@ https://ntrs.nasa.gov/search.jsp?R=19660017936 2020-03-16T19:11:22+00:00Z

=

IR

AN ‘a4v AYVHEIT HOaL

NASA CONTRACTOR._|:
REPORT

NASA CR-488

LOAN CGOPY: RETURN TO
AFWL (WLIL-2)
KIRTLAND AF3, N MEX

A MONITOR SYSTEM UNDER
IBSYS FOR THE IBM 7090/7094

by Alfred E. Beam

" Prepared by
UNIVERSITY OF MARYLAND
College Park, Md.

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION « WASHINGTON, D. C. o MAY 1966

TECH LIBRARY KAFB, NM |

(T

0099510
NASA CR-488

MAMOS:
A MONITOR SYSTEM UNDER IBSYS FOR THE IBM 7090/7094

By Alfred E. Beam

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

Prepared under Grant No. NsG-398 by
UNIVERSITY OF MARYLAND
College Park, Md.

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information

Springfield, Virginia 22151 — Price $7.00

Abstract

This report describes an operating system which operates on the
IBM 7090/7094 under the IBSYS or DC-IBSYS Monitor. The system processes
jobs written in the MAD language, ALGOL language, FORTRAN language, and
UMAP language. The processors of the system are among the fastest currently
available, A very extensive library of programs is also provided., The
system is especially useful for processing student jobs,

iii

TABLE OF CONTENTS

Abstract
Acknowledgements

1. The MAMOS Monitor And Job Definition
1.1 Introduction
1.2 Sub=-System Selection And Job Definition

2, MAMOS System Operation And Installation Options
2.1 Introduction
2.2 The MAMOS Distribution Tape
2.3 MAMOS Operating Arrangement
2.4 Options And Assembly Parameters

3. MAMOS Monitor System Under IBSYS

3.1 Introduction

3.2 MAMOS Control Cards And Their Functions
Job Deck

3.3 MAD Under MAMOS
MAD Job Decks And Examples

3.4 ALGOL Under MAMOS
References To Hardware Representation
ALGOL Job Decks And Examples
'CODE' Procedure
ALGOL Input/Output

3.5 MAMOS Job Deck Composition In General
PING PONG
TEACHER And UNKNOWN Jobs
FORTRAN II To MAD Translator
Regression Job
Example

3.6 MAMOS Organization And Coding Information
Low Core Package (10S)
Logical Input/Output Units
Non-Data Selects
Data Selects
Input On SYSINI1
Qutput On SYSOU1
Output On SYSPPI
Routines For I/0 Unit Tables
Octal Core Dump
System Records
Pause Routine
Floating Point Trap’
Subroutine Trace

(@]

ot ol ok ek e ek ad = OV P WN = DNORARUNTW = 0O EN a Pt

oo oo o UL LU USSR WWLWNN = —

o

WWWWLWLWLWLWWLWWLWWLWLWWWWLWWLWLLWLWLWLWWWWWLWW WLWW

oo PP NOO

TABLE OF CONTENTS - Continued

3,7 UMAP Assembler Under MAMOS
Symbols
Elements, Terms, And Expressions
UMAP Card Format
Qualifiers
Literals
Error Comments And Error Flags
Pseudo=-Operations
MACRGS
Combined Operations Table

3,8 MAMOS Library Of Subroutines

vi

Page

. . L L] .
PIVFIIIILY

.
| I I N |

O WUMRNN ot =W~

MU O

WLWLLWWLWWWLWWL
« o o .

W
.
o]
]
-—

Acknovledgements

In the past months there have been many man hours expended in the
preparation of the completed version of MAMOS. I would like to express
my deep appreciation to the many people who have so freely contributed
their time and effort in the preparation of MAMOS and without whose help,
completion of the system would not have been possible,

Much credit for the system must be given to the staff of the
University of Michigan Computing Center, for without the many components
of the Michigan Executive System which were adapted for the MAMOS monitor,
MAMOS would not be worthy of being called a system. I am very grateful
to Professor Bernard Galler of the University of Michigan for making the
entire Michigan Executive System and write-ups available to the Computer
Science Center,

Many thanks are due to the staff of the University of Illinois
Digital Computer Laboratory for their contribution of the ALCOR-Illinois
ALGOL compiler which was made a component of MAMOS,

I would like to express my thanks to Messrs. John Bielec, George
Lindamood, William Cleveland, Howard Wactlar, and Dr, Earl Schweppe who
were very helpful in checking various parts of the system through their
early use of MAMOS, Special thanks go to Mr, Robert Herbold for his ex-
cellent help in finding some very elusive bugs, and to Mr, John Montague
for writing some subroutines and several test programs for the general
check=out of the system, Also to Mr. Gunter Meyer for writing some sub-
routines,

Early use of MAMOS in courses taught by Dr, Earl Schweppe, Dr,
Howard Tompkins, and the faculty of the Electrical Engineering Department
greatly aided in checking out the system,

It is a pleasure to acknowledge also the valuable assistance rendered
to MAMOS by a number of other installations, In particular to Mr, William
Cahill, Head of the Mathematics and Computing Branch of the Theoretical Di-
vision of the Goddard Space Flight Center for the use of his imstallation in
checking MAMOS under the Direct Coupled System (DC-IBSYS). Also to Messrs.
Nate Dillard and Sam Wax of the above installation for their aid in getting
MAMOS edited into their system, To Dr. Robert F., Rosin of the Yale Computing
Center for early use of MAMOS under DC-IBSYS and detection of some errors in
the system,

Finally, many thanks to Mr, Jack Otley for his general assistance and in
particular for getting together the description of the MAMOS library; and
to Mrs. Stella Tobin, Miss Alexandra Sieg, and Miss Carol Fung for typing
the write-up,

i

vii

1.1-1

1 The MAMOS Monitor And JOB Definition

1.1 Introduction

This write-up describes the 7090/7094 MAMOS Monitor. MAMOS is a
sub=monitor in that it operates under the IBM Basic Monitor (IBSYS).

MAMOS operates under 7090/7094 IBSYS which has at least eight IBM
729 tape units, or under IBSYS for IBM 704X to 709Y direct coupled systems.

MAMOS processes programs written in the MAD language, the FORTRAN II
language, ALGOL language, and the UMAP language. UMAP is very similar to the
FAP language under the FORTRAN II Monitor, Other language translators will
be added to MAMOS in the future,

Chapter 3 of this write-up contains a MAMOS description which is written
for the general user, There are several references to section 1,2 in Chapter 3,
and except for section 1.2 the general user may ignore the first 2 chapters of
this write-up.

Chapter 2 is written mainly for the systems programmer.

1.2-1

1.2 Sub-System Selection and Job Identification

A deck of cards [DECK] is defined here as a card deck arranged in
such a manner that when operated upon by MAMGOS, it produces the desired
result for the user,

A job deck [JOB] is defined as one or more IBSYS control cards
followed by a [DECK]. The IBSYS control cards are described in IBM 7090/7094
Operating Systems Basic Monitor (IBSYS).

Individual installations have several options in their use of the IBSYS
control cards and it is impossible to describe, in general, the specific IBSYS
cards required for a [JOB]. Hence a [JOB] is now defined for MAMOS as it
operates under IBSYS at the University of Maryland Computer Science Center,

A job deck [JOB]} is defined as two IBSYS control cards followed by
[DECK] as follows.

SEXECUTE MAMOS
$ID name*task¥options$any comment
[DECK]

1.2=2

$EXECUTE is punched in card columns 1-8 and the system name MAMOS
is punched starting in card column 16, This card is used by IBSYS to locate
on the system tape, call in, and relinquish control to MAMOS.

The second card above is the job (or identification) card, and it
serves two purposes,

1) It is a signal for the beginning of a job,
2) 1It provides information for accounting.,

The job card has $ID punched in card columms 1-3 and the name, task, and
optional fields are punched in card columns 7-66, The fields are separated
by an asterisk (%),

The dollar ($) character and the asterisk (%) character are not allowed

within any of the fields, Any desired comment may follow the dollar sign which
terminates the fields.

The name and task fields are described as follows.

i) name field: This field consists of the users last name followed
by any other identifying characters (except $ and *) the user may
wish to use, The name field can be from 6 to 18 characters in
length.

ii) task field: This field consists of 10 characters having the
form xxx/yy/zzz where

xxx is the department identification,
yy is the year the task was established.
zzz is the task serial number,

There are 6 optional fields which may be specified:

1) time field: This field consists of a decimal integer followed by
by the character S (for seconds) or the character M (for minutes).
The specified time is the maximum time which the program will be
allowed to run during execution., If the time specified is exceeded,
then execution is terminated and processing of the next job is begun.

2) print field: This field consists of a decimal integer followed
by the character P (for pages). The specified number of pages is
the maximum number of pages allowed to be written on the output tape
during execution,

3) punch field: This field consists of a decimal integer followed
by the character C (for cards)., The specified number of cards is
the maximum number of cards allowed to be written on the punch tape
during execution,

1.2=-3

4) dump field: This field consists of two decimal integers sepa-
rated by a slash and the second integer is followed by the
character D (for dump). The two integers may be any values
between O and 32767, and they specify lower and upper limits of
an IBSYS dump which will be taken if certain error conditioms
occur,

5) tapes field: This field consists of a word beginning with the
character T (for tape). This field causes an on-line message
to be printed for the operators, The message is followed by a
pause so that the operators can save any tapes the user may have
requested to be saved at the beginning of his job, The message
is printed and the pause occurs just before the next job is
signed on, This provides a safe-guard against missing a pro-
grammed pause and the next job over-writing save tapes,

6) punch delete field: This field consists of a word beginning
with the character N (for NODECK). 1If this field is given, it
specifies that the information written on the punch tape during
the job is not desired as part of the job output,

The order of the 6 optional fields is not important, They are iden-
tified strictly by the first non-decimal character following an asterisk,
Hence rather than the characters S, M, P, C, D, T, and N; the words SECONDS,
MINUTES, PAGES, CARDS, DUMP, TAPES, and NODECK could be used as long as the
desired specifications do not go beyond column 66 on the $ID card, Blanks
are ignored.

The dump option on the $ID card will cause a dump to be given in
case of excessive execution time or program hang=-up.

If the estimates are not given by the user, then up to 30 seconds
of execution time, 10 pages of printed output, and 20 punched cards are given.

These numbers may change in the future.

Examples of $ID Cards

$ID MARSIE,J.Q.*XXX/YY/ZZZ*20S*15P*NODECK*4096/8192DMPST1

The above card specifies that the maximum execution time is to be
20 seconds and the maximum output during execution will be 15 pages (at 60
lines/ page). If the execution lasts more than 20 seconds then a core dump
from 4096 to 8192 is to be given. No punched output is given,

$ID DOTES * XXX/YY/ZZZ%x3M*10CRD *TAPES $T2

The above card specifies that the maximum execution time is to be
3 minutes, and that any punched output during compilation/assembly plus up
to 10 cards during execution is to be given as part of the job output.
Also there is to be a tape-save message and pause just before signing on
the next job.

1.2-4

When the user submits a job to the Computer Science Center for process-
ing, he also fills out a Run Submittal Card and the dispatcher prefaces the

job deck with
which is used
processing by
Run Submittal
tape in front
Run Submittal

this card, The Run Submittal Card is prepunched with information
by the card-to-tape program when it prepares the job on tape for
the 7090/7094, The card-to-tape program, on recognizing the
Card, inserts an end of file and the IBSYS control Card $JOB on
of the job deck. After the job is completely processed, the

Card is retained by the Computer Science Center,

If the user wishes to submit 2 or more job decks as a single deck he
should separate the decks with an end of file card and a $JOB card. The end
of file card should not have punching other than 7 and 8 punches in column 1,

2 MAMDS System Operation And Installation Options

2.1 Introduction

MAMOS is a very efficient job processor when properly placed on IBSYS
Operating System Tapes, There are several options available to the individual
installation as to where the system should reside on the operating system
tapes, The speed of operation for tape systems is highly dependent on the

placement of MAMOS,

No change is necessary to make the distributed version of MAMOS operate
under direct coupled IBSYS (DC-IBSYS),

Simple parameters are provided to allow MAMOS to operate under various
situations,

2.2-1

2.2 The MAMOS Distribution Tape

tape.

FILE

FILE

FILE

FILE

FILE

FILE

MAMOS 1is distributed as several files, taking almost a full reel of
The files are as follows.

1

2=4;
5
6 :
7
8

Version 12 IBSYS and DUMP records, almost as distributed by
IBM. Tapes are all set for high density. IBEDT is not avail=-
able on the tape.

MAMOS as an operating sub~monitor under IBSYS. The contents of
the 3 files are described below.

A MAMOS job which edits the MAMOS library. The binary decks as
data are included in the job,

A MAMOS job which produces absolute binary cards for the IBSYS
MADTRAN record,

The symbolic cards for the MAMOS system, The file was produced
by FAP update, hence blocked records consist of up to 16 cards
per record. The file may be used as an update input tape, or it
may be used as an input (SYSIN1) tape to MAMOS.

The two IBSYS control cards: $IBSYS and $STOP .

2,31

2,3 MAMOS Operating Arrangement

As distributed, MAMOS (as an operating sub-monitor) consists of 3
consecutive files of the IBSYS Operating Systems Tape, The 3 files are

organized as follows. The first word in the list gives the name of the
record which is used in editing.,

MAMOS Input/output supervisor.
End of file

MADML] : MAMOS Monitor, Loader, and Accounting programs,
MADCPL : MAD Compiler.

