o n l y t h e a p p r o p r i a t e
format card(s) f rom the input t ape . (Of cour se , tape 4 must have
b e e n w r i t t e n earlier by an analysis which had IFSAVE = -1 i n t h e
control card. Otherwise, the information on tape 4 is completely
meaningless .)

Each a n a l y s i s must f i n d a cont ro l card and format card(s) on the i npu t
t ape (as a pa r t o f t he da t a deck supp l i ed by the user) whether the da ta i s t o
be read f rom tape 4 o r f rom the input tape.

Each t h e t h e d a t a is read, whether f rom the input t a p e o r from tape 4
i t w i l l be in te rpre ted accord ing to the format card(s) immedia te ly p receding .

3.5-18

It should be noted that data can be p rocessed wi th and wi thout t rans-
format ions by u s i n g t h i s f e a t u r e . T h e r e is no present way t o a p p l y more than
one ZFNCT subrout ine during one approach to the computer . However, i f
any ZFNCT is i nc luded be fo re t he $DATA c a r d , t h i s (a n d o n l y t h i s) s u b r o u t i n e
a p p l i e s f o r t h i s e n t i r e a p p r o a c h , a n d may be e i t h e r u t i l i z e d o r i g n o r e d when
p rocess ing t he da t a .

- REGRESSION ANALYSIS PROGRAM AS A SUBROUTINE

For very spec ia l purposes , i t is p o s s i b l e t o imbed the r eg res s ion
a n a l y s i s program within any other program by c a l l i n g i t f rom the l i b ra ry l i k e
a n y o t h e r s u b r o u t i n e . I n t h i s case, $ EXECUTE i s used, but $ REGRESSION is
n o t used.

Th i r may be accomplished by inc lud ing one o f t he fo l lowing ca l l i ng
s e q u e n c e s i n t h e u s e r ' s m a i n program.

3.5-19

Main program i n MAD,
EXECUTE REGRSN.

Main program i n UMAP
CALL REGRSN

The user should be aware that, i n t h e u s u a l case, t h e r e i s no r e t u r n
o f c o n t r o l t o t h e u s e r ' s p r o g r a m o n c e REGRSN has been entered.

However, by punching a 1 f o r t h e v a l u e o f IFRTN (see con t ro l ca rd) t he
u s e r w i l l o b t a i n a r e t u r n t o h i s c a l l i n g program a f t e r t h e e n d o f t h e c u r r e n t
problem. A t t h a t time, t a p e s 3, 4 and 9 w i l l have been rewound. Tape 9 w i l l
con ta in t he fo l lowing i n fo rma t ion as one record.

N O I N The number of terms i n s e r t e d i n t h e
(FORTRAN in tege r) .

COEN The r e g r e s s i o n c o e f f i c i e n t v e c t o r (

r eg res s ion equa t ion

101 l o c a t i o n s f l o a t i n g p a i n t)

I N D E X The term index vector (101 locations FORTRAN i n t e g e r s)

CONST The value of t he cons t an t t e rm in r eg res s ion equa t ion .

Moreover, i f t h e p r e d i c t e d v a l u e s are asked for (i.e., IFPRED i s blank
o r 0) , t hen t ape 3 w i l l be w r i t t e n on dur ing the so lu t ion . Also , i f IFSAVE i s
u s e d t o s a v e t h e raw d a t a , t h e n t a p e 4 w i l l be w r i t t e n d u r i n g t h e so lu t ion .

The following MAD sequence w i l l i l l u s t r a t e u s e of the regression equa-
t i o n (e.g., f o r p l o t t i n g g r a p h s , etc.) to de te rmine the p red ic ted va lue YPRED
f o r a set of X values .

DZMENSION X(101), COEN (101), INDEX (101)
EXECUTE RTAPE9. N O I N , COEN, INDEX, CNST)
INTEGER N O I N , INDEX, I
YPRED I CONST
THROUGH LOOP, FOR I I 1 , 1, 2 .G. N O I N

LOOP YPRED I YPRED + COEN(I)*X(INDEX(I))

The subrout ine RTAPE9 t akes care of the reading of the in format ion
p laced on t ape 9 by REGRSN and the convers ion of FORTRAN i n t e g e r s t o MAD
i n t e g e r s .

The subrout ine REGRSN i s f a i r l y l a r g e a n d calls upon s e v e r a l o t h e r
r o u t i n e s . T h u s , t h e u s e r d e s i r i n g t o u s e REGRSN as a subrout ine should no t
p l a n o n u s i n g more than approximately 20000 octa l (8192, dec imal) loca t ions
i n t h e c a l l i n g program. The exact al lowable s ize depends on the subrout ines
c a l l e d by REGRSN and the main program. I f t h e s i z e becomes t o o l a r g e t o b e
l o a d e d i n a s i n g l e c o r e l o a d , t h e u s e r i s r e f e r r e d t o t h e d e s c r i p t i o n of t he
PING-PONG method of subdividing large programs.

3.5-20

EXAMPLES

1) Assume there is a subroutine on the "OS library which computes
Y = F(X). Write a program which reads X, computes Y, and prints
X and Y. Suppose the subroutine name to be MOREV9. Both X and Y
are in PROGRAM COMMON.

$EXECUTE "OS
$ I D PINGPONGER*XXX/W/ZZZ*5MINUTES*10P$

R PROGRAM TO USE MOREV9.

START

$DATA
BEST VALUE

2)

$EXECUTE

PROGRAM COMMON X,Y
READ FORMAT INPUTS,X
EXECUTE MOREV9.
PRINT FORMAT OUTPUT,X,Y
TRANSFER TO START
VECTOR VALUES INPUTS =$25X,F10.4*$
VECTOR VALUES OUTPUT =$3HlX=F10.4,3X,2HY=E16.8*$
END OF PROGRAM

OF P I HANDY I S 3.14159

Suppose example 1) above will not work because MOREV9 and the input-
output routines combined require a little too much storage for execu-
tion. A PING PONG job can be done so that input-output routines are
not needed at the time MOREV9 is used.

"OS
$ I D PINGPONGER*XXX/YY/ZZZ*5M*lOPAGES$

$ COMPILE MAD, EXECUTE
R CORELOAD 1 --GOES TO TAPE 2 , RECORD 1.

PROGRAM COMMON X,Y
READ FORMAT INPUTS, X [CORELOAD] 1
SELPGM. (1 ,4)
VECTOR VALUES INPUTS =$25X,F10.4*$
END OF PROGRAM

$BREAK

$COMPILE MAD
R CORELOAD 2--GOES TO TAPE 4, RECORD 1.

PROGRAM COMMON X , y -1
EXECUTE MOREV9. [COREL0ADl2
SELPGM. (2 ,4)
END OF PROGRAM

$ BREAK(4)

$COMPILE MAD
R CORELOAD 3--GOES TO TAPE 4, RECORD 2.

PROGRAM COMMON X,Y
PRINT FORMAT OTPUT,X,Y [CORELOADls
SELPGM. (1 ,2)
VECTOR VALUES OTPLJT =$3HlX=Fl0.4,3X,ZHY=E16.8*$
END OF PROGRAM

BEST VALUE OF P I HANDY I S 3.14159

3.6-1

3.6 MAMOS Organization and Coding Information

" O S consists of a low cor0 package (10s) of many subroutines
(including 1/0 subroutines), a monitor and loader, the MAD compiler, the
UMAP assembler, the ALGOL compiler, the MADTRAN translator, a subroutine
library, and several other records.

The low core package remains in core at all times when M?IMOS has
control. Its logical function as part of the operating system is to provide
end of job processing such as requested dumps, and to call in system records.
The low core package occupies cells 2048 through 4095 so object programs have
cells 4096 through 32767 available, unless an installation desires to reserve
part of upper memory.

All 1/0 functions under "OS are accomplished through use of IOEX.

A job is processed under "OS in the following manner:

a) The low core package reads in the monitor-loader-accounting record and
gives control to the monltor.

b) The monitor does any necessary actions to terminate a previous job which
may not be signed off. 'The beginning of the job is found and the job is
signed on.

c) Mama control cards are scanned and when a translator is necessary the
first record for that translator is read into core and control is given
to the translator. The translator carries out its function and returns
to the low core package.

d) The low core package again reads in and gives control to the monitor
record.
Steps c) and d) are repsated until a $BIN.QRY card, a $DATA card or an
end of file is detected. During these steps and if execution is legal,
any binary output fron translation i s stacked on the execution tape
(logical tape 3) . Bi-nciry cards contained in the job deck are simply
transfered to the execution tape if they are not preceded by the
$BINARY control card.

e) When a $DATA card, a $BINARY card or an end of file is dastected, a check
is made to see if execution is legal. If execution is not legal then
the job is terminated. Execution is legal if it was requested and if no
error was detected by the monitor and translators as the job deck was
processed.

f) If execution is legal, control is passed to the loader which loads a - ~ y
binary program decks which may have followed a $BIN-LQY card, then the
execution tape is loaded, and finally any other routines which are
necessary and available from the library.

g) Execution of the program beg ins . Execution i s usually terminated by
calling SYSTEM or ERROR subrnlJLines in the low core package, or by
trying to read morc data than -?as lncluded in the job deck.

3.6-2

Low Core Package (10s)

10s consists of many subroutines which are used primarily by MAMOS
executive routines and the library' routines to accomplish input-output.
A stripped down version of 10s could be useful for other applications under
other monitors.

There are two 110 unit tables in IOS, and storage is set aside for
saving an 110 table temporarily. The master 110 unit table consists of the
standard 110 unit definitions, and the working 110 unit table consists of the
current unit definitions as the job is processed.

Both unit tables consist of entries of the form PZE SYSUNi or MZE
SYSUNi for each logical number which is defined, where SYSUNi is a standard
IBSYS unit name. A table of the current master 110 units is given below.

The working 110 unit table is usually identical to the master 110
unit table. However, the working table may be saved by a subroutine, the
definitions may be altered in the working table, and when the desired 110
is completed, the saved table may be restored.

There.are three subroutines which automatically do single record
buffering. These routines are used almost exclusively for (1) reading the
input tape (SYSIN1 5: logical tape 7), (2) writing the output tape (SYSOUl =
logical tape 6) , and (3) writing the punch tape (SYSPP1 = logical tape 5) .
These self-buffering routines may, with care, be used for readinglwriting
of other logical units by altering the working 110 unit table.

There is a fixed communication region in 10s starting at octal
location 3720. Most of the values in this region are defined in the system
symbol table of UMAP and are available to UMAF' codes through use of the
pseudo-operation SST. All of the low core subroutine entry points are
included in the system symbol table.

Most of the subroutines of 10s are available to relocatable codes
such as programs through a library subroutine which connects relocatable
calls to the low core subroutines.

3.6-3

LOGICAL 1/0 UNITS FOR MASTER TABLE

Logical Number IBSYS UNIT - Use

1
2
3
4
5
6
7
8
9
10
1 1

SYSLBl
SYSUT 1
SYSUT2
SYSuT4
SYSPP1
SYSOUl
SYSIN1
SYSLB2
SYSUT3
SYSCK;!
SYSCKl

Sys tem
Scratch
Execution
Intermediate 1
Punch
output
Input
Library if desired
Intermediate 2
Available
Available

Tapes 10 and 1 1 are not normally used by the system so with the
library on SYSLB1 it is possible to operate "OS with a minumum of 8 tapes.
However, best operation is achieved when the library is the first file on
SYSLB2.

If desired, logical tape 5 may be assigned to SYSOU1 rather than
to SYSPP1. In this case, the routine which prints SYSOU1 must handle
mixed mode records. Print information is in BCD mode and punch information
is in binary mode.

3.6-4

SUBROUTINES FOR NON-DATA SELECTS

The following routines are used for non-data reference to logical
tape numbers 2, 3, 4, 9 , 10, and 11. They may be used to refer to logical
numbers 1 , 5, 6, 7, and 8 but before doing so, a special cell in 10s must
be set non-zero for each reference. This cell is called SOK567 and is in
octal location 4040. Reference to illegal logical numbers results in the
printing of a message and termination of the job.

In the following calling sequences N is the logical tape number, and
except when specified differently, return is always to the second instruction
following the TSX.

Calling sequences

Rewind tape N
TSX REWTAP, 4

Backspace tape N one record
T SX BSRTAP, 4
TIX O,O,N

Rewind and unload tape N
TSX RUNTAP,4
TIX 0.O.N

Backspace tape N one file
TSX BSFl'AP,4

Write end of file on tape N
TSX WEFTAP,4

Set tape N to low density
TSX SETLOW,4

Set tape N to high density
TSX SETHIH, 4
TIX O,O,N

TSX SKPREC,4
TIX M,O,N

Skip M records on tape N

Skip M files -on tape N
TSX SKPFIL, 4
TIX M,O,N

Check activity of tape N
L TSX CHEKI0,4

If TfO and tape N is inactive then control goes to T.

If TfO and tape N is active then control is immediately returned to
L+2.

3.6-5

Note: Skipping of files and records is overlapped, so computing (and 110
on channels different than the one which N is on) may go on while
the skipping is done.

DATA SELECT SUBROUTINE

Except for some system record reading and non-data selects, all
1/0 is accomplished under "OS through use of a select routine with four
entries. The four entries are for read and write in both BCD and binary
modes .

The routine is quite useful for programs which require special input
output. Also, 110 buffering routines may be easily written through use of
this select routine. An important feature of the routine is that it may be
called at trap time.

The input output is accomplished exclusively through use of IOEX, but
the user need not know IOEX.

Calling Sequence

TSX XXXXXX,4
TIX EOR,O,N
T IX L(IOC) , W, ETT
T IX EOF, T, RTT
Return

XXXXXX = RDSBIN for reading binary records.
= RDSDEC for reading BCD records.
= WRSBIN for writing binary records.
= WRSDEC for writing BCD records.

- Use

N = the logical tape number to be read or written.
wfo if it is desired to wait until the 1/0 operation is completed before

TfO if only one try is desired for reading even though the

EOR, ETT, EOF, and RTT are trap time exits to the user's routines. h y

returning to the caller.

record may be redundant.

or all of the exits may be zero.

A user's exit must be to a routine which may set switches etc., and then
return by means of a TRA 1,4.

L(I0C) = the location of the first of a block of 110 commands. Up to 10
comands are allowed. If more than 10 commands are necessary then at
least one of the first eleven must be a TCH command.

The 110 connnands must terminate with a command which causes a channel
interrupt, i.e. the last command must be a IOXT.

The first ten of the 1/0 comands are moved to storage within the
select routine so the original block at L(I0C) may be modified immedia-
tely upon return from the select routine.

3.6-6

IQCP O,O,O (IOBP in W)
IORT O,O,O (IOBT in UMAP)

However, if only the second of the above two commands was used then
there would be a noise indication if writing.

Users Exits

EOR, ETT, EOF, and RTT, if non-zero specify entries to subroutines coded
by the user. Each of these subroutines must carry out its desired function
and return by means of a TRA 1,4.

An entry to a user's routine is made at trap time, i.e. when an interrupt
condition occurs due to channel command trap, a redundant read or write,
detection of an end of file in reading or detection of the end of tape in
writing.

entry to a user's routine the following information is available.

a) The address of the accumulator contains the number of words read or
written by the channel command just completed or in use at time of
interrupt.

b) The decrement of the accumulator contains the logical number of the
unit in use at time of interrupt.

c) Index register 2 contains the channel number of the channel which
causes the interrupt. Channel A = 1 and Channel B = 2.

d) Index register 1 contains the two's compliment of the address of
the cell which has the result of a store channel instruction at time
of interrupt.

Restrictions on the User's Routine

1) The user's routine must exit by means of a TRA 1,4.

2) For efficient 1/0 the user's routine should not be time consuming.

3) Only one of the user's routines is entered for a single trap. The
order of checking for an exit is as follows:

READING WRITING

End of file exit (EOF) End of tape exit (ETT)
Redundancy exit (RTT) Redundancy exit (RTT)
End of record exit (EOR) End of record exit (EOR)

3.6-7

4) If no ETT exit is supplied for writing and the end of tape is en-
countered, then 2 end of files are written on the tape, the tape
is rewound and unloaded, an on-line message is printed for the
operator and the machine pauses for a fresh tape. Then a check
for RTT and EOR exits will be made. None of the above actions are
taken if there is an ETT exit.

T SX CHEKIO, 4
TIX T,O,N

T is non-zero. If T is zero, and logical unit N is active, then
an endless wait will occur.

6) Index registers 1 and 2 , the AC, MQ, and indicators need not be saved
by the user's routine.

7) Calls to REWTAP, BSRTAP, RUNTAP, BSETAP, WEETAP, SETLOW, SETHIH, SKPREC,
SKPFIL, RDSBIN, RDSDEC, WRSBIN, and WRSDEC may be issued by a user's
trap time routine, but only for a~unit on the same channel on which the
trap occurred.

8) Storage is allocated for several blocks of 1/0 commands and parameters.
One of these blocks is reserved whenever a logical unit is active. It
is possible (if there is not one block per logical unit) that a block will
not be available when activity is required. A data select at non-trap
time causes no trouble because an automatic wait for a free block will
occur. However, at trap time there may not be more than one block avail-
able and no more than one data select should be issued without insuring
there is an available block.

Restrictions 7) and 8) above may be overcome by means of a special
trap time routine which may be called by the user's routine. The calling
sequence is as follows:

L TSX ISITOK,C
L + l TU[BUSY,O,N

Control will return to L+2 if it is permissible to select logical unit
N. Control is returned to ,location BUSY if (1) logical unit N is on a
channel different from the one for which the trap occurred or (2) logical
unit N is busy or (3) there is no storage block for 1/0 commands.

On entry to ISITOK, it is assumed that the accumulator contains what
it had at the time the user's routine was entered, since the logical
unit number in the decrement of the accumulator is used in determining
if the channel which N is on is the same as the'one for which the trap
occurred.

3.6-8

I f ISITOK is t o be en te red more than once , t hen t he s econd o r g rea t e r
e n t r y may be made t o ISIT11 r a t h e r t h a n ISITOK and the accumulator as
s a v e d o n t h e f i r s t cal l w i l l be used.

It is a lways pe rmis s ib l e t o r e - se l ec t t he l og ica l un i t fo r wh ich
t h e t r a p o c c u r s , a n d f o r t h i s t y p e o f u s e t h e r e i s no requirement
t o c a l l ISITOK.

The r e s t r i c t i o n on 110 conrmand s torage blocks could be completely
removed by al locat ing (by assembly parameter) one block per def ined
l o g i c a l u n i t , b u t s i n c e 10s i s l i m i t e d i n i t s a v a i l a b l e s t o r a g e t h e r e
can only be from 5 t o 8 blocks. However, i t i s seldom t h a t more than
5 u n i t s a r e i n u s e a t any one time.

3.6-9

READ INPUT TAPE SUBROUTINE

This subroutine has two entries and is used for reading of the system
input tape SYSIN1, which is logical tape 7 under " 0 s .

Calling sequences

L TSX SCARDS,4 or TSX SPEEK,4
L+l T I X A,O,EOF TIX A,O,EOF
L+2 Return Return

Use

Entry to SCARDS causes the next record on logical tape 7 to be stored
in locations A, A+1,. . . , A+j-1 where j=14 if the record is BCD and j=28 if the
record is binary. Also, filling of the buffer is initiated and then control
returns to L+2. On return, the AC will be zero if the record following the
one just transmitted is BCD. The address portion of the MQ will contain 14
if the record transmitted was BCD and will contain 28 if the record transmitted
was binary.

Entry to SPEEK is the same as to SCARDS except the initiation of filling
the buffer is omitted. Hence, one may "take a look" at an input record
before reading it.

If the next record on the input tape is an end of file and EOF=O then
a message is printed and the job is terminated. If EOFfO and an end of file
is detected then control is sent to location EOF. Handling of end of file
exits is the same for both entries SCARDS and SPEEK.

Single record buffering is automatically started on the first call, and
also when the subroutine is called after an end of file is read.

The subroutine will not handle blocked input, and expects look ahead
words as follows:

Word 14 of a BCD record =(XXXX60606060)~ or (XXXXOOOOOOOO)8 if the next
record is BCD.

Word 28 of a Binary record =(OOOOOOOlOOOO)8 if the next record is BCD.

If SPEEK is called, the look ahead bits are transmitted with the
record. If SCARDS is called then look ahead bits in BCD records are replaced
by blanks, and look ahead bits in binary records are replaced by zeros.

'Noise records are ignored. Records which are permanently redundant
are accepted as read the last time. The number of tries before calling a
record permanently redundant is an assembly parameter of IBSYS.

3.6-10

WRITE OUTPUT TAPE SUBROUTINE

T h i s s u b r o u t i n e is u s e d f o r w r i t i n g of t h e system ou tpu t t ape SYSOUl
which i s l o g i c a l t a p e 6 under "OS. It does s ing le record buf fer ing of BCD
r e c o r d s o f l e n g t h n o g r e a t e r t h a n 22 words.

Cal l ing sequence

L TSX SPRINT, 4
L+l T I X A , O , K
L+2 Return

- Use

E n t r y t o SPRINT causes K BCD words (o r 22 words i f K > 22) to be
w r i t t e n i n BCD mode on the output tape SYSOUl as one record. The words are
t aken f rom loca t ions A , A + l , . . . , A+K-1 and t r ans fe r r ed t o an ou tpu t bu f fe r fo r
p r i n t i n g . C o n t r o l r e t u r n s t o L+2.

During execution, SPRINT e x a m i n e s t h e f i r s t c h a r a c t e r i n o r d e r t o k e e p
t r a c k o f t h e number of pages being printed.

The fol lowing characters have meaning for the purpose of page count ing.

Character Meaning

1
2
4
6
8

b l a n k , o r 9
0

+

-

Skip t o new page.
Skip to middle of a page.
Sk ip t o nex t fou r th o f a paze.
S k i p t o n e x t s i x t h o f a page.
Same as 6.
Suppress space.
Single space.
Double space.
T r i p l e space.

A l l o t h e r c h a r a c t e r s are t r e a t e d as blank by SPRINT in count ing of pages.

I f t he s t anda rd , o r e s t ima ted page coun t i s exceeded during execution,
t hen a message i s p r i n t e d a n d t h e j o b i s terminated. A page i s cons ide red a s
60 p r i n t e d o r b l a n k l i n e s .

WRITE PUNCH TAPE SUBROUTINE

Th i s sub rou t ine has two e n t r i e s a n d i s u s e d f o r a l l w r i t i n g of t he
system punch tape SYSPP1, which i s l o g i c a l tape 5 under "OS. It d o e s s i n g l e
r e c o r d b u f f e r i n g of b inary records , 28 words per record. BCD information i s
r o t a t e d t o b i n a r y b e f o r e w r i t i n g i t on t he punch t ape as a binary record.

Cal l ing sequence

L TSX SPUNCH,4 or TSX DPUNCH,&
L+1 TIX A,O,K T I X A,O,K
L+2 Return Re t u r n

3.6-11

Use -
E n t r y t o SPUNCH causes K binary words + (28-K) zero words (or 28 i f

K>28) t o be wri t ten on the punch tape SYSPP1 as a 28 word binary record. The
words are taken f rom loca t ions A , A+l,. . . , A+K-l a n d t r a n s f e r e d t o a n o u t p u t
b u f f e r f o r p r i n t i n g . C o n t r o l r e t u r n s t o L+2.

E n t r y t o DPUNCH causes K BCD words + (14-K) blank words (or 14 i f
014) t o b e r o t a t e d t o column binary form as 28 words. These 28 words are
t h e n writ ten on the punch tape SYSPP1 as one binary record.

I f , d u r i n g e x e c u t i o n , t h e s t a n d a r d o r e s t i m a t e d punched card count i s
exceeded, then a message i s pr in ted and the job i s terminated.

SUBROUTINES USED WITH BUFFERING ROUTINES

The fo l lowing rou t ines are used in conjunct ion wi th the buf fer ing sub-
r o u t i n e s SCARDS, SPEEK, SPRINT, SPUNCH, and DPUNCH.

Cal l ing sequences

TSX ENDCDS, 4 o r TSX ENDPNT, 4 o r TSX ENDPCH,4
Re t u r n Return Re t u r n

The above en t r ies cause unbuffer ing of l o g i c a l t a p e 7 o r 6 o r 5 . These
e n t r i e s must be used before swi tch ing log ica l un i t s assoc ia ted wi th the
b u f f e r i n g r o u t i n e s .

TSX REWCDS,4 o r TSX REWPNT, 4
Return Return

The above en t r i e s cause l og ica l t a p e 7 o r 6 t o be unbuffered and
rewound.

one

one

t o

o f

TSX BSRCDS, 4
Return

The above en t ry causes log ica l t a p e 7 t o be unbuffered and backspaced
record.

TSX BSFCDS,&
R e t u r n

The above en t ry causes log ica l t ape 7 t o be unbuffered and backspaced
f i l e .

T SX NXFCDS ,4
R e t u r n

The above en t ry causes log ica l t ape 7 t o be unbuffered and one f i l e
be skipped.

TSX WEI?Pm,&
Return

The above e n t r y c a u s e s l o g i c a l t a p e 6 t o be unbuffered and an end
f i l e t o b e w r i t t e n o n l o g i c a l t a p e 6.

" -

3.6-12

1/0 UNIT TABLE SUBROUTINES

The following subroutines are used for saving, restoring, altering,
and initializing the working 1/0 unit table.

Calling sequences

1) Save the working 1/0 unit table.

TSX SAVTBL, 4
Re turn

2) Restore the previously saved 1/0 unit table.

T SX RETTBL , 4
Re turn

3) Alter the working 1/0 unit table.

T SX SETTAP, 4
TIX M,O,W
Re turn

A delay occurs until logical unit W becomes inactive, then logical
unit W is altered to become the actual unit associated with logical unit M
of the master 1/0 unit table.

4) Initialize the working 1/0 unit table.

TSX ORGTBL, 4
Return

The working 1/0 unit table is replaced by a copy of the master 1/0
unit table.

5) Delete logical unit N from working 1/0 table.

TSX VOID,&
TIX O,O,N
Re turn

This subroutine will cause logical unit N of the working table to be
illegal for use until its restoration by one of the above entries.

Example: Suppose during execution, it is desired to read logical tape 9
using the buffering routine SCARDS.

The following code would terminate buffering on the regular input
tape and alter the 1/0 table. Then after logical 9 had been read, the I/O
table would be restored to its previous condition.

3.6-13

T SX SAVTBL, 4 SAVE PRESENT TABLE
T SX ENDCDS, 4 UNBUFFER THE INPUT TAPE
TSX REWTAP, 4 REMIND THE NEW INPUT TAPE

T SX SETTAP,4 ALTER TABLE FOR NEW INPUT TAPE
T I X 0 , 0 , 9

T I X 9 , 0 9 7 * CODE USING LOGICAL 9 OF MASTER AS THE INPUT TAPE
* WHICH I S READ BY THE SUBROUTINE SCARDS.

T SX ENJXDS, 4
TSX RETTBL, 4

UNBUFFER THE NEW INPUT TAPE
RESTORE TO PREVIOUS TABLE

3.6-14

OCTAL CORE DUMP SUBROUTINE

Th i s sub rou t ine has two e n t r i e s a n d i s u s e d f o r t a k i n g o c t a l
dumps of a l l o r part of core s torage .

Cal l ing Sequences

L TSX SDUMP,4 o r TSX CDUMP,4
L+l TIX A,O,B TIX A , O , B
L+2 Return R e t u r n

The above en t r ies cause the core s torage b lock A,A+l, ..., B t o be
p r i n t e d i n o c t a l , 8 cel ls p e r l i n e . I f a l l 8 words for a l i n e are equal
a n d a l s o e q u a l t o t h e 8 t h w o r d o f t h e p r e v i o u s l i n e , t h e n t h i s l i n e i s not
p r i n t e d . I n s t e a d , o n e l i n e of per iods (.) i s pr in ted for each group of
c o n s e c u t i v e l i n e s whose words are a l l equal .

I f t h e SDUMP e n t r y i s u s e d t h e n e a c h p r i n t e d l i n e a l s o h a s t h e o c t a l
a d d r e s s o f t h e f i r s t word p r i n t e d a t the beginning of the l ine .

I f t h e C W M P e n t r y i s used t hen an oc t a l add res s i s p r i n t e d as f o r
S D W e x c e p t t h a t t h e a d d r e s s i s r e l a t i v e t o 1. That i s , t he addres ses
p r i n t e d w i l l be t he oc t a l equ iva len t o f 1,8,16,. . . .
SYSTEM RECORD READING SUBROUTINE

Th i s sub rou t ine i s used fo r r ead ing o f a l l sys tem records . E i ther
t h e select r o u t i n e (d e s c r i b e d p r e v i o u s l y) o r SYSLDR of IBSYS i s used i n
the r ead ing .

C a 11 ing Sequences

TSX SELRCD, 4
TIX I D , O , N

E n t r y t o SELRCD c a u s e s t h e r e c o r d w i t h i d e n t i f i c a t i o n I D t o be found
o n l o g i c a l t a p e N , t he r eco rd i s r e a d i n t o c o r e a n d c o n t r o l i s g i v e n t o t h e
s p e c i f i e d e n t r y p o i n t (ENTRY) of t he r eco rd . I f I D = 0 then the next system
r e c o r d o n l o g i c a l tape N i s r e a d r a t h e r t h a n s e a r c h i n g f o r a record wi th
m a t c h i n g i d e n t i f i c a t i o n .

R e s t r i c t i o n s

Logica l t ape N mus t be pos i t i oned w i th in t he f i l e con ta in ing t he
d e s i r e d s y s t e m r e c o r d , a n d i f a backwards search i s n e c e s s a r y t h e n t h e f i l e
should end wi th a dummy sys tem record which has an ident i f ica t ion number of
(77777)8 . System records within a f i l e shou ld have consecu t ive i n t ege r s a s
i d e n t i f i c a t i o n so t h a t backward searching may be done correct ly .

-

3.6-15

System Records

The form i s as fol lows:

Word Contents

1 IOCP
2

RECNMX, 0 , l
B C I 1 ,NAME

3 I OCP RECIDN, 0 , l
4 P ZE I D
5 IOCP SYSTRA, 0 , l
6 TRA ENTRY
7 IOCP A1 ,O,N1

[Nl words]

RECNMX = (4061)

RECIDN = (4060)8

SYSTRA = (

8

This type o f sys tem record i s used fo r a l l "OS records on the IBSYS
ope ra t ing sys t em t ape (s) .

ON-LINE PRINT SUBROUTINE

Th i s sub rou t ine i s used to p r in t on - l ine messages fo r t he ope ra to r s .

w i n g sequence

T SX ONLINE, 4

Return
TIX A,O,M

PAUSE SUBROUTINE

A l l pauses under " O S are done by g i v i n g t h e i n s t r u c t i o n TSX .PAUSE,4.

.PAUSE g o e s t o t h e IBSYS subrou t ine (PAUSE where the machine stop occurs.
I t i s v e r y i m p o r t a n t f o r a l l mach ine s tops du r ing execu t ion t o occu r i n (PAUSE
s o execu t ion time w i l l not be counted while the machine i s ha l t ed .

3.6-16

FLOATING POINT TRAP ROUTINE

This routine has one entry (.FTRAF') and handles all floating point
traps under " 0 s . Cell 8 is initialized with a transfer to the floating
trap routine at the beginning of each job.

Overflow in any floating point operation is always considered fatal
and the job is terminated.

Underflow in the least significant half of the result of a floating
point operation is always set to zero and is not considered an error.

Underflow in the most significant half of the result of a floating
point operation is either treated as a fatal error, or set to zero and
ignored. The treatment of this condition depends on a switch which may be
set by the programer.

If it is desired to ignore high order underflow then a TSX FTRAP,4
should be given.

If it is desired to treat high order underflow as a fatal error, then
a TSX NTRAP,4 should be given.

The routine at the beginning of the job is always set to treat high
order underflow as a fatal error.

When an overflow/underflow is determined to be fatal, a message is
printed describing the type of error, and the location of the floating point
operation which caused the error, then the job is terminated.

TRACE ROUTINE

If the $SUBTRACE specification is used for a job, then the loader
links all subroutines it loads to the low core routine STRACE.

There is an on-off switch in STRACE. If the switch is 'on" and
if $SUBTRACE was used then each call to a subroutine produces a line of
printed output which gives the name of the subroutine called and the loca-
tion from which it was called.

The switch in STRACE is set to "on' at the beginning of each job,
but during execution the switch may be set "on" or "off" by means of
library subroutines.

A few of the subroutine calls generated by the MAD compiler for
arithmetic functions are not included in a subroutine trace print out.

3.6-17

LOGICAL, TO ACTUAL UNIT SUBROUTINE

This subroutine gets the actual unit corresponding to a specified
logical unit.

- Calling sequence

T SX GETNAM, 4

Re turn
TIX O,O,N

The actual unit which corresponds to logical unit N is converted to BCD
and returned in the logical accumulator. For example, if the actual unit
were A3 then the BCD word A30000 would be returned.

ERRONEOUS TRANSFER ROUTINE

Just before execution of a job is begun, all unused core is filled
with the instruction TSX SCATCH,4.

An erroneous transfer to one of these cells causes a message to be
printed and the job to be terminated.

The octal equivalent of this transfer instruction is 007400403771.

END OF JOB ENTRIES

All jobs terminate by going to the low core entry called SYSTEM. Entry
to SYSTEM causes the current job to be terminated and the next job is then
processed.

Another entry to low core which terminates a job is called ERROR and
the only difference between ERROR and SYSTEM is that the ERROR entry causes
any requested dumps to be taken before transfering to SYSTEM.

TRANSLATOR ENTRY

All translators terminate by sending control to the low core entry
called TRANXT. Entry to TRANXT causes the monitor record to be read into
core and control goes to the monitor with an indication that a translator has
just completed its function.

3.7-1

3.7 THE lJ?iA? ASSEKBLY PROCRAM UNDER " 0 s

U&fAP under " I S i8 a modified varaion of UMAP (University of Michigan
Assembly Program) dweloped by th? Univorsity of Michigm, UHAp and FA^ (under
the FORTRAN 11 Monitor) aro very rimilar and many programa written for UMAP
would a180 be compatible with FAP.

Major modification8 and addition8 to UMAP (as recdved from the Univer-
sity of Michigan) to produce the UHAP under " O S are an follower

Blocked input capability so UMAP accepts blocked input of the type
produced by the FAP assembler under FORTRAN I1 Monitor.

All 7090/7094 machine instructiona, except those noted at the end of
the section, were made available.

The 'EVEN' pseudo-operation was put into UMAP so the 7094 double preci-
sion instructions could be used.

Several pseudo-operations were put into UMAP to provide more compatibil-
ity between PAP and UMAP.

The prograxmner already familar with FAP may turn to the end of the
section where differences between FAP and UMAP are given.

Moat of the following description of UMAP under "OS is taken from
the write-up of the University of Michigan Executive System.

0

3.7-2

INTRODUCTION

UMAP is an assembler, as opposed to a compiler such as 'MAD'. The exact
meanings of such terms are difficult to state, but basically the difference between
a compiler and an assembler is in the 'level' of the source language--the source
language of an assembler is closely related to the computer command structure,
whereas the source language of a compiler resembles the technical notation in which
problems are stated by human beings. Inherent in this difference is the fact that
while an assembly language provides a programmer with a maximum degree of flexi-
bility in constructing a program, it also requires a rather complete understand-
ing of the computer itself and its manner of operation.

A 7090/7094 machine-language program is a sequence of 36-bit binary
numbers which represent both the machine instructions necessary to perform the
desired task and the data to be operated upon. Working in such a language
entails rather obvious hardships upon a programer. For this reason, symbolic
languages are usually used to communicate with a computer. A symbolic-language
program is, then, merely a representation of a machine-language program in a form
more convenient for human beings. Use of a symbolic language, however, requires
that a translation from this language to machine-language be performed before a
program may be run on a computer--this is the process of assembling or compiling.

Thus, UMAP accepts as input a program written in a specified symbolic
language and produces the equivalent machine-language program as its output.
The term 'UMAP' is used both as the name of the symbolic-language and as the name
of the program which translates this symbolic-language into machine-language.

The purpose of this section is to describe the symbolic-language
which the UMAP assembler will accept as input. It is assumed that the reader
is familiar with such concepts as 'relocatable' program, 'PROGRAM COMMON' or
'ERASABLE' storage, and 'program card' which are not described here as far as
their function in a program is concerned. This section describes only the manner
for obtaining such quantities in a I" program.

r
3.7-3

In translating a program, UMAP processes the source deck twice--PASS
1 and PASS 2. In PASS 1, all operation codes are analyzed and deciphered.
The machine version of the operation code is preserved for PASS 2 processing.
Almost all symbols are found and defined on PASS 1. See the sub-sections on
symbol definition and PASS 2 symbol dfinition. The information for the pro-
gram card (ERASABLE and PROGRAM COMMON storage, program length, number and name
of all subroutines called, and the names and locations of all entry points) is
gathered and the transfer vector is formed. Machine instructions and certain
pseudo-ops are scanned completely on PASS 1 to find all literals, all occurences
of the /TV/ qualifier, and, in the case of some pseudo-ops, to define the
location field symbol. Those pseudo-ops which require processing on PASS 1
are examined and the appropriate action taken . Finally, each card is placed on
an intermediate tape along with its deciphered operation code, flags pertaining
to PASS 1 errors, and information obtained during PASS 1 processing.

Between passes, the program card is generated and the transfer vector
is constructed. The symbols defined on PASS 1 are re-evaluated in terms of the
length of program comon and the transfer vector. The program card and transfer
vector are printed to initiate the printed listing of the program.

In PASS 2 the program is read from the intermediate tape and final pro-
cessing is performed. Each card is analyzed and appropriate action taken. If
the card produces machine words, these are printed (in the octal number system)
on the listing, along with the original card. Also, if execution of the program
is expected, these binary words are placed on a tape to await the execution phase.
If an object deck is requested, these binary words are placed on an output
tape to be punched as binary cards. Some symbols are defined on PASS 2 if necessary.
See the PASS 2 symbol definition sub-section. All symbol definitions are checked.
If the PASS 1 and PASS 2 definitions don't compare an error flag (P flag) is pro-
duced on the listing. Whenever an error is found in processing, an appropriate
error flag is printed in the listing along with the card. See the sub-section on
error flags.

After PASS 2 processing is completed, certain additions are made to the
listing. Multiply-defined and undefined symbols are listed, reference tables
for all defined symbols and for all literals are printed, and an assembly statistics
table is printed.

SYMBOLS

A symbol is a
which is non-numeric,
characters--

+ *
9

string of one to six non-blank characters, at least one of
and none of which is among the following set of 'break'

PLUS - MINUS
ASTERISK / SLASH
COMMA = EQUAL

(LEm PARENTHESIS) RIGHT PARENTHESIS

. . -. , ,

3.7-4

SYMBOLS (Continued)

Symbols are used as names for memory locations and program parameters. Due
to the right justification of symbols (with leading zeroes) during UMAP pro-
cessing, symbols may not start with a zero. For example, the following are
legal symbols--

A

SYMBOL

12AB3

SYMBOL DEFINITION

Symbols are normally defined on PASS 1 of UMAP, but, in certain con-
ditions, definition may occur on PASS 2. By 'definition' of a symbol is meant
an assignment of a numerical value and a mode to the symbol. There are three
possible modes for symbols--erasable, relocatable, and absolute. An absolute
symbol is one which refers to a fixed number; one which is invariant to where,
in memory, the program is located. An erasable symbol is one which is assigned
to erasable storage through use of the 'ERAS' or 'ERLIST' pseudo-ops. Relocat-
able symbols are symbols whose values are dependent upon where, in memory, the
program is located. These symbols always refer to storage locations in relocat-
able programs. In an absolute assembly, all symbols are absolute. Symbols are
defined after they have occurred in the location field of a machine instruction,
in the location field of certain pseudo-ops (e. g., 'CALL' and 'VFD'), after
the /TV/ qualifier, as the name of a subroutine in a 'CALL' or 'CALLIO', or in
the variable field of certain pseudo-ops (e. g., 'ZERO', 'ASSIGN', 'EXTERN', and
'ERLIST'). A symbol is normally defined once only in a given program.

PASS 2 SYMBOL DEFINITION

A certain limited amount of PASS 2 symbol definition may occur in UMAP
in connection with the 'EQU', 'BOOL', 'SET', and 'SYN' pseudo-ops. Normally
these pseudo-ops define symbols in their location fields as the equivalence of
their variable field expressions on PASS 1. If, however, the variable field is
undefined on PASS 1 , then the location field symbol remains undefined until the
card is encountered again on PASS 2. At this time, if the variable field is
now defined, the location field symbol is defined. Note that this makes possible
the situation in which a symbol is undefined for part of the assembly and defined
for the rest of it. In connection with this, it should be noted that literals
are undefined on PASS 1 , so that if one writes

A EQU =15

A is undefined until this 'EQU' card is encountered on PASS 2.

r
~

' 3.7-5

ELEMENTS AND TERMS

An mlmmmnt i8 mither a .ingle integer le88 than 235 or a single
symbol, either po88ibly preceded 'by onm or more qualifiers. An absolute,
relocatable, or erarable 8ymbol i8 regarded, rerpectively, as an absolute,
relocatable, or era8rble element. An '*I appearing as an element (not as an
operator) ha8 the mmaning 'pre8ent location'. In a relocatable program, an
'*I am an element i8 a relocatable element. In an absolute assembly, it is
an absolute element. Thur, the statement

ALPHA TRA *+5
is the rame ar

ALPHA TRA ALPHA+5
An integer is always an absolute element.

A is a string composed of elements and the operators

* for Multiplication and

/ for Division.

A term may consist of a single element, two elements separated by '*I or ' / I ,

three elements separated by two operators, etc. A term must begin with an
element and end with an element. Two operators may not occur together, nor
may two terms occur together. For example, the following are all terms.

ABC

A/ 3*C

ARITHMETIC EXPRESSIONS

An arithmetic expression is a string composed of terms separated by
the operators

+ for Addition and

- for Subtraction.

An expression may consist of a single term, of two terms separated by '+I or
'-*, of three term8 separated by two operators, etc. Two operators may not
occur together, nor may two terms occur together, but an expression may begin
with an operator. No parenthenization is allowed in expressions, Examples of
expressions are

31
OHEOY
x1+2-1
-29
AB1 -AB2+5

3.7-6

EVALUATION OF ARITHMETIC EXPRESSIONS

An arithmetic expression i s evaluated as follows. First, each
element is replaced by its numerical value. Second, each term is evaluated
by Performing the indicated multiplications and divisions from left to right,
in the order in which they occur. In division, the integral part of the
quotient is retained, and the remainder is discarded. For example, the value
of the term '5/2*2' is 4. In the evaluation of an expression (or any part of
it), division by zero is regarded as an error. Third, the terms are combined
from left to right in the order in which they occur. If the result is negative,
if5is replaced by its two's complement. Finally, the result is reduced MODULO
2 (except in the variable field of a 'VFD' pseudo-op). All evaluations are
done with full-word arithmetic (i. e., 36-bit signed arithmetic), the final
result is truncated to the proper length. An expression is UndefFZv if any
part of it is undefined, or if any error occurs in evaluating it. An undefined
expression has the value zero.

INTEGER CONVERSION MODE

At the beginning of an assembly, UMAP assumes that all integers en-
countered are in decimal mode. This conversion mode may be altered for large
segments of the program (a change in the global conversion mode), or for a
single card or part of a card (a change in the local conversion mode). Local
mode changes may be made through usage of a qualifier or by punching an '8'
or '0' (zero) in column 7. (An '8' in column 7 is equivalent to a /K/ before
the location field, while a '0' in column 7 is equivalent to a /D/ before the
location field). Local changes are reset before the next card is processed.
The global mode is always reset between cards to whatever it was before the
last card. The global mode may be modified through usage of the 'SAK',
'OCTMOD', or 'DECMOD' pseudo-ops. When octal mode is in effect, the occurrence
of a decimal integer will cause an expression to be treated as an undefined
expression. The integer conversion mode in effect applies to integers in all
fields of a card.

BOOLEAN EXPRESSIONS

An expression is Boolean if and only if

(1) It forms the variable field of a 'BOOL' pseudo-op, or

(2) It forms a Boolean subfield of a 'VFD' pseudo-op variable field, or

(3) It follows the Boolean qualifier (/B/), or

(4) It forms the variable field of a Type-D machine instruction. The
Type-D machine instructions are 'SIL', 'SIR', 'RIL', 'RIR', 'IIL',
'IIR', 'LNT', 'RNT', 'LFT', and 'RFI', and the extended sense
indicator instructions 'SIB', 'RIB', 'IIB', 'BNT', and 'BFT'. Note
that for the Type-D instructions Boolean mode is automatically set
for the variable field evaluation. Boolean expressions and symbols
are further defined as left-Boolean or right-Booolean (See the 'BOOL'
pseudo-op and the '/L/' qualifier).

r
-

3.7-7

- Exclusive or

* And

/ One's complement

The bit relations which hold for these Boolean operations are as follows.

o+o = 0 0-0 = 0 o*o = 0 /o = 1

0+1 3 1 0-1 = 1 0*1 = 0 / l = 0

1+0 f 1 1-0 = 1 1+0 = 0

1+1 = 1 1-1 = 0 1*1 = 1

Although I / ' is usually an operation involving only one operand (a unary
operator), by convention 'A/B' is taken to mean 'A*/B'. The table for ' / '
as a binary operator is as follows.

o/o = 0

011 = 0

1/0 = 1

l/l = 0

Note that due to the fact that the ' / ' may occur either as a unary operator
or a binary operator while the '/L/' qualifier is legal in Boolean expressions,
there is one special case which is indeterminate which may arise in Boolean
expressions. This occurs when 'L' is defined as a symbol and occurs in a
Boolean expression preceded by a unary I / ' and followed by a binary I / ' (e. g.,
'A+/L/B'). This difficulty is easily circumvented by not using 'L' as a
symbol or by writing the binary ' / ' as a unary ' / ' (e. g., 'A+/L*/B'). When-
ever the indeterminate case arises, UMAP assumes the '/L/' portion of the
expression represents the left-Boolean qualifier. Other conventions in Boolean
fields are as follows.

+A = A+ E A
-A = A- = A
A = A 3 0
A/ = A
+ = o - P O
* = o
/ = 7777777777778

The above tables and conventions define the four Boolean operations for one-
bit quantities. The operations are extended to 36-bit quantities by the rule
that each bit-position is treated independently.

3.7-8

EVALUATION OF BOOLEAN EXPRESSIONS

A Boolean expression is evaluate as follows. First, all integers are
taken as octal and must be less than 2 38 . Second, the operations I*' and
are carried out from left to right, all quantities being regarded as having 36
bits- Third, the operations '+' W d ' - 8 are carried Out from left to right, all
quantities being regarded as having 36 bits. The right-most 18 bits are pre-
served* The left-most 2 bits are dropped except in the variable field of a
IVFD' Pseudo-oP. b Y use of a relocatable or an erasable symbol in,a ~~~l~~~
expression constitutes a Boolean error ('B' flag.) Since only the /L/
qualifier is legal in a Boolean expression, once Boolean mode is entered in a
subfield it cannot be turned off. A Boolean expression is a left-Boolean ex-
pression if a '/L/' occurs anywhere in it, or if a left-Boolean symbol occurs
anywhere in it. Otherwise, a Boolean expression is a right-Boolean expression.

MODES OF EXPRESSIONS

In addition to evaluating expressions, UMAP must also decide for each
expression whether its mode is absolute, relocatable, or erasable. This is
necessary in order to assign the proper relocation indicator bits for the infor-
mation of the loader. The rule by which this decision is made is unavoidably
complex, but fortunately expressions normally assume rather simple structures.

Before describing the general rule for determining the mode of an
expression, a list of the more commonly used simple rules and the commonly made
errors will be given. These should give some insight into the meaning of the

rule. The following simple rules may be stated.

A relocatable element is a relocatable expression.

A relocatable element plus or minus an absolute element is a relocatable
expression.

An absolute element is an absolute expression.

~ n y expression containing only absolute elements is an absolute
expression. (Thus, a Boolean expression has absolute mode.)

The difference of two relocatable elements is an absolute expression.

An erasable element is an erasable expression.

An erasable element plus or minus an absolute element is an erasable
expression.

The difference of two erasable elements is an absolute expression.

The following errors are quite commonly made in writing UMAP expressions. All
of these are relocation errors ('R' FLAG).

(1) The negative of a relocatable element.

(2) The negative of an erasable element.

3.7-9

(3) An absolute element minus a relocatable element.

(4) An absolute element minus an erasable element.

(5) The sum of two relocatable elements.

(6) The sum of two erasable elements.

(7) The sum of a relocatable element and an erasable element.

(8) The product of two relocatable elements.

(9) The product of two erasable elements.

(10) The product of a relocatable element and an erasable element.

A precise rule will now be given which applies to all expressions,
however complicated. First, discard any term which contains only absolute
elsnents. Then examine each remaining term of the expression. If any term
contains more than one relocatable element, more than one erasable element,
or one relocatable element and one erasable element, then the expression is
a relocation error. Also, if in any term the character '/I follows the
occurrence of a relocatable element or of an erasable element, then the ex-
pression is a relocation error. If the expression passes these tests, then
do the following. Replace each relocatable element by an 'R', each erasable
element by an 'E', and each absolute element by its value. This yields an
expression in R and E with constant coefficients. Evaluate the expression as
in normal algebra. Then, if the result is R, the expression is relocatable.
If the result is E, the expression is erasable. If the result is numeric, the
expression is absolute. Any other result indicates a relocation error.

Let R1 and R2 be relocatable symbols and N be an absolute symbol.
Then consider the expression

N*R1 -R2+3*N-2

Following the above procedure, eliminate all absolute terms, leaving

N*R1 -R2

These terms contain no error. Then replace with R and get

N*R-R

If N has the value 1 , this is an absolute expression, since l*R-R = 0. If
N has the value 2, this is a relocatable expression, since 2*R-R = R. For
any other value of N, this is a relocation error.

3.7-10

The expressions
**

and

Are often used to indicate an address or a decrement computed by the program
at execution time. Each of these is an absolute expression whose value is zero.

+-*

In an absolute assembly, all symbols, and hence all expressions, are
absolute. A relocation error is impossible in absolute assemblies.

UMAP CARD FORMAT

The following symbolic card format is used for UMAP instructions--

CARD COLUMNS FIELD NAME TERMINATION

1-6 Location Column 6

7

8- 14

Print, Integer
Mode Control

Operation

16-72 Variable

73-80 Card ID

Column 7

Blank

*

Blank
Column 72

Column 80

If the operation field is terminated by a blank, then the variable field
starts in the first non-blank column thereafter but before Column 17 . The
same is true if the operation field is terminated by an ' * I . If the opera-
tion field is terminated by a comma, then the variable field starts in the
column immediately following the coma. Finally, if the operation field
terminates with a left parenthesis, then the variable field begins with that
left parenthesis. The operation field always begins in column 8. Hence, in
light of the above conventions, it is possible for the variable field to begin
as early as column 8 or column 9 .

LOCATION FIELD (Columns 1 TO 6).

When UMAP translates a program into the binary equivalent program,
it assumes that storage locations are to be assigned consecutively starting
at zero. Thus, the programer need not worry about the actual assignment to
storage of his program. However, there are many instances in which the pro-
gram must refer to some part of itself - e. g., a transfer to some new
instruction which is not in sequence, or a reference to some storage location
reserved by the program. UMAP makes this referaice sasy by alla>wing use of
'symbolic' references within the program. If a particular instruction is to
be referenced from some other part of the program, a symbol may be placed in
its location field, and all references to the instruction may be made by means
of this symbol.

3.7-11

For example, in the instruction

ALP ST0 BETA

'ALP' is the location field symbol. To reference this instruction elsewhere,
the symbol 'ALP' may be used as follows:

TRA ALP

The symbol 'ALP' is automatically defined, by its occurrence in a
location field, as the equivalent of some machine location. Therefore, in the
translation process, whenever 'ALP' occurs in an expression it is replaced by
the numerical value which is the equivalent machine location. W p keeps a
list (The 'Symbol Table') of all symbols and their values, so that a programmer
may make all references in terms of symbols and is freed from the task of
machine location assignment.

The location field of a machine instruction should be blank if the
instruction is never referred to. The location fields of the various Pseudo-
ops will sometimes require symbols. This depends upon the particular pseudo-
op and its function.

If column 1 of the card contains an ' * I , then the card is assumed to
be a comment card. This card is printed out in the assembly listing but does
not otherwise affect the program.

If an integer occurs in the location field, then the value of the
integer (converted according to the prevailing integer conversion mode) is
used to reset the storage location counter (see the 'ORG' pseudo-op) before
the card is processed. This is normally used in override assemblies only, and
usually causes phase errors if UMAP is producing the program card for the
program.

A final convention which applies to location fields is that if a
I + ' or ' - I occurs in one, then the field is treated as all blank. This allows
the programmer to punch a count in the location fields of cards near one
bearing a location field symbol. This may be used to indicate that references
are made to the symbol plus or minus a constant. Thus, one might Punch

ALPHA CLA =7

+1 ST0 PAC

+2 ADD Z I P

Where elsewhere in the program there occurs

TRA ALPHA+P

3.7-12

P R m AND INTEGER MODE CONTROL (Colum 7)

OPERATION FIELD (Columns 8 t o 14)

Machine i n s t r u c t i o n s h a v e a unique operation code which is recognized
by UMAP. Whereas the symbol s appea r ing i n t he l oca t ion f i e ld are a r b i t r a r y , t h e
opera t ion codes are not . They mus t be those spec i f ied in th i s sec t ion . The sub-
s e c t i o n o n o p e r a t i o n c o d e s g i v e s a l l the codes which UMAP will r ecogn ize i n t he
opera t ion f ie ld . (Note , however , that through use of t h e 'OPSYN' pseudo-op and
MACRO d e f i n i t i o n s , t h e p r o g r a m e r may introduce new opera t ion codes .)

Ce r t a in ope ra t ion codes may use i nd i r ec t add res s ing . The convent ion in W p
is t o i n d i c a t e t h a t i n d i r e c t a d d r e s s i n g is d e s i r e d by appending an '*I t o t h e e n d
o f t he ope ra t ion code . I f an operat ion code has an '*I appended, but cannot be
i n d i r e c t l y a d d r e s s e d , a n 'I ' f l a g r e s u l t s .

I f an operat ion code occurs which is not recognized by UMAP, o r if
a n o p e r a t i o n c o d e is no t t e rmina ted p rope r ly , UMAP ignores the remainder of
t h e c a r d . The ca rd is t r e a t e d a s a 'BSS 1 ' and an '0' f l a g is given. (See,
however , the descr ipt ion of the 'NONOP' pseudo-op.)

o p e r a t i o n f i e l d may be l e f t b l a n k i f d e s i r e d . lJ" treats a
b l a n k o p e r a t i o n f i e l d t h e same a s a 'PZE'.

3.7-13

VARIABLE - .. FIELD (Column 16 t o 72)

The v a r i a b l e f i e l d h a s a var ie ty of uses depending upon the operat ion
code i nvo lved . Fo r ce r t a in p seudo-ope t he va r i ab le f i e ld is a l i s t of symbols
(e. g., 'ASSIGN', 'EXTERN'),, w h i l e f o r o t h e r s it is a l i s t of expressions (e.g. ,
'CALL', 'RE"), and f o r s t i l l o t h e r s it is a list o f da t a items (e. g., 'DEC',
(W', 'VFD'). The form and meaning of the var iable f ie ld for pseudo-ops is
d e s c r i b e d f o r e a c h pseudo-op later in t h i s s e c t i o n .

F o r m a c h i n e i n s t r u c t i o n s , t h e v a r i a b l e f i e l d i s u s u a l l y d i v i d e d i n t o
t h r e e s u b f i e l d s ; The a d d r e s s s u b f i e l d , The t ag sub f i e ld , and The decrement sub-
f i e l d . I n t h e 7090/7094 a word i s 36 b i t s , a n d t h e f o u r parts o f t h i s word
are as fo l lows .

PREFIX BITS 1-3
DECREMENT BITS 4-1 8
TAG BITS 19-21
ADDRESS BITS 22-36

For ce r t a in mach ine i n s t ruc t ions , an addres s , dec remen t , and t ag a r e r equ i r ed ,
w h i l e f o r o t h e r s o n l y a n a d d r e s s is requi red (wi th a t ag op t iona l) , and fo r
s t i l l o t h e r s n o v a r i a b l e f i e l d s h o u l d be g i v e n a t a l l . The p rogramer must
know, for each machine ins t ruc t ion , what in format ion i s requi red .

The v a r i o u s s u b f i e l d s o f t h e v a r i a b l e f i e l d may be given in symbolic
form, with UMAP t r a n s l a t i n g from the symbolic to the binary form. The address,
t ag , and dec remen t sub f i e lds may a l l be given as express ions .

The v a r i a b l e f i e l d starts, on a ca rd , a f t e r t he t e rmina t ion o f t he
o p e r a t i o n f i e l d . I n a l l cases it mst begin no later than c o l u ~ 16. A blank
v a r i a b l e f i e l d i s e q u i v a l e n t t o a z e r o v a r i a b l e f i e l d . The Same a p p l i e s t o any
s u b f i e l d o f t h e v a r i a b l e f i e l d . The variable f i e l d is terminated by the f i r s t

c a r d a f t e r t h e v a r i a b l e f i e l d h a s t e r m i n a t e d are p r in t ed w i th t he ca rd bu t do
no t a f f ec t t he p rocess ing o f t he ca rd . I f column 72 is encoun te red , t he va r i ab le
f i e l d is f o r c e d t o end. Columns 73 through 80 are never processed by U".
- b l a n k a f t e r t h e b e g i n n i n g o f t h e v a r i a b l e f i e l d . Any comments punched on a

T h e t h r e e s u b f i e l d s are w r i t t e n i n t h e o r d e r ' A d d r e s s S u b f i e l d ' , 'Tag
Subfield ' , 'Decrement Subfield ' on a ca rd , w i th t he sub f i e lds s epa ra t ed by
commas. (N o t e t h a t t h i s o r d e r i s t he oppos i t e o f t ha t in which t hese f i e lds
o c c u r i n t h e r e s u l t a n t b i n a r y w o r d .) It i s permissible to leave blank any of
t h e s e s u b f i e l d s w h i c h are not needed on a card , bu t on ly f rom r igh t to l e f t ,
s i n c e t h e f irst blank terminates the card. Thus, the following forms may
o c c u r i n t h e v a r i a b l e f i e l d .

OP ADD
OP ,TAG

OP ADD,TAC:
OP ADD, ,DEC
OP ,TAG,DEC
OP A D D , T G , D E C

ap , ,DEC

Note that commas (or adjacent commas) may be used to delete a field. Thus,

OP , ,DEC
Is the same as

OP O,,DEC
Or

OP O,O,DEC

The address subfield usually specifies a machine location, in which
case it must be relocatable if the assembly is relocatable. For some machine
instructions, however, the address requires an absolute value which is not a
machine location (e. g., the shift instructions.) Thus, the following sequence
might occur.

Z AC
LDQ A+5
LGL 6
SLW BIB1
SUB BLANK
TZE K3

The tag subfield is used to refer to index registers. Usually the
actual integer is given as the tag subfield, but an absolute expression may
be given if desired. Thus, an example sequence of coding is:

AXT 10,2
CLA A+10,2
ST0 ARG
TSX SUB, 4
PAR ARG
ST0 B+10,2

A tag subfield is computed modulo 8. If more than 3 bits are generated by
the instruction for the tag field, a 'T' flag results.

The decrement subfield most often is used with a set of instructions
which deal with the index registers (e. g., 'TXL', 'TU', 'TNX'). In such
cases the decrement contains a number by which an index register is to be
changed or against which it is to be compared. Usually such a number is
absolute, but in some cases a relocatable decrement may be desire&;. Again,
the decrement may be an expression. An example sequence is:

LXA N,4

FAD C2A+10,4
XCA
FMP I- J+KM1 ,4
ST0 Al,4
TIX *-5,4,2

CLA A1,4

3.7-15

CARD ID FIELD (Columns 73 to 80)

Columns 73 to 80 of a card are alwayr ignored by W , and hence
these columna may have any desired BCD punching in them. For the progrmr'r
convenience (and safety) these columns may be ured to provide a sequenced
identification for the UUAP deck. Any punching in colunmr 73 to 80 is printed
in the assembly listing, along with the card, and thus aids in relating segments
of the assembly listing and the source deck.

QUALIFIERS

'Qualifiers' are entities which alluw local modifications to be made
in the scanning and interpreting of variable field expresrionr. The effect of
most qualifiers is limited to the duration of the card being scanned, and to
at least the next element in the variable field. The form of a qualifier is
'/S/', where S is a symbol designating the desired qualifier. UWAP recognizes
qualifiers only if the initial slash (1) initiates the variable field or
immediately follows a break character. A qualifier appearing in any other
context will result in an error during the scanning of the expression. UHAP
recognizes fourteen qualifiers, seven of which are associated with MACROS and
will not be discussed here (See the HACRO sub-eection.) The seven remaining
qualifiers are as follows.

BOOLEAN QUALIFIER
The remainder of the present subfield is evaluated in Boolean mode.
Boolean mode is turned off at the end of a subfield. For proper
functioning, a '/B/' should be the first thing in a subfield.

DECIMAL QUALIFIER
All integers remaining in the variable field are evaluated in decimal
mode.

leading zeroes) is used in the evaluation of the expression - as opposed
to the 'defined value' of the symbol.

OCTAL QUALIFIER
All integers remaining in the variable field are evaluated in octal mode.
This qualifier aay also be written an I O / .

LEm-BOOLEAN QUALIFIER
Appearance of ' / L I B anywhere in a Boolean expression causes the ex-
pression to be defined as a left-Boolean expression. ' / L / r is a
legal qualifier only if it occurs in a Boolean expression.

RELOCATION QUALIFIER
Causes the following integer to be computed modulo 215 and treated as
a relocatable address. This qualifier may be used in relocatable
assemblies only.

3.7-16

QUALIFIERS (Continued)

/TV/ - TRANSFER VECTOR QUALIFIER
Causes the following symbol to be defined by entering it into the
transfer vector. This qualifier is legal only if UMAP is generating
the program card.

Qualifiers may never occur in the location or operation subfields of a card.
If an undefined or illegal qualifier occurs in a subfield, the subfield is
treated as undefined and a 'Q' flag is given.

LITERALS

The constant-generating pseudo-ops (Such as 'OCT', 'DEC', 'VFD', 'BCI')
are available for the generation of tables of constants, but are often incon-
venient for the inclusion of single constants. To facilitate the usage of in-
dividual constants, an entity, known as a 'Literal', is recognized by W.

In contrast to other types of subfields, a literal subfield contains
the actual data to be operated upon. Thus, references to a particular con-
stant nay be done by simply giving the constant itself plus a key character
which indicates that the constant is a literal. The appearance of a literal
directs UMAP to translate it as would be done if it occurred in a constant-
generating pseudo-op, store the resultant constant at the end of the program
(along with the other literals), and replace the literal subfield with the
location in which the literal is stored.

A literal is formed by preceding the desired constant with an equal
sign (=), possibly followed by a second character. Three literals are rec-
ognized by UMAP. These are:

=H -

=K -

" -

HOLLERITH LITERAL,
The next six characters in the variable field (including break char-
acters) after the 'H' are taken as a BCD constant. For-example,

=HABC123 converts into a constant whose octal equivalent is
212223010203.

CAS =HABC 1 23

OCTAL LITERAL
The number following the 'K' is converted as an octal integer. This

DEC IMAL LIT ERAL
The.number following the equal sign (=) is converted as a decimal
number. The conventions concerning 'B' and 'E', floating point and
integer mode, a p p l y here as on the 'DEC' card. For example, -

FMP =o. 121
. _ _ .

=0.1E1 Generates the conr-;t.ant whose oct:al equivalence is 201400000000.

3.7-17

LITERALS (Continued)

Literals may occur in almost any subfield that requires a machine
location. Thus, literals may occur in the address and decrement subfields
of machine instructions (except type D instructions), in the variable fields
of 'CALL' or 'CALLIO' type statements, on 'ETC' cards when they are used to
extend 'CALL' or 'CALLIO' type statements and on 'RELIST', 'EQU', 'SYN', and
'SET' cards. Literals cannot occur if Boolean mode is in force, and they
cannot occur in a 'VFD'. Whenever a literal occurs, it must be the entire
subfield. Literals cannot form part of an expression. Other subfields may
follow a literal subfield, if desired.

The constants generated by literals are converted to binary in PASS
1 and saved in a table. A particular binary literal occurs only once in this
table, no matter how many times it occurs symbolicly in the program. Thus,
the literals eHOOOOOA, aK21, and =17 would generate the same binary literal
and only one entry to the literal table. Between passes, this binary table
is sorted according to 36-bit logical comparisons and assigned to successively
higher locations following the highest location used by the program itself.
An example sequence using a literal is:

ZAC
LDQ A+5
LGL 6
s LW BIB1
SUB clHOOO00
T ZE K3

This sequence could also be written using

SUB =K6 0

Another sequence using literals is,

AXT 60,l
ALP CLA RAD+60,1

F D P =2.0
FMP ~3.14159
ST0 P2RAD+60,1
T IX ALP,1,1

In a relocatable program, a literal is a relocatable expression, while
in an absolute program, a literal is an absolute expression. If a literal occurs
illegally in a subfield, or if a literal is improperly formed, the 'subfield is
treated as an undefined subfield and a 'L' flag is given.

Usually, the literals are printed at the end of an assembly following
the 'END' card and any 'RMT' assembly sequences. This may be changed by use
or the 'PUNLIT' pseudo-op or by use of the ' B R I E F ' pseudo-op, which controls
the printing of the program literals. Neither of these pseudo-ops affects the
storage assignment of the literals.