UMAPAS : UMAP Assembler,

ALDOO1 : ALGOL Compiler - part 1,

ALD0OO2 : ALGOL Compiler - part 2,

ALDOO3 : ALGOL Compiler - part 3.

ALDOO4 : ALGOL Compiler - part 4,

ALDOOS5 : Short dummy record.

LIBHED Library header record.

The MAMOS library consisting of many records,

End of file

COPIES : Record used to make copies of job output,
MADTRN : MADTRAN Translator,

End of file

All of the above programs are written in UMAP except MADIRN and a
few of the library routines, which are written in the MAD language,

If the system is assembled, the binary output must be rearranged a
litrle before doing an edit to produce MAMOS as an operating sub-monitor.

1) The binary cards labeled COPIES which are part of the Monitor Assembly
must be placed in proper position for the COPIES record.

2) The relocatable binary decks of MADTRAN must be run in a special program
to punch out absolute binary for the IBSYS record MADTRN.

3) The low core library subroutine should be placed at the end of the library,
and the library should be rearranged so that the most frequently used
routines are at the beginning of the deck.

4) A library edit run must be made with the relocatable subroutine decks
as data. The run produces a file on SYSCK2 which is suitable for a
*DUP into the IBSYS Operating System,

It is hoped that the above steps will not be necessary for most instal-
lations since the operating system as distributed already has a good library
arrangement,

2,3-2

Relocatable Program Decks For The Library

There are more than 100 subroutines in the library., File 5 of the
distribution tape contains the relocatable binary decks for the library as
data for the library editor. The editor produces a file of records which
is then edited into IBSYS. The form of file 5 is as follows,

$JOB
SEXECUTE MAMOS
$ID
$ EXECUTE
[binary program deck for the library editor]

$ DATA
[relocatable binary program decks for the library]

7/8 end of file card

As pointed out before, the arrangement of the decks is different from
the order of the symbolic programs for the library.

If file 5 is run as a job, the edited library will be put on SYSCK2 as
one file, The file is of the form required by the MAMOS loader, and also in
a form suitable for editing into most IBSYS Operating Systems by means of the
*DUP control card. There may be some DC-IBSYS systems which will not accept
the library in the above form. In the case of the DC~IBSYS systems which re-
quire the first word of a library record not to be an IOCP, a simple copy and
modify will produce an acceptable format, The library file which is in the
third file of the distribution tape has already gone through such a transform-
ation and it is hoped that the format is acceptable to all IBSYS systems. The
format of the first word of each record is IORT 4096,0,N where N 1is the
number of words in the record. The second word of the record is a BCD name,
The MAMOS loader ignores the first two words of a library record.

of MAMOS,

2,3-3

The UMAP program which was used to produce the altered file is
given below, and provides an example of the use of the basic I/0 routine

are given elsewhere,

$EXECUTE

$1ID

MAMOS

$ ASSEMBLE, EXECUTE
FIX LIB FOR D-C IBSYS

READ

LIN

EOR

EOF

LouT

WD1

EQFS

WRITE

SYS

TITLE
STZ
CALL
TIX
TIX
TIX
ZET
TRA
TRA

IOBT

ALS
STD
STD
TRA

STL
TRA

I0BT

TXH

PZE
BSS
CLA
STO
CALL
TIX
TIX
TIX
TRA

CALL
TIX
CALL
TIX
CALL
TIX
CALL
END

EOFS
RDSBIN
EOR,0,10
LIN,7,0
EOF,0,0
EOFS

SYS
WRITE

A,0,-1

18
LOUT
WD1
1,4

EOFS
1,4

A’O,**
4096,0,%*

0
20000
WD1

A
WRSBIN
0,0,11
LOUT, 7,0
0,0,0
READ

WEFTAP
0,0,11

RUNTAP
0,0,11

RUNTAP
0,0,10
SYSTEM

The program assumes that tape mounting and saving instructions

IN ON SYSCK2

READING COMMAND
USERS EOR TRAP TIME

ROUTINE TO SET UP
THE RECORD LENGTH,

USERS EOF TRAP TIME
ROUTINE,
%= RECORD LENGTH

%= RECORD LENGTH

MAX, REC. LENGTH IS 200000

OUT ON SYSCKI1
7 TO FORCE WAIT

PUT EOF ON SYSCKI1
UNLOAD SYSCK1
UNLOAD SYSCK2

END THE JOB

2.3-4

The Job To Produce An IBSYS Record For MADTRAN

File 6 of the distribution tape consists of a job which when run,
produces an absolute binary deck for MADIRAN on SYSPP1. The output deck
is in a form suitable for editing into IBSYS as the MADTRN record. The
MADIRN record in file 4 of the distribution tape was produced by running
this job., The form of file 6 is as follows,

$JOB

SEXECUTE MAMOS

$ID

$ ASSEMBLE, EXECUTE
[Symbolic main program for MADIRAN]
[Relocatable binary programs for MADTRAN]

$ DATA
7/8 end of file

The main program above has in it a one-time only program which
punches out the absolute binary deck.

There are several ways to accomplish the above, but this method
usually produces less binary cards and hence a shorter system record,
The symbolic program above could be modified to produce absolute decks
for other translators which are written as relocatable programs.

The Symbolic Programs For The MAMOS System

File 7 of the distribution tape contains all of the current MAMOS
system in symbolic form, The file was produced by FAP update, and cards
are blocked up to 16 cards per record. The entire system may be assembled
by making a copy of files 7 and 8 on SYSIN1 and making a run, using the
first 4 files of the distribution tape as the IBSYS Operating System. Such
an assembly will produce much output on SYSOU1 and about 2 boxes of binary
cards on SYSPP1.

A basic FAP update deck is listed below for those who wish to update
and assemble the system, It is assumed that the FAP update input tape is
positioned in front of file 7 on SYSCK2 and a scratch (for FAP update output)
is ready on SYSCKl1., It is further assumed that FORTRAN II logical numbers
9 and 10 refer to SYSCK1l and SYSCK2 respectively.

in order, are as follows.

2.3=5

File 7 consists of 22 programs, followed by the library. The programs,

Program

MAMOS
MONITOR and COPIES
LOADER
DOGTAG
MAD 1
MAD 2
MAD 3
UMAP
ALGOL 1
ALGOL 2
ALGOL 3
ALGOL 4

Program

13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)

ALDOO5 (a dummy record)
LIBHED (small record)
DUMLIB (small record)
MADTRAN (main program)
MADTRAN (written in MAD)
MADTRAN (written in MAD)
MADTRAN (written in MAD)
MADTRAN (written in MAD)
MADTRAN (writren in MAD)
LIBRARY WRITER

LIBRARY (about 150 programs)

Basic UPDATE For MAMOS

1 8 16
$EXECUTE FORTRAN
$ID NAME*001/65/003 $
* MOUNT TAPE XXXX ON FORTRAN II TAPE 10 = SYSCK2
* MOUNT SCRATCH ON FORTRAN II LOGICAL TAPE 9 = SYSCKI
* AFTER THE UPDATE USE SYSCK1 AS SYSIN1 TO PRODUCE A NEW
* ASSEMBLY OF MAMOS
*
*
* PAUSE
* FAP
UPDATE 10,9,,D
REWIND 9
REWIND 10
ENDUP
* FAP
UPDATE 10,9,,D
END END OF MADTRAN DRIVER
ENDUP
* FAP
UPDATE 10,9,U,D
END OF FUNCTION
ENDUP
* FAP
UPDATE 10,9,,D
END
ENDUP
* FAP
UPDATE 10,9,U,D
END OF FUNCTION
ENDUP
* FAP
UPDATE 10,9,,D
END END OF REGRESSION PROGRAM
ENDUP
* FAP
UPDATE 10,9,U,D
END OF FUNCTION
ENDUP
* FAP
UPDATE 10,9,,D
$$ END OF MAMOS LIBRARY
ENDFIL 9
$IBSYS
$* END OF MAMOS ASSEMBLY)¥®%kkkdkkdkicdkkkkkkhhkdkkkhhhiksk
$PAUSE
ENDFIL 9
REWIND 9
UNLDAD 10
ENDUP
7/8 END OF FILE
$IBSYS
$* SAVE TAPE XXXX, MAKE SCRATCH TAPE SYSIN1, AND START.

$PAUSE

2,3=6

ZRaAaHE OO

W~

M2499990

M2522980

$2802340

52902260

T3925700

T4000890

XXX00000

The above update is basic to the MAMOS symbolics because of the block-
ing. Assemblies are much faster when the system is updated in blocked form.
There are several MAD programs in the system and this is the reason for
switching from blocked to un=-blocked output,

UMAP is the only translator under MAMOS which, at present, accepts
blocked input,

It should be mentioned that the DOGTAG program (fourth program of
file 7) is not used at all in the distributed version of MAMOS and it may be
deleted, DOGTAG was included because it is the accounting program used at
the University cf Maryland Computer Science Center, but its function is entirely
deleted by parameter, DOGTAG, when used, is a floating program which is
inserted into any available space in every sub-monitor under IBSYS, It then
becomes a sub-monitor's responsibility to insure that DOGTIAG is in core
whenever a $JOB or $ID card is read. After processing $JOB and/or $ID the
particular copy of DOGTAG can be wiped out, The advantages of this method
are:

1) Many functions can be carried out without taking core away from the
user,

2) The permanent core requirements for a partial SYSIDR routine, time
trap routine, etc,, are small and the required core can be merged
with IBSYS-IOEX in the first 2K of core,

2.4-1

2.4 Options And Assembly Parameters

There are several options in MAMOS which may be effected by assembly
parameter or in some cases by simple patches.

Arrangement of MAMOS On The Operating System Tapes

As distributed, MAMOS is rather inefficient for small job processing,
since the library must be found and repositioned for each execution,
Operation is greatly improved by placing the MAMOS library on a second

library tape (SYSLB2). A further improvement is obtained when the MAMOS
library is made the first file on SYSLB2,

The placing of the MAMOS library on SYSLB2 may be accomplished by an
IBSYS edit and changing one parameter in the MAMOS record., The parameter
(called LIBDIF) may be reset either by assembly or by patching. As distrib-
uted, LIBDIF (at octal location 3727) is zero. If the library is moved to
SYSLB2 then LIBDIF should have the form

LIBDIF TIX F,0,8

where F is the number of files in front of the MAMOS library on SYSLB2 which
is logical tape 8. Logical tape 8 may be redefined to be any other SYSLBi
by changing the master I/0 unit table entry for logical tape 8.

MAMOS can operate from any of the four library tapes, Logical tape
1=SYSLB1 in the master I/0 unit table is automatically adjusted to be the
actual SYSLBi on which MAMOS resides.

An IBSYS edit to place the MAMOS library as the first file on SYSLB2
could be as follows,

*MODIFY MAMOS

3727 *0CT 200010000000
*AFTER LIBHED
*DUP SYSLB1,SYSLB2,1
*INSERT DUMLIB
4061 *0CT 246444433122
4060 *0CT 000000000014
100 *0CT 002000000115

*INSERT FILEMK

In the above, it is assumed that SYSLB2 is attached properly in IBSYS
and that SYSLB1, and SYSLB2 are properly positioned prior to reaching the
above edit cards, The DUMLIB record which is inserted above could be the
DUMLIB assembly of the symbolic program mentioned previously.

2.4-2

Blocked Output Option For Tramslators

As distributed, all printed output on SYSOUl1 is single record buffered,
one print line per record, A considerable improvement in operation is achieved
if the peripheral processor can handle blocked output, In MAMOS, the option
to allow blocked output for translators is provided., The option is activated
by reassembly of the MAMOS record with the parameter OUIBUF (at octal location
3723) set non-zero. Patching of OUIBUF is also possible,

If blocking is activated, then a physical record will consist of up to
660 characters, with each print line (except the last) followed by a record
mark (octal 72 in 7090/7094).

Processor Calls To SYSIDR

As distributed, various processors of MAMOS make calls to SYSIDR. The
calling sequence is as follows,

TSX SYSIDR, 4
PON 0,i,0
Return

where i=1 to sign on a compiler,

to sign on an assembler,

to sign on a loader,

to sign on execution,

to sign on end of job process (including dumps).
to sign on between segment processing.

PN

The installation which has an accounting routine that is unable to
handle the above calls should disable them by reassembling the MAMOS record
with the parameter PROCON defined as

PROCON EQU 0
rather than its distributed definition as

PROCON EQU 1 .

Requirement Of $ID Cards

As distributed, a $ID card is required for each job. To delete this
requirement, reassemble the Monitor record with the definition of NOIDOK being

NOIDOK EQU O

rather than

NOIDOK EQU 1 .

2.4-3

Option Of Putting The $ID Card on SYSPP1

As distributed, MAMOS puts the $ID card on the punch tape (SYSPP1) for
identification of the punched output. To delete this, reassemble the Monitor
record with the definition of PNCHID being

PNCHID EQU O
rather than

PNCHID EQU 1

Option Of Putting The $JOB Card On SYSPPI]

If desired, MAMOS will put the $JOB card (if any) on SYSPP1 for ident-
ification of punched output. To activate this option, define PNCHJB in the
Monitor as 1 rather than 0 and reassemble the Monitor. If the $JOB card is
put on SYSPP1, it is done just before going to the IBSYS entry SYSRPT.

Options When There Is No Accounting Routine (SYSIDR)

There are several parameters defined in the Monitor record in case an
installation does not have an accounting routine. If any of these parameters
are changed then the Monitor record should be reassembled. These options have
no meaning for those installations which have their own accounting routines,
All of the parameters are defined by the pseudo-operation EQU and the first
possible value of each symbol is the value in the distributed version of MAMOS.

OFFJOB = 2 if MAMOS is to print $JOB cards om SYSOU! on a new page.
= 1 if MAMOS is to print $JOB cards on SYSOU1 under double space
control,
= O if MAMDS is not to print $JOB cards on SYSOU1.
ONJOB = 2 if MAMOS is to print $JOB cards on-line on a new page.
= 1 if MAMOS is to print $JOB cards on-line under single space
control,
= 0 if MAMOS is not to print $JOB cards on-line.
OFFID is defined in the same manner as OFFJOB except it applies to
$ID cards.
ONID is defined in the same manner as ONJOB except it applies to

$ID cards.

2,44

Separation 0Of Jobs On SYSOUI

As distributed, MAMOS puts an end of file in front of each job's
output on SYSOUl, To delete these file marks, redefine JOBEOF as

JOBEOF EQU O
rather than
JOBEOF EQU 1

and reassemble the Monitor record. The end of file (if JOBEOF = 1) is
written just before going to the IBSYS entry SYSRPT,

If the above parameter change is made then the § COPIES specification
will not be effective, since copies of job output is made by back-spacing
the output to the beginning of the job output.

It should be remembered that the COPIES record is obtained as part of
the Monitor assembly, and if the Monitor is reassembled and storage is changed,
then the binary cards for the COPIES record must be re-edited into IBSYS,

IBSYS Control Cards ($JOB, SEXECUTE, $ID)

It is possible to run MAMOS jobs headed by IBSYS cards as follows,

$JOB
$EXECUTE MAMOS
$1ID

[DECK]

or

$EXECUTE MAMOS
$ID
[DECK]

or

$JOB
$EXECUTE MAMOS
[DECK]

There should never be trouble when the first two arrangements are
used, The third arrangement will give trouble on DC-IBSYS when UNKNOWN
jobs are run, because results from a previous TEACHER job will be lost.

When MAMOS reads a $JOB it does all things described in the IBSYS
manual except to kill executions of sub-jobs when a previous sub-job fails.
The reason for not including this feature was to allow more flexibility in

setting up student jobs,

2,4-5

Reservation Of Upper Memory For Accounting Routines

As distributed, MAMOS uses all of core above (3721)8. There is a
parameter, called SYEND, in several programs, and the parameter may be de-
fined (by the EQU pseudo-op) as the number of cells (up to 500) which are
to be reserved in high core for accounting purposes. SYEND is currently
defined as zero, and appears in the Monitor, Loader, ALGOL~2, ALGOL~-3, and
A)PTRA programs, A)PTRA is a library program which is used during execution
of ALGOL programs,

If SYEND is changed then the above programs must be reassembled. 1In
loading relocatable programs for execution, the loader gets its value of
SYEND from the IBSYS location SYSCOR.

The symbolic card labels of the cards containing SYEND EQU O are
M0200670,M0300170,M1400890,M1600870, and T4700030.

3.1

3 MAMOS Monitor System Under IBSYS

3.1 Introduc;ion

The 7090/7094 MAMOS Monitor System is a monitor system which
operates under IBSYS,

MAMOS has several components from the University of Michigan Executive
System for the IBM 7090 Computer (henceforth called MES), MES is one of the
most advanced monitors available for a two channel tape system, The main
disadvantage of MES is that it would be very hard to incorporate into the sys=
tem, the recent sub-monitors which are now available under IBSYS.

MAMOS is an attempt to make available under IBSYS the most important
parts of MES; namely the very fast compiler, the assembler, the loader,
and the extensive library., The ALGOL Compiler is also under MAMOS. Other
translators will be added to the MAMOS system in the future,

The object of this chapter is to provide necessary details and control
card descriptions for programmers who will use various components of MAMOS,
The chapter is presented in sections which may be referred to as the need
arises,

Several examples of job decks are given in this chapter, In examples
which include IBSYS control cards, these cards are the ones used at the
University of Maryland Computer Science Center, The user at other installa-
tions should refer to section 1.2 for information on the required IBSYS
control cards,

Programmers who are only interested in writing and running MAD pro-
grams may turn immediately to section 3.3 and ignore the rest of the
chapter,

Programmers who are only interested in writing and running ALGOL pro-
grams may turn immediately to section 3.4,

3.2-1

3,2 MAMOS Control Carde and Their Functions

All MAMOS control cards have a dollar ($) sign in column 1 and the
control specifications are punched in columns 2 through 64, If more than
one specification is punched on a single control card they are separated
by commas, The order in which specifications are punched is not important
and blanks are ignored.

Colums 65~72 may contain identification (of which the last 3 columns
are numeric) which will be used to identify binary cards produced by the
system,

The specifications indicate to MAMOS what is to be done as the job is
processed, The specifications are divided into two groups, The first group
should appear at the beginning of the job deck to indicate over=all control
of the job, The second group describes what is to be done with individual
parts of the job deck.

First Group

EXECUTE ! Indicates that the object deck resulting from
processing of the job deck should be executed.
If an error occurs during processing, no execu-
tion will take place.

COPIES(N) ¢! Causes N-1 additional copies of the output to
be produced.

DUMP t Indicates that in case of trouble during execu-
tion, a dump of the program and erasable storage
is to be given,

FULL DUMP ¢ Indicates that in case of trouble during execu-
tion, a dump of 0-4095, the program and erasable
storage 1s to be given,

I/0 DUMP t Indicates that a dump is to be given if an I/0
error occurs during execution,

SUB TRACE t Indicates that during execution a print out
should be given of all subroutine entries,
except those subroutines called by library sub-
routines and those subroutines called implicitly
by subscription in MAD.

REGRESSION t Indicates that the library subroutine for regres~
sion is to be automatically called in and control
glven to the subroutine.

TEACHER : Indicates that student jobs follow the job this
specification appears in.

UNKNOWN : Indicates that the job is a student job and that

the job is to be combined with a tape prepared by
® previous teacher job,

Second Group
COMPILE MAD

COMPILE ALGOL

ASSEMBLE

MADTRAN

PRINT OBJECT

PUNCH OBJECT

B INARY

BINARY(N

DATA

CONDITIONAL

BREAK

BREAK(N)

3.2-2

Indicates that the MAD program which
follows 18 to be compiled.

Indicates that the ALGOL program which
follows is to be compiled.

Indicates that the UMAP program which
follows is to be assembled.

Indicates that the following FORTRAN II
program is to be translated to MAD language
and then the MAD program is to be compiled,

Indicates that the object program which
results from the current MAD compilation is
to be printed,

Indicates that the object program generated
by the current $COMPILE MAD, $COMPILE AIGOL,
or $ASSEMBLE is to be punched in column-
binary form.

Indicates that only binary cards follow up
to the $DATA card.

Indicates that the binary program is to be
loaded from logical tape N after the execu-
tion tape is loaded. N may be 2,3,4,7, or 9.

Indicates that the information which follows
is data, The $DATA must always precede the
first data card if data is present,

Indicates that the section of the job deck
which follows is to be completely by~passed

if the EXECUTE specification was not given or
if execution was deleted by some error which
occurred in an earlier compilation or assembly.

Indicates that the program from the job beginning
or a previous $BREAK up to this $BREAK is to be
considered as a core load to be used in a PING
PONG job. The program is written for later
execution as a systems record on logical tape 2.

Same as $BREAK except the system record is written
on logical tape N, N may be 2,4, or 9.

Indicates that the computer is to stop to allow
the operator to take action(s) indicated on pre-
vious comments cards ($ in columns 1 and 2). The
$HALT is effective only if preceded by comments
cards, and should only be used if necessary.

3.2-3

Second Group (Continued)

COMMENTS : Comment cards have § punched in both column
1 and 2. Any legal punching may appear in card
columns 3-72,

Note on EXECUTE and DATA specifications

The $EXECUTE and $DATA specifications may give trouble if MAMOS is
operating under DC-IBSYS, and either specification is punched starting in
Column 2, A convention of leaving Column 2 blank for the above specifica-
tions is desirable for DC-IBSYS users,

Termination of execution

Execution is normally terminated in one of the following ways:
1) By trying to read more data than was supplied in the data deck.

2) By the MAD statement EXECUTE SYSTEM, or symbolic instruction CALL SYSTEM .

3) By the MAD statement EXECUTE ERROR., or symbolic instruction CALL ERROR .

Termination by 3) should be used if requested dumps are desired., Termi-
nation because of some error detected by the system is always through ERROR
routine,

3.2-4

Job Deck

A job deck for MAMOS begins with two IBSYS Control cards. These control
cards are described in section 1,2, The two cards serve to tell the IBSYS
Monitor which subsystem (in this case MAMOS) is desired and to provide
accounting information for the job,

Following the IBSYS control cards are MAMOS control cards, MAD programs,
UMAP programs, ALGOL programs, object programs, and data cards,

A job deck 1is processed by MAMOS working its way through the deck, calling
in translators whenever specifications indicate their need. Binary programs
resulting from translations and from the job deck are stacked on logical tape 3.

When the $DATA specification or end of job deck is encountered, a check
is made to see if execution is still legal., If execution is not legal because
it was not requested or because of some error, then the job is terminated,

If execution is legal then the program which was stacked on logical tape
3 is loaded. Then the library is searched for any subroutines which are needed
by the program, and control is passed to the program for execution.

3.3-1

3.3 MAD Under MAMOS

MAD stands for Michigan Algorithm Decoder, MAD is a computer
program (based on ALGOL 58) which translates algebraic statements describing
algorithms to the equivalent machine instructions., A description of MAD may
be found in several publications, The reference which describes MAD as it
works under MAMOS is the Michigan Algorithm Decoder, The University of
Michigan Computing Center by B, Arden, B, Galler and R, Graham., The above
authors also wrote the computer program for MAD,

MAMOS Control Cards

MAMOS control cards are identified by having a dollar ($§) sign punched
in column 1, Control specifications are punched on the control cards in
columns 2 through 64, If more than one specification is punched on a single
control card, they are separated by commas., The specifications indicate to
MAMOS what is to be done as the job is processed.

Necesgsary Control Specifications

$ COMPILE MAD

Every MAD source deck must be immediately preceded by this specification
which indicates to MAMOS that the MAD compiler 1is needed. Binary deck ident-
{fication may appear in colummns 65-72, Colummns 70-72 must be numeric.

EXECUTE

The above specification must be used if execution of a program is desired,

$ DATA

If execution is desired and execution requires a data deck [DATA], then
the data deck must be preceded by the $DATA specification.

Optional Control Specifications

$ PRINT OBJECT

The above specification is used if it is desired to have printed, the
object program (in octal) which is generated by the MAD compiler. This option
is effective only for the MAD source deck which immediately follows the
specification,

$ PUNCH OBJECT

The above specification is8 used if it is desired to get as part of the
output a binary deck of the object program generated by the MAD Compiler. This
option is effective only for the MAD source deck which immediately follows the
specification,

There are several other specifications available and these are described
in other sectiomns.

3.3-2

Composition of Simple MAD Job Decks

The most simple application of MAD under MAMOS would consist of a
compilation of one MAD program, The job deck would be made up as follows:

$EXECUTE MAMOS
$1D NAME*T ASK*0OPT IONS § COMMENT
$COMPILE MAD

[MAD program]

The output from the above job would consist of a listing of the pro=
gram and any diagnostics detected by the MAD compiler.

If we replaced the $COMPILE MAD card above with the card

$EXECUTE, COMPILE MAD

and 1f the MAD program compiled correctly, then execution of the compiled
program would be attempted, Output from the job would be the same as above,
plus any output generated during execution, Note that 2 or more specifica~
tions may appear on the same card as long as they don't go beyond columm 64,
It is assumed above that no data is required for execution of the program,

Example

The following example of a MAD job deck uses all of the 5 specifications
described above, The program reads the value X, computes F(X)n'fi, then prints
X and F(X). These 3 operations continue until the data deck is all read in
and then the job is automatically terminated by MAMOS.

Computation of F(X) is done by means of an external function so there
will be two compilations by the MAD compiler, If there is an error in either
compilation, then execution will not be permitted,

3.3-3

$EXECUTE MAMOS
$ID MARSIEDOTES*XXX/YY/ZZZ*55%1P3$COMMENT
$ COMPILE MAD,EXECUTE, DUMP : MAINOOO1
$PRINT OBJECT, PUNCH OBJECT
RMAIN PROGRAM WHICH READS DATA, CALLS A
RFUNCTION, AND PRINTS RESULTS
START READ DATA X
EXECUTE FUNCT. (X,FX)
PRINT RESULTS X,FX
TRANSFER TO START
END OF PROGRAM
$ COMPILE MAD, PRINT OBJECT FUNCTO01
EXTERNAL FUNCTION(Z,W)
ENTRY TO FUNCT.
Wm SQRT. (Z)
FUNCTION RETURN
END OF FUNCTION
$ DATA
Xw 1.0 *
X =3,1415926 *

In the above example, the first two cards are IBSYS control cards
which are necessary for any job run under MAMOS, The $ID card above
specifies that execution of the program is not to be allowed to run more
than 5 seconds, and that no more than 1 page of output will be generated
during execution, See section 1,2 for a complete description of the
$EXECUTE and $ID IBSYS contrel cards,

The third specifies that (1) A MAD program which follows is to be
compiled, (2) Execution of the program 1s desired, (3) If there 1s an error
detected during execution, & dump of the program is desired, (4) The binary
cards produced by the MAD compilation are to be labeled in columms 73-80 with
MAINOOO1, MAINOOO2,.... The label which is used on output binary decks must
be punched in columns 65-72 of the specification card.