I

3.7-18

CALLING SEQUENCES IN UMAP

A 'calling sequence' is a set of machine words used to call into
action a subroutine and to specify the parameters needed by the subroutine
for its execution. Usually a calling sequence begins with a 'TSX' instruction
transferring to the subroutine (possibly through a transfer vector) followed
by those words necessary for specifying the parameters. If the subroutine is
'external' to the calling program, then the transfer to it must pass through
a transfer vector. This requirement results from the method of loading of
relocatable subroutines. All subroutines in the " O S library must be entered
via a 'TSX' on index register four. Subroutines written by the programer may
use any technique desired to establish contact between a calling program and
a called program, but external subroutines should be entered through a transfer
vector. Internal subroutines may use any method of entry. No transfer vector
is used for these.

The structure of a calling sequence obviously depends upon the sub-
routine called. A subroutine may require any desired structure. Subroutines
written by a progrannner may thus have any arbitrary calling sequence. Sub-
routines in the MAMOS system fall into two classes with respect to calling
sequences -- 1/0 (Input/Output) type calling sequence and non-1/0 type calling
sequence. TO provide for these two types of calling sequences, two pseudo-ops
are provided in UMAP -- 'CALL' and 'CALLIO'. 'CALL' is used to set up a non-
I/O type calling sequence. 'CALL' and 'CALLIO' provide two functions. First,
they enter a subroutine name into the transfer vector, thus defining this sym-
bol. This occurs only if UMAP is generating the program card, and in this
case, the symbol in the first subfield of the variable field is entered into
the transfer vector. If UMAP is not generating the transfer vector, then
'CALL' and 'CALLIO' may be used, but the program itself must define the sub-
routine name. Second, the remainder of the variable field of the 'CALL' or
'CALLIO' contains the calling sequence. Two types of parameters may occur here,
the 'SINGLE' parameter or the 'BLOCK' parameter. The single parameter is set
apart by commas, while the notation I,. ..,' is used to indicate block parameters.
Thus,

CALLIO .PRINT,F,A,B,...,C,D,O

Is an 1/0 call for the '.PRINT' subroutine, with a format named 'F', to read
'A', 'Bl to 'C' inclusive, and 'D'. (I/O calling sequences always end with
a 'zero parameter', i. e., a word with zero in its address, tag, and de-
crement.) This calling sequence assembles the same as

CALLIO . PRINT
F" F
IOP A
I OP B, ,c
I OP D
END10

3.7-19

Which is the same as

CALL ZERO
PAR X
BLK Y, ,Y+20
PAR Z

Where 'PAR' and 'BLK' are extended machine instructions. 'PAR' is used for
single parameters and 'BLX' for block designations. The first instruction of
the last calling sequence could also be written as follows.

T SX /TV/ZER0,4

A number of special pseudo-ops are built into UMAP to provide ease in
calling certain subroutines available in the system library,

PSEUDO-OP ASSEMBLES AS

COMMNT
LOOK
PAUSE
PRINT
PUNCH
READ
RESTOR
SAVE
S ETTO
TAPERD
TAPEWR

CALLI0
CALLI0
CALL
CALLIO
CALLIO
CALLIO
CALLI0
CALLI0
CALLI0
CALLI0
CALLIO

. c m . LOOK

.PAUSE . PRINT . PUNCH . READ . RSTOR . SAVE . SET . TAPRD . TAPWR
The variable fields for all of these pseudo-ops are the same as for 'CALLIO',
except that the first element of the variable field is not the name of a sub-
routine since this is specified by the particular pseudo-op. Thus, the statement,

READ =H80C1* ,CARD,. . . ,CARD+79,0

I s equivalent to the statement

CALLIO .READY=H80C1* ,CARD ,... ,CARDt79 ,0

And could also be written

READ
Fm =H80C 1 *
IOP CARD, ,CARD+79
END10

3.7-20

PROGRAM CARDS

Xomlly, UMAP produces atuomtically a program card and a transfer
vector for a program. In order that this automatic feature function correctly,
the following rules be observed.

(1) All program common storage E be defined by use of the 'PCLIST'
and 'PGMCOM' pseudo-ops.

(2) All erasable storage be defined by use of the 'ERLIST' and
'ERAS' pseudo-ops.

(3) All external subroutines used by the program be called by use
of the 'CALL' or 'CALLIO' type pseudo-ops or by use of the /TV/
qualifier. Internal subroutines cannot be called by use of the
'CALL' or 'CALLIO' pseudo-ops or by use of the /TV/. This will
result in multiply-defined symbols.

(4) If the program being assembled is a subroutine, then all the entry
points E be named in the variable fields of one or more 'ENTRY'
pseudo-ops.

Violation of any of these rules can result in programs which will not load
for execution or which load and/or execute incorrectly.

There are those cases in which an automatic program card is not
desired, e. g., If a non-standard program card is needed or if the assembly is
a symbolic override assembly. It is possible to delete the automatic program
card. The occurrence in the program of any one of the following pseudo-ops will
do so, 'ABS', 'ENDPGM', 'FULL', 'PGM', 'REL'. If any one of these pseudo-ops
occurs, then the program itself is fully responsible for generating both the
program card (if one is desired) and the transfer vector (if one is needed).
Further, the /TV/ qualifier and several pseudo-ops are not recognized by UMAP
if the program card is off, and other pseudo-ops (e. g., 'CALL' and 'CALLIO')
are processed somewhat differently. The pseudo-ops so affected are noted
later.

Pseudo-ops are available for facilitating the manual production of
program cards. Two pseudo-ops especially, 'EM' and 'ENDPGM', are necessary
for this purpose. The 'PGM' informs UMAP that the cards which follow are to
be assembled and punched as a program card. This is necessary since program
cards have a different format than normal relocatable binary cards. The 'PGM'
is then followed by the symbolic cards which represent the desired program
card. It is assumed here that the reader knows the format and infohnation con-
tent of a program card. The 'ENDPGM' pseudo-op simply informs UMAF' that the
symbolic program card has ended. U" punches the program card, resets the
punch mode to relocatable binary, and sets the assembly mode to relocatable,
zeroing the storage location counter. This must, of course, be immediately
followed by program common storage assignment (if there is any) and the transfer
vector.

3.7-21

A s an example, consider the following subroutine named 'MINCOS',
which has three arguments (x,y,z), and which sets Z equal to the smaller
of COS X and S I N Y. The calling sequence for MINCOS is,

CALL MINCOS,X,Y,Z

The subroutine could be written,

cos
SUB
B

C

D

A

F
G

PGM
PZE
PZE
BC I
PZE
ENDPGM
BC I
BC I
CLA
STA
CLA
STA
SXA
CALL
PAR
ST0
CALL
PAR
CAS
CLA
NOP
AXT
STO*
TRA
ERAS
END

G, ,2
- 1
1 ,MINCOS
B

1 ,cos

1,4

2,4

A, 4

1 , S I N

C

D

cos **
F
SUB

F
F

**

**, 4
3 , 4
4 , 4

PROGRAM CARD
LENGTH, ,NO. OF SUBS
ERASABLE, ,PROGRAM COMMON
PROGRAM NAME
ENTRY POINT

TRANSFER VECTOR

START SUBROUTINE
SET X

S E T Y

COMPUTE COS X

SAVE COS X
COMPUTE S I N Y

COMPARE AND PUT
SMALLER I N AC

STORE I N Z

Note that in the above program the subroutine ' S IN ' is called by the name
'SUB' within the program itself. This can be done when the program is con-
structing its own program card, but it is otherwise impossible.

SYMBOLIC OVERRIDES TO BINARY PROGRAMS

A t times it is desirable to make small changes in a binary deck, as
opposed to re-translating the entire symbolic source deck, to make corrections
in a program. Since the MAMOS system allows the mixing of binary and symbolic
segments in a given job, such changes may be made with UMAP assemblies instead
of manually punching binary cards. Such changes are called 'OVERRIDES' and
may be made to any binary deck, regardless of the original source language.

The assembly mode of an override should agree with the translation
mode of the original deck. (MAD and ALGOL compilations are always of relocat-
able mode, while UMAP assemblies may be absolute or relocatable.) The over-
ride section should follow, physically, those instructions in the deck which
are being overridden. Note that what happens is that the ori inal incorrect
words are loaded with the program, but are then replaced by t%e override words
when they are loaded.

3.7-22

Certain handy conventions are available in UHAP €or writing over-
rides. A numeric location field is treated as an origin before the card
is processed, so that 'RRG' cards are generally not needed in overrides.
Further, since in overriden one urwilly referr to octal locations, the 'SAP;'
or 'IX:TMOD' pseudo-ops may be used to set octal mode conversion for all
integers. This may be changsd locally, for one card, by ure of the ' 0 ' or
'8' punched in colurm 7 of the card. (See integer conversion mode rub-section.)

Since UMAP produces a program card unleer told to do otherwise, the
programmer must, in an override, turn this feature off. This is done through
use of the 'ABS' or 'REL' pseudo-opr, depending upon the assembly mode desired.
Thus, for example, the following absolute override,

ABS
OCTMID

17320 CLA 21356
16142 ST0 17300

ST0 17301
END

Causes a 'CLA 213568* to be loaded at 173208, a 'ST0 173008' to be loaded

at 161428, and a 'ST0 173018' to be loaded at 161438. In any override, the

origin, for each correction, must correspond to the location of the instruc-
tions being corrected, but corrections to consecutive core locations need
have an origin for the first of the sequence only. When in octal mode, care
must be taken that all integers are written in octal. For example, if one
writes ,

LGL 12

With octal mode in effect, it is equivalent to

In decimal mode.

Or

Or

LGL 10

If a decimal 12 i s desired, it should be written

OLGL 12

LGL /D/ 12

LGL 14

Octal mode will still be in effect for the next card.

Any address or decrement subfield which is numeric is assumed to be
absolute. In absolute overrides this in desired, but in relocatable overrides
one usually desires relocatable addressos and sometimes decrements. The
/R/ qualifier is used to obtain such relocatable subfields.

3.7-23

Thus, an override might appear ar,

REL
SAK

ST0 /R/371 P 1
EHD

1760 FHP /R/1702,2

REL
SAK

A EQU /R/ 106
1130 CLA /R/71

ST 0 A
1136 ST0 A
1561 CIA A

ST0 /R/107
END

C e r t a i n d i f f i c u l t i e s a r i s e w i t h r e l o c a t a b l e o v e r r i d e s w h i c h do no t
occur w i th abso lu t e ove r r ides . F i rmt , due t o t he manner of loading a re-
locatable program, a r e l o c a t a b l e o v e r r i d e c a n n o t be put just anywhere later
i n t h e deck. An o v e r r i d e m a t be i n t h e m a m e program segment as the in-
s t r u c t i o n it overloads, i. e., t h e r e nust be no program cards between them.
T h i s i s due t o t h e f a c t that the r e loca t ion cons t an t changes every time a
program card is encountered.

A second problem occurs in the assignment of r e l o c a t i o n b i t s t o sym-
bols . Relocatable symbols are handled in one of two ways at loading t i m e ,
depending upon whether the symbol refere to a l o c a t i o n i n s i d e t h e p r e s e n t
program o r o u t s i d e o f i t . Normal ly the user doesn ' t need to worry about th i s ,
s i n c e UMAP i s hand l ing t he r e loca t ion a rmignnan t and has ava i l ab le t he en t i r e
program f o r i t s informution. For overr ider , however , Ul4AP d.oes not have a t
i t s d i sposa l t he i n fo rma t ion conce rn ing t he o r ig ina l p rog ram, so the user must
supply p a r t of i t . For example, consider the fol lowing overr ide.

REL
OCTMOD

123 CLA /R/163,4
ST0 /R/ l00 ,4

END
FAD /R/63,4

T h i s o v e r r i d e is assembled as a separate program whose length is 1268. The
a d d r e s s o f t h e 'CLA' is 1638, and hence i e outs ide o f th i s p rogram, whi le
t he addres ses o f t he ' S O ' and the 'FAD' are i n s i d e t h e program. I f t h e
o r i g i n a l program i r l onge r t han 1638, t h i r o v e r r i d e is i n c o r r e c t , since in
t h i s case t h e 1638, should assemble as be ing i n s ide t he program. Thus, sup-
pose t he o r ig ina l p rog r lm has a length o f 1739, TO make t h e o v e r r i d e c o r r e c t ,
the fo l lowing convent ion may be used; I f the END' card has a numeric locat ion
f i e l d , t h e n t h i s number i s taken as the program length.

3.7-24

Thus, the above over r ide should end wi th

173 END

Note t h a t t h e p r e v i o u s r e l o c a t a b l e o v e r r i d e r w i l l 811 a a a t m b l e c o r r e c t l y ,
: s i n c e e a c h o v e r r i . d e a c t u a l l y a p p e a r s l o n g e r , t o W, than any addreas in

it. The g e n e r a l r u l e f o r r e l o c a t a b l e o v e r r i d e r is t o punch, i n t h e l o c a t i o n
f i e l d of t h e 'END' c a r d , the l ength o f the program being overridden.

A t times an o v e r r i d e r e q u i r e . t h e a d d i t i o n o f i n a t r u c t i o n s t o a
program as well as t h e c h a n g i n g o f i n s t r u c t i o n s a l r e a d y i n it. In t h i s c a r e
'patches ' must be made. Here a set of i n s t r u c t i o n s are loaded i n to EOIW area
not used by the program and ' T U ' i n s t r u c t i o n s i n t o t h i s area are loaded
on to t he area t o be co r rec t ed . Such a pa tch area must be within the given
program, for re loca t ion purposes , bu t no t used . Of ten p rogram spec i f ica l ly
set a s i d e an area fo r pa t ches . In ove r r id ing w i th pa t ches i t i s poss ib l e that
informat ion on the program card is no l o n g e r c o r r e c t , so that a new program
ca rd must be prepared. Through use of the 'BINARY' pseudo-op, the program
card and overr ide can be assembled in one assembly. However, i t is recommended
t h a t in such cases t h e c o r r e c t i o n s be made in the symbolic source deck with a
r e - t r a n s l a t i o n , r a t h e r t h a n w i t h o v e r r i d e s .

F ina l ly , l i t e r a l s shou ld neve r occu r i n an ove r r ide o f any k ind . A lao ,
program commn assignment cannot occur, and no new erasable ass ignment should
occur . However, s i n c e e r a s a b l e symbols are handled a8 s p e c i a l r e l o c a t a b l e sym-
b o l s , o v e r r i d e s s h o u l d r e f e r t o e r a s a b l e l o c a t i o n s by def in ing e rasable symbols
and using them f o r a l l r e fe rences .

Normally, UMAP is ab le t o comple t e two passes over the p rogram desp i te
any e r rors which may be found i n t h e program. However, c e r t a i n t y p e s of e r r o r s
may occur which prevent the cont inuat ion of the assembly process , and thus the
l i s t i n g € 8 e i t h e r i n c o m p l e t e o r n o t given a t a l l . For such cases, UMAP p r i n t s
o u t e r r o r comments d e s c r i b i n g t h e t r o u b l e . Also, the card being analyzed a t
the t ime of the t rouble i s p r in t ed . The p o s s i b l e error comments are as fo l lows ,

c o r n

L i t e ra l Tab le exceeded
Entry Table exceeded
Operat ion Table overf low
Transfer Vector over f low
Symbol Table overflow

Macro Table exceeded

Compile T a b l e exceeded
Symbol Table check-sum
Missing ' END' ca rd
Created symbols exceeded
' E X C ' g e n e r a t e d i n 'RKT'

TROUBLE

More than 200 d i f f e r e n t b i n a r y literals.
More than 50 d i f f e r e n t e n t r y p o i n t s .
More than 2000 new opera t ions de f ined .
More than 50 d i f f e r e n t s u b r o u t i n e s c a l l e d .
Too many symbols i n program - See the
* SYHBOL' pseudo-operation.
Too many macro d e f i n i t i o n s o r too many
remote assembly sequences.
Macro ca l i s nes t ed t oo deep ly .
Bad chec.k-sam i n symbol tab le deck .
N o ' END' csrd.
Hore t:han 1000 c r e a t e d symbols.
Macro expansion caused an 'ETC' c a r d t o
be gezeratcd i n a 'RHT' sequence.

3.7-25

In addition, there are those times when UMAP may suspect a machine error.
In such cases, assembly ia halted with the CoIIPant,

'Possible machine error here - arrembly diacontinued'
ERROR FIAGS

In the left-hand -rgin of an assembly listing produced by UHAP there
will sometimes occur 'ERROR FIAGS'. There flags are single letters, and their
presence on a line indicates that UMAP has found what appears to be an error
on the card printed on this line. It is possible for several flags to occur
on n given line. A complete list of these flags, with a description of their
associated error, follows.

FLAG
I

ERROR
-_I

A
B
D
E
G
I
L
M
MEXC
N
0
P

Q
R
T
U
UPAR

Address missing, or address given but normally not used.
Error in Boolean expresaion.
Decrement miraing, or decrement given but normally not used.
Hissing or illegal 'EX' card.
Error in generation of program constants.
Indirect addressing illegally specified.
Incorrect literal construction, or a literal occurs illegally.
Multiply-defined symbol on card.
Hissing 'EXC' card in a macro call.
Non-fatal error on card.
Undefined operation code on card.
Phase error - expression should be pre-defined, but isn't,
or a symbol'e definitica, given on pass 1, does not check
on pass 2.
Error in qualifier specification, or qualifier illegally used.
Error in formation of relocatable expression.
Tag missing, or tag given but normally not used.
Undefined symbol on card.
Unmatched parentheses in macro call.

The flags 'A?, 'Dl, 'I', IN', 'T', and those obtained by the 'FLAGOP' or
'FLAGSY' pseudo-ope are considered as non-fatal flags. All other flags are
considered as fatal. The occurrence o f one or more fatal flags in an assembly
causes the assembly to be unsuccessful, and execution is not allowed.

UNDEFINED AND HULTIPLY-DEFINED SWBOLS

Undefined symbols ('U' flag) are symbols which are used in the program
but which are never defined by the program. Multiply-defined symbols ('M' flag)
are symbols which are given two or more Gifferent definitions. A symbol play be
defined as often as desired if all definitions agree. Only when the definitions
disagree is the symbol multiply-defined. NEFAZ. the end of the listing, a list of
all undefined symbols is printed, followed by a list of all multiply-defined
symbols. Also, every occurrence of such ry~bols is appropriately flagged.

3.7-26

At the end of the I i s t i q L̂wo r e f e r e n c e t a b l e s are p r in t ed . The f i r s t
i s t h s s p b s l . r e f e rence t ab l e . Each symbol defined i s l i s t e d , w i t h i t s mode,
i t s .:-clue, and the Lor..%tions of a l l r e fe rences in the program to this symbol.
The sy!!bol oorla i: i2dicstad by o n e o f f o u r l e t t e r s :

A 4BSOL,iPTE (Includes program common)
E W.SkSLE
R fi ELQCXTABLE
T TRN4:iFER VZCPOR

The second reference Cable i s fo r :he l i t e r a l s . A l l r e f e r e n c e s t o e a c h l i t e r a l
a r e p r i n t e d o u t . T'hcre are pseudo-ups i n U W which allow t h e c o l l e c t i o n o f
r e f e r e n c e s t o 3 > n ? J (> l S and t o l i - t e r a l a t o be tu rned o f f . See the pseudo-op sub-
s e c t i o n .

UMAP OPERATION CODES

In t h e following d e s c r i p t i o n s , a pre-def ined express ion is a n a r i t h -
metic expres s ion of xhose components ar2 ' d e f i n e d ' a t t h e time the ex-
p r e s s i o n is encountered on PASS 1 procseeing by W. (I. e., Each symbol in
t h e e x p r e s s i o n must a l r e a d y De i n t h e symbol table.) Throughout the assembly
p r o c e s s , a l o c a t i o n c o u n t e r 'L ' i s kept by W t o count the number of loca-
t i o n s u s e d by the program. Th i s coun te r is updated for each loca t ion used
by the program, and it is used t o de f ine many of the symbols occurring i n the
program. Always, L is set t o t h e n e x t a v a i l a b l e l o c a t i o n f o r t h e p r o g r a m .
L is i n i t i a l l y z e r o . Not a l l opera t ion codes accepted by U W are descr ibed
i n t h e f o l l o w i n g . See the MACRO s u b s e c t i o n f o r t h e d e s c r i p t i o n s o f a l l macro-
r e l a t e d o p e r a t i o n c o d e s .

PSEUW-OPERATIONS

- 9LP - 9 LEFT PREFIX

Causes subsequent b inary cards (un t i l the next 'FUL', 'ABS', 'REL', o r
'EM' pseudo-op occurrence) to be punched in absolute mode w i t h a p r e f i x o n t h e
f i r s t word of the card of N , where N i s the va lue o f t he abso lu t e exp res s ion i n
t h e v a r i a b l e f i e l d o f t h e '9LP'. Deletes the automatic program card feature.
N is taken modulo 3.

- ABS - ABSOLUTE ASSEMBLY MODE

This pseudo-op causes the assembly to be in absolu te mode d e l e t i n g t h e
automatic program card.

ASSIGN - ASSIGN STORAGE -
The v a r i a b l e f i e l d is a l i s t of symbols separated by collrmas. Expres-

sions are not allowed. The symbols are assigned, in orde r of t h e i r a p p e a r a n c e ,
t o l o c a t i o n s L, L+1, L+2, e t c . Note that these symbols are ass igned a t the po in t
a t which the 'ASSIGN' i s found. Adjacent commas may be used to obtain blocks.

3.7-27

Thus, for example, the statement

ASSIGN A,,,,B,C,,,

Is e<;uLvalent to the statements

A BSS 1
B BTS 4
C BSS 4

- BCD - BINARY-CODEPDECIMAL
Causes the generation of IN' words of BCD information, where IN' is

the 4.nteger in colunm 12 of the 'ED' card. The words are stored in L through
L+N-1. If column 12 is blank, 10 BCD words are taken from the card. In all
cases, the first BCD word is assumed to start in column 13. An '*' in coluum
1 2 signals UMAP to compute its own word count. See the 'BCI' pseudo-operation.
Location field symbol is defined as L.

The variable field consists of a one-digit integer count IN', followed
by a comma, followed by a string of Hollerith characters. The 6*N Hollerith
characters after the comma are divided into groups of 6 characters (left to
right) and stored at L, L+1, Lc2,, L+N-1. If ten words are desired, the
variable field may start with a comma. In this case, the last word will be
left-justified with trailing blanks. Blanks are included in a string of
Hollerith characters. A convention is available with 'BCI' which deletes the
need for the word count IN'. One may write

BCI *,Hollerith String

In this case UMAP counts the number of BCD words on the card and replaces the
* by this count. This computed word count is obtained by deleting all blank
words from the right-hand end of the variable field. A partial word on the
right is left-justified with trailing blanks. Location field symbol is defined
as L.

- BES - BIDCK ENDED BY SYMBOL
N locations are reserved, where N is the value of the absolute, pre-

defined expression in the variable field. A symbol in the location field is
defined as L+N, i. e., as the first location after the block reserved-

BINARY - INSERT BINARY CARDS

This pseudo-op precedes a set of one or more binary cards which are
stored during PASS 1 of UMAP and reinserted, durfng PASS 2, into the binary
version of the program. There may be as many binary sections in a program
as desired. If, in a binary segment, a symbol table is found, then the SF-
bol table is read aB in the 'RST' pseudo-op. Ordinarily, these binary
segments are placed on the execution tape in PASS 2.

3.7-28

However, if the symbol 'PUNCH' is found in colwms 1-6 of the 'BINARY' card
then the binary deck following it is placed on the output tape with new
sequenced I D , corresponding to the ID being used with the binary object
de-&. Use of the 'BINARY' pseudo-op allows the 8ssembly of several sections
of overrides, interspersed throughout 8 binary deck, with only one call for
UMAP and with a continuity of the symbol table between all qmbolic sections.

BOOL - BOOLEAN EQUIVALENCE -
The symbol in the location field is assigned the value of the expres-

s ion in the variable field. In evaluating the variable field, Boolean mode
is assumed. Eighteen bits are used in this definition, as opposed to the
usual fifteen bit values given to symbols. (See the subsection on PASS 2
symbol definition.) Symbols defined by 'BOOL' cards have absolute rode. The
symbol is defined as a left-Boolean or a right-Boolean symbol according as
the variable field is a left-Boolean or a right-Boolean expression. A Boolean
expression is left-Boolean if any symbol in it is left-Boolean or if a '/L/'
occurs anywhere in it; otherwise, the expression is a right-Boolean expression.

- BSS - BUCK STARTED BY SYMBOL
N locations are reserved, where N is the value of the absolute, pre-

defined expression in the variable field. A symbol in the location field is
defined as L, i. e., as the first location the reserved block.

BTS - BLOCK TERMINATED BY SYMBOL -
N locations are reserved, where N is the value of the absolute, pre-

defined expression in the variable field. A symbol in the location field is
defined as L+N-l, i. e., as the last location the reserved block.

CALL - NON-1/0 SUBROUTINE CALL -
The 'CALL' pseudo-op is used to call external subroutines or, if the

automatic program card i s deleted, internal subroutines. The variable field
is a set of expressions separated by ', ...,I or by ems. The first element
of the variable field must be the name of the subroutine being called. If
UMAP is generating the program card, this name is autoaatically defined and
placed in the transfer vector. If the automatic program card is deleted, the
program itself must define this symbol. The elements of the variable field
following the subroutine name are assembled into a calling sequence. Single
variables are separated by corns.

3.7-29

CALL - NON-I/O SUBROUTINE CALL - cont 'd -
Block parameters are i n d i c a t e d by the format A,. . . ,B which means 'A to B,

i n c l u s i v e ' . L i s t e lements may be synbo l r , cons t an t s , exp res s ions , o r
l i terals. 'CALL' is u s e d t o ca l l a l l ON-1/0 type subrout ines . A 'CALL'
s t a t emen t may be followed by one o r more 'ETC' c a r d s ; i n s u c h carer, a aub-
f i e l d must end on the same ca rd that i t began on. A l o c a t i o n f i e l d a y l b o l
is def ined as t h e f i r s t l o c a t i o n g e n e r a t e d .

CALLLO - 1/0 SUBROUTINE CALL

This pseudo-op is t he same as the 'CALL' pseudo-op, except that it
i s u s e d t o c a l l 1/0 subrout ines on ly . A l l comments conce rn ing t he va r i ab le
f i e l d o f a 'CALL' s ta tement apply .

c o r n - . c m CALL

This pseudo-op assembles the same as 'CALLI0 .COMNT'. The v a r i a b l e
f i e l d , e x c e p t f o r t h e f i r s t e l e m e n t , is t h e same as f o r 'CALLIO' .

DATE - BCD DATE -
This pseudo-op assembles, as two BCD words , the cur ren t da te o f the

assembly. The f i r s t word has the form 'DDBHM" and the second has the form
'BYYYYB', where B is blank , D is day, H is month, and Y is y e a r . I f t h e r e is
a non-blank character i n t h e v a r i a b l e f i e l d , t h i s c h a r a c t e r r e p l a c e s t h e f i n a l
blank i n the second word. A l o c a t i o n f i e l d symbol is d e f i n e d a s t h e l o c a t i o n
o f t h e f i r s t o f t h e two words.

DEC - - DECIMAL DATA

The decimal-data items i n t h e v a r i a b l e f i e l d a r e c o n v e r t e d t o b i n a r y
numbers and ass igned to consecut ive loca t ions L, L+1, L+2, etc . Successive
items i n t h e v a r i a b l e f i e l d are sepa ra t ed by a comma. The f i r s t b l a n k t o t h e
r i g h t i n t h e v a r i a b l e f i e l d i n d i c a t e s that t h e f i e l d is t e rmina ted and tha t
a l l remaining punching is a comment. A symbol i n t h e l o c a t i o n f i e l d is de-
f i n e d a s t h e f i r s t l o c a t i o n u s e d by t h i s c a r d , i. e. , as L. A 'DEC' c a rd w y
not be fol lowed by an 'mC' card , bu t i t can be followed by more 'DEC' ca rds .
The obvious purpose of this pseudo-op is to int roduce into the binary program
sets of cons tan ts .

When t h e v a r i a b l e f i e l d is eva lua ted , ad j acen t commas cause the number
z e r o t o be generated, as does a cornma followed by a blank. Thus, the number of
words genera ted by a 'DEC' c a rd is always one more than t he number of commas i n
t h e v a r i a b l e f i e l d . If t h e v a r i a b l e f i e l d o f a 'DEC' c a rd con ta ins any th ing
o t h e r t h a n a va l id dec ima l -da ta item, the assembler w i l l f l a g a n e r r o r i n t h e
l i s t i n g (G f l a g) .

3.7-30

In t he UMAP language, a decimal-data item i s u s e d t o s p e c i f y i n d e c -
imal form a word of da t a t o be conve r t ed t o b ina ry fo rm and s to red w i th t he
program. A decimal-data item may occur in one o f two p l a c e s i n a UMAP pro-
gram - i n a d e c i m a l l i t e r a l (S e e t h e l i t e ra l sub-sec t ion) o r on a 'DEC' card.
Three types of decimal-data items are recognized by UMAP.

1) DECIMAL INTEGER

A decimal in teger i s composed of a s t r i n g o f d i g i t s p o s s i b l y p r e c e d e d by
a p l u s o r a minus sign. (Note - i n a l l the fo l lowing , a minus sign i s re-
q u i r e d t o i n d i c a t e a n e g a t i v e i n t e g e r , w h i l e a p lus s ign i s no t r equ i r ed
f o r p o s i t i v e i n t e g e r s .) A decimal in teger i s d i s t ingu i shed f rom o the r t ypes
o f decimal-data items by t h e f a c t t h a t t h e l e t te r ' B ' , t he let ter ' E ' , and
the decimal point '.' are a l l absent .

2) FLOATING POINT NUMBER

A f l o a t i n g p o i n t number has two components as fo l lows:
A) The p r i n c i p a l p a r t , w h i c h i s a decimal number w r i t t e n w i t h o r w i t h -
ou t a decimal point. The decimal point may appea r a t the beginning or
end of the p r inc ipa l p a r t , o r w i t h i n t h e p r i n c i p a l p a r t , o r may be omitted
i f t he exponen t part i s present . I f the dec imal po in t i s omi t ted , i t is
assumed t o be located a t the r igh t -hand end of the p r inc ipa l p a r t .
B) The exponent p a r t , which cons is t s o f the l e t t e r 'E ' followed by a
s igned or uns igned dec imal in teger . The exponent p a r t must fo l low the
p r i n c i p a l p a r t . It may b e o m i t t e d i f t h e p r i n c i p a l p a r t c o n t a i n s a dec i -
mal poin t .

A f l o a t i n g p o i n t number i s d is t inguished f rom a dec imal in teger by t h e f a c t
t h a t e i t h e r a dec ima l po in t o r t he le t ter ' E ' (o r bo th) must be present. It
i s d is t inguished f rom a f ixed po in t number by t h e f a c t t h a t t h e le t ter 'B ' i s
absent .

3) FIXED POINT NUMBER

A f i x e d p o i n t number has three components as fo l lows:
A) The p r i n c i p a l p a r t , which i s a decimal number w r i t t e n w i t h o r w i t h -
ou t a decimal point. The decimal point may appear a t the beginning or
e n d o f t h e p r i n c i p a l p a r t , o r w i t h i n t h e p r i n c i p a l p a r t , o r may be omit-
t ed comple te ly . I f the dec imal po in t i s omi t ted , i t i s assumed t o b e
l o c a t e d a t the r igh t -hand end of the p r inc ipa l p a r t .
B) The exponen t pa r t , wh ich cons i s t s o f t he l e t te r 'E ' fol lowed by a
s igned or uns igned dec imal in teger . The exponent part may be absent.
I f p r e s e n t , i t mus t fo l low the p r inc ipa l pa r t , and may p recede o r fo l low
the b ina ry place p a r t .
C) The b inary place pa r t , wh ich cons i s t s o f t he le t ter 'B' fol lowed by
a s igned or uns igned dec imal in teger . The b inary place p a r t must be pre-
s e n t i n a f i x e d p o i n t number, and must fol low the pr incipal p a r t , b u t m y
e i t h e r f o l l o w o r p r e c e d e t h e e x p o n e n t par t i f t h e r e i s one.

A f i x e d p o i n t number i s d i s t ingu i shed f rom the o the r t ypes o f dec ima l -da ta
items by the p resence o f the l e t t e r 'B ' .

3.7-31

A decimal integer may represent any positive or negative binary
number whose magnitude is less than 235. For example, the decimal integer
'-31' would be converted to the 36-bit number whose octal representation is
-000000000037, which is the same as 400000000037.

A floating point number will be converted to a normalized floating
point binary word in the standard 7090 floating point binary format (See the
7090 manual). The exponent part, if present , .specifies a power of 10 by
which the principal part will be multiplied during conversion. For example,
all of the following floating point numbers are equivalent and will be con-
verted to the same floating point binary number.

3.14159
31.4159E-1
314159.E-5
314159E-5
.314159E1

A fixed point number is converted to a fixed point binary number
which contains an 'understood' binary point. Note that in the 7090 numbers
are either floating point or integral to the machine itself. The purpose of
the binary place part of the number is to specify the location of this under-
stood binary point within the 7090 word generated. Thus, the conversion of a
fixed point number is done in the following steps:

1) The principal part, along with the exponent part, is converted to a
binary number with a binary point. This is the usual decimal to
binary conversion. Thus, the number 65B4E-1 would first be converted to
the binary number 110.1, which is 6.5 in decimal.

2) An 'understood' binary point is found by shifting the assumed binary
point from immediately after the sign bit to immediately after the Nth bit
after the sign bit, where N is the number following the 'B'. If the number
N is negative, then the assumed binary point is shifted N bits to the left
from the sign bit. Thus, for our number 65B4E-1, the understood binary point
follows immediately the fourth bit after the sign bit.

3) Now the binary point in the number as converted and the understood bi-
nary point in the 7090 word are alined. Then the 36 bits which correspond
to the machine word are used as the word generated by this decimal data
item. Thus, in our example of 65B4E-1, alining the two points and taking
the 36 machine bits produces the octal number 150000000000. Note that two
leading zeroes have been inserted before the 1101 produced by the principal
and exponent parts - the first zero is the sign bit and the second zero comes
from the alining of the decimal points.

In the process of shifting the converted word to position the binary point,
significant bits may be shifted past the right-hand end of the word and lost.
In this case no error will be indicated. However, if non-zero bits must be
shifted past the left-hand end of the word, an error will be indicated (G flag).
Thus, the integral part of a fixed point number must be small enough to fit in
the number of integral places allowed. Also, if the binary place part is neg-
ative, the number must be an appropriately small fraction. For example, the

3.7-32

All of these fixed point numbers will be converted to the binary configuration
whose octal representation is 264000000000.

DECMOD - DECIMAL MODE
Sets the global conversion mode for integers to decimal. This mode

may be modified locally by use of qualifiers, but it is reset to decimal, fol-
lowing each card, until a ' S A K ' or a 'OCTMOD' occurs.

DETAIL - LIST IN N L L
This pseudo-op reverses the effect of the 'BRIEF' pseudo-op. This

is the normal assembly print mode.

EJECT - LISTING PAGE EJECTION
This pseudo-op causes a new page to start in the listing. The 'EJECT'

is not printed in the listing.

END - END OF PROGRAM OR OF MACRO DEFINITION -
The 'END' card terminates the processing of a deck or of a MACRO

definition. For program termination, a location field symbol is defined as
the total length of the program, including literals, program cornon, transfer
vector, and any remote assemblies. If the location field is numeric, the pro-
gram length is reset to this value. If the assembly is absolute and the vari-
able is absolute and the variable field is non-blank, a transition card is
punched with the value of the variable field as the transfer address. (In re-
locatable assemblies, transition cards must be punched with the 'TCD' pseudo-
o p .) A UMAP program = end physically with an 'END' card.
ENDFGM - END PROGRAM CARD

Used with the 'PGM' pseudo-op to write program cards. .'ENDPGM' turns
off the effect of 'PGM', makes the assembly relocatable, and sets the location
counter to zero. 'ENDPGM' causes deletion of the automatic program card.

3.7-33

EMRY - SUBROUTINE ENTRY
This pseudo-op indicates that the program is a subroutine and not a

main Program. The difference is reflected in the program card. The vari-
able field contains a list of symbols, separated by comnas, which are to be
considered as entry names to this subroutine. These symbols must all be de-
fined within the program itself. Secondary entries may be obtained by pre-
ceding the symbol with a minus sign on the 'ENTRY' card. a main program with
additional entries may be obtained by an explicit zero appearing as a symbol
on an 'ENTRY' card. This is not the same as an 'ENTRY' card with a blank
variable field. 'ENTRY' statements may occur anywhere in the program, and they
need not precede the definitions of the symbols which they are naming as entries.
'ENTRY' is undefined if the automatic program card is deleted.

- EQU - EQUIVALENCE
The symbol in the location field is assigned the mode and the value of

the expression in the variable field. (See the sub-section on PASS 2 symbol
definition.)

EQUMAX - EQUIVALENCE TO M A X I " SUBFIELD

The location field symbol is given the value and the mode of the sub-
field of the variable field having the maximum value on PASS 1 processing.
(PASS 2 symbol definition does not apply to 'EQVMAX'.) Undefined subfields
are treated as absolute subfields with a zero value. Negative subfields are
treated as large positive subfields (i. e., -1 is greater than +l). Subfields
may be symbolic expressions and are separated by commas. 'EQUMAX' may be fol-
lowed by one or more 'ETC' cards, but subfields may not be continued from one
card to another. In case of equal maximum subfields, the location field symbol
is given the mode of the first such subfield.

EQUMIN - EQUIVALENCE TO MINIMUM SUBFIELD - " ~~

'EQUMIN' is the same as 'EQUMAX' except that the minimum valued sub-
field of the variable field is used instead of the maximum valued subfield.

ERAS - ERASABLE STORAGE ASSIGNMJINT -
A block of N+l locations is reserved in erasable storage, where N is

the value of the absolute, pre-defined expression in the variable field. This
storage begins at the present value of the erasable storage counter and moves
down in core. The erasable storage counter starts at -Ilo 7 777778. A symbol
in the location field is defined as the first (i. e., the highest in core) of
these locations. To obtain only one erasable location, the variable field
should be left blank or should have a zero value. All erasable assignment
be made with 'ERAS' and 'ERLIST' if UMAP is generating the program card.

3.7-34

ERLIST - ERASABLE LIST
This pseudo-op is the same as the 'ASSIGN' pseudo-op, except that all

storage assignment is in erasable storage. Thus,

ERLIST A, ,B

Is equivalent to

A ERAS 1
B ERAS 0

ETC - ET CETERA -
This pseudo-op allows the extension of the variable field (of certain

pseudo-ops) over several contiguous cards. Those pseudo-ops which may be so
extended mention this fact in their descriptions. Location field of an 'ETC'
is always ignored.

EXECT - EXECUTION OUTPUT CONTROL
Causes UMAP to put out binary card images on the system execution

tape. 'MECT' is ignored if a fatal error has occurred in the program. (See
'NEXECT'.) This pseudo-op acts internal to UMAP only and has no effect on the
actual execution of the program.

EXTERN - EXTERNAL NAMES
The variable field of this pseudo-op consists of a set of symbols sep-

arated by commas. Each of these symbols is entered into the transfer vector
for the program. 'EXTERN' is undefined if the automatic program card is deleted.

FLAGOP - OPTIONAL OPERATION FLAGGING
The variable field has the form 'A,B', where 'A' is the BCD name of an

operation in the operation table and 'B' is a single, non-break character.
After the occurrence of 'FLAGOP' the operation 'A' is always flagged with the
non-fatal flag 'B'. The operation 'A ' must be defined when the 'FLAGOP' pseudo-
op occurs in PASS 1. At most ten different ops may be optionally flagged during
an assembly.

FLAGSY - OPTIONAL SYMBOL FLAGGING
The variable field has the form 'A,B', where 'A' is a symbol and 'B' is

a single, non-break character. The symbol 'A' will be non-fatally flagged with
the flag 'B' throughout the assembly listing. The symbol 'A' must be defined
when the 'FLAGSY' pseudo-op occurs in the program on PASS 1. At most ten dif-
ferent symbols may be optionally flagged in a given assembly. If more than one
optionally flagged symbol occurs on a card, then only the flag corresponding to
the last symbol to occur on the card is printed.

3.7-35

- FUL - FULL MODE PUNCHING
This pseudo-op causes the punching of full 24-word binary cards (i. e.,

non-relocatable cards). The 7-9 punch is automatically placed in column 1 of
such cards, but otherwise the card is exactly the 24 words specified by the pro-
gram. The automatic program card is deleted by the occurrence of 'FUL'.

HEAD - HEM SYMBOLS -
The 'HEAD' card supplies to the assembly program a single character

(punched in column 1 of the 'HEAD' card). Any alphabetic or numeric digit is per-
missible. Each symbol in the program following the 'HEAD' pseudo-operation is pre-
fixed by this character except when a special indication to cancel the prefix opera-
tion is given. A new 'HEAD' pseudo-operation card will replace the prefix charac-
ter. Thus, several programs having non-unique symbols may be combined by heading
each program with a different character.

It is sometimes necessary to make cross-references between the individual
programs. To accomplish this, each reference must be written in the following
way. Let H be a heading character, and let K be a symbol, in the block headed by
H, to which reference is to be made. To refer to K (i. e., to use the value rep-
resented by K in an address, tag, or decrement) in a part of the program not head-
ed by H but by J, write,

H$K

The special character $ indicates to the assembly program that K is to be pre-
fixed by H instead of by the prefix J given on the most recent 'HEAD' card.

It is important to note that if use is to be made of the heading feature,
all symbols used throughout the program will usually be restricted to five or
fewer characters. If any six-character symbols are used, these symbols will not
be headed. Some additional remarks are that,

1) A$B is not the same as AB. It is the same as AOOOOB.
2) ASBCDEF is the same as ABCDEF.
3) OOOA, where 0 is zero, is the same as OA and the same as A.
4) A symbol in an unheaded portion of a program can be referred to from a
headed portion by preceding the symbol with a $. The fact that the $ is not
preceded by a heading character indicates that reference is to an unheaded
section.

A n additional feature of the 'HEAD' is the following. If a set of single
characters, separated by commas, occurs in the variable field, then all these
characters, plus the one in c o l m 1, are saved for headings. Any symbol which
is found will be entered in the symbol table once for each separate heading.
References within this section are under the primary heading (from column 1) only,
but the symbols are defined for all the secondary headings given in the variable
field. This eliminates the need to define common symbols in each headed section.
The same could be done by making all common symbols 6 characters long. When the
next 'HEAD' card is found, heading characters from the last 'HEAD' card are
suppressed.

3.7-36

- INDEX -- INDEX SYMBOL DEFINITIONS

V a r i a b l e f i e l d is a l ist of symbols, s e p a r a t e d by commas, which have
been defined in the program. Each symbol, along with i t s d e f i n i t i o n , is
p r i n t e d i n t h e l i s t i n g . (T h i s p r i n t i n g is under 'DETAIL' and 'BRIEF' c o n t r o l)

LIST - TURN ON LISTING -
This pseudo-op turns on the l is t ing of the assembly of the program,

r e v e r s i n g t h e e f f e c t s o f 'NOLIST'. Th i s is t h e n o r m a l l i s t i n g mode.

L E - RELOCATE PROGRAM SEGMENT

Th i s p seudo-op con t ro l s t he l oca t ion coun te r L, over the range of one
b i n a r y c a r d , w i t h o u t a f f e c t i n g t h e l o a d i n g a d d r e s s o f t h a t c a r d . 'LOC' is
normal ly used in conjunct ion wi th 'ORG' to assemble , wi th one loading address ,
program segments which are t o be moved in s to rage be fo re t hey are executed.
The p r e s e n t s t o r a g e l o c a t i o n c o u n t e r v a l u e L is used as the loading address
o f t he b ina ry ca rd , wh i l e t he con ten t s of t h e c a r d are assembled as i f the
loca t ion coun te r had t he va lue N = va lue o f t he p re -de f ined va r i ab le f i e ld o f
t h e ' L E ' c a r d . T h i s e f f e c t lasts u n t i l t h e e n d o f t h e b i n a r y c a r d o r u n t i l
t he nex t 'ORG' occurs , which ever comes f i r s t .

LOOK - .LOOK CALL -
Assembles the same as 'CALLIO .LOOK'. The v a r i a b l e f i e l d , e x c e p t

f o r t h e f i r s t e l e m e n t , is t h e same as f o r 'CALLIO'.

MIDDLE - REDUCE ASSEMBLY TLME -
The occurence of 'MIDDLE' causes U" t o change in te rmedia te t apes , re -

w ind ing t he p re sen t i n t e rmed ia t e t ape . Th i s saves delay time between passes
w a i t i n g f o r t h i s t a p e t o r e w i n d . 'HIDDLE' should occur a t roughly the middle
of the deck. 'MIDDLE' is i g n o r e d i f i t o c c u r s i n t h e f i r s t i n t e r m e d i a t e t a p e
bu f fe r l oad (i.e., i n r o u g h l y t h e f i r s t s i x t y c a r d s o f t h e d e c k) o r i f i t occurs
a f t e r t he i n t e rmed ia t e t ape has a l r eady been changed .

NEWID - CHANGE OBJECT DECK I D

Beg inn ing w i th t he f i r s t non-b lank cha rac t e r o f t he va r i ab le f i e ld , 8
H o l l e r i t h c h a r a c t e r s are t aken f rom the va r i ab le f i e ld and u sed a s t he I D on
the nex t b ina ry ob jec t deck ca rd . The p r e s e n t c a r d i s punched when 'NEWID' occurs.
The numeric p a r t o f t h i s I D , on t h e r i g h t , i s i n c r e w n t e d by one fo r each ca rd
punched. The 'NEWID' c a r d is n o t p r i n t e d on t h e l i s t i n g .

3.7-37

NEXECT - EXECUTION OUTPUT COKTROL

Causes UHAP t o cease wr i t ing b inary card images on the sys tem exec t ion
tape. The 'NEXECT' acts internal t o W P only, and does not affect a c t u a l e x e c u t i o n
o f t h e program.

NOBJCT - OBJECT OUTPUT CONTROL

Causes UHAP t o cease wri t ing binary card images on the system output
tape .

Odd occurrences of this pseudo-op cause the de le t ion f rom the assembly
l i s t i n g o f a l l 'RE" cards and a l l '*' type remark cards. Even occurences
c a u s e n o m 1 p r i n t i n g c o n t r o l .

NOLIST o r UNLIST - NO LISTING

Turns o f f the p r in t ing of the assembly . Only l i n e s which have e r r o r
f l a g s are p r in t ed . A l l re fe rences to symbols o r l i terals are not recorded
f o r t h e r e f e r e n c e t a b l e .

NONOP - UNDEFINED OPERATION -
Whenever an undef ined opera t ion is found , t he de f in i t i on o f 'NONOP' is

used i n p l ace of t he ope ra t ion punched. Normally, t h i s r e a c t s as a 'BSS 1'
and causes an 0 f l a g on t h e l i s t i n g . Through use of the 'OPSYN' pseudo-op,
t h e d e f i n i t i o n of 'NONOP' may be changed to any operat ion desired, so t h a t
t h e progrannaer may s p e c i f y t h e d e f i n i t i o n t o be used for undef ined opera t ions .

NULL - PSJNUW-OP NO-OPERATION -

O B J C T - OBJECT OUTPUT COMTROL -
Causes UMAP t o write card images on the system output tape.

- OCT - OCTAL DATA GENERATION

Tha o c t a l i n t e g e r s i n t h e v a r i a b l e f i e l d , s e p a r a t e d by conrmas, a r e
a s s igned to consecut ive loca t ions beginning a t L. The f i r s t b l a n k t o t h e

3.7-38

r i g h t o f t h e v a r i a b l e f i e l d i n d i c a t e s that everything which fol lows is a
conmrent. A symbol i n t h e l o c a t i o n f i e l d is def ined as t h e l o c a t i o n o f t h e
o c t a l numbers.

The numbers on a n 'OCT' c a r d may have the form 'N' o r t h e form 'NKE' ,
where N is a n o c t a l number of 12 o r f e w e r d i g i t s , w i t h o r w i t h o u t a s i g n ,
and E is a n a b s o l u t e mode expression. In t h e la t ter case, t h e number N is
s h i f t e d M o c t a l p l a c e s t o t h e l e f t , i f H is p o s i t i v e , o r M o c t a l p l a c e s t o t h e
r i g h t , i f H is negat ive, where H is t he va lue o f t he abso lu t e mode expres s ion
E. Thus, E is assembled as 000000007000.

In t he ca se o f 12 d ig i t oc t a l numbers , t he fo l lowing equ iva lences ho ld
w i t h r e s p e c t t o t h e h i g h o r d e r b i t --

- 0 1 4 - 1 - 5 -2116 - 3 m 7

e i t h e r form may be used in an assembly. For numbers of less than 12 digi ts ,
l ead ing ze roes are supp l i ed . I f any e r ro r is encountered on an 'OCT' card ,
a G f l a g is given.

OCTHOD - OCTAL MODE

Sets t h e g l o b a l c o n v e r s i o n mode f o r i n t e g e r s t o o c t a l . T h i s mode may
be modi f ied loca l ly by u s e o f q u a l i f i e r s , b u t i t is reset t o o c t a l , f o l l o w i n g
e a c h c a r d , u n t i l a ' S A K ' o r a 'DECMOD' occurs .

OPSYN .. OPERATION SYNONYM -
Defines o r r e d e f i n e s t h e l o c a t i o n f i e l d symbol as a synonym f o r t h e BCD

o p e r a t i o n c o d e i n t h e v a r i a b l e f i e l d . The name in t h e v a r i a b l e f i e l d may be any
o p e r a t i o n c o d e p r e s e n t i n t h e o p e r a t i o n t a b l e when t h e 'OPSYN' occurs on Pass 1.
The fo l lowing opera t ion codes may n o t f u n c t i o n c o r r e c t l y i f c a l l e d by a d i f f e r e n t
name - 'END', 'ETC', 'IRP', 'REM', 'RKT', 'BCX', and 'TITLE'.

- ORG - O R I G I N SPECIFICATION

This pseudo-op resets t h e s t o r a g e a l l o c a t i o n c o u n t e r t o L = Value of the
p re -de f ined va r i ab le f i e ld . Th i s coun te r is i n i t i a l l y z e r o .

I f t he a s sembly is r e l o c a t a b l e a n d t h e v a r i a b l e f i e l d is abso lu te , t hen
a p h a s e e r r o r (P f l a g) may occur when t h e n e x t l o c a t i o n f i e l d symbol occurs.
This is due t o t h e i n c r e m e n t i n g o f r e l o c a t a b l e symbol values between passes ,
w h i l e a b s o l u t e o r i g i n s are unchanged.

I f t h i s pseudo-op is w r i t t e n 'OR@', t hen t he r e -o r ig in occu r s as de-
scribed, but the next segment of the program is no t i nc luded i n t he computa t ion
of the program length. This allows t h e o r i g i n i n g o f t a b l e s , f o r e x a m p l e , beyond

3.7-39

t he end of t h e program. This cannot be done with a r e g u l a r 'ORG', s i n c e t h i s
would cause incor rec t p lacement o f the literals. This mode is reset by t he nex t
' ORG' card .

A Locat ion fLe ld symbol is de f ined as the va lue of t h e v a r i a b l e f i e l d
w i t h t h e mode of the assembly.

PAUSE - - .PAUSE CALL

This pseudo-op assembles the same as 'CALL .PAUSE'. The v a r i a b l e f i e l d
e x c e p t f o r t h e first element i s t h e same as f o r 'CALL'.

PCC - CONTROL CARD PRINTING -.

Occurance of 'Kc' c a u s e s t h e p r i n t i n g mode to be swi tched (off t o o n o r
v i ce ve r sa) fo r t hose p seudo-ops wh ich con t ro l t he p r in t ing o r a s sembl ing o f
o t h e r o p e r a t i o n c o d e s , b u t w h i c h do not themselves generate machine words. In
'ON' mde , these pseudo-ops are p r i n t e d . I n 'OFF' mode, these pseudo-ops are
de le t ed f rom the a s sembly l i s t i ng . 'ON' mode is the normal UMAP l i s t i n g mode fo r
c o n t r o l c a r d s .

PCCOFF - NO CONTROL CARD PRINTING

Deletes p r i n t i n g o f c o n t r o l c a r d s - see 'PCC'.

PCLIST - PROGRAM COHMON LIST STORAGE

This pseudo-op is t h e same as t h e 'ASSIGN', except t h a t a l l s to rage
assignment is i n PROGRAM COMMON. Thus,

PCLIST A, ,B

i s e q u i v a l e n t t o

A PGMCOM 0
B PGMCOM 1

'PCLIST' i s undef ined i f t he au tomat i c p rog ram ca rd is de le t ed .

PCHORG - PROGRAM COHMON O R I G I N -
This pseudo-op pl lows the or igining of p a r t s of a program i n FWGRAM

3.7-40

C O W N . Either constants or program segments can be EO origined. The origin i s
taken as the value of the pre-defined, absolute expression in the variable field.
References IMY be made from such sections to other parts of the program. Special
binary cards are produced to provide for the loading of these sections. All symbols
defined in such sections are of absolute mde. This araembly mode is suppressed
upon encountering the next 'ORG' card. If the automatic program card is deleted,
' m R G ' is treated as a 'ORG*'. In using 'PCHORG' , it should be noted that the
length of a program segment following a 'PCMORG' is not automatically added to
the length of PROCIun COnnON a8 computed by UMAP for the program card. Thus, the
space needed in PROGRAM COMMON for such a segment must be reserved by the 'PGMCOM'
pseudo-op. This can be done symbolically as follows.

PCMORG START

(PROGRAM SEGMENT)

LAST (L k T STATEHWT IN THIS PROGRAM SEGME3U)
PGMCOM LAST- START

where 'START' may itself be defined by a 'FGXO" card.

PGM - PROGRAH CARD -
Causes binary cards to have a 12-punch in column 1 -- i.e., program card

format. Automatically sets storage location counter to zero. This pseudo-op is
used to initiate the generation of a program card by the program rather than by UMAP.
Deletes the automatic program card. 'PGU' is equivalent to the sequence

9 LP 4
ORG 0

PGMCW - PROGRAM COMMON STORAGE ASSIGNMENT -
A block of N+l locations is reserved in PROGRAM COMMON storage, where

N is the value of the absolute, pre-defined expression in the variable field.
This storage begins at the present value of the PROGRAM COMMON storage counter
and moves upward in core. The PROGRAM COMMON storage counter begins at the value
of the system relocation constant. A symbol in the location field is defined
as the last (i.e., the highest in core) of these N+l locations and is given
absolute mode. To obtain a single location, the variable field should be blank
or have the value zero. All PROGRAM COMMON storage must be assigned with
'PGMOM' and 'PCLIST' if UMAP is generating the program card. 'PGMCOM' is
undefined if the automatic program card is deleted.

3.7-41

PRINT - .PRINT CALL -
Thir pseude-op assembles the samc ar 'CALLID .PRINT'. The va r i ab le

f i e l d , mccpt f o r t h a f i r s t e l m n t , is t he r ~ . aa f o r 'CALLIO'.

PsT - PUNCH SYMBOL TABLE
"

Causae the symbol t a b l e t o be punched between passes i n a spec ia l column
b inary fa-. These cards m y be recognized by a 2 punched i n the t ag of t h e f i r s t
word. The ca rds may be read on subsequen t a~ rembl i e s by e i t h e r t h e 'RST' o r t he
'BINARY' pseudo-ops. The symbol table deck is sequenced when punched. I f an
8-charac te r ID is given in t h e v a r i a b l e f i e l d of t he 'PST' c a r d , t h i s I D i s used
on t he symbol table deck. If such ID is not given, then the I D 'SMTBL' is used,
with sequence numbering s tar t ing a t 001.

PUNCH - .PUNCH CALL -
This pseudo-op assembles the same as 'CALLIO .PUNCH'. The va r i ab le

f i e l d , e x c e p t f o r t h e f i r s t e l e m e n t , is t he same as f o r 'CALLIO' .

PUNLIT - PUNCH LIT-S

Causes suspension of the assembly process in PASS 2 t o p r i n t t h e l i t e r a l s
on t he a s sembly l i s t i ng and t o punch t h e l i t e r a l s on binary cards . I f 'PUNLIT' does
not occur , the literals are printed and punched a f t e r t h e r e c o g n i t i o n of the 'END'
card. Note that 'PUNLIT' has no e f f e c t upon where t h e l i t e r a l s a r e a s s i g n e d i n
s torage .

READ - .READ CALL -
This pseudo-op assembles the s a m a s 'CALLIO .READ'. The v a r i a b l e f i e l d ,

excep t fo r t he f i r s t e l emen t , is the samt as f o r 'CALLIO'.

REF - REFERENCE TABLE SWITCH -
Occurrence of 'REF' caures the re fe rence t ab le swi tch to be changed (off

t o on o r v i c e versa). In 'ON' Bode, r e fe rences t o symbols and t o l i t e r a l s a r e
c o l l e c t e d f o r p r i n t i n g i n the reference tables . Thie is the normal reference
t a b l e mode in W.

REPDPP - REFERENCES OFF
Turnr of f r e f e rences to program symbols and t o program l i t e r a l s .

3.7-42

REFON - REFERENCES ON -
Turns on references to program symbols and to program literals. This is

normal assembly mode.

REL - RELOCATABLE PROGRAM -
Causes a relocatable assembly with suppression of the automatic program

card. Used when a non-standard program card is desired (with 'PGM') or for re-
locatable override assemblies where no program card is desired.

RELIST - RESTART LIST
Allows continuation of the variable field list structure in a calling

sequence after the initial list sequence is broken. Thus, a calling sequence may
begin with a 'CALL' or 'CALLIO', continue with 'ETC', break-off for machine coding,
then continue with 'RELIST', plus more 'EX' if desired. Note that the list could
not be continued with an 'ETC'. The 'RELIST' must occur first. For example--

READ F,N
LXA N,1
I OP B, 1
TIX *-l,l,l
RELIST C, D, 0

"
REM - REMARK

The contents of columns 1-7 and 11-80 are printed on the listing. Colums
8-10 are blanked out.

RESERS - RESET ERASABLE
Causes the erasable storage location counter to be reset to -1 ~ 7 7 7 7 7

10 8'

RESPGC - RESET PROGRAM COMMON
Causes the program common storage location counter to be reset to the system

relocation constant.

RESTOR - .RSTOR CALL
Assembles as a 'CALLIO .'RSTOR'. The variable field, except for the

first element, is the same as for 'CALLIO'.

r

3.7-43

- RMT - REMOTE ASSEMBLY
Causes the suspension of the normal assembly process to define all in-

structions up to the next occurrence of 'm' as a remote assembly sequence.
All remote assembly sequences are assembled when the 'END' card is found, in front
of the program literals, unless they are called for earlier by a 'M' with an
asterisk in the variable field. Remote sequences are printed where they are found
in the deck and under 'PMC' control where they are expanded.

- RST - READ SYMBOL TABLE
Causes suspension of the PASS 1 assembly process to read in a symbol table

from binary cards which immediately follow the 'RST'. The symbol table cards
conform to the format produced by the 'PST'. The checksum on these cards is checked,
and the assembly terminates if a bad checksum is found or if a binary card is
found which is not a symbol table card.

The symbols read from this symbol table deck are added to the symbol table.
Previous symbol definitions are maintained. Symbol table overflow is possible while
reading a symbol table deck. The symbols read in are subject to all heading
characters in effect at the time the 'RST' is encountered (see 'HEAD') . However,
headings in effect at the time the symbol table was punched (other than a zero
head) take effect over headings at the time of reading. If it is desired to com-
pletely replace the symbol table by that of the deck, the 'RST' should be preceded
by a 'ZST'.

In relocatable programs which include a symbol table reading with either
'BINARY' or 'RST', and in which UMAP is generating the program card, the follow-
ing restrictions m s t be observed.

1. No PROGRAM COMMON may be reserved.
2. No transfer vector may be generated.
3. No literals may be used.

In absolute programs, no restrictions exist.

- SAK - INTEGER CONVERSION MODE SWITCH
The occurrence of ' S A K ' causes the global integer conversion mode to switch

to octal, if it is decimal, or to switch to decimal, if it is octal. This mode may
be modified locally by qualifiers, but is reset after each card. See also 'UCTMOD'
and 'DECMOD'. This mode applies to integers in all fields of a card.

SAVE - .SAW CALL -
Assembles as a 'CALLIO .SAVE. The variable field, except for the first

element, is the same as for 'CALLIO'.

3.7-44

Sm - SET SYMBOL DEFINITION
_u

Defines the symbol in the location field to have the value and the mode of
the expression in the variable field. If the symbol is already in the symbol
table, this new definition is given to it without mltiple definition. If the
symbol is not in the symbol table, then it is entered with this definition. This
re-definition occurs in PASS 1 and in PASS 2. See the PASS 2 symbol definition
section.

SETTO - .SET CALL -
Assembles as a 'CALLIO .SET'. The variable field, except for the first

element, is the same as for 'CALLIO'.

SPACE - - LISTING SPACING
Causes a spacing of N lines on the listing, where N is the value of the

absolute expression in the variable field. If N is greater than 20 or if N is
greater than the number of lines remaining on the page, then 'SPACE' is treated
as an 'EJECT'. 'SPACE' is not printed in the listing.

- SST - SYSTEM SYMBOL TABLE DEFINITION
'SST' allows the incorporation into a program of symbols from the "OS

SYSTEM SYMBOL TABLE, which is the table of definitions of most system symbols.
The variable field of 'SST' is a list of symbols to be defined, separated by
commas. Each of these symbols and its definition is placed in the assembly
symbol table. If the location field is non-blank, the location field symbol is
placed in the assembly symbol table with the definition of the first system symbol
in the variable field. All definitions are absolute and non-system symbols are
ignored. 'SST' should occur early in the program as normal UMAP PASS 1 processing
wipes out the system symbol table in U". 'SST' is ignored if the system symbol
table has been clobbered. For any particular symbol in the system symbol table,
its definition can be obtained only once. Thereafter that symbol is ignored on 'SST'
cards. It is possible to fill up the assembly symbol table while processing a
'SST'. In this case the remainder of the 'SST' card, and all further 'SST' cards,
are ignored. An attempt to define a symbol in any other way, however, will cause
a fatal error in UMAP. In relocatable programs in which UMAP is generating the
program card, system symbols which are defined by an 'SST' and by a 'CALL' will be
multiply-defined. Only those system symbols which do not go into the transfer
vector should be defined by an 'SST'.

START - START OF PROGRAM -
If the variable field is blank, then the present value of the storage

3.7-45

location counter is taken as the first executable statement of the program.
If there is a symbol in the variable field, then this symbol is taken as the name
of the first executable statement of the program, and the symbol must be defined
in the program (but not necessarily before the occurrence of 'START'). If no
'START' occurs in the program, then UMAP assumes that the first executable location
in the program is irmnediately after the transfer vector. 'START' is undefined if
the automatic program card is deleted or if the program is a subroutine with no
zero name entry.

SYMBOL - SYMBOL TABLE LENGTH ASSIGNMENT
Through use of this pseudo-op, a program may at assembly time adjust the

UMAP symbol table and MACRO table lengths. A storage area of about 12,000
locations (this varies with the version of UMAP) contains the symbol table at one
end and the macro tables at the other. Normally, the symbol table is defined to
contain a maximum of 500 symbols, and the remainder of the 12,000 locations are
assigned to the MACRO tables. Thus, the macro tables contain about 11,000 locations
since the symbol table is double-entry and requires 1,000 locations. The 'SYMBOL'
pseudo-op adjusts the normal settings of these tables as follows. Let IN' be the
value of the absolute, pre-defined expression in the variable field of the 'SYMBOL'
card. Then the occurrence of this pseudo-op causes the symbol table to be re-
defined to contain a maximum of N symbols--i.e., a maximum length of 2+N locations.
The remainder of the 12,000 available locations are defined a s the MACRO tables.
If the variable field of 'SYMBOL' is blank, then the present symbol table length
is taken as the maximum length. 'N' must be at least as great as the number of
symbols in the symbol table at the time 'SYMBOL' occurs so that no symbols are lost
from the table. Further, 'N' must be small enough that the new symbol table does
not overlap the present MACRO definition table. No MACRO definitions may be lost
due to adjustment of the tables. Use of the 'ZST' and 'ZMT' pseudo-ops allows the
zeroing of these tables before using 'SYMBOL'. If any of the above restrictions
are violated, or if 'SYMBOL' occurs in a MACRO, then 'SYMBOL' is non-fatally
flagged but otherwise ignored. 'SYMBOL' may occur as often as desired.

- SYN - SYNONYM

Ism' is the same as 'EQU'.

TAPERD - .TAF'RD CALL

Assembles the same as 'CALLIO .TAPRD'.
the first element, is the same as for 'CALLIO'.

TAPEWR - .TAPWR CALL
Assembles the same as 'CALLIO .TAF'WR'.

the first element, is the same as for 'CALLIO'.

The variable field, except for

The variable field, except for

3.7-46
..

TCD - TRANSFER CARD -
Causes the punching of any accumulated binary output followed by the punch-

i n g o f a t r ans fe r ca rd . I f t he a s sembly i s abso lu te , t hen t he va lue o f t he va r i ab le
f i e l d i s used as t h e a d d r e s s o f t h e t r a n s f e r c a r d .

TITLE - LISTING TITLE -
Each page of the l i s t i n g i s headed by a t i t l e w i t h a page number. When

'TITLE' occu r s , t he cu r ren t page i s te rmina ted , a new t i t l e i s made u s i n g c o l u m s
14-72 of the 'TITLE' card, and the next page i s begun w i th t h i s new t i t l e . To
t i t l e t h e f i r s t page of t h e l i s t i n g , a 'TITLE' c a r d m u s t b e t h e p h y s i c a l l y f i r s t
c a r d o f t h e UMAP deck. If a n i n t e g e r a p p e a r s i n t h e l o c a t i o n f i e l d o f t h e 'TITLE'
card, then the page numbering i s set t o th i s va lue fo r t he nex t page . 'T ITLE ' i s
n o t p r i n t e d i n t h e l i s t i n g .

VFD - VARIABLE FIELD DATA GENERATION -
This pseudo-op i s p r i m a r i l y u s e f u l i n c o n s t r u c t i n g t a b l e s a t t r a n s l a t i o n time.

T h e c o n s t i t u e n t s o f t h e 'VFD' a r e as fol lows.

1. A symbol o r b l a n k s i n t h e l o c a t i o n f i e l d
2. The operation code 'VFD'
3. One o r more s u b f i e l d s (as desc r ibed be low) i n t he va r i ab le f i e ld .

Each 'WD' gene ra t e s one o r more object words. Each s u b f i e l d o f t h e v a r i -
a b l e f i e l d g e n e r a t e s one o r more b i t s o f a n o b j e c t word. Thus, the unit of in-
format ion for th i s pseudo-op i s t h e s i n g l e b i t .

The cons t i t uen t s o f a s u b f i e l d are as fol lows.

1. The Type Letter

Boolean (octal) B o r 0 o r K
H o l l e r i t h H o r C
Symbolic No a l p h a b e t i c c h a r a c t e r a t a l l

2. The B i t Count

Th i s i s an uns igned dec imal in teger which spec i f ies how many b i t s of the
o b j e c t word w i l l be generated by t h i s s u b f i e l d .

3 . The Separat ion-Character

A s l a s h (/) i s used t o s epa ra t e t he b i t coun t f rom the da t a item.

3.7-47

4 . The Data Item to be converted. The form of the data item depends
upon the type of subfield......

A. In a symbolic subfield, the data item consists of one U"
symbolic expression.

B. In a Boolean (octal) subfield, the data item consists of one
octal integer or one UMAP Boolean expression.

C. In a Hollerith subfield, the data item consists of a string of
characters, none of which is comma or blank.

Consecutive subfields are separated by commas. Any number of subfields may be
given in a 'VFD'-'EITC' sequence, but no subfield may have a bit Count which
exceeds 63. Note that a subfield may generate as many bits as desired, but no more
than 63 of them will be used. A 'VFD' card may be followed by as many 'ETC' cards
as desired, each of whose variable fields corresponds to the above stated re-
strictions. However, a subfield begun on one card must be terminated on that card.
UMAP automatically ends a subfield at the end of a card.

If there is a symbol in the location field of a 'VFD', this symbol is de-
fined as the location into which the first object word generated will be loaded.
Location field symbols are ignored on 'ETC' cards.

Successive subfields of the variable field of the 'VFD' are converted and
packed to the left to form generated object words. If N is the bit count of the
first subfield, then the data item in that subfield is converted to an N-bit binary
number. This N-bit binary number is placed in the left-most N bit-positions of the
first object word generated. The sign position is here regarded as the first bit-
position. If N exceeds 3 6 , the left-most 36 bits of the converted data item form the
first generated object word, and the remaining bits of the converted data item are
placed in the first N-36 bit-positions of the second generated object word. Each
succeeding subfield is converted and placed in the left-most bit-positions re-
maining after the preceding subfield has been processed. The object words thus
generated are assigned to successively higher storage locations. If the total
number of bit positions used by all the subfields is not a multiple of 3 6 , then the
unused bit-positions at the right of the last generated object word are filled Out
with zeroes.

The data item in a symbolic subfield is converted as a symbolic expression.
Let N be the bit count of the subfield. If the data item as converted occupies more
than N bits, only the right most N bits of the converted data item are used. If
the data item, as converted, occupies fewer than N bits, then sufficient zero bits
are placed at the left of the converted data item to form an N-bit binary number
(i-e,, the converted data item is right-justified with leading zeroes within its
bit count). Neither of these conditions is regarded as an error by UMAP. The
asterisk may be used as an element in a symbolic subfield. In this Context it

3.7-48

carries the usual meaning of present location. That is, the value of the asterisk
will be the location assigned to the generated object word which contains the left-
most bit of the converted subfield in which the asterisk appears. Failure to keep
this fact in mind may lead to errors, since the bits generated by one subfield may
occupy as many as three different generated object words. If the data item is a
relocatable expression or an erasable expression, then the subfield must be so
situated, relative to other subfields, that its right-most bit coincides with the
right-most bit of a generated object word, or with the right-most bit of the decrement
portion of a generated object word. This requirement stems from the scheme for hand-
ling relocation. A violation of this rule will be flagged by UMAP as a relocation
error (R FLAG).

any
Val
Boo

The data item in a Boolean subfield may be an unsigned octal integer of
length. If the bit count of the subfield is 36 or less, the data item ma be any
id Boolean expression. Note that an unsigned octal integer is one type o y valid
lean expression. In a Boolean subfield, Boolean mode is always assumed. See

the Boolean expression section. Let N be the bit count of the subfield. If the
data item, as converted, occupies more than N bits, only the right-most N bits of
the converted data item are used. If the data item, as converted, occupies
fewer than N bits, then sufficient zero bits are placed at the left of the con-
verted data item to form an N-bit binary number (i.e., the converted data item is
right-justified with leading zeroes within its bit count). Neither condition is
regarded as an error by UMAP. The B-type, 0-type, and K-type subfields are treated
exactly the same. The user may use whichever notation is most desirable for him.

The data item in an H-- Hollerith subfield may consist of any combination
of characters other than corn or blank. Each character is converted to its six-bit
binary-code equivalent. Let N be the bit count for the subfield. If the data
item, as converted, occupies more than N bits, only the right-most N bits of the
converted data item are used. If the data item, as converted, occupies fewer than
N bits, then sufficient six-bit groups of the form 110000 (the BCD code for a
blank) are placed at the left of the converted data item to form an N-bit binary
number. If N is not a multiple of 6 , then some sub-portion of the code for a
blank (i.e., some right-most part of 110000) will appear at the extreme left of the
N-bit result for this subfield. In other words, the data item is converted as if
the left-most character were preceeded by an unlimited number of blanks. If the
bit count is not a multiple of 6 , then the left-most character used, or the left-
most blank used, is truncated from the left. None of these conditions are regarded
as an error by UMAP. The above applies to a C-type Hollerith field also, except
that leading zeros, instead of leading blanks, are supplied on the left of the con-
verted data item if it occupies fewer than N bits. It is only in this one case
that the C-type and H-type Hollerith subfields differ.

If the bit count of any subfield exceeds 6 3 , it is taken as 6 3 , and UMAP
will signal an error through the use of a G FLAG. If the bit count of a Boolean
subfield exceeds 3 6 , then the data item cannot be a Boolean expression. It can
only be an unsigned octal integer.

3.7-49

For example, the statement

VFD C18/A,HlS/A,C18/ABC,H18/ABC,C18/ABCDE,H18/ABCDE

generates the three octal words

000021606021
212223212223
232425232425

and the statements

VFD 18/SYMl-SYM2-10,H18/AB,C18/AB,B6/12345
ETC B12/SYM2+SYM3,B24/123456,C30/ABCD,C4/A

SYMl BOOL 77777
SYM2 EQU 3
sYM3 BOOL 41

generate the octal sequence

077762602122
002122450043
222324040000

ZERO - LOAD ZERO LIST -
This pseudo-op i s exactly the same as 'ASSIGN', except tha

zeroes are loaded into all locations defined. Thus,
.t at lo ad time

ZERO A,,B

is equivalent to

A PZE
PZE

B PZE

- ZST - ZERO SYMBOL TABLE
This pseudo-op causes the removal, on PASS 1 only, of all the spbols

currently in the symbol table.

EXTENDED MACHINE CODES

All extended machine codes may have a symbol in the location field for
reference purposes.

3.7-50

- BFT - BOOLEAN OFF-TEST
Assembles as 'LET' or 'RET:' according as the variable field is a left-

Boolean or a right-Boolean expression. Boolean mode is assumed for the variable
field evaluation.

BLK - - BLOCK PARAMETER
Indicates a block parameter in a non-1/0 calling sequence. Requires an

address and a decrement.

- B m - BOOLEAN ON-TEST
Assembles as 'm' or 'RNT' according as the variable field is a left-

Boolean or a right-Boolean expression. Boolean mode is assumed for the variable
field evaluation.

BRANCH or BRA - TRANSFER INSTRUCTION

END10 - END 1/0 CALLING SEQUENCE -
Terminates an I/O calling sequence. Variable field should be all blank.

FMT - FORMAT SPECIFICATION -
Specifies a format for an 1/0 calling sequence. Address should be the

format name. No decrement required.

- IIB - INVERT INDICATORS BOOLEAN
Assembles as 'TIL' or 'TIR' according as the variable field is a left-

Boolean or a right-Boolean expression. Boolean mode is assumed for the variable
field evaluation.

IOBP, IOBPN, IOBT, IOBTN

Used in calling upon low-core I /o control routines.

- IOP - 1/0 PARAMETER
Used to specify either single or block parameters in 1/0 calling sequences.

Requires an address. If block parameter, decrement must be used.

3.7-51

Used in calling low-core 110 control routines.

- PAR - NON-I/O SINGLE PARAMETER
Specifies a single parameter in a non-I/O calling sequence. Requires an

address. The decrement should not be given.

- RIB - RESET INDICATORS BOOLEAN
Assembles as a 'RIL' or as a 'RIR' according as the variable field is

a left-Boolean or a right-Boolean expression. Boolean mode is assumed for the
variable field evaluation.

- SIB - SET INDICATORS BOOLEAN

Assembles as a 'SIL' or as a 'SIR' according as the variable field is a left-
Boolean or a right-Boolean expression. Boolean mode is assumed for the variable
field evaluation.

SLF - SENSE LIGHTS OFF -
When executed, turns off all sense lights. Variable field should be blank.

- - SENSE LIGHT ON
When executed, turns on sense light N, where N is the value of the absolute

expression in the variable field. N must be greater than zero and less than five.

- SLT - SENSE LIGHT TEST
When executed, tests sense light N and skips the next instruction if it

is on (also turning off sense light N), where N is the value of the absolute ex-
pression in the variable field. N must be greater than zero and less than five.

- SWT - SENSE SWITCH TEST
When executed, tests sense switch N and skips the next instruction if

switch N is depressed, where N is the value of the absolute expression in the
variable field. N must be greater than zero and less than seven.

3.7-52

TAPENR - TAPE NUMBER
Used to specify a tape number in an 1/0 calling sequence. Address is

required. A decrement should not be given.

- ZAC - ZERO THE ACCUMULATOR
Causes the accumulator to be zeroed when executed. Requires no variable

field.

ZAD or ZSA - ZERO ADDRESS
When executed, causes the address portion of location X to be zeroed out,

where X is the value of the variable field.

ZDC or ZSD - ZERO DECREMENT
When executed, causes the decrement portion of location X to be zeroed

out, where X is the value of the variable field.

EVEN - FORCE N M T LOCATION TO BE EVEN -
This pseudo-op is used to ensure an even value of the program counter for

the data or instruction that follows. It is used primarily with 7094 double-
precision instructions. The variable and location fields of the EVEN pseudo-
op are blank.

If the program counter is odd when the EVEN pseudo-op is encountered, a
binary word containing the instruction AXT 0 , O is generated. Also, for re-
locatable assemblies, an indication is given in the program card that relocation
of the program should be by an even amount, and an extra AXT 0,O is added follow-
ing the transfer vector if the number of entries in the transfer vector is odd.
If EVEN occurs in a relocatable program, the fourth word of the first program
card is made negative. This indication is used by the loader to ensure the pro-
gram is relocated with its origin at an even location.

COMMON - PSEUDO-OP FOR STORAGE ALLOCATION
This pseudo-op is used to reserve an area of upper core storage for data

storage or working space.. This pseudo-op is not normally used in programs operat-
ing under MAMOS, since the operation ERAS allocates storage in UMAP which is
compatible with MAD program erasable storage. The COMMON pseudo-op is provided
mainly for compatibility between UMAP and FAP, and storage is allocated in the
same manner as described for the FAP pseudo-op COMMON. The difference between

'COMMON' and 'ERAS' pseudo-ops in UMAP are:

1. The 'COMMON' origin is (77461)g while the 'ERAS' origin is (77777)8

2. 'COMMON N' allocates N locations while 'ERAS N'allocates N+l locations.

The 'COMMON' and 'ERAS' pseudo-ops can not both be used in the same UMAP program.

COUNT - PSEUDO-OP -
This pseudo-op is at present recognized and ignored, and is in UMAP for

FAP compatibility. The 'MIDDLE' pseudo-op should be used in UMAP to speed up long
assemblies.

- LBL BINARY CARD LABEL

This pseudo-op is provided for FAP compatibility, even though it does not
function exactly like the 'LBL' pseudo-op of FAP. The 'LBL' pseudo-op of UMAP
functions exactly like the 'NEWID' pseudo-op. That is, the first 8 characters
of the variable field is taken as the new label for binary cards.

TTL - LISTING TITLE -
This pseudo-op is provided for FAP compatibility, although it does not

function in the same manner as the FAP pseudo-op. Except for the inability to
title the first page of the listing with 'TTL', this pseudo-op in UMAP functions
in the same manner as the UMAP pseudo-op 'TITLE'. The 'TITLE' pseudo-ops of
FAP and UMAP are entirely different, but a UMAP assembly of a program con-
taining the 'TITLE' pseudo-op of FAP would result in a correct assembly.

DESIST - STOP ASSEMBLY PROCESS
This pseudo-op causes the assembly process to be suspended. All cards

up to the next occurrence of a 'RESUME' pseudo-op are treated as comment cards
and printed under 'NOLIST' control.

RESUME - RESUME ASSEMBLY PROCESS
This pseudo-op turns on the assembly process which may have been turned

off by a previous 'DESIST' pseudo-op. If already on 'RESUME' is ignored.

0 PD -

3.7-54

OPERATION DEFINITION

The OPD (Operation Definition) pseudo-operation is used to define
a machine operation code. The octal number in the variable field of the
OPD pseudo-operation is assigned as the machine operation code definition
of the symbol in the location field of the OPD pseudo-operation.

The octal number in the variable field of the OPD pseudo-operation
is considered as 36 binary bits which are described as follows.

BITS MEANING -
1 - 12

13 - 14
15
16
17
18
19
20
21
22
23

24 - 36

Operation Code.
Both bits non-zero if indirect addressing is legal.
Non-zero if an address is required.
Non-zero if a tag is required.
Non-zero if a decrement is required.
Non-zero if the address does not contain part of the operation.
Non-zero for channel connnands which may be indirectly addressed.
Non-zero for non-transmit channel commands.
Non-zero to indicate a machine instruction.
Used internally by UMAP.
Not used at present.
Remainder of op-code if bit 18 is zero.

If bit 18 is non-zero then bit 35 is non-zero for variable length instructions,
and bit 36 is non-zero for sense indicator instructions.

PREFIX CODES

A set of operation codes is provided which allows for the symbolic
designation of each of the four parts of a machine word, i.e., the prefix,
the decrement, the tag, and/or the address. The operation code determines
which prefix is used as follows.

OPERATION CODE OCTAL PREFIX

PZE or ... or *** 0
PON or ONE 1
PTW or TWO 2
PTH or THREE 3
MZE or FOR or FOUR 4
MON or FVE or FIVE 5
MTW or SIX 6
MTH or SVN or SEVEN 7

The address, tag, and decrement subfields may then be provided in their usual
order in the variable field of the instruction. No variable field is required
for any of these. Any combination of subfields may be specified. Indirect
addressing is not allowed on any of these. All prefix codes may have a symbol
in the location field for reference purposes.

3.7-55

MACROS

I. INTRODUCTION

MACRO instructions are sequences of coding which have been given a
name and which may have variable parts. Such sequences, once defined in
a given program, may be incorporated into that program simply by giving the
name of the sequence along with the information to be substituted for the
variable parts of the sequence. Pseudo-ops are provided which allow a
limited amount of conditional assembly and repetition of segments of the
original sequence.

The term MACRO expansion will be used throughout this description.
MACRO expansion will mean the following two step process.

1) Determination of the set of arguments given in the MACRO call
with the creation of symbols, when necessary, €or missing
arguments.

2) Generation of UMAP statements, as given in the MACRO definition,
with all dunnny arguments replaced by the corresponding calling
arguments .

The entire process is performed in PASS 1 of UMAP. Step 1 occurs as soon
as the MACRO call is recognized as such. Step 2 actually involves a
communication process between the MACRO compiler (a sub-section of UMAp)
and UMAP proper. The MACRO compiler generates the UMAP statements one
at a time. After each statement is generated, control is returned to UMAP,
and the generated statement goes through the normal PASS 1 UMAP processing.
The assembly process is then interrupted, and control is returned to the
MACRO compiler for the next generation step. The replacement of arguments
is a purely symbolic process with no checking. Errors are caught during
the normal assembly process.

In reading the remainder of this description, it will be important
to remember that MACROS are defined and expanded during PASS 1 of UMAP and
thus have no more connection with execution time than do other parts of
the assembly. The result of a MACRO expansion is a set of UMAP instructions
ready to be processed by the normal UMAP assembler, and all instructions
throughout this set must meet all the specifications normally imposed by
UUP. As will be seen later, it is the responsibility of the user to in-
sure that the results of MACRO expansions are legitimate LI" sequences.
Absolutely no checking is provided by the MACRO compiler during che
expansion process.

11. MACRO definition

The pseudo-op 'MACRO' is used to define a sequence of UMAP instructions
as a MACRO. The form of a MACRO definition is

NAME MACRO AI ,A2,. . . ,AN

NAME END or NAME ENDM

3.7-56

where

NAME is the name of the MACRO.
al,A2,.. . are the variable parts of the definition, hereafter

called the arguments of the MACRO.
R is a set of IJ" instructions which are to be

assembled, with replacement of the variable parts,
when the MACRO is called. This set of instructions
will hereafter be called the range of the MACRO
definition.

The MACRO definition is terminated by an 'END' or 'ENDM' card which has 'NAME'
in either the location field or the variable field, or which has a blank vari-
able field and a blank location field. In the latter case, all MACRO defini-
tions in progress (see 3 below) are terminated simultaneously. In the former
case, only the MACRO definition whose name occurs in the location field or
the variable field is terminated.

The following qualifications and restrictions apply to MACRO defi-
nitions.

1)

3)

The MACRO name and each argument must be a legal UMAF' symbol.
Expressions are not allowed in the definition. These symbols
need not be distinct from ordinary symbols occurring elsewhere
in the program, but they are unrelated. The first blank after
column 16 terminates the 'MACRO' card. Parentheses may not be
used in a symbol.

The name of a MACRO may be the same as the name of some pseudo-
op or machine instruction already in UMAP. However, after defi-
nition of the MACRO, the MACRO definition will be used for all
Occurrences of the name in the operation field, and the original
definition of the name is lost.

MACRO definitions may be nested, that is, the range of one MACRO
definition may contain the definition of another MACRO. In such
cases, however, MACRO definitions cannot overlag. That is, if a
MACRO definition begins inside another MACRO definition, then it
must end inside that MACRO definition. Several nested MACRO
definitions may end together on a single 'END' card, however. A
further restriction also exists. If MACRO definitions are nested,
then an inner MACRO is not defined until every MACRO within which
it is nested has been called. Thus, if MACRO 'A' is defined inside
the definition of MACRO 'B', then MACRO 'A' is undefined until MACRO
'B' has been called at least once. After MACRO 'B' has been called,
MACRO 'A' may be called as often as desired. Note that every time
MACRO 'B' is expanded, the definition of MACRO 'A' is changed.
MACRO 'A' may be called from inside MACRO 'B' (but only after the
definition of MACRO 'A' has been expanded at least once, either in
the same call or in an earlier call) or from outside MACRO 'B'.

3.7-57

Note, however, that any arguments of MACRO 'B' which occur in 'A' ,
but which do not occur explicitly in the argument list of MACRO
'A', will have been replaced by the corresponding calling argu-
ments from the last call on MACRO 'B'.

4) The definition of a MACRO may include calls for other MACROS,
even though they may not be defined at the time of the definition.
However, all such MACROS must be defined before the first call
for the original MACRO. The prograrmner must guard against
circular definitions. Such definitions cause a loop in the compiler.
It is possible for a MACRO to call upon itself, or for MACROS to
call upon each other, by using the ' IFF' or 'WHEN' pseudo-ops to
control such calls. An example of this will be given later.

5) Those BCD characters which are not legal as part of a MACRO name Or
argument will be called break characters. The complete list of
break characters is as follows.

1) EQUAL, (=I 7) APOSTROPHE (')
3) MINUS (-1 9) BLANK
4) ASTERISK (*) 10) LEFT PARENTHESIS
5) SLASH (/ 1 11) RIGHT PARENTHESIS
6) DOLLAR ($1 12) ALL SPECIAL CHARACTERS

2) PLUS (+I 8) COMMA (9)

Any card in the definition is terminated by the first blank in
the variable field. In any case, the variable field is terminated
with column 72. All break characters in the range of a 'MACRO'
(other than blanks or terminal $) behave exactly like comas.
Consecutive break characters in an argument string will not cause
the insertion of durrmry arguments but will simply be skipped.

6) A 'MACRO' card may be extended by use of 'ETC' cards. In such
cases, an argument is normally terminated when a card is terminated
to split arguments, a dollar sign must be given to indicate that
the present card is terminated but the present argument is continued
on the next card which must be an 'ETC' card. If a 'MACRO' or
'mc' card terminates with a blank, it may be followed by an 'ETC',
but an argument can't be split. In any case, the maximum number
of arguments that a given MACRO m y have is 63.

7) Names of MACROS may not be headed, and any heading characters in
effect at the time of a MACRO definition are not incorporated as
part of the definition.

8) 'REM' cards may be included within MACRO definitions and are
scanned for arguments. On 'REM' cards, blanks do not terminate
the card, but trailing blanks are not included in the definition.
+-Type remark cards and remarks in variable fields in a MACRO defi-
nition are not included in the definition.

' . -. --.-_ _ _ , ,,
" - 1

3.7-58

111.

The following definition provides a three- address addition
instruction.

ADD3 MACRO A , B , C
CLA A
ADD B
ST0 C

ADD3 ENDM

3.7-59

IV. MACRO call

Once a MACRO has been defined, it is called for insertion into the
assembly by the appearance of the name of the MACRO in the operation field
with the information to be substituted for the variable parts of the defini-
tion in the variable field. The form of the call is

S NAME El,EB,... .,EN

where

S optional symbol in the location field. If given, it is

NAME name of the MACRO being called.

assigned as the next location to be assigned at the time of
the MACRO call.

El,E2,...the information to be substituted for the variable parts of
the MACRO definition.

The arguments supplied in a MACRO call may be any UMAP expressions. Their
correspondence with the dummy arguments of the MACRO definition is determined
by their position in the sequence of arguments. Hence, the ith argument in
the MACRO call is substituted throughout the MACRO definition for the ith
dummy argument in the MACRO definition.

AS an example, consider the following call.

ADD3 AB-2,C+/K/12,XYZ

with the definition given for ADD3 in the last section, the result of this
call would be the sequence

CLA AB-2
ADD C+/K/ 12
ST0 XYZ

the substitution process is entirely symbolic. The MACRO compiler simply
takes the string of characters which constitute the argument in the call and
substitutes this string for the corresponding symbol (dummy argument) in
the MACRO definition. The result of this substitution is then assembled by
the normal U" assembler and must satisfy all UMAP conditions.

In a MACRO call, a pair of parentheses surrounding an expression
indicates that everything between the parentheses is to be taken as a
single argument in the expansion. For example, the call

ADD3 X1 ,=3,(Z1 ,I)

results in the sequence

3.7-60

CLA x1
ADD e3
ST0 Z1,l

Parentheses may be nested in a call. However, whenever parenthesized
arguments are found, the outermost pair is stripped off, and everything
between them is used as a single argument. Any remaining parentheses
must be legally present, since they will occur in the expansion.

Any part of an instruction may be an argument in a MACRO definition.
For example, consider the following definition.

Y

JUMP MACRO TXX,NAME,X
TXX X
NAME

X SYN *
JUMP ENDM

In the following expansion, an entire MACRO call wi
the argument 'NAME' above.

11 be substituted for

JUMP TPL, (ADD3, (X, 1) ,Y ,Z) , ZZ
The result of ~ W O MACRO expansions (one for 'JUMP' and one for 'ADD3')
gives the following sequence.

TPL ZZ

ADD Y
ST0 Z

zz SYN *

CLA x,l

Care m s t be taken in substituting for op-codes. If, for example, an
argument is named 'TIX', then a substitution will be made for every occur-
rence of 'TIX' in the MACRO definition.

If arguments are missing from the end of the argument list in a
MACRO call, symbols will be created to fill the vacancies. The symbols
will have the form '..N', where 'N' is a three digit integer.
For example, consider the call

JUMP TMI,(ADD3,R,S,T)

this results in the sequence

. .001

TMI . .001
CLA R
ADD S
ST0 T
SYN *

3 . 7 - 6 1

An explicitly empty argument terminated by a conma will be treated as empty
(i.e., blank). Created symbols will be supplied only for arguments missing
at the end of the argument atrinq. For example, the call

. ADD3 A , ,

gives the sequence

CLA A
ADD
ST0 . .001

One valuable use for created symbols is in making local references within
the MACRO definition. Any symbol occurring in a location field in a MACRO
definition will also occur in a location field in each expansion of this
MACRO. Hence, such a symbol wili be multiply-defined in the assembly.
To prevent this, all such symbols occurring in location fields in MACRO
definitions should be added to the end of the dummy argument string. By

them, and no multiple definitions will occur.
- not giving these arguments in each call, created symbols will be used for

Any heading character in effect at the time of the MACRO call will
be applied to all symbols in the resultant sequence.

For convenience in writing MACRO calls, and to allow a more functional
notation in such calls, redundant commas may be omitted. Specifically, a
coma need not appear before a left parenthesis nor after a right parenthesis
in MACRO argument lists. Such commas may be given if desired.
For example, the call

JUMP T P L , (A D D 3 , (X , l) , Y , Z) , Z Z

(as given earlier) could also be written

JUMP TPL(ADD3(X, 1)Y, Z)ZZ

A s an example of the possible functional notation that can be used, consider
the example.

COS MACRO OP,X
OP
ST 0 X
CALL cos,x

COS END
AC MACRO
AC END

Note that 'AC' is an empty MACRO definition. Then to assemble a sequence
of coding whose purpose is to take the cosine of the cosine of the number
in the accumulator, the call would be

3.7-62

which expands to the sequence

ST0 . .002
ST0 ..001
CALL cos, . .002

CALL cos,. . 001

It is not necessary to restrict expressions to be substituted into
the location field within a MACRO to 6 characters nor those to be substituted
into the operation field to 6 characters. One use of this feature is to
substitute bodily a whole instruction for such an argument. The only
restriction in such substitutions is that the programer insert in the
expression to be substituted the proper blanks so that all resultant expanded
instructions have their various fields in the proper columns. Note that blanks
within parentheses do not terminate an argument.

Data pseudo-ops (i.e., 'OCT', 'DEC', and 'BCI') may be included in a
MACRO definition if desired. If included, such data will be generated in the
program for each call on the MACRO. If the variable field of a 'BCI' starts
with a digit followed by a coma, the digit and following coma will be stored
as the 'BCI' word count, and the number of words indicated will be stored in
the definition. The variable field will be scanned beginning after the
coma, SO that durmny arguments are recognized if set apart by break charac-

field, then the variable field scan begins with that character. In this
case, the first thing in the variable field should be a durrmry argument. On
a 'BCI' card, blanks will not stop the variable field scan, but terminal blanks
will not be stored in the definition unless they are part of the word count.
When 'DEC' cards appear in a MACRO definition, the letters 'E' and 'B' may
cause improper definition if used as durmny arguments. Likewise, if 'OCT' cards
occur in the MACRO definition, the letter 'K' may cause improper definition
if used as a MACRO dummy argument. The variable fields of 'DEC' and 'OCT'
cards are scanned, and any dummy arguments will be found if set apart by
break characters.

- ters. If a non-numeric other than comma or asterisk starts a 'BCI' variable

On a MACRO call, it is possible that a single card will not contain
the entire MACRO call argument list. To provide for this case, 'ETC' cards
may be used to continue the argument list over several cards. The follow-
ing conventions hold for 'EXC' cards in a MACRO call --

1) Each card is terminated by the first blank column which is not
within parentheses, or by a dollar sign.

2) An argument is not assumed to be terminated when a card is
terminated. Hence, an argument may be split between two cards.

3) Any blanks within parentheses are considered part of the argument.
Hence, if such an argument is split between two cards, all
remaining blanks on the first card will be retained as part of

3.7-63

the argument. A d o l l a r s i g n may be used t o i n d i c a t e t h a t t h e
argument is cont inued on the next card and that the remainder
of the p resent card should be ignored.

4) I f a MACRO cal l o r a fo l lowing 'EX' card ends wi th a d o l l a r
s ign , t hen that card be followed by ano the r 'ETC' card.
I f t h e MACRO c a l l o r a fol lowing 'ETC' ca rd t e rmina tes wi th a
b lank , then it may be followed by an 'ETC' ca rd i f needed.

V.

3.7-64

IRP Pseudo-Operation

The indefinite repeat pseudo-op 'IRP' is used in pairs within a MACRO
definition to begin and end a block of instructions which are to be repeated
an indefinite number of times at the time the MACRO is expanded. The form
of such a block is

IRP A

B

IRP

where

A = dllnmTy argument in MACRO definition
B = block of instructions to be repeated

The block 'B' will be repeated once for each subfield of the argument 'A'
given in the MACRO call, and on each repetition the argument 'A' will be
replaced by the current sub-argument given in the call. 'A' must be a
UMAP expression defined before appearance of the instruction in a MACRO
call. For example, the definition

SUMSQ MACRO
STZ
IRP
LDQ
FMP
FAD
ST0
IRP
CALL
ST0

SuMSQ END

SQRT,T
K

Defines a sequence which computes the square root of the sum of the squares
of the subarguments of 'Be. The call

SuMSQ A,((X,1),(Y,2)),A+1

results in the sequence

3.7-65

The following restrictions and additions apply to the use of the 'IRP'
p seudo-op.

1)

2)

3)

4)

5)

Thus, for

' n p ' may occur inside a MACRO definition. If it occurs
elsewhere in a program, it is treated as an undefined operation
code.

An 'IRP' can't occur explicitly in the range of another 'IRP'.
However, a MACRO called from within an 'IRP' range may itself
contain other 'IRP' pairs.

An 'IRP' on an empty argument or an 'IRP' on a blank variable
field causes the skipping of all instructions in the 'IRP' range.

An 'IRP Q ' , where 'Q ' is not a dunmy argument in the definition,
causes the skipping of all instructions in the 'IRP' range.

A n 'IRP' sequence can't occur inside a remote (see 'RMT' pseudo-op)
assembly segment.

example, the call

SUMSQ A+5 , , A+6

will generate the sequence

ST2 A+5

ST0 A+6
CALL S QRT , A+5

VI. SKIP Pseudo-Operation

The 'SKIP' pseudo-op allows a limited type of skipping within a MACRO
definition at the time of expansion of the MACRO. Normally, it is used in con-
junction with the 'IFF' or 'WHEN' pseudo-ops (described below). The 'SKIP'
pseudo-op will have one of two alternate forms.

3.7-66

1) SKIP With blank variable field.
When this form of 'SKIP' is encountered, the expansion of the MACRO
is terminated immediately, i.e., all remaining instructions in the
MACRO are deleted.

2) SKIP P P = UMAP symbol or unsigned decimal integer.
If P is a UMAP symbol, then all instructions up to, but not in-
cluding, the one with P in its location field are skipped. If P is
an integer, then the next P statements in the MACRO definition
are skipped. P is assumed to be in decimal mode. In either case,
the following restrictions hold.

A) If 'SKIP P' occurs in the range of an 'IRP', then the SKIP
terminates as above or with the second 'IRP', whichever comes
first.

B) If 'SKIP P' occurs outside the range of an 'IRP', then the
SKIP can't end within an 'IRP' range. When such a situation
occurs, the remainder of the 'IRP' range is skipped automatically.
A 'SKIP' can, however, skip over any number of complete 'IRP'
ranges.

C) An 'ETC' pseudo-op is always ignored in the skipping process.
Thus, if the skipping is done with a count (i.e., 'PC is an
integer), then the count should not include any 'ETC' cards
which are to be skipped.

In all cases a skip is in the forward direction. A SKIP cannot re-
turn to an earlier part of the MACRO definition. If the end of a
MACRO definition is encountered during a SKIP, then the MACRO ex-
pansion is terminated.

The 'SKIP' pseudo-op can only occur within MACRO definitions. If it Occurs
elsewhere in a program, it is treated as an undefined operation code.

3.7-67

V I I . IFF Pseudo-Operation

The 'IFF' pseudo-op provides for the conditional assembly of segments
of a MACRO definition at the time of the MACRO expansion. The 'IFF' has two
f oms :

FORM 1 IFF P , A , B
FORM 2 IFF P,A,B,S

where

P UMAP expression
A UMAP symbol
B UMAP symbol
S UMAP symbol or unsigned decimal integer

To describe these two forms, the following definitions will be needed.

Q Q-1 if the value of the expression P is non-zero.

R R = l if A and B are identical (i.e., if A and B are the
Q=O, otherwise.

same symbol). R=O, otherwise.

Note that P is evaluated in PASS 1. Undefined expressions are given
the value zero. Literals are undefined in PASS 1. P may contain dumy
arguments and these will be substituted before the evaluation of P.

With the definitions of Q and R, the two forms of 'IFF' may now be
described.

Form 1. IFF P,A,P -
The instruction imediately following the ' IFF' statement is in-

cluded in the MACRO expansion if and only if Q and R have the same value.
If Q and R do not have the same value, then the statement following the
' IFF ' is deleted from the MACRO expansion.

Form 2 IFF P,A,B,S -
This form of the ' IFF' statement is equivalent to the two statements

IFF P,A,B
SKIP S

The restrictions upon skipping with respect to ' I R P ' ranges (see VI) apply
to this form of the ' IFF ' , also. Note further that 'ETC' cards are ignored
in skipping mode. Thus, whenever a SKIP with a count is initiated by an
' IFF ' in any of its permissible forms, the count should not include any
'ETC' cards which are to be skipped.

3.7-68

Note the statement above that 'A' and 'B' are treated as symbols,
i.e., the value of each is the octal code for the BCD representation of the
symbol. If an expression occurs, the last symbol in the expression, or the
final digits of the last number in the expression, are used as the symbol
'A' or 'B'. If literal occurs, the symbol used is the equal sign (e). T o
insure proper functioning of the ' I F F ' pseudo-op, both 'A'.and 'Bc should be
single symbols and not expressions.

AS an example, redefine the MACRO JUMP to be

JUMP MACRO TXX, X, N
T U . X
NAME
I F F 1 ,N, 1

X S M *
JUMP END

With this definition, the 'SYN' card is included in the expansion if
the final argument is a '1'. Thus, the call

JUMP JPL, (CLA A, 1) ,Y

generates the sequence

while the call

JUMP M,(STO B) , Z , 1

generates the sequence

TMI 2
S T 0 B

2 SYN *
The ' I F F ' may also be used to allow circular definitions within MACRO

in this case, the ' I F F ' is used to eventually terminate the apparent circularity.
F o r example, consider the following MACRO which calls upon itself.

TXITAB MACRO A , B , C
TXI A ,B ,C
TX I A,B,-C
I F F c/2
TXITAB A,B,C/P

TXITAB END

3.7-69

The MACRO call

generates the sequence

T X I X , Y , 8
T X I X , Y , - 8
T X I X , Y , 8 / 2
T X I X , Y , - 8 / 2
T X I X , Y , 8 / 2 / 2
T X I X , Y , - 8 / 2 / 2
T X I X , Y , 8 / 2 / 2 / 2
T X I X , Y , - 8 / 2 / 2 / 2

Note that in the absence of the ' I F F C / 2 ' statement, the MACRO compiler would
have gone into an infinite loop in trying to expand this MACRO call. Since
C/2 = 0 when C e 1 (due to integer division), the ' IFF' eventually skips the
MACRO call 'TXITAB A,B,C/2', thus terminating the MACRO. Had there been
additional instructions in the MACRO definition following this call, these would
now be expanded, once for each time the MACRO called upon itself, each time
using the arguments for the specific call upon the MACRO. Thus, the entire
MACRO is expanded once for each call made upon it in this recursive loop.

The reader should be able to verify the following interpretations of
' I F F ' statements.

A) I F F O,A,B Assemble the next instruction if A and B
are different symbols.

B) I F F l,A,B,S Skip to the statement labeled S, if S is a
symbol, or skip S statements, if S is an integer,
if A and B are the same symbol.

C) I F F Z/N Assemble the next instruction if Z is greater
than N

D) I F Z/N, , ,S Skip to the statement labeled S, if S is a
symbol, or skip S statements, if S is an integer
and if Z>N.

More generally, in terms of the variable Q defined above, the interpre-
tation of the two forms of the ' IFF' pseudo-op are as follows.

I F F P,A,B

A) Q - 0 Assemble the next instruction if A and B are different
symbols.

B) Q = 1 Assemble the next instruction if A and B are the same
symbol.

3.7-70

IFF P , A , B , S

A) Q = O Skip to the statement labeled S, if S is a symbol,
or skip S statements, if S is an integer and if A and
B are different symbols.

B) Q = 1 Skip to the statement labeled S, if S is a-SPbo1, Or
skip s statements, if S is an integer and if A and B
are the same symbol.

The 'IFF' pseudo-op my occur only in MACRO definitions. If it occurs elsewhere
in a program, it is treated as an undefined operation code.

r
3.7-71

VIII. MACRO Qualifiers

A set of seven qualifiers are available for use in Macro CALLS and
definitions. Three of these qualifiers (/CRS/, /MAC/, and /MI/) may be used
only in the 'IFF' pseudo-op as described below. Anywhere else, they are treated
as undefined qualifiers. A fourth qualifier (/NS/) can occur in the 'IFF'
01 'WHEN' Pseudo-oPs. An here else, it is undefined. The remaining three
qualifiers (/I/, /N/ , a*may actually occur almost anywhere (i.e., are
treated essentially as the other qualifiers of W) but are primarily available
for use in MACRO calls and definitions.

The description of the qualifier structure and the restrictions on the
manner in which qualifiers may occur in an expression as described previously
apply in the use of any of the above seven qualifiers. Failure to comply with
these restrictions will cause a qualifier to go unrecognized (which will usually
result in an error of some other type in evaluating the pertinent expression)
or to be undefined.

A) /I/ Indirect Address Qualifier

If the /I/ qualifier occurs anywhere in a variable field, it indicates
that the operation code for this card is to be indirectly addressed. For
example, the MACRO call

ADD3 (/I/A,l),B,C

results in the sequence

CLA /I/& 1
ADD B
ST0 C

which is equivalent to the sequence

CLA* A,l
ADD B
ST0 C

care m S t be taken, when using /I/ in Macro calls, that indirect addressing is
given only to those op-codes for which it is legal.

B) /CRS/ Created Symbol Qualifier

The /CRS/ qualifier may occur only in the second argument of an 'IFF'
statement. If it occurs anywhere else, it is treated as an illegal qualifier.

With the /CRS/ qualifier, the third argument of the 'IFF' statement is
not used, and hence must be deleted by the programer. Using the notation de-
veloped in VII, the two forms of the 'IFF' using /CRS/ are as follows.

3.7-72

- Form L IFF P, /CRS/A

2) Q = l

Assemble the next instruction if A is not a
created symbol.

Assemble the next instruction if A is a created
symbol.

- Form 2 IFF P,/CRS/A, s
1) Q = O

2) Q = l

Skip to the statement labeled S, if S is a
symbol, or skip S statements, if S is an integer
and if A is not a created symbol.

Skip to the statement labeled S , if S is a symbol,
or skip S statements, if S is an integer and if A
is a created symbol.

Note that in skipping with a count (S an integer), 'ETC' cards are ignored and
hence should not be included in the count.

C) /MAC/ MACRO Name Qualifier

The /MAC/ qualifier may occur only in the second argument of an ' IFF'
statement. If it occurs anywhere else, it is treated as an illegal qualifier.

With the /MAC/ qualifier, the third argument of the ' IFF' statement is
not needed, and hence it must be deleted by the programmer. Using the notation
VII, the two forms of the ' IFF' using /MAC/ are as follows.

- Form 1 IFF P , /MAC/A

1) Q = O

2) Q = 1

Assemble the next instruction if A is not a
MACRO name.

- Form 2 IFF P,/MAC/A, S

Assemble the next instruction if A is a MACRO
name.

2) Q = l

Skip to the statement labeled S, if S is a symbol
or skip S statements, if S is an integer and if
A is not a MACRO name.

Skip to the statement labeled S , if S is a symbol,
or skip S statements, if S is an integer and if A
is a MACRO name.

Note that in skipping with a count (S an integer), 'ETC' cards are ignored and
hence should not be included in the count.

D) /MI/ MACRO Indirect Qualifier

3.7-73

The /MI/ qualifier can occur only in the second argument of an ' I F F '
statement. If it occurs anywhere else, it is treated as an illegal qualifier.

With the /MI/ qualifier, the third argument of the ' IFF' statement is
not needed, and hence must be deleted by the progranrmer. Using the notation
developed in V I I , the two forms of the 'IFF' using /MI/ are as follows.

- Form 1 IFF P , /MI/

2) Q = 1

- Form 2 IFF P, /MI/ ,S

If the call for the MACRO being expanded was
not indirectly addressed, assemble the next
instruction.

If the call for the MACRO being expanded was
indirectly addressed, assemble the next instruction-

If the call for the MACRO being expanded was not
indirectly addressed, skip to the instruction
labeled S, if S is a symbol, or skip S statements,
if S is an integer.

Note that in skipping with a count (S an integer), 'ETC' cards are ignored and
hence should not be included in the count.

E) /NS/ No Skip Qualifier

The INS/ qualifier may occur only in the second argument of an ' I F F '
statement or the second argument of a 'WHEN' statement. If /NS/ occurs any-
where else in a program, it is treated as an undefined qualifier.

The INS/ qualifier has the effect of nullifying any skipping in the MACRO
definition which might arise from the ' I F F ' or 'WHEN' statement in which it occurs.
The effect of INS/ lasts only for the duration of the ' I F F ' or 'WHEN' card on
which it occurs.

Thus

IFF P , /NS/A,B,S

is equivalent to

I F F P , A , B

and

, W H E N A,/NS/R,B,S

is equivalent to

WHEN A,R,B

3.7-74

This makes possible the substitution of arguments of the form (V,T) for 'B'
without changing the original meaning of the 'IFF' or 'WHEN' statements.

F. /PI and /N/ Print Control Qualifiers

These qualifiers are supplied to provide the functions normally served by
a 'P' or a 'N' in colunm 7 of a card. Thus, the occurrence of /PI in a state-
ment causes that statement to be printed regardless of the print control mode
in effect (due to such pseudo-ops as 'NOLIST', 'FCC', or 'PMC'). Conversely,
the occurrence of a /N/ in a statement causes that statement to be omitted
from the listing unless an error is detected while analyzing the card. /PI and
/N/ can occur anywhere that qualifiers are normally permitted. These qualifiers
are supplied because column 7 of a card in a MACRO definition is not preserved
for the MACRO expansion, and thus the 'PI and 'N' conventions of column 7 can't
in general be used. Only in the particular case in which a MACRO argument
occurs in a location field and a complete UMAP statement is substituted for that
argument can one use the column 7 'N' and 'PI controls. An example of the /N/
qualifier is given in the MACRO 'REP' defined in sub-section IX. The effect
of a /P/ or a /N/ is carried over to any following 'ETC' cards where such are
legal.

G) Example Usage

The following examples, while not particularly useful MACROS, will
demonstrate some of the qualifiers discussed above.

QUALl MACRO
IFF
TXL
TXI
IFF
TXL
TXI
IFF
TXL
TXI

QUALl END

QUAL2 MACRO
IFF
TXL

s1 T XI
IFF
TXL

s2 TXI
IFF
TXL

s3 TXI
QUAL2 END

P, /MI/, S 3

The reader should verify that the following calls and generated sequences
are paired.

C) QUAL1
D) QUALl*
E) QUAL2
F) QUAL2*
G) QUAL2
H) QUAL2*

T X I
T X I
T X I
TXL
T X I
TXL
T X I
TXL
TXI
SAME AS B)
SAME AS A)
SAME AS B)
SAME AS A)
SAME AS A)
SAME AS B)

3.7-76

IX. WHEN Pseudo-Operation

The 'WHEN' pseudo-operation provides for the conditional assembly of
segments of a MACRO definition at the time of the MACRO expansion. The 'WHEN'
pseudo-op has one of two alternate forms.

Form 1 WHEN E,R,F
Form 2 WHEN E,R,F,S

where

E UMAP Expression
R a relation -- R nust be one of the following

.E. Equal to

.NE. Not equal to
.GE. Greater than or equal to . G. Greater than
.LE. Less than or equal to . L. Less than

F UMAP Expression
S UMAP symbol or unsigned decimal integer

To describe this pseudo-op, the following definitions are made.

V = Value of the expression E
W = Value of the expression F

where the expressions E and F are evaluated on PASS 1 of U W . (Undefined ex-
pressions are given the value zero--literals are undefined on PASS 1.) NOW
define B as

B = O If the Boolean expression V R W is false.
B = l If the Boolean expression V R W is true.

The two alternate forms of 'WHEN' then act as follows.

- Form 1 WHEN E , R , F

B = 0 Do not include the next statement in the Macro definition

B = 1 Do include the next statement in the MACRO definition in
in the present expansion of the MACRO..

the present expansion of the MACRO.

Form 2 WHEN E , R , F , S -
B = 0 Continue the MACRO expansion with the next statement in the

B = 1 If S is a symbol, skip all statements ih the MACRO definition
MACRO definition.

up to, but not including, the one labelled S . If s is an
integer, skip the next S statements i n the MACRO definition,

3.7-77

then continue the MACRO expansion. The restrictions upon
skipping, with respect to 'IRP' ranges (see VI), apply
here also. If the end of the MACRO definition is encoun-
tered while in skipping mode, the MACRO expansion is
terminated for this call. Note further that 'ETC' cards
are ignored in skipping mode so that when skipping by a
count (i.e., when S is an integer) any 'ETC' cards to be
skipped should not be included in the count.

The 'WHEN' pseudo-op is treated as undefined if it occurs exterior to
a MACRO definition. It is also treated as undefined if any one of the first
three arguments is not given or if a relation 'R', other than those listed
above, is given.

As examples, the MACROS 'JUMP' and 'TXITAB' (see VII) may be redefined
using 'WHEN' instead of 'IFF' as follows.

JUMP MACRO TXX,NAME,X,N
TXX X
NAME
WHEN N, .E., 1

X SYN *
JUMP END

TXITAB MACRO A,B,C
TXI A,B,C
TXI A,B,C

TXITAB A,B,C/2
WHEN C/2, .NE. , O

TXITAB END

The calling sequences for these MACRO definitions are the same as given
in VII.

Note that, in contrast with the 'IFF' pseudo-op, only values of symbols
or expressions are used in the 'WHEN' pseudo-op, as opposed to the octal BCD
representations of such symbols.

Note also that the macro qualifiers /MAC/, /MI/, and /CRS/ (see VIII)
may be used only in the 'IFF' pseudo-op. They can't be used with the 'WHEN'
pseudo-op. The /NS/ qualifier may, however, be used in the second argument
of the 'WHEN' pseudo-operation.

As a final example, consider the following MACRO definition.

REP MACRO A,B,C
C SET /N/A- 1

IRP B
B
IRP

REP C, (B) ,C
END

WHEN C, .E. ,0,1

3.7-78

This MACRO expands the sequence 'B' o f i n s t r u c t i o n s 'A' times, Thus, the call

REP 3,((LGL 3),(ALS 3))

r s e u l t r i n t h e s e q u e n c e

LGL 3
ALS 3
LOL 3
ALS 3
LGL 3
ALS 3

N o t e t h a t t h e /N/ q u a l i f i e r p r e v e n t s p r i n t i n g o f t h e 'SET' in the expans ion .
'REP' i r another example of a MACRO d e f i n i t i o n w h i c h c a l l s upon i tself , How-
e v e r , n o t e t h e u s e h e r e o f t h e 'SET' pseudo-opera t ion to per form the ac tua l
coun t ing o f t he number of expansions made. T h i s , f o r s e v e r a l i n t e r n a l r e a s o n s ,
is be t t e r t han t he approach u sed be fo re w i th t he MACRO 'TXITAB' s ince the symbolic
a rgumen t s i n t he r epea ted ca l l do no t become longer (and hence do n o t r e q u i r e
more room, e i t h e r in t h e MACRO t a b l e s o r i n t h e c a r d images generated) and a l l
e x p r e s s i o n s are easier to ana lyze . Note , too , that a third argument 'C ' i s
added and is used as a counter. 'C' is a c r e a t e d symbol in the above expansion,
s ince no co r re spond ing cal l argument is given, This is t he u sua l p rocedure i n
construct ing counters . Regular symbols may be used i f des i red . This p rocedure
a l l o w s s e v e r a l MACRO de f in i t i ons t o s imu l t aneous ly coun t and t o communicate
among themselves. One f i n a l p o i n t s h o u l d b e n o t i c e d i n t h i s MACRO d e f i n i t i o n .
Note that i n t h e s t a t e m e n t

r
3.7-79

X. RMC Pseudo-Operation

W R O instructione may require tha asrignment of temporary storage
lOCation8, the definition of Conltmtn, or othor storage allocation. Such
Storage m y be set aride within tho M C R O dofinition, in which case it must be
bypasrad by transfer instructionr, or tha programmar MY keep track of such re-
quiramantr for each MACRO instruction and provide the required definitions where-
ever conlnnient within the program. The praudo-op '=' (standing for remote)
provider a m e m r by which such storage roquirmmante may be automatically handled
by UMAP after the completion of the rest of the arsembly. Any instruction
cardr which occur betwean two I W ' cardr (with blank variable fields) will be
savod in storage and not assembled until either a 'RWT *' or a normal UMAP
'ENDn card is encountered, In either came, all cards eaved for remote insertion
will be inserted into the program and assembled at that point. The various re-
mote sequences will be assembled in the order in which they were originally found.
Such remote requences may include any UMAP operation codes, including calls for
pLIscROS, Such remotely expanded MACROS may themselves include remote sequences.
When all remote sequences have been generated, UMAP will go on to the card
following the 'W *' or will terminate PASS 1 if the remote aseembly was called
by an 'END' card. In the case of *', additional remote sequences may occur
after it in the aseembly, Such additional requences will be assembled when the
next 'RlfI *' or the 'END' card is encountered.

Remote sequencee may be defined external to a MACRO definition, and the above
diecussion still applies, 'W *' can't occur within a MACRO definition, nor can
an 'fRp' occur within a 'm' sequence. 'R"' eequences should be used sparingly,
for they require storage space (taken away from the MACRO tables) and greatly
lengthen assembly time. An overflow of the MACRO tables during PASS 1 of UMAP,
due either to MACRO definitions and calls or to 'M' sequencee, causes inmediate
surpeneion of the assembly.

In using remote sequences, care m e t be taken with respect to 'HEAD' and
' S A K ' modes. Remote assemblies are subject to the heading character and 'SAK'
mode in effect at the time of their assembly and not to those in effect at the
time of their definition ae a remote sequence. Note that if a 'ZKC' occurs in a
program, all remote sequences defined previous to it are lost. Such sequences
should be expanded with a 'RMT *' before the 'm'.

3.7-80

XI. Symbol Concatenation

An additional feature available to MACRO definitions is the capability of
concatenating arguments to arguments or to other parte of the MACRO definition.
The uaar is warned that thin is a capability fraught with danger for many reasons.
With the use of concatenation, it is extremely easy to generate in a MACRO ex-
pansion expressions which are devoid of all meaning to UMAP or symbols which
do not correspond to U M P restrictions. In any given instance, it is advisable
not to uae concatenation if other means are available.

The concatenation operator is the apostrophe ([). Its occurrence indicates
that its two operands are to be concatenated and henceforth considered as a single
symbol. It is the programmers responsibility to ensure that the results of such
concatenation are legal UMAP symbols or expressions.

For example, consider the following MACRO definition.

OUT MACRO A,B,C,D,E,F
PRINT F,A, . . . ,A+B-1,0
RMI:

Rm
O U T END

F BCI *,1H4,C'HtD,B'E*

The call

O U T Al,10,7,(X(I) = >,I10

results in the instruction

PRIKT .. 001,A1,...,A1+10-1,0
with a remote assembly of the format

XII. NOCRS Pseudo-Operation

The occurrence of the 'NOCRS' pseudo-op ruppreraer the genera t ion of c rea ted
aymbolr for arguments misring from the end of a MACRO call. Af te r the occur rence
o f 'NOCRS', a l l nirring argumentr are t r e a t e d ar e r p l i c i t y empty arguments.

It rhou ld be no ted , i n u r ing 'NOCRS' and 'ORGCBS', tha t c rea ted symbols
are gene ra t ed a t the t ime a MACRO cal l i r found and before any p a r t of t h e ex-
p a n r i o n f o r t h i r call occurs. Thur, whather or not rymbols are c r e a t e d f o r
misring argumentr in a MACRO call depends upon whether or not a 'NOCRS' is i n
c o n t r o l a t t h e tLma t h e XACRO call OCCUII. A MACRO d e f i n i t i o n c a n n o t a f f e c t
t h i r mode f o r i t a oyn arguments, but i t can do PO f o r MACROS which are ca l led f rom
w i t h i n t h e d e f i n i t i o n . Thue, suppose the fol lowing s i tuat ion occurs .

M2

M l MACRO
NOCRS .
.

n2

ORGCRS
END
MACRO . . .
PZE . .
END

Now s u p p o s e t h e c a l l

LOC M1

A 1 ,A2

A2

B1 ,B2

B l , ,B2

C

is given. AB the second argument of 'M' is missing, a c r e a t e d symbol (say
'..OOl') is g e n e r a t e d f o r it. Therefore , the call f o r "2' is expanded (from
t h e "l' d e f i n i t i o n) as

Note that the occur rence o f 'NOCRS' w i t h i n 'Ml' does no t a f f ec t t he c r ea t ed
symbol8 in expanding 'Ml'. The above call f o r "2' is missing the second
argument , but the occurrence of 'NOCRS' has tu rned of f the genera t ion of
c r e a t e d rymboh3. Thur , th is argument is t r e a t e d ar empty. Then, t h e 'PZE'
o f t h e '112' def in i t i on expands as

PZE ..001,,

Note that w i t h i n "2' t h e f i r s t argument is r ep laced by ' . . O O l ' and appears

3.7-82

to have been missing in the "2' call. If the argument 'B2' occurs in "2'
in an 'IFF' statement and following the /CRS/ qualifier, then it'= cause
that action to be taken which represents the case in which 'B2' is a created
symbol. The MACRO compiler can not distinguish between the created symbol
generated in "1' (and passed along via the MACRO arguments to "2') and the
created symbol generated in "2' itself.

3.7-83

X I I I . ORGCRS Pseudo-Operation

The 'ORGCRS' pseudo-op servee two f u n c t i o n s . F i r s t , 'ORGCRS' may be used
t o i n i t i a t e t h e c r e a t i o n of symbols i n MACRO expansions, In t h i s c a s e , t h e
v a r i a b l e f i e l d w i l l usua l ly be b lank (bu t may be of the form 'CNNN' as descr ibed
be low) , and the c rea ted symbol p rocese begins wi th the f i r s t one no t used pre-
viously. Second, 'ORGCRS' may be used to re -or ig in the numer ic par t o f c rea ted
symbols or to change the form of c rea ted symbols. I f t h e symbol 'CNNN' occurs
i n t h e v a r i a b l e f i e l d , w h e r e 'C' is any non-break character and 'NNN' i s a t h r e e
d i g i t i n t e g e r , t h e n t h e n e x t c r e a t e d symbol w i l l have the numeric part 'NNN+l '
w i t h t h e l e a d i n g c h a r a c t e r s '.C' (i n s t ead o f '...'), (See the l as t paragraph of
X I 1 f o r f u r t h e r c o m e n t s on t h e e f f e c t s o f 'ORGCRS'.)

3.7-84

XIV. PbC, PMCON, PMCOFF, NOMAC Pseudo-Operations

Non~lly, MACRO expansions are printed in full except that the 'SKIP',
'WHEN', 'IFF', and 'IRP' pseudo-ope are never included in this printing. When
the 'PMC' pseudo-operation occurs, this MACRO printing mode flips from on to
off or vice versa ('PMC' is a binary switch). In the 'ON' mode, the complete
expansion of each MACRO is printed. This is the normal print mode for MACROS.
In the 'OFF' mode, only the MACRO call is printed in the listing. 'PMCON' always
turns on the printing of MACRO expansions, while 'PMCOFF' always turns this
printing off. Odd occurrences of the 'NOMAC' pseudo-operation cause the deletion
from the assembly listing of MACRO definitions and remote sequence definitions.
Even occurrences reverse this setting. This pseudo-op has no effect upon the
listing of MACRO and remote sequence expansions.

3.7-85

XV. ZMT Pseudo-Operation

This pseudo-operation causes the removal of all MACRO definitions and/
or remote sequences from the MACRO tables on PASS 1 processing. All MACROS
defined prior to a 'ZMT' will be undefined operation codes subsequent to it
(and not subject to the definition of 'NONOP'). 'ZMT' may not occur within a
MACRO, but it may occur as often as desired in an assembly. This pseudo-op
may be used to prevent MACRO table overflows during PASS 1 processing. Note that
the progrannner may also accomplish this objective through the use of the
'SYMBOL' pseudo-operation. 'ZW.' does not reset the created symbol count.
See 'ORGCRS'.

3.7-86

XVI. MACRO Depth Number

When MACRO expansions are printed, a depth number is printed, for each
instruction in the expansion, in columns 111, 112, and 113 of the listing.
This is an octal number, and it indicates the nesting depth of the MACRO calls
at the time of the expansion. There is no set limit to this nesting. MACRO
calls may be nested as deep as desired, except that MACRO table overflows may
occur for great nesting depths.

3.7-87

X V I I . MACRO E r r o r s

I f t h e r e i s a n e r r o r o n a 'MACRO' card (e.g. , a b l a n k l o c a t i o n f i e l d) o r
i n a MACRO cal l (e.g,, more lef t pa ren theses t han r i gh t pa ren theses) , a 'U' f l a g
r e s u l t s a n d t h e d e f i n i t i o n i s n o t e n t e r e d o r t h e ca l l i s not expanded. If an 'ETC'
c a r d i n c o r r e c t l y o c c u r s i n a MACRO d e f i n i t i o n o r a MACRO ca l l , an 'E ' f l a g r e s u l t s
a n d t h e d e f f n i t i o n i s n o t e n t e r e d o r t h e c a l l i s not expanded. Unfortunately, these
e r r o r s are ra the r obv ious and are the on ly ones which prevent the def in i t ion en t ry
o r t h e c a l l expansion. The more common MACRO e r r o r s r e s u l t i n i n c o r r e c t s e q u e n c e s
o f c o d i n g , s o m e t i m e s w i t h n o f a t a l e r r o r s so tha t t he a s sembly appea r s t o be success-
f u l , T h i s l a t te r type of e r r o r r e s u l t s e s p e c i a l l y f r o m i n c o r r e c t a r g u m e n t s i n a
c o r r e c t c a l l (e.g, , the wrong sequence) o r f rom an incor rec t sp l i t t ing o f a rguments
between one card and a fo l lowing 'ETC' c a r d i n e i t h e r a MACRO d e f i n i t i o n o r a
MACRO cal l . To p reven t t he la t ter , i t i s adv i sab le t o a lways u s e the '$ ' convention
i n s p l i t t i n g arguments between cards. Quite often, however, errors in a MACRO
c a l l o r d e f i n i t i o n r e s u l t i n UMAP sequences which give rise t o t h e u s u a l e r r o r
t ypes -- i l l e g a l q u a l i f i e r o r l i t e ra l , undefined symbol or op-code, multiply-
defined symbol, etc. Other than a c a r e f u l a n a l y s i s o f t h e MACRO d e f i n i t i o n and
t h e MACRO ca l l , poss ib ly w i th a hand s imula t ion of t h e c a l l , t h e r e i s no ready-
made procedure for de te rmining why a MACRO did not give the desired coding sequence.
The bes t p rocedure t o fo l low, e spec ia l ly i f t he MACRO d e f i n i t i o n s a r e r e l a t i v e l y com-
p l i c a t e d , i s t o test t h e MACRO d e f i n i t i o n s w i t h a l l t y p e s o f c a l l s , f o r which they
should work, in a separate assembly.

3.7-88

X V I I I . Further MACRO Examples

A. A three address addition MACRO

To facilitate the writing of a program, it may be convenient to define the
numerical operations ('ADD', 'SUB', 'MPY', 'DVP' , 'FAD' , 'FSB' , 'FMP', ' F D P ')
as three-address MACROS. The specific example of a three-address floating addition
MACRO will be developed here. Thus, one might define

FADD MACRO A,B,C
CLA A
FAD B
ST0 C
END

Then, the call

FADD (A, l), (B , 2) , (A, 1)

produces the sequence

However, when one starts programming with this definition of 'FADD', one soon
realizes a shortcoming. Quite often the first number is already in the accumul-
ator (AC) or is in the multiplier-quotient (MQ), and hence the definition is no
longer efficient. Thus, one might change the definition to

FADD MACRO A,B,C
WHEN /H/AC, /NS/ . E. , /H/A
S K I P 5
WHEN /H/MQ,/NS/.E. , /H/A
S K I P 2
CIA A
S K I P 1
XCA
FAD B
ST0 C
END

Thus, the call

FADD

produces the sequence

CIA
FAD
ST0

while the call

FADD

3.7-89

produces the sequence

FADD
ST0

and the call

FADD

produces the sequence

XCA
FAD B,2
ST0 A, 1

In a similar fashion, the 'FADD' definition may be extended so that the second
and third arguments are treated in a like manner. An interesting MACRO de-
finition to experiment with is one in which the symbols 'AC' and 'MQ' may be
used, as above, in any combination in the three MACRO arguments.

B. 'CALL' and 'CALLIO' as MACROS.

Another use of MACROS is to define operations which simply do not exist in UMAP. Suppose, for example, that UMAP did not contain the 'CALL' and 'CALLIO'
Dseudo-ODs. These could then be defined as MACROS. One such set of MACRO de-
finitions is the following.

CALL

CALLI0

PARAM

MACRO
T SX
IRP
PARAM
IRP
END
MACRO
T SX
IRP
PARAM
IRP
END
MACRO
IFF
SKIP
IFF
0 P2
IFF
OP1
END

NAME,ARG
/TV/NAME, 4
ARG
TXH,TIX,ARG

NAME, ARG
/TV/NAME, 4
ARG
IOP, IOP,ARG

OPl,OP2,ARl,AR2,AR3
1 ,/CRS/AR1

Note that due to the 'IRP' pseudo-ops in the above definitions, certain paren-
thesizing is needed in calls on these MACROS which is not normally needed in
using the 'CALL' and 'CALLIO' pseudo-ops. Thus, the call

CALL ZERO, ((A,. . . ,B),C,D)

3.7-90

r e s u l t s i n t h e s e q u e n c e

w h i l e t h e c a l l

r e s u l t s i n t h e s e q u e n c e

T SX /TV/ . PRINT, 4
I OP A, 90
I OP c , ,c+10
I OP =K1234, ,O
I OP 0990

Fur the r i ven t hese de f in i t i ons , one cou ld ea s i ly de f ine add i t iona l p seudo-ops
such as"EEAD' and 'PAUSE' as

READ MACRO ARG
CALLI0 .READ, (ARG)
END

PAUSE MACRO ARG
CALL .PAUSE, (ARG)
END

C. Key Word Formation MACRO

Cons ider the fo l lowing task . Suppose tha t a program reads, from data
c a r d s , words of length greater than 6 c h a r a c t e r s , so that these words cannot
b e s t o r e d i n BCD form i n s i n g l e l o c a t i o n s . To prevent the usage o f excess
machine s torage, the programmer decides that he w i l l recognize a given word,
n o t by i t s t o t a l set o f cha rac t e r s , bu t by looking a t an abbrevia ted set of
c h a r a c t e r s e x t r a c t e d f r o m t h e g i v e n word. For example, he might decide t o
d e l e t e e v e r y o t h e r c h a r a c t e r of t he word and keep only the last 6 of the re-
ma in ing cha rac t e r s as a ' K E Y WORD' wi th which to recognize the o r ig ina l
word. Then, the program must contain a set of a l l poss ib l e 'KEY WORDS' i n
o r d e r t o d e c i p h e r a c c o r d i n g t o t h i s scheme. To he lp i n wr i t i ng t he p rog ram,
t h e p r o g r a m e r d e c i d e s t o b u i l d a s e t of Macros which w i l l do th i s decoding
f o r him a t assembly time, thus sav ing him t h i s e f f o r t . One such set i s the
fo l lowing .