The fourth card specifies that an octal print out of the instructions
produced by the MAD compilation is desired, and also a binary deck of the
object program is to be given as part of the job output,

The next 7 cards make up the first MAD source deck which is to be
compiled, and the § specification which follows specifies that a MAD deck
which follows is to be compiled and an octal print out of compiled instruc=-
tione is to be given, Labeling 18 also specified in columns 65-72 but this
is ineffective since the PUNCH OBJECT specification is not given.

The next 5 cards make up the second MAD source deck which is to be
compiled, and the $DATA specification which follows specifies that execution,
if no errors have been detected, is to begin,

3.3-4

The final two cards make up the data deck to be used during
execution,

An outline 1is given below of the output produced when the above
job deck is rum,

Printed output

1) The $ID and sign-on time,

2) The first MAMOS specifications,

3) A list of the first MAD source deck, and any detected errors in the
source deck.

4) A list of individual MAD statements and the instructions compiled for
each statement, This output i8 given only if there were no errors
detected in compilation,

5) The MAMOS specification card for the second MAD source deck is printed,.

6) A list of the second MAD source deck, and any detected errors in the
source deck,

7) A list of individual MAD statements and the instructions compiled for
each statement., This output is given only if there were no errors
detected during compilation,

8) The $DATA specification is printed.

9) If no errors were detected in compilations then execution output is
printed consisting of 2 lines of X,F(X). Also, just previous to the
execution results is a printed list of subroutines used and their
octal origins in core,

10) The requested program dump if an error occurs during execution.
11) The $ID and sign-off time,

Punched output

1) The $ID card and a binary deck of the instructions compiled for the
first MAD source deck. The binary deck is not given if an error is
detected during compilation of the first MAD source deck.

It should be noted in the above example that the specifications
EXECUTE and DUMP are effective for the entire job while the COMPILE MAD,
PRINT OBJECT, and PUNCH OBJECT specifications only apply to the MAD source
deck following the specifications, This is true also for the option of
putting binary card labeling information in columms 65-72 of a specification
card,

COMPILE MAD is the only necessary specification for any MAD
compilation,

Note on EXECUTE and DATA specifications

The $EXECUTE and $DATA specifications may give trouble if MAMOS is
operating under DC-IBSYS, and either specification 1is punched starting in
Column 2. A convention of leaving Column 2 blank for the above specifications
is desirable for DC~IBSYS users,

3.4-1

3.4 ALGOL Under MAMOS

ALGOL stands for Algorithmic Language.
ALGOL was first defined in 1958 (see the December 1958 issue of Communica=
tions of the Association for Computing Machinery) and a new description of
ALGOL (called ALGOL-60) was published in 1960 (see the May 1960 issue of
Communications of the Association for Computing Machinery). The Revised
Report on the Algorithmic Language ALGOL-60 was published in the January
1964 issue of Communications of the Association for Computing Machinery.

There are several ALGOL translators in use and development for
several machines,

The ALGOL translator which operates under MAMOS is the ALCOR =
University of Illinois ALGOL-60 Translator, The translator was written for
the IBM 7090/7094 by people of the University of Illinois and the ALCOR
group in Europe. A User's Manual for the ALCOR = University of Illinois
ALGOL~-60 Translator has been written by E. L. Murphree, Jr. of the Universi-
ty of Illinois,

Programmers who know ALGOL-60 as described in the Revised Report on
the Algorithmic Language ALGOL-60 should, with the aid of this section, be
able to write ALGOL programs and have them translated and executed under
MAMOS.

Restrictions on ALGOL programs

1) The ALGOL translator produces object code which uses floating point
instructions for both integer and real arithmetic, Hence, real
numbers R and integer numbers N must lie in the following range.

-38 38
10 f‘RlS 10 or R=20

0o <In|< 2?7

The internal representation of true is 777777777777 octal.
The internal representation of false is 000000000000 octal.

2) Large programs/arrays are limited by the core size of 32768
storage cells.

3) Extremely large programs may not be translated because of table
overflow during compilation.

4) Due to a limited character set for the 7090/7094, many of the
Reference ALGDL symbols are not available. Table 3.4-1 gives for
each Reference ALGOL symbol, its hardware ALGOL symbcl, Some of the
hardware ALGOL symbols have alternate or ''tolerated'' symbols which
may be used if desired. The hardware ALGOL symbols and t'trolerated"’
symbols must be used when writing ALGOL programs to be compiled by
the ALGOL translator which operates under MAMOS,

3.4-2

Table 3.4-1: REFERENCE TO HARDWARE REPRESENTATION

ALGOL Symbol Symbol Name Hardware Symbol Tolerated
AlBl...|Z upper case alphabet AlBl...]Z

albl...lz lower case alphabet A|Bl...|Z

0l1f...19 numerals o]1]...]9

+ plus sign +

- minus sign -

X multiplication sign *

/ division sign /

=+ integer division sign /!

: colon .

H semi-colon .

(left parenthesis (

) right parenthesis)

[left bracket /

] right bracket /)

’ comma s

. decimal point .

i= assignment sign .= =
t exponentiation ' POWER' Fk
< less than 'LESS! 'LS?
< less than or equal to 'NOT GREATER' ‘LQ*
= equal to 'EQUAL' 'EQ
> greater than or equal to 'NOT LESS' 'GQ'
> greater than 'GREATER' 'GR!
not equal to 'NOT EQUAL' 'NQ'
= logical equivalent 'EQUIV’ 'EQV!

-) logical implies ' IMPL! VINP'

Table 3.4~1:

3.4-3

REFERENCE TO HARDWARE REPRESENTATION = Continued

ALGOL Symbol
V

N
7

10

do
Step
until
while
comment
begin
end
boolean

integer

real

array

switch

Symbol Name

logical or

logical and
logical negation
base 10

blank space

left string quote
right string quote
Boolean true

Boolean false

Hardware Symbol Tolerated

IORI
IANDI
INOT'

'(apostrophe)

I(I te
l)l 1 e
'TRUE'

'FALSE'

'Go T0'

IIFI

' THEN'

'ELSE'

'FOR'

'DO'

'STEP'

"UNTIL'

"WHILE'

' COMMENT '

' BEGIN'

‘END‘

'BOOLEAN'

' INTEGER'

.REAL'

' ARRAY'

*SWITCH'

3.4-4

Table 3.4-1: REFERENCE TO HARDWARE REPRESENTATION - Continued

ALGOL Symbol Hardware Symbol
procedure ' PROCEDURE
string 'STRING'
label 'LABEL'
value 'VALUE'
code ' CODE'
finis 'FINIS'

Note that the ALGOL word symbol own is not in the above table because
own has not been implemented in the current version of ALGOL. Also note that
two ALGOL word symbols, code and finis have been added. The symbol 'FINIS' is

used to denote the end of a program to be compiled by the ALGOL translator.
'FINIS' must be used.

The symbol 'CODE' is used to replace the procedure body of a procedure
which is compiled independently by ALGOL, or some other translator,

3.4-5

Definition of a Source Program to be Compiled by ALGOL under MAMOS

An ALGOL source program is a program as defined in the ALGOL report
(section 4,1.1,) followed by the word symbol 'FINIS', i.e,

<Algol source program> ::= <program> finis

An ALGOL source program will fall in one of the following categories:
1) The source program may be complete, in which case it will contain any

necessary procedures, In other words, if the program is correct; and

it is compiled and executed, then the desired result will be produced,
2) The source program may be complete except for one or more procedure

bodies, This type of source program is produced when 'CODE' is substi-

tuted for a procedure body,

3) The source program may be a procedure.

Punching the ALGOL Source Program

An ALGOL source program 1is punched in card columms 1-72 of as many
cards as desired. Blanks are ignored (except for H fields in FORMAT procedures).
Card columns 73-80 are ignored by the ALGOL translator and these columns may be
used for identification or any other purpose, as long as any punching in 73-80
consists of legal 7090/7094 BCD characters. Since ALGOL statements are separated
by the semi-colon or word symbols, several statements (or only part of a statement)
may be punched on a single card. The last symbol punched is 'FINIS'.

The deck of cards which results from punching an ALGOL source program
will be called an ALGOL source deck,

3.4-6

MAMOS Control Cards

MAMOS control cards are identified by having a dollar ($) sign
punched in column 1, Control specifications are punched on the control cards
in colummns 2 through 64. If more than one specification is punched on a single

control card, they are separated by commas. The specifications indicate to
MAMOS what is to be done as the job is processed.

Necessary Control Specificatioms

$ COMPILE ALGOL

Every ALGOL source deck must be immediately preceded by the above
specification which indicates to MAMOS that the ALGOL compiler is needed.

$ EXECUTE

The above specification must be used if execution of a program
is desired,

$ DATA

If execution is desired and execution requires a data deck [DATA],
then the data deck must be preceded by the $DATA specificationm.

Optional Control Specifications

$ PUNCH OBJECT

The above specification is used if it is desired to get as part of
the output a binary deck of the object programs generated by the ALGOL
compiler, The specification must be given for every ALGOL source deck for
which a binary deck is desired,

Note on EXECUTE and DATA specificatiomns

The $EXECUTE and $DATA specifications may give trouble if MAMOS is
operating under DC-IBSYS, and either specification is punched starting in
Column 2. A convention of leaving Column 2 blank for the above specifications
is desirable for DC-IBSYS users,

3.4-7

Composition of Simple ALGOL Job Decks

The most simple application of ALGOL under MAMOS would consist of
a compilation of one ALGUL source program. The job deck would be made up
as follows:

$EXECUTE MAMOS
$ID NAME*T ASK*OPTIONS $ COMMENT
$ COMPILE ALGOL

[Algol source deck]

The output from the above job would consist of a listing of the
source program and any diagnostics detected by the ALGOL compiler,

If we replaced the § COMPILE ALGOL card above with the card
$ EXECUTE,COMPILE ALGOL

and if the ALGOL source program compiled correctly, then execution of the
compiled program would be attempted. Output from the job would be the same
as above, plus any output generated during execution. Note that 2 or more
specifications may appear on the same card as long as they don't go beyond
card column 64, It is assumed above that no data is required for execution
of the program,

Examgle

The following example of an ALGOL job deck uses all of the 4 speci-
fications described above., The program reads the number X, computes y=F(X)
=7X , then prints X and F(X). These 3 operations continue until the data
deck is all read in and then the job is automatically terminated by MAMOS,

Computation of F(X) is done by means of a procedure,

SEXECUTE MAMOS
$ID DOSSIE*XXX/YY/ZZZ*5S%1P$COMMENT
$COMPILE ALGOL, EXECUTE, PUNCH OBJECT
'BEGIN' 'COMMENT' SIMPLE EXAMPLE.,
'REAL' X,Y.,

'PROCEDURE' FOFX(X,Y)., 'REAL' X,Y.,
'BEGIN' Y.=SQRT(X)., 'END' FOFX.,

L..READ(X).,
FOFX(X,Y)., PRINT(X,Y).,
'Go TO' L.,
IENDI
'FINIS'
$DATA
1.0,10.0 0.31415927'1 10,000001"'=1

The READ and PRINT procedures are described later.

In the above example, the first two cards are IBSYS control cards
which are necessary for any job run under MAMOS.

3.4~8

The $ID card above specifies that execution of the program is not to be
allowed to run more than 5 seconds, and that no more than 1 page of out-
put will be generated during execution. See section 1.2 for a complete
description of the $EXECUTE and $ID IBSYS control cards.

The third card specifies that (1) an ALGOL program which follows
is to be compiled, (2) execution of the program is desired, and (3) the
binary cards produced by the ALGOL compilation are to be given as part
of the job output,

The fourth card and all cards up to but not including the $DATA
card consist of the ALGOL source program which is to be compiled,

The $DATA card specifies that execution, if no errors have been
detected, is to begin.

The last card is a data card which has 4 values of X punched in
a free form,

An outline is given below of the output produced when the above
job deck is run,

Printed output

1) The $ID and sign-on information,

2) The MAMOS specifications,

3) A list of the ALGOL source program,

4) The $DATA card is printed,

5) If no errors were detected during compilation then execution out-
put consisting of 4 lines of X, F(X). Also, just previous to the
execution results is a printed list of subroutines used and their
octal origins in core.

6) The $ID and sign-off informatiom.

Punched output

1) The $ID card and a binary deck of the instructions compiled for the
ALGOL source program, The binary deck is not given if an error is
detected during compilation of the ALGOL source program.

3.4-9

The 'CODE'! Procedure

Procedures may be compiled independently of the ALGOL source program
which calls them,

An ALGOL program may call an independently compiled procedure by
means of a '"CODE' procedure. The 'CODE' procedure is a regular procedure
with the body of the procedure replaced by the ALGOL symbol 'CODE'.

Thus the above example of a job deck could be written as follows
to produce the same results,

$EXECUTE MAMOS
$ID DOSSIE*XXX/YY/ZZZ*5SECONDS*1PAGES
$COMPILE ALGOL, EXECUTE, PUNCH OBJECT
'BEGIN' 'COMMENT 'SIMPLE EXAMPLE.,
'REAL'X,Y.,
'PROCEDURE'FOFX(X,Y)., "REAL'X,Y., 'CODE",,
L.. READ (X)., FOFX(X,Y)., PRINT(X,Y).,
‘G0 TO' L., 'END' 'FINIS'
$COMPILE ALGOL, PUNCH OBJECT
' PROCEDURE' FOFX(X,Y)., 'REAL'X,Y.,
'BEGIN'Y.=SQRT(X)., 'END'FOFX.,
'"FINIS'
$DATA
1.0,10,0 0.31415927'1 10.000001"'=-1

Restriction On 'CODE' Procedures

'CODE' procedure names must be less than 7 characters in length,

3.4=10

INPUT/OUTPUT

The following description of imput/output for ALGOL programs is
taken almost exclusively from the Illinois Users Manual mentioned above,

INPUT/OUTPUT IN ALGOL PROGRAMS

There is no specification in the ALGOL Report for input/output
operations in ALGOL. This was not an oversight on the part of the designing
committee, but a result of its realization that input/output operations vary
so much from one installation to another and from one computer to another
that specifications for imput/output were better left to each installation,
Hence, the ALGOL Translator uses code procedures for input/output, The use
of these procedures is described in detail below.