3.7-91

The MACRO 'KEY' d e l e t e s e v e r y o t h e r c h a r a c t e r of t h e o r i g i n a l word (which is
o b v i o u s l y s u p p l i e d t o i t one charac te r p e r argument), and the MACRO 'KEY1'
s h i f t s t h e r e m a i n i n g c h a r a c t e r s u n t i l t h e last 6 are obtained. It is assumed
t h a t t h e o r i g i n a l word has a t least 2 cha rac t e r s and a t most 18 characters.
T h u s , t h e c a l l

r e s u l t s in

B C I 1, OOOOHR

whi le t he call

results i n

B C I 1, ETPSMl

3.7-92

COMBINED OPERATIONS TABLE OF LJMAP

The following table lists most of the machine operations, pseudo-
operations, and extended machine operations which UMAP handles.

The TYPE column in the table contains up to 3 characters which help to
describe the operations. The meaning of these characters are as follows.

I: The
A: The
T: The
D: The
4 : The
P: The
E: The
M: The
N: The
B: The

instruction is indirect addressable.
instruction requires an address.
instruction requires a tag.
instruction requires a decrement.
instruction is a 7094 instruction.
instruction is a pseudo-instruction.
instruction is an extended machine instruction.
instruction is used mostly for MACRO definition.
instruction is an indicator instruction.
instruction requires a Boolean address.

All pseudo-operations have a page number enclosed in parenthesis. A
description of the pseudo-operation may be found on the specified page.

All instructions not having P or E in the TYPE column are machine instruc-
tions and their descriptions may be found in the manual IBM 7094 Principles of
Operations.

3.7-93

CODE

9 LP
ABS
AC L
ADD
ADM
ALS
ANA
ANS
ARS
AXC
AXT
BCD
B C I
BES
BFT
BLK
B W
BRA
B SS
BTS
CAL
C AQ
CAS
C HS
C LA
CLM
c LS
C OM
C RQ
CVR
DCT
DEC
DLD
D ST
DVH
DVP
ENB
END
ENK

ERA
ETC
ETM
FAD
FAM
FDH
FDP
FMP
FMT
FOR
FRN

-

EQU

O C T A L CODE

0361
0400
0401
0767
43 20
0320
0771
47 7 4
0774

2000

7000

4500
4114
0340
0760.. .2
0500
0760.. .O
0502
0760.. .6
4154
0114
0760.. .12

0443
4603
0220
0221
0564

0760.. .4

0322

0760.. .7
0300
0304
0 240
0241
0260
5000
4000
0760.. .ll

TYPE -
P
P
A I
A I
A I
A
A I
A I
A
AT
AT
P
P
P
EBN
E
E BN
EA
P
P
A I
AD
A I

A I

A I

AD
AD

P
A14
A 1 4
A I
A I
A I
P

P
A I
P

A I
A I
A I
A I
A I
EA
E

COMMENT AND/OR PAGE

(3 .7-26) assembly control
(3 .7 -22) assembly control
add and carry logical word
add
add magnitude
accumulator left shift
and to accumulator
and to storage
accumulator right shift
address to index complemented
address to index true
(3 .7 -27) data generation
(3 .7 -27) data generation
(3 .7 -27) storage allocation
(3 .7 -50) extended machine instruction
(3 .7 -50) extended prefix code
(3 .7 -50) extended machine instruction
(3 .7 -50) extended prefix code
(3 .7 -28) storage allocation
(3 . 7 - 2 8) storage allocation
clear and add logical word
convert by addition from MQ
compare AC with storage
change sign of AC
clear and add
clear magnitude of AC
clear and subtract
complement magnitude of AC
convert by replacement from MQ
convert by replacement from AC
divide check test
(3 .7 -29) data generation
double load
double store
divide or halt
divide or proceed
enable channel interrupt
(3 .7 -32) assembly control
enter keys from console to MQ
(3 .7 -33) symbol definition
exclusive or to accumulator
(3 .7-34) statement continuation
enter transfer trap mode
floating point add
floating point add magnitude
floating point divide or halt
floating point divide or proceed
floating point multiply
(3 .7 -50) extended prefix code
(3 .7-54) extended prefix code
floating point round

3.7-94

CODE -
FSB
F SM
FUL
FVE
HPR
HTR
IFF
I I A
I I B
I I L
I I R
I I S
I OP
I OT
I RP

LAC
LAS
LBL
LBT
LDC
L D I

LFT
LGL
LGR
LLS
LNT
LOC
LRS
LTM
u[A
LXD
MON
MPR
MPY
MSE
MTH
MTW
MZE
N OP
NZT
OAI
OCT
0 FT
ONE
ONT
0 PD
ORA
ORG
ORS
os1

. ..

LDQ

OCTAL CODE

0302
0306

5000
0420
0000

0041

405 1
0051
0440
5000
0760.. .5

0000
0535
4340

0760. . .l
4535
0441
0560
4054
4763
4765
0763
4056

0765
4760.. .7
0534
4534
5000
4200
0200
4760
7000
6000
4000
0761
4520
0043

0444
1000
0446

4501

4602
0442

TYPE -
A I
A I
P
E
A
A I
PM
N
EBN
BN
BN
BIN
EA

PM
E
AT
A I
P

AT
A I N
A I
BN
A
A
A
BN
P
A

AT
AT
E
A I
A I
A
E
E
E

A I
N
P
A I N
E
A I N
P
A I
P
A I
A I N

COMMENT AND/OR PAGE

floating point subtract
floating point subtract magnitude
(3 .7-35) assembly control
(3 .7 -54) extended prefix code
halt and proceed
halt and transfer
(3 .7 -67) MACRO control
invert indicators from AC
(3 .7 -50) extended machine instruction
invert indicators of left half
invert indicators of right half
invert indicators from storage
(3 .7 -50) extended prefix code
input/output check test
(3 . 7 - 6 4) indefinite repeat
(3 . 7 - 5 4) extended prefix code
load complement of address in index
logical compare AC with storage
(3 . 7 - 5 3) assembly control
low bit test
load complement of decrement in index
load indicators from storage
load MQ
left half indicators off test
logical left shift
logical right shift
long left shift
left half indicators on test
(3 .7-36) assembly control
long right shift
leave trapping mode
load index from address
load index from decrement
(3 .7 -54) extended prefix code
multiply and round
mu1 t iply
minus sense
(3 .7 -54) extended prefix code
(3 .7 -54) extended prefix code
(3 .7 -54) extended prefix code
no operation
storage non-zero test
logical or AC to indicators
(3 .7 -37) data generation
off test for indicators
(3 .7 -54) extended prefix code
on test for indicators
(3 .7 -54) operation definition
logical or to accumulator
(3 .7 -38) assembly control
logical or to storage
logical or storage to indicators

3.7-95

CODE -
PAC
PA1
PAR
PAX
P BT
PCA
PCC
PCD
PIX
P ax
PGM
PIA
PMC
P ON
PSE
P ST
PTH
PTW
PXA
P XD
PZE
R CT
RDS
REF
R EL
REM
RFT
RIA
RIB
RIL
R IR
RIS
RKC
RND
RW.
RQL
RST ***
S A K
S BM
S CA
S CD
SEX
S IB
s IL
S IR
SIX
S LF
S LN
S LQ
S LT

OCTAL CODE

0737
0044
3000
0734
4760.. .l
0756

4756
4737
4734

4046

1000
0760

3000
2000
0754
4754
0000
0760.. .14
0762

0054
4042

4057
0057
0445

0760.. .10
0056
4773

0000

4400
0636
4636

4055
0055
6000
0760.. .140
O760...14X
4620
4760...14X

TYPE -
T
N
EA
T

T4
P
T4
T
T
P
N
PM
E
A
P
E
E
T
T
E

A
P
P
P
BN
N
E BN
BN
BN
A IN
PM

BN
A
P
E
P
AI
AT4
AT4
P
EBN
BN
BN
E

A
AI
A

COMMENT AND/OR PAGE

place complement of address in index
place accumulator in indicator
(3.7-51) extended prefix code
place address in index
P-bit test
place complement of index in address
(3.7-39) assembly list control
place Complement of index in decrement
place complement of decrement in index
place decrement in index
(3.7-40) assembly control
place indicators in accumulator
(3.7-84) assembly list control
(3.7-54) extended prefix code
plus sense
(3.7-41) assembly control
(3.7-54) extended prefix code
(3.7-54) extended prefix code
place index in address
place index in decrement
(3.7-54) extended prefix code
restore channel traps
read select
(3.7-41) assembly list control
(3.7-42) assembly control
(3.7-42) remark pseudo-op
right half indicators off test
reset indicators from accumulator
(3.7-51) extended machine instruction
reset indicators of left half
reset indicators of right half
reset indicators from storage
(3.7-43) assembly control
round
right half indicators on test
rotate MQ left
(3.7-43) assembly control
(3.7-54) extended prefix code
(3.7-43) assembly control
subtract magnitude
store complement of index in address
store complement of index in decrement
(3.7-44) assembly control
(3.7-51) extended machine instruction
set indicators of left half
set indicators of right half
(3.7-54) extended prefix code
(3.7-51) sense lights off
(3.7-51) sense light on
store left half of MQ
(3.7-51) sense light test

3.7-96

- CODE

s LW
S SM
s S P
SST
STA
STD
ST I
STL
S T 0
ST P
STQ
STR
STT
ST Z
SUB
SVN
SWT
S X A
S X D
SYN
T CD
T CH
T IF
T I O
T I X

TMI
TNO
TNX
T NZ
T OV
T PL

T LQ

T QO
T QP
TRA
T SX
TTL
TTR
TWO
TXH
T X I
TXL
T ZE
UAM
U FA
U F M
UFS
U SM
VDH
V DP
VFD

OCTAL CODE

0602
4760.. .3
0760.. .3

0621
0622
0604
4625
0601
0630
4600
5000
0625
0600
040 2
7000
O760...16X
0634
4634

1000
0046
0042
2000
0040
4120
4140
6000
4100
0 140
0120
0161
0162
0020
0074

0021
2000
3000
1000
7000
0100
4304
4300
4260
4302
4306
0224
0225

TYPE -
A I

P
A I
A I
A I N
A I
A I
A I
A I

A I
A I
A I
E
A
AT
AT
P
P
A
AIN
A I N
ATD
A I
A I
A I
ATD
A I
A I
A I
A I
A I
A I
AT
P
A I
E
ATD
ATD
ATD
A I
A I
A I
A I
A I
A I
AT D
ATD
P

COMMENT AND/OR PAGE

store logical word
set sign minus
set sign plus
(3.7-44) symbol definition
store address
store decrement
store indicators
store location counter
store
store prefix
store MQ
store location and trap
store tag
store zero
subtract
(3.7-54) extended prefix code
(3.7-51) sense switch test
store index in address
store index in address
(3.7-45) symbol definition
(3.7-46) assembly control
transfer in channel
transfer if indicators off
transfer if indicators on
transfer on index
transfer on low MQ
transfer on minus AC
transfer on no overflow
transfer on no index
transfer if AC not zero
transfer on overflow
transfer if AC plus
transfer on MQ overflow
transfer on MQ plus
transfer
transfer and set index
(3.7-53) assembly list control
trap transfer
(3.7-54) extended prefix code
transfer on index high
transfer with index incremented
transfer on index low or equal
transfer if AC zero
unnormalized add magnitude
unnormalized floating add .
unnormalized floating multiply
unnormalized floating subtract
unnormalized subtract magnitude
variable length divide or halt
variable length divide or proceed
(3.7-46) data generation

3.7-97

CODE -
VLM
WRS
XCA
XCL
XEC
ZAC
ZAD
ZDC
ZET
ZMT
Z SA
ZSD
Z ST
BOOL
CALL
DATE
DFAD
DFAM
DFDH
DFDP
DFMP
DFSB
DFSM
DUAM
DUFA
DUFM
DUFS
DUSM
EITM
EMTM
ERAS
EVEN
FIVE
FOUR
HEAD
IOBP
I OBT
IOCD
IOCP
IOCT
I ORP
I ORT
I OSP
I OST
LFTM
LMTM
LIST
LOOK
NULL
READ
SAVE

OCTAL CODE

0204
0766
0131
4130
0522
4754
0634
4634
0520

0634
4634

0301
0305
4240
424 1
0261
0303
0307
4305
4301
4261
4303
4307
4760.. .2
4760.. .16

5000
4000

4000
3000
0000
4000
5000
2000
3000
6000
7000
4760.. .4
0760.. .16

TYPE -
ATD
A

AI
EA
EA
EA
AI
PM
EA
EA
P
P
P
P
A14
A I4
A I4
A14
A14
A I4
A14
A14
A14
A I4
A14
A14

P
P
E
E
P
EAD
EAD
AD
AD
AD
AD
AD
AD
AD

COMMENT AND/OR PAGE

variable length multiply
write select
exchange AC and MQ
exchange logical AC and MQ
execute instruction
(3.7-52) extended machine instruction
(3.7-52) extended machine instruction
(3.7-52) extended machine instruction
zero storage test
(3.7-85) MACRO control
(3.7-52) extended machine instruction
(3.7-52) extended machine instruction
(3.7-49) assembly control
(3.7-28) symbol definition
(3.7-28) subroutine call
(3.7-29) assemble current data
double precision add
double precision add magnitude
double precision divide or halt
double precision divide or proceed
double precision multiply
double precision subtract
double precision subtract magnitude
double precision unnorm. add magnitude
double precision unnorm. add
double precision unnorm. multiply
double precision unnorm. subtract
double precision unnorm. subtract magnitude
enter floating trap mode
enter multiple tag mode
(3.7-33) storage allocation
(3.7-52) storage allocation
(3.7-54) extended prefix code
(3.7-54) extended prefix code
(3.7-35) assembly control
(3.7-50) extended I / O cormnand
(3.7-50) extended 1/0 command
1/0 under count and disconnect
1/0 under count and proceed
1/0 under count and transfer
1/0 a record and proceed
1/0 a record and transfer
1/0 until signal and proceed
1/0 until signal and transfer
leave floating trap mode
leave multiple tag mode
(3.7-36) assembly control
(3.7-36) .LOOK call
(3.7-37) assembly control
(3.7-41) .PRINT call
(3.7-43) .SAVE call

I

3.7-98

CODE -
S K I P
WHEN
ZERO
B R I E F
c o m
EJECT
END10
ENTRY
EXECT
INDEX
IOBPN
I OBTN
I OCDN
IOCPN
I OCTN
I ORPN
I ORTN
IOSPN
0 PSTN
IOTRA
MACRO
NEWID
N OCOM
NOCRS
NOMAC
NONOP
OBJCT
OPSYN
PAUSE
PCCON
PMC ON
PRINT
PUNCH
R EFON
S FTTO
SEVEN
SPACE
START
THREE
T IT LE
ASSIGN
B INARY
BRANCH
CALLI0
c o m
C OMMON
DECMOD
DESIST
DETAIL
ENDPGM
E Q W

OCTAL CODE

4000
3000
0000
4000
5000
2000
3000
6000
7000
1000

7000

3000

7 000

TYPE -
PM
PM
P
P
P
P
P
P
P
P
EAD
EAD
AD
AD
AD
AD
AD
AD
AD
EA
PM
P
P
PM
PM
P
P
P
P
P
PM
P
P
P
P
E
P
P
E
P
P
P
EA
P
P
P
P
P
P
P
P

COMMENT AND/OR PAGE

(3 .7 -66) MACRO control
(3 .7 -76) MACRO control
(3 .7 -49) define cleared cells
(3 . 7 - 2 8) assembly list control
(3 .7 -53) assembly control
(3 . 7 - 3 2) assembly list control
(3 . 7 - 1 9) 1/0 pseudo-op
(3 . 7 - 3 3) defines entry point
(3 . 7 - 3 4) binary output control
(3 . 7 - 3 6) assembly list control
(3 .7 -50) extended 1/0 comand
(3 . 7 - 5 0) extended 1/0 command
non-transmit 1/0 and disconnect
non-transmit 1/0 and proceed
non-transmit 1/0 and transfer
non-transmit 1/0 and proceed
non-transmit 1 /0 and transfer
non-transmit 1/0 and proceed
non-transmit 1/0 and transfer
(3 .7 -51) used in calling low core 1 /0
(3 .7-55) MACRO definition
(3 .7 -36) assembly punch control
(3 . 7 - 3 7) assembly list control
(3 . 7 - 8 1) MACRO control
(3 .7 -84) MACRO list control
(3 .7 -37) operation definition
(3 .7 -37) assembly punch control
(3 . 7 - 3 8) operation definition
(3 . 7 - 3 9) .PAUSE call
(3 .7 -39) assembly list control
(3 .7 -84) MACRO list control
(3 .7 -41) .PRINT call
(3 . 7 - 4 1) .PUNCH call
(3 .7 -42) assembly control
(3 .7 -44) .SET call
(3 . 7 - 5 4) extended prefix code
(3 .7 -44) assembly list control
(3 .7 -44) define entry point
(3 .7 -54) extended prefix code
(3 .7-46) assembly list control
(3 .7-26) storage allocation
(3 .7 -27) assembly control
(3 .7 -50) extended operation
(3 .7 -29) 1/0 subroutine call
(3 . 7 - 2 9) . C m call
(3 .7-52) storage allocation
(3 .7-32) set decimal mode
(3 .7 -53) stop assembly process
(3 .7 -32) assembly list control
(3 .7 -32) assembly control
(3 .7 -33) symbol definition

3.7-99

CODE -
EQUMIN
ERLIST
EXTERN
FLAGOP
FLAGSY
MIDDLE
NEXECT
NOB JCT
NOLIST
OCTMOD
ORGCRS
PCCOFF
PCLIST
PCMORG
PGMCOM
PMCOFF
PUNLIT
REFOFF
RELIST
RESERS
RESPGC
RESTOR
RESUME
s YMBOL
TAPENR
TAPERD
TAPEWR
UNLIST

OCTAL CODE __ TYPE

P
P
P
P
P
P
P
P
P
P
PM
P
P
P
P
PM
P
P
P
P
P
P
P
P

P
P
P

5000 EA

COMMENT AND/OR PAGE

(3.7-33) symbol definition
(3.7-34) storage allocation
(3.7-34) transfer vector control
(3.7-34) assembly list control
(3.7-34) assembly list control
(3.7-36) assembly control
(3.7-37) assembly punch control
(3.7-37) assembly punch control
(3.7-37) assembly list control
(3.7-38) assembly control
(3.7-83) MACRO control
(3.7-39) assembly list control
(3.7-39) assembly list control
(3.7-39) assembly control
(3.7-40) storage allocation
(3.7-84) MACRO list control
(3.7-41) assembly list control
(3.7-41) assembly list control
(3.7-42) assembly list control
(3.7-42) assembly control
(3.7-42) assembly control
(3.7-42) .RSTOR call
(3.7-53) resume assembly process
(3.7-45) adjust symbol table length
(3.7-52) extended operation
(3.7-45) .TAPRD call
(3.7-45) .TAPWR call
(3.7-37) assembly list control

~

I

3.7-100

FAP Operations Not In UMAP

The following machine operations available in the FAP Assembly Program
are not defined in UMAP. They may, if necessary, be defined in a program through
use of the ‘OPD’ pseudo-operation.

BSFX
BSRX
BTTX
ETTX
LCHX
RC DX
RCHX
RDCX
RENX
R ICX
R PRX
RSCX
RTBX
RTDX
RUNX

SCHX WTBX
S DNX WTDX
S DLX ECTM
s PRX E SNT
S PTX L SNM
s PUX
STCX
TCNX
TCOX
T EFX
T RCX
W EFX
W PBX
W PDX
w PUX

Where X = A,B,C,D,E,F,G, or H.

Also, 7909 data channel commands, 7631 file control orders, and 7640 hypertape
control orders are not defined in UMAP.

FAP Pseudo-Operations Not In UMAP

The pseudo-operations TAPENO, DUP, IFEOF, 704, 7090, OPVFD, MOP and MAC
which are available in FAP are not defined for UMAP.

Also, the $ notation for subroutine calls is not available in LPfK”A

FAP Pseudo-Operations Which Operate Differently In UMAP

The FAP pseudo-operations HEAD, COUNT, TITLE, SST and TTL are defined
differently from the same pseudo-operations in UMAP.

Use of the FAP pseudo-operations COUNT, TITLE, and TTL in a UMAP program
will not affect the correctness of the assembly.

3.8-1

"OS LIBRARY SUBROUTINES

INTRODUCTION

PURPOSE: T h i s s e c t i o n o f t h e "OS manual i s d e s i g n e d t o make the u se r o f
"OS aware of t h e s u b r o u t i n e s a v a i l a b l e t o him, and t o g i v e him t h e
necessary in format ion concern ing the use o f those subrout ines . Not a l l
s u b r o u t i n e s a v a i l a b l e t o t h e u s e r are l i s t e d i n t h i s c o l l e c t i o n . The
low-core subrout ines are descr ibed e lsewhere in the manual , and are n o t
i n c l u d e d i n t h i s s e c t i o n .

The u s e r w i l l f i n d , a t the end o f t h i s s ec t ion , an i ndex o f t he sub -
r o u t i n e s , b o t h by name and by func t ion . Inc luded i n t he i ndex are t h e
e n t r y p o i n t s t o t h e s u b r o u t i n e s , t h e l e n g t h o f t h e s u b r o u t i n e s i n
o c t a l a n d t h e number o f e r a s a b l e l o c a t i o n s u s e d i n o c t a l . The length
is given as a means of c a l c u l a t i n g t h e amount of core space occupied
by a program and i t s s u b r o u t i n e s .

CALLING SEQUENCES: Ca l l ing s equences w i l l be g iven i n t hose l anguages
(i . e . , UMAP, MAD o r FORTRAN) f o r which the sub rou t ine i s d e s i g n e d t o
work. The name o f t h e s u b r o u t i n e may change depending on the language
used i n c a l l i n g i t . I n w r i t i n g FORTRAN programs t o be t r ans l a t ed by
MADTRAN, the user mus t remember tha t t he sou rce p rog ram g iven t o t he
compiler is a c t u a l l y i n MAD. The d e c i s i o n a s t o w h e t h e r t o u s e t h e
FORTRAN o r MAD c a l l i n g s e q u e n c e f o r s u b r o u t i n e cal ls w i l l depend upon
t h e p a r t i c u l a r f u n c t i o n o f t h e e n t r y p o i n t i n q u e s t i o n , and is l e f t up
t o t h e u s e r . I n g e n e r a l , i f a ca l l i ng s equence i s no t g iven fo r a
pa r t i cu la r l anguage , t he rou t ine canno t be u sed i n t ha t l anguage .

ARGUMENTS: The d e s c r i p t i o n s of the a rguments in subrout ine wr i te -ups are
u s u a l l y a source o f confus ion . To a i d t h e u s e r , c e r t a i n t e r m s a n d
phrases w i l l be def ined here . It i s i m p o r t a n t t h a t t h e d i s t i n c t i o n s
made h e r e b e remembered when consul t ing any of t he wr i t e -ups i n this
s e c t i o n .
1. In MAD and FORTRAN, when an argument is a s i n g l e v a r i a b l e (n o t a n

a r r a y) , t h e l e t t e r spec i fy ing t he a rgumen t s t ands fo r a c o n s t a n t ,
t h e name of a va r i ab le , o r (un le s s o the rwise spec i f i ed) an expres -
s i o n . The value of each argument is t h e v a l u e o f t h e v a r i a b l e i n
t h e mode s p e c i f i e d . I n UMAP, t h e l e t t e r i s the symbolic address
o f t h e v a l u e o f t h e v a r i a b l e .

2 . Array des igna t ions may o c c u r i n two ways, e i t h e r by t h e name of
t h e v a r i a b l e o r by i t s f i r s t e n t r y (o r , e q u i v a l e n t l y , i t s f i r s t
e lement o r base e lement) . Throughout th i s sec t ion , the word a r r a y
w i l l b e u s e d t o i n d i c a t e e i t h e r a v e c t o r o r a higher dimension
a r r a y .
A. ARRAY NAME: I f t h e d a t a is s t o r e d i n a r r a y A , t hen t he name
o f t h e a r r a y i s A. In MAD, t h e s u b r o u t i n e w i l l l o c a t e t h e dimen-
s i o n v e c t o r of t h e a r r a y a n d u s e t h i s i n f o r m a t i o n t o f i n d any
o t h e r e l e m e n t o f t h e a r r a y . In FORTRAN, t h e name A i s e q u i v a l e n t
t o t h e base element of t h e a r r a y . In UMAP, t h e name A r e f e r s t o
t he symbol i c add res s o f t h e f i r s t e n t r y .
B. FIRST ENTRY OF ARRAY: I f t h e d a t a s t o r e d i n t h e a r r a y b e g i n s
i n A (8) , t h e n A (8) m u s t b e g i v e n i n t h e c a l l i n g s e q u e n c e i f t h e
f i r s t e n t r y i s r e q u i r e d . N o t e t h a t A (1 , l) is u s u a l l y t h e f i r s t
e n t r y of a two-dimension array. In UMAP, t h e f i r s t e n t r y i s t h e
symbol i c add res s o f t he f i r s t da t a e l emen t .

3.8-2

INTRODUCTION (CONTINUED)

3 .

4 .

5.

6.

7.

NOTES :
1.

Many subrou t ines have a c o m p u t a t i o n s w i t c h , u s u a l l y o f f l o a t i n g
p o i n t mode. (This mode is used due t o t he d i f f e rence be tween
MAD and FORTRAN in tege r s .) The re fo re , one may write:

MAD I = SUB. (ARGS)
FORTRAN I = SUB (ARGS)

I w i l l a u t o m a t i c a l l y b e d e c l a r e d a n i n t e g e r i n FORTRAN and must
be so d e c l a r e d i n MAD. The t r a n s l a t o r s w i l l conve r t t o t he p rope r
f o r m o f t h e i n t e g e r . F u r t h e r , i n MAD one may write:

where S(I) is a s t a t e m e n t l a b e l . Here aga in , t he i n t ege r conve r -
s i o n is au tomat i ca l ly p rov ided .
I f a sub rou t ine u ses N c e l l s o f e r a s a b l e s t o r a g e , t h e n t h e y w i l l
b e t h e h i g h N l o c a t i o n s i n c o r e s t o r a g e . T h u s , i f 3 e r a s a b l e
l o c a t i o n s a r e u s e d , t h e y w i l l be -1 = 77777, -2 = 77776, and
- 3 = 77775.
Many of t h e s u b r o u t i n e s s t o r e t h e i r a r g u m e n t s i n e r a s a b l e . It i s
o f g r e a t a i d when debugging programs (with the aid of a dump), t o
h a v e t h i s i n f o r m a t i o n a v a i l a b l e . F o r t h i s r e a s o n , o f t e n t h e
e rasable loca t ion where the a rgument i s s t o r e d is noted, enclosed
i n p a r e n t h e s e s , a f t e r t h e d e s c r i p t i o n o f t h e a r g u m e n t i t s e l f .
I n UMAP, some of the arguments may be tagged and t h e t a g w i l l be
e f f e c t i v e i n comput ing t he e f f ec t ive addres s o f t he a rgumen t .
F o r i n s t a n c e :

TRANSFER TO S (SUB.(ARGS))

CALL SIN
PAR ARG,2

w i l l compute t h e s i n e o f t h e v a l u e found in l o c a t i o n (ARG-C(IR2)).
N a t u r a l l y , I n d e x r e g i s t e r 4 cannot be used for th i s purpose . Unless
spec i f i ca l ly men t ioned , a rgumen t s canno t be t agged . In t he fo l low-
ing wr i t e -ups , t hese t ags w i l l b e r e f e r r e d t o as o p t i o n a l t a g s .
Some s u b r o u t i n e s r e q u i r e as arguments, a l o c a t i o n t o w h i c h c o n t r o l
may b e t r a n s f e r r e d by t h e s u b r o u t i n e . T h e s e c a n b e g i v e n d i r e c t l y
by MAD o r by UMAP, b u t t o do t h i s i n FORTRAN requ i re s t he fo l lowing
dodge. Assume t h a t we w i s h t o g i v e t h e s u b r o u t i n e named XXX t h e
formula number 6 as an argument. A poss ib l e s equence i s then:

ASSIGN 6 0 t o N
GO TO N,(6,60)

CALL XXX (N)
O r , a n o t h e r p o s s i b i l i t y i s :

ASSIGN 6 t o N
I F (I) 3 , 3 , 4

60 ASSIGN 6 t o N

3 GO TO N , (6)
4 CALL XXX (N)

The main p o i n t i s t h a t t h e N must be used i n a t l eas t one ass ign
statement and N must be tes ted a t least once by an assigned GO TO.

I n MAD t h e r e e x i s t s a s p e c i a l s u b s c r i p t i n g o p t i o n (s e e t h e MAD
manual), which allows a u s e r t o d e f i n e h i s own method of computing
s u b s c r i p t s . T h o s e a r r a y s w h i c h u t i l i z e t h i s o p t i o n may not be
used as i n p u t a r g u m e n t s t o s u b r o u t i n e s n o t w r i t t e n i n MAD (which
inc ludes a lmos t a l l l i b r a r y s u b r o u t i n e s) , w h i c h r e q u i r e as i n p u t
t h e name o r f i r s t e l e m e n t o f a n a r r a y . A l l a r r ays u sed a s i npu t
t o t h e l i b r a r y r o u t i n e s m u s t b e d i m e n s i o n e d i n t h e s t a n d a r d way.

3.8-3

INTRODUCTION (CONTINUED)

2 . There are s e v e r a l e q u i v a l e n t ways t o ca l l a subrout ine us ing UMAP. I n any given write-up, only one way w i l l be g iven , s ince
t h e o t h e r s are d i r e c t l y d e r i v a b l e . I n g e n e r a l , i f XXX is t h e
name of a subrou t ine , L is a s ing le pa rame te r and t he b lock B
t o B+10 i s another parameter :

is e q u i v a l e n t t o
CALL XXX,L,B,...,BflO

CALL xxx
PAR L
BLK B, ,WlO

TSX /TV/XXX,4 (The /TV/ is needed only i f WAF' is
PAR L genera t ing the p rogram card .)
BLK B,,B+10

is e q u i v a l e n t t o

See the UMAP w r i t e - u p i n t h i s m a n u a l f o r f u r t h e r d e t a i l s .

i n d e x r e g i s t e r s a n d s e n s e i n d i c a t o r s . However, un less it i s other-
w i s e s t a t e d , t h e s u b r o u t i n e s w i l l no t necessa r i ly p re se rve t he AC,
MQ, o v e r f l o w l i g h t , d i v i d e c h e c k l i g h t o r s e n s e l i g h t s .

3 . A l l l i b ra ry sub rou t ines fo l low the sha re conven t ions and p re se rve

The ma jo r i ty of t h i s s e c t i o n o f t h e "OS manual comes from t h e MESS write-
up of the University of Michigan Executive System.

The following symbols are used i n t h i s w r i t e - u p f o r d e s c r i b i n g limits,
ranges and magnitudes of arguments and results:

SYMBOL MEANING
.E . Equal to.
.NE. Not e q u a l t o .

. G . Greater than.

.GE. Grea te r t han o r equa l t o .

.L. Less than.

.LE. Less than o r equa l t o .
P I ll

.P . To t h e power -

LOGICAL OPERATIONS

3.8-4

ENTRY POINTS: ANA, ORA

PURPOSE: P r o v i d e t h e l o g i c a l o p e r a t i o n s AND and OR f o r u s e i n MAD programs.

CALLING SEQUENCES:
FWD X = ANA. (A,B) (AND)
MAD X = ORA. (A,B) (OR)

ARGUMENTS :
A F i r s t argument
B Second argument
X B i t w i s e OR (ORA.) o r b i t w i s e AND (ANA.) of the 36-bit

arguments A and B.

FLOATING-POINT ARCSINE AND ARCCOSINE

ENTRY POINTS: ARCSIN, ARCCOS

PURPOSE: Compute ARCSIN(X) and ARCCOS(X) for f loa t ing-poin t a rgument X.

CALLING SEQUENCES:
MAD Y = ARCSIN. (X)

Y = ARCCOS. (X)

Y = ARCCOS(X)
FORTRAN Y = ARCSIN(X)

UMAP CALL ARCSIN
PAR X,T
NORMAL RETURN - RESULT IN AC.

CALL ARCCOS
PAR X,T
NORMAL RETURN - RESULT IN AC.

ARGUMENTS :
X F loa t ing-poin t a rgument for which the a rcs ine o r a rccos ine

Y The r e s u l t i n g f u n c t i o n a l v a l u e .
i s des i r ed . X must s a t i s f y t h e i n e q u a l i t y .ABS.X .LE. +l.

F o r t h e a r c s i n r o u t i n e , Y w i l l f a l l i n t h e i n t e r v a l

Fo r t he a r ccos rou t ine , Y w i l l f a l l i n t h e i n t e r v a l
0.LE.Y.LE.PI .
-PI/2.LE.Y.LE.+PI/2 .

T Opt iona l t ag .

SUBROUTINES REQUIRED: SQRT

ERROR CONDITION :
.ABS.(X) .G. +1
This causes an a rgument to the SQRT r o u t i n e t o b e n e g a t i v e .
SQRT w i l l p r i n t o u t a comment t o t h i s e f f e c t , and c o n t r o l w i l l be
r e tu rned t o t h e s y s t e m e r r o r r o u t i n e .

3.8-5

FLOATING POINT PRINCIPLE VALUED ARCTANGENT

ENTRY POINTS: ATAN

PURPOSE: Compute principle value of ARCTAN(X) for floating point argument X.

CALLING SEQUENCES:
MAD Y = ATAN. (X)
FORTRAN Y = ATAN (X)
UMAP CALL ATAN

PAR X,T
NORMAL RETURN - Y IN THE ACCUMULATOR.

ARGUMENTS :
X The floating point argument for which the arctangent is

Y The desired angle in floating point, -PI/2.LE.Y.LE.P1/2.
T Optional tag.

desired.

OCTAL LOCATION FINDER

ENTRY POINTS: ATLOC

PURPOSE: Prints ' AT LOCATION X X X X X ' , where XxxXX is either a location
given or the location ATLOC was called from.

CALLING SEQUENCES:
MAD EXECUTE ATLOC.(LOC)
LJMAP CALL ATLOC,LOC
FORTRAN CALL ATLOC (LOC)

ARGUMENTS :
LOC When non-zero, the 2's complement of LOC will be printed.

When zero, the location from which ATLOC is called will be
printed.

SUBROUTINES REQUIRED: SPRINT

FLOATING POINT SINGLE VALUED ARCTANGENT

ENTRY POINTS: ATNl

PURPOSE: Compute in the range of 0 to 2PI the single value of ARCTAN(Y/X)
for floating point arguments X and Y.

CALLING SEQUENCES:
MAD Z = ATNl.(Y,X)
FORTRAN Z = ATNl (Y ,X)
w CALL ATNl

PAR Y,T1
PAR X,T2
N O W RETURN - Z IN THE ACCUMLTLATOR.

3.8-6

(FLOATING POINT ?INGLE VALUED ARCTANGENT - CONTINUED)
ARGUMENTS :

x,y The floating arguments, where TAN1 (Y/X) is the desired angle.
Z The desired angle in floating point (radians), O.LE.Z.LE.2PI.
T1,T2 Optional tags.

SIMULTANEOUS LINEAR EQUATIONS

ENTRY POINTS: BAKSUB

PURPOSE: Perform the double back-substitution L * Y = B and R * Z = Y
where L is a monic lower triangular matrix and R is upper
triangular. The sub-diagonal elements of L and the non-zero
elements of R are assumed to be stored in the same matrix A
(see subroutine GAUSS).

RESTRICTION: No check for singularity or inconsistency is made by this
subroutine. It is, therefore, advised that the solution be
checked. All checking is left up to the user.

CALLING SEQUENCES:
FORTRAN X = BAKSUB (N,A,Z,B)
MAD X = BAKSUB.(N,A,Z,B)
UMAP CALL BAKSUB,N,A,Z,B

RETURN - FLOATING-POINT SWITCH IN AC.
ARGUMENTS :

N Integer dimension of the square matrix A.
A First element of the matrix A in which L and R are stored. For

Z For a successful return, 2 will be the solution vector.
B Right hand side of the system of equations.
X Floating-point switch

further information see the write-up for subroutine GJRDT.

1. Successful computation.
0 . Overflow, cannot continue.

SUBROUTINES REQUIRED: FSPILL,RSPILL

ONE WORD BCD TO BINARY CONVERSION

ENTRY POINTS: BCDBN, MBCDBN

PURPOSE: Convert one BCD word into the equivalent integer.

CALLING SEQUENCES:
MAD I = BCDBN. (N)
FORTRAN I = MBCDBN (N)
UMAP CALL BCDBN

PAR N,T
NORMAZ, RETURN - I I N THE ACCUMULATOR

ARGUMENTS :
N The BCD word to be converted to an integer. A l l blanks are

I The integer equivalent to the BCD argument, N.
T Optional tag.

completely ignored.

ONE WORD BINARY TO BCD CONVERSION

ENTRY POINTS: BNBCD

PURPOSE: Convert a binary integer into its BCD equivalent which is right
justified and filled in with leading zeros. The primary use of
this subroutine is modifying formats with integers read in as
data.

CALLING SEQUENCES:
MAD N = BNBCD. (I)
FORTRAN X = BNBCD (I)
UMAP CALL BNBCD

PAR 1 ,T
NORMAL RETURN - N I N THE ACCUMULATOR.

ARGUMENTS :
I The integer to be converted.
N The BCD equivalent of the integer I. Zeros are filled in on

T Optional tag.
the left to complete the BCD word.

3.8-8

MATRIX INVERSION

ENTRY POINTS: BORDS

PURPOSE: 1nversion.of a real symmetric matrix upon itself. The determinant
is calculated as a by-product. The matrix is inverted by the
method of successive bordering. For success, this method
requires that submatrices of the form

A (1 , l) ... A(1 ,J)

A(J,l) .. . A(J,J)
for J = 1,2, ..., N be non-singular. If the determinant of the
matrix is non-zero, this condition is always satisfied.

CALLING SEQUENCES:
FORTRAN
MAD
UMAP

ARGUMENTS :
N
A

D
X

See write-up for subroutine IBDS.
X = BORDS. (N,A,D)
CALL BORDS,N,A,D
RETURN - X WILL BE IN THE AC

Integer dimension of the square matrix A. N may not exceed 100.
First element of the matrix. For further information, see the

After a successful return, D will contain the determinant.
Floating-point switch;

write-up for the subroutine GJRDT.

1. Successful inversion.
-K. Negative integer giving the dimension of the smallest

principal minor equal to zero.

r
3.8-9

BESSEL FUNCTIONS

ENTRY POINTS: BSLl

PURPOSE: Compute Bessel functions J(N,X), I(N,X), Y(N,X), K(N,X),
EXP(-X)*I(N,X), and EXP(X)*K(N,X), f o r real v a l u e s of
X.GE.0. a n d f o r i n t e g r a l v a l u e s o f N , O.LE.N.LE.5, where
N is t h e o r d e r o f t h e d e s i r e d Bessel func t ion .

CALLING SEQUENCES:
MAD L = BSL1. (X,I,N,B,K)
FORTRAN L = BSLl(X,I,N,B,K)
UMAP CALL BSLl

PAR X
PAR I
PAR N
PAR B
PAR K
NORMAL RETURN - L I N THE ACCUMULATOR.

ARGUMENTS :
X Float ing point argument X .
I In teger a rgument spec i fy ing the type o f Bessel f u n c t i o n

d e s i r e d .
1 f o r J(N,X)
2 f o r I(N,X)
3 f o r K(N,X)
4 f o r Y(N,X)
5 f o r EXP(-X)*I(N,X)
6 f o r EXP(X)*K(N,X)

O.LE.N.LE.5.
N Integer argument N , t he o rde r o f t he des i r ed func t ion ,

B The d e s i r e d Bessel funct ion of the argument X.
K In teger a rgument which ind ica tes the number o f b i n a r y d i g i t s

des i r ed fo r conve rgence . K = 0 , t h e n a l l b i t s must a g r e e ,
K = 1, then 26 d i g i t s are a sked fo r , K = 5 s p e c i f i e s 2 2
b i t s , e tc .

L = 1. Successfu l re turn . Des i red Bessel f u n c t i o n

L = 2 . Erro r r e tu rn . Spec i f i ed a rgumen t s would

L Computa t ion f l ag (f loa t ing po in t) .

s t o r e d i n B.

r e s u l t i n f u n c t i o n too la rge for machine .

SUBROUTINES REQUIRED: SQRT, COS, SIN, EXP, ELOG

3.8-10

MATRIX FACTORIZATION BY CHOLESKY DECOMPOSITIOJ

ENTRY POINTS: CHOLES

PURPOSE: Factorization of a real symmetric positive definite matrix A into
an upper triangular matrix R and a lower triangular matrix L such
that

Only the diagonal and upper diagonal elements need be stored in A
on entry, and on exit the matrix L will be stored in the diagonal
and lower diagonal elements. The above diagonal elements of A are
not changed by CHOLES. If the matrix is not positive definite,
this symmetric factorization is impossible without introducing
imaginary elements in the factors.

L = (R TRANSPOSE) and A = L * R.

CALLING SEQUENCES:
FORTRAN X = CHOLES (N,M,A)
MAD X = CHOLES. (N,M,A)
UMAP CALL CHOLES,N,M,A

RETURN - X WILL BE IN THE AC.

ARGUMENTS :
N Integer dimension of the square matrix A.
M Integer row length of matrix as stored in core storage.
A First element of the matrix. For further information, see

X Floating-point switch.
the write-up for the subroutine GJRDT.

1. Successful decomposition.
0 . Overflow, cannot continue.
-1. Cholesky decomposition impossible.

See above. The smallest principal minor that is non-
positive definite may be found by examining the
diagonal elements of the matrix on return. If A(1,I)
is zero or negative, the I-th order minor is non-
positive definite.

SUBROUTINES REQUIRED: FSPILL, NASQ1, RSPILL

3.8-11

COMPLEX ARITHMETIC

ENTRY POINTS: CMADD, CMSUB, CMMUL, CMDIV

PURPOSE: Does floating point complex arithmetic.

CALLING SEQUENCES:
MAD EXECUTE CMADD. (Rl,Il,R2,12,RANS,IANS) Addition

EXECUTE CMSUB. (Rl,IlYR2,12,RANS,IANS) Subtraction
EXECUTE CMMUL. (Rl,Il,R2,12,RANS,IANS) Multiplication
EXECUTE CMDIV. (Rl,Il,R2,12,RANS,IANS,ERR) Division

FORTRAN CALL CMADD (Rl,LJl,R2,U2,RANS,UANS) Addition
CALL CMSUB (Rl,Ul,R2,U2,RANS,UANS) Subtraction
CALL CMMUL (RlYUl,R2,U2,RANS,UANS) Multiplication
CALL CMDIV (R1,Ul,R2,U2,RANS,UANS,ERR)

UMAP
Division

Addition Subtraction Multiplication Division
CALL CMADD CALL CMSUB CALL CMMUL CALL CMDIV
PAR R1 PAR R1 PAR R1 PAR R1
PAR I1 PAR I1 PAR I1 PAR I1
PAR R2 PAR R2 PAR R2 PAR R2
PAR I2 PAR I2 PAR I2 PAR I2
PAR RANS PAR RANS PAR RANS PAR RANS
PAR IANS PAR IANS PAR IANS PAR IANS

PAR ERR

ARGUMENTS :
R1
11, u1
R2
12, u2
RANS
IANS ,
UAN S

ERR

Real part of first operand.
Imaginary part of first operand.
Real part of second operand.
Imaginary part of second operand.
Real part of answer.

Imaginary part of answer.
Use of this argument is optional. If used, attempted division

by zero will cause a return to the location specified.
Otherwise, execution will be terminated. (Fortran users
should see point 7 under notes in the introduction to
this section.)

ERROR CONDITION:
If R2 and I2 both equal zero when using CMDIV and ERR is given, control
will be transferred to the location specified. Otherwise, the comment
'**** COPiPLEX DIVISION BY ZERO' will be printed and a dump given if
requested.

SUBROUTINE REQUIRED: .EXIT FOR CMDIV

3.8-12

COMPLEX SQUARE ROOT

ENTRY POINTS: CMSQRT

PURPOSE: Compute s q u a r e r o o t of complex number.

CALLING SEQUENCES:
MAD EXECUTE CMSQRT.(A,B,C,D,)
UMAP CALL CMSQRT

PAR A
PAR B
PAR C
PAR D
NORMAL RETURN WITH REAL PART I N AC, IMAGINARY PART I N MQ.

ARGUMENTS :
A Real par t of argument .
B Imag ina ry pa r t of argument.
C Real p a r t o f r e s u l t .
D Imag ina ry pa r t of r e s u l t .

SUBROUTINES REQUIRED: SQRT

SYMBOL MANIPULATION - PACKING

ENTRY POINTS: COMPZ, ZCOMPZ

PURPOSE: COMPZ. Packs a sequence of l e f t - j u s t i f i e d BCD c h a r a c t e r s i n t o f u l l
word (6 cha rac t e r s pe r word) BCD form. I f t h e l a s t word i s incom-
p l e t e , i t is l e f t - j u s t i f i e d w i t h t r a i l i n g b l a n k s . ZCOMPZ. is t h e
same as COMPZ., e x c e p t t h a t t h e last word, i f incomplete , is r i g h t -
j u s t i f i e d w i t h l e a d i n g z e r o e s .

CALLING SEQUENCES:
MAD
MAD
MAD
MAD

ARGUMENTS :
A

B

M

X

X = COMF'Z. (M,A)
EXECUTE COMPZ.(M,A,B)
X = ZCOMPZ. (M,A)
EXECUTE ZCOMPZ. (M,A,B)

F i r s t e n t r y o f a v e c t o r o f l e f t - j u s t i f i e d BCD charac te rs which
are to be packed in to fu l l -word form.
I f B is g i v e n , t h e r e s u l t s o f t h e p a c k i n g p r o c e s s are s t o r e d
i n s e q u e n c e , s t a r t i n g i n B. I f B is no t g iven , (i . e . , on ly M
and A are g i v e n) , o n l y t h e f i r s t M y up t o and inc luding s i x ,
charac te rs f rom A are packed.
I n t e g e r number o f l e f t - j u s t i f i e d BCD c h a r a c t e r s t o b e u s e d ,
s t a r t i n g i n A.
R e s u l t of t h e p a c k i n g p r o c e s s i n t h e s p e c i . f i c case o n l y i n
which B i s n o t g i v e n i n t h e c a l l i n g s e q u e n c e .

- "

3.8-13

MATRIX FACTORIZATION BY L-R DECOMPOSITION

ENTRY POINTS: CROUT

PURPOSE: Factorization of an arbitrary real matrix A into an upper
triangular matrix R and a monic lower triangular matrix L.
The original matrix is overwritten by the factors R and L in the
same fashion as the subroutine GAUSS. Interchanges are not
used and hence it may not be possible to factor the matrix.
It should be kept in mind that this factorization without
interchanges is an unstable numerical procedure, except for a
small class of matrices. The best example of this class is the
set of all real positive definite matrices. The factorization
is accomplished by the compact form of Gaussian Elimination
called the Crout reduction. The reader is referred to
'Introduction To Numerical Analysis' by Hildebrand, p. 429.

CALLING SEQUENCES:
FORTRAN X = CROUT (N ,A)
MAD X = CROUT. (N,A)
UMAP CALL CROUT , N , A

RETURN - X WILL BE IN THE AC.

ARGUMENTS :
N
A

X

Integer dimension of the square matrix A.
First element of the matrix. For further information, see
the write-up for the subroutine GJRDT.
Floating-point switch.

1 Successful decomposition.
0 . Overflow, cannot continue.
-1. Factorization is impossible without interchanges.

SUBROUTINES REQUIRED: FSPILL, RSPILL

3.8-14

MATRIX FACTORIZATION BY L-R DECOMPOSITION

ENTRY POINTS: CROUTP

PURPOSE: C r o u t r e d u c t i o n w i t h i n t e r c h a n g e s o f a n a r b i t r a r y real matrix A
i n t o two f a c t o r s , a n u p p e r t r i a n g u l a r matrix R and a monic lower
t r i a n g u l a r m a t r i x L. The Crout reduct ion is a compact form of
Gaussian El iminat ion and requires more running time b u t u s u a l l y
s u f f e r s f r o m s l i g h t l y less round-of f e r ror . The opera t ion of
CROUTP and GAUSS are o t h e r w i s e t h e same. See subrout ine GAUSS.

CALLING SEQUENCES:
FORTRAN
MAD
UMAP

ARGUMENTS :
N
A

XCH

X

X = CROUTP (N,A,XCH)
X = CROUTP. (N,A,XCH)
CALL CROUTP , N , A ,XCH
RETURN - X WILL BE I N THE AC.

In teger d imens ion of the square mat r ix A.
F i r s t e l e m e n t o f t h e m a t r i x . F o r f u r t h e r i n f o r m a t i o n , see
t h e w r i t e - u p f o r t h e s u b r o u t i n e GJRDT.
Vec to r fo r r eco rd o f i n t e rchanges u sed i n t he e l imina t ion .
I f XCH(1) i s non-zero then when row I was used as a p i v o t row,
an i n t e rchange w i th row XCH(1) w a s necessary . XCH(1) w i l l be
z e r o i f n o i n t e r c h a n g e w a s necessary . XCH w i l l b e i n t e g r a l i n
a l l cases. I f t h e L*R product i s formed the interchanges must
b e p e r f o r m e d i n t h e r e v e r s e o r d e r t o o b t a i n t h e o r i g i n a l m a t r i x ,
(i . e . , i n t e r c h a n g e rows

XCH(N-1) and N-1,

XCH(1) and 1.)
.....

Floa t ing-poin t swi tch .
1. Successful decomposi t ion.
0. Overflow, cannot continue.

SUBROUTINES REQUIRED: FSPILL, RSPILL

3.8-15

SYMBOL MANIPULATION - UNPACKING

ENTRY POINTS: DCOMPZ, DZCOMP

PURPOSE: DCOMPZ unpacks a s e q u e n c e o f f u l l BCD w o r d s i n t o l e f t - j u s t i f i e d
BCD c h a r a c t e r s w i t h f i v e t r a i l i n g b l a n k s . DZCOMP i s t h e same
e x c e p t t h a t i t r e p l a c e s l e a d i n g z e r o e s i n a word wi th b lanks .

CALLING SEQUENCES:
MAD EXECUTE DCOMPZ . (N , A , B)

UMAP CALL DCOMPZ CALL DZCOMP
EXECUTE DZCOMP. (N,A,B)

PAR N PAR N
PAR A PAR A
PAR B PAR B

ARGUMENTS :
N I n t e g e r number of words i n A which are t o b e decomposed.
A Vector of words to be decomposed. Elements of A are

B Vector in to which decomposed c h a r a c t e r s are placed, one
assumed to be s tored backwards .

c h a r a c t e r p e r word w i t h t r a i l i n g b l a n k s . Dimension of B
must be a t least 6N, and B w i l l be s tored backwards.

DISMOUNT TAPE

ENTRY POINT: DISMNT

PURPOSE: P r i n t s i n s t r u c t i o n s t o t h e o p e r a t o r t o remove a u s e r ' s t a p e s ,
rewinds and unloads the tapes , and s tops for removal . (This
shou ld be u sed on ly fo r s e l ec t ive r emova l .)

CALLING SEQUENCES:
MAD EXECUTE DISMNT.(UNITl,PRO1,UNIT2,PR02, ..., UNITN,PRON)
FORTRAN CALL DISMNT(UNITl,PROl,UNIT2,PR02, ..., UNITN,PRON)
UMAP CALL DISMNT

PAR UNIT1
PAR PRO1
PAR UNIT2
PAR PRO2
PAR UNITN
PAR PRON

ARGUMENTS: There are two a rgumen t s fo r each t ape t o be removed.
UNIT Log ica l number (f u l l word o r f o r t r a n i n t e g e r) o f t h e t a p e

dr ive f rom which the t ape i s t o b e removed.
PRO I f z e r o , t a p e s h o u l d b e s t o r e d w i t h f i l e p r o t e c t r i n g

i n s e r t e d . I f n o n - z e r o , t a p e s h o u l d b e s t o r e d w i t h f i l e
p r o t e c t r i n g removed.

ERROR CONDITION: A n a t t e m p t t o remove a tape which w a s no t reques ted by t h e
s u b r o u t i n e s MOUNT o r REPLACE w i l l b e t r e a t e d as a n 1 / 0 e r r o r
cond i t ion .

SUBROUTINES REQUIRED: .ERR

I

3.8-16

DOUBLE-PRECISION OPERATIONS

ENTRY POINTS: DFAD, DFSB, Dl?", DFDP, SFDP, DCEXIT

PURPOSE: Per form the double-prec is ion f loa t ing-poin t opera t ions of
a d d i t i o n , s u b t r a c t i o n , m u l t i p l i c a t i o n a n d d i v i s i o n . I f t h e
h i g h o r d e r word i s s t o r e d i n l o c a t i o n Y t h e low o r d e r word
must be i n l o c a t i o n Y+1. The s u b r o u t i n e s 'DFAD', 'DFSB',
'DFMP' , and 'DFDP' are d e s i g n e d t o p e r f o r m t h e b a s i c a r i t h -
metic ope ra t ions on doub le -p rec i s ion numbers s to red i n t h i s
fash ion . The h igh o rde r word o f t h e r e s u l t is always
normalized and the low order word always has the same s i g n
and a c h a r a c t e r i s t i c 27 (base 10) less than t he h igh o rde r
word. The e n t r y 'SFDP' i gnores t he l ow o rde r word of the
d i v i s o r by assuming i t zero . I f t he h igh o rde r word o f t h e
d i v i s o r i s z e r o t h e s u b r o u t i n e 'ERROR' i s ca l l ed . Th i s may
be avoided by c a l l i n g ' D C E X I T ' beforehand and spec i fy ing the
i n s t r u c t i o n t o w h i c h c o n t r o l i s t o b e t r a n s f e r r e d .

CALLING SEQUENCES:

MAD

FORTRAN

UMAP

ARGUMENTS :
A

B

C
LOC

EXECUTE *F**. (A,B,C)
EXECUTE DCEXIT. (LOC)
CALL *F** (A,B,C)
CALL DCEXIT (LOC)
CALL *F**,A,B,C
CALL DCEXIT , LOC

High order word of t he addend , sub t r ahend , mu l t ip l i cand , o r
dividend.
High order word of the augend, minuend, mult ipl ier , o r
d i v i s o r .
High order word of the sum, d i f f e r e n c e , p r o d u c t , o r q u o t i e n t
I n s t r u c t i o n t o b e g i v e n c o n t r o l i f a d i v i s i o n by zero (high
order word) i s a t tempted . For t ran users should see poin t 7
under arguments i n t h e i n t r o d u c t i o n t o "OS.

NOTE: The c u r r e n t 110 conver s ion rou t ine . I O H uses these subrout ines and
hence they w i l l be i n c o r e whenever i t i s .

SUBROUTINES REQUIRED: ERROR.

3.8-17

DOUBLE PRECISION JXOATING POINT ARITHMETIC

ENTRY POINTS: DPFA, DPFM, DPFDV

PURPOSE: Perform double precision arithmetic operations on d,ouble
precision numbers which are floating point.

CALLING SEQUENCES:
MAD

FORTRAN

UMAP

ARGUMENTS :
A1

A2
B1

B2
c1

c2
LOC

T1,T2, . . . ,T6

EXECUTE DPFA.(Al,A2,Bl,B2,Cl,C2) Addition
EXECUTE DPFM.(Al,A2,Bl,B2,Cl,C2) Multiplication
EXECUTE DPFDV.(Al,A2,Bl,B2,Cl,C2,LOC) Division
CALL DPFA (Al,A2,Bl,B2,Cl,C2) Addition
CALL DPFM (Al,A2,Bl,B2,Cl,C2) Multiplication
CALL DPFDV (Al,A2,Bl,B2,Cl,C2) Division
Addition Multiplication Division
CALL DPFA CALL DPFM CALL DPFDV
PAR A1 ,T1 PAR A1,Tl PAR A1 ,T1
PAR A2 ,T2 PAR A2 ,T2 PAR A2 ,T2
PAR B1,T3 PAR B1,T3 PAR B1 ,T3

PAR C1,T5 PAR C1,T5 PAR C1 ,T5
PAR B2,T4 PAR B2,T4 PAR B2 ,T4

PAR C2,T6 PAR C2,T6 PAR C2 ,T6
NORMAL RETURN NORMAL RETURN PAR LOC

NORMAL RETURN

High order part of the first addend, of the first factor, o r
of the dividend for addition, multiplication o r division,
respectively.
Low order part paired with Al.
High order part of the second addend, the second factor, or
the divisor for addition, multiplication or division,
respectively.
Low order part paired with B1.
High order part of the answer resulting from the double
precision operation performed on the arguments above.
Low order part of the answer.
Location for return if zero denominator (in DPFDV only) is
detected. (This argument may be omitted. If not given and
a zero denominator is detected, then an error comment is
printed and control is returned to the system.)

Optional tags.

SUBROUTINES REQUIRED: .EXIT (DPFDV ONLY)

3.8-18

MATRIX MULTIPLICATION USING DOUBLE PRECISION

ENTRY POINTS: DPMAT

PURPOSE: Perform the matrix multiplication A = A * B where A and B
are real N*N matrices. Each element of the product matrix
is accumulated in double precision and then chopped to
single precision. Note that the result is automatically
placed in A. B is unchanged by DPMAT.

CALLING SEQUENCES:
FORTRAN X = DPMAT (N,A,B)
MAD X = DPMAT.(N,A,B)
UMAP CALL DPMAT,N,A,B

RETURN - FLOATING-POINT SWITCH IN AC.

ARGUMENTS :
N Common integer dimension of the matrices A and B. N may

A First element of the matrix A. For further information

B First element of the matrix B. For further information

not exceed 99.

see the write-up for subroutine GJRDT.

see the write-up for subroutine GJRDT.
X Floating-point switch;

1. Successful multiplication.
0. Overflow, cannot continue.

SUBROUTINES REQUIRED: FSPILL, RSPILL

DOUBLE-PRECISION SQUARE ROOT

ENTRY POINTS: DSQRT

PURPOSE: Form the double-precision floating-point square root of the argument
and return it with the sign of the argument, i.e., the square root
of a positive number is positive and of a negative numberis negative.

CALLING SEQUENCES:
MAD EXECUTE DSQRT. (A,B)

UMAP SEE THE SUBROUTINE NASQ.
FORTRAN CALL DSQRT (A,B)

ARGUMENTS :
A High order word of the argument, the low order word must be in

B High order word of the signed square root, the low order word
location A+1.

will be returned in location B+1.

SUBROUTINES REQUIRED: NASQ

"

3.8-19

LINEAR EQUATIONS

ENTRY POINTS: DSLE1, DSLE2

PURPOSE: S o l v e i n d o u b l e - p r e c i s i o n t h e s y s t e m o f s i m u l t a n e o u s l i n e a r
e q u a t i o n s w i t h c o e f f i c i e n t m a t r i x A of dimension M and r i g h t
hand s i d e B. The method is Gauss i an E l imina t ion w i th pa r t i a l
p ivo t ing , fo l lowed by a s ing le back - subs t i t u t ion . A de te r -
minant, which may b e s c a l e d as descr ibed below, is a l s o
computed. Two e n t r i e s are provided. 'DSLE1' assumes a s ing le -
p r e c i s i o n i n p u t s y s t e m a n d c o n v e r t s t o d o u b l e by sca l ing each
equat ion by its maximum element -- t h e s o l u t i o n i s re turned
i n s i n g l e - p r e c i s i o n . The e n t r y 'DSLE2' assumes a double-
prec is ion sys tem, per forms no sca l ing and re turns a
doub le -p rec i s ion so lu t ion .

I

CALLING SEQUENCES:
MAD X = DSLE1. (M,A,B,D)

UMAP CALL DSLEl CALL DSLE2
X = DSLE2. (M,A,B,D)

PAR M PAR M
PAR A PAR A
PAR B PAR B
PAR D PAR D

RETURN WITH X I N THE ACCUMULATOR

B

D

ARGUMENTS :
M I n t e g e r (MAD type , no t FORTRAN) d imens ion of the coef f ic ien t

A For 'DSLE2' t h i s argument i s ignored. For'DSLEl' i t i s t h e
ma t r ix .
f i r s t element of t h e c o e f f i c i e n t m a t r i x . I t is assumed t h a t
t h e (1 , J) - e l e m e n t h a s l i n e a r s u b s c r i p t , r e l a t i v e t o A, of
(I-l)*M+(J-1). This is s t anda rd MAD type s torage . The
ma t r ix A is not des t royed by e i t h e r e n t r y . The A-region
and the D-region may o v e r l a p i n s t o r a g e p r o v i d e d A i s not
c o n t a i n e d i n t h e r e g i o n D(1) ... D(2*M*M).
R i g h t h a n d s i d e a n d s o l u t i o n v e c t o r f o r b o t h e n t r i e s . F o r
'DSLE1' t h i s v e c t o r i s s ing le -p rec i s ion bu t of l e n g t h a t
least 2*M. f o r 'DSLE2' t he vec to r is double-precis ion I B M
7094 type , i .e. , i f t h e h i g h o r d e r word of an element is i n
B(NU) (assuming MAD s t o r a g e) , t h e n t h e low orde r word is i n
B(NU-1). The e n t r y 'DSLE2' assumes t h a t t h e r i g h t hand s i d e
o f t h e I - t h e q u a t i o n i s s t o r e d i n B(2*I) and B(2*1-1).
Both e n t r i e s r e t u r n t h e same i n f o r m a t i o n i n t h i s r e g i o n o f
l e n g t h a t least 2*M*M. The D-region w i l l contain the double-
p r e c i s i o n L*R f a c t o r i z a t i o n of t h e c o e f f i c i e n t m a t r i x . The
h igh o rde r word of the (1 ,J)-element has a l i n e a r s u b s c r i p t
relative t o D of 2*((I-l)*M+J) and the low order word has
t h i s s u b s c r i p t minus 1, (i . e . , t he e l emen t s are IBM 7094 type
double-precis ion) . This resu l t should be approximate ly the
same as that produced by "GAUSS". N o t e r e s t r i c t i o n (5).

3.8-20

LINEAR EQUATIONS (CONTINUED)

X

'DSLE1' i g n o r e s t h e c o n t e n t s of t h e D-region and immediately
sets up t h e s c a l e d c o e f f i c i e n t m a t r i x w i t h s u b s c r i p t s as
descr ibed above. 'DSLEP' assumes t h a t t h e d o u b l e - p r e c i s i o n
coefficient ma t r ix is s t o r e d i n the D-region i n t h e manner
descr ibed above.
For bo th entries t h e number D is t a k e n a s a scale f a c t o r f o r
t he de t e rminan t and t he h igh o rde r word of the determinant
is r e t u r n e d i n D. I f t h e i n p u t v a l u e o f D is ze ro t hen t he
de te rminant w i l l be r e tu rned as zero . This w i l l no t cause ,
however, a s i n g u l a r i t y r e t u r n . A double-precis ion I B M 7094
type de te rminant is a v a i l a b l e i n e r a s a b l e , t h e h i g h o r d e r
word i n 77776 and the low i n 77777. N o t e r e s t r i c t i o n (4) .
Returns
(1) 1. - Successful computat ion.
(2) 0. - Overflow, cannot continue.
(3) -1. - Singu la r ma t r ix .
(4) -2. - Zero row i n m a t r i x (i m p o s s i b l e w i t h DSLE2).

RESTRICTIONS:
(1) 'RSPILL' i s ca l l ed immedia t e ly be fo re t he r e tu rn .
(2) 'DCEXIT' i s c a l l e d j u s t b e f o r e t h e r e t u r n and set s o t h a t

(3) The m a t r i x A and the vec tor D may occupy t h e same s t o r a g e

(4) The s ign of the low order de te rminant word i n 77777 may

'ERROR' w i l l b e c a l l e d i f d i v i s i o n by ze ro is at tempted.

r eg ion , p rov ided t he r eg ion r e se rved fo r A is not conta ined
i n t h a t r e s e r v e d f o r D.

have the wrong sign. The high order word i n 77776 has
t h e c o r r e c t s i g n .

the D-region, physical in terchanges are not used, only
row a d d r e s s v e c t o r e n t r i e s , i .e . ,

Consequent ly the rows of t h e m a t r i x are jumbled. The row
a d d r e s s v e c t o r i s s t o r e d i n e r a s a b l e and has base address
77764.

(5) I n p e r f o r m i n g t h e L*R f a c t o r i z a t i o n w h i c h is s t o r e d i n

R(1). . .R(M), where R(I)=(I-l)*M.

SUBROUTINES REQUIRED: DCEXIT, DFDP, DFMP, DFSUB, ERROR, FSPILL, RSPILL, SFDP.

3.8-21

EIGENVALUES AND EIGENVECTORS

ENTRY POINTS: EIGN

PURF'OSE: TO compute a l l e igenvalues and/or e igenvec tors o f a r e a l
symmetric matrix by the Jacobi method. The elements of the
matrix m u s t s a t i s f y t h e c o n d i t i o n SM = SUM((A(I,J)/m).p.2)
.LE.2.P.257, where AM = MIN/A(I,J)/ .NE.O.

CALLING SEQUENCES:
MAD
FORTRAN
UMAP

ARGUMENTS :
A

N
K

V

S-EIGN. (A,N,K,V,F)
S=EIGN(A,N,K,V,F)
CALL EIGN
PAR A
PAR N
PAR K
PAR V
PAR F
NORMAL RETURN-S I N THE ACCUMULATOR.

F i r s t e l emen t o f a f loa t ing po in t a r r ay i n wh ich t he ma t r ix is
s tored. There must be no extra locat ions between the rows or
columns i n t h i s a r r a y . I n MAD t h i s is accomplished by set t ing
the t h i rd en t ry o f t he d imens ion vec to r fo r A e q u a l t o N be fo re
r e a d i n g t h e d a t a . I n FORTRAN the o r ig ina l d imens ion s t a t emen t
would have t o s p e c i f y a n a r r a y d i m e n s i o n e q u a l t o N by N. I n
a l l cases (MAD, UMAP, FORTRAN) the spaces may be e l iminated by
c o n s i d e r i n g t h e m a t r i x as a l i n e a r a r r a y w i t h t h e rows o r
co lumns s tored sequent ia l ly . The o r i g i n a l A a r r a y is destroyed
by the computat ion and the e igenvalues replace the diagonal
e lements of the A mat r ix .
I n t e g r a l o r d e r o f t h e m a t r i x A.
I n t e g e r Swi tch : I f K = o , no e igenvec to r s des i r ed . If K = l ,
e igenvec tors a re to be computed .
F i r s t e l emen t o f a f loa t ing po in t a r r ay i n wh ich t he e igenvec -
t o r s are t o b e s t o r e d . A s w i t h t h e A a r r a y , V is t r e a t e d as a
l i n e a r v e c t o r b y EIGN. The f i r s t v e c t o r c o r r e s p o n d i n g t o t h e
f i r s t d i a g o n a l element of A w i l l b e s t o r e d i n t h e f i r s t N
l o c a t i o n s o f V. The second vec to r i n t he s econd N , e t c . I f
K=O, V is a duuany argument.
I f e i t h e r SM.GE.2.P.128 o r AM.P.Z.LE.Z.P.-123, b u t t h e r e s t r i c t i o n
s t a t e d i n t h e p u r p o s e i s n o t v i o l a t e d , t h e n a r e t u r n i s made
wi th S = 2.0 (s e e S) and the e lements o f the o r ig ina l a r ray are
sca l ed w i th an appropr i a t e s ca l e f ac to r wh ich is s t o r e d i n F.
Computation switch - f l o a t i n g p o i n t .
S-1.0 E r r o r r e t u r n - SM.GE.Z.P.257.
S=2.0 Successful computation but the matrix (and the eigen-

va lues) has been s ca l ed by a f a c t o r s t o r e d i n F.
S=3.0 Normal re turn , successfu l computa t ion .

3.8-22

FLOATING POINT LOGARITHM

ENTRY POINTS: ELOG

PURPOSE: Compute LN(X) for floating point argument X.G.O.

CALLING SEQUENCES:
MAD Y - ELOG.(X,LOC)
FORTRAN Y = ELOG(X)
UMAP CALL ELOG

PAR X,T
PAR LOC
NORMAL RETURN - Y IN THE ACCUMULATOR.

ARGUMENTS :
X Floating point argument for which the log (to the base E) is

Y The floating point log of the argument X.
LOC Location €or return if error detected. (This argument may

T Optional tag.

desired.

be omitted.)

ERROR CONDITIONS:
If X .LE. 0. the error routine is initiated. If LOC is given,
control is returned to the caller. Otherwise,

is printed on the output tape and control is returned to the
system, giving a dump of core if requested.

'****ELOG ARG NEGATIVE OR ZERO'

SUBROUTINES REQUIRED: .EXIT

3.8-23

EXIT SUBROUTINE

ENTRY POINTS : .EXIT

PURPOSE: P r o v i d e s e r r o r r e t u r n t o s y s t e m f r o m non-I/O subroutines.

CALLING SEQUENCE:
UMAP CLA N+1,4

CALL .EXIT
BLK COMENT , T I L
PAR xR4 ...

COMENT B C I L,C.. .
ARGUMENTS :

N

COMENT
T

L

xR4

C

Number of a rguments for the subrout ine no t inc luding the
o p t i o n a l e r r o r r e t u r n a r g u m e n t .
L o c a t i o n o f f i r s t word of comment t o b e p r i n t e d .
I f z e r o , a n o p t i o n a l e r r o r r e t u r n is not permit ted, and
'CLA N+1,4' is not needed. I f non-zero, the subrout ine
u s e r may s p e c i f y a n o p t i o n a l e r r o r r e t u r n .
The number o f s i x le t ter machine words making up t h e
comment.
Optional argument containing 2 ' s complement of number XxxXX
t o b e p r i n t e d o u t w i t h a d d i t i o n a l comment 'AT LOCATION Xxxxx'.
C a r r i a g e c o n t r o l f o r comment l i n e , which is followed by
t h e comment.

NOTE: I n d e x r e g i s t e r 4 is assumed t o have been r e s to red t o i t s condi t ion
a t t h e time of doing the "CLA N+1,4' (n o t n e c e s s a r y i f n o error
r e t u r n) .

SUBROUTINES REQUIRED: SPRINT, ATLOC, ERROR

3.8-24

EXPONENTIATION - THE BASE E

ENTRY POINTS: EW

PURPOSE: Raise E to t he f l oa t ing po in t exponen t X.

CALLING SEQUENCES:
MAD Y = EXP.(X,LOC)
FORTRAN Y = EXP (X)
UMAP CALL EXP

PAR X,T
PAR LOC
NORMAL RETURN - Y I N THE ACCUMULATOR.

ARGUMENTS :
X The f l o a t i n g p o i n t power t o which E is t o b e r a i s e d .
Y Resul t i n f l o a t i n g p o i n t .
LOC Loca t ion fo r r e tu rn i f e r ro r de t ec t ed . (Th i s argument may

T Optional tag.
be omitted.)

ERROR CONDITIONS:
I f X .G. 87.3, t h e r e s u l t w i l l exceed machine s i z e , and t h e e r r o r
procedure is begun. I f LOC i s g iven , then cont ro l is r e tu rned t o
t h a t l o c a t i o n . I f LOC is no t g iven , t he comment '***Em ARG EXCEEDS
87.3' is printed, fol lowed by a dump (i f r eques t ed) .

SUBROUTINES REQUIRED: .EXIT

3.8-25

ERROR FUNCTION SUBROUTINE

ENTRY POINTS: ERF

PURPOSE: To compute ERF(X), where ERF(X) is def ined as ERF(X) - 2/SQRT.(PI)
times t h e i n t e g r a l from zero t o X of EXP (-(T.P.2)) DT where

For a s h o r t e r , f a s t e r , less accura te subrout ine , see ERRFN.
ERF (-X) = -ERF(X) .

CALLING SEQUENCES:
MAD Y - ERF.. (X)
FORTRAN Y - ERF(X)
UMAP CALL ERF,X

Both X and Y are f l o a t i n g p o i n t .
RETURNS WITH VALUE I N ACCUMULATOR

ACCURACY :
Plus or minus 2 i n e i g h t h s i g n i f i c a n t d i g i t .

Adapted from Ames Research Center AL-ERF (Share D i s t . no. 836)

SUBROUTINES USED: EW

ERROR FUNCTION SUBROUTINE

ENTRY POINTS: ERRF'N, FREQ

PURPOSE: To compute t h e e r r o r f u n c t i o n , ERF, (for d e f i n i t i o n see the
write-up on ERF) and the normal frequency function. For a more
accura te , bu t longer and s lower rou t ine , see ERF.

CALLING SEQUENCES:
Error Funct ion -

MAD Y = ERRFN.(X)

UMAP CALL ERRFN,X
FORTRAN Y = ERRFN(X)

RETURNS VALUE I N ACCUMULATOR
Normal Frequency Function -

FORTRAN Z = FREQ(X)
MAD Z = FREQ. (X)

UMAP CALL FREQ,X
RETURNS VALUE I N ACCUMULATOR

X,Y, and Z are f l o a t i n g p o i n t .

ACCURACY :
P l u s OK minus 1 i n f i f t h s i g n i f i c a n t d i g i t .

Adapted from Share D i s t . no. 897

3.8-26

- TEGER BASE AND INTEGER EXPONENT

ENTRY POINTS: E X P l

PURPOSE: Ra i se an i n t ege r base t o a n i n t e g e r power.

CALLING SEQUENCES:
UMAP CALL EXPl

PAR I ,T1
PAR J ,T2
PAR LOC
NORMAL RETURN - N I N THE ACCUMULATOR.

ARGUMENTS :
I In teger base .
J Integer exponent .

LOC L o c a t i o n f o r r e t u r n i f e r r o r f o u n d (t h i s argument may be omitted.)
N R e s u l t . I f I = 0 o r J.L.0 o r (I = 0 and J = 0) , N = 0. I f

Tl,T2 Optional tags.

J = 0 and I.NE.0, N = 1.

ERROR CONDITION:
I f N.GE.2.P.35, t h e e r r o r p r o c e d u r e is i n i t i a t e d . I f LOC is given,
c o n t r o l is r e t u r n e d t o t h e cal ler . Otherwise, the comment, 'EXP1 ANS TOO
LARGE' w i l l be p r in t ed and a dump given i f r e q u e s t e d by t h e programmer.

SUBROUTINES REQUIRED: .01311, .EXIT

EXPONENTIATION - FLOATING POINT BASE AND INTEGER EXPONENT

ENTRY POINTS: EXP2

PURPOSE: Raise a f l o a t i n g p o i n t number t o an i n t ege r power.

CALLING SEQUENCES:
LJMAP CALL EXP2

PAR B , T 1
PAR J ,T2
PAR LOC
NORMAL RETURN - X I N THE ACCUMULATOR.

ARGUMENTS :
B F loa t ing po in t base .
J Integer exponent .

LOC L o c a t i o n f o r r e t u r n i f e r r o r d e t e c t e d . (T h i s argument may be

X R e s u l t . I f B = 0, X = 0. I f J = 0 and B.NE.0, X = 1.

Tl,T2 Optional tag.

omitted.)

ERROR CONDITION:
I f X is out of range of machine s ize , the error procedure is
i n i t i a t e d . I f LOC is g iven , cont ro l i s r e t u r n e d t o t h e cal ler .
Otherwise, the comment 'EXP2 ANS OUT OF RANGE' i s p r i n t e d and a
dump is given i f requested by the programmer.

SUBROUTINES REQUIRED: .01301, .EXIT

3 . 8 - 2 7

EXPONENTIATION - FLOATING POINT BASE AND FLOATING POINT EXPONENT

ENTRY POINT: EXP3

PURPOSE: Raise a f l o a t i n g p o i n t number t o a f l o a t i n g p o i n t power.

CALLING SEQUENCES:
UMAP CALL EXP3

PAR B ,T1
PAR A,T2
NORMAL RETURN - X I N THE ACCUMULATOR.

ARGUMENTS :
B F loa t ing po in t base .
A F loa t ing po in t exponent .

X B.P.A i n f l o a t i n g p o i n t . I f B = 0 , X = 0.
Tl ,T2 Opt iona l t ags .

ERROR CONDITIONS:
I f t h e b a s e is n e g a t i v e and the exponent is n o n - i n t e g r a l , t h e comment,

TOO LARGE' is p r in t ed and a dump is g i v e n i f r e q u e s t e d .
'EXPONENTIATION ERROR - NEGATIVE BASE, NON-INTEGRAL EXPONENT, OR ANS

SUBROUTINES REQUIRED: .EXIT , .01300, SQRT, ELOG, EXP

FLOATING POINT SPILL ROUTINE

ENTRY POINTS: FSPILL, RSPILL

PURPOSE: The e n t r y 'FSPILL' t u r n s on the f l oa t ing -po in t t r ap mode i n d i c a t o r
a n d p r o v i d e s f o r t h e f o l l o w i n g a c t i o n i n t h e e v e n t o f a f l o a t i n g -
p o i n t s p i l l .

Underflow -- S e t e i t h e r o r b o t h o f t h e r e g i s t e r s c a u s i n g u n d e r -
f low t o z e r o and cont inue the computat ion f rom the point a t
wh ich t he f l oa t ing -po in t t r ap occu r red .
Overflow -- T r a n s f e r t o t h e i n s t r u c t i o n s p e c i f i e d by the argu-
ment i n t h e last c a l l of 'FSPILL'. The t r a n s f e r i s accomplished
wi thou t des t roy ing any of t h e i n t e r n a l r e g i s t e r s o r i n d i c a t o r s .

T h i s e n t r y a l s o s a v e s t h e c o n t e n t s o f l o c a t i o n 8 (t h e f l o a t i n g -
p o i n t t r a p l o c a t i o n) i f 'FSPILL' h a s n o t b e e n c a l l e d b e f o r e o r i f
'RSPILL' h a s b e e n c a l l e d s i n c e t h e last c a l l of 'FSPILL'. The
e n t r y "'RSPILL' r e s t o r e s t h e c o n t e n t s o f l o c a t i o n 8 t h a t were
p rev ious ly s aved by 'FSPILL' and turns on a s w i t c h s o t h a t 'FSPILL'
w i l l s a v e l o c a t i o n 8 t h e n e x t t i m e i t i s c a l l e d . U n t i l t h e n e x t
c a l l o f 'FSPILL' t h e 'RSPILL' e n t r y w i l l act as a dummy subrou t ine .
b o t h e n t r i e s p r e s e r v e a l l i nd ica to r s and a l l i n t e r n a l r e g i s t e r s
e x c e p t t h e MQ r e g i s t e r (t h i s l a t te r is a l s o p r e s e r v e d u n l e s s
someth ing mus t happen to loca t ion 8) .

CALLING SEQUENCES:
MAD EXECUTE FSPILL. (LOC)

EXECUTE RSPILL.

3.8-28

FLOATING-POINT S P I L L ROUTINE (CONTINUED)

FORTRAN CALL FSPILL (LOC)
CALL RSPILL

CALL RSPILL
UMAP CALL FSPILL,LOC

ARGUMENTS :
LOC I n s t r u c t i o n t o b e g i v e n c o n t r o l i f a n o v e r f l o w o c c u r s .

Fo r t r an u se r s shou ld see p o i n t 7 under arguments in the
i n t r o d u c t i o n t o t h i s s e c t i o n .

FLOATING-POINT UNDERFLOW SWITCH

ENTRY POINTS: FTRAP, NTRAP

PURPOSE: Normally, a f l oa t ing po in t unde r f low is considered an error and
c o n t r o l i s r e t u r n e d t o t h e s y s t e m . I f FTRAP i s execu ted p r io r
t o t h e u n d e r f l o w , t h e number tha t caused the under f low w i l l be
set t o z e r o and computation w i l l p roceed . I f NTRAP is executed,
underflow w i l l a g a i n b e t r e a t e d a s a n e r r o r .

CALLING SEQUENCE:
MAD EXECUTE FTRAP.

EXECUTE NTRAP.
UMAP CALL FTRAP

CALL NTRAP
FORTRAN CALL F T W

CALL NTRAP

FLOATING POINT GAMMA FUNCTION

ENTRY POINTS: GAMMA

PURPOSE: Compute G A " A (X) f o r f l oa t ing po in t a rgumen t X.

CALLING SEQUENCES:
MAD Y = GAMMA. (X)

LJMAP CALL GAMMA,X
FORTRAN Y = G A " A (X)

S T 0 Y

ARGUMENTS :
X Ploa t ing po in t a rgument .
Y F l o a t i n g p o i n t r e s u l t .

3.8-29

FLOATING POINT GAMMA FUNCTION (CONTINUED)

COMMENTS :
1. I f X i s z e r o or a n e g a t i v e i n t e g e r , t h e n GA"A(X) = .1E35.
2. "SAFE" range of a rgument for GAMMA f u n c t i o n i s

3 . For Algorithm, see Algorithm No. 31, COMM. ACM, FEBR, 1961.

- 3 4 . 2 .LE. X .LE. 34 .4 . Ou t s ide t hese va lues , f l oa t ing
po in t ove r f low o r unde r f low w i l l occur.

MATRIX FACTORIZATION BY L-R DECOMPOSITION

ENTRY POINT: GAUSS

PURPOSE: F a c t o r i z a t i o n o f a n a r b i t r a r y real m a t r i x -A- i n t o a product of
a n u p p e r t r i a n g u l a r matrix -R- and a monic lower t r iangular
m a t r i x -L- by Gauss ian E l imina t ion wi th in te rchanges , i .e. ,
A = L * R. The m a t r i x -L- h a s t h e f u r t h e r p r o p e r t y t h a t t h e
abso lu te va lue o f L (1 , J) is less t h a n o r e q u a l t o 1. This
decomposition i s unique. The m a t r i x -R- i s s t o r e d i n t h e
u p p e r h a l f o f t h e o r i g i n a l matrix and -L- i n t h e l o w e r h a l f ,
t h e d i a g o n a l b e l o n g i n g t o t h e m a t r i x -R-. See subrout ine CROUTP.

CALLING SEQUENCES:
FORTRAN X = GAUSS (N,A,XCH)
MAD X = GAUSS. (N,A,XCH)
UMAP CALL GAUSS , N ,A,XCH

RETURN - X WILL BE I N THE AC.

ARGUMENTS :
N In t ege r d imens ion o f t he squa re ma t r ix A.
A F i r s t e l e m e n t o f t h e m a t r i x . F o r f u r t h e r i n f o r m a t i o n see

t h e w r i t e - u p f o r t h e s u b r o u t i n e GJRDT.
XCH Vec to r fo r r eco rd of i n t e r c h a n g e s u s e d i n t h e e l i m i n a t i o n . I f

XCH(1) i s non-zero then when row I w a s used as a p ivo t row, an
in t e rchange w i th row XCH(1) w a s necessary . XCH(1) w i l l be ze ro
i f no in t e rchange w a s necessary . XCH w i l l b e i n t e g r a l i n a l l
cases. I f t h e L*R product is formed the interchanges must be
performed i n t h e r e v e r s e o r d e r t o o b t a i n t h e o r i g i n a l m a t r i x ,
i .e. , i n t e r c h a n g e rows

XCH(N-1) AND N-1 ,
XCH(1) AND 1.

X F loa t ing-poin t swi tch .
1. Successful decomposi t ion.
0. Overflow, cannot continue.

SUBROUTINES REQUIRED: FSPILL, RSPILL

3.8-30

SIMLLTANEOUS LINEAR EQUATIONS BY MATRIX INVERSION

ENTRY POINTS: GJRDT

PURPOSE: Computes (M-N) s o l u t i o n v e c t o r s o f a set of N s imultaneous real
l i n e a r e q u a t i o n s i n N unknowns. The i n v e r s e o f t h e c o e f f i c i e n t
ma t r ix i s automat ica l ly p roduced , as is the de te rminant . The method
used is a Gauss-Jordan reduct ion of an arbi t rary augmented matr ix
upon i t s e l f u s i n g a c o m p l e t e p i v o t a l s t r a t e g y .

CALLING SEQUENCE:
FORTRAN X = GJRDT (N,M,A,D)
MAD X = GJRDT. (N,M,A,D)
UMAP CALL GJRDT,N,M,A,D

RETURN - X WILL BE I N THE AC.

A

D

X

ARGUMENTS :
N Number of equa t ions , i .e . , t h e row dimension of the mat r ix .

M M = N + (t h e number o f s o l u t i o n v e c t o r s d e s i r e d) , i . e . , t h e
N must be an integer and less than 100.

column dimension of the matr ix . Not ice that i f N = M , no
s o l u t i o n v e c t o r s are computed, but the matrix is inve r t ed .
M must be an integer .
The h ighes t l oca t ion i n co re t ha t con ta ins an e l emen t o f t he
ma t r ix - t h e l o c a t i o n of the A(1, l) e lement where

A =(.....
The matr ix must be s tored backwards by rows and must be packed.
A(1,l) mus t be t he h ighes t l oca t ion and proceeding i n t h e
d i r e c t i o n of decreas ing s torage , addresses mus t be
A(1,2) . . .A(l,M),A(2,1)...A(2,M),. ..,A(N,M)
without any gaps. This mode of s t o r a g e i s normal MAD s to rage .
On r e t u r n from GJRDT the de te rminant of A w i l l be i n t h i s
l o c a t i o n .
F loa t ing-poin t swi tch .

A(1 , l) ... A(1,N) ... A(1,M)

A(N,1) . . . A(N,N) . . .

1. Successful computat ion.
-1. S i n g u l a r m a t r i x . The c o n d i t i o n € o r s i n g u l a r i t y i s

t h a t t h e d e t e r m i n a n t b e z e r o .

3.8-31

SIMULTANEE LINE@ EQUATIONS BY MATRIX INVERSION

ENTRY POINTS: GJRDTP

PURPOSE: Inverts the matrix and computes (M-N) solution vectors of a
set of N simultaneous real linear equations in N unknowns.
The determinant of the matrix is automatically computed.
GJRDTP performs a Gauss-Jordan reduction of an arbitrary
augmented matrix upon itself using a partial pivotal strategy.
For most systems GJRDTP and GJRDT will produce results which
differ only in the digits subject to round-off error. Unfor-
tunately there is no clear cut rule as to which subroutine to
use for a given set of equations. In any case, GJRDT is the
most reliable.

CALLING SEQUENCE:
FORTRAN X = GJRDTP (N,M,A,D)
MAD X = GJRDTP. (N,M,A,D)
UMAP CALL GJRDTP,N,M,A,D

RETURN - X WILL BE I N THE AC.

ARGUMENTS :
For a description of the arguments, see the write-up for subroutine
G JRDT .

3.8-32

HARMONIC ANALYSIS

ENTRY POINTS: HAS1, HASlS

PURPOSE: Given a set of p o i n t s Y (I) (I = 0,1,2,. ..,K-1) corresponding
t o a set of equa l ly spaced a rguments X(I) , th i s subrout ine
computes t he coe f f i c i en t s A(I) , B (I) , C (I) , D(1) of t h e
fo l lowing series

Y(X) = A(0) + SUM(A(N)*COS(NX) + B(N)*SIN(NX))
Y(X) = A(0) + STJM(C(N)*SIN(NX + D(N)))

M is t h e p a r a m e t e r d e s i g n a t i n g t h e number of harmonics and
M.LE.K/2 i f K is even or M.LE.(K-1)/2 i f K is odd. The
f u n c t i o n Y(X) is assumed to be pe r iod ic o f pe r iod 2PI w i th
Y(0) = Y(K).

CALLING SEQUENCES:
MAD EXECUTE HAS1. (K,Il,Y,A,S)

EXECUTE HASlS. (K,M,Y ,A)

CALL HASlS (K,M,Y ,A)
FORTRAN CALL I.IASl(K,M,Y,A,S)

UMAP CALL HAS1 CALL HASlS
PAR K,T1 PAR K , T 1
PAR M,T2 PAR M,T2
PAR Y PAR Y
PAR A PAR A
PAR S NORMAL RETURN
NORMAL RETURN

ARGUMENTS :
K I n t e g r a l number of po in ts Y(1) .
M I n t e g r a l number of harmonics desired.
Y F i r s t e l emen t o f a f l o a t i n g p o i n t v e c t o r i n w h i c h t h e i n p u t

A F i r s t e l emen t o f a f l o a t i n g p o i n t v e c t o r i n w h i c h HAS1 w i l l
p o i n t s are s t o r e d .

s t o r e t h e a n s w e r s . T h i s a r r a y must be of length at least 7 +
5M. The answers are s t o r e d i n g r o u p s o f 5 beginning a t A as ,A(N),B(N),C(N),D(N),C(N)/C(MAX).

S Temporary s torage reg ion suppl ied by t h e programmer o f l e n g t h
a t least 2K. T h i s r e g i o n i s used by HAS1 t o s t o r e v a l u e s f o r
Sine and Cosine. HASlS computes values for Sine and Cosine
eve ry time t h a t t h e y are needed. Both subroutines w i l l
p roduce t he same r e s u l t s .

T l ,T2 Opt iona l t ags .

SUBROUTINES REQUIRED: SIN, COS, ATN1, SQRT

3.8-33

MATRIX INVERSION

ENTRY POINT: IBDS

PURPOSE: T h i s s u b r o u t i n e is a modi f ica t ion of BORDS that assumes a FORTRAN
ca l l ing p rogram. A n extra argument has been added as a r e s u l t o f
t h e FORTRAN method of dimensioning. For further information, see
t h e w r i t e - u p f o r s u b r o u t i n e BORDS.

CALLING SEQUENCE:
FORTRAN I X = IBDS (N,M,A,D)

ARGUMENTS :
N FORTmV in tege r g iv ing t he t rue d imens ion of the mat r ix . N

M FORTRAN i n t e g e r g i v i n g t h e FORTRAN dimension of the matr ix .
A Name o f t h e matrix. The ma t r ix -A- is assumed t o conform t o

D On re turn f rom IBDS, D w i l l conta in the de te rminant o f -A-.
I X FORTRAN i n t e g e r s w i t c h .

must be less than 150.

normal FORTRAN two d imens iona l a r r ay s to rage .

1 S u c c e s s f u l i n v e r s i o n .
-K Negat ive in teger g iv ing the d imens ion of the smal les t

p r inc ipa l minor equa l t o ze ro .

INCOMPLETE ELLIPTIC INTEGRALS

ENTRY POINTS: IEFl

PURPOSE: Given the amplitude A and t h e modulus B , t o e v a l u a t e t h e
i n c o m p l e t e e l l i p t i c i n t e g r a l s o f t h e f i rs t and second kind.

CALLING SEQUENCES:
MAD EXECUTE IEFl.(A,B,E,F,G)
FORTRAN CALL IEFl(A,B,E,F,G)
UMAP CALL IEFl

PAR A
PAR B
PAR E
PAR F
PAR G
NORMAL RETURN

ARGUMENTS :
A F loa t ing po in t ampl i tude A o f t h e i n t e g r a l .
B F loa t ing po in t modulus B o f t h e i n t e g r a l .
E The i ncomple t e e l l i p t i c i n t eg ra l o f t he s econd k ind ,

F The i n c o m p l e t e e l l i p t i c i n t e g r a l of t h e f i r s t k i n d ,

G Computa t ion swi tch . (f loa t ing po in t)

E(A,B), i n f l o a t i n g p o i n t .

F(A,B), i n f l o a t i n g p o i n t .

G = 1.0 Normal r e tu rn , computa t ion success fu l .
G = 2.0 B ou t o f range , B.G.8.99985.
G = 3.0 A out of range , A.L.0 o r A.G.PI/2

SUBROUTINES REQUIRED: SIN, SQRT

3.8-34

SET I O H FIELD SIZE ERROR CONDITION

ENTRY POINTS : IOHSIZ

PURPOSE: Normally, i f i n a format the u s e r g i v e s a f i e l d s i z e t o o small
f o r a n i n t e g e r o r f l o a t i n g p o i n t number, t h i s is considered an
e r r o r and execu t ion i s t e rmina ted . Use of IOHSIZ a l l o w s t h i s
number t o b e p r i n t e d (o r p u n c h e d) i n a t runcated form, and for
e x e c u t i o n t h e n t o c o n t i n u e .

CALLING SEQUENCES:
MAD EXECUTE IOHSIZ. (N)
FORTRAN CALL IOHSIZ (N)
UMAP CALL IOHSIZ

PAR N

ARGUMENTS :
N I f N c o n t a i n s z e r o , t h e n t h e r e a f t e r , when a number t o o l a r g e

fo r t he f i e ld w id th occu r s , no rma l p rocedure w i l l be followed,
i . e . , a comment w i l l b e p r i n t e d and t h e j o b w i l l be terminated.
I f t h e c o n t e n t s o f N a r e non-ze ro , t hen t he rea f t e r an over-
s i z e d number f o r an E,F, or I f i e l d w i l l be punched o r
p r i n t e d . It w i l l b e r i g h t j u s t i f i e d w i t h t h e l e f t e n d ,
i n c l u d i n g t h e s i g n , t r u n c a t e d . E x e c u t i o n w i l l then
con t inue .

SUBROUTINES REQUIRED: .ERR, SPRINT, SKIP6, .03311, D m , DFDP

r
3.8-35

NUMERICAL INTEGRATION OF SINGLE OR MULTIPLE INTEGRALS

ENTRY POINTS: ITINT

f o r any i n t e g e r K.GE.l by Gaussian Quadrature method. A va lue
f o r t h e L-th i n t e g r a l i n t h e a b o v e e x p r e s s i o n i s computed from
t h e sum;

AL+2*H

L
AL+H

F +DXL

r AL+NL*H
3 AL+(NL-l) *H

where NL may be a funct ion of X,, . . . , X L ~ and H = (BL-AL) /NL
and where

AL+ (T+1) *H

FLDXL

AL+T*H

is approximated from Mh eva lua t ions (poss ib ly a func t ion of
X,, . . . , X b 1 > of FL on t h e i n t e r v a l AL+T*H.L.XJ,.L.AL+(T+~)*H
(a l l o t h e r X's h e l d f i x e d . M g r e a t e r t h a n 1, less than 9.)
This makes necessary many e n t r a n c e s i n t o ITINT and many e x i t s
from i t ; one e x i t and en t r ance fo r each eva lua t ion of each
FL, one i n i t i a l e n t r a n c e and one f i n a l e x i t .

I n o r d e r t o t e l l the user what i s to be done on each e x i t ,
ITINT t a k e s o n a n i n t e g e r v a l u e i n t h e r a n g e 0,1,2,. . . ,K-1 ,K
depending on whether a va lue fo r one o f t he F's is t o b e
computed o r t h e i n t e g r a t i o n i s complete.

USE: I n "OS the use o f ITINT would conform to t he fo l lowing rough
d r a f t s :

MAD USAGE.

INTEGER K , ITINT.
DIMENSION Q('lOK'), F('K-l'), A('K-l'), B('K-1') 9 ZN('K-1')
1 ZM('K -1 ') , X('K-1 ')
"""""""

I

""""""" (Se t up va lues a t least f o r
""""""" ZN(O), ZM(0) ,A(O) ,B(O)

3.8-36

NUMERICAL INTEGRATION OF SINGLE- -OR "JJLTIPLE INTEGRALS (CONTINUED)

(MAD USAGE - CONTINUED)
INTEG TRANSFER TO S(ITINT.(F,A,B,ZN,ZM,Q,K,X))
S (0) - - - - - - - - - - - - - -

(Compute a v a l u e f o r F(O), and poss ib ly
"""""""

set up v a l u e s f o r ZN(1) ,ZM(l) ,A(1) ,B(l))
"""""""

TRANSFER TO INTEG
S(2) - - - - - - - - - - - - - -

(Compute a v a l u e f o r F(1), and poss ib ly
"""""""

set up v a l u e s f o r ZN(2) ,ZM(2) ,A(2) ,B(2))
"""""""

TRANSFER TO INTEG

S (IK-11)- - - - - - - - - - - - -
""""""" (Compute a v a l u e f o r F(K-1))
"""""""

TRANSFER TO INTEG
S(/K/)- - - - - - - - - - - - - -
""""""" (In t eg ra t ion comple t e , answer i n Q(0))
"""""""

'K-1' s t ands fo r an i n t ege r cons t an t whose va lue i s a t least as
g r e a t as K ' s value reduced by one (and s imi la r ly for 'lOK'), and
/K-l/ s t a n d s f o r t h e i n t e g e r c o n s t a n t h a v i n g K's value minus one
(and s i m i l a r l y f o r /K/).

EXAMPLE :

INTEGER ITINT.
DIMENSION Q(20) ,F(l) ,A(1) ,B(l) ,ZN(1) ,ZM(1) ,X(l)

START READ DATA (ZN(0) ,ZN(l) ,ZM(O) ,ZM(l) ,A(O) ,B(O))
INTEG TRANSFER TO S(ITINT.(F,A,B,ZN,ZM,Q,2,X))
S(0) F(0) = X (0)

A(1) = - X (O)
B(1) = X(0)
TRANSFER TO INTEG

S (1) F(1) = SIN.(X(O)*X(l))

S (2) PRINT RESULTS Q(0)
TRANSFER TO INTEG

TRANSFER TO START
END OF PROGRAM

FORTRAN USAGE.

DIMENSION Q('~oK+I') ,A('K') ,B('K') ,F('K') ,zN('K') ,~M('L') ,X('K')
"""""""

(Se t up v a l u e s f o r A(~),B(~),zN(~),
"""""""

ZM(1) at l e a s t)
"""""""

1 I = ITINT(F,A,B,ZN,ZM,Q,K,X)) + 2
GO TO (2,3,. . . , /K+1/, /K+2/) , I

2 """""""

(Compute F (1) , and poss ib ly set up
"""""""

v a l u e s f o r A(Z), B(2), ZN(2), ZM(2))
"""""""

GO TO 1

3.8-37

NUMERICAL INTEGRATION OF SINGLE OR MULTIPLE INTEGRALS (CONTINUED)

(FORTRAN USAGE - CONTINUED)
3 """""""

"""""""
(Compute a value for F(2), and possibly
set up values for A(3), B(3), ZN(3), ZM(3))

"""""""

GO TO 1

/K+1/-""""""-
""""""" (Compute a value for F(K))
"""""""

GO TO 1
JK+2 J - - - - - .. - - - - - - - -
""""""" (Integration complete, answer is Q(1))
"""""""

(Since FORTRAN does not allow zero subscripts, FORTRAN users
should, while reading the method section, mentally increase
all subscripts by one, The notation '10K=1' etc. i s explained
below the rough draft for MAD users .)

EXAMPLE :

DIMENSION Q(21) ,F(2) ,A(2) ,B(2) ,ZN(2) ,ZM(2) ,X(2)
777 READ INPUT TAPE 7, 5, A(l) ,B(1) ,ZN(1) ,ZN(2) ,ZM(l) ,ZM(2)
5 FORMAT (6F10.3)
1 I = ITINT(F,A,B,ZN,ZM,Q,2,X) + 2
2 F(1) = X (1)

GO TO (2,3,4), I

A (2) = -X(l)
B(2) = X (1)
GO TO 1

3 F(2) = SIN(X(l)*X(Z))

4 WRITE OUTPUT TAPE 6, 6, Q (1)
GO TO 1

6 FORMAT (E15.6)
GO TO 777
END

UMAP USAGE.

""""""" (Set up values at least for
""""""" A, B, ZN, ZM)

INTEG CALL ITINT
"""""""

PAR F
PAR A
PAR B
PAR ZN
PAR ZM
PAR Q
PAR K
PAR X

3.8-38

NUMERICAL INTEGRATION OF SINGLE .OR"IJLTIPLE -1NTEGWS (CONTINUED)

(w USAGE - CONTINUED)
PAX 0 94
TRA LOCVEC ,4
TRA LK
TRA LKMl

TRA L2
TRA L1

LOCVEC""-"---"-
(Compute value for F, and possibly set """"""-
up values for ZN-l,ZM-l,A-l,B-l) """-"""

TRA INTEG """"""- (Compute a value for F-1, and possibly " " " " " " _ set up values for ZN-2,ZM-2,A-2,B-2)
L 1

" " " " " " _
TRA INTEG

4

LKMl - - - - - - - - - - - - - (Compute a value for F-C(K)=l, where " " " " " " _ C(K) represents the contents of
location K.) """"""-

TRA INTEG
LK " " " " " " _ " " " " " " _ (integration complete, answer in Q) " " " " " " _

Q BTS ' 1OK+1'
F BTS 'K'
A BTS 'K'
B BTS 'K'
ZN BTS 'K'
ZM STS 'R'
X BTS 'K'

(For an explanation of 'K' and 'lOK+l' see the rough draft for MAD.)

ARGUMENTS :
Q The name of the first location of a floating-point ''scratch

vector". Upon completion of the integration, location Q will
contain the value of the integral.

the evaluations of the integrands (that is, the F ' s -- see
method) are stored.

F The name of the first element of a floating-point vector in which

A,B The name of the first elements of the floating-point vectors in
ZN,ZM which the A's (lower limits of the component integrals), B's

(upper limits), N's (number of subintervals into which each
component interval of integration (A,B) is to be divided), and

3.8-39

NUMERICAL INTEGRATION OF SINGLE OR MULTIPLE INTEGRALS (CONTINUED)

M's (number of evaluat ions to be made of each integrand
func t ion on each sub in te rva l) -- see method -- are s to red .
The v a l u e s i n ZN and ZM need no t be in tegra l numbers . The
i n t e g e r p a r t s o f t h e i r v a l u e s w i l l be used.

t h e i n t e g r a l t o b e s o l v e d (K .GE. 1).

i n wh ich t he cu r ren t va lues fo r t he X ' s have been s tored by
I T I N T p r i o r t o e a c h e x i t . A l l eva lua t ions o f each in tegrand
func t ion , F , are t o b e made us ing t hese va lues .

K An i n t e g e r v a r i a b l e o r c o n s t a n t g i v i n g t h e m u l t i p l i c i t y o f

X The l o c a t i o n o f t h e f i r s t e l e m e n t o f a f loa t ing -po in t vec to r

TAPE LABELING

ENTRY POINTS: LABEL

PURPOSE: Writes a l a b e l on a u s e r ' s t a p e .

CALLING SEQUENCES:
MAD EXECUTE LABEL.(NAME,UNIT,LOADD,DENS,MODE)

UMAP CALL LABEL,NAME,UNIT,LOAD,DENS,MODE
FORTRAN CALL LABEL (NAME ,UNIT ,LOAD ,DENS ,MODE)

ARGUMENTS :
NAME One word BCD name t o b e u s e d i n l a b e l .
U N I T Logica l number (f u l l word o r FORTRAN i n t e g e r) of t he t ape

d r i v e on which the t ape to be l abe led is mounted.
LOAD I f ze ro , s ing le l oad po in t . I f non-ze ro , doub le l oad

p o i n t .
DENS I f z e r o , t a p e is i n low dens i ty . I f non-zero , t ape is i n

high densi ty . (This should normally be non-zero.)
MODE I f ze ro , BCD. I f non-zero, binary.

SUBROUTINES REQUIRED: BNBCD, .ERR

SHIFTING OPERATIONS

ENTRY POINTS: LSH, RSH

PURPOSE: P r o v i d e s h i f t i n g o f s i n g l e w o r d s by a r b i t r a r y number of
b i n a r y d i g i t s -

CALLING SEQUENCES:
MAD X = LSH.(A,N)
MAD X = RSB.(A,N)

(L e f t s h i f t)
(R i g h t s h i f t)

ARGUMENTS :
A Word t o b e s h i f t e d .
N I n t e g e r number o f b i n a r y s h i f t s .
X R e s u l t o f s h i f t i n g A by N b i t s t o t h e l e f t (LSH.) o r t o t h e

r i g h t (RSH.). Vaca ted pos i t ions are f i l l e d w i t h z e r o e s .

3.8-40

TAPE MOUNTING

ENTRY POINTS: MOUNT

PURPOSE: P r i n t s i n s t r u c t i o n s t o t h e o p e r a t o r t o mount a u s e r ' s t a p e s ,
s t o p s f o r m o u n t i n g , a n d t h e n c h e c k s t h e t a p e s ' l a b e l s t o see
i f t h e c o r r e c t t a p e s were mounted.

CALLING SEQUENCES:
MAD

FORTRAN

UMAP

ARGUMENTS :
NUM

NAME
UNIT

DENS

PRO

MODE
DATE

D ~ T E = M O U N T . (N U M 1 , N A M E 1 , U N 1 T 1 , D E N S 1 , P R 0 1 , E 2 ,
UNIT2,DENS2,PR02,MODE2, ..., NUMN,NAMEN,UNITN,DENSN,PRON,MODEN)
D~TE=MOUNT(N~1,NAMEl,UNITl,DENSlyPROl,MODElyNUM2,NAME2y
UNIT3,DENS2,PR02,MODE2, ..., NUMN,NAMEN,UNITN,DENSN,PRON,MODEN)
CALL MOUNT
PAR N U M l
PAR NAME1
PAR UNIT1
PAR DENS1
PAR PRO1
PAR MODE1
PAR NLJMN
PAR NAMEN
PAR UNITN
PAR DENSN
PAR PRON
PAR MODEN
DATE RETURNED I N THE ACCUMULATOR

There are s i x arguments for each tape to be mounted .
Number (f u l l word o r FORTRAN i n t e g e r) a s s i g n e d t o t a p e . I f
z e r o , t h e s u b r o u t i n e LABEL i s c a l l e d u s i n g NAME, DENS and
MODE as a rgumen t s . I f nega t ive and non-zero, the subroutine
LABEL is c a l l e d and a doub le l oad po in t i s requested.
One word BCD name used i n t a p e l a b e l .
Logical number (f u l l word o r FORTRAN i n t e g e r) o f t h e t a p e
d r i v e on which the t ape is t o be mounted.
I f z e r o , t a p e i s i n low dens i ty . I f non-ze ro , t ape is i n
high densi ty . (This should normally be non-zero.)
I f z e r o , f i l e p r o t e c t r i n g s h o u l d b e i n s e r t e d . If non-zero,
f i l e p r o t e c t r i n g s h o u l d b e removed.
I f z e r o , BCD. I f non-zero , b inary .
The BCD d a t e i n t h e l a b e l . It h a s t h e form D D / W where DD
i s the day of t h e month MM. I f t h e r e is more than one
group of arguments , the date w i l l b e t h a t on t h e t a p e
s p e c i f i e d b y t h e l a s t group.

3.8-41

MOVE ARRAYS

ENTRY POINTS: MOVER

PURPOSE: Moves o r r e v e r s e s linear a r r a y s .

CALLING SEQUENCE:
MAD EXECUTE MOVER.(Ll,L2,, LN)

ARGUMENTS: The , L I , are o f t h e form ,A, o r ,A.. .B, . The arguments
are used by a MOVER i n p a i r s , as fo l lows:
I. ,A. . .B,C. . .D,

The conten ts o f A through B are moved
i n t o C through D. /C-D/+1 words are moved.
The c o n t e n t s of A through B are unchanged.

The c o n t e n t s of A through B are reversed .
(I . e . , t h e c o n t e n t s of A through B are
moved i n t o B through A.)

11. ,A,B,

DOUBLE-PRECISION SQUARE ROOT

ENTRY POINTS: NASQ

PURPOSE :

CA

Form t he doub le -p rec i s ion squa re roo t o f t he abso lu t e va lue
of the double-prec is ion f loa t ing-poin t number i n t h e AC and
MQ r e g i s t e r s , t h e h i g h o r d e r word occupying the AC. Return
t h e s q u a r e r o o t i n t h e AC and MQ r e g i s t e r s , i n t h e same
f a s h i o n , w i t h t h e s i g n o f t h e o r i g i n a l number. Three single-
p r e c i s i o n and two double-prec is ion Newton-Raphson i t e r a t i o n s
are u s e d , t h e s i n g l e - p r e c i s i o n o p e r a t i o n on an argument
s c a l e d t o l i e in t he r ange .5 t o 2 .

LLING SEQUENCE :
w (Place a rgumen t i n AC and MQ i f i t is no t a l r eady t he re .)

CALL NASQ

(Resu l t w i l l b e i n AC and MQ r e g i s t e r s .)

SUBROUTINES REQUIRED: DFAD, DFDP

3.8-42

NORMALLY DISTRIBUTED RANDOM NUMBER GENERATOR

ENTRY POINTS: NDRNlA, NDRNlB, NDRNlC, NDRNlD

PURPOSE: Produce a random number such t ha t a set of such numbers w i l l
have a s p e c i f i e d mean and s tandard deviat ion.

CALLING SEQUENCES:
MAD EXECUTE NDRNlB . (A, B ,C)
FORTRAN CALL NDRNlB(A,B,C)
UMAP CALL N D R N l B

PAR A
PAR B
PAR C
NORMAL RETURN

ARGUMENTS :
A F loa t ing po in t s t anda rd dev ia t ion o f t he des i r ed d i s t r ibu t ion .
B F l o a t i n g p o i n t mean of t he des i r ed no rma l d i s t r ibu t ion .
C F l o a t i n g p o i n t random number.

SPECIAL ENTRIES: NDRNlB uses an in teger parameter J t o compute each random
number. J i s i n i t i a l l y se t a t (2.P.35-1) and changes with each execu-
t i o n of NDRNlB. The fo l lowing en t r i e s enab le t he programmer t o p i c k up
t h e c u r r e n t v a l u e o f J and t o u s e i t as i n p u t t o NDRNlB i n o r d e r t o
i n i t i a l i z e a sequence of random numbers during execut ion of the
c a l l i n g program.

1. PURPOSE: Save the cu r ren t va lue o f J t h a t would have been used
t o c a l c u l a t e t h e n e x t random number.

CALLING SEQUENCES:
MAD EXECUTE NDRNlD. (I)
FORTRAN CALL NDRNlC(K)
UMAP CALL NDRNlD

PAR I
NORMAL RETURN

2 . PURPOSE: I n i t i a l i z e t h e p a r a m e t e r J wi th t he i npu t i n t ege r .

CALLING SEQUENCES:
MAD EXECUTE NDRNlA. (I)
FORTRAN CALL NDRNU(K)
UMAP CALL NDRNlA

PAR I
NORMAL RETURN

ARGUMENTS :
I F u l l word in teger which may be used as a n i n i t i a l i -

K Name o f an i n t ege r a r r ay of length 3. FORTRAN i n t e g e r s

za t ion of the parameter J. The i n i t l a l normal value
of I is 34359738367.

"

3.8-43

NORMALLY DISTRIBUTED RANDOM NUMBER GENERATOR (CONTINUED)

are s t o r e d i n t h e d e c r e m e n t p o r t i o n of the machine
word and hence the parameter J must b e f e d t o N D R N l
i n 3 p a r t s . The i n i t i a l normal value of K i s
K (1) = K (2) = 32767, K(3) = 31.

SUBROUTINES REQUIRED: ELOG, SQRT

SUBTRACE ON-OFF SWITCH

ENTRY POINTS: OFFTRC, ONTRC

PURPOSE: T o p r o v i d e c o n t r o l a t e x e c u t i o n time of t h e s u b r o u t i n e t r a c i n g
f e a t u r e o f t h e s y s t e m i n i t i a t e d by t h e $SUBTRACE processing
func t ion . These subrout ines are e f f e c t i v e o n l y i f t h e p r o c e s s -
i n g f u n c t i o n was used. Executing OFFTRC w i l l s u p p r e s s t h e
p r i n t i n g o f t h e s u b r o u t i n e t r a c e , and execut ing ONTRC w i l l
resume t h e p r i n t i n g i f i t has been suppressed.

CALLING SEQUENCES:
MAD EXECUTE OFFTRC.

FORTRAN CALL OFFTRC

UMAP CALL OFFTRC

EXECUTE ONTRC.

CALL ONTRC

CALL ONTRC

PROGRAM COMMON PUNCH

ENTRY POINTS: PCPCH

PURPOSE: Produces absolute column b inary cards wi th loading address ,
check sum, and I D .

CALLING SEQUENCES:
MAD EXECUTE PCPCH.(A,Ll ,L2 , )
UMAP CALL PCPCH

PAR A ... Ll ... L 2 LN
NORMAL RETURN

ARGUMENTS :
A F i r s t word of 2 BCD words t o b e u s e d as I D on each card.

L I Standard MAD-UMAP argument list elements.
Words s t o r e d i n A, A-l

SUBROUTINES REQUIRED: SPUNCH

PLOTTING SUBROUTINE

ENTRY POINTS: PLOT1, PLOTZ, PLOT3, PLOT4, OMIT, FPLOT4

3.8-44

PURPOSE: Rapid machine plot t ing of numeric information for use with MAD,
UMAP o r FORTRAN ca l l ing p rograms. The r e s u l t i n g g r a p h is copied
onto a dec imal ou tput t ape (6 f o r t h e "OS system) for subse-
q u e n t o f f - l i n e p r i n t i n g .

METHOD: The philosophy used i n w r i t i n g t h i s r o u t i n e was to t rea t a r eg ion
of core s torage (subsequent ly ca l led the image reg ion or s imply the image)
much as a piece of graph paper when p l o t t i n g d a t a m a n u a l l y .

F i r s t t h e image region is blanked out and a g r i d formed of 1's and - - I s
(with + ' s a t t h e i n t e r s e c t i o n p o i n t s) is p laced in the image . Given the
numerical limits o f t h e a b s c i s s a a n d o r d i n a t e (i . e . , t h e maximum and
minimum values o f the two v a r i a b l e s , s a y X and Y) , t h e r o u t i n e c a n p l a c e
any s p e c i f i e d BCD p l o t t i n g c h a r a c t e r a t t h e a p p r o p r i a t e p o s i t i o n i n t h e
image f o r a g i v e n p a i r o f d a t a v a l u e s (X ,Y).
Each po in t (X ,Y) i s p lo t t ed i nd iv idua l ly and i ndependen t ly of any
preceding po in t . In o ther words , the da ta need no t be p resor ted . Any
number o f po in t s (X ,Y) with any corresponding BCD p l o t t i n g c h a r a c t e r s
can be placed in the image. A c h a r a c t e r f a l l i n g on a g r i d l i n e r e p l a c e s
t h e g r i d c h a r a c t e r i n t h a t p o s i t i o n . A c h a r a c t e r f a l l i n g on a prev ious ly
p l o t t e d c h a r a c t e r w i l l r e p l a c e t h a t c h a r a c t e r . Thus only the l as t p l o t t e d
of two c o i n c i d e n t d a t a p o i n t s a p p e a r s i n t h e f i n a l i m a g e . P o i n t s f a l l i n g
o u t s i d e t h e g r i d limits (n o t i n t h e image region) are ignored.

When a l l des i r ed po in t s have been p l aced i n t he r eg ion , t he image i s copied
on to t he spec i f i ed dec ima l ou tpu t t ape fo r subsequen t o f f - l i ne p r in t ing o r
punching. Any number of dupl ica te copies o f the g raph can be p roduced .

USE: The subrout ine has four en t r ies which per fc rm the fo l lowing func t ions .
PLOT1 sets up t h e g r i d s p a c i n g a n d t h e t o t a l w i d t h and length o f the

graph image. It a l so de t e rmines t he l oca t ion o f t he dec ima l po in t s
and the mul t ip ly ing fac tors (powers o f 10) for va lues o f the
o r d i n a t e a n d a b s c i s s a t o p r i n t e d at t h e g r i d l i n e s .

PLOT2 p repa res t he g r id , examines t he maximum and minimum values of the
a b s c i s s a and o r d i n a t e a n d e s t a b l i s h e s i n t e r n a l l y a fo rmula fo r
comput ing the loca t ion in the image reg ion cor responding to the
po in t (X ,Y).
p o s i t i o n (s) c o r r e s p o n d i n g t o t h e g i v e n v a l u e (s) of (X ,Y 1.

ou tpu t t ape fo r subsequen t p r in t ing o f f l i ne . A l a b e l f o r t h e
o r d i n a t e i s p r i n t e d v e r t i c a l l y (o n e c h a r a c t e r p e r l i n e) a t t h e l e f t
edge of the page. Values of the abscissa and o r d i n a t e are p r i n t e d
a t t h e g r i d l i n e s o u t s i d e t h e b o t t o m a n d l e f t e d g e s o f t h e g r a p h .

PLOT3 p l a c e s a s p e c i f i e d BCD p l o t t i n g c h a r a c t e r i n t h e a p p r o p r i a t e

PLOT4 (o r FPLOT4) writes t h e image of the completed graph on the

3.8-45

PLOTTING SUBROUTINE (CONTINUED)

+MAD CALLING SEQUENCES:
EXECUTE PLOTl.(NSCALE, NHL, NSBH, NVL, NSBV)
EXECUTE PLOT2. (IMAGE, XMAX, XMIN, YMAX, YMIN)
EXECUTE PLOT3. (BCD , X, Y , NDATA)
EXECUTE PLOT4.(NCHAR, LABEL)

CALL PLOT1 (NSCALE, NHL, NSBH, NVL, NSBV)
CALL PLOT2 (IMAGE, XMAX, XMIN, YMAX, YMIN)
CALL PLOT3 (BCD, X, Y , NDATA)
CALL FPLOT4 (NCHAR, NHABCDEF.)

+FORTRAN CALLING SEQUENCES:

ARGUMENTS :
NSCALE Is a vec to r (a r r ay) i n t he u se r s p rog ram hav ing one o r f i ve

l o c a t i o n s . I f t h e u s e r w i s h e s t o u s e t h e s t a n d a r d scale
fac tors and dec imal po in t pos i t ions (see be low) , NSCALE should
equal zero . To a l te r t h e s t a n d a r d f a c t o r s NSCALE must be any
n o n - z e r o q u a n t i t y . I n t h i s case t h e NSCALE a r r a y must have
f i v e l o c a t i o n s c o n t a i n i n g t h e f o l l o w i n g i n f o r m a t i o n .

FORTRAN MAD CONTENTS FUNCTION
*LOCATION LOCATION

NSCALE(1) NSCALE(0) ** Alter s t a n d a r d f a c t o r s .
NSCALE (2) NSCALE (1) I P r in t ed va lues o f t he

o r d i n a t e (Y) are 10.P.I
times a c t u a l v a l u e s .

o r d i n a t e (Y) have J
d i g i t s f o l l o w i n g t h e
dec imal po in t (J .LE. 8) .
a b s c i s s a (X) are 10.P.K
times ac tua l va lues .

a b s c i s s a (X) have M
d i g i t s f o l l o w i n g t h e
decimal point (M.LE.9).

NSCALE (3) NSCALE (2) J Pr in t ed va lues o f t he

NSCALE (4) NSCALE (3) K P r in t ed va lues o f t he

NSCALE(5) NSCALE(4) M P r i n t e d v a l u e s of t h e

S tandard scale f a c t o r s . When NSCALE i s z e r o t h e s t a n d a r d
scale f a c t o r s are used. The e f f e c t i v e v a l u e s o f I , J , K ,
and M are 0 , 3 , 0, and 3 r e s p e c t i v e l y . The a c t u a l v a l u e s
are p r i n t e d w i t h t h r e e d e c i m a l p l a c e s .

NHL Is t h e number of h o r i z o n t a l g r i d l i n e s i n t h e g r a p h i m a g e .

NVL Is t h e number of v e r t i c a l g r i d l i n e s i n t h e g r a p h image.
NSBH Is t h e number of spaces be tween ho r i zon ta l g r id l i nes .

+ R e s t r i c t i o n s and modes of arguments given later.
* The FORTRAN and MAD l o c a t i o n s d i f f e r by one because FORTRAN a r r a y s

** Any non-zero value.
have no zero th e lement .

3.8-46

PLOTTING SUBROUTINE (CONTINUED)

NSBV

IMAGE

XMAX
X M I N
YMAX
Y M I N
BCD

X

Y

NDATA

NCHAR

LABEL

Is t h e number of spaces between ver t ica l g r i d l i n e s .

NOTE: I n k e e p i n g w i t h s t a n d a r d n o t a t i o n f o r g r a p h p a p e r ,
(i . e . , 10 X 10 t o t h e i n c h) NHL and NVL are r e a l l y one
less t h a n t h e a c t u a l number o f l i n e s . It i s not customary
t o c o n s i d e r t h e a x e s when c o u n t i n g l i n e s i n t h e g r i d .
Is an a r ray (vec tor) , d imens ioned in the users p rogram,
cons i s t ing o f N s equen t i a l l oca t ions no t u sed be tween
execut ion of PLOT2 and PLOT4, where

N = P*(NSBH*NHL + 1)
P = (NSBV*NVL + 1)/6 rounded up t o n e a r e s t i n t e g e r .

Is t h e v a l u e o f t h e a b s c i s s a a t t h e r i g h t m o s t g r i d l i n e .
Is t h e v a l u e o f t h e a b s c i s s a a t t h e l e f t m o s t g r i d l i n e .
Is t h e v a l u e o f t h e o r d i n a t e a t the uppermost g r id l ine .
Is t h e v a l u e o f t h e o r d i n a t e a t t h e l o w e r m o s t g r i d l i n e .
Is t h e BCD (H o l l e r i t h) p l o t t i n g c h a r a c t e r , and may be any
l e g i t i m a t e l e f t - a d j u s t e d BCD c h a r a c t e r (l e t t e r , d i g i t , b l a n k
o r s p e c i a l c h a r a c t e r *,.= e t c .) .
Is a s i n g l e l o c a t i o n (o r a r r a y name) con ta in ing t he X
c o o r d i n a t e (s) o f t h e p o i n t (s) , (X ,Y) .
Is a s i n g l e l o c a t i o n (o r a r r a y name) conta in ing the Y
c o o r d i n a t e (s) o f t h e p o i n t (s) , (X ,Y).
Is t h e number of d a t a p o i n t s (X ,Y) assoc ia t ed w i th t he
a r r a y s X and Y. With NDATA e q u a l t o 1, a s i n g l e p o i n t w i l l
b e p l o t t e d f o r a s ing le execu t ion o f PLOT3. With NDATA equal
t o Q , Q p o i n t s (X ,Y) t aken in sequence f rom vec tors of
l e n g t h Q s t a r t i n g a t X and Y are p l o t t e d f o r a s i n g l e e x e c u t i o n
of PLOT3.
Is t h e number of BCD (H o l l e r i t h) c h a r a c t e r s (i n c l u d i n g b l a n k s)
i n t h e l a b e l a r r a y (v e c t o r) .
Is t h e name of an a r ray (vec tor) which conta ins the s t r ing of
BCD c h a r a c t e r s t o b e p r i n t e d a t t h e l e f t e d g e o f t h e o u t p u t
page, i . e . , a l a b e l f o r t h e o r d i n a t e of the graph. This
v e c t o r is s t o r e d backward i n l o c a t i o n s LABEL, LABEL-1, LABEL-2,, and i n a MAD program w i l l normal ly be p rese t wi th a
v e c t o r v a l u e s s t a t e m e n t .

LABELLING THE ORDINATE: Use of FPLOT4 i n FORTRAN.
A s mentioned under the above explanation of the argument LABEL, t h e MAD
use r w i l l n o r m a l l y p r e s e t t h e s t r i n g o f BCD c h a r a c t e r s t o b e p r i n t e d
a l o n g t h e l e f t e d g e o f t h e o u t p u t p a g e u s i n g a vec to r va lues s t a t emen t .
FORTRAN 11, however , has no p rovis ion for p rese t t ing symbol ic loca t ions
a c c e s s i b l e t o t h e programmer during execution. Consequently, the
p r i n t i n g e n t r y f o r FORTRAN ca l l ing p rograms, FPLOT4, has a somewhat
d i f f e r e n t c a l l i n g s e q u e n c e t h a n t h e MAD e n t r y , PLOT4. The s t r i n g o f
c h a r a c t e r s f o r t h e o r d i n a t e LABEL a p p e a r s d i r e c t l y i n t h e c a l l i n g s e q u e n c e
as the second a rgument (Hol le r i th) . The N preceding the H (spec i fy ing
t h e H o l l e r i t h s t r i n g) s h o u l d b e t h e same as the va lue o f NCHAR.

3.8-47

PLOTTING SUBROUTINE (CONTINUED)

THE PLOTTING CHARACTER:
The p l o t t i n g c h a r a c t e r c a n b e set up by a s u b s t i t u t i o n s t a t e m e n t
of the form;

BCD = 1H* (FORTRAN)
BCD = $*$ (MAD)

CALL PLOT3 (lH*,X,Y,NDATA) (FORTRAN)
EXECUTE PLOT3. ($*$,X,Y,NDATA) (MAD)

o r e n t e r e d d i r e c t l y i n t o t h e a r g u m e n t l ist f o r PLOT3 as;

UMAP CALLING SEQUENCES:
The U" ca l l i ng s equences are ident ica l wi th those compi led by MAD
and FORTRAN. Examples are g i v e n i n b o t h t h e MAD manual and the
FORTRAN I1 r e f e r e n c e m a n u a l . I f t h e l a b e l c h a r a c t e r s are p r e s e t i n
the normal UMAP fash ion (a scend ing addres ses i n s to rage) , t he
FPLOT4 e n t r y s h o u l d b e u s e d f o r p r i n t i n g .

CALL FPLOT4
PAR NCHAR
PAR LABEL

In keep ing w i th t he SHARE-FORTRAN convent ions, a l l i n d e x r e g i s t e r s
are preserved .

RESTRICTIONS ON ARGUMENTS:
NHL . G . C
NSBH .G. C
NVL .G. C
NSBV .G. C
(NSBV*NVL) .LE. 113
BCD Must be a l e f t - ad jus t ed

l e g i t i m a t e BCD (H o l l e r i t h)
c h a r a c t e r , i . e .

$-$, $*$, $ A $, I, ETC. (MAD)
1H-, 1H* , l H A , 1 H 1 , ETC. (FORTRAN)

MODES OF ARGUMENTS:
(1) Those arguments which deal directly with data values (XMAX, X M I N ,

(2) Those arguments which deal with the arrangement of the image and
YMAX, Y M I N , X , Y) m u s t b e i n f l o a t i n g p o i n t mode.

t h e s c a l e f a c t o r s (NSCALE, NHL, NSBH, N V L , NSBV, NCHAR) and the
number o f d a t a p o i n t s NDATA can be ;

(A) F l o a t i n g p o i n t .
(B) FORTRAN t y p e i n t e g e r s (15 b i n a r y b i t s i n t h e d e c r e m e n t

of the 7090/7094 machine word) of absolute value less
than 32768.

(c) MAD-like in t ege r s (l ow o rde r 18 b i n a r y b i t s ' i n t h e t a g
and address portions of the 7090/7094 machine word) of
a b s o l u t e v a l u e less than 262144.

The rout ine au tomat ica l ly de te rmines which mode i s being used
f o r each argument.

(3) LABEL and BCD mus t con ta in Ho l l e r i t h i n fo rma t ion on ly .
NOTE: The s i g n o f NHL, NSBH, NVL, NSBV, NDATA, and NCHAR is ignored.

3.8-48

PLOTTING SUBROUTINE (CONTINUED)

SUGGESTIONS FOR THE USER:
1.

2.

3.

4.

5 .

6 .

7.

Standard Grid.
I f t h e u s e r d e s i r e s t o u s e a s t a n d a r d g r i d c o n f i g u r a t i o n w i t h t h e
s t anda rd scale f a c t o r s , PLOT1 need no t be executed . This s tandard
g raph cons i s t s o f a f u l l page graph 101 columns wide and 51 l i n e s
long w i th 10 v e r t i c a l g r i d l i n e s (NVL), 5 h o r i z o n t a l g r i d l i n e s
(NSBH and NSBV). The image array must be dimensioned a t least 867
(dec ima l) l oca t ions .
P o s i t i o n i n g t h e Graph on the Pr in ted Page .
The graph is a lways ad jus ted toward the l e f t edge of the page .
The topmost l i n e is pr inted one space below the l a s t l i n e p r i n t e d by
the u se r be fo re execu t ing PLOT4. For example, t o start a t t h e t o p
of a page the user can execute a s ta tement o f the type ;

PRINT COMMENT 1 (MAD)
o r WRITE OUTPUT TAPE 6 , 5 (FORTRAN)

5 FORMAT (1H1)
p r i o r t o e x e c u t i o n o f PLOT4 o r FPLOT4.
P r i n t i n g I n f o r m a t i o n Above and/or Below the Graph.
I f d e s i r e d , t h e u s e r c a n p r i n t a t i t l e above the graph before
execut ing PLOT4 (o r FPLOT4), o r a l a b e l f o r t h e a b s c i s s a below the
g r a p h a f t e r e x e c u t i n g PLOT4 (o r FPLOT4). Th i s i s done, of course,
w i th a PRINT FORMAT (MAD) o r WRITE OUTPUT TAPE (FORTRAN) s ta tement
i n t h e c a l l i n g p r o g r a m .
Length of the LABEL Vector .
The LABEL vec tor need no t have as many c h a r a c t e r s as t h e number of
p r i n t e d l i n e s i n t h e f i n a l image. The c h a r a c t e r s g i v e n are p r i n t e d
i n s e q u e n c e , o n e p e r l i n e , s t a r t i n g a t t h e t o p m o s t l i n e u n t i l a l l
NCHAR characters have been used. Blanks are i n s e r t e d a u t o m a t i c a l l y
f o r any succeeding l ines .
I f n o LABEL f o r t h e o r d i n a t e is d e s i r e d , se t NCHAR t o 0 (ze ro) . The
LABEL argument i s then immaterial, bu t some second argument must be
g i v e n f o r PLOT4 (o r FPLOT4) .
P l o t t i n g More Than One Set of Data - Changing the P lo t t ing Charac te r .
The number o f i n d i v i d u a l (o r sets o f) d a t a p o i n t s t o b e p l o t t e d i s
n o t l i m i t e d i n any way. PLOT3 may be executed as many times as
d e s i r e d . The p l o t t i n g c h a r a c t e r c a n b e t h e same o r d i f f e r e n t € o r
each o f t he PLOT3 execut ions .
P o i n t s Which Are Not P l o t t e d .
Data p o i n t s w i l l no t be p lo t ted under the fo l lowing c i rcumstances :
1. The va lue o f one o r bo th o f the coord ina tes (X,Y) l i e s o u t s i d e

2 . The va lue o f X o r Y i s n o t i n f l o a t i n g p o i n t mode.
3. NDATA = 0.
Points which are n o t p l o t t e d are s imply ignored by the rou t ine . Thus ,
t h e u s e r n e e d n o t p r e t e s t h i s d a t a f o r o c c u r r e n c e i n s i d e t h e g r i d
limits.
P r i n t i n g More Than One Copy of the Graph.
PLOT4 (or FPLOT4) can be executed as many times as d e s i r e d . One copy
of the g raph is produced per execut ion.

t he r ange XMIN t o XMAX o r YMIN t o YMAX.

3.8-49

PLOTTING SUBROUTINE (CONTINUED)

8. Execu t ing O the r In s t ruc t ions Between PLOT E n t r i e s .
Any number of i n s t ruc t ions can be execu ted be tween execu t ion o f
s u c c e s s i v e PLOT e n t r i e s , p r o v i d e d o n l y that t h e image region is n o t
dis turbed between execut ion of PLOT2 and t h e f i n a l e x e c u t i o n o f
PLOT4 (o r FPLOT4). For example, i f IMAGE is i n common o r e r a s a b l e ,
no subrout ines which use the same l o c a t i o n s i n common o r e r a s a b l e
should be cal led between execut ion of PLOT2 and PLOT4 (o r FPLOT4).