Code Procedures for Input/Output,

There are several ALGOL code procedures which are associated with
the input/output operations presently available through the ALGOL Translator.,
These basic 1/0 procedures are viewed in the same light as standard functions;
that is, they are considered to have such importance and universal applicability
that they are global to all ALGOL programs compiled by the Translator. For the
user this means that there is no need to declare the input/output procedures,
It further implies that the identifiers used for these procedures must have the
same restricted use as those set aside for the standard functions, sin, cos,
exp, etc. To use the identifiers for any other purpose can cause an error con-
dition, However, one can ''submerge'' any of these procedure names by declaring
a procedure or variable with the same name, as one can do with ordinary ident-
ifiers in nested blocks.

For example,

begin real a, b, c;
read (a, b);

ci= a + b;
print (a, b, c¢)
end

shows the use of the read and print code procedures, Neither has been de-
clared in the example, since this is unnecessary.

On the other hand,

begin real a, b, c, d;
read (b); begin
procedure read (e,f);
real e, £f.,
e:= f12; read (a, b)

[="

end;
read (d); c:= a + b;
print (a, b, c, d)
end

shows an entirely different use of a declared procedure with the same name
as read,

3.4-1

This procedure is declared in an inner block, used there, and is no longer
defined after exit from that block., Hence the statement ''read (b)''

causes the real number b to be read; ''read (a,b)'' causes the calculation
a:= bt 2 to be made; and ''read (d)'' causes the real number d to be read.

Simplified Input/Output

Since ALGOL is a language designed for expressing algorithms in
numerical analysis, input and output operations are concerned mainly with
the transmission of numerical data,

There are two input procedures and two output procedures designed
especially for the user who does not have specific format requirements.

The two simplified input procedures are read and readmatrix, and both
accept data in a free form, The form of the read procedure call is

read (a, b, c,...)

where a, b, ¢,... are variables, either simple or subscripted, The procedure
reads one variable at a time, so if subscripted variables appear in the list,
then subscripts must be specified. For example, let a be an array of dimension
3 x 4 and b and ¢ be simple variables, Then

read (a, b, ¢)
is incorrect, while
read (a[1,2]1, b, c)

is acceptable., Of course, in the last case, only element a [1,2] will be
read, and not the entire array.

If the user has an entire array to be read, a second easy-to-use
procedure is available, readmatrix., The form of its call is

readmatrix (a, b, c,...)

where a, b, ¢,... are array identifiers. The procedure reads elements of an
array in such a way that the last index changes first, then the preceding one,
etc.

The input data in both cases is assumed to be in a free form. The
data can be any ALGOL number (see the ALGOL Report) and placed anywhere on a
card, The numbers are separated by three blanks, a comma, or the end of the
card (column 72). Successive calls for either of the procedures does not
initiate reading from a new card; reading proceeds continuously from one
number to the next on a card and when that card is exhausted (column 72) it
proceeds to the next,

3.4-12

The two output procedures for simplified use are print and printmatrix,
The form of the print call is

print (E,, Ep, ...)

where El, E2, ... represent arithmetic expressions, Of course, an arithmetic
expression may consist of simply a variable name, and in most cases it
probably will, so

print (area, depth, velocity * weight)

is an acceptable print procedure call. All the output from such a call will
be printed on the off-line printer according to the standard format list

'1X,5E14,7"

That is, 5 numbers per line will be printed, each with 7 digits to the right
of the decimal point, in what is commonly called ''scientific notation'’.
The number =~3765.831 would appear in this notation as

-.3765831E 04
and the number .00376 becomes

.3760000E~02

The printmatrix procedure call is

printmatrix (a, b, ¢,...)
where a, b, ¢,... are names of arrays, Output is by rows in exactly the
same format as that of print, 5 2lements per line., The 3 x 4 array b
would be printed as

P11 Pyp i3 Py Py
P22 P23 Pay 3y P32
b33 b3y

No alphabetic data can be input or output with any of the four
simplified procedures,

For more control over the format of the input and output, other
procedures are available and are described in the following sections,

3.4-13

At this point, it appears desirable to begin using certain un-
familiar terms and notation, such as ''syntax'' and ''semantics'' and
unconventional brackets < > and vertical lines |. These conventions have
been borrowed from the field of linguistics and are highly useful in describ-
ing precisely how parts of a language (and ALGOL is a language, however limited
it may be) can be put together to mean something to someone or something, The
reason for including these conventions here is mainly to be precise in describing
certain things omitted by the ALGOL Report, but also to initiate the ALGOL
beginner in the terminology of the ALGOL Report. Ability to read and understand
the Report will be indispensable to the active ALGOL user, so an attempt to
entirely avoid the notation problem would be false economy. If the reader
keeps in mind these interpretations of the symbols, he should progress well.

ttm means ''is"'

orl 1]

| means

< > are simply brackets that mean that the terms enclosed by them
go together to form a single unit,

For example,
<unsigned integer> }!m <digit> | <unsigned integer> <digit>

can be read '"'An unsigned integer is either a digit or an entity composed

of an unsigned integer followed by a digit''. This is simple enough, but the
definition is strange in that it uses ''unsigned integer'' to define
'funsigned integer'’, This is a recursive definition and is quite simple

to explain an unsigned integer is either a single digit (0,1,2,...,9) or

an entity composed of a digit following one or more digits. With these con-
ventions in mind, we proceed to an exposition of the more comprehensive input
and output procedures,

The Format Procedure

The format procedure provides the basic information to the input/output
procedures for the placement and scaling of information, whether it is on a
card image as input or on a printed page as output,

In the following, the complete syntax of the format procedure is given
in the same notation used for the ALGOL Report; a discussion of the meanings
and uses of the various constructions completes the coverage of the format
procedure,

3.4-14

Syntax,

<format call> :i= FORMAT (<integer expression>, <format list>)
<format list> t:m <format string> | <format list>, <format string>
<format string> tim <left string quote> <secondary list> <right string

quote>

<secondary list> 1i= <gsecondary> | <secondary list>, <secondary>

<secondary> tim <field specifier> | (<format primary>) | <unsigned

integer> (<format primary>)

<format primary> tim <field specifier> | <format primary>, <field

specifier>

<field specifier> ::m <F~-conversion> | <E-conversion> | <X~field>
| <#-field> | <void-specification> | <record

separator>

Semantics,

<format call>: The form of the format procedure call is

FORMAT (E, '('A, B, C, ...")") ,

where the E represents an integer expression and the list of indefinite length,
A, B, C, ..., represents units of information concerning the form of data.

The integer expression denoted by E above identifies a logical tape unit
available to the user. It is the responsibility of the user to satisfy this

requirement,

The tape numbers designated by the integer expression E correspond to

the MAMOS logical tape units as follows:

MAMOS Logical Unit Use

|=

7 (input) or 6 (output) regular
2 scratch
3 scratch
4 scratch
5 regular
6 regular
7 regular
9 scratch
0 special
1 special

—= OO0V WN =

—

input (output) tape
tape

tape

tape

punch tape

print tape

input tape

tape

input/output tape
input/output tape

The term '‘'scratch tape'' in the table means that during execution
those tapes are available to the user for whatever use he wishes,

3.4-15

The number E=1 is a special all-purpose parameter which, when
used, automatically causes designation of the regular input tape (logical 7)
if the call is readf or readmatrixf, or the regular print tape (logical 6) {if
the call is printf or printmatrixf,

<format list>: This is a list of ALGOL strings separated by commas, No
fixed number of such strings is required in a format call, in contrast to
the normal procedure call. That is, the format procedure is considered to
have an arbitrary number of formal parameters,

Each of the strings must be enclosed in string quotes, and might appear
as '('A, B, C,...")', where A, B, C, ... represents a list (of arbitrary length)
of units of information concerning the form of data, These units of information
are field-specifiers, which prescribe a form for data, or collections of field=-
specifiers enclosed in parentheses, The field-specifiers provide for input or
output of (1) numerical data in the familiar decimal notation (as 123.76) or
in ''scientific notation'' or exponential form (as .12376 x 102),

(2) blank fields, and (3) alphabetic-numeric information, such as titles,
headings, notes to the user, etc,, or act as record separators,

<gecondary>: The secondary exists for two important reasons, Both are
concerned with the use of a portion of a format list more than once for a

given input or output procedure call. To be realistic here, we must assume
that the secondary consists of several field-specifiers enclosed by parentheses,
and perhaps preceded by an unsigned integer, Such a secondary might appear

as

3(Py, Py, Py)

where the Py are field specifiers, This has the same effect as the format list

(P'I) Py, P3): (P]y Pz, P3), (P‘ls Pz: P3)

and, except in the case mentioned below, the same effect as
Py, P, P3, Py, Py, P3, Py, Py, P3

The other use for the secondary enclosed by parentheses occurs when
an input or output procedure call lists more variables than are listed in the
controlling format procedure call, When the format list has been exhausted
but the input or output list has not, then control of format goes back to the
last left parenthesis before the end of the format list, and input or output
proceeds according to the field specifiers to the right of this left parenthesis,

<primary>: The primary consists of a single field specifier or several field
specifiers separated by commas. It should be apparent that in many cases a
primary is also a secondary (e.g., when it consists of a single field specifier).

<record separator>: The record separator is a slash or a series of slashes.
Since input is in the form of card images on magnetic tape, each slash in the
format list causes reading of a new card image; for output, each slash causes
& new line of printing or punching to be started. The first field of the new
record is that specified by the first field specifier following the record
separator, In general, n successive slashes will cause n - 1 blank lines

on the printed output, or n = 1 successive cards to be ignored.

3.4-16

The format procedure call must account for every columm in the
unit record with which it is concerned, With input, the originating medium
is a card, so every column on the card must be accounted for, beginning with
column 1 and continuing through the last column containing information of
interest, The Translator assumes that unaccounted for columms remaining to
the right in a card image are of no interest, For example,

FORMAT (7, '('F 10.4, 3 F 15,6, 5 X, F 10.4, 10 X")")

accounts for all 80 columns on the card, even though the last 10 (71-80)
columns are to be skipped and not read. We can accomplish exactly the same
thing by

FORMAT (7, '('F 10.4, 3 F 15.6, 5 X, F 10,4")")

On the other hand, we cannot ignore leading blank fields (or X-fields,
generally), Thus,

FORMAT (7, "('F 10.4, 5 X, F 10.4")")

and
FORMAT (7, '"('10 X, F 10,4, 5 X, F 10,4')")

are not equivalent,

The same general idea is true for output, the essential difference
being the fact that instead of reading card images, we are printing lines of
characters, 132 characters per line, or punching cards, 80 columns per card,
and every space must be accounted for. Again all unspecified spaces to the
right of specified fields are left blank., The first character of every output
record written on the regular output tape (logical tape 6) 1is used as a carriage
control character, and is not printed., The carriage control characters are as
follows:

Character Meaning

blank single space

1 skip to next page

2 skip to next half page

4 skip to next quarter page

6 skip to next sixth page

8 skip to next sixth page

0 double space

- triple space

+ space suppress

9 suppress automatic page overflow,

3.4-17

Fleld Specifiers.

Syntax,
<F-conversion> ti= F <unsigned integer> , <digit> | <unsigned integer>
: F <unsigned integer> . <digit>
<E-conversion> t:m E <unsigned integer> , <digit> | <unsigned integer>
E <unsigned integer> ., <digit>
X~-field> $i= <unsigned integer> X
<H-field> $i= <unsigned integer> H <proper string>

<record separator> 1i:= /| <record separator>/
Semantics,
<F-conversion>,

The F~conversion field specifier is of the form nFw.d, where n ,
v , and d are unsigned integers., If n = 1, it may be omitted,

The n in this field specifier denotes the number of such
consecutive fields; hence 3F10,.,3 is equivalent to

F10.3,F10.3,F10.3,
and 1F10,3 is equivalent to simply F10.3.

The w in this field specifier indicates the total width of the
field in number of characters, The appearance of numbers in the F-conversion
is the familiar form of a sequence of decimal digits in which there appears
one, and only one, decimal point, Hence, the total characters in the field
must include the decimal point. A number in this conversion may be either
plus or minus, so w must also include one column count for the sign,

For input the plus sign may or may not be punched at the discretion
of the user; the minus sign must be punched and must precede the most
significant digit in the field,

For output, the plus sign will not be printed; the minus sign will
be printed in the first column to the left of the most significant digit in
the field., Leading zeroes will not be printed.

The d 1in the field specifier denotes the number of digits to the
right of the decimal point, This number does not include space for the
decimal point itself, d must not be greater than 20,

For example, % 3
format (6, F 8,4, F 6.2, F 10,37)
spacifies a set of three fields, of 8, 6, and 10 columns respectively.

3.4-18

In the first, 4 digits lie to the right of the decimal point (which takes
up one column itself), This leaves, of the original 8 columns, one more
for the sign and 2 for digits to the left of the decimal point, In the
second, 2 digits lie to the right of the decimal point and 2 to the left,
leaving, of the original 6 columns, one for the sign and one for the
decimal point, In the third, 3 digits lie to the right of the decimal
point and 5 to the left,

Suppose we wish to print -12,1372, 21.63, and + 17238,312 according
to the above format specification, With b representing blank spaces, our
printed line would look like thist

|-12.1372|b21.63|b17238.312h

| |
| field 1 [field2| field 3 |

<E~conversgion>,

The E~-conversion field specifier is of the form nEw.d, where n ,
w and d are unsigned integers, As with the F-conversion, 1if n = 1,
it may be omitted,

The n in this field specifier denotes the number of such consecu-
tive fields; hence 3 E 13,7 is equivalent to

E 13.7, E 13,7, E 13.7,
and 1 E 13.7 is equivalent to E 13,7,

Again paralleling the F-conversion, the w denotes the entire width
of the field in number of characters, The appearance of numbers in the E-
conversion resembles the form widely known as ''scientific notatiom,'' a
decimal fraction followed by an exponent of 10, as, for example,

.78325 x 103,
The exact form of numbers in the E-conversion is
+.dd...dEtee,

where d's represent decimal digits, the E implies ''exponent follows'' and
the ee represents a two digit exponent of 10, The two sign positions, one
for the number itself and one for the exponent, are indicated by +. Note

that every number in this conversion has at least six columns of its field
used for ''bookkeeping'' symbols:

+ . E +ee

Hence, if a field were specified as E13,7, the field would be 13 columms
wide, only 7 of which can contain digits of the number put into this con-
version, Similarly, E14.,9 is an invalid field specification, since only

14 - 6 = 8 columns are available for digits of the number, A specification
of E14.,3 does not use all 8 of the columns available to it for placement of
significant digits of the number.

3.4-19

For example, if we want to place ~138,714,31 into E-conversion form
in a field 14 columns wide, we specify El14,8, and we have

~.13871431E 06,
A field specification of E12.6 results in

~.138714E 06,
and one of E14,6 results in

bb-,138714E 06

In toth these last cases, Iinformation has been lost in the conversion
(the last two digits, 31, of the original number).

The F-conversion and E-conversion are the only conversions presently
provided with ALGOL for input/output of numerical information, and iIntegers
as data have not been mentioned, There 1s no special integer conversion, but
integers can be handled through either the F-conversion or the E-conversion,
For example, the integer 317 becomes, in F5,0 conversion

bb317

It is important to note that the sign must be accounted for., The same
number in E9.,3 becomes

b.317E 03;

and in this casé, we have had to provide for the 6 character spaces always
present in the E-conversion, d must not be greater than 20,

X-field>,

The X-field specifier is of the form nX, where n {is an unsigned
integer. The X=field is a field of n blank spaces. The n cannot be
omitted, even if it equals 1.

The X~field makes it easy to space printed output as desired, and
permits skipping of unwanted information on input cards. For example,
suppose we have cards with six 10-column fields (beginning in column 1) and
we wish to read only from the second, third and fifth fields, Assume the
data in these fields are in F10.4 conversion., The format call will look
like this:

FORMAT(6,'('10X, 2 F 10,4, 10X, F 10.4')')

A readf call of
readf (A, B, C)

will cause the data in fields 2, 3 and 5 to be stored as variables A, B and
C, respectively, Note that in the format call above, the sixth field has
not been accounted for, and need not be,

3.4-20

<H-field>,
The H~field specifier is of the form
nHss,..8,

where the n 18 an integer and the ss...s is a proper string; i.e., the
88.,.8 18 a 1list consisting of any n characters available in the character
set, except the escape symbols,

The use of the H~field is primarily to print labels, titles, variable
names, etc,, 8o as to make interpretation of printed output easier,
For example,

FORMAT (7,'('23 HbCOMPUTEDLAVERAGESbbw=bb, F 12.4')'),,
PRINTF (AVG)

will cause the 23 characters, including blanks, following H to be printed,
followed by the current value of the variable AVG in F12.4 conversion. If
AVG = 138,7642, we would have

bCOMPUTEDbAVERAGESbb=bbbbbb138, 7642
as the printed output,

The user is responsible for assuring that n 1s precisely the number
of characters he intends to be in the H-field.

The Input and Output Procedures,

The input and output procedures must each be preceded by a format
procedure call in order for the computer to be able to correctly position
and scale the input or output information, as the case may be, The set
of simplified input/output procedures assumes a standard format, so that
the user need not concern himself with providing formats for them., Indeed,
he cannot, since the simplified procedures ignore all formats., Complete
information on all input/output procedures follows,

Syntax,

<read call> 2 :m READ (<input 1ist>)

<readf call> ¢ := READF (<input list>)

<readmatrix call> 3 tm READMATRIX (<array identifier list>)
<readmatrixf call> $:m READMATRIXF (<array identifier list>)
<input list> 3 :m <variable> | <input list>, <variable>

<array identifier 1ist> i:m <array identifier> | <array identifier list>,
<array identifier>

3.4-21

Semantics,
<read call>: The form of the read procedure call is
read (a, b, ¢, ...)

where a, b, ¢, ... represents a list of variables, simple or subscripted,
separated by commas, They are read from card images on the input tape
(logical 7) ignoring any format calls which may appear in the program, The
procedure does not start reading automatically from a new card, but accepts
ALGOL numbers in any defined form (see the ALGOL Report, sgection 2.5, Numbers),
geparated by a comma, three blanks, or the end of a card (columm 72), con~
tinuously until the input list is exhausted. Further calls for the read
procedure cause continuation of reading the same card, not for a new card.

<readf call>: The form of the readf procedure is identical to that of the
read call., The difference between the two is that the readf procedure reads
input according to the last executed format procedure call.

<readmatrix call>: The form of the readmatrix procedure call is
readmatrix (a, b, ¢, ...)

where a, b, ¢, ,.. are array identifiers, The procedure reads elements of
an array in such a way that the last index changes first, then the preceding
one, etc., The elements are acceptable in any ALGOL number form, separated by
three blanks, a comma, or the end of a card (columm 72).

<readmatrixf call>: The form of the readmatrixf procedure call is identical
to that of the readmatrix., The difference between the two is that the read-

matrixf procedure reads input according to the last executed format procedure
call., -

<input 1list>: The form of the ipnput list is
A, B, C, ...

where A, B, C, ... represents a series of identifiers, They may be simple
variables or elements of an array; in the latter case, the subscripts must
be present, as for example A(/2,3/) and B(/7,6/). The array identifier
above, without the subscripts, is not acceptable,

The user should keep in mind that the format procedure call not omnly
controls the form of the data but also prescribes the logical tape number
from which the data is read,

Syntax.

<print call> ?:= PRINT (<output list>)

<printf call> t:= PRINTF (<output list>)

<printmatrix call> $:m PRINTMATRIX (<array identifier>)
<printmatrixf call> :tm PRINTMATRIXF (<array identifier>)
<output list> t:m <arithmetic expression> | <output list>,

<arithmetic expression>

3.4-22

Semantics.
<print call>: The form of the print procedure call is
print (E‘l, Ez’ .co)
where Ej, Ez, s+« Tepresent arithmetic expressions, The procedure evaluates
the arithmetic expressions at execution time and places the results on the
output tape for the off-line printer according to the standard format list
'1X, 5E14,7°!
<printf call>: The form of the printf procedure call is
printf (E-l, EZ’ 0-0)
where the Ey» EZ' «es represent arithmetic expressions, Despite its name,
the procedure can be used for various output tasks, such as placing inter=-
mediate results on scratch (utility) tapes, placing card images on the punch
output tape for punching into cards, or printing output on the off=-line
printer, depending upon the logical tape unit prescribed by the last executed

format procedure call preceding the printf procedure call which also controls
the data transmitted,

<printmatrix>: The form of the printmatrix procedure call is
printmatrix (a, b, ¢, ...)

where a, b, ¢, ... are array identifiers, The elements of the array are
printed on the off-line printer according to the standard format list

'1X,5E14,7"

Hence, the 2 x 3 matrix a will be printed as
811 %12 13 %21 %22
az3

<printmatrixf>: The form of the printmatrixf procedure call is

printmatrixf (a, b, c, ...)

where a, b, ¢, ,,. are array identifiers, The elements of the array are
output to the tape unit specified by the last executed format procedure call
preceding the printmatrixf procedure call, which also controls the format of
the data thus transmitted,

<output list>: The output list consists of arithmetic expressions of any
kind, separated by commas, but cannot be void, That is, an output procedure
such as

printf ()

is not valid, even though the controlling format may consist entirely of an
H-field,

3.5-1

3.5 MAMOS job deck composition in general

This section describes the various compositions of legal MAMOS job
decks, The IBSYS control card $ID is not specified in full for the 1llus-
trations and the user should refer to section 1.2 for a description of the
$ID card.

The MAMOS specifications have been defined in section 3.2, but some
will be elaborated on in later sections.

DEFINITIONS

[SOURCE] will be used to indicate a deck which consists of at least
one MAMOS specification followed by a source program which requires
a translation by some translator of the MAMOS system. '

[OBJECT] will be used to indicate a relocatable binary deck of a
type produced by the MAD compiler, the FORTRAN II compiler, the ALGOL
compiler, or the UMAP assembler,

[DATA] will be used to indicate a data deck to be used by the program
during execution,

[CORELOAD] will be used to indicate a deck which consists of one or
more [SOURCE]s and/or [OBJECT]s. The last card of a [CORELOAD] is the
specification card

$BREAK

or

$ BREAK(N)

[CORELOAD] is used in PING PONG jobs, and must contain one and only one
main program,

[BINARY] will be used to indicate a deck composed of the specification

card
$BINARY
followed by one or more [OBJECT]s.

[X]1 will be used to indicate the ith [X] in the job deck., X is
SOURCE, OBJECT, DATA, BINARY, or CORELOAD.

EXAMPLES OF A [SOURCE]

(1) The following deck is an example of a [SOURCE] which requires a MAD
compilation,

$ COMPILE MAD
EXECUTE SYSTEM. Could be any legal MAD
END OF PROGRAM source deck.

The MAD program above does nothing useful but could be of any length
and complexity desired, Also, any or all of the specifications below could
be used, The allowable specifications are PRINT OBJECT, PUNCH OBJECT,
CONDITIONAL, and also binary card labeling information may be given in
colummns 65=72 of a specification card.

3.5=2

(2) The following deck is an example of a [SOURCE] which requires a
UMAP assembly,

$§ ASSEMBLE

* UMAP PROGRAM WHICH DOES NOTHING. |} Could be any legal
CALL SYSTEM UMAP source deck,
END

Other specifications which may be used in the UMAP [SOURCE] are
PUNCH OBJECT and CONDITIONAL. Also, binary card labeling information may be
given in columns 65-72 of a specification.

(3) The following deck is an example of a [SOURCE] which requires a FORTRAN
I1 to MAD translation by the MADTRAN translator, followed by a MAD compilation
of the MAD source produced by MADTRAN.

$ MADTRAN

C FORTRAN PROGRAM TO DO NOTHING,. Could be almost any
CALL EXIT legal FORTRAN II source
END deck,

Other specifications which may be used are the same as those options
allowed in example (1) above,

3.5-3

PING PONG

PING PONG is the process of optionally calling and passing control
to one of gseveral complete programs ([CORELOAD]s) which comprise a PING
PONG job, A PING PONG job usually is a job whose program is too large to
fit in core memory at one time, If a large program can be broken into
segments or [CDRELUAD]s which are independent of each other except for
communication through a common area of memory or external storage, then the
program may be run as a PING PONG job.

Each [CORELOAD] must logically end by either calling in another
{CORELOAD] or terminating the job, A library subroutine, with two entries,
is available for the purpose of calling in a new coreload.

Before execution begins, the program for each [CORELOAD] is stacked
on logical tape T where T is specified on the last card of a [CORELOAD], or
if not specified T is assumed to be logical tape 2, If T is specified, it
must be 2, 4, or 9, The order of stacking on the tapes is in the order the
[CORELOAD]s appear in the job deck.

To call the next [CORELOAD] in sequence on logical tape T, the following
call 1is given,

SEQPGM. (T) for MAD or
CALL SEQPGM, T for UMAP.

To call [CORELOAD] R on logical tape T, the following
call is given,

SELPGM. (R,T) for MAD or
CALL SELPGM,R,T for UMAP.

If T is omitted in the above calls then logical tape 2 will be used.

At the start of execution a specific [CORELOAD] must be automatically
chosen by MAMOS as the first [CORELOAD] to load and give control to. The
[CORELOAD]} which is normally chosen as the first to execute is the first
one which physically appears in the job deck, However, if the $BREAK
specification is omitted from the last [CORELOAD] in the job deck, then
that [CORELOAD] is executed first, without being stacked on a tape. Hence,
in the later case the last [CORELOAD] could only be executed once.

An example of a PING PONG job is given later,

JOB DECK

The composition of a general job deck to be run under MAMOS is

nov given,

Non~-PING PONG job deck

$EXECUTE MAMOS
$1ID
$options

;optionl
[SOURCE]1

[SOURCE]y.
[OBJECT],

[OBJECT Jy
$BINARY
[OBJECT],

OBJECT
$DA’E‘A heen
[DATA]

The options above may be on as many §$ cards as desired.