The number of l i n e s i n t h e g r a p h is (NSBH*NHL+l). There is no l i m i t
o n t h i s q u a n t i t y p r o v i d e d o n l y t h a t it is compat ib le wi th the number
o f l o c a t i o n s i n IMAGE (N on page 3) . Thus a graph can cover anywhere
from a small p a r t of one page to severa l pages . For the mul t i -page
graph , the normal sk ip be tween pages (across the page per fora t ions)
w i l l t ake p l ace . Where s t o r a g e i s a l i m i t i n g f a c t o r , see s e c t i o n H
for p roducing a graph of any a rb i t ra ry number of pages.

9. Graphs Which Cover More Than One Page.

SPECIAL FEATURES FOR UNUSUAL APPLICATIONS:
A.

B.

C.

D.

I n t e r m e d i a t e P r i n t i n g While P l o t t i n g .
Af t e r PLOT2 has prepared the gr id and PLOT3 h a s p l o t t e d Some d a t a
i n t o t h e IMAGE r eg ion , PLOT4 (o r FPLOT4) can be executed to give a
c u r r e n t copy of the graph. PLOT3 can then be reexecuted to p lo t some
more d a t a . When PLOT4 (o r FPLOT4) is reexecuted, the graph w i l l
con ta in a l l t h e p o i n t s p l a c e d s i n c e t h e l as t PLOT2 en t ry .
Prepar ing a New G r i d A f t e r P r i n t i n g .
I f , a f t e r p r i n t i n g v i a PLOT4 (o r FPLOT4), i t i s des i r ed t o p repa re a
new image of the same g r i d c o n f i g u r a t i o n as the p rev ious one , i t i s
on ly necessa ry t o r eexecu te PLOT2, i . e . , PLOT1 need not be reexecuted
i f t h e arguments would be the same as used for the p rev ious execut ion
of PLOT1.
P r i n t i n g Numeric F i e l d s A s Integers (Without Decimal Point) .
If i n t e g e r p r i n t o u t of t he numer i c va lues o f t he absc i s sa o r o rd ina te
a t t h e g r i d l i n e s i s des i r ed , t he app ropr i a t e dec ima l po in t pa rame te r
i n t h e NSCALE a r r a y s h o u l d b e s e t t o any nega t ive va lue less than of
e q u a l t o -1.
P r i n t i n g I n t h e Body of the Graph.
Since any BCD cha rac t e r s can be p l aced i n t he IMAGE, g iven the p roper
coord ina te s , a t i t l e can be p laced in the body o f t he IMAGE by p l o t t i n g
o n e c h a r a c t e r a t a t i m e w i t h t h e a p p r o p r i a t e c o o r d i n a t e s . However,
s i n c e t h e e n t i r e IMAGE reg ion is a v a i l a b l e at a l l times, a lphabe t i c
cons t an t s (6 BCD characters per 7090/7094 word) can be placed direct ly
i n t o t h e image using a s u b s t i t u t i o n s t a t e m e n t o f t h e t y p e ,

where M i s t h e a p p r o p r i a t e s u b s c r i p t i n t h e IMAGE vec to r . To determine
the p rope r M , a sho r t desc r ip t ion o f t he image r eg ion l ayou t fo l lows .
Each h o r i z o n t a l l i n e image f o r t h e p r i n t e d p a g e u s e s P l o c a t i o n s i n
t h e IMAGE array where P i s c a l c u l a t e d as p r e v i o u s l y d e s c r i b e d i n t h i s
w r i t e u p (s e e s e c t i o n on arguments). For a MAD p r o g r a m , t h e f i r s t
(t o p) l i n e is a s s i g n e d t o l o c a t i o n s IMAGE(0) ... IMAGE(P-1), the second
l i n e from IMAGE(P). . .IMAGE(2*P-l) , t h e t h i r d f r o m IMAGE(2*P). . .
IMAGE(3*P-1), e tc . I f i t was d e s i r e d t o p r i n t Y VERSUS X i n t h e

IMAGE(M) = $Y VS X$ (MAD)

3.8-50

PLOTTING SUBROUTINE (CONTINUED)

E .

F.

G .

c e n t e r o f t h e t h i r d l i n e o f t h e s t a n d a r d IMAGE, f o r which P = 1 7 , t h e
s t a t e m e n t s

IMAGE (42) = $Y VER$ (MAD)
IMAGE(43) = $SUS X$

c o u l d b e e x e c u t e d a f t e r e x e c u t i o n of PLOT2 and before execut ion of
PLOT4. For FORTRAN programs (which have no z e r o t h s u b s c r i p t) , t h e s e
s u b s c r i p t s would be one greater i n a l l c a s e s , i . e . , t h e f i r s t l i n e
would be ass igned to loca t ions IMAGE(1) ... IMAGE(P), e t c . The s u b s t i -
t u t i o n s t a t e m e n t s would be of the form

GRAPH(43) = 6HY VER (FORTRAN)
GRAPH(44) = 6HSUS X

NOTE: Because FORTRAN I1 r e s t r i c t s i n t e g e r s t o t h e d e c r e m e n t o f t h e
7090/7094 machine word, subs t i t u t ion s t a t emen t s i nvo lv ing BCD c o n s t a n t s
can be used only i f t h e v a r i a b l e i n v o l v e d h a s a f l o a t i n g p o i n t name.
Hence, the use of the name 'GRAPH' in s t ead o f 'IMAGE' f o r t h e IMAGE
r e g i o n . S i n c e t h i s t y p e o f s u b s t i t u t i o n s t a t e m e n t i s n o t a recog-
n i z e d p a r t o f t h e FORTRAN language, but i s neve r the l e s s accep ted by
t h e 7090/7094 FORTRAN I1 compi l e r , c a re shou ld be exe rc i zed i n i t s
use.
Modif icat ion of the Grid System.
AS w r i t t e n , t h e r o u t i n e p r e p a r e s a Car t e s i an g r id sys t em on ly . How-
e v e r , by s e t t i n g NHL and NVL b o t h e q u a l t o l (one) , on ly t he bo rde r
l i n e s o f t h e IMAGE w i l l be prepared by PLOT2. The user can subse-
q u e n t l y p r e p a r e h i s own gr id (log-sca led for example) by p lo t t ing i t
(the g r id) w i th r epea ted execu t ion o f PLOT3 u s i n g t h e d e s i r e d g r i d
c h a r a c t e r as t h e p l o t t i n g c h a r a c t e r BCD and t h e a p p r o p r i a t e
c o o r d i n a t e s , o r g r i d l i n e s c a n b e l a i d down us ing t he t echn ique of
D , above.
Blanking Out the Gr id Sys tem or Undes i red Charac te r (s) .
I f t h e u s e r d e s i r e s no g r i d a t a l l (i n c l u d i n g t h e b o r d e r s) h e c a n
b l a n k o u t t h e e n t i r e IMAGE a r r a y a f t e r e x e c u t i o n o f PLOT2 bu t be fo re
execut ion of PLOT3. When PLOT4 (o r FPLOT4) i s subsequent ly executed,
va lues o f t he o rd ina te and absc i s sa w i l l be p r in t ed a t the bo rde r s
as i f t h e b l a n k i n g o p e r a t i o n had neve r t aken p l ace (un le s s t he
s u b r o u t i n e OMIT has been executed, see G below).
D e l e t i n g t h e P r i n t i n g of Cer ta in Por t ions o f the Graph .
Provis ion has been made f o r d e l e t i n g t h e p r i n t o u t o f t h e f o l l o w i n g
i tems :

1. Numeric v a l u e s of t h e a b s c i s s a a t t h e g r i d l i n e s .
2. Numeric v a l u e s o f t h e o r d i n a t e a t t h e g r i d l i n e s .
3 . Items (1) and (2).
4. The comple t e bo t tom ho r i zon ta l g r id l i ne .
5. Items (1) and (4) .
6. Items (2) and (4).
7. Items (1) , (2) and (4).

This is accompl ished by execut ing the en t ry OMIT any time b e f o r e
execut ion of PLOT4 (o r FPLOT4). The c a l l i n g s e q u e n c e f o r OMIT i s ;

o r CALL OMIT (ARG) (FORTRAN)
where ARG i s a p o s i t i v e number cor responding to one o f the above

EXECUTE OMIT. (ARG) (MAD)

3.8-51

PLOTTING SUBROUTINE (CONTINUED)

seven numbers. I f ARG i s g r e a t e r t h a n 7 , i t w i l l b e t r e a t e d modulo 8.
ARG may b e of any mode.
To r e s t o r e p r i n t i n g o f any of the seven items, OMIT can be ca l l ed w i th
ARG a nega t ive number c o r r e s p o n d i n g t o t h e number of t h e i t e m (s) t o b e
r e s t o r e d .
Examples where i t w o u l d b e d e s i r a b l e t o d e l e t e p r i n t o u t of t h e o r d i n a t e
and /o r absc i s sa va lues migh t be t he p lo t t i ng o f a h i s t o g r a m o r when
the g r id sys t em has been mod i f i ed (s ee E and F, above). The feature
o f d e l e t i n g t h e p r i n t i n g o f t h e b o t t o m l i n e is u s e f u l f o r j o i n i n g two
graph segments (see H , below).
NOTE: D e l e t i n g p r i n t o u t o f t h e b o t t o m l i n e by EXECUTE OMIT.(4) does
n o t d e l e t e p r i n t o u t o f t h e a b s c i s s a v a l u e s . The p rocedure fo r de l e t -
i ng bo th t he bo t tom l i ne and t h e a b s c i s s a v a l u e s is EXECUTE OMIT.(5).

Because o f s torage l imi ta t ions , there is a p r a c t i c a l u p p e r limit t o
t h e s i z e o f t h e IMAGE r eg ion , and , hence , t o t he s i z e of the graph
which can be produced by a s i n g l e e x e c u t i o n of the sequence PLOT2,
PLOT3, PLOT4. However, a graph of any a r b i t r a r y s i z e c a n b e p r e p a r e d
in p iecewise fash ion where the IMAGE reg ion a t any one time con ta ins
only one segment of the complete graph. A s each segment is prepared
by PLOT2 (with i t s appropr i a t e YMAX and YMIN) and pr inted (with the
b o t t o m l i n e d e l e t e d , see G , above) by PLOT4 (o r FPLOT4) , i t w i l l j o i n
wi th the p rev ious segment to form the appearance of one continuous
graph. The fo l lowing example wr i t ten in MAD i l l u s t r a t e s t h e p r e p a r a -
t i o n of a graph of N segments.

H. Producing a Graph of Any Arb i t r a ry S i ze .

EXECUTE OMIT. (5)
PRINT FORMAT TOP
EXECUTE PLOT1. (0 ,1 ,12,4,25)
DELTAY = (YMAX-YMIN)/N
THROUGH LAST, FOR I = C , l , I . E . N
EXECUTE PLOT2. (IMAGE,XMAX,XMIN,YMAX-I*DELTAY,

EXECUTE PLOT3.($*$,XYY,NDATA)
WHENEVER 1 .E.N-1 , EXECUTE OMIT.(-5)

LAST EXECUTE PLOT4.(12,LABEL(2*1))

1 YMAX- (I+1) *DELTAY)

PRINT FORMAT BOTTOM

VECTOR VALUES TOP = $
VECTOR VALUES BOTTOM = $
VECTOR VALUES LABEL = $
INTEGER I , N
DIMENSION IMAGE(221)

NOTE: I f t h i s t e c h n i q u e is used, only one complete copy of the graph
can be produced.

3.8-52

PLOTTING SUBROUTINE (CONTINUED)

ERROR CHECKS :
PRINTED COMMENTS:

The subrou t ine con ta ins many e r ro r check ing f ea tu re s . Fo r
a r g u m e n t s i n c o m p a t i b l e w i t h t h e r e s t r i c t i o n s l i s t e d p r e v i o u s l y ,
t h e comment "IMPROPER ARGUMENT" w i l l be p r in t ed a long w i th t he
a p p r o p r i a t e e n t r y PLOT1, PLOTZ, e tc .

I f a n e r r o r o c c u r s i n PLOT1 and/or PLOTZ, t h e comment w i l l be
p r i n t e d and subsequent execut ions of la ter e n t r i e s w i l l b e d e l e t e d
wi thout comment (see computa t ion swi tch be low) , un t i l the o f fend-
i n g e n t r y is execu ted success fu l ly .

I f t h e u s e r a t t e m p t s t o e x e c u t e PLOT3, PLOT4 o r FPLOT4 with-
ou t a prev ious execut ion of PLOT2 (o r , w i thou t execu t ion of PLOTZ,
subsequent to any execut ion of PLOTl) , the comment "NO PREVIOUS
PLOTZ" w i l l b e p r i n t e d .
COMPUTATION SWITCH:

execu t ion o f each en t ry . I f no d i f f i c u l t i e s are encountered
du r ing execu t ion , a zero i s re tu rned . An e r r o r i n PLOT1, PLOTZ,
PLOT3 o r PLOT4 (o r FPLOT4), o r a delet ion of execut ion caused by
the unsuccess fu l execu t ion of an ear l ie r e n t r y , c a u s e s a
1 .0 , 2 .0 , 3 . 0 o r 4 . 0 , r e s p e c t i v e l y , t o b e r e t u r n e d . The c a l l i n g
sequences for any or a l l MAD e n t r i e s c a n t h u s b e a l t e r e d t o form

A f l o a t i n g p o i n t c o n s t a n t i s r e t u r n e d t o t h e a c c u m u l a t o r a f t e r

R = PLOTZ.(IMAGE,XMAX,XMIN,YMAX,YMIN) (MAD 1
WHENEVER R.G.0, TRANSFER TO TRUBL
R = PLOT3.($*$,
Because FORTRAN does no t permi t the use o f Hol le r i th a rguments

TRUBL (The e r r o r c o n d i t i o n s t a t e m e n t)

i n t h e c a l l i n g s e q u e n c e o f f u n c t i o n s (a p p e a r i n g i n e x p r e s s i o n s) , t h e
FORTRAN user has access to the computa t ion swi tch f rom PLOT3 o n l y i f
t h e p l o t t i n g c h a r a c t e r i s en te red as a v a r i a b l e name r a t h e r t h a n as
a Holler i th argument . Thus

wh i l e R = PLOT3(1H*,X,Y,NDATA) is n o t l e g a l .
By t h e same token , t he swi t ch i s n o t a v a i l a b l e f o r FPLOT4 when

i t i s c a l l e d w i t h a Hol le r i th a rgument (when a l a b e l f o r t h e o r d i n a t e
i s d e s i r e d) . However, t he swi t ch i s s t i l l a v a i l a b l e when FPLOT4 is
c a l l e d by a LJMAP program.

fo l lows :

R = PLOT3(BCDYX,Y,NDATA) is l e g a l

A t y p i c a l FORTRAN sequence using the switches might appear as

BCD = l H *
R = PLOTl(NSCALE,NHL,NSBH,NVL,NSBV) (FORTRAN)
I F (R) 102,102,110

IF (R) 103,1C)3,110

I F (R) 104,104,110

102 R = PLOTZ(IMAGE, XMAX,XMIN,YMAX,YMIN)

103 R = PLOT~(BCD,X,Y,NDATA)

104 CALL FPLOT4 (............
110 (The e r r o r c o n d i t i o n s t a t e m e n t
I f any po in ts are n o t p l o t t e d by PLOT3, a -3.0 is r e t u r n e d t o

the accumulator . This may o r may not be considered an error .

3.8-53

PLOTTING SUBROUTINE (CONTINUED)

ARGUMENT MODIFICATION BY THE ROUTINE:

d e c i m a l p o i n t o r s h i f t s t h e e n t i r e a b s c i s s a p r i n t o u t t o accomodate
a l l the des i r ed numbers i n t he w id th o f t he p r in t ed page .

I f t h e s u g g e s t e d scale f a c t o r s are s u c h t h a t o v e r f l o w o r
underflow of the machine word would r e s u l t , t h e f a c t o r is reset t o 0.

I f t h e v a l u e o f t h e o r d i n a t e o r a b s c i s s a i s t o o l a r g e t o b e
p r i n t e d i n t h e a l l o t e d s p a c e , i t w i l l be t runca ted from t h e l e f t
i n p r i n t o u t .

i n t he ca l l i ng p rog ram mod i f i ed .

I n some cases, t h e r o u t i n e m o d i f i e s t h e p o s i t i o n i n g o f t h e

Under no circumstances i s the conten t o f an a rgument loca t ion

SUBROUTINES REQUIRED: SPRINT

SAMPLE PROBLEMS FOR THE PLOTTING SUBROUTINE:
Three sample problems have been prepared. The f i r s t h a s been coded
i n b o t h MAD and FORTRAN, the second two have been coded i n MAD only.

The f i r s t is a simple example which reads a set of da ta va lues
f rom inpu t ca rds and p lo t s t hem, i l l u s t r a t ing ;

(1) Use o f s t anda rd g r id and scale f a c t o r s
(2) P lo t t i ng o f an a r r ay o f da t a po in t s w i th a s i n g l e

The second is a more complex example which p l o t s t h e s o l u t i o n s
execut ion of PLOT3.

Y and DY/DX t o t h e d i f f e r e n t i a l e q u a t i o n
D2Y/DX2 + A DY/DX f B = 0.

The d i f f e r e n t i a l e q u a t i o n i s solved using the Runge-Kutta
sub rou t ines f rom the l i b ra ry t ape (s ee RKDEQ,SETRKD write-ups.)
It i l l u s t r a t e s :

(1) Modi f i ca t ion o f s t anda rd g r id and s c a l e f a c t o r s .
(2) P l o t t i n g of one charac te r per execut ion of PLOT3.
(3) Use o f d i f f e r e n t p l o t t i n g c h a r a c t e r s i n t h e same graph.
(4) P r i n t i n g a v a r i a b l e number of copies of the graph.
The t h i r d p r e p a r e s a po la r p lo t o f t he po la r func t ion Po l f ,

a s p i r a l o f t h e form
R = K*ANGLE.

T h i s p r o g r a m i l l u s t r a t e s :
(1) Erasure o f the g r id p repared by PLOT2.
(2) P l ac ing a new g r i d i n t h e IMAGE r eg ion by p l o t t i n g

(3) P r in t ing i n s ide t he g raph by p l ac ing BCD cons t an t s

(4) Use o f t h e c o m p u t a t i o n s w i t c h t o s t o p t h e i t e r a t i o n

(5) Use o f t he sub rou t ine OMIT t o d e l e t e t h e p r i n t i n g o f

A l l e x a m p l e s i l l u s t r a t e t h e p r i n t i n g o f a l a b e l f o r t h e o r d i n a t e

t h e g r i d c h a r a c t e r s o n e a t a time use PLOT3.

i n t h e image region.

loop i n v o l v i n g t h e p l o t t i n g o f d a t a p o i n t s .

numbers a t the edge of the g raph .

and t h e f i r s t two show t h e p r i n t i n g o f a t i t l e above the graph and a
l a b e l f o r t h e a b s c i s s a b e l o w t h e g r a p h .

3.8-54

PLOTTING SUBROUTINE (CONTINUED)

SAMPLE PROBLEM NUMBER ONE.

$COMPILE MAD, PUNCH OBJECT PLMADOOO
R
R PROGRAM TO ILLUSTRATE PLOTTING MULTIPLE POINTS WITH MAD
R USING THE STANDARD GRID AND SCALE
R
DIMENSION X(lOO), Y(100), GWH(867)
INTEGER N

FIRST READ FORMAT ENTR, N,XMAX,XMIN,YMAX,YMIN
READ FORMAT DATA, X(1). ..X(N)
READ FORMAT DATA, Y (1) . . . Y (N)

FACTORS

EXECUTE PLOT2.(GRAPH,XMAX,XMIN,YMAX,YMIN)
EXECUTE PLOT3. ($*$,X(l) , Y (1) ,N)
PRINT FORMAT TITLE
EXECUTE PLOT4.(32,ORD)
PRINT FORMAT ABS
TRANSFER TO FIRST
R
R FORMAT STATEMENTS
R
VECTOR VALUES ENTR = $110,4F10.4*$
VECTOR VALUES DATA =$7F10.4*$
VECTOR VALUES TITLE =$lHl,S54,14HPLOT OF X VS Y /1H *$
VECTOR VALUES ABS = $1HO,S55,14HTHE ABSCISSA X *$
VECTOR VALUES ORD =$ THE ORDINATE Y $
END OF PROGRAM

$DATA

$MADTRAN,PRINT OBJECT, PUNCH OBJECT PLFTROOO

1

100
101
102
10 3

$DATA

PROGRAM TO ILLUSTRATE PLOTTING MULTIPLE POINTS WITH FORTRAN
USING THE STANDARD GRID AND SCALE FACTORS

DIMENSION X(100) ,Y (100) ,GRAF'H(867)
READ INPUT TAPE 7,100, N, XMAX, XMIN, YMAX, W I N
READ INPUT TAPE 7,101, (X(1) , I=1,N)
READ INPUT TAPE 7,101, (Y (I), I=1,N)
CALL PLOT2(GRAPH, XMAX,XMIN,YMAX,YMIN)
CALL PLOT3(1H*,X(l) , Y (1) ,N)
WRITE OUTPUT TAPE 6,102
CALL PLOT4(32, 32H THE ORDINATE Y)
WRITE OUTPUT TAPE 6,103
GO TO 1

FORMAT STATEMENTS

FORMAT (110,4F10.4)
FORMAT (7F10.9)
FORMAT (1H1, 54X, 14HPLOT OF X VS Y /1H)
FORMAT (1H0, 55X, 14HTHE ABSCISSA X)
END

3.8-55

PLOTTING SUBROUTINE (CONTINUED)

SAMPLE PROBLEM NUMBER TWO

$COMPILE MAD, PUNCH OBJECT RKMADOOO

FIRST

WRITE

STEP

OUT

LOOP

R
R PROGRAM TO ILLUSTRATE PLOTTING ONE CHARACTER AT A TIME
R WITH MAD
R -
DIMENSION F(2) ,Q(2) ,2(2) ,DUMMY(833)
INTEGER K,NPLOTS
VECTOR VALUES MARGIN = $ Y AND PRIMJI$
VECTOR VALUES N = l , O , l , O , l
EXECUTE SETRKD. (2,2(1) ,F(l) ,Q,X,H)
READ FORMAT INPUT,A,B,Z(l) ,2(2) ,H,MAXY,MINY,NPLOTS
EXECUTE PLOTl.(N,4,12,5,20)
EXECUTE PLOT2. (DUMMY, 10. ,O . ,MAXY ,MINY)
PRINT FORMAT HEAD
x = 0.
PRINT FORMAT RESULT,X,Z(l) ,Z(2)
EXECUTE PLOT3. ($*$,X ,Z(l) ,1)
EXECUTE PLOT3. ($+$,X ,Z (2) ,1)
WHENEVER X.G.lO.,TRANSFER TO OUT
K = RKDEQ. (0)
WHENEVER K.E.l

F(1) = Z(2)

TRANSFER TO STEP
F(2) = -A*Z(2) - B*Z(1)

END OF CONDITIONAL
TRANSFER TO WRITE
THROUGH LOOP,FOR K = l,l,K.G.NPLOTS
PRINT FORMAT TITLE, A, B
EXECUTE PLOT4. (30 ,MARGIN)
PRINT FORMAT BOTTOM
TRANSFER TO FIRST
R
R FORMAT STATEMENTS
R
VECTOR VALUES INPUT = $7F10.5,12*$
VECTOR VALUES HEAD = $lHl,S13,47HTABULATED SOLUTION OF THE DIF

VECTOR VALUES RESULT = $1H ,3F20.4*$
VECTOR VALUES TITLE = $lHl,S43, 37HSOLUTION OF THE DIFFERENTIA

1FERENTIAL EQUATION /1HO,S17,1HX,S19,1HY,S16,6HYPRIME*$

1L EQUATION /1H ,S43,12HY-DOT-DOT + F5.2,9H Y-DOT F5.2,
26H Y = 0 /lHO*$

11H S44, 36HPLOTTING CHARACTERS. Y (*) , YPRIME(+) *$
VECTOR VALUES BOTTOM=$lHO,S49,26HTHE INDEPENDENT VARIABLE X//

END OF PROGRAM

3.8-56

PLOTTING SUBROUTINE. (CONTINUED)

SAMPLE PROBLEM NUMBER THREE.

$COMPILE MAD, EXECUTE, DUMP, PUNCH OBJECT POLAR000

START

ERASE

PLACI

PLACP

PLACMl

PLACPL

READ

PLACE

R
R POLAR PLOT OF A SPIRAL TO ILLUSTRATE ERASURE OF THE GRID,
R PREPARATION OF A N E W GRID, PRINTING INSIDE THE IMAGE,
R USE OF THE SUBROUTINE OMIT. AND THE COMPUTATION SWITCH.
R

INTERNAL FUNCTION POLF. (ANGLE) = K*ANGLE
DIMENSION IMAGE(686)
BOOLEAN BOOL
INTEGER IMAGE, CHAR, I
READ FORMAT INPUT , RMAX
EXECUTE PLOTl. (0,1,48,1,80)
EXECUTE PLOT2. (IMAGE, RMAX, -RMAX, W, -RMAx)
THROUGH ERASE, FOR I = 0,1, I . G . 6 8 6
IMAGE(1) = $ $
DELTAY = RMAX/24.
DELTAX = RMAX/40.
THROUGH PLACI, FOR Y=RMAX,-DELTAY,Y.L.-RMAX
EXECUTE PLOT3.(I ,O.O,Y,1)
THROUGH PLACP, FOR Y=RMAX,-1.o,Y.L.-RMAX
EXECUTE PLOT3. ($+$, O . 0 ,Y, 1)
THROUGH PLACMl, FOR X =-RMAX,DELTAX,X.G.W
EXECUTE PLOT3.($-$,X,O.O,1)
THROUGH PLACPL, FOR X =-RMAX,1.O,X.G.RMAX
EXECUTE PLOT3.($+$,X,O.O,1)
IMAGE(3 4 9) = $- 0 $
IMAGE(6) = $ 90 $
IMAGE(336) = $ 1 8 0 --$
IMAGE(678) = $ 2 7 0 $
READ FORMAT DATA, CHAR, K, BOOL
SWITCH = 0.
THROUGH PLACE, FOR THET = O . , .l, THET.G.25..0R.SWITCH.NE.O.
SWITCH=PLOT3. (CHAR,POLF. (THET)*COS. (THET) ,POLF. (THET)*

PRINT FORMAT S K I P
EXECUTE PLOT4(36 ,MARGIN)
WHENEVER BOOL, TRANSFER TO START
TRANSFER TO READ
VECTOR VALUES INPUT = $F10.4*$
VECTOR VALUES DATA = $ C l , F 9 . 4 , 1 1 * $
VECTOR VALUES SKIP = $ ~ H I / ~ H O / ~ H O * $
VECTOR VALUES MARGIN = $ POLAR PLOT OF THE S P I W

1SIN. (THEg, 1)

END OF PROGRAM
$DATA
4 . 0
* -.25

"

3.8-57

UNIFORMLY DISTRIBUTED RANDOM NUMBER GENERATOR

ENTRY POINTS: RAM2A, RAMZB, RAMZC, RAM2D

PURPOSE: Produce a random number i n t h e interval (0,l). A set of random
numbers generated by RAM2 h a s a un i fo rm d i s t r ibu t ion .

CALLING SEQUENCES:
MAD X = RAM2B.(O)
FORTRAN X = RAM2B(O)
UMAP CALL RAM2B

PAR 0
NORMAL RETURN - X IN THE ACCUMULATOR

ARGUMENTS :
X F l o a t i n g p o i n t random number, 0 .LE. X .LE. 1.

SPECIAL ENTRIES:
RAM2B uses an in t ege r pa rame te r J t o compute each random number. J is
i n i t i a l l y set a t 2.P.35 - 1 and changes with each execution of RAM2B.
The f o l l o w i n g s p e c i a l e n t r i e s e n a b l e t h e u s e r t o p i c k up t h e c u r r e n t
v a l u e of J and t o u s e i t as i n p u t t o RAM2 i n o r d e r t o i n i t i a l i z e a
sequence of random numbers a t a la te r execu t ion of t he ca l l i ng p rog ram.
1. PURPOSE: Save t he cu r ren t va lue of J t h a t would have been used t o

c a l c u l a t e t h e n e x t random number.
CALLING SEQUENCES:

MAD I = RAM2D. (0) (INTEGER MODE)
FORTRAN CALL RAM2C(K)
UMAP CALL RAM2D

PAR I
NORMAL RETURN

2. PURPOSE: I n i t i a l i z e t h e p a r a m e t e r J w i t h t h e i n p u t i n t e g e r .
CALLING SEQUENCES:

MAD EXECUTE RAM2A. (I)
FORTRAN CALL RAM2A(K)
UMAP CALL RAM2A

PAR I
NORMAL RETURN

ARGUMENTS :
I F u l l word in t ege r wh ich may be used as a n i n i t i a l i z a t i o n o f

t he pa rame te r J. The i n i t i a l normal value of I is
34359738367.

K N a m e of a n i n t e g e r a r r a y of l e n g t h 3. FORTRAN i n t e g e r s are
s t o r e d i n t h e d e c r e m e n t p o r t i o n o f t h e m a c h i n e word and,
hence , t he pa rame te r J mus t be f ed t o RAM2 i n 3 p a r t s . The
i n i t i a l n o r m a l v a l u e o f K is. K(1) = K(2) = 32767, K(3) = 31.

I

3-6-58

UNIFORMLY DISTRIBUTED RANDOM NUMBER GENERATOR

ENTRY POINTS: RANDOM

PURPOSE: To p rov ide t he means f o r g e n e r a t i n g random numbers, uniformly
d i s t r i b u t e d o v e r t h e i n t e r v a l O.LE.X.LE.1.

CALLING SEQUENCES:
MAD Y = RANDOM. (RNO)

UMAP CALL RANDOM, RNO
FORTRAN Y = RANDOM (RNO)

ST0 Y

ARGUMENTS :
Y The v a r i a b l e whose va lue is set by the sub rou t ine RANDOM.
RNO The v a r i a b l e whose va lue is used to p ropagate the genera t ion

of random numbers. The i n i t i a l v a l u e of RNO may be set by
t h e u s e r by r e a d i n g i n t o t h e l o c a t i o n . Any non-zero pos i t ive
i n i t i a l v a l u e w i l l c ause t he rou t ine t o gene ra t e t he p seudo-
random s e q u e n c e c o r r e s p o n d i n g t o t h e i n i t i a l v a l u e . I f t h e
i n i t i a l v a l u e of RNO is z e r o , t h e r o u t i n e w i l l perform a
l o g i c a l checksum of c e r t a i n l o c a t i o n s i n low co re , i nc lud ing
the c lock and va r ious bu f fe r s , so t h a t t h e p r o b a b i l i t y of
r e p e a t i n g t h e same sequence of random n tnbc r s on succcs r ive
approaches to the machine i s very small (l e s s . t han .0000002).
The argument RNO must not be an absolute constant. For ex-
ample, t h e c a l l i n g s e q u e n c e Y = RANDOM.(O) is completely
i n c o r r e c t and w i l l r e su l t i n comple t e ly mean ing le s s ope ra t ion
of t h e program. (The subroutine RANDOM. modi f i e s t he va lue
of the argument on e a c h e n t r y . T h u s , i n t h i s i l l u s t r a t i o n ,
t h e e f f e c t is t o change the va lue o f the cons tan t zero to
random values . I f the modi f ied va lue o f the cons tan t zero were
u s e d t o clear an array, obvious chaos would r e s u l t)

COMMENTS: RANDOM employs the thoroughly tes ted power ree idue method of
random number genera t ion . The p e r i o d i c i t y of t h i s method is
2.P.35 - 1.

3.8-59

NORMALLY DISTRIBUTED RANDOM NUMBER GENERATOR

ENTRY POINTS: RANDND

PURPOSE: To p r o v i d e t h e means f o r g e n e r a t i o n of random numbers whose
d i s t r i b u t i o n h a s a g iven mean va lue and g iven s tandard devia t ion .

CALLING SEQUENCES:
MAD Y = RANDND . (MEAN, SIGMA, RNO)
UMAP CALL RANDND,MEAN,SIGMA,RNO
FORTRAN Y = RANDND(XMEAN,SIGMA,RNO)

ARGUMENTS :
Y The v a r i a b l e whose va lue is set by the sub rou t ine RANDND.
MEAN
(XMEAN) The f l o a t i n g p o i n t v a r i a b l e whose va lue is t h e mean of t h e

d e s i r e d d i s t r i b u t i o n .

number sequence. Since RANDND ca l l s upon RANDOM, t h e u s e r
should read the wri te-up on the subrout ine RANDOM.

SIGMA The v a r i a b l e whose va lue is used t o p ropaga te t he random

SUBROUTINES REQUIRED: RANDOM, ELOG, SQRT.

3.8-60

REPLACE TAPES

ENTRY POINTS: REPLCE

PURPOSE: Prints instructions to the operator to replace a user's tapes
with other tapes belonging to the user. It first calls on
DISMNT and MOUNT and then stops for the operator to replace the
tapes. Labels on the new tapes are handled in the same way as
if they were mounted with MOUNT.

CALLING SEQUENCES:
MAD DATE = REPLCE.(NUM1,NAME1,UNIT1,DENS1,PROl,MODE1,NUM2,NAME2,

UNIT2,DENS2,PR02,MODE2, ..., NUMN,NAMEN,UNITN,DENSN,
PRON,MODEN)

UNIT2,DENS2,PR02,MODE2, ..., NUMN,NAMEN,UNITN,DENSN,
PRON ,MODEN)

FORTRAN DATE = REPLCE(NLJM1,NAME1,UNIT1,DENS1,PRO1,MODEl,NUM2,NAME2

UMAP CALL REPLCE
PAR NUMl
PAR NAME1
PAR UNIT1
PAR DENS 1
PAR PRO1
PAR MODE1

PAR NUMN
PAR NAMEN
PAR UNITN
PAR DENSN
PAR PRON
PAR MODEN

... ...

DATE IS RETURNED IN THE ACCUMULATOR.

ARGUMENTS :
There are six arguments for each tape to be replaced.

NUM Number (full word or FORTRAN integer) assigned to the new

NAME One word BCD name used in tape label of new tape.
tape. See MOUNT for use of zero and negative numbers.

UNIT Logfcal number (full word or FORTRAN integer) of the tape
drive of the tape to be replaced. If this number is positive,
the ring of the replaced tape will be removed. If unit is
negative, a ring will be inserted in the replaced tape.

the new tape will be in high density. (This should normally
be non-zero.)

tape. If non-zero, file protect ring should be removed from
the new tape.

DENS If zero, the new tape will be in low density. If non-zero,

PRO If zero, file protect ring should be inserted in the new

3-8-61

MODE If z e r o , t h e new t ape w i l l be B O . I f non-zero, the new

DATE The BCD d a t e i n t h e l a b e l of t h e new tape . It has t he form
t a p e w i l l be b ina ry .

DD/MM where DD is the day of t h e month MM. If t h e r e i s
more than one group of arguments , the date w i l l b e t h a t on
t h e t a p e s p e c i f i e d by t h e l as t group.

SUBROUTINES REQUIRED: DISMNT, MOUNT

RUNGE-KUTTA SOLUTION OF DIFFERENTIAL EQUATIONS

ENTRY POINTS: RKDEQ, SETRKD

PURPOSE: Solves a system of N f i r s t o r d e r o r d i n a r y d i f f e r e n t i a l e q u a t i o n s
by t h e Runge-Kutta fourth-order method. The equat ions are
assumed t o b e of t h e form:

.. ..
D Y (N) / D X = F (N) (X , Y (l) , ..., Y (N))

where X i s the independent var iab le .

CALLING SEQUENCES:
MAD EXECUTE SETRKD. (N,Y,F,Q,X,H) SETUP

S = RKDEQ.(O) EXECUTION

FORTRAN CALL SETRKD (N,Y,F,Q,X,H)
S = RKDEQ(0)

SETUP
EXECUTION

UMAP SETUP EXECUTION
CALL SETRKD CALL RKDEQ
PAR N NORMAL RETURN - S I N THE
PAR Y ACCUMULATOR
PAR F
PAR Q
PAR X
PAR H
NORMAL RETURN

SETRKD. m u s t b e e n t e r e d b e f o r e t h e f i r s t e n t r y t o RKDEQ.
T h e r e a f t e r , SETRKD. must be entered only when a change occurs
i n t h e p a r a m e t e r list. (Note that th is doe$ not include changes
i n p a r a m e t e r v a l u e s .)

NOTE: I n MAD and FORTRAN, the a rguments used in SETRKD must be s ing le
v a r i a b l e names , subsc r ip t ed i f des i r ed , excep t fo r N and H , which may
be cons tan ts . Express ions may not be used as arguments.

3.8-62

ARGUMENTS :
Number o f e q u a t i o n s t o b e s o l v e d (i n t e g e r v a r i a b l e o r c o n s t a n t) .

Name o f t h e f i r s t e l e m e n t o f a f l o a t i n g p o i n t v e c t o r i n w h i c h
t h e s o l u t i o n v a l u e s Y (1) w i l l b e s t o r e d by RKDEQ. The i n i t i a l
va lues of Y (1) s h o u l d b e s t o r e d h e r e p r i o r t o t h e f i r s t e n t r y .

Name o f t h e f i r s t e l e m e n t o f a f l o a t i n g p o i n t v e c t o r i n w h i c h
t h e v a l u e s F (1) o f t h e d e r i v a t i v e s are s t o r e d .

Name o f t h e f i r s t e l e m e n t o f a temporary s torage region used
by RKDEQ. Th i s r eg ion mus t be o f l eng th a t least N.

The f l o a t i n g p o i n t v a l u e of t he i ndependen t va r i ab le X. This
must be se t t o t h e i n i t i a l va lue o f X p r i o r t o t h e f i r s t e n t r y .
The independen t va r i ab le i s automat ica l ly incremented by FXDEQ.

F loa t ing po in t va lue o f t he i nc remen t fo r X , i . e . , t h e s t e p
s i z e . T h i s v a l u e may be changed be tween so lu t ion po in ts , i f
d e s i r e d .

F loa t ing po in t computa t ion swi tch ,
S = 1.0 compute t h e v a l u e s o f t h e d e r i v a t i v e s F (I) u s i n g t h e

S = 2.0 t h e s o l u t i o n v a l u e s Y (I) f o r t he p re sen t va lue o f X
cu r ren t va lues o f X and Y(1) and r e t u r n t o RKDEQ.

are s t o r e d i n Y .

SAVE BLOCKS OF CORE FOR LATER RELOADING BY SYSTEM

ENTRY POINTS: SAVCOR

PURPOSE: Saves up t o t e n b l o c k s o f c o r e on des igna ted t ape as a s tandard
b inary sys tem record , wi th checksum, for l a te r loading by
SEQPGM (i f t a p e is p rope r ly pos i t i oned i n f ron t o f t he r eco rd
f i r s t) , o r by SELRCD. A f t e r r e l o a d i n g , e i t h e r of 2 a l t e r n a t e
e x i t s may be taken.

CALLING SEQUENCE:
MAD EXECUTE SAVCOR.(TAPE,Al,. .., B l , A 2 , ..., B2, ETC., AN,..., BN,

E X I T l ,EXIT2)

UMAP CALL SAVCOR
PAR TAPE
BLK A l , , B 1
BLK A2 , ,B2
BLK
PAR E X I T l
PAR EXIT2

...
AN, ,BN
...

3.8-63

ARGUMENTS :
TAPE

A 1 , B 1
A2 ,B2

AN,BN
EXIT1

...

EXIT2

Log ica l t ape number of t ape on which core is t o b e s a v e d .
Tape i s n o t p o s i t i o n e d b e f o r e o r a f t e r w r i t i n g , n o r i s an
e n d - o f - f i l e w r i t t e n b e f o r e o r a f t e r w r i t i n g .
Blocks of core locat ions f rom A 1 t o B 1 ,
A2 t o B2 , etc., are w r i t t e n as one record.
when later r e loaded , t hese b locks w i l l l oad
i n t o o r i g i n a l l o c a t i o n s .
L o c a t i o n t o w h i c h t r a n s f e r is t o b e made i f s e n s e l i g h t 2
is o f f when r.ecord is re loaded .
L o c a t i o n t o w h i c h t r a n s f e r is t o b e made i f s e n s e l i g h t 2
is on when record is re loaded .

RESTRICTION: A maximum of t en b locks may be used.

SUBROUTINES USED: WRSBIN

CALLING SUBROUTINES FOR PING-PONG SEGMENTS

ENTRY POINTS: SELPGM, SEQPGM

PURPOSE: SEQPGM is used in
SELPGM is used to
be executed.

CALLING SEQUENCES :
MAD EXECUTE SEQPGM

ping-pong t o c a l l t h e n e x t c o r e i n s e q u e n c e .
select one of t he co res as the nex t co re t o

. (TAP E)
EXECUTE SELPGM. (I ,TAPE)

FORTRAN CALL SEQPGM (TAPE)
CALL SELPGM(1,TAPE)

UMAP CALL SEQPGM
PAR TAPE
NO RETURN

CALL SELPGM
PAR I
PAR TAPE
NO RETURN

ARGUMENTS :
I I n t e g e r c o r e number d e s i g n a t e d t o b e t h e n e x t c o r e t o b e

executed.

be omi t t ed . I f omi t t ed , t ape 2 w i l l be assumed.
TAPE Tape on which the next core w i l l be found. This parameter may

SUBROUTINES REQUIRED: SELRCD

3.8-64

SET LOW CORE TRAP LOCATIONS

ENTRY POINTS: SET2, SET8

PURPOSE: TO allow users to set trap return locations in low core with their
own transfers .
SET2 sets location 2, which is the trap location for the

SET8 sets location 8, which is the trap location for floating-
STR instruction.

point trap.

NOTE: The 110 routines and the list manipulation routines (.SET, .SAVE,
.RSTOR) use S T R ' s and hence location 2 . They do not save the pre-
vious instruction that was in the location. A l s o , during 110 and
L I S T manipulation, the user must not modify location 2 from the
TSX to the subroutine until after the END10 (STR 0) .

CALLING SEQUENCES:
MAD EXECUTE SET2. (L)

EXECUTE SET8. (L)

FORTRAN CALL SET2(H)
CALL SET8 (M)

See point 7 under arguments in
introduction to this section.

UMAP CALL SET2 CALL SET8
PAR x PAR X

ARGUMENTS :
L Statement label of the statement to go to when the trap occurs.
M A variable that has been assigned the formula number of the

X A location containing 'TTR RETURN' where return is the location
statement to go to when the trap occurs.

to go to when the trap occurs.

SET END OF F I L E RETURN

ENTRY POINTS: SETEOF, SETEFL

PURPOSE: Normally, when an end-of-file is found on a tape while reading,
if the tape is the input tape, the comment '**** ALL INPUT DATA
HAVE BEEN PROCESSED' is printed and the j o b is terminated. I f
the tape is a scratch tape, the comment '**** END OF F I L E ON
SCRATCH TAPE' is printed and the job is terminated. This pro-
cedure can be altered by using SETEOF or SETEFL.

CALLING SEQUENCES:
MAD EXECUTE SETEOF. (LOC,N)

EXECUTE SETEOF. (0)

FORTRAN CALL SETEFL (LOC)
CALL SETEFL (0)

UMAP CALL SETEOF
PAR LOC
PAR N

CALL SETEOF
PAR ZERO

3.8-65

ARGUMENTS :
LOC I n s t r u c t i o n t o which cont ro l i s t r a n s f e r r e d when an end of

f i l e mark is encountered by t h e i n p u t r e a d s u b r o u t i n e s . (FORTRAN
users should see p o i n t 7 under arguments i n t h e i n t r o d u c t i o n
t o t h i s w r i t e - u p .)

end of f i l e mark w i l l cause a n o r m a l r e t u r n t o t h e e x e c u t i v e

N
system.
This argument i s o p t i o n a l . I f u s e d , N w i l l be set e q u a l t o t h e
l o g i c a l number (i n t e g e r mode) of the t ape be ing read .

ZERO A l o c a t i o n c o n t a i n i n g z e r o .

0 Th i s is t h e i n t e g e r z e r o . A f t e r i t i s used as the argument, an

SET 1/0 ERROR RETURN

ENTRY POINTS : SETERR, .ERR

PURPOSE: A l l o w s u s e r t o r e t a i n c o n t r o l when a n e r r o r i s de tec t ed by t h e
inpu t -ou tpu t sub rou t ines . O the rwise , con t ro l is r e t u r n e d t o
the execut ive sys tem, which te rmina tes the job .

CALLING SEQUENCES:
MAD EXECUTE SETERR. (LOC,E)

EXECUTE SETERR. (0)

FORTRAN CALL SETERR(LOC)
CALL SETERR (0)

UMAP CALL SETERR CALL SETERR
PAR LOC PAR ZERO
PAR E

ARGUMENTS :
LOC I n s t r u c t i o n t o w h i c h c o n t r o l i s t r a n s f e r r e d when a n e r r o r i s

d e t e c t e d by the 110 sub rou t ines . (FORTRAN users should see
po in t 7 under arguments i n t h e i n t r o d u c t i o n t o t h i s w r i t e - u p .)

a n e r r o r d e t e c t e d by the 110 subrout ines w i l l cause a normal
r e tu rn t o t he execu t ive sys t em.

t h e i n t e g e r e r r o r number (see appendix I) .

0 This is t h e i n t e g e r z e r o . A f t e r i t i s used as the argument,

E This argument i s o p t i o n a l . I f u s e d , E w i l l be set e q u a l t o

ZERO A loca t ion con ta in ing ze ro .

(.ERR i s t h e e n t r y p o i n t t o t h i s s u b r o u t i n e t h a t t h e 110
rou t ines u se when an error has been found. They p r i n t o u t
t h e e r r o r comment and then ca l l on .ERR t o e i t h e r go t o t h e
u s e r o r r e t u r n t o t h e s y s t e m .)

SUBROUTINES REQUIRED: ERROR, SPRINT, SYSTEM

3.8-66

SET END OF TAPE TEST OPTION

ENTRY POINTS: SETETT

PURPOSE: Allows user t o change normal procedure when end of tape i s en-
countered during a write operat ion (except on output tape) .

CALLING SEQUENCES:
MAD EXECUTE SETETT.(LOC,N)

EXECUTE SETETT.(O)

FORTRAN CALL SETETT (LOC)
CALL SETETT (0)

UMAP CALL SETETT
PAR LOC
PAR N

CALL SETETT
PAR ZERO

ARGUMENTS :
LOC I n s t r u c t i o n t o which control i s t r a n s f e r r e d when end of t a p e is

encountered while wri t ing a t ape o the r t han t he ou tpu t t ape .
(FORTRAN users should see po in t 7 under arguments i n t h e i n t r o -
d u c t i o n t o t h i s s e c t i o n .)

end-of-file mark is placed on t h e t a p e , and the t ape i s rewound
and unloaded for replacement by the opera tor . This is the normal
procedure.

t o t h e l o g i c a l number of the tape on which the end of t a p e was
encountered.

0 This is t h e i n t e g e r z e r o . A f t e r i t i s used as the argument, an

N This i s an optional argument. If given, N w i l l be set equal

ZERO A loca t ion conta in ing zero .

FLOATING POINT TRAP CONTROL

ENTRY POINTS: SETFTP, RSTFTP

PURPOSE: SETFTP a l l o w s t h e u s e r t o s u p p l y h i s own t r a p c o n t r o l r o u t i n e
f o r f l o a t i n g p o i n t t r a p p i n g .
RSTFTP r e s t o r e s t r a p c o n t r o l t o the system t rap rout ine.

CALLING SEQUENCES:
MAD EXECUTE SETFTP. (WHERE ,WHAT ,WHRTO)

w CALL SETFTP ,WHERE ,WHAT ,WHRTO
EXECUTE RSTFTP.

CALL RSTFTP

ARGUMENTS :
WHERE Locat ion where the f loat ing t rap occurred.
WHAT Trap b i t i n fo rma t ion f rom loca t ion 0.

Each of t h e f o u r r i g h t - h a n d b i t s t h a t is one has the
meaning l i s t e d below.

3.8-67

B I T POSITION MEANING

32 Operat ion w a s a d iv ide .
33 Overflow i n e i t h e r AC o r MQ o r b o t h .
34 AC fac tor exceeded .
35 MQ f r a c t i o n is excess ive .

(See IBM 7 0 9 0 / 7 0 9 4 Reference Manual)

WHRTO L o c a t i o n t o g o t o when t r a p o c c u r s .

SET UP FOR PLOT SUBROUTINE (I T MAKES PLOT PAINLESS)

ENTRY POINTS: SETPLT, USTPLT

PURPOSE : This sub rou t ine i s des igned t o be u sed w i th t he PLOT subrou t ine
(which i s on l i b r a r y t a p e) . The PLOT subroutine produces graphs
o f t h e q u a n t i t i e s g i v e n i t by the user . (For a d e t a i l e d ex-
p l a n a t i o n , see t h e PLOT write-up.) It i s a powerful and v e r s a t i l e
t o o l , b u t is, as a r e s u l t , r a t h e r c o m p l i c a t e d and clumsy t o u s e .
It r e q u i r e s t h a t t h e u s e r make 4 e n t r i e s t o t h e s u b r o u t i n e w i t h
a t o t a l of 16 arguments, and i n o r d e r t o d e t e r m i n e t h e v a l u e s f o r
these arguments (such as t h e number o f h o r i z o n t a l l i n e s , number
of spaces be tween hor izonta l l ines , e tc .) , the user mus t do con-
s i d e r a b l e p r e c a l c u l a t i o n . The use r must a l s o know the range of
answers i n advance s o he can set t h e maximum and minimum values
f o r t h e a b s c i s s a a n d f o r t h e o r d i n a t e . T h i s is a l l work t h a t
can be done by the computer, and SETPLT is a subrout ine tha t does
i t .

FEATURES: SETPLT i n s p e c t s t h e d a t a t o b e p l o t t e d , c a l c u l a t e s t h e a r g u m e n t s ,
and then executes PLOT such t ha t :
1. All p o i n t s t o b e p l o t t e d l i e i n t h e r a n g e of the graph.
2 . Gridwork i s square .
3. Numeric l a b e l s on absc issa and ord ina te g r id l ines a re "n ice"

4 . Graph is approximately square.
5. I f t h e p o i n t s t o b e p l o t t e d h a v e a b s c i s s a a n d / o r o r d i n a t e

va lues .

va lues whose magnitude is greater than 10.P.7, the numeric
l a b e l s t o t h e g r i d l i n e s are modified by a scale f a c t o r , and
a heading is p r i n t e d o u t i n f o r m i n g t h e u s e r o f t h e s i z e of
t h e scale f a c t o r .

Y(vertica1) and /o r t he X(hor i zon ta1) d i r ec t ion (i e . a ho r i -
z o n t a l o r vertical l i n e , o r a po in t) , an appropr i a t e comment
is p r i n t e d o u t and t h e m a x i m u m and minimum values of t h e
appropr i a t e axes are a d j u s t e d s o t h a t t h e v a l u e s may be
graphed.

6. I f t h e s i z e of the g raph i s i n d e t e r m i n a t e i n e i t h e r t h e

3 . 8 4 8

RESTRICTIONS: All p o i n t s (X,Y) which are t o b e p l o t t e d m u s t b e o b t a i n e d
a n d s t o r e d i n t a b l e s b e f o r e e x e c u t i n g SETPLT.

CALLING SEQUENCES: There are two c a l l i n g s e q u e n c e s a v a i l a b l e , a r e g u l a r
and an alternate one.

REGULAR CULING SEQUENCE: User execu te s only SETPLT (o r USTPLT).
User does no t execu te PLOT.

MAD EXECUTE SETPLT.(L,XL.OC,YLOC,NUM,BCD,NCHAR,LABEL)
FORTRAN CALL SETPLT(L,XLOC,YLOC,NUM,BCD,NCHAR,NHABCD.. .)
UMAP CALL USTPLT

PAR L

PAR LABEL
o r any equ iva len t UMAP s u b r o u t i n e c a l l

ALTERNATE CALLING SEQUENCE: T h i s is f o r u s e r s who want t o u s e
"OMIT" to change t he g raph be fo re i t i s p r i n t e d , who want t o p r i n t
more than one copy of t h e g r a p h , who want t o u s e d i f f e r e n t p l o t t i n g
c h a r a c t e r s f o r d i f f e r e n t p a r t s o f t h e d a t a , o r , i n g e n e r a l , who want
t o take advantage of some o f t h e s p e c i a l f e a t u r e s o f PLOT (f o r
d e t a i l s on t h e s e s p e c i a l f e a t u r e s , see t h e PLOT write-up). When
u s i n g t h i s alternate ca l l i ng s equence , u se r execu te s SETPLT, and then
must execute PLOT3 and PLOT4 (o r FPLOT4) h imsel f .

MAD EXECUTE SETPLT . (L , XLOC ,YLOC ,NUM)

UMAP (f o r t h i s a l t e r n a t e c a l l i n g s e q u e n c e e i t h e r t h e
FORTRAN CALL SETPLT (L , XLOC ,YLOC ,NUM)

name SETPLT o r USTPLT may be used .)
CALL USTPLT,L,XLOC,YLOC,NUM
o r e q u i v a l e n t s u b r o u t i n e c a l l .

ARGUMENTS :
L

XLOC

YLOC

NUM

BCD

Non-zero i f maximum graph length i s to be one page .
Ze ro o the rwise . (In t h i s ca se , l eng th .LE. 2 pages)
L o c a t i o n o f f i r s t v a l u e o f X o r p o i n t s (X,Y) t o b e p l o t t e d
(i n t a b l e o f X v a l u e s) .
L o c a t i o n o f f i r s t v a l u e of Y o f p o i n t s (X,Y) t o b e p l o t t e d
(i n t a b l e o f Y v a l u e s) .
(These two tab les mus t be s tored backwards in s torage , as MAD
and FORTRAN do. The va lues o f X and Y s t o r e d i n t h e s e must b e
f l o a t i n g p o i n t v a l u e s .)
Number of p o i n t s t o b e p l o t t e d (e i t h e r MAD,UMAP, o r FORTRAN
i n t e g e r) .
Lef t -ad jus ted BCD(Hol1er i th) p lo t t ing charac te r .

NCHAR Number of BCD c h a r a c t e r s (i n c l u d i n g b l a n k s) i n t h e LABEL a r r ay .
LABEL Name o f a r r a y c o n t a i n i n g t h e s t r i n g o f BCD c h a r a c t e r s t o b e

p r i n t e d at l e f t edge o f ou tpu t page (l abe l fo r o rd ina te) . Must
b e s t o r e d backward when us ing MAD (u s i n g v e c t o r v a l u e s state-
ment) , or forward when us ing IJMAP (us ing BCD o r B C I b lock) .
Must b e s t o r e d 6 c h a r a c t e r s t o t h e word (C6).

3.8-69

NHABCD... For FORTRAN users, the s t r ing of characters f o r t he ord ina te
label a p p e a r s d i rec t ly i n t h e cal l ing sequence. T h e N preceed-
ing the H (specifying the H o l l e r i t h s t r ing) should be t h e same
as the value of NCHAR.

SUBROUTINES REQUIRED: .PRINT, PLOT1, PLOT2, PLOT3, PLOT4, FPLOT4, ELOG,
.01301

SAMPLE PROBLEM: T h i s p r o b l e m is the first e x a m p l e problem a t the end of
t he PLOT w r i t e - u p , r e w r i t t e n t o use SETPLT. It i s suggested that the
reader compare t h e m . B o t h MAD and FORTRAN versions are given.

$COMPILE MAD, PUNCH OBJECT PLMADOOO
R
R PROGRAM TO ILLUSTRATE PLOTTING MULTIPLE POINTS WITH MAD
R

DIMENSION X(100) , Y (100)
INTEGER N

FIRST READ FORMAT ENTR, N
READ FORMAT DATA, X (1) . . .X(N)
READ FORMAT DATA, Y (1) . . .Y(N)
PRINT FORMAT TITLE
EXECUTE SETPLT. (l , X (l) , Y (1) ,N,$*$,32,ORD)
PRINT FORMAT ABS
TRANSFER TO FIRST

R
R FORMAT STATEMENTS
R

VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
END OF

$DATA

VALUES ENTR = $I10*$
VALUES DATA =$7F10.4*$
VALUES TITLE =$lHl,S54,15HPLOT OF x vs y / 1 H *$
VALUES ABS = $1HO,S55,14HTHE ABSCISSA X *$
VALUES ORD =$ THE ORDINATE Y $
PROGRAM

THE ORDINATE

SMADTRAN, PRINT OBJECT, PUNCH OBJECT PLFTROOO
C

C
C PROGRAM TO ILLUSTRATE PLOTTING MULTIPLE POINTS WITH FORTRAN

DIMENSION X(100) ,Y (100)
1 READ INPUT TAPE 7,100, N

READ INPUT TAPE 7 , l O l , (X (I) , I = l , N)
READ INPUT TAPE 7 , 1 0 1 , (Y (I), i=I,N)

CALL S E T P L T (l , X (l) , Y (l) ,N, lH*,32 ,34H

WRITE OUTPUT TAPE 6,103
GO TO 1

. WRITE OUTPUT TAPE 6 , 1 0 2

x y 1

C
C FORMAT STATEMENTS
C

100 FORMAT (110)
101 FORMAT (7 F 1 0 . 9)
1 0 2 FORMAT (1 H 1 , 5 4 (1 H) ,15HPLOT OF X VS Y /1H)
103 FORMAT (1HO ,55 (1H) ,14HTHE ABSCISSA X)

END
$DATA

3.8-70

FLOATING POINT SINE AND COSINE

ENTRY POINTS: SIN, COS

PURPOSE: Compute COS(X) and SIN(X) for floating point argument X.

CALLING SEQUENCES:
MAD

FORTRAN

UMAP

ARGUMENTS :
X

Y
T
LOC

Y = cos. (X,LOC)

Y = cos (X)
Y = SIN. (XyLOC)

Y = SIN (X)
CALL COS
PAR XYT

CALL SIN
PAR XYT
PAR LOC
NORMAL RETURN - Y IN THE ACCUMULATOR.

NORMAL RETURN - Y IN THE ACCUMULATOR.

Argument in floating point for which the SIN(X) or COS(X)
is desired.
The resultant function of the argument X.
Optional tag.
Location for return if error detected. (This argument
may be omitted.)

ERROR CONDITION: If X .G. 6.8719477E10, the error procedure is initiated.
If LOC is given, control is returned to the caller. Otherwise, the
statement "SINCOS ARG TOO LARGE" will be printed and a dump will be
given if requested by the user. I n the dump, the original argument X
will be in -1 for SIN and the argument minus PI/2 will be in -1 for
cos.

SUBROUTINES REQUIRED: .EXIT

SKIP TAPE ROUTINE

ENTRY POINTS: SKIP

PURPOSE: Permits programmers writing in compiler languages to skip files
and records on scratch tapes with the efficiency of SKPFIL and SKPREC.

CALLING SEQUENCES:
MAD EXECUTE SKIP. (NFILES,NRECDS,NTAPE)
FORTRAN CALL SKIP (NFILES, NRECDS, NTAPE)

ARGUMENTS :
NFILES Number of files to be skipped (may be zero).
NRECDS Number of records to be skipped after skipping the requested

NTAPE Logical tape on which files and records are to be skipped.
All arguments are of integer mode.

number of files (may be zero).

SUBROUTINES REQUIRED: SKPFIL, SKPREC

3.8-71

SIMULTANEOUS LINEAR EQUATIONS

ENTRY POINTS: SLEC, SLEG, SLEM

PURPOSE: SLEC and SLEG solve the system of linear equations A * X = B by
factoring A, with interchanges, into a monic lower and an upper trian-
gular matrix. A double back-substitution with compensating interchanges
is used to complete the solution. SLEC uses subroutine CROUTP for
factoring, and SLEG uses the subroutine GAUSS. SLEM assumes the matrix
A has already been factored and performs a double back-substitution with
compensating interchanges (these interchanges are based on the vector
Y in the calling sequence).
RESTRICTION: These subroutines use BAKSUB to perform the double back-
substitution. It is thus necessary that the user check the solution for
accuracy, since BAKSUB completely neglects singularity and inconsistent
equations. Look at the restriction under subroutine BAKSUB.

CALLING SEQUENCES:
FORTRAN

UMAP

ARGUMENTS :
N
A

Z
B

Y

X

X = SLEC (N,A,Z,B,Y)
SLEG (N,A,Z,B,Y)
SLEM (N,A,Z,B,Y)

X = SLEC.(N,A,Z,B,Y)
SLEG.(N,A,Z,B,Y)
SLEM. (N,A,Z,B,Y)

CALL SLEC,N,A,Z,B,Y
SLEG,N,A,Z,B,Y
SLEM,N,A,Z,B,Y

RETURN - FLOATING-POINT SWITCH IN AC.

Integer dimension of the square matrix A.
First element of the matrix. For further information, see
the write-up for subroutine GJRDT.
For a successful return, Z will be the solution vector.
Right hand side of the system of equations. (Floating point
vector)
Interchange record from factorization subroutine. See
write-up for subroutine CROUTP.
Floating-point switch.
1. Successful computation
0. Overflow during factorization, cannot continue.
-1. Overflow during back-substitution, cannot continue.

SUBROUTINES REQUIRED: BAKSUB, CROUTP, GAUSS

3.8-72

GENERAL CONVERSION ROUTINE

ENTRY POINTS: SPREAD, GATHER, FSPRED, FGATHR

PURPOSE: T h i s r o u t i n e g i v e s the u s e r access w i t h i n c o r e t o t h e 110
conver s ion rou t ines (. IOH) normally used i n t r a n s m i t t i n g d a t a t o
and from the computer. SPREAD (FSPRED) i s u s e d t o move a reg ion
i n t o a list accord ing to a format . GATHER (FGATHR) i s used t o
c o l l e c t a l ist i n t o a r eg ion acco rd ing t o a format.

CALLING SEQUENCES:
MAD

UMAP

FORTRAN

ARGUMENTS :
REGION :

FORMAT :

EXECUTE SPREAD. (REGION ,FORMAT (THE LIST))
EXECUTE GATHER. (REGION,FORMAT, (THE LIST))
N o t e t h a t (THE LIST) r e p r e s e n t s t h e t h i r d a n d f o l l o w i n g
arguments. The l eng th o f t he LIST is a r b i t r a r y and the
pa ren theses are n o t a c t u a l l y w r i t t e n . The L I S T arguments
may be s ing le va r i ab le s , exp res s ions o r b lock pa rame te r s .
The l ist behaves as i n normal 110 excep t t ha t va lues ob ta ined
e a r l y i n t h e LIST may n o t b e u s e d l a t e r i n t h e same LIST.
CALL SPREAD CALL GATHER
PAR REGION PAR REGION
PAR FORMAT, ,1 PAR FORMAT , ,1
PAR LIST PAR LIST

OR OR
BLK LIST-3,,LIST-15 BLK LIST-7,,LIST-10

ETC. ETC.
CALL FSPRED (REGION,FORMAT, (THE LIST))
CALL FGATHR (REGION, FORMAT, (THE LIST))
Note t h a t (THE LIST) i n FORTRAN may c o n s i s t o f s i n g l e
parameters or expressions only. (Block parameters cannot
be compiled i n FORTRAN.) The l e n g t h o f t h e LIST i s
a r b i t r a r y .

Base element of area i n t o which LIST w i l l be moved or from
which LIST w i l l b e e x t r a c t e d . The process is e x a c t l y l i k e
110 e x c e p t t h a t a l l da t a r ema ins i n co re . A un i t r eco rd i s
132 c h a r a c t e r s f o r SPREAD. GATHER w i l l cons ide r t he l eng th
o f t he l ist and w i l l t r a n s m i t t h e list i n groups of 132
(or fewer) charac te rs (6 charac te rs /word) . P a r t i a l words
are f i l l e d w i t h b l a n k s .
Base element of FORMAT v e c t o r . The FORMAT i s assumed t o b e
s tored backward in bo th MAD and FORTRAN. LIMAP use r s may
i n d i c a t e t h a t t h e i r FORMAT i s s tored forward by making t h e
decrement of the FORMAT argument non-zero (see cal l ing
sequences above).

(THE LIST): L i s t arguments. See comments above. (6 charac te rs /word)

Remember t h a t a un i t r eco rd is 1 3 2 c h a r a c t e r s . I f t h e LIST i s no t
s a t i s f i e d by t h e time t h a t t h e FORMAT i s exhausted, , the next group of
words i n REGION w i l l be moved and s o on u n t i l t h e LIST i s s a t i s f i e d .
A s u s u a l t h e LIST de termines the end of the p rocess ing , ra ther than
t h e FORMAT.

SUBROUTINES REQUIRED: . I O H

3.8-73

SQLlTARE ROOT

ENTRY POINTS: SQRT

PURPOSE: Form square root of floating point number X.

CALLING SEQUENCE:
MAD Y = SQRT. (X,LOC)

UMAP CALL SQRT
FORTRAN Y = SQRT (X)

PAR X,T
PAR LOC
NORMAL RETURN - Y I N THE ACCUMULATOR.

ARGUMENTS :
X Floating point argument of which square root is desired.
Y Floating point square root of X.
T Optional tag.
LOC Location for return if error detected. (This argument may

be omitted.)

ERROR CONDITIONS: If X .L. 0, then the error procedure is initiated. If
LOC is given, control returns to the caller. Otherwise, the comment
"NEGATIVE SQRT ARG" is printed and a dump is given if requested. X
will be in the accumulator in the dump.

SUBROUTINES REQUIRED: .EXIT

HYPERBOLIC TANGENT

ENTRY POINTS: TANH

PURPOSE: Compute the hyperbolic tangent of a floating point number.

CALLING SEQUENCES:
MAD Y = TANH.(X)
FORTRAN Y = TANH(X)
UMAP CALL TANH

PAR X,T
NORMAL RETURN - Y I N THE ACCUMULATOR

ARGUMENTS :
X Floating point argument for which the hyperbolic tangent

T Optional tag.
Y Result in floating point.

is to be computed.