PING PONG job deck

$EXECUTE MAMOS
$ID
$options

$options
[CORELOAD],

3

L
[CORELOAD]
$DATA

[DATA]

3.5~4

The allow-

able specifications at this point in the job deck are EXECUTE, COPIES, DUMP,
FULL DUMP, I/0 DUMP, SUB TRACE, HALT, and comments which appear om cards with

$$ in columms 1 and 2,

The TEACHER, UNKNOWN, and REGRESSION specifications could also be in-
cluded in the above list, but since these three specify special jobs they are

described later,

3.5-5

TEACHER JOB
A TEACHER job is composed as follows,

$EXECUTE MAMDS

$ID

$TEACHER

$$ comments if desired
[DBJECT]1

[OBIECT 1,
$DATA
[DATA]

Execution of the TEACHER job causes a pseudo-input tape to be written

on logical tape 10, The tape will consist of the object programs and data
supplied with the TEACHER job,

The above deck may consist of one main program, any number of sub-
programs, and a data deck if desired. Any main or sub-program must be in
binary form. A teacher job which supplies only $DATA and [DATA] is also
permissible,

UNKNOWN JOB

This job is the type of job which follows a TEACHER job, and is con-
nected to and uses the program(s) and or data which was put on logical tape
10 by the TEACHER job.

An UNKNOWN job is composed as follows,

$EXECUTE MAMOS
$1ID
$options

§options
SUNKNOWN
[SDURCE]1

[SOURCE]L
OBJECT I4

[OBJECT Iy

This job is the same as the general job defined previously except=-

1) There is no $DATA specification or [DATA].
2) The specification UNKNOWN is used.

3.5-6

MADTRAN Under MAMOS

MADTRAN is a program written in MAD language which translates a
FORTRAN II source program into a MAD source program,

The $ MADTRAN specification causes the following FORTRAN II source
program to be translated to a MAD source program. The MAD source is then
compiled by the MAD translator. In other words,

$ MADTRAN
[FORTRAN II source]

is equivalent to

$ COMPILE MAD
[MAD source]

when the FORTRAN II, and MAD source decks do the same task, Of course the
object programs may not be physically the same.

The output of the MADTRAN translator consists of a listing of the
FORTRAN II source program, a table of corresponding MAD and FORTRAN state-
ment labels, a list of the function names used in the MAD program, and a
symbolic deck of the equivalent MAD program.

MAD statement labels of the form QQnnnn are created during the
translation, The user can specify a different alphabetic 2 character label of
the form XXnnnn by use of the statement

STATEMENT LABEL IS XX

This statement, if used, must precede the first statement of the FORTRAN II
source program, and XX must be two alphabetic characters which never appear
in the FORTRAN program as a variable name of the form xxnnnn,

The output MAD source deck will normally have identification labels
in card columns 73-80 of the form MIRnnnnn,nnnnn=00001,00002,.... The user
can specify a different card label by use of the statement

CARD ID IS xxxnnnnn

in which case the card label in 73-80 will be xxxnnnnn, xxxnnonn+l,.... nnnnn
must be numeric. This statement, if used, must precede the first statement of

the FORTRAN program,

The output from the MAD compilation which automatically follows a
MADTRAN translation depends upon the specifications which are used. PRINT
OBJECT and PUNCH OBJECT have the same effect as when given for a MAD compilation.
The EXECUTE specification can also be used if desired.

3.5-7

Restrictions on MADTRAN

1) The FORTRAN II statements

SENSE LIGHT i

IF (SENSE LIGHT 1) nq,n,

LF (SENSE SWITCH i)n,n

IF ACCUMULATOR OVERFLOW?nj,n,
IF QUOTIENT OVERFLOW nq,ny
IF DIVIDE CHECK nj,n,

should be avoided if possible, MADTRAN will produce calls to a special
subroutine to accomplish the results of such statements, and the user of
these statements will have to supply the subroutine,

2) MADTRAN makes an assumption in its treatment of argument lists, If
an argument is the name of an array and appears unsubscripted in the list,
the zero element in the equivalent MAD array, hence the entire array, will
be the argument and it may be subscripted in the MAD external function,
If, however, the argument is a subscripted array name, the effective argument
in MAD will be the value of that element,

3) FORTRAN COMMON is assigned to the MAD PROGRAM COMMON. Equivalence is

handled as in MAD, so there is no reordering implied by the EQUIVALENCE
statement,

4) Arrays in MAD are stored by rows rather than by columns as in FORTRAN II.

5) MADTRAN does not handle double precision (D in columm 1), Complex (I in
column 1), and Boolean (B in column 1) FORTRAN II statements.

6) The FORTRAN II source program must have

a) no more than 2000 statement labels,

b) no more than 1000 integer variables,

¢) no more than 300 dimensioned variables,

d) no more than 1000 function names.

e) no more than 20 arguments in a one=-line function definition,

7) FORTRAN II programs which use absolute logical tape numbers will have
to be changed to refer to the MAMOS logical numbers as follows.

SYSIN1 = logical tape 7 for regular input tape,
SYSOU1 = logical tape 6 for regular output tape.
SYSPP1 = logical tape 5 for regular punch tape.

Logical tapes 2, 3, 4, 9, 10, 11 are available for scratch or special input/
output.

8) The FORTRAN II PRINT and PUNCH statements do not at present compile
properly if there is no list in the statements.

3.5-8

REGRESSION JOB

A REGRESSION JOB is composed as follows:

$ EXECUTE MAMOS
$ID
$ REGRESSION, EXECUTE
[Transformation if desired]
$ DATA
Control Card
Format Card(s)
Data Set(s)
Blank Data Set

The Regression program is written as a FORTRAN II subroutine and
it 18 called from the MAMOS library automatically. A description of the
program follows,

REGRESSION ANALYSIS PROGRAM

The objective of the regression analysis program is to generate a
linear regression equation of the form

(1) Y-BO+B1X1 +BzX2+. e +BKXK

from a set of N observations of a set of K independent variables
(x1,x2,,,,xx) and a single dependent variable Y,

The coefficients Bg,By,...,Bg are determined so that the regression
equation minimizes the sum of the squares of the deviations between the ob~
served and predicted values of Y, The method used 1s the stepwise regression
procedure which generates the expression (1), variable by variable, in order
of relative importance, until all significant variables are included in the
equation, according to the level of significance specified by the user.

This writeup includes both a simple linear regression procedure and a
procedure to utilize transformations of the variables (as desired by the user)
in forming the regression equation. Both programs have been combined into a
single program, The use of this program is described in two parts, but the
user must remember that the same program is used in each case, under the control
of the parameters supplied.

1. LINEAR STEPWISE REGRESSION PROGRAM

The most common use of the regression procedure i1s the generation of
a linear regression equation of the form (1), In this use, the variables are
treated without applying any transformation functions before forming the
regression equation,

3.5-9

CONTROL CARD

The Control Card is the first card of each problem presented to
the computer, By the use of the variables punched on the control card
the user may control the operation of the program on the data sets which
follow, The card is described below, field by field, giving the name of
the variable whose value is to be entered, the columns to be used and the
type of variable (i.,e., integer (I) which must be punched without using the
decimal point characters or floating point (F) which must have the decimal
point character punched), Following this, a brief description of the
function of each variable is given,

VARIABLE NAME COLUMNS TYPE FUNCTIONAL DESCRIPTION OF VARIABLES

TOL 1~ 10 F Tolerance (normally ,001), used as a
bound on divisors used in matrix trans-
formations, No variable having diagonal
matrix element less than this value, at
any stage of analysis, may be entered in
the regression equation.

FLVLIN 11 - 20 F F level for entering variable (see
discussion of F level and significance).

FOUT 21 - 30 F F level for removing variable (must be
less than or equal to FLVLIN).

PROBNO 31 - 35 I Problem number,

NOVAR 36 = 40 I Total number of variables (including

dependent variable), must be less than or
equal to 101.

NODATA 41 = 45 I Number of data sets (N). (No practical
upper limit),

IFRIN 47 I Blank or O causes the regression analysis
to attempt to process successive regression
problems from the input tape, (This is the
normal case), 1 causes a return to the call-
ing program at the completion of the current
problem, This is effective on every new
control card., (See the REGRESSION ANALYSIS
PROGRAM AS A SUBROUTINE).

IFWT 48 I Blank or O if weight factors given, 1 if
data sets are all of unit weight,

IFSTEP 50 I If data sets are all of unit weight. Blank
or 0 causes printing of each step of regres-
sion analysis, 1 suppresses this printing
(Final step is always printed).

VARIABLE NAME COLUMNS TYPE

IFRAW

IFMEAN

IFRESID

IFCOR

IFPRED

IFCNST

IFTERM

FORMAT

52 1
54 I
56 I
58 I
60 I
62 I
64 I
65 - 66 I

F LEVEL AND SIGNIFICANCE

3.5-10

FUNCTIONAL DESCRIPTION OF VARIABLES

Blank or O causes printing of raw sums,
sums of squares and sums of cross pro-
ducts, 1 suppresses this printing,

Blank or O causes printing of means and
standard deviations, 1 suppresses this
printing.

Blank or O causes printing of residual
sums of squares and cross products ad-
justed about the means, 1 suppresses this
printing,

Blank or O causes printing of simple
correlation matrix, 1 suppresses this
printing,

Blank or O causes the printing of a
table of input dependent variable values
(Y), the corresponding values predicted
by the final regression equation and the
deviations and percent deviations, 1
suppresses this calculation and printing.

Blank or 0 allows By in (1) to be com-
pated. 1 forces Bg to have the value

zero and suppresses the computation of
the residual sums adjusted about the
means,

Blank or O causes printing of table of
input data values, 1 suppresses this
pcinting,

Number of format cards to immediately
follow this card, If blank or 0 or
negative, 1 format card is assumed.
Otherwise, format .LE. 10 with the value
punched in 65 - 66,

In order to control the likelihood of committing an error in entering a
variable into the prediction equation when it is insignificant, or the error in
removing a variable from the equation when it is significant, the corresponding
F levels (FLVLIN and FOUT) must be specified by the user. The appropriate pro-

cedure to be followed is given below.

(1) Choose a maximum allowable likelihood for committing the error

(9-8- ’ -05)0

Call this value P.

3.5-1

(2) Calculate the probable final number of degrees of freedom NDF
for analysis

NDF w N~ K~ 2

where N is the number of data sets (observations)

K is the number of variables finally entered in equation,
Conservatively, K may be taken as the number of independent
variables,

(3) Use Table 1, find the entry corresponding to the given P and NDF.

If the given P and NDF are not listed, the user may interpolate or
consult more detailed F tables in the various statistical tables.

TABLE 1: F LEVELS

NDF P= ,99 Pm ,95 P=x ,90 Pm= .50 Pm ,10 Pm .05 Pm .025 P= ,01 P= .001

2 .00020 .0050 .020 .667 8,53 18.5 38.5 98.5 998.
3 .00019 . 0046 .019 .585 5,54 10.1 17.4 34.1 167,
4 .00018 .0044 .018 .549 4,54 7.71 12,2 21,2 74,1
5 .00017 .0043 .017 .528 4,06 6.61 10.0 16,3 47.2
6 .00017 .0043 .017 .515 3,78 5.99 8.81 13,7 35.5
7 .00017 .0042 .017 .506 3,59 5.59 8.07 12.2 29.2
8 .00017 .0042 .017 .499 3,46 5.32 7.57 11.3 25.4
9 .00017 .0042 .017 494 3,36 5.12 7.21% 10,6 22.9
0 .00017 .0042 .017 .490 3,28 4,96 6.94 10,0 21.0
1 .00016 . 0041 .017 .486 3,23 4,84 6.72 9.65 19.7
2 .00016 .0041 .01l6 .484 3,18 4,75 6.55 9,33 18.6
5 .00016 .0041 .016 .478 3,07 4,54 6.20 8.68 16.6
0 .00016 . 0040 .016 472 2,97 4,35 5.87 8,10 14.8
4 .00016 . 0040 .016 .469 2,93 4,26 5.72 7.82 14,0
0 .00016 . 0040 .016 .466 2.88 4,17 5.57 7.56 13.3
0 .00016 . 0040 .016 463 2.84 4,08 5.42 7.31 12.6
0 .00016 .0040 .016 461 2,79 4,00 5.29 7.08 12.0
0 .00016 .0039 .016 .458 2,75 3.92 5.15 6.85 11.4

.00016 .0039 .016 .455 2,71 3.84 5.02 6.63 10.8

The user should note that the likelihood of committing the converse
error (e.g., failing to enter a variable in the equation that is, in fact,
significant) increases as the likelihood of the first type of error decreases.
The values corresponding to the .05 level are commonly employed,

The restriction is imposed that both F levels should be greater than
or equal to zero, and that the F level for entering variables be at least as
large as the F level for removing variables.

3.,5-12

FORM OF INPUT DATA

The only restrictions on the form of input data are:

e The first item (the leftmost item read of the first card of each
observation set) must be used as identification (an observation,
or case number) for this data set. This means that this item
must be positive (greater than zero) for all actual data sets,

and this item is not included (for analysis) among the independent
variables,

(2) The dependent variable must be the last one read by the input

format (i.e., the rightmost variable read on the last card of the
data set,) If the data is not in the prescribed order, it is

not difficult to write a special ZFNCT subroutine to rearrange it,
See REGRESSION ANALYSIS WITH TRANSFORMED DATA sub-section,

(3) If the data is weighted individually (i.e., the variable IFWT =

0), the weight must be the last item read in the entire data set,

(4) Following the last actual data set, the user must supply a complete
blank data set (e.g., if a real data set occupies 1 card, supply
1 blank card, if a real data set takes 2 cards, supply 2 blanks,
and so on).

0f course, the user must establish a consistent format for all the data sets.
That is, each variable must appear in the same field in each data set, For
example, if variable 10 occurs in columms 43~45 in the first data set, it must
appear in 43-45 in all data sets,

After the data has been prepared according to the user's requirements,
a format card (or cards) is prepared to describe the layout of the data to
the program. Since each problem is preceded by its own control card and
associated format, many different problems may be processed in one approach to
the computer.