3.8-74

SINGLE TABLE INTERPOLATION

ENTRY POINTS: TAB

PURPOSE: Given the value of an independent argument X , perfonr, a Kth
o r d e r i n t e r p o l a t i o n o n a t a b l e o f (X(1) ,Y(I)) va lues fo r t he
corresponding dependent argument Y.

CALLING SEQUENCES:
MAD Y = TAB.(X,XT,YT,Ml,M2,K,N,SW)
FORTRAN Y = TAB(X,XT,YT,Ml,M2 ,K,N,SW)
w CALL TAB

PAR X
PAR XT
PAR YT
PAR M 1
PAR M2
PAR K
PAR N
PAR sw
NORMAT., RETURN - Y I N THE ACCUMULATOR

ARGUMENTS :
X

XT

YT

M 1

M2

K
N

sw

Y

Independent f loat ing point argument X for which the cor res -
ponding value Y is d e s i r e d .
Name o f t h e f i r s t e n t r y i n t h e t a b l e o f f l o a t i n g p o i n t
independent var iables , X(1) .
Name o f t h e f i r s t e n t r y i n t h e t a b l e o f f l o a t i n g p o i n t
dependent var iab les , Y (I) .
I n t e g r a l number of s torage loca t ion s teps be tween each
en t ry o f the independent var iab le t ab le . Normal ly M 1 = 1
when t h e v a r i a b l e s are s t o r e d i n s e q u e n t i a l l o c a t i o n s .
I n t e g r a l number of loca t ions be tween each en t ry o f the
dependent var iab le t ab le . Normal ly M2 = 1.
I n t e g r a l o r d e r o f i n t e r p o l a t i o n d e s i r e d , K .LE. 5.
I n t e g r a l number o f e n t r i e s i n t h e i n d e p e n d e n t v a r i a b l e t a b l e
(number o f p a i r s (X (1) , Y (I))) .
F loa t ing po in t computa t ion swi tch .
SW = 1.0 Normal r e t u r n , i n t e r p o l a t i o n s u c c e s s f u l .
SW = 2.0 AC o r MQ overflow o r under f low or d iv ide check -

Floa t ing po in t dependen t va r i ab le , t he i n t e rpo la t ed va lue
f o r t h e i n d e p e n d e n t v a r i a b l e X.

e r r o r r e t u r n .

3.8-75

SQUARE MATRIX TRANSPOSITION

ENTRY POINTS: TRANS

PURPOSE: Transpose a s q u a r e matrix.

CALLING SEQUENCES:
MAD EXECUTE TRANS. (A,N)
UMAP C&L TRANS

BLK A, YD
PAR N
NORMAL RETURN

ARGUMENTS :
A The name o f t he squa re a r r ay t o be t r ansposed . Fo r UMAP

N The i n t e g e r d e g r e e o f t h e s q u a r e a r r a y .
D The name of t h e d i m e n s i o n v e c t o r f o r t h e a r r a y t o b e

ca l l s , t h e matrix mus t be s to red acco rd ing t o MAD r u l e s .

t ransposed . This vec tor mus t be set up acco rd ing t o
MAD r u l e s .

ARBITRARY MATRIX TRANSPOSITION

ENTRY POINTS: TRANSl

PURPOSE: Transpose an a rb i t r a ry ma t r ix .

CALLING SEQUENCES:
MAD EXECUTE TRANS1. (A,M,N,B)
UMAP CALL TRANSl

PAR A
PAR M
PAR N
PAR B
NORMAL RETURN

ARGUMENTS :
A F i r s t e l e m e n t o f t h e a r r a y t o b e t r a n s p o s e d . T h i s must be

M The i n t e g e r number of rows i n t h e a r r a y .
N The i n t e g e r number of columns i n t h e a r r a y .
B Tempora ry s to rage r eg ion t o be f u r n i s h e d by t h e c a l l of

a backwards-stored (MAD type) a r r ay .

l e n g t h at least (M*N-2) /36 + 1.

. .

3.8-76

CONVERGENCE TESTING ' I N ITERATION SUBROUTINES

Since many ques t ions have a r i s en conce rn ing t he conve rgence t e s t ing i n
t h e i n t e r a t i o n s u b r o u t i n e s , t h i s e x p l a n a t i o n is being added. UITR1 ,
UITR2, and UITR3 u s e e s s e n t i a l l y t h e same tests for convergence.

1.

2 .

3 .

TEST 1 - R e l a t i v e T e s t .
This test al lows a spec i f i ed pe rcen tage o f e r ro r . It is e s p e c i a l l y
u s e f u l when the magni tude of the root is n o t known. For i n s t ance ,
i f an absolu te t es t were used and an EPS of .01 were used, a r o o t
nea r 1,000,000 would probably never pass the test . However, t h i s
r e l a t i v e test cannot be used to t es t f o r a root of 0 .
The test i s of the fonn

When /X(I)/ .G. EPS1, TEST 1 w i l l be used.

TEST 2 - Absolute Test .
This test is usua l ly u sed fo r a r o o t n e a r z e r o , b u t may b e d e s i r a b l e
in o t h e r c a s e s .

The tes t i s of the form

When /X(I) / .LE. EPS1, TEST 2 w i l l be used.

USE.
A . R e l a t i v e Test.

/(X(I)-X(1-l))/X(I)/.LE. EPSl

/X(I)-X(1-1) / .LE. EPS2

I f a r e l a t i v e test is d e s i r e d , EPS2 w i l l not be used unless
t h e r o o t becomes less than EPS1.
Examples E P S l = .0001

EPS2 = .00001
When X(1) .G. .0001, t h e t es t is /(X(I)-X(1-l))/X(I)/.LE..OOOl
When X(1) .LE..0001, t h e a b s o l u t e t es t i s u s e d . /X(I)-X(1-l)/.LE. .00001.
B. Absolute Test.

An a b s o l u t e t e s t w i l l be used whenever /X(I)/ .LE. EPS1.
Example EPSl = 2,000,000

EPS2 = .0001
When X(1) .LE. 2 ,000,000 the tes t w i l l be /X(I)-X(1-l)/.LE. .0001.

3.8-77

SINGLE ITERATION

ENTRY POINTS: UITR1, UITRlA

PURPOSE: Given X = F(X), to find a value of X within a given epsilon
Of error. If F(X) contains an iteration, this subroutine is not
recommended.

CALLING SEQUENCES:
MAD EXECUTE UITR1. (X,EPSl ,EPS2 ,K) (SET UP)

S X = F. (X)
I = UITRlA. (X)

FORTRAN CALL UITRl(X,EPSl,EPSZ,K) (SET UP)
J X = F(X)

I = UITRlA(X)

PAR X
PAR EPSl
PAR EPS2
PAR K
NORMAL RETURN

A COMPUTE X = F(X)

UMAP CALL UITRl (SET UP)

CALL UITRlA
PAR X
NORMAL RETURN - I IN THE ACCUMULATOR.

ARGUMENTS :
X The name of the floating point argument in the equation X = F(X).

X contains an initial guess at the time of execution of UITR1.
EPSl Floating point epsilon values for the error tests. (See UITR,
EPS2 convergence tests for iteration subroutines.)

If /F(X(N))/.G. EPSl then the test /(F(X(N))-X(N))/F(X(N))/.LE.
EPSl is used for convergence. If /F(X(N))/.LE.EPSl, then the
test / F (X (N)) - X (N) / .LE. EPS2 is used. X(N) is the Nth
iteration value.

K Integer maximum number of iterations.
S,J,A Statement label, statement number, symbolic address, rexpec-

tively, of that portion of the program where the function
X = F(X) is calculated. Entry into UITRlA is expected after
computation of the function.

I = 1.0 Another iteration is required, recompute the function

I = 2.0 Normal return, the solution value is in X.
I = 3.0 Error return, the ratio A is one, where

I = 4.0 Error return. The specified number of iterations

I Computation switch (floating point)

Z = F(X) and return to UITRlA.

A = (F(X(N))-F(X(N-l)))/(X(N)-X(N-l)).

has been exceeded.

NOTE : For a discussion of the convergence tests utilized in UITR1,
see the write-up entitled "CONVERGENCE TESTING IN ITERATION SUBROUTINES.''

3.8-78

SINGLE ITERATION - INTERVAL HALVING

ENTRY POINTS: UITR2, UITR2A

PURPOSE: Given F(X) = 0 t o f i n d a v a l u e f o r X w i t h i n a g i v e n e r r o r i n a
s p e c i f i e d i n t e r v a l (A,B).

CALLING SEQUENCES:
MAD

FORTRAN

UMAP

ARGUMENTS :
A
B
DELX

EPSl
EPS 2
K
X

F

I

NOTE :

EXECUTE UITR2.(A,DELX,B,EPSl,EPS2
I = UITR2A. (F)
CALL UITR2(A,DELXyB,EPS1,EPS2,K,X
I = UITR2A(F)
CALL UITR2
PAR A
PAR DELX
PAR B
PAR EPSl
PAR EPS2
PAR K
PAR X
NORMAL RETURN
COMPUTE F
CALL UITR2A
PAR F
NORMAL RETURN - I I N THE ACCUMULATOR

F loa t ing po in t l ower limit o f t h e i n t e r v a l (A,B).
F loa t ing po in t uppe r l i m i t o f t h e i n t e r v a l (A,B).
The i n t e r v a l (A , B) is stepped across f rom A , i n i nc remen t s o f
DELX, u n t i l a change o f s ign occu r s i n t he func t ion F (X) . Then
t h i s i n t e r v a l is halved a s p e c i f i e d number o f times u n t i l t h e
r o o t is found o r t h e i t e r a t i o n c o u n t i s exceeded. DELX i s
f l o a t i n g p o i n t .
Eps i lon va lues for convergence tests.
(See U I T R l write-up.)
I n t e g e r number o f i t e r a t i o n s t o b e a l l o w e d .
F loa t ing po in t i ndependen t va r i ab le . X is t h e d e s i r e d r o o t
a f t e r s u c c e s s f u l e x e c u t i o n o f t h e s u b r o u t i n e .
I n FORTRAN and MAD, t h e f l o a t i n g p o i n t e x p r e s s i o n whose va lue
i s F(X). In UMAP, F is t h e l o c a t i o n o f t h e v a l u e o f t h i s f u n c -
t i o n . F must be computed before i n i t i a l e n t r y i n t o UITR2A.
Computation switch - f l o a t i n g p o i n t .
I = 1.0 N e w i t e r a t i o n r e q u i r e d . I n MAD o r FORTRAN, r e t u r n t o
UITRZA. I n UMAP, recompute the funct ion F and then re turn
t o UITR2A.
I = 2.0 The i n t e r v a l (A,B) has been completely scanned and no
r o o t was found.
I = 3.0 Number o f i t e r a t i o n s (K) exceeded without meet ing the
t h e test. The cur ren t approximate of t h e r o o t is i n X.
I = 4.0 Normal re turn , computa t ion successfu l .

For a d i s c u s s i o n o f the convergence tests u t i l i z e d i n UITRZ,
see t h e w r i t e - u p e n t i t l e d "CONVERGENCE TESTING I N ITERATION
SUBROUTINES. 'I

3.8-79

SIMULTANEOUS ITERATION

ENTRY POINTS: UITR3, UITR3A

PURPOSE: Given a set of s imultaneous equat ions of the form
X(1) = F(1) (X(1) ,X(2), . . . ,X(N))

X ' (N) = F(N) (X(1) ,X(2), . . . ,X(N))

...
t o f i n d t h e v a l u e s o f X(1) wi th in a given margin of error . The method
and execution of UITR3 c o r r e s p o n d s t o t h a t o f U I T R l e x c e p t f o r t h e
number of equa t ions .

CALLING SEQUENCES:
MAD EXECUTE UITR3.(N,K,X,EPS) (SET UP)

I = UITR3A. (0) (EXECUTION)

I = UITR3A(O) (EXECUTION)

PAR N
PAR K
PAR X
PAR EPS
NORMAL RETURN - I I N THE ACCUMULATOR.
CALL UITR3A (EXECUTION)
PAR
NORMAL RETURN - I I N THE ACCUMULATOR.

FORTRAN CALL UITR3(NyK,X,EPS) (SET UP)

w CALL UITR3 (SET U P)

ARGUMENTS :
N I n t e g e r number of equat ions.
K I n t e g e r number of i t e r a t i o n s t o b e u s e d .
X The f i r s t e l e m e n t o f a f l o a t i n g p o i n t v e c t o r o f l e n g t h a t l e a s t

4 N + 2 i n which the X(1) are s tored. The vec to r con ta ins t he
i n i t i a l g u e s s e s i n t h e f i r s t N l o c a t i o n s on e n t r y i n t o UITR3A.
The answers , of course, appear in the f i rs t N l o c a t i o n s of t he
X v e c t o r a f t e r s u c c e s s f u l e x e c u t i o n of the subrout ine .

and EPS2(I) are s tored to be used for the convergence tests.
For any of the given variables X(I), the EPSl(1) and EPS2(I)
c o r r e s p o n d t o t h e EPSl and EPS2 i n UITR1. The e p s i l o n s a r e
s t o r e d i n o r d e r E P S l (1) ,EPS2(1) ,EPS1(2) ,EPS2(2) , . . . ,
EPSl (N) ,EPS2 (N) .
I = 1.0 Successful computat ion - t h e s o l u t i o n s are i n t h e f i r s t

I = 2.0 E r r o r r e t u r n - t h e r o o t s are unobtainable . The N+1

EP S The f i r s t e l e m e n t o f a f l o a t i n g p o i n t v e c t o r i n which EPSl(1)

I Computation switch - f l o a t i n g p o i n t .

l o c a t i o n s o f t h e X vec to r .

l o c a t i o n of t h e X vec to r w i l l be 1 .0 i f t h e i t e r a t i o n
count i s exceeded, and i t w i l l be 2.0 i f t h e s l o p e of
t h e f u n c t i o n i s un i ty . The N+2 l oca t ion o f t he X
v e c t o r c o n t a i n s t h e number o f t he equa t ion i n which
t h e t r o u b l e o c c u r r e d i n f l o a t i n g p o i n t .

I = 3.0 Compute t h e f i r s t f u n c t i o n , F (l) , a n d r e t u r n t o UITR3A.
I = 4.0 Same as 3.0.
I = 5.0 Compute the s econd func t ion , F (2) , and r e tu rn t o UITR3A.
I = 6.0 Same as 5.0.

I = 1.0+2.O*N Compute t h e Nth func t ion and r e t u r n t o UITR3A.
I = 2.0+2.0*N Same as I = 1.0+2.0*N.

. . .

NOTE: For a discussion of the convergence tests u t i l i z e d i n UITR3, see
t h e w r i t e - u p e n t i t l e d "CONVERGENCE TFSTING I N ITERATION SUBROUTINES."

3.8-80

VARIABLE PRECISION INTEGER ARITHMETIC

ENTRY POINTS : SETUP , CONVRT , ADD , SUB , MPY , DIV , RMNDR , RECNVT , IF
PURPOSE: These sub rou t ines a l low the execu t ion o f a r i t hme t i c on i n t e g e r s

whose v a l u e s r a n g e t o a maximum of from -1O.P.500 t o lO.P.500.

USE: The integers each occupy up t o a maximum of 50 words of storage. They
are t o b e r e a d i n u s i n g t h e f o r m a t s p e c i f i c a t i o n MI10, where M is t h e
number of I 1 0 f i e l d s n e e d e d t o c o n t a i n t h e i n t e g e r . The i n t e g e r , on the
i n p u t c a r d , m u s t b e r i g h t - j u s t i f i e d i n t h o s e MI10 f i e l d s , and t h e r e must
be no blanks between any of t h e d i g i t s . The subrou t ine "SETUP" sets t h e
p r e c i s i o n o f t h e a r i t h m e t i c and t h e p r e c i s i o n o f t h e i n p u t . The sub-
r o u t i n e "CONVRT" t hen conve r t s t hese r ad ix 10.P. 10 i n t e g e r s t h a t were
r e a d i n t o r a d i x 2.P.35 i n t e g e r s s o a r i t h m e t i c c a n b e done on them
(i . e . , i t packs them). The subrou t ines "ADD," ''SUB," "MPY , ""DIV, It and
"RMNDR" a r e a v a i l a b l e to do a r i t h m e t i c on t h e i n t e g e r s . The subrou t ine
"IF" tests an i n t e g e r i n a manner similar t o a FORTRAN "IF" s ta tement .
The subrou t ine "RECNVT" c o n v e r t s t h e i n t e g e r s b a c k t o r a d i x 1O.P.10 so
they can be p r in ted ou t wi th I10 formats . See the example program a t
t h e end of t h i s w r i t e - u p .

CALLING SEQUENCES:
MAD EXECUTE SETUP. (N ,M)

EXECUTE CONVRT.(A)
EXECUTE RECNVT. (A,Z)
EXECUTE ADD.(A,B,C)
EXECUTE SUB.(A,B,C)
EXECUTE MPY. (A,B,C)
EXECUTE DIV.(A,B,C)
EXECUTE RMNDR.(A,B,C)
K = IF. (A)

CALL CONVRT (A)
CALL RECNVT (A , Z)

CALL SUB(A,B,C)
CALL MPY(A,B,C)
CALL DIV(A,B,C)
CALL RMNDR(A,B,C)
CALL IF(A,L)

CALL CONVRT , A
CALL RECNVT ,A, Z
CALL ADD,A,B,C
CALL SUB,A,B,C
CALL MPY ,A,B,C
CALL DIV,A,B,C
CALL RMNDR,A,B,C
CALL IF ,A "_" RETURN WITH K IN THE ACCUMULATOR.

FORTRAN CALL SETUP (N ,M)

CALL ADD(A,B,C)-

UMAP CALL SETUP,N,M

3-8-81

VARIABLE PRECISION INTEGER ARITHMETIC (CONTINUED)

ARGUMENTS: A l l arguments and funct ion re turns are i n t e g e r s .
N One less t h a n t h e p r e c i s i o n of t h e arithmetic d e s i r e d .

(P r e c i s i o n is t h e number of s torage words each in teger can
occupy.)

M One less t h a n t h e p r e c i s i o n o f t h e i n p u t v a l u e s b e f o r e u s i n g
CONVRT. Must have 0 .LE. M .LE. N

DIMENSION o r UMAP BTS s t a t e m e n t s (i .e . , backwards vectors) .
The a c t i o n of t h e s u b r o u t i n e s is:

A,B,C Vectors at least N+1 loca t ions long reserved by MAD o r FORTRAN

ADD C = A + B
S UB C = A - B
MPY C = A * B
D I V C = A / B
RMNDR C = Remainder of A 1 B

MAD o r FORTRAN DIMENSION o r UMAP BTS s ta tements .

f u l l word i n t e g e r

2 Vector a t least N + 1 +((N+1)/16) locat ions long reserved by

L,K I n t e g e r s r e t u r n e d by ' I F ' . L i s FORTRAN-type i n t e g e r , K i s

I f A.L.0 then K , L = 1
I f A.E.0 then K,L = 2
I f A.G.0 then K,L = 3

ERROR COMMENTS: There are t h r e e e r r o r comments p o s s i b l e . They cover ADD,
SUB, o r MPY r e s u l t s o u t o f r a n g e and a t tempted divis ion by zero.
Cont ro l i s t r a n s f e r r e d t o .EXIT immediately.

Adapted from Share Distribution No. 1293.

SUBROUTINES REQUIRED: .EXIT

EXAMPLE: This example is w r i t t e n i n MAD. It r e a d s i n two numbers, A and B ,
adds them, and i f t h e sum i s g r e a t e r t h a n zero, d i v i d e s i t by 2. F i n a l l y ,
t h e r e s u l t is p r i n t e d o u t . N o t e t h e f a c t t h a t a b s o l u t e c o n s t a n t s a r e
no t t o be u sed as arguments to CONVRT, as CONVRT expec ts as an argument
a v e c t o r whose c o n t e n t s i t can change.

NORMAL MODE I S INTEGER
DIMENSION A(20) ,B(20) ,X(20) ,TW0(20)
READ DATA N , M
SETUP. (N,M)
READ FORMAT $711O*$,A(M). . .A(O) ,B(M). . .B(O)
CONVRT . (A)
CONVRT . (B)
TRANSFER TO S(IF. (A))

TWO=2
CONVRT . (TWO)
D I V . (A,TWO,A)

s (3) SETUP. (N ,))

s (1) CONTINUE
S(2) RECNVT. (A,X)

PRINT FORMAT OUT ,X(N+l) . . .X(O)
VECTOR VALUES OUT = $lH0,20110*$
END OF PROGRAM

3.8-82

ZEROS OF A COMPLEX POLYNOMIAL

ENTRY POINTS: ZER2, ZER3, ZER4, ZER5, ZER6

PURPOSE: F ind t he ze ros o f a po1,ynomial with complex coeff ic ients which
i s o f a r b i t r a r y d e g r e e , e v a l u a t i n g b o t h real and complex zeros.
R o o t s o f m u l t i p l i c i t y g r e a t e r t h a n two are genera l ly unobta inable .

CALLING SEQUENCES:
MAD M = ZER2. (N,A,R)
FORTRAN M = ZER2 (N,A,R)
UMAP CALL ZER2

PAR N
PAR A
PAR R
NORMAL RETURN - M I N THE ACCUMULATOR.

ARGUMENTS:
N
A

R

M

An in t ege r spec i fy ing t he deg ree o f t he po lynomia l .
F i r s t e l emen t o f a f l o a t i n g p o i n t v e c t o r w i t h t h e co-
e f f i c i e n t s of the po lynomia l s tored a s fo l lows . Assume
the polynomial to be of the fol lowing form:

Then, f i r s t e l e m e n t o f A i s t h e r e a l component of A(0).
Second element of A i s the imaginary component of A(0).
Third element of A i s t h e real component of A(1).

(2N+2)th element o f A i s the imaginary component of A(N).
F i r s t e l e m e n t f o r a f l o a t i n g p o i n t a r r a y which ZER2 w i l l
set t o t h e r o o t s o f t h e p o l y n o m i a l , t h e f i r s t e l e m e n t b e i n g
t h e real p a r t of one roo t , t he s econd e l emen t be ing t he
imaginary par t o f the same r o o t , . . . , the (2N)th e lement i s
the imag ina ry pa r t o f t he Nth r o o t .
Computation switch - f l o a t i n g p o i n t .
M = 1.0 Normal r e t u r n . The r o o t s a r e s t o r e d i n R a s

described above.
M = 2 . 0 E r r o r r e t u r n . Arguments are out of range. AC

o r MQ overflow.
M = 3.0 E r r o r r e t u r n . I m p o s s i b l e t o l o c a t e t h e r o o t s w i t h i n

t h e a l l o t e d number of i t e r a t i o n s (2 5) .
M = 4 . 0 E r r o r r e t u r n . F i r s t d e r i v a t i v e o f p o l y n o m i a l a t

X = X(1) is z e r o o r t h e c o e f f i c i e n t o f X.P.N. i s
zero. (Where X(1) i s t h e I t h v a l u e of X i n t h e
i t e r a t i o n) i . e . , d i v i s i o n by zero has occurred.

P(X) = A(O)X.P.N+A(l)X.P.N-l+A(2)X.P.N-2+. . .+A(N-l)X+A(N)

...

SPECIAL FEATURES: The s p e c i a l f e a t u r e s of ZER2, d i s c u s s e d i n t h i s s e c t i o n ,
are not o rd ina r i ly needed . They are a v a i l a b l e , h o w e v e r , i f d i f f i c u l t i e s
develop.

1. For each en t ry t o ZER2, a c o u n t e r f o r t h e number o f i t e r a t ions a l lowed
is se t t o 2 5 . T h i s i n i t i a l v a l u e may b e m o d i f i e d p r i o r t o e n t e r i n g
ZER2 by s p e c i f y i n g t h e d e s i r e d number o f i t e r a t i o n s w i t h t h e s t a t e m e n t :

3.8-83

ZEROS OF A COMPLEX POLYNOMIAL (CONTINUED)

2 .

3 .

4.

5.

MAD EXECUTE ZER3. (I)

UMAP CALL ZER3,I
FORTRAN CALL ZER3 (I)

where I c o n t a i n s t h e new i t e r a t i o n c o u n t (i n t e g e r) .

A s u c c e s s i o n o f t h r e e t r i a l i n i t i a l a p p r o x i m a t i o n s is a l lowed for each
r o o t i n ZER2. I f t he coun t is e x c e e d e d w i t h t h e f i r s t of t h e s e , t h e
second is t r i e d -- i f t h e s e c o n d a l s o f a i l s , t h e t h i r d is t r i e d . Only
i f t h e t h i r d a l s o f a i l s is a n e r r o r r e t u r n g i v e n . The t h r e e trial
approximations are A+IA, A+IB, Ai-IC where A=1.0, B=10.0, C = l G O . O . The
q u a n t i t i e s A , B , C may be modif ied by the fol lowing s ta tement:

MAD EXECUTE ZER4. (A,B,C)

UMAP CALL ZER4,A,BYC
FORTRAN CALL ZER4 (A , B , C)

where
A+IA = Fi r s t app rox ima t ion .
A+IB = Second approximation.
A+IC = Third approximation.

I n ZER2, i f t h e d i f f e r e n c e b e t w e e n s u c c e s s i v e a p p r o x i m a t i o n s t o t h e
r e a l and imaginary par ts i s l e s s t h a n 2.P.-K t i m e s t h e l a r g e r of t h e
c h a r a c t e r i s t i c s o f t h e a p p r o x i m a t i o n s - corresponding to a d i f f e r e n c e
i n t h e (27-K) l e a s t s i g n i f i c a n t b i t s of t he man t i s sa - convergence i s
i n d i c a t e d . ZER2 assumes K=25. Th i s t o l e rance may be a l t e r e d by
s p e c i f y i n g a new K as i n d i c a t e d i n t h e c a l l i n g s e q u e n c e s i n t h e n e x t
s e c t i o n .

An e s s e n t i a l z e r o of 10E-9 i s used by ZER2 and may be changed t o some
o t h e r v a l u e i f d e s i r e d . When e i t h e r t h e r e a l o r t h e i m a g i n a r y
component of any approximant becomes less t h a n t h e e s s e n t i a l z e r o i n
e f f e c t , i t i s rep laced by an a c t u a l z e r o . T h i s e s s e n t i a l z e r o may be
any quan t i ty g rea t e r t han 10E-19 - a s m a l l e r e s s e n t i a l z e r o g e n e r a l l y
l eads t o accumula to r unde r f low. Th i s man t i s sa t e s t and t h e e s s e n t i a l
zero may be modif ied by the fo l lowing s ta tement :

MAD EXECUTE ZER5.(K,S)

UMAP CALL ZERS,K,S
FORTRAN CALL ZER5 (K ,S>

where
K = I n t e g e r number f o r t h e m a n t i s s a t o l e r a n c e test and

S = F l o a t i n g p o i n t number f o r e s s e n t i a l z e r o .
must be greater than zero and less than 27.

It is p o s s i b l e t o trace the success ive approx ima t ions t o t he roo t s
and note their convergence. The approximations come i n sets of four
p a r t s . The f i r s t p a r t is t h e real component of t h e f i r s t o r p r e v i o u s
approximation. The second par t i s the imaginary member of t h e same
approximation. The t h i r d p a r t i s t h e real component of t h e c u r r e n t
approximat ion fo l lowing the f i r s t o r p rev ious approximat ion . The
f o u r t h p a r t is the imag ina ry member of t h e same approximation. These
approximations are obta ined by the fo l lowing s t a t emen t :

3.8-84

ZEROS OF A COMPLEX POLYNOMIAL (CONTINUED)

MAD EXECUTE ZER6. (C)

UMAP CALL ZER6 ,C
FORTRAN CALL ZER6 (C)

where C d e n o t e s w h e r e t o s t o r e t h e set of approximants - they are
s t o r e d b a c k w a r d s i n c o r e s t a r t i n g a t C. The r e t u r n M from ZER2 w i l l
be 1.0, 2.0, 3,0, o r 4.0 for normal and e r ror re turns (as p rev ious ly
d e s c r i b e d) o r M w i l l be 5.0 t o i n d i c a t e a r e t u r n w i t h a new set of
a p p r o x i m a n t s s t o r e d i n C. As each new set is obtained from ZER6, t he
prev ious set s t o r e d at C i s des t royed . T o c o n t i n u e t h e i t e r a t i o n f o r
t h e r o o t s , c o n t r o l mus t be t r ans fe r r ed back t o t he ca l l i ng s equence
f o r ZER2. T o s top t ak ing t he approx ima tes , t he fo l lowing s t a t emen t
should be given:

MAD EXECUTE ZER6 (0)

UMAP CALL ZER6,=O
FORTRAN CALL ZER6 (0)

The c a l l i n g s e q u e n c e o f t h e s p e c i a l f e a t u r e s a f f e c t s o n l y t h e items
s p e c i f i e d - no computations are pe r fo rmed un t i l t he sub rou t ine i s
e n t e r e d i n t h e n o r m a l m a n n e r (i . e . , v i a a c a l l f o r ZER2). Once the
r o u t i n e i s m o d i f i e d f o r o n e o r m o r e o f t h e s p e c i a l f e a t u r e s , i t re-
mains i n t h a t s t a t e u n t i l r e s t o r e d by t h e u s e r . A r e t u r n t o t h e
n e x t i n s t r u c t i o n o c c u r s a f t e r e a c h o f t h e s e s p e c i a l f e a t u r e e n t r i e s .

STORE CONSTANT

ENTRY POINTS : ZERO, SPRAY

PURPOSE: ZERO S t o r e s z e r o .
SPRAY S t o r e s a r b i t r a r y c o n s t a n t .

CALLING SEQUENCES:
MAD EXECUTE ZERO.(Ll ,L2 , , LN)
UMAP CALL ZERO

L 1
L 2

LN

ARGUMENTS :
The L I are standard argument list elements of the form
MAD A...B o r A
UMAP BLK A , , B o r PAR A .
SPRAY is c a l l e d e x a c t l y as ZERO excep t t ha t t he f i r s t a rgumen t i s a
s i n g l e c o n s t a n t (i n MAD) o r t h e l o c a t i o n o f a s i n g l e c o n s t a n t
(i n UMAP) which i s t o be s to red i n s t ead o f ze ro .

3.8-85

1/0 SUBROUTINES

I. INTRODUCTION.
Th i s wr i t e -up desc r ibes t he u sage and t he s t ruc tu re , bu t no t t he i n t e r -
connec t ion of the 1/0 r o u t i n e s t h a t p r o v i d e c o n v e r s i o n v i a a format.
For a d e s c r i p t i o n o f t h e i n t e r c o n n e c t i o n , see Appendix V I o f t h i s s e c -
t ion . This wr i te -up assumes t h a t t h e r e a d e r is acquainted with MAD
and/or UMAP.

11. 1/0 SUBROUTINE CALLING SEQUENCES.
I n t h i s s e c t i o n , t h e means o f c a l l i n g on t h e 1/0 subrou t ines from MAD
and UMAP are g i v e n . I n t h e case of MAD, only the s ta tement type i s
given. Details may be found i n t h e MAD MANUAL. I n t h e c a s e o f UMAP,
only one of the numerous ways t o write t h e s u b r o u t i n e c a l l is given.
For f u r t h e r d e t a i l s , see t h e UMAP wr i t e -up i n t h i s manua l . No te t ha t
i n UMAP, the pseudo-operat ions IOP, FMT, TAPENR and E N D I O a l l t r ans -
l a t e as STR.
A . GENERAL STRUCTURE OF THE MAD/UMAP CALLING SEQUENCES.

1. The f i rs t word is a TSX v i a i n d e x r e g i s t e r 4 t o t h e 1 /0

2 . I f a t ape number must be spec i f i ed , t he add res s o f t he nex t
r o u t i n e . E . G . , TSX .PRINT,4.

STR s p e c i f i e s t h e t a p e number as a f u l l word i n t e g e r . E.G. ,
STR = 4 .

3 . The next STR can be of two types . I f the decrement i s g r e a t e r
than 1, i t i s assumed t o be type 11. Otherwise, i t i s assumed
t o be type I.
TYPE I Address i s the location of format. Decrement i s t h e

d i r e c t i o n i n which the format i s s t o r e d i n c o r e .
(0 means forward, 1 means backward.)

Tag i s t h e d i r e c t i o n i n which the format i s s t o r e d i n
co re . (0 means forward, 1 means backward.) Decrement
is the l oca t ion o f fo rma t .

TYPE I1 Address is the loca t ion of symbol t ab le .

Typica l UMAP usage is J?MT FORM. MAD t y p i c a l l y g e n e r a t e s what
could be wri t ten in assembly code as

Type IT. usage is necessa ry on ly i f f o rma t va r i ab le s are used.

l ist s t r u c t u r e s f o r a d i s c r i p t i o n .)

is t h e s i g n a l f o r t e r m i n a t i o n of t he ca l l i ng s equence .

STR STLOC,l,FORM.

4 . The fo l lowing word(s) conta in the l i s t . (See t he s ec t ion on

5. The las t word i s a STR with zero address and decrement. This

I n MAD, t h e c a l l i n g s e q u e n c e is set up i n t h i s form by t h e t r a n s -
l a t o r . I n UMAP, t h e u s e r i s r e s p o n s i b l e f o r p u t t i n g t h e c a l l i n g
s e q u e n c e i n t h e c o r r e c t form.

1. Reading cards from system input tape.
B. SPECIFIC CALLING SEQUENCES.

MAD- 'READ FORMAT '
UMAP - CALLI0 .READ

F'MT FORMAT
(LIST)

ENDIO

3.8-86

110 SUBROUTINES (CONTINUED)

Th i s sub rou t ine causes BCD in fo rma t ion t o be r ead f rom the
sys t em inpu t t ape and conve r t ed t o b ina ry , acco rd ing t o t he
f o r m a t s p e c i f i c a t i o n . S i n c e it is w r i t t e n on t h e i n p u t t a p e
i n card- image form, the format specif icat ion may no t desc r ibe
more than 80 columns. I f an end-of-f i le i s found (i . e . , n o
more d a t a c a r d s) , t h e j o b w i l l be terminated (unless SETEOF has
been execu ted . See t he wr i t eup fo r SETEOF i n t h i s s e c t i o n o f
the manual) .

2 . P r i n t i n g l i n e s on system output tape.
MAD - ' PRINT FORMAT '
UMAP - CALLIO .PRINT

FMT FORMAT
(LIST)

E N D I O
This subrout ine causes the b inary in format ion ind ica ted by
t h e l i s t t o b e c o n v e r t e d t o BCD according to the format and
wr i t t en on t he sys t em ou tpu t t ape as l i n e s t o b e p r i n t e d .
S ince t he i n fo rma t ion is wr i t t en i n l i ne - image form on t h e
t a p e , t h e f o r m a t s p e c i f i c a t i o n may n o t d e s c r i b e more than
132 columns per line.

3 . Looking a t cards f rom system input tape.
MAD - 'LOOK AT FORMAT'
UMAP- CALLIO .LOOK

FMT FORMAT
(LIST)

E N D I O
This is t h e same as reading cards , bu t wi thout go ing pas t the
card. Hence, the next time a 'READING CARDS' o r 'LOOKING AT
CARDS' 110 c a l l is p rocessed , t he same ca rd w i l l be aga in
t r ansmi t t ed . The format given can only specify one card. I f
more than one i s s p e c i f i e d (v i a o n e o r more s l a s h e s i n t h e
format o r format terminat ion with list u n s a t i s f i e d) , e a c h
i n s t r u c t i o n t o g e t a new ca rd causes t he same ca rd t o be
rescanned .
MAD- 'PUNCH FORMAT'
UMAP- CALLIO .PUNCH

FMT FORMAT
(LIST)

4 . Punching cards on system punch tape.

ENDIO
Th i s sub rou t ine causes t he b ina ry i n fo rma t ion i nd ica t ed by
t h e l ist t o b e c o n v e r t e d t o BCD according to the format and
w r i t t e n on the sys tem punch tape as cards to be punched.
S ince in format ion is w r i t t e n i n card-image form on the tape,
t h e f o r m a t s p e c i f i c a t i o n may no t desc r ibe more than 80 columns.

3.8-87

1/0 SUBROUTINES (CONTINUED)

5. Reading tape (input f rom a rb i t ra ry t ape) .
MAD- 'READ BCD TAPE N '
UMAP CALLIO .TURD

TAPENR =N
FMT FORMAT

(LIST)
ENDIO

Th i s sub rou t ine causes BCD in fo rma t ion t o be r ead from t h e
s p e c i f i e d t a p e u n i t a n d c o n v e r t e d t o b i n a r y form according
t o t h e f o r m a t . I n t h e "OS sys t em, t he on ly t ape un i t s
t h a t c a n b e s p e c i f i e d f o r t h i s s u b r o u t i n e are 2,3,4,7,9,10
and 11. Tape 7 is t h e i n p u t t a p e , a n d t h e o t h e r s are
a v a i l a b l e as s c r a t c h t a p e s . I f t a p e 7 i s s p e c i f i e d , t h e
format may no t desc r ibe more than 80 columns. For other
t apes t he fo rma t may n o t d e s c r i b e more than 132 columns.
I f an end-o f - f i l e i s encountered dur ing reading tape , the
j o b w i l l be t e rmina ted un le s s t he sub rou t ine SETEOF has
been executed. See t h e SETEOF w r i t e - u p i n t h i s manual.

MAD- 'WRITE BCD TAPE N '
UMAP CALLIO .TAPWR

TAPENR =N
E'MT FORMAT

(LIST)

6. Wri t ing tape (output on a r b i t r a r y t a p e) .

ENDIO
Th i s sub rou t ine causes t he b ina ry i n fo rma t ion i nd ica t ed by
t h e list t o b e c o n v e r t e d t o BCD form according to the format
and w r i t t e n on t h e s p e c i f i e d t a p e u n i t . I n t h e "OS system,
the on ly t ape un i t s t ha t can be spec i f i ed fo r t he sub rou t ine
are 2,3,4,5,6,9,10,11. Tape 6 i s the p r in t ou tpu t t ape .
I n f o r m a t i o n w r i t t e n on i t w i l l be p r in ted on t h e o f f - l i n e
pr inter , and, hence, the format must not specify more than
132 columns. Tape 5 i s t h e punch output tape. Information
w r i t t e n on i t w i l l be punched on cards and , hence , the
format must not specify more than 80 columns. For t h e o t h e r
tapes , the format must not specify more than 132 columns. If
the end of t ape i s encountered dur ing wr i t ing , the t ape i s
rewound, a comment i s p r i n t e d t o t h e o p e r a t o r , and t h e compu-
t e r s t o p s t o a l l o w t h e t a p e t o b e r e p l a c e d . The wr i t i ng o f
i n fo rma t ion con t inues on t he new tape (wi thout l o s s of
in format ion) . This p rocedure can be modi f ied by u s i n g t h e
s u b r o u t i n e SETETT. See the SETETT write-up i n t h i s manual.

7 . P r i n t i n g on t h e o n - l i n e p r i n t e r .
MAD - 'PRINT ON LINE FORMAT '
LJMAP - CALLIO .COMNT

FMT FORMAT
(LIST)

ENDIO
T h i s s u b r o u t i n e c a u s e s t h e b i n a r y i n f o r m a t i o n i n d i c a t e d by t h e
l ist t o b e c o n v e r t e d t o BCD accord ing to the format and pr in ted
on t h e o n - l i n e p r i n t e r . It i s t o b e u s e d only f o r comments t o

3.8-88

1/0 SUBROUTINES (CONTINUED)

111. STRUCTURE OF A LIST UNDER MAD/uMAP
The list d e s i g n a t e s l o c a t i o n s whose con ten t s are to be conve r t ed and
t r a n s m i t t e d . I n MAD, t h e l i s ts are automatical ly produced by t h e
t r a n s l a t o r . I n LJ", t h e u s e r i s r e s p o n s i b l e f o r p u t t i n g them i n t h e
c o r r e c t form. L i s t words are of two types - s i n g l e v a r i a b l e s and
b locks .
1. S i n g l e v a r i a b l e - t h e l i s t word is of the form

IOP A
o r IOP A,T
' T ' may refer t o a n y o f t h e t h r e e i n d e x r e g i s t e r s , b u t t h e u s e r
should remember t h a t t h e 'TSX' to the subrout ines has changed the
va lue o f i ndex r eg i s t e r 4 .

t o and including B) o f consecu t ive l oca t ions . The form of the
list word i s

The e n t i r e r e g i o n i s t r a n s m i t t e d , s t a r t i n g w i t h A and ending with
B y bo th when A is less than B and when B i s less than A.

2 . Block - t h i s i s u s e d t o d e s i g n a t e a n e n t i r e r e g i o n (s a y , from A

IOP A, , B

A t y p i c a l l ist might be
IOP ALPHA
IOP v, ,v+10
IOP R-5, ,R+7
IOP A, ,A-100
IOP DENOM

and a t y p i c a l o u t p u t c a l l i n g s e q u e n c e f o r t h i s m i g h t t h e n b e
CALLI0 .PRINT
FMT FORM1
IOP ALPHA

IOP R-5, , R+7
IOP A, ,A-100
IOP DENOM
END10

IOP v , , v+10

The reason for the opera t ion ' IOP ' , which is t r a n s l a t e d as t h e o p e r a t i o n
"STR', l i e s i n t h e u s e o f t h e t r a p p i n g mode. When an STR i s executed,
t h e c o n t e n t s o f t h e i n s t r u c t i o n l o c a t i o n c o u n t e r , w h i c h is p o i n t i n g t o t h e
ins t ruc t ion fo l lowing the 'STR' , i s p u t i n t o l o c a t i o n 0 , and the computer
t r a n s f e r s t o l o c a t i o n 2. P r e v i o u s t o t h i s , t h e 1/0 r o u t i n e h a s i n s e r t e d
i n t o l o c a t i o n 2 a t r a n s f e r t o i t s in t e rna l sub rou t ine where i t g e t s a new
l i s t element . The subrout ine doing the conversion scans the format (see
s e c t i o n I V - f o r m a t s c a n a c t i o n) u n t i l i t needs a value of some e n t r y on
t h e l ist . It then does a t r a n s f e r i n d i r e c t t o l o c a t i o n 0 , which e f f e c t i v l y
causes a t r a n s f e r t o t h e l o c a t i o n one p a s t t h e l a s t e n t r y on t h e l ist . I n

3-8-89

I /o SUBROUTINES (CONTINUED)

the above example, th is i s always an ' IOP' ('STR') operation and i t is
t r apped back t o t he sub rou t ine , a t t h e same time g i v i n g i t s l o c a t i o n t o
t h e s u b r o u t i n e (c o n t e n t s o f l o c a t i o n 0) , so t h e s u b r o u t i n e c a n o b t a i n
t h e a d d r e s s o f t h e n e x t v a r i a b l e (o r r e g i o n) o n t h e l ist . This process
i s c o n t i n u e d u n t i l t h e 'ENDIO' ('STR' with zero address and decrement)
is found wh ich causes an en t ry t o t ha t pa r t o f t he sub rou t ine wh ich
t e rmina te s i npu t /ou tpu t and t hen r e tu rns t o t he i n s t ruc t ion immedia t e ly
fo l lowing t he ' E N D I O ' , thus go ing back to the user ' s p rogram.
It f o l l o w s t h a t t h e u s e r may, i f h e d e s i r e s , make t h e list much more
compl ica ted . Cons ider the fo l lowing l i s t :

IOP ALPHA
IOP V , 0 ,V+5
AXT 1 , 4

Q IOP W+1,4
T X I *+1,4,2
TXL Q,4,60
IOP c

A s befo re , t he va lue o f ALPHA and of V through V + 5 w i l l be converted
and t ransmi t ted . The s u b r o u t i n e w i l l r e t u r n f o r a n o t h e r v a l u e , b u t
w i l l i n s t e a d s e t i n d e x 4 equa l t o one , t hen execu te t he IOP (a t l o c a -
t i o n Q) and get t rapped s o as t o f u r n i s h t h e s u b r o u t i n e w i t h t h e
e f f e c t i v e a d d r e s s of W . The s u b r o u t i n e r e t u r n s f o r a n o t h e r v a l u e and
w e i n c r e a s e i n d e x 4 by 2 and test i t aga ins t t he uppe r bound of 60.
I f n o t y e t f i n i s h e d w i t h t h e l o o p , we go back t o Q and repeat the loop
u n t i l t h e c o n t e n t s o f i n d e x r e g i s t e r 4 exceed 60. When t h i s o c c u r s ,
t h e n e x t v a r i a b l e f u r n i s h e d t o t h e s u b r o u t i n e is C . There i s no l i m i t
t o t h e amount of computation one can perform between the ' I O P ' s , but
an E N D I O must eventual ly occur .

IV. FORMAT SCAN ACTION.
When a u s e r c a l i s a s p e c i f i c 1 / 0 r o u t i n e (s u c h as .PRINT), t h i s r o u t i n e
sets up ce r t a in pa rame te r s (such as l o c a t i o n of format , maximum number
of columns a l lowed, e tc .) in a communicat ion region and then cal ls on
t h e s u b r o u t i n e .IOH which does the format scan.

c o n t e x t . It s c a n s c h a r a c t e r by c h a r a c t e r from the beginning of the
fo rma t t oward t he end , s e t t i ng swi t ches and pa rame te r s , un t i l a break
c h a r a c t e r i s found o r a change of context is s i g n a l l e d .

When a b r e a k c h a r a c t e r i s found, processing is begun of the format
term whose end is ind ica t ed by t he b reak cha rac t e r . I f t he fo rma t term
is a data- t ransmission format term, r e f e r e n c e t o t h e list i s made. I f
i n p u t , t h e list is r e f e r e n c e d t o g e t t h e v a l u e t o b e c o n v e r t e d , a n d t h e n
the convers ion is done. I f o u t p u t , t h e c o n v e r s i o n i s done, and then the
l ist is referenced to ge t the loca t ion where the conver ted va lue i s t o
b e p u t . I n a l l c a s e s , i f t h e r e are no more l i s t words when t h e list is
re fe renced (l i s t exhaus t ed) , t he fo rma t s can s tops and the 110 s ta tement
is t e r m i n a t e d , j u s t as i f t h e f o r m a t t e r m i n a t o r h a d b e e n h i t . I f t h e
format term is a non-data-transmission format term, i t i s processed
immediately. When process ing of the format term i s complete , switches
and parameters are reset, and the fo rma t s can con t inues w i th t he nex t
c h a r a c t e r .

The scan begins a t t h e f i r s t c h a r a c t e r o f t h e f o r m a t a n d i n n o r m a l

3.8-90

1/0 SUBROUTINES (CONTINUED)

When a change of context i s s i g n a l l e d , p r o c e s s i n g of t h i s new context
begins immediately. When the end of the format i s s e n s e d , i f i t i s an
output format , an ou tput record i s p roduced (i . e . , l i ne i s p r i n t e d , c a r d
is punched , e tc .) . Then t h e l ist i s i n s p e c t e d t o see i f i t i s exhausted
(a l l items processed) . If s o , t h e n t h e 1/0 c a l l is t e r m i n a t e d . I f n o t ,
. I O H b e g i n s r e s c a n n i n g t h e f o r m a t , i n t h e same d i r e c t i o n as be fo re . If
no parentheses were used i n t h e f o r m a t , t h e s c a n r e s t a r t s f r o m t h e b e g i n -
n i n g o f t h e f o r m a t . I f p a r e n t h e s e s were used, the format scan restarts
a t the r i gh t -mos t ze ro -nes t ing - l eve l l e f t pa ren thes i s , u s ing i t s
m u l t i p l i c i t y , i f a n y . (Z e r o - n e s t i n g - l e v e l means t h a t i t i s in s ide no
o the r pa ren theses) .

V . MEANINGS OF EACH CHARACTER I N FORMATS.
S i n c e t h e meaning of a c h a r a c t e r i n a format depends on the con tex t i t
is i n , a s epa ra t e l i s t i ng o f cha rac t e r mean ings is provided for each
contex t . For each of the contex ts o ther than normal one , a s ta tement
of i t s purpose and the way e n t r y t o a n d e x i t from t h i s c o n t e x t i s spec i -
f i e d are g iven . It should be no ted tha t contex t changes are o n l y t o o r
from normal context.
A. NORMAL CONTEXT.

The c h a r a c t e r s are l i s t e d h e r e i n a s c e n d i n g o r d e r a c c o r d i n g t o t h e i r
o c t a l r e p r e s e n t a t i o n . N o t e t h a t i n a l l c a s e s w h e r e m u l t i p l i c i t y
a p p l i e s , o m i t t i n g t h e m u l t i p l i c i t y i s e q u i v a l e n t t o g i v i n g a mul t i -
p l i c i t y o f 1.

-" 0 (00 OCTAL) DIGITS
1 (01 OCTAL)
2 (02 OCTAL)
3 (03 OCTAL)
4 (04 OCTAL)
5 (05 OCTAL)
6 (06 OCTAL)
7 (07 OCTAL)
8 (10 OCTAL)
9 (11 OCTAL)

Whenever a d i g i t i s encountered i t causes the accumula t ion of a number
to begin or cont inue. These numbers , depending on t h e i r p o s i t i o n , are
i n t e r p r e t e d as f i e l d w i d t h s , m u l t i p l i c i t i e s , e tc . "_ (12 OCTAL)

= (13 OCTAL)
These are i l l e g a l c h a r a c t e r s .

The pr ime s ign i f ies a change from normal t o f o r m a t v a r i a b l e c o n t e x t ,
and f rom format var iable context to normal context .

"_ ' (14 OCTAL) PRIME

"- (15 OCTAL)
(16 OCTAL)
(1 7 OCTAL)

These are i l l e g a l c h a r a c t e r s .

A plus s i g n is ignored .

BCD c o n t r o l c h a r a c t e r - 'A' and ' C ' are in te rchangeable . See descr ip-
t i on unde r I C ' . (There are two c h a r a c t e r s f o r t h e same thing because
'A ' h a s b e e n t r a d i t i o n a l l y u s e d i n FORTRAN formats and ' C ' i n MAD/m
formats .)

"_ + (20 OCTAL) PLUS SIGN

"- A (21 OCTAL)

3.8-91

110 SUBROUTINES (CONTINUED)

--- B (22 OCTAL)
Variable base modif ier . Normally, conversion is done from binary
i n t h e m a c h i n e t o a decimal (base 10) external form, and from a
d e c i m a l e x t e r n a l form t o b i n a r y i n t h e m a c h i n e . The user may
s p e c i f y o t h e r e x t e r n a l f o r m b a s e s € o r i n t e g e r s by inc luding the
m o d i f i e r N B where N is the conversion base wanted. N must be
g r e a t e r t h a n 1 and less than 20. Fo r t hose bases g rea t e r t han
10 , t he add i t iona l cha rac t e r s needed are taken f rom the beginning
of t he a lphabe t . Fo r base=19 (the l a rges t poss ib l e) t he cha rac t e r s
used are (in a scend ing o rde r) - 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I.
For example, 5B2110 w i l l cause 2 i n t e g e r s t o b e r e a d o r p r i n t e d i n
base 5.
NOTE 1. 8BI- - i n a format is n o t t h e same as K--, s i n c e f o r

i n t e g e r s t h e l e f t - m o s t b i t is considered a sign, whereas
f o r o c t a l numbers i t i s considered as p a r t of t h e l e f t -
most d i g i t . A l s o , o c t a l c o n v e r s i o n s i n w h i c h t h e con-
v e r t e d number e x c e e d s t h e s p e c i f i e d f i e l d w i d t h a r e

"_

t runca ted , bu t i n t ege r conve r s ions t ha t exceed t he f i e ld
w i d t h a r e e r r o r s .

t aken to be base 10.
NOTE 2 . The numbers found in the formats themselves a re a lways

C (23 OCTAL)
BCD c o n t r o l c h a r a c t e r . The c o n t r o l c h a r a c t e r s IC' and ' A ' a re u sed
t o r e a d i n and p r i n t o u t BCD in fo rma t ion (cha rac t e r s) . In t h e
709017094 a c h a r a c t e r i s represented by 6 b i t s , s o t h e r e a r e 6
c h a r a c t e r s t o a machine word. The BCD s p e c i f i c a t i o n assumes that
whatever is named on t h e l i s t t o b e t r a n s m i t t e d e x i s t s i n t h e
machine as c h a r a c t e r s . The bas ic format term i s of the form
N C W where N is t h e m u l t i p l i c i t y and W t h e f i e l d w i d t h . To s e e
how t r ansmiss ion occu r s , imag ine t he l e f t end o f t he word i n s t o r a g e
l i n e d up w i t h t h e l e f t end of t h e s p e c i f i e d f i e l d . F o r i n p u t , a s
many c h a r a c t e r s as t h e f i e l d w i d t h s p e c i f i e s a r e moved from t h e
f i e l d d i r e c t l y i n t o t h e s t o r a g e l o c a t i o n . I f f e w e r t h a n s i x , t h e y
f i l l i n t h e l e f t end of the word and blanks are u s e d t o f i l l o u t
t h e r e s t of t h e word. I f m o r e t h a n s i x , t h e f i r s t s i x f i l l up t h e
word and t h e rest are l o s t . F o r o u t p u t , as many c h a r a c t e r s a s t h e
f i e l d w i d t h s p e c i f i e s are moved from t h e s t o r a g e word d i r e c t l y i n t o
t h e f i e l d . I f f ewer t han s ix , t he l e f t -mos t cha rac t e r s are used.
I f m o r e t h a n s i x , t h e s i x c h a r a c t e r s i n t h e word are p u t i n t h e
l e f t - e n d of t h e f i e l d and blanks are u s e d t o f i l l o u t t h e rest of
t h e f i e l d .

For example, i f a c a r d c o n t a i n s t h e c h a r a c t e r s ABCDEFGHIJK i n
columns 1 through 11, and i t is r e a d i n a c c o r d i n g t o t h e s p e c i f i c a -
t i o n 2C3*, t h e two 6 cha rac t e r words t ha t are r e a d i n t o t h e
computer are :

ABC (w i t h t h r e e t r a i l i n g
DEF b lanks on each)

w h i l e t h e s p e c i f i c a t i o n C6* would cause a s i n g l e word t o be read:

and C7,C3* would cause the words

t o b e r e a d .

ABCDEF

ABCDEF and HIJ (with 3 t r a i l i n g b l a n k s)

3.8-92

1/0 SUBROUTINES (CONTINUED)

FORM OF THE INPUT FIELD - There is no form. A l l c h a r a c t e r s are
a l lowab le . A b l ank is l i k e a n y o t h e r c h a r a c t e r a n d i s not ignored .
F i e l d s come i n l e f t - j u s t i f i e d w i t h t r a i l i n g b l a n k s .
FORM OF THE OUTPUT FIELD - There is no form. Fields go o u t l e f t -
j u s t i f i e d w i t h t r a i l i n g b l a n k s .
APPLICABLE MODIFIERS - R,W,Z

D (24 OCTAL)
Double-prec is ion modi f ie r . I f the modi fy ing charac te r I D ' appears
i n an E , F , o r G format term, i t i n d i c a t e s t h a t t h i s f o r m a t t e r m
r e f e r s t o a double-precision number, and conversion w i l l be ca r r i ed
o u t i n d o u b l e p r e c i s i o n . S t a n d a r d 7094 double-precision form i s
assumed i n t h a t t h e number is c o n t a i n e d i n two machine words, each
is a c o m p l e t e f l o a t i n g p o i n t number with exponent and f r a c t i o n , and
the exponen t o f t he l ow o rde r ha l f i s 27 smaller than the exponent
o f t he h igh o rde r ha l f . Bo th ha lves mus t be named on t h e l i s t , t h e
h i g h o r d e r h a l f f i r s t . The p r e c i s i o n o f s i n g l e p r e c i s i o n f l o a t i n g
point numbers is 8 s i g n i f i c a n t d i g i t s . F o r d o u b l e p r e c i s i o n numbers
i t i s a b o u t 1 6 . (S i g n i f i c a n t d i g i t s means cons ide r ing a l l t h e
d i g i t s , n o t j u s t t h o s e a f t e r t h e d e c i m a l p o i n t . A s i n g l e p r e c i s i o n
number of magnitude lo8 when converted by an F-type s p e c i f i c a t i o n
would have 8 d i g i t s i n f r o n t o f t h e d e c i m a l p o i n t , h e n c e any d i g i t s
t ha t appea red a f t e r t h e d e c i m a l p o i n t would n o t b e s i g n i f i c a n t .)
The range of double precision numbers i s t h e same as the range of
s ing le p rec i s ion numbers , abou t t o

E - t y p e f l o a t i n g p o i n t c o n t r o l c h a r a c t e r . E-type conversion assumes
t h a t t h e number named on t h e l i s t i s a f l o a t i n g p o i n t number i n
s t o r a g e . The form of the format term i s N E W.D where N i s t h e
m u l t i p l i c i t y , W i s t h e f i e l d w i d t h , a n d D i s t h e number o f d i g i t s
a f t e r t h e d e c i m a l p o i n t .
FORM OF THE INPUT FIELD - An E-type input number as i t appears on
an input card must have the form +XXX.XXXXXE+YY . The s i g n and
d i g i t s f o l l o w i n g t h e E r e p r e s e n t the exponent-of 10 by which the
number i n f r o n t o f t h e E is t o b e m u l t i p l i e d . I . e . , t h i s number
means

The s i g n o f t h e f r a c t i o n a l p a r t may b e o m i t t e d i f i t i s p o s i t i v e .
I f i t i s negat ive , the minus s ign mus t be inc luded . Any number of
d i g i t s may be used i n t h e f r a c t i o n a l p a r t , b u t o n l y 8 d i g i t s o f
accuracy are r e t a i n e d . I f t h e d e c i m a l p o i n t i s p r e s e n t , t h e I D ' i n
the format t e rm is i g n o r e d . I f t h e d e c i m a l p o i n t is n o t p r e s e n t ,
t h e I D 1 s p e c i f i e s t h a t t h e r i g h t - m o s t I D ' d i g i t s of t h e f r a c t i o n a l
p a r t come a f t e r t h e d e c i m a l p o i n t . Hence t h e punched number
+9032E3 d e s c r i b e d b y t h e s p e c i f i c a t i o n E10.4 would be understood
t o b e t h e number +.9032E3. The exponent must be i n c l u d e d i n t h e
f i e l d w i d t h . I f t h e s i g n o f t h e e x p o n e n t i s i n c l u d e d , t h e E may be
o m i t t e d . I f t h e E is p r e s e n t , t h e + s i g n may b e . o m i t t e d f o r p o s i -
t i ve exponen t s . If the exponent i s t o b e n e g a t i v e , t h e minus sign

E (25 OCTAL)

+Y Y
+XXX .XXXXX TIMES 10-

3.8-93

1/0 SUBROUTINES (CONTINUED)

must be included. The exponent must be within the limits o f t he
7090/7094 between about +38 and about -38. Leading zeroes on t h e
exponent may be omitted. Blanks are ignored throughout the whole
f i e l d . An a l l b l a n k f i e l d is read i n as -0. Numbers i n E i npu t
f i e l d s may b e e i t h e r t h e E-type desc r ibed above o r t he F - type t o
b e d e s c r i b e d u n d e r t h e c o n t r o l c h a r a c t e r F.
FORM OF THE OUTPUT FIELD - Numbers p r i n t e d o r punched i n E f i e l d s
have t he fo rm (i f 5 d e c i m a l d i g i t s are requested, for example)
f.XXXXXEfXX a l though + s i g n s are not produced. The number is
rounded , no t t runca ted , t o t he number o f d i g i t s w a n t e d a f t e r t h e
dec ima l po in t . The s ign , dec ima l po in t , ' E ' and exponent must be
inc luded when f i g u r i n g t h e f i e l d w i d t h , s o W mus t be g rea te r than
o r e q u a l t o D+5 (i f t h e numbers w i l l a l w a y s b e p o s i t i v e) o r D+6
(i f t h e numbers cou ld be nega t ive) . I f t he number when converted
r e q u i r e s more columns than t he f i e ld w id th a l lows , an e r ro r comment
i s p r i n t e d a n d t h e j o b i s te rmina ted . (To modify t h i s p r o c e d u r e ,
see Appendix I t o t h i s w r i t e - u p and see the wri te-up on I O H S I Z i n
t h i s manua l .) I f t he conve r t ed number requires fewer columns than
t h e f i e l d w i d t h s p e c i f i e s , t h e number i s r i g h t - j u s t i f i e d i n t h e
f i e l d . I n f a c t , some spac ing can be ach ieved by g iv ing la rge
f i e l d s i z e s , s i n c e b l a n k s a u t o m a t i c a l l y o c c u r t o t h e l e f t o f a
number pushed t o t h e r i g h t end of an oversized f ie ld .
APPLICABLE MODIFIERS - D,L,M,P,V,W.

"- F (26 OCTAL)
F - t y p e f l o a t i n g p o i n t c o n t r o l c h a r a c t e r . F-type conversion assumes
t h a t t h e number named on t h e l i s t is a f l o a t i n g p o i n t number i n
s t o r a g e . The form of the format term is N F W.D o r N F W where N
i s t h e m u l t i p l i c i t y , W is t h e f i e l d w i d t h , and D i s the number o f
d i g i t s a f t e r t h e d e c i m a l p o i n t . The s h o r t e r form i s assumed t o b e
e q u i v a l e n t t o t h e l o n g e r form where D is 0. I . e . , F6 is t h e same
as F6.0.
FORM OF THE INPUT FIELD - An F-type number as i t appears on an
input card mus t have the form kXXX.XXXXX. The + s i g n may be
o m i t t e d i f t h e number is t o b e p o s i t i v e , b u t i f t h e number i s t o b e
n e g a t i v e , t h e m i n u s s i g n must be there. Any number of d i g i t s may
be used, but only 8 d i g i t s o f a c c u r a c y are r e t a ined (due t o t he
limits of t h e 7090). Blanks are ignored. An a l l b l a n k f i e l d i s
r e a d i n as -0. I f t h e d e c i m a l p o i n t i s p r e s e n t , t h e ' D ' i n t h e
format term is ignored . I f the dec imal po in t is n o t p r e s e n t , t h e
' D ' s p e c i f i e s t h a t t h e r i g h t - m o s t ' D ' d i g i t s come a f t e r t h e d e c i m a l
p o i n t . Hence t h e punched number +9032 desc r ibed by the format term
F10.2 would be unde r s tood t o be t he number +90.32. Numbers i n F
i n p u t f i e l d s m u s t e i t h e r b e t h e F-type desc r ibed above o r t he E-
t ype desc r ibed p rev ious ly .
FORM OF THE OUTPUT FIELD - Numbers p r i n t e d o r punched i n F f i e l d s
have the form (i f 5 d e c i m a l d i g i t s are requested, for example)
fXxX.XXXXX a l though + s i g n s are not produced. The number i s
r o u n d e d , n o t t r u n c a t e d , t o t h e number of d i g i t s wanted a f t e r t h e
d e c i m a l p o i n t . I f no d i g i t s are p roduced a f t e r t he dec ima l po in t ,
t h e p o i n t i t s e l f is not produced. I f t h e number when converted

3.8-94

1/0 SUBROUTINES (CONTINUED)

r e q u i r e s more co lumns than the f ie ld wid th a l lows , an e r ror comment
i s p r in t ed and t he j ob i s te rmina ted . (To mod i fy t h i s p rocedure ,
see Appendix I t o t h i s w r i t e - u p and see write-up on I O H S I Z i n t h i s
manual.) If the conver ted number requires fewer columns than the
f i e l d w i d t h s p e c i f i e s , t h e number is r i g h t - j u s t i f i e d i n t h e f i e l d .
I n f a c t , some s p a c i n g c a n b e a c h i e v e d b y g i v i n g l a r g e f i e l d s i z e s ,
s i n c e b l a n k s a u t o m a t i c a l l y o c c u r t o t h e l e f t o f a number pushed t o
the r i gh t end o f an ove r s i zed f i e ld .
APPLICABLE MODIFIERS - D,L,M,P,V,W.

S i g n i f i c a n t d i g i t s c o n t r o l c h a r a c t e r . T h i s is e x a c t l y t h e same as
t h e F f i e l d , e x c e p t t h a t on output , ins tead of having the dec imal
p o i n t f i x e d a n d t h e s i g n i f i c a n t d i g i t s v a r y a r o u n d i t , t h e number
o f s i g n i f i c a n t d i g i t s p r i n t e d o u t i s f ixed and the dec imal po in t
f l o a t s . The form of the format term i s N G W.D where N i s t h e
m u l t i p l i c i t y , W is t h e f i e l d w i d t h , a n d D is t h e number o f s i g n i f i -
can t d ig i t s wan ted . Th i s u sua l ly i nc ludes t he dec ima l po in t and ,
p o s s i b l y , a minus s i g n , s o only D-1 o r D-2 d i g i t s a r e a c t u a l l y
p roduced . I f t he dec ima l po in t i s n o t p r e s e n t , i t has vanished of f
t h e r i g h t end of the f ie ld . The D c h a r a c t e r s are r i g h t - j u s t i f i e d
i n t h e W columns of t h e f i e l d w i d t h . The number is f i r s t c o n v e r t e d
e n t i r e l y , and then the lef t -most D c h a r a c t e r s are put out as output .
Hence, the number put out is a t r u n c a t i o n , n o t a rounding, of the
complete number. D must be less than o r e q u a l t o W. I f D i s
g rea t e r , an e r ro r occu r s (s ee Append ix I o f t h i s wr i t e -up and
write-up IOHSIZ i n t h i s manual f o r m o d i f i c a t i o n o f t h i s p r o c e d u r e) .
For example, the numbers 12345., 1234.5, 12.345, .12345, and .00123,
p r i n t e d a c c o r d i n g t o 5G6.4, would give 1234 1234 12.3 .123 and
.001.
FORM OF THE INPUT FIELD - Same as f o r F f i e l d s .
FORM OF THE OUTPUT FIELD - Same as f o r F f i e l d s .
APPLICABLE MODIFIERS - Same as f o r F f i e l d s .

H o l l e r i t h c o n t r o l c h a r a c t e r . An H causes a change of context from
.no rma l con tex t t o Ho l l e r i t h con tex t .

"- G (27 OCTAL)

"- H (30 OCTAL)

"- I (31 OCTAL)
In t ege r con t ro l cha rac t e r . Th i s conve r s ion assumes t h a t t h e numbers
named on t h e l ist e x i s t i n s t o r a g e as fu l l -word i n t ege r s . The form
of the basic format term is N I W where N is t h e m u l t i p l i c i t y and
W is t h e f i e l d w i d t h .
FORM OF THE INPUT FIELD - The number i n a n I - t y p e i n p u t f i e l d must
be of the form (for example) +X==. I f t h e number is t o b e P o s i -
t ive , t h e + s ign need no t be punched . I f t he number i s t o b e nega-
t i v e t h e minus s ign mus t be punched . The on ly l ega l charac te rs in
t h e body of t h e i n t e g e r are t h o s e d i g i t s a n d le t te rs which are less
than t he base . Un les s o the rwise spec i f i ed , t he base is 10 (decimal)
and so t h e o n l y l e g a l c h a r a c t e r s are 0 through 9. Blanks are
ignored. An a l l b l a n k f i e l d comes i n as -0.

3.8-95

I / O SUBROUTINES (CONTINUED)

FORM OF THE OUTPUT FIELD - The number produced by I-type conversion
is of the form (for example) +- excep t t ha t + s i g n s are n o t
produced. If t h e number when conve r t ed r equ i r e s more columns than
t h e f i e l d w i d t h a l l o w s , a n e r r o r comment is p r in t ed and t he j ob i s
terminated. (See Appendix I of the wr i te -up and the wr i te -up on
IOHSIZ i n t h i s manual f o r m o d i f i c a t i o n o f t h i s p r o c e d u r e .) I f t h e
converted number r equ i r e s f ewer co lumns t han t he f i e ld w id th
s p e c i f i e s , t h e number is r igh t - ju s t i f i ed . S ince b l anks occu r
a u t o m a t i c a l l y t o t h e l e f t o f a r i g h t - j u s t i f i e d number, some spacing
can be ach ieved by g iv ing an overs ized f ie ld .
APPLICABLE MODIFIERS - B,L,M,V,W. +

“- 0 (32 OCTAL)

”- . (33 OCTAL) PERIOD
This is a n i l l e g a l c h a r a c t e r .

Punctua t ion . The per iod i s used i n E , F and G s p e c i f i c a t i o n s . It
t e l l s the fo rma t s canne r t ha t t he number accumulated s o f a r i s t o
be cons ide red t he f i e ld w id th , and t h a t a new number is t o b e g i n
accumulating.

M u l t i p l e g r o u p i n g . S e e l e f t p a r e n t h e s i s (OCTAL 7 4) f o r d e s c r i p t i o n
of us ing parentheses .

”_) (34 OCTAL) RIGHT PARENTHESIS

”- (35 OCTAL)
(36 OCTAL)
(37 OCTAL)

These are i l l e g a l c h a r a c t e r s .

T h i s c a u s e s t h e s i g n o f t h e number being accumulated by the format
s canne r t o be r eve r sed .

This i s a n i l l e g a l c h a r a c t e r .

Octal c o n t r o l c h a r a c t e r . T h i s mode of conversion makes no assumption
about the form of t h e number i n s t o r a g e . It j u s t r e a d s i n o r p r i n t s
o u t t h e number as o c t a l . The form of the bas ic format t e rm is
N K W where N is t h e m u l t i p l i c i t y and W is t h e f i e l d w i d t h .
FORM OF THE INPUT FIELD - A K-type i n p u t f i e l d i s o f t h e form
+XXXXX . The s i g n is opt ional . There must be no more than 12
d i g i t s i n t h e number, and each d i g i t must be one of 01234567. Blanks
are ignored. An a l l b l a n k f i e l d comes i n as +O. The t r a n s m i t t e d
numbers are r i g h t - j u s t i f i e d i n t h e m a c h i n e word wi th l ead ing zeroes .
FORM OF THE OUTPUT FIELD - A K-type o u t p u t f i e l d i s o f t h e form XxXXx.
No s i g n i s produced . I f W (f i e l d w i d t h) i s less than 1 2 , t h e r i g h t -
most W d i g i t s o f t h e word are p u t o u t . I f W i s g r e a t e r t h a n 1 2 , t h e
f u l l word i s p u t o u t i n t h e f i e l d , r i g h t - a d j u s t e d . S i n c e b l a n k s
occur t o t h e l e f t o f a r igh t -ad jus ted number , th i s p rovides a means
o f spac ing t he number.

“- - (4 0 OCTAL) MINUS S I G N

”- J (41 OCTAL)

”_ K (42 OCTAL)

APPLICABLE MODIFIERS - L,W.

3.8-96

I/O SUBROUTINES. (CONTINUED)

-" L (4 3 OCTAL)
Lef t - ad jus t ed mod i f i e r . t h i s mod i f i e r changes t h ings as fol lows:

K,O FIELDS
Input

Normally the number is r i g h t - j u s t i f i e d w i t h l e a d i n g
z e r o e s i n t h e m a c h i n e word. With t h e L mod i f i e r , i t
i s l e f t - j u s t i f i e d w i t h t r a i l i n g z e r o e s .

Normally the number is p laced a t t h e r i g h t end of an
ove r s i zed f i e ld . Wi th t he L mod i f i e r i t is placed a t
t h e l e f t e n d , w i t h b l a n k s f i l l i n g t h e unused portions
t o t h e r i g h t .

ou tpu t

E,F,G,I FIELDS
output

Normally the number i s p laced a t t h e r i g h t end of an
ove r s i zed f i e ld . Wi th t he L mod i f i e r i t i s p laced at
t h e l e f t e n d , w i t h b l a n k s f i l l i n g t h e u n u s e d p o r t i o n s
t o t h e r i g h t .

-" M (44 OCTAL)
F l o a t i n g d o l l a r s i g n m o d i f i e r . When t h i s m o d i f i e r is used i n E , F,
G o r I output format terms, a d o l l a r s i g n i s i n s e r t e d i n t o t h e f i e l d
i m m e d i a t e l y t o t h e l e f t o f t h e f i r s t d i g i t . I f t h e number is nega-
t i v e (so t h e r e i s a minus s ign) , the do l la r s ign goes immedia te ly
t o t h e l e f t o f t h e m i n u s s i g n .

"Don ' t " mod i f i e r . I f t he N modi f ie r occures before a s l a s h i n a n
output format , i t means d o n ' t b l a n k o u t t h e l i n e and don ' t reset t h e
l i n e p o i n t e r t o column 1 a f t e r p r i n t i n g . I f t h e N modi f ie r occurs
be fo re t he fo rma t t e rmina to r i n an ou tpu t fo rma t , i t means don ' t
p r i n t t h e l i n e o r reset i t when e x i t i n g (i f t h e list is exhausted) .
These two a p p l i c a t i o n s o f ' N ' a long w i th t he sub rou t ine STQUO (see
s e c t i o n V I I) w i l l a l l o w b u i l d i n g up a p r i n t l i n e column by column,
adding each number wi th a s e p a r a t e 1 1 0 s t a t e m e n t , b u t n o t p r i n t i n g
t h e l i n e u n t i l i t is comple te . This avoids us ing the + c a r r i a g e
c o n t r o l and was t ing pr in te r time.

O c t a l c o n t r o l c h a r a c t e r . The c o n t r o l c h a r a c t e r s 'K ' and ' 0 ' are
in te rchangeable . See t h e d e s c r i p t i o n u n d e r ' K ' . (The reason for
t h e two cont ro l charac te rs meaning the same th ing is t h a t FORTRAN
fo rma t s have t r ad i t i ona l ly u sed '0' and MAD/UMAP formats 'K'.)

S c a l e f a c t o r m o d i f i e r . T h i s f e a t u r e is a l lowed fo r E and F f i e l d s .
A s c a l e f a c t o r may be app l i ed t o an F number a c c o r d i n g t o t h e f o r -
mula EXTERNAL NUMBER = INTERNAL NUMBER X 10' (where the sca l ing
i s accompl ished before the convers ion is done). The s c a l e f a c t o r
followed by t h e l e t t e r P is p r e f i x e d t o t h e b a s i c f i e l d s p e c i f i c a -
t i o n as i n t h e example 2P2F7.3,F7.3* . Thus, three numbers which
would p r i n t .522 -1.567 93.671 according t o t h e s p e c i f i c a t i o n 3F7.3*
would p r i n t i n s t e a d .005 -.016 93.671 i f t h e s p e c i f i c a t i o n -2P2F7.3,
F7.3* were used. It m u s t b e n o t e d t h a t t h i s scale f a c t o r a c t u a l l y
changes the values of the numbers to which i t a p p l i e s . It a f f e c t s

-" N (45 OCTAL)

-" 0 (46 OCTAL)

"_ P (47 OCTAL)

3.8-97

1/0 SUBROUTINES (CONTINUED)

only those numbers to which i t is d i r e c t l y a p p l i e d , however. For
E f i e l d s , t h e scale f a c t o r c a u s e s t h e number i t s e l f t o be modified,
but the exponent is correspondingly modif ied so the t rue va lue o f
t h e number remains unchanged. Thus, the number .9321E-3 would
p r i n t as 93.21003 05 a c c o r d i n g t o t h e s p e c i f i c a t i o n 2PE16.4*.
Unlike an F number, t h e v a l u e is t h e same i n e i t h e r case.

This i s an i l l e g a l c h a r a c t e r .

R igh t - ju s t i f i ed mod i f i e r . Norma l ly , cha rac t e r s r ead and p r i n t e d
wi th A and C c o n t r o l c h a r a c t e r s are l e f t - j u s t i f i e d , b o t h i n t h e
machine word and i n t h e f i e l d . I f t h e R mod i f i e r i s used, on inpu t
t h e c h a r a c t e r s are r i g h t j u s t i f i e d i n t h e machine word (with lead-
ing b lanks) , and on ou tput the charac te rs are r i g h t j u s t i f i e d i n
t h e f i e l d . The d e s c r i p t i o n o f how i t works i n t h i s c a s e i s the
same as f o r L , excep t t ha t 'LEFT' should be replaced by 'RIGHT'
wherever i t occurs .

0 (52 OCTAL)
$ (5 3 OCTAL) DOLLAR SIGN

"- Q (50 OCTAL)

"- R (5 1 OCTAL)

"- -

T h e s e a r e i l l e g a l c h a r a c t e r s .

Format terminator. The a s t e r i s k t e r m i n a t e s t h e f o r m a t s c a n f o r
MAD/uMAP c a l l s .

"- (55 OCTAL)

"- * (54 OCTAL) ASTERISK

APPLICABLE MODIFIERS - N .

(56 OCTAL)
(57 OCTAL)

These are i l l e g a l c h a r a c t e r s .

Blanks are ignored.

N e w l i n e o r c a r d c o n t r o l c h a r a c t e r . I f i n p u t , a / causes a new input
record t o b e r e a d i n and t h e l i n e p o i n t e r i s reset t o column 1. I f
o u t p u t , a / causes an ou tput record to be sen t ou t , and then t he l i ne -
image i s b l anked ou t and t he l i ne po in t e r reset t o column 1.

"- BLANK(60 OCTAL)

"_ / (61 OCTAL) SLASH

APPLICABLE MODIFIERS - N .
"- S (62 OCTAL)

S k i p c o n t r o l c h a r a c t e r . The form of the format term is N S W where
N is t h e m u l t i p l i c i t y and W is t h e number of columns t o s k i p . The
a c t i o n of t h i s fo rma t t e rm i s t o add W t o t h e l i n e - p o i n t e r . W may be
e i t h e r p o s i t i v e o r n e g a t i v e . E . g . , t o p r o d u c e "BA" i n a n o u t p u t
l ine-image by p u t t i n g i n 'A' f i r s t and then backspacing and p u t t i n g
i n ' B ' , the format must contain 1HAYS-2,1HB.
WARNING - When a p r i n t l i n e o r similar output record i s produced, i t
is assumed t h a t t h e l a s t column produced i s immediately t o t h e l e f t
o f t h e l i n e p o i n t e r and only enough words t o c o n t a i n t h i s column are
put out. (Each word con ta ins 6 columns.) I f n e g a t i v e s k i p s o r
backwards t ransfers have occur red , some o f t h e l i n e may f a i l t o g e t
p r i n t e d . To a v o i d a n y d i f f i c u l t i e s , t h e f o r m a t term T132 can be
i n s e r t e d as the last one be fo re t he l i ne i s p r in t ed .

1/0 SUBROUTINES (CONTINUED)

"_ T (63 OCTAL)
T r a n s f e r (o r t a b u l a t o r) c o n t r o l c h a r a c t e r . The form of the format
term i s T N where N is a column number. This format term causes
t h e l i n e - p o i n t e r t o b e reset t o N . The warn ing g iven fo r t he ' S '
c h a r a c t e r a l s o a p p l i e s h e r e .

This i s a n i l l e g a l c h a r a c t e r .

Commas e v e r y t h r e e d i g i t s m o d i f i e r . When t h i s m o d i f i e r i s inc luded
i n a n E , F , G , o r I output format term, i t causes commas t o b e
p l a c e d e v e r y t h r e e d i g i t s t o t h e l e f t of t h e d e c i m a l p o i n t (o r t o
t h e l e f t o f t h e r i g h t end of t h e number, i f t h e r e is no decimal
po in t) . These commas m u s t b e a l l o w e d f o r i n t h e s p e c i f i c a t i o n o f
t h e f i e l d w i d t h .

B l a n k i f z e r o m o d i f i e r . I f t h e m o d i f i e r o c c u r s i n an A,C,E,F,G,I,K,
o r 0 output format term, any number t h a t i s a l l zero w i l l not be
p r i n t e d o u t . I n s t e a d , b l a n k s w i l l b e p u t i n i t s p lace . No te t ha t
t h i s d o e s n o t mean t h a t z e r o s c a n n o t b e p r i n t e d o u t . A number may
v e r y p o s s i b l y b e n o t a l l z e r o a n d y e t , when conver ted , round to zero .

Space con t ro l cha rac t e r . The form of the format term i s N X where
N is t h e number of columns t o b e s p a c e d . I ts a c t i o n i s t h e same a s
N S1.

This i s a n i l l e g a l c h a r a c t e r .

L e a d i n g o r t r a i l i n g z e r o s m o d i f i e r . BCD in fo rma t ion t ha t i s r e a d i n
normally ends up w i t h t r a i l i n g (o r l e a d i n g , i f a n R modi f ie r w a s i n
the format t e rm) b lanks . I f a Z m o d i f i e r i s inc luded i n t he fo rma t
t e r m , t h i s w i l l c a u s e t r a i l i n g (o r l e a d i n g) z e r o s , r a t h e r t h a n b l a n k s .
E . G . , R Z C l r e a d i n g i n t h e l e t t e r ' A ' from a card w i l l g ive a word
with 000000000021 (OCTAL) i n i t .

This i s a n i l l e g a l c h a r a c t e r .

Punctua t ion . The comma separa tes format t e rms .

Punctua t ion . A group of format terms may be repea ted by enc los ing
t h e g r o u p i n p a r e n t h e s e s a n d p r e c e d i n g t h e l e f t p a r e n t h e s i s by t h e
m u l t i p l i c i t y . Thus 3E10.3, 2(12,3FlO.l),2C5* is e q u i v a l e n t t o
E10.3,E10.3,E10.3,I2,F10.1,F10.1,F10.1,I2,F10.1,F10.1,F10.1,C5,C5*.
Nes ted pa ren theses are al lowed. There is no l i m i t t o t h e n e s t i n g
depth. However, information about parentheses i s k e p t i n a push-
down list i n e r a s a b l e , w i t h e a c h n e s t i n g l e v e l c a u s i n g a two word
en t ry . Hence , t he deepe r t he nes t ing dep th , t he more e r a s a b l e
s t o r a g e is u s e d . I f t h e m u l t i p l i c i t y i n f r o n t o f a l e f t p a r e n t h e s i s
i s z e r o , t h i s means do what i s i n s i d e z e r o times which means do n o t
do i t . This causes a switch f rom normal context to format-off
contex t .

"_ U (64 OCTAL)

-" V (65 OCTAL)

"_ W (66 OCTAL)

"_ X (6 7 OCTAL)

"- Y (70 OCTAL)

"_ Z (7 1 OCTAL)

"_ $ (7 2 OCTAL) RECORD MARK

-" , (73 OCTAL) COMMA

"_ ((74 OCTAL) LEFT PARENTHESIS

3.8-99

1/0 SUBROUTINES (CONTINUED)

"- (75 OCTAL)
(76 OCTAL)
(77 OCTAL)

These are i l l e g a l c h a r a c t e r s .

H o l l e r i t h c o n t e x t is e n t e r e d when an H i s encountered i n normal
c o n t e x t . The purpose of t h e H o l l e r i t h c o n t e x t is t o p r o v i d e
c h a r a c t e r s i n t h e f o r m a t w h i c h c a n b e p u t i n t h e p r i n t - l i n e , o r ,
a l t e r n a t i v e l y , r e p l a c e d b y c h a r a c t e r s from t h e c a r d image. This
is u s e d f o r t i t les , l a b e l s and o t h e r c o n s t a n t i n f o r m a t i o n . I f
t h e r e w a s a c o u n t i n f r o n t o f t h e H t h a t s i g n a l l e d t h e c h a n g e t o
H o l l e r i t h c o n t e x t , i t is a counted Hol le r i th contex t . Otherwise
i t is uncounted.
COUNTED - The f i r s t c h a r a c t e r i n t h e H o l l e r i t h c o n t e x t i s t h e one

immediately fol lowing the H . The las t c h a r a c t e r i n t h e
H o l l e r i t h c o n t e x t is t h e Nth cha rac t e r fo l lowing t he H (where
N i s t h e c o u n t) .
OUTPUT - A l l t h e c h a r a c t e r s i n t h e H o l l e r i t h c o n t e x t are moved

into the l ine- image, where they form a H o l l e r i t h f i e l d .
The f i r s t goes in to the l ine- image a t t h e column t h e l i n e -
p o i n t e r i s p o i n t i n g t o , t h e l i n e - p o i n t e r is advanced one
co lumn, t he s econd goes i n to t he l i ne image a t t h e column
t h e l i n e - p o i n t e r i s po in t ing t o , and s o on. Thus
8HTRIANGLE w i l l c ause t he word "TRIANGLE" t o b e p u t i n t o
t h e o u t p u t l i n e .

rep laced by t h e c h a r a c t e r s i n t h e l i n e - i m a g e . The f i r s t
i s rep laced by t h e c h a r a c t e r i n t h e column t h e l i n e -
p o i n t e r i s p o i n t i n g t o , t h e l i n e - p o i n t e r i s advanced one
column, the second i s r e p l a c e d b y t h e c h a r a c t e r i n t h e
column t h e l i n e - p o i n t e r i s p o i n t i n g t o , and s o on. Thus,
a card punched as fo l lows:

might be read in wi th a f o r m a t s p e c i f i c a t i o n
7 2H (7 2 b lank spaces) *
L a t e r , t h i s s p e c i f i c a t i o n c o u l d b e u s e d t o p r i n t t h e same
informat ion as a h e a d i n g f o r t h e r e s u l t s .
WARNING: The s p e c i f i c a t i o n s S72* and 72(1H)*, whi le
i n d i c a t i n g 72 b l ank spaces , do no t a l l ow the r ead ing i n of
a n e n t i r e c a r d , as ind ica t ed above , s ince t hey do n o t
provide a reg ion of 72 c h a r a c t e r s i n l e n g t h i n t h e f o r m a t
i n t o which the in format ion on t h e c a r d may be read.

UNCOUNTED - The f i r s t c h a r a c t e r f o l l o w i n g t h e H is taken as a break
cha rac t e r , and a l l charac te rs be tween i t and the next occurance
of t h i s same b r e a k c h a r a c t e r are c o n s i d e r e d t o b e i n t h e
Hol le r i th contex t . Output and input are e x a c t l y t h e same as
given above. The two examples given above, when w r i t t e n t o u s e
uncoun ted Ho l l e r i t h con tex t s , are H*TRIANGLE* and

B. HOLLERITH CONTEXT.

INPUT - A l l t h e c h a r a c t e r s i n t h e H o l l e r i t h c o n t e x t a r e

1 DATA SET N O . 3-A J U L Y 1 9 , 1963

H= (72 blank spaces) =*

I

3.8-100

1/0 SUBROUTINES (CONTINUED)

C. FORMAT VARIABLE CONTEXT.
Use o f t h e f o r m a t v a r i a b l e c o n t e x t a l l o w s s u b s t i t u t i n g t h e v a l u e o f
a v a r i a b l e i n t h e p r o g r a m m a k i n g t h e 1/0 ca l l i n t o a format anywhere
a number would o t h e r w i s e b e p l a c e d . T h i s s u b s t i t u t i o n t a k e s p l a c e
a t t h e time t h e f o r m a t v a r i a b l e c o n t e x t i s encountered dur ing the
scan of the format . A prime i s t h e s i g n a l b o t h f o r e n t r y t o and
e x i t f rom fo rma t va r i ab le con tex t , i . e . , pr imes del imit format
v a r i a b l e c o n t e x t . The context must have one of the fol lowing three
forms: ' A ' 'A(J) ' 'A(1,J) ' where A i s a format var iab le name
and I and J a r e e i t h e r i n t e g e r c o n s t a n t s o r f o r m a t v a r i a b l e names.
The format var iable names must be composed of no more than six
let ters o r d i g i t s and t h e f i r s t c h a r a c t e r must be a l e t te r . The
fo rma t va r i ab le s may be of any mode - f loa t ing -po in t numbers are
a u t o m a t i c a l l y c o n v e r t e d t o i n t e g e r s , numbers i n o t h e r modes are
used as they are i n s t o r a g e .
USAGE I N MAD - A l l fo rmat var iab les mus t be names t h a t e x i s t i n t h e

program i n which t h e 110 s ta tement occurs whose format uses the
fo rma t va r i ab le s . I .e . , dummy arguments cannot be used as for -
mat v a r i a b l e s . A l l va r i ab le s u sed as format variables must be
s o d e c l a r e d w i t h i n t h e mad program. See the MAD MANUAL.

USAGE I N UMAP - See Appendix I1 of t h i s wr i t e -up .
EXAMPLES :
(A) Values of X(1) can be plot ted versus time (as represented by

l i n e s i n t h e p a p e r) as follows (assuming column 66 t o r e p r e s e n t
0) :

THROUGH QQ, FOR I = l , l , I . G . N

VECTOR VALUES OUT =$T66,S1X(1)',1H**$
FORMAT VARIABLE X , I

QQ PRINT FORMAT OUT

(E) The fo l lowing are l eg i t ima te (a l though h igh ly improbab le) :
'SCALE' P 'NBR' F 'WIDTH' . ' D E C D I G ' *
'A(1) ' P ' A (2) ' E 'A(3) ' . 'A(4) ' , 'A(5) ' B 'A(6) ' I 'A(7) ' *

H=THE TRIANGLE IS=,'SWITCH'(H* NOT*),
H= A RIGHT TRIANGLE=*
and assuming SWl=.NOT.SW2, the fo l lowing might be used:
'SW11(5E)'SW2(5F)15.5
Note t h a t t h e m u l t i p l i c i t y f o r t h e E o r F must be ins ide the
pa ren theses t o keep i t s e p a r a t e from t h e p a r e n t h e s i s m u l t i p l i -
c i t y r e p r e s e n t e d by SW1 o r SW2.

NOTE - When us ing a f o r m a t v a r i a b l e f o r t h e m u l t i p l i c i t y , remember
t h a t v a r y i n g t h e m u l t i p l i c i t y d o e s n o t v a r y t h e number of items on
t h e l ist . I f i t i s n e c e s s a r y t o s k i p l i s t items, use da ta -
t ransmiss ion format t e rms wi th zero f ie ld wid th to do i t .

A m u l t i p l i c i t y o f z e r o i n f r o n t o f a format term o r l e f t p a r e n t h e s i s
means do i t zero times, i . e . , do n o t do i t . Therefore , OF10.5 w i l l
do no th ing , and SlO,O(S10,Fl0.5,3HTRA/),I3* w i l l sk ip 10 and p r i n t

(C) Usage as swi tches :

D . FORMAT-OFF CONTEXT.

3.8-101

1/0 SUBROUTINE (CONTINUED)

o u t a 3 column in t ege r . No th ing i n s ide t he pa ren theses w i l l be
done. (This f inds most use when t h e r e i s a format var iab le contex t ,
r a t h e r t h a n a n e x p l i c i t z e r o m u l t i p l i c i t y , i n f r o n t o f t h e l e f t
pa ren thes i s .) A z e r o m u l t i p l i c i t y i n f r o n t of a l e f t p a r e n t h e s i s
causes a change from normal context to format-off context. When
scanning i n t h i s con tex t , t he on ly t h ings r ecogn ized are l e f t and
r i g h t p a r e n t h e s e s . The format t e rmina tor is not recognized. The
context changes back to normal context when t h e r i g h t p a r e n t h e s i s
t h a t m a t c h e s t h e l e f t p a r e n t h e s i s w h i c h h a d t h e z e r o m u l t i p l i c i t y
i s found.

V I . CARRIAGE CONTROL.
The f i r s t column of e v e r y p r i n t l i n e is t r e a t e d d i f f e r e n t l y t h a n t h e
o t h e r columns by t h e c o m p u t e r t h a t d o e s t h e o f f - l i n e p r i n t i n g . The
f i r s t column is inspec ted and i f i t is a l e g a l c a r r i a g e c o n t r o l (s e e
t a b l e on page 3.6-10 of t h i s m a n u a l) , t h e p r i n t e r c a r r i a g e i s pos i t i oned
a c c o r d i n g t o t h e c a r r i a g e c o n t r o l , t h e f i r s t column i s blanked out, and
t h e l i n e i s t h e n p r i n t e d . I f t h e f i r s t column i s no t a l e g a l c a r r i a g e
c o n t r o l , t h e p r i n t e r s i n g l e s p a c e s , a n d t h e n t h e e n t i r e l i n e i s p r i n t e d
o u t .

V I I . STQUO.
There i s a n o t h e r e n t r y p o i n t t o t h e g e n e r a l c o n v e r s i o n s u b r o u t i n e ,
. I O H , which the user may c a l l on d i r e c t l y . S i n c e t h i s is ve ry c lose ly
t i e d i n w i t h t h e f o r m a t s c a n , i t is p resen ted he re , r a the r t han a s a
s e p a r a t e s u b r o u t i n e . (S t i l l a n o t h e r e n t r y p o i n t , I O H S I Z , i s descr ibed
a t page 3.8-34 of t h i s manual.)
PURPOSE: Th i s a l l ows s t a r t i ng an 110 s t a t emen t w i thou t r ead ing i n a

new c a r d (i n p u t) or blanking ou t the l ine- image (ou tput) . The
l i ne -po in te r is l e f t where i t w a s a t the conclus ion of the l as t
110 c a l l . T h i s e f f e c t o c c u r s only on t h e f i r s t If0 c a l l a f t e r
e a c h c a l l on STQUO. On subsequent 110 c a l l s , t h i n g s are reset, a s
normal . This subrout ine i s usua l ly u sed i n con junc t ion w i t h t he
N mod i f i e r .

CALLING SEQUENCES:
MAD EXECUTE STQUO.
UMAP CALL STQUO

NOTE: When STQUO i s used , t he . I O H c o n t r o l i n f o r m a t i o n i n e r a s a b l e
(see Appendix I11 of th i s wr i te -up) mus t be l e f t undis turbed be tween
I / o ca l l s .

I

3.8-102

APPENDIX I

ERROR COMMENTS

The n o r m a l p r o c e d u r e a f t e r d e t e c t i o n o f a n e r r o r is t o p r i n t a descr ip-
t i o n of t h e e r r o r a l o n g w i t h o t h e r p e r t i n e n t i n f o r m a t i o n and then te rmina te
execut ion of the program. This procedure can be a l tered by execu t ing t he
sub rou t ine SETERR p r i o r t o t h e 1/0 s ta tement . See the wr i te -up on SETERR.
The t a b l e be low g ives the e r ror comments and t h e i r a s s o c i a t e d e r r o r numbers.
The e r r o r numbers are inc reased by 100 i f t h e e r r o r o c c u r s d u r i n g o u t p u t
(e . g . , e r r o r number =1 i f a n i l l e g a l c h a r a c t e r a p p e a r s i n t h e f o r m a t d u r i n g
i n p u t , and e r r o r number =lo1 i f an i l l e g a l c h a r a c t e r a p p e a r s i n t h e f o r m a t
d u r i n g o u t p u t) . In each of the e r ror comments below, X ' s s t and fo r cha rac -
ters o r numbers t h a t are f i l l e d i n .
ERROR
NUMBER

1

2

3

4
5

6

7

8
9
10
11
12

13

14
15

16
17

ERROR
COMMENT

ILLEGAL CHARACTER I N FORMAT
OFFENDING CHARACTER I S ' X ' (XX OCTAL)
FORMAT S P E C I F I E S MORE THAN XXX COLUMNS

(WHERE XXX I S THE APPROPRIATE NUMBER FOR THE TYPE
OF INPUT/OUTPUT)

ILLEGAL CHARACTER ON CARD I N COLUMN XXX
OFFENDING CHARACTER I S ' X ' (XX OCTAL)
NUMBER NOT I N MACHINE RANGE
NUMBER EXCEEDS SPECIFIED FIELD WIDTH. NUMBER I S

XXXXXXXXXXXX (OCTAL)
SAME NUMBER, CONVERTED ACCORDING TO FORMAT, I S

(NUMBER I S PRINTED OUT AS CONVERTED)
THE NUMBER CAME FROM LOCATION XXXXX VIA THE STR AT

LOCATION XXXXX
ILLEGAL BCD TAPE NUMBER

o r ILLEGAL BINARY TAPE NUMBER
BINARY CARD I N BCD DATA

o r BCD CARD I N BINARY DATA
BAD BINARY BLOCK
TOO MANY BINARY BLOCKS
BASE FOR CONVERSION I S LESS THAN 2 OR GREATER THAN 19
MORE RIGHT PARENS THAN LEFT PARENS
NUMBER EXCEEDS SPECIFIED FIELD WIDTH

(NORMALLY ERROR 5 WILL OCCUR. I F THIS ONE OCCURS I T
MEANS BUFFER LENGTH WAS EXCEEDED.)

THE NAME XXXXXX I S NOT A FORMAT VARIABLE I N THE CALLING
PROGRAM
DIMENSIONING OR SUBSCRIPTING ERROR
MULTIPLE CONVERSIONS SPECIFIED I N FORMAT TERM, PROBABLY DUE

TO MISSING COMMA OR BAD HOLLERITH COUNT
L I S T NON-EMPTY BUT FORMAT S P E C I F I E S NO CON-aRSIONS
FORMAT WORD I S CORE CONSTANT

3.8-103

APPENDIX I - ERROR COMMENTS (CONTINUED)

E r r o r comments 6 through 9 are gene ra t ed by t h e BCD and b ina ry t ape
sub rou t ines . The o t h e r s are generated by . I O H . Each of the above error
comments gene ra t ed by . I O H is followed by:

ERROR FOUND WHILE PROCESSING FORMAT WORD 'XXXXXX'

WHICH OCCURRED AT LOCATION XXXXX
OUTPUT LINE

PRESENT o r IMAGE I S
INPUT CARD

(LINE-IMAGE PRINTED HERE)

1 / 0 STATEMENT BEGINS AT LOCATION XXXXX.

APPENDIX I1

FORMAT VARIABLES
AND SIMPLE 1 /0 I N UMAP

Both use of format variables and use of t h e s imp le 110 rou t ines r equ i r e
a symbol t ab le wh ich con ta ins a l l v a r i a b l e s t h a t w i l l be used as format
v a r i a b l e s o r which w i l l b e r e f e r r e d t o i n s i m p l e 110. The loca t ion o f t he
symbol t a b l e t h a t i s g i v e n i n t h e s u b r o u t i n e c a l l i s the l oca t ion o f a back-
wards-stored two e n t r y t a b l e . The b a s e l o c a t i o n o f t h i s t a b l e i s a word
c o n t a i n i n g t h e l e n g t h of t h e t a b l e . The s t r u c t u r e of the t a b l e e n t r i e s i s :

LOCATION I BCD name of v a r i a b l e .
LOCATION I+1 ADDRESS - l o c a t i o n o f v a r i a b l e .

TAG - Mode of v a r i a b l e .
DECREMENT - Locat ion of dimension vector

f o r t h i s v a r i a b l e . (0 i f
t h e r e i s no dimension vector) .

PREFIX - +O i f v a r i a b l e i s n o t s u b s c r i p t a b l e .
-0 i f t h e v a r i a b l e i s s u b s c r i p t a b l e .

The modes are:
0 F l o a t i n g p o i n t
1 I n t e g e r
2 Boolean
3 Funct ion name
4 Sta tement l abe l .

I f t h e v a r i a b l e i s g o i n g t o b e r e f e r r e d t o w i t h a doub le subsc r ip t , a dimen-
s ion v e c t o r , as d e s c r i b e d i n t h e MAD MANUAL, must be provided. A simple
example of a symbol table would be

B C I 1,SWITCH
PZE SWITCH,2

STLOC PZE 2
and an 1 /0 c a l l u s ing i t

CALLI0 .PRINT
FMT STLOC , ,FORM
END I O

3.8-104

APPENDIX I1 - FORMAT VARIABLES AND SIMPLE 1/0 IN UMAP (CONTINUED)

Where t h e f o r m a t is

A l a rger example w i l l be given later.

SIMPLE I / O : The UMAP ca l l i ng s equences t o do t he equ iva len t of t h e MAD
s imple I / O s t a t e m e n t s are:

FORM BCI *,H=k IS=,'SWITCH'(H* NOT*),H= TRUE=*

READ DATA - CALL .RDATA,STLOC
READ AND PRINT DATA - CALL .RPDTA,STLOC
PRINT RESULTS - CALL .PRSLT,STLOC,LIST,O
PRINT BCD RESULTS - CALL .PRBCD,STLOC,LIST,O
PRINT OCTAL RESULTS - CALL .PROCT,STLOC,LIST,O
PRINT COMMENT - USE THE SUBROUTINE SPRINT

WHERE STLOC i s t h e l o c a t i o n of t h e symbol t a b l e .
LIST i s a normal subrout ine list (s ing le pa rame te r s o r

b locks) , no t an 1/0 l ist . (I.e., 'BLK's o r 'PA.R's,
not 'Iop's.)

EXAMPLES: The f i r s t example reads i n an M by N mat r ix , t r ansposes i t , and
p r i n t s i t o u t .
$ASSEMBLE ,EXECUTE ,DUMP
AGAIN CALL

CALL
LDQ
MPY
XCA
S BM
SUB
ALS
S TD
CALL
PRINT
PRINT

L1 IOP
END10
TRA *

FMT BCI
FMT2 BCI
TEMP BTS
LABEL BTS
MATRIX BTS
N PZE

M P ZE
PZE

MDIM PZE

*

*
FLOAT EQU
INTGR EQU
STBEG BCI

PZE
BCI
PZE
BCI

.RDATA,STLOC

.PRSLT,STLOC,N,M,O
N
M

L1
=1
18
L1
TRANSl,MATRIX-l,M,N,TEMP
FMT,LABEL, ..., LABEL-22,O
STLOC, ..., FMT2
MATRIX-1, ,**
AGAIN

* , 22C6*
,lHO,'M'F6.1
15
30
500

** DIMENSION VECTOR FOR MATRIX
I
2

0 DEFINE MODES
1
1 YN SYMBOL TABLE
N , INTGR
1 YM
My INTGR
1 ,MATRIX

3.8-105

APPENDIX I1 - FORMAT VARIABLES AND SIMPLE I/O IN UMAP (CONTINUED)

MZE MATRIX,FLOAT,MDIM
BCI 1 , LABEL
MZE LABEL,INTGR

STLOC PZE STLOC-STBEG *
END

$DATA
LABEL=$~TITLE
$
M=3, N=2, MATRIX(1,1)=lY2,3,4,5,6 *
The second example reads in N,M, a vector, and the length of the vector,
and then prints out the Nth through Mth elements of the vector. It
illustrates the use of zero field width to get rid of list elements. It
also shows the use of a macro to make the symbol table construction
easier.
$ASSEMBLE, EXECUTE, DUMP
AGAIN CALL .RDATA,STLOC GET N ,M ,LENGTH ,VECTOR

STZ SK2
CLA N
SUB -1
ST0 SK1
SUB M
STA SK2
CLA LENGTH
SUB M
ST0 SK3
LAC LENGTH, 1
TXI *+1 , 1 ,VECTOR
SXD L1,l
PRINT STLOC, . . . ,F"T
END10
TRA AGAIN

L1 I OP VECTOR-1,,**

*
FMT BCI *,lHO,'SKl'FO,'SK2'F5,'SK3'FO*

ASSIGN N,MyLENGTH,SK1,SK2,SK3
VECTOR BTS 20

SYMTAB MACRO NAME,SBBL,MODE,DIMV
BCI 1 ,NAME
IFF O,/CRS/DIMV
SBBL NAME ,MODE ,DIMV
IFF 1, /CRS/DIMV
SBBL NAME ,MODE

*

SYMTAB END

FLOAT EQU 0
INTGR EQU 1
STBEG SYMTAB N,PZE,INTGR

*

3.8-106

APPENDIX I1 - FORMAT VARIABLES AND SIMPLE 1/0 IN UMAP (CONTINUED)

SYMTAB M , PZE , INTGR
SYMTAB LENGTH,PZE,INTGR
SYMTAB VECTOR,MZE,FLOAT
SYMTAB SKl,PZE,INTGR
SYMTAB SK2,PZE,INTGR
SYMTAB SK3,PZE,INTGR

STLOC PZE STLOC-STBEG *
END

$DATA
N=2,M=5,LENGTH=8,VECTOR(l) = 1,2,3,4,5,6,7,8 *
N=l, M=5, LENGTH=5, VECTOR(1) = 1,2,3,4,5 *

APPENDIX I11

STORAGE USAGE OF .IOH

TO save space fo r t he u se r t empora ry s to rage , bu f fe r s , t he l i ne - image ,
and a communica t ion reg ion wi th the o ther 1/0 s u b r o u t i n e s a r e k e p t i n low
core, between 73008 and 77778. Contro l in format ion and the push-down s t a c k
fo r pa ren theses are k e p t i n e r a s a b l e . The con t ro l i n fo rma t ion i s as
f o l l o w s (a l l l o c a t i o n s are i n o c t a l) :

77752 MULTIPLICITY
LOCATION CONTENTS (ALWAYS INTEGER)

77751 CURRENT COUNT (THIS IS THE COUNT THAT IS BEING
ACCUMULATED DURING THE FORMAT SCAN)

77750 BASE FOR CONVERSION
77747 PRECISION (INTERNALLY SET COUNTER USED DURING

CONVERSION)
77746 SCALE FACTOR
77745 LINE POINTER
77744 PUSH-DOWN POINTER (CONTAINS NUMBER OF WORDS OF

77743 FIELD WIDTH
77742 BASE (HIGH-ORDER END) OF THE PUSH-DOWN STACK.

PUSH-DOWN STACK BEING USED)

The l o c a t i o n s 77753 t o 77777 are n o t d i s t u r b e d .
The above s to rage a l loca t ions , be ing dependen t on t h e i n t e r n a l s t r u c t u r e

of .IOH, are capable of changing a t f u t u r e d a t e s .
A t any given time, t h e s e c e l l s h o l d t h e c u r r e n t c o n t r o l i n f o r m a t i o n f o r

the format t e rm be ing processed . S ince th i s cont ro l in format ion mus t be
preserved during an 1/0 c a l l , any function whose ca l l i s imbedded i n an 110
l ist mus t no t d i s tu rb t h i s s ec t ion o f e r a sab le . Only funct ions, not sub-
r o u t i n e s , o c c u r i n I / o lists.

3.8-107

APPENDIX IV

A BRIEF TABLE OF THE CHARACTERS
IN NORMAL CONTEXT

TYPE CHARACTERS

Control
Data-transmission A C E F G I K O

Non-data-transmission H / * S T X

Modifying B D L M N P R V W Z

Break

Change of context

0 ¶ *

0 IN FRONT OF (

1

H

3.8-108

CONTROL CHARACTER

A , c

E

F

G

I

K,O

APPENDIX V

A BRIEF TABLE OF APPLICABLE MODIFIERS

MODIFIERS

R W Z

D L M P V W

D L M P V W

D L M P V W

B L M V W

L W

N

N

3.8-109

APPENDIX VI

LISTING OF OTHER SUBROUTINES
IN "OS MANUm

EXPONIENTIATION SUBROUTINES
MAD automatically inserts calls to these in programs it generates when
it finds a '.P.' in the source program.

A. .01311 Integer base, integer exponent
B. .01301 Floating base, integer exponent
C. .01300 Floating base, floating exponent

Calling sequence for the above 3 subroutines is TSX XXXXXX,4 (where
XXXXXX is the name of the subroutine) with the base in the accumulator
and the exponent in the MQ. Result is in the accumulator on return,
mode of result is mode of base.

INPUT-OUTPUT SUBROUTINES
I. BCD (I/O with conversion via format)

A .

B.

C.

DESCRIPTION.
The user, or the translator under the user's direction, calls
directly on a preliminary routine (e.g., .PRINT). Each prelimin-
ary routine puts the following information in 4 special control
locations in low core and then calls the conversion routine
(.IOH) -- max number of columns, location of format information,
direction of format information storage, location of a routine
to call to do the input or output, location of the symbol table
(if any), whether on-line or off-line, whether input or output.
When the conversion routine needs a card image or has a line
image ready to go out, it transfers to the location given it in
the control information, which is the location of a 'connecting
routine'. This 'connecting routine' may (e.g., .WR.) or may not
(e.g., WR) be an actual subroutine in the sense that its name is
in the library dictionary. (It is actually another, but separate,
section of the preliminary routine.) The 'connecting routine'
sets things up and then calls on a low-core 'transmission' sub-
routine (e.g., SPRINT) to do the actual tape writing or reading.
In the list below, the four routines are listed in order for
each function - preliminary, conversion, connecting, and trans-
mission (e.g., .PRINT -- .IOH -- .WR. -- SPRINT) .
INPUT - from system input tape (7).
1. Called by 'READ FORMAT' in MAD, or direct user call of .READ

(or equivalent) in UMAP.
.READ -- .IOH -- .RD. -- SCARDS

2 . Called by 'LOOK AT FORMAT' in MAD, or direct user call of
.LOOK (or equivalent) in UMAP.
.LOOK -- .IOH -- .RD. -- SPEEK

INPUT - Arbitrary tape.
1. Called by 'READ BCD TAPE' in MAD, or direct user call of

.TAPRD (or equivalent) in UMAP.

.TAPES) -- .IOH -- .RD. -- SCARDS (If tape NBR = 7)

.TAPRD -- .IOH -- RD -- RDSDEC (Otherwise)

3.8-110

APPENDIX V I - LISTING OF OTHER SUBROUTINES--IN +os MANUAL (CONTINUED)

D. PRINT OUTPUT - On sys tem output t ape (6) .
1. Ca l l ed by 'PRINT FORMAT' i n MAD, o r d i r e c t u s e r c a l l of

.PRINT (o r e q u i v a l e n t) i n UMAP.

.PRINT -- . I O H -- .WR. -- SPRINT
E. PUNCH OUTPUT - On sys tem output t ape (5) .

1. Ca l l ed by 'PUNCH FORMAT' i n MAD, o r d i r ec t u s e r c a l l of
.PUNCH -- . I O H -- .PC. -- DPUNCH

F. OUTPUT - A r b i t r a r y t a p e .
1. Ca l l ed by 'WRITE BCD TAPE' i n MAD, o r d i r e c t u s e r c a l l

o f .TAPWR (o r e q u i v a l e n t) i n UMAP.
.TAPWR -- . I O H -- .WR. -- SPRINT (I f t a p e NBR = 6)
.TAPWR -- . I O H -- .PC. -- DPUNCH (I f t a p e NBR = 5)
.TAPWR -- . I O H -- WR -- WRSDEC (Otherwise)

G . PRINT ON L I N E .
1. Cal led by 'PRINT ON LINE FORMAT' i n MAD, o r d i r e c t u s e r c a l l

of .COMNT (o r e q u i v a l e n t) i n UMAP.
.COMNT -- . I O H -- PR -- ONLINE

(and . I O H c a l l s on SKIP6 a t end)
H . SIMPLE INPUT/OUTPUT ROUTINES.

1. Cal led by 'READ DATA' i n MAD
.RDATA -- SCARDS
(.RDATA does i t s own conversion and, hence, c a l l s only on
t h e low-core subroutine SCARDS fo r t he ca rd images .)

2. Called by 'READ AND PRINT DATA' i n MAD
.RPDTA -- SCARDS
(.RPDTA is a n o t h e r e n t r y t o .RDATA)

3 . Cal l ed by 'PRINT COMMENT' i n MAD
.PCOMT -- SPRINT
(I n t h i s case, no conversion i s necessa ry , s o the low-core
s u b r o u t i n e SPRINT i s c a l l e d d i r e c t l y .)

4 . Cal l ed by 'PRINT RESULTS' i n MAD
.PRSLT -- .PRINT -- . I O H -- .WR. -- SPRINT
(.PRSLT sets up format and l i s t and c a l l s on .PRINT, and
then the sequence i s t h e same as f o r .PRINT)

5. Called by 'PRINT BCD RESULTS' i n MAD
.PRBCD -- .PRINT -- . I O H -- .WR. -- SPRINT
(.PRBCD i s a n o t h e r e n t r y t o .PRSLT)

6 . Cal led by 'PRINT OCTAL RESULTS' i n MAD
.PROCT -- .PRINT -- . I O H -- .WR. -- SPRINT
(.PROCT is a n o t h e r e n t r y t o .PRSLT)

I. GENERAL AUXILIARY ROUTINES.
1. SKIP6 C a u s e s o n l i n e p r i n t e r t o s k i p t o n e x t s i x t h of a page.
2 . DBLSPC Causes on l ine p r in t e r t o doub le - space .

11. BINARY (I/O WITHOUT CONVERSION)
A. DESCRIPTION.

1. GENERAL.
The MAD t r a n s l a t o r , u n d e r t h e u s e r ' s d i r e c t i o n , c a l l s d i r e c t l y

on a combined prel iminary and se lec t r o u t i n e (e . g . , .RBIN). The
p u r p o s e o f t h i s r o u t i n e i s t o p r e s e t c e r t a i n i n s t r u c t i o n s i n v o l v i n g
t a p e selects. A check is a l s o made t o see i f t h e t a p e r e q u e s t e d is
a l e g a l t a p e a n d , i f s o , i f i t is a system 1 / 0 t a p e . I n t h e l a t t e r
case, ca l l s f o r 1 /0 b u f f e r t a p e r o u t i n e s (SCARDS and SPUNCH) are
s u b s t i t u t e d f o r se lects normal ly used on sc ra tch t apes . In these

3.8-111

APPENDIX V I - LISTING OF OTHER SUBROUTINES I N "OS MANUAL (CONTINUED)

B.

cases t h e 110 l is t may no t spec i fy more t h a n 28 words, of which
only 26-213 may be e f f ec t ive ly r ead o r punched .

Cont ro l is t h e n t r a n s f e r r e d t o a n 1 1 0 list processor
r o u t i n e . I n MAD, t h e p r e l i m i n a r y r o u t i n e c a l l s a p h y s i c a l l y
s e p a r a t e s u b r o u t i n e , . IOB, wh ich r e tu rns t o t he p re l imina ry
rou t ine wh ich g ives t he ac tua l select. The 110 l ists themselves
are i d e n t i c a l t o t h o s e o f e q u i v a l e n t BCD t ape rou t ines .
2. MAD.

When w r i t i n g s c r a t c h t a p e s i n MAD, every element of the 110
l ist is c o n v e r t e d i n t o a channel command to t r ansmi t t he spec i -
f i e d l o c a t i o n (s) t o o r from tape. A vec tor o f these i s b u i l t up
i n a n a r e a of low core. The maximum leng th of t h i s v e c t o r i s
200. Thus, a MAD b ina ry t ape s t a t emen t may no t gene ra t e more
than 200 s e p a r a t e list items. An a t t empt t o p rocess a list
gene ra t ing more than 200 channel commands w i l l r e s u l t i n t h e
e r r o r comment 'TOO MANY BINARY BLOCKS', and execution w i l l be
terminated. Because a da t a channe l t r ansmi t s success ive words i n
o rde r of i n c r e a s i n g a d d r e s s , a MAD block 110 list element (e.g. ,
V(1). ..V(lO)) w i l l always generate a channel command s u c h t h a t
t h e word wi th t he l owes t add res s (i . e . , t he h ighes t subsc r ip t) is
t r a n s m i t t e d f i r s t (e . g . , IOBP V-10,,10). To t r y t o minimize
a c c i d e n t a l e r r o r s , 'REVERSE ORDER' blocks (e.g. , V(l0) ... V(1)
a r e c o n s i d e r e d i l l e g a l by . I O B . An at tempt to process one w i l l
p roduce t he e r ro r comment 'BAD BINARY BLOCK', and execut ion w i l l
be terminated. Care should be used when w r i t i n g and reading
s c r a t c h t a p e s w i t h d i f f e r e n t l y s t r u c t u r e d 1 1 0 l i s t s , s i n c e any
b locks w i l l be t ransmi t ted 'BACKWARDS' f rom the o rde r s t a t ed
(e .g . , V(10) , then V(9) , e tc . , through V(l) , not V(1) through
V(10)) . When a l i s t t e rmina to r (STR O,,O) is recognized , the
l a s t c h a n n e l command is changed t o an IORT. A r e t u r n i s then made
t o t h e c a l l i n g p r e l i m i n a r y r o u t i n e w h i c h selects the tape through
t h e d i rec t b i n a r y s e l e c t r o u t i n e s , u s i n g t h e v e c t o r of channel
commands j u s t g e n e r a t e d . Then a de lay i s i n i t i a t e d t o w a i t u n t i l
t a p e t ransmission has been completed, a t which t i m e c o n t r o l i s
r e t u r n e d t o t h e MAD program. Thus each MAD b inary tape s ta tement
w i l l process one physical record on tape.

n o t c a l l e d . I n s t e a d , a s imple list p r o c e s s o r , l i k e t h a t of . I O H ,
which i s c o n t a i n e d i n t h e p r e l i m i n a r y r o u t i n e , i s used t o p rocess
the card image read or the card image to be punched via the S F -

t e m 110 bu f fe r rou t ines .

i n MAD. I n e v e r y case, the l e f t -mos t name is t h a t of the prel im-
inary and select rout ine , and the r igh t -most name i s t h a t o f a
l o w c o r e r o u t i n e , e i t h e r a bu f fe r rou t ine fo r sys t em 110 t apes
o r a d i r e c t select rou t ine u sed w i th s c ra t ch t apes .
INPUT - From sys tem input t ape (7) .
1. Cal led by 'READ BINARY TAPE 7' i n MAD

I f t r a n s m i s s i o n i s occurr ing on a system 110 tape . I O B is

Below are t h e s u b r o u t i n e s c a l l e d by b ina ry t ape s t a t emen t s

.RBIN -- SCARDS

3.8-112

APPENDIX V I - LISTING OF OTHER SUBROUTINES I N "OS MANUAL (CONTINUED)

C. INPUT - From a r b i t r a r y t a p e
1. Called by 'READ BINARY TAPE' i n MAD

. R B I N -- . I O B -- RDSBIN
D. PUNCH OUTPUT - On sys tem per iphera l punch tape (5).

1. Called by 'WRITE BINARY TAPE 5' i n MAD
.WBIN -- SPUNCH

E. OUTPUT - A r b i t r a r y t a p e .
1. Called by 'WRITE BINARY TAPE' i n MAD

.WBIN -- . I O B -- WRSBIN

LIST MANIPULATION SUBROUTINES
I. Called by 'SET LIST TO' i n MAD, 'SETTO' pseudo-op i n LJ", o r

d i r e c t s u b r o u t i n e ca l l :
.SET

11. Called by 'SAVE DATA' i n MAD, 'SAVE' pseudo-op i n W, o r
d i r e c t s u b r o u t i n e ca l l : . SAVE

111. Called by 'SAVE RETURN' i n MAD, o r d i r e c t s u b r o u t i n e c a l l : . SAVRN
I V . Called by 'RESTORE DATA' i n MAD, 'RESTOR' pseudo-op i n LJMAP, o r

d i r e c t s u b r o u t i n e ca l l :
. RSTOR

V . Called by 'RESTORE RETURN' i n MAD, o r d i r e c t s u b r o u t i n e ca l l : . RSTRN
.SET, .SAVE, and .RSTOR setup and manipulate push-down type l i s ts .
.SET has one argument which i s t h e f i r s t e l e m e n t o f t h e a r r a y t o
be used as t h e l ist . T h i s e l e m e n t m u s t b e p r e s e t t o t h e i n i t i a l
l ist l eng th , and t he rea f t e r w i l l have i n i t t h e c u r r e n t list
l e n g t h . .SAVE and .RSTOR have 1/0 cal l ing sequences which ter-
mina te w i th b l ank IOP i n s t r u c t i o n s . .SAVE puts e lements on the
s p e c i f i e d l ist i n t h e o r d e r t h a t t h e y o c c u r i n t h e c a l l i n g
sequence. .RSTOR obtains e lements f rom the end of the l i s t and
p u t s them i n t h e l o c a t i o n s s p e c i f i e d by t h e c a l l i n g s e q u e n c e
and i n t h e o r d e r t h a t t h e y o c c u r i n t h e c a l l i n g s e q u e n c e . Any
computa t ion des i red may o c c u r w i t h i n t h e c a l l i n g s e q u e n c e .
.SAVRN and .RSTRN are similar t o .SAVE and .RSTOR. They are
u s e d t o save and r e s t o r e t h e p r o l o g o f t h e MAD func t ion t hey are
c a l l e d from.

PAUSE SUBROUTINE
Called by 'PAUSE NO. ' s t a t e m e n t i n MAD, and 'PAUSE' pseudo-op i n U".
Causes the machine to s top i n e x e c u t i o n i n s u c h a manner t h a t t h e
program may be cont inued by p ress ing the start but ton . T i m e dur ing
the pause is counted as process ing time, no t execu t ion time and,
hence , does no t coun t aga ins t t he u se r ' s execu t ion time estimate.
A l l h i g h s p e e d r e g i s t e r s are preserved .

3.8-113

APPENDIX VI - LISTING OF OTHER SUBROUTINES IN MAMOS MANUAL (CONTINUED)

SUBSCRIPTION SUBROUTINES
I. .03311 and ,03310 (two names for same routine).

When MAD finds a 2 dimensional subscript, A(I,J), it calls on
this subroutine to find the linear subscript, R, that corres-
ponds to it. (I.e., A(R) and A(1,J) refer to the same element)
CALLING SEQUENCE IS CLA I

LDQ J
TSX .03311,4
BLK A, ,DIM

where ADIM is the name of the dimension vector for A. R is in
the accumulator on return.

When MAD finds a 3-or-higher dimensional subscript, A(I,J,K, ...),
it calls on .MTX to find the corresponding linear subscript.
CALLING SEQUENCE IS TSX .MTX,4

11. MTX .

BLK A,,ADIM
PAR I
PAR J
PAR K . .
. .

linear subscript is in the accumulator on return.

.SUBS
Special subscription subroutines called by MAD when the special
subscripting option is used.

vectors.

111. SYMM

NOTE: Since these are called by MAD, they assume MAD-type storage of

TAPE MANIPULATION ROUTINES
I. BACKSPACE RECORD.

A. Called by 'BACKSPACE RECORD OF TAPE' in MAD . BSR
11. BACKSPACE FILE.

A. Called by 'BACKSPACE FILE OF TAPE' in MAD
. BSF

111. REWIND.
A. Called by 'REWTND . RWT

IV. REWIND AND UNLOAD.
A. Called by 'UNLOAD . RUN

V. WRITE END-OF-FILE.
A. Called by 'END OF . EFT

VI. SET DENSITY.

TAPE' in MAD

TAPE' in MAD

FILE TAPE' in MAD

A. Called by 'SET LOW DENSITY TAPE' in MAD

B. Called by 'SET HIGH DENSITY TAPE' in MAD
. SETLO
. SETH1

3.8-114

INDEX TO " O S SUBROUTINE LIBRARY - BY ENTRY POINTS

ENTRY POINT NAMES LENGTH8 ERASABLE USED8 - PAGE

ANA, ORA

ARCSIN, ARCCOS

ATAN

ATLOC

ATN 1

BAKSUB

BCDBN, MBCDBN

BNBCD

BORDS

. BSF

B S L l

. BSR

CHOLES

CMADD

CMDIV

CMMUL

CMSQRT

CMSUB

. COMNT

COMF'Z, ZCOMPZ

CROUT

CROUTP

1 2

1 4 3

72

26

202

153

3 1

25

221

1 2

1 4 4 1

1 2

177

7

44

17

122

7

77

55

1 4 3

176

0

0

3

0

11

4

2

2

317

0

10

0

304

0

2

1

10

0

0

1

150**

150**

3.8-4

-4

-5

-5

-5

-6

-7

-7

-8

- 1 1 3

-9

-113

-10

-11

-11

-11

-12

-11

-110

-12

-13

-14

3.8-115

ENTRY POINT NAMES LENGTH

DCOMPZ, DZCOKP 4 1

DFAD, DFSB, DFMP, DFDP, SFDP, DCEXIT 1 4 7

D I SMNT

DPFA

DPFDV

D P f i

DPMAT

DSLE1, DSLE2

DSQRT

. EFT, (EFT)

E I G N

ELOG

ERF

ERRFN, FREQ

. EXIT

EXP

EXP 1

EXP2

EXP3

FSPILL, RSPILL

GAMMA

GAUSS

G JRDT

GJRDTP

HAs1, HASlS

1 4 3

1 4

1 2 0

2 3

1 0 2

1 2 0 7

37

1 4

6 2 0

1 0 2

153

1 0 5

55

113

4

4

b

60

66

1 4 5

2 1 6

2 1 0

5 1 6

ERASABLE USED PAGE

0

0

0

1

4

3

3 1 7

146**

0

0

1 6

4

6

4

0

5

0

0

0

0

2

145**

3 1 7

3 1 7

50

3.8-15

-16

-15

-1 7

-17

-17

- 18

-19

-18

-113

- 2 1

-22

-25

-25

-23

-24

- 2 6

-26

-27

-27

- 2 8

-29

-30

- 3 1

-32

ENTRY POINT NAMES

IBDS

I E F l

. I O B

. I O H , STQUO, (F I L) , (RTN) , IOHSIZ

IOHSIZ

ITINT

.LOOK, .READ, .RD., (CSH)

LSH, RSH

MOUNT, LABEL

MOVER

MTX

NASQ

NDRNlA, NDRNlB, NDRNlC, NDRNlD

OFFTRC, ONTRC

PCPCH

. PCOMT

PLOTl, PLOT2 , PLOT3, PLOT4, OMIT,
FPLOT4

.PRINT, . WR.

.PRSLT, .PRBCD, .PROCT

.PUNCH, .PC., (SCH)

RAMZA, RAMZB, RAMZC, RAM2D

RANDND

RANDOM

. RBIN

. RDATA, . RPDATA

LENGTH8 ERASABLE USED8

446 234**

2 36 1 7

1 2 7 0

4 1 4 7 0

See . I O H ROUTINE

3 6 2 1

1 4 7 0

1 3 0

1 3 7 3 0

113 1

3 3 0

105 0

1 7 1 3

11 0

2 2 2 0

1 7 0

1 7 7 7 0

6 4 0

1 0 0 7 0

0 0

6 4 1

7 3 0

3 0 0

2 34 0

1102 0

3.8-116

PAGE -

3.8-33

-33

-110

-85

-34

- -35

- 1 0 9

- 3 9

- 3 9 , 4 0

- 4 1

- 1 1 3

-4 1

- 4 2

-4 3

-4 3

-110

-44

-110

-110

-110

-57

-59

-58

-111

-110

ENTRY POINT NAMES

3.8-117

ERASABLE USEDq pAGE

REPLCE

RKDEQ, SETRKD

.RUN, .RWT, (RWT)

SAVCOR

. S A W , .SAVE, .RSTRN, .RSTOR, .
S ELPGM , S EQPGM

SET2, SET8

SETEOF, SETEFL

SETERR, . ERR

31

141

25

165

,SET 213

35

14

24

66

SETETT 25

SETFTP , RSTFTP 37

.SETLO, .SETHI 21

SETPLT, USTPLT 701

SETUP, CONVRT, ADD, SUB, MPY, D I V ,
RMDR, RECNVT, I F 1333

S I N , COS 177

SKIP 33

SLEC, SLEG, SLEM 110

SPREAD, GATHER, FSPREAD, FGATHR 154

SQRT 57

(STH) , .TAPWR 207

.SUBS, .0311, .0310 42

SYMM 41

TAB 307

TANH 136

TRANS 66

TRANS1 116

3

1

0

4

0

1

0

0

0

0

0

0

4064

320

4

0

1

0

2

0

0

0

22

5

5

4

3.8-60

-61

-113

-62

-112

-63

-64

-64

-65

-66

-66

-113

-67

-80

-70

-70

-71

-72

-73

-110

-113

-113

-74

-73

-75

-75

ENTRY POINT NAMES

(TSH) , .. TAPRD

UITR1, UITRlA

UITR2, UITR2A

UITR3, UITR3A

. WBIN

ZER2, ZER3, ZER4, ZER5, ZER6

ZERO, SPRAY

.01300

.01301

.01311

.03311, .03310

LENGTH8

215

164

322

304

211

670

34

66

76

64

15

ERASABLE USED8

0

0

0

0

0

25

0

11

3

3

0

3.8-118

3.8-109

-77

-78

-79

-112

-82

-84

-109

-109

-109

-113

**This r o u t i n e u s e s a v a r i a b l e amount of e r a s a b l e s t o r a g e . The number given
is t h e minimum erasable needed .

.

3.8-119

.

INDEX TO N O S SUBROUTINE LIBRARY . BY FUNCTION
FUNCTION

Arbitrary Matrix Transposition 3.8-75
Bessel Function . -9

Binary Input/Output . -110

Calling Subroutines for Ping-Pong Segments -63

Complex Arithmetic . -11

Complex Square Root . -12

DismountTape . -15

Double Precision Floating-point Arithmetic -17

Double Precision Operations . -16

Double Precision Square Root . -18

Double Precision Square Root . -41

Eigenvalues and Eigenvectors . -21

Error Function Subroutine . -25

Exit Subroutine . -23

Exponentiation . Floating-point Base and Floating-point Exponent . . -2 7. 109

Exponentiation . Floating-point Base and Integer Exponent26. 109

Exponentiation . Integer Base and Integer Exponent26. 109

Exponentiation . The Base E . -24

Floating-point Arcsine and Arccosine -4

Floating-point Gamma Function -28

Floating-point Logarithm . -22

Floating-point Principle Value Arctangent -5

Floating-point Sine and Cosine -70

Floating-point Single Value Arctangent -5

Floating-point Spill Routine . -27

Floating-point Trap Control . -66

3.8-120

FUNCTION

General Conversion Routine .
Harmonic Analysis .
Hollerith Input/Output .
Hyperbolic Tangent .
Incomplete Elliptic Integrals
Linear Equations .
List Manipulation Routines .
Logical Operations .
Matrix Conversion .
Matrix Factorization by Cholesky Decomposition
Matrix Factorization by L-R Decomposition
Matrix Inversion .
Matrix Multiplication Using Double Precision
Move Arrays .
Normally Distributed Random Number Generator
Numerical Integration of Single or Multiple Integrals
Octal Location Finder .
One Word BCD To Binary Conversion
Plotting Subroutine .
Program Common Punch .
Replace Tapes .
Runge-Kutta Solution of Differential Equations
Save Blocks of Core For Later Reloading By System
Set End of File Return .
Set End of Tape Option .
Set 110 Error Return .

PAGE .
3 . 8 - 7 2

-32

-85

- 7 3

- 3 3

-19

-112

-4

-8

-10

. 13 .14 . 29

-33

-18

- 4 1

.42. 59

-35

-5

-7

-44

- 4 3

-60

-61

-62

-64

-66

-65

.. "

3.8-121

FUNCTION

Set IOH Field Size Error Condition
Set Low Core Trap Locations
Set Up For Plot Routine .
Shifting Operations .
Simultaneous Iteration .
Simultaneous Linear Equations
Simultaneous Linear Equations By Matrix Inversion
Single Iteration .
Single Iteration - Interval Halving
Single Table Interpolation .
Skip Tape Routine .
Square Matrix Transposition
Square Root .
Storeconstant .
Subscription Routines .
Subtrace On-Off Switch .
Symbol Manipulation .
Symbol Manipulation - Packing
TapeLabeling .
Tape Manipulation Routines .
Tape Mounting .
Uniformly Distributed Random Number Generator
Variable Precision Integer Arithmetic

-Zeros of A Complex-rolynomial

PAGE

3.8-34

.

-64

-67

-39

-79

.6. 7 1

.30. 31

-77

-78

-74

-70

-75

-73

-84

-113

-43

-12

-15

-39

-113

-40

.57. 58

-80

-82

NASA.Langley. 1966 CR-488