FORMAT CARD

The data is described to the program, variable by variable, field by
field, by writing an appropriate format, Every item, including the observation
number, the independent variables, the dependent variable and the weight (if any)
must be described in the format, Further, every item is regarded as a floating
peint number. Thus, only E fields or F fields are allowed., Unused columns may
be skipped (thus allowing a single data deck to be prepared for several problem
runs) by using either the FORTRAN skip or the MAD skip. The user should become
familiar with the various methods of writing formats in the FORTRAN or MAD manuals.
The formats used by the regression procedure must begin with a left parenthesis
'1('" apnd terminate with a right parenthesis '')''., The terminal * (asterisk)
used in MAD formats is omitted in formats written for the regression program.

3.5=13

FORMAT CARD =~ Continued

In between the parentheses, F fields and skip fields, separated
by commas, describe the data. '

A skip field is

An F field is written

NX

N

N F W.D where

No. of variables (fields) of the same size and
decimal places,
If 1, this may be omitted,

The alphabetic character F,

The width of the field (i.e., the number of columns
used for the variable).

The decimal point (must be included in the count
'"'yt', if it is punched in the data).

The number of places to the right of the decimal
point. Used whenever no decimal point has been punched
in the data,

written

or SN where
- is the number of columns to be skipped.

X or S= The alphabetic character X or S,

If each data set uses mora thaa vae card, panch a slash ''/'' in the
format where the reading of the next card is to begin, In general, one should
not end a format with / unless he is very familiar with the behavior of the
input / output routines,

EXAMPLES:

1. Suppose each data set consists of 2 cards punched as follows.

1st Card
Col, 1
Col. 5
Col, 35
Col, 37
Col, 40
Col, 56

Col, 73

55:

80:

Data identification.

Var, 1 - 6, each 5 digits with 4 decimal places.
To be ignored in the analysis,

Var, 7, 3 digits with no decimal places.

To be ignored in analysis,

Var, 8 - 12, each 3 digits with 1 decimal place.

Card identification (To be ignored).

3.5=14

EXAMPLES: (Continued)

2nd CARD
Col. 1~ 16: Var, 13 = 20, each 2 digits with no decimal places.
Col, 17 = 203 Var. 21 (Dependent variable) 4 digits with 2 decimal places.

Col. 73 - 803 Card identification (To be ignored).

The FORMAT would be written

(P4.0,6F5.4, S2, F3.0, 16X, 5F3.1/8F2.0,F4.2)

2. Suppose each card is punched with the data items occupying 10
column fields, 7 per card, The format might be

(7F10.0)

If any of the data required places to the right of the decimal, punching the
decimal point in the proper place in the number on the card will override the
format specified for that number.

If all of the data could be contained on one card, there is some
reduction in execution time that may be obtained by shifting the variables
onto one card. If 2 cards are required as in example 1, there is no advantage
in shifting the data around.

In general, the user should not use the columns beyond 72 for data.
If more columms are needed, use additional cards, Note that use of the X
and S FORMATS may be used to cause an effective rearrangement of the data
without repunching the cards,

3.5-15

II. REGRESSION ANALYSIS WITH TRANSFORMED DATA

Sometimes the representation of the data may be greatly improved by
applying the regression analysis to transformations of the raw data., 1In
other words, a regression analysis will yield the best results when applied
to the correct model for the phenomena. Failure to achieve a good fit may,
thus, be due to either 1) Errors in the data, or 2) Errors in the model.
The user may supply a transformation function for his data by writing and
compiling a suitable subroutine. The subroutine, together with any required
specification cards, follows the § REGRESSION, EXECUTE card. ’

The subroutines are written in the MAD language or equivalent language
and must conform to certain minor conventions, Also, a slight change in the
control card is needed to signal the need to use the transformation subroutine,.

These details are given below,

CONTROL CARD CHANGES

The control card preparation follows the description given earlier
with 3 changes,

1. The variable NOVAR, in Cols. 36-40, is now the integer number of
transformed variables (including the dependent variable, which
may also be a transformed variable, if desired).

2. A new variable NOX is punched in Cols, 67-70, which is the integer
number of raw data variables supplied (including the raw data
dependent variable).

3. The variable IFTERM, in Cols, 64, causes the printing of the
transformed data values if blank or O, 1 suppresses this printing.,

For example, suppose that 3 variables are supplied as raw data and that
transformations are desired as follows:

Zy = X%
Z, = X
z3=x-;'_
Z, =%
zs=x§
z6=x3
Z, =Xy

In this case NOVAR = 7, NOX = 3.

3.5-16

TRANSFORMATION SUBROUTINE ZFNCT

The transformation ZFNCT may be written in MAD or an equivalent
language, as the user desires. An example written in MAD will be given,

The argument list supplied by the calling program is as follows.

OBSNO - The observation (case) number of current
set of raw data,

X = The base element of the raw data vector., If
the subroutine is written in FORTRAN, this is
the location of X(1). 1In MAD, this is the
location of X(0),

XNUM - The number of raw data entries in the X vector,
(In FORTRAN, the entries lie in the X vector

from X(1) thru X(XNUM) - In MAD, the entries lie
in the X vector from X(0) thru X(XNUM-1).)

yA -~ The base element of the transformed data vector,
If the subroutine is written in FORTRAN, this is
the location of Z(1)., In MAD, this is the loca-
tion of Z(0),

ZNUM - The number of transformed data entries in the
Z vector, (In FORTRAN, the entries lie in the Z
vector from Z(1) thru Z(ZNUM). In MAD, the entries
lie in the Z vector from Z(0) thru Z(ZNUM~1).)

FIFWT - A variable whose value is non-zero if each data
set has an associated weight read in as part of
data, The variable is zero if each data set is
assumed to have unit weight,

WHT - The weight associated with the current data set,

FIFERR

A variable whose value is to be set to
1) 0., if the subroutine has experienced no errors
in the transformation of the data,
2) 1., if the subroutine has experienced an
error that must terminate processing of
the problem,
3) =1., if the subroutine has experienced a
minor error that can allow the processing
to proceed, A comment will be printed to
flag this type of error.

It is to be noted that all of these parameters are floating point
variableg. Thus, if the subroutine is writtem in FORTRAN, some of these
variables must be converted, in the subroutine, to FORTRAN integers in order
to be used in computing subscripts,

3.5-17

The writing of ZFNCT subroutines may be clarified by means of
the following example.

Suppose that 3 raw data variables are supplied and that the logg(X3)
is to be the dependent variable, Further, each of the other independent
variables are to be transformed according to the rules:

T2- X%

T

The MAD subroutine to perform this set of transformations may be
written as follows.

$ COMPILE MAD, PUNCH OBJECT
EXTERNAL FUNCTION (OBSNO, X, XNUM, Z, ZNUM, FIFWT, WHT, FIFERR)
ENTRY TO ZFNCT.
FIFERR = O,
ZNUM = O,
THROUGH LOOP, FOR I = 0., 1., I.GE.XNUM
THROUGH LOOP, FOR J = 1, 1, J .G.3
INTEGER J
Z(ZNUM) = X(I).P, J
LooP ZNUM = ZNUM + 1
WHENEVER X(XNUM).LE,O,
FIFERR = 1,
OTHERWISE
Z(ZNUM) = ELOG, (X(XNUM))
END OF CONDITIONAL
FUNCTION RETURN
END OF FUNCTION
It should be apparent that the use of the ZFNCT subroutine allows the

user complete freedom in the transformation (sometimes called ''EDITING'') of
the data presented for analysis,

3.5-18

REPEATED USE OF DATA

The need to make several analyses of the same basic set of data some~
times arises (e.g., using the skip to select one of several dependent variables
punched in the basic data set), One way to accomplish this would consist of
reproducing the basic data deck as many times as is required, and supplying
the multiple copies as indicated in the previous sections. Another way that
avoids the reproduction of the data is the use of a special variable, IFSAVE,
punched in columns 71=72 of the control card, This variable function as follows,

1. If the value of IFSAVE is blank or O, the regression analysis
program expects the data to follow the format card(s) in the usual
way, (This is the normal situation.)

2, If the value of IFSAVE 1s -1, the regression analysis program
expects the data to follow the format card(s) as usual except that
a card with an asterisk ''**' in columm 1 and the words f'END OF
PROBLEM'' in cols, 2-72 must follow the complete data deck, in~
cluding the blank data set, but precede the next problem. In
this case, a copy of the data is written (In decimal mode, as card
images) on logical tape 4 for repeated use, Then tape 4 will be
rewound and analysed according to the current controls and format.

3. 1f the value of IFSAVE is 41, the regression analysis program will
take the data from logical tape 4 after reading only the appropriate
format card(s) from the input tape. (Of course, tape 4 must have
been written earlier by an analysis which had IFSAVE = =1 in the
control card, Otherwise, the information on tape 4 is completely

meaningless,)

Each analysis must find a control card and format card(s) on the input
tape (as a part of the data deck supplied by the user) whether the data is to
be read from tape 4 or from the input tape.

Each time the data is read, whether from the input tape or from tape 4
it will be interpreted according to the format card(s) immediately preceding.

It should be noted that data can be processed with and without trans~
formations by using this feature, There is no present way to apply more than
one ZFNCT subroutine during one approach to the computer, However, if
any ZFNCT is included before the $DATA card, this (and only this) subroutine
applies for this entire approach, and may be either utilized or ignored when

processing the data.

REGRESSION ANALYSIS PROGRAM AS A SUBROUTINE

For very special purposes, it is possible to imbed the regression
analysis program within any other program by calling it from the library like
any other subroutine, In this case, § EXECUTE is used, but § REGRESSION 1s

not used,

This may be accomplished by including one of the following calling
sequences in the user's main program,

3.5-19

Main program in MAD,
EXECUTE REGRSN,

Main program in UMAP
CALL REGRSN

The user should be aware that, in the usual case, there is no return
of control to the user's program once REGRSN has been entered,

However, by punching a 1 for the value of IFRTN (see control card) the
user will obtain a return to his calling program after the end of the current
problem, At that time, tapes 3, 4 and 9 will have been rewound, Tape 9 will
contain the following information as one record,

NOIN The number of terms inserted in the regression equation
(FORTRAN integer).

COEN The regression coefficient vector (101 locations floating point)
INDEX The term index vector (101 locations FORTRAN integers)
CONST The value of the constant term in regression equation.

Moreover, if the predicted values are asked for (i.e., IFPRED is blank
or 0), then tape 3 will be written on during the solution, Also, if IFSAVE is
used to save the raw data, then tape 4 will be written during the solution.

The following MAD sequence will illustrate use of the regression equa-
tion (e.g., for plotting graphs, etc.) to determine the predicted value YPRED
for a set of X values,

DIMENSION X(101), COEN (101), INDEX (101)

EXECUTE RTAPE9, NOIN, COEN, INDEX, CNST)

INTEGER NOIN, INDEX, I

YPRED = CONST

THROUGH LOOP, FOR I = 1, 1, 2 .G, NOIN
LOOP YPRED = YPRED + COEN(I)*X(INDEX(I))

The subroutine RTAPE9 takes care of the reading of the information
placed on tape 9 by REGRSN and the conversion of FORTRAN integers to MAD
integers,

The subroutine REGRSN is fairly large and calls upon several other
routines., Thus, the user desiring to use REGRSN as a subroutine should not
plan on using more than approximately 20000 octal (8192, decimal) locations
in the calling program. The exact allowable size depends on the subroutines
called by REGRSN and the main program, If the size becomes too large to be
loaded in a single cora load, the user is referred to the description of the
PING~PONG method of subdividing large programs,

3.5-20

EXAMPLES

1) Assume there is a subroutine on the MAMOS library which computes
Y = F(X). Write a program which reads X, computes Y, and prints

X and Y. Suppose the subroutine name to be MOREVY, Both X and Y
are in PROGRAM COMMON,

$EXECUTE MAMOS
$ID PINGPONGER*XXX/YY/ZZZ*SMINUTES*10P$
R PROGRAM TO USE MOREV9.
PROGRAM COMMON X,Y
START READ FORMAT INPUTS,X
EXECUTE MOREVY,
PRINT FORMAT OUTPUT,X,Y
TRANSFER TO START
VECTOR VALUES INPUTS =$25X,F10.4%$
VECTOR VALUES OUTPUT =$3H1X=F10.4,3X,2HY=E16,8%$
END OF PROGRAM
$DATA
BEST VALUE OF PI HANDY IS 3,14159

2) Suppose example 1) above will not work because MOREV9 and the input-
output routines combined require a little too much storage for execu~
tion. A PING PONG job can be done so that input=output routines are
not needed at the time MOREV9 is used.

$EXECUTE MAMOS
$ID PINGPONGER*XXX/YY/ZZZ*5M*10PAGESS

$ COMPILE MAD, EXECUTE
R CORELOAD 1--GOES TO TAPE 2, RECORD 1.
PROGRAM COMMON X,Y
READ FORMAT INPUTS, X [CORELODAD]4
SELPGM, (1,4)
VECTOR VALUES INPUTS =$25X,F10.4%3$
END OF PROGRAM
$BREAK

$COMPILE MAD
R CORELOAD 2--GOES TO TAPE 4, RECORD 1.
PROGRAM COMMON X,Y
EXECUTE MOREV9, [CORELOAD],
SELPGM, (2,4)
END OF PROGRAM
$BREAK(4)

$COMPILE MAD
R CORELOAD 3--GOES TO TAPE 4, RECORD 2.
PROGRAM COMMON X,Y
PRINT FORMAT OTPUT,X,Y [CORELOAD],
SELPGM. (1,2)
VECTOR VALUES OTPUT =$3H1X=F10.4,3X,2HY=E16.8%$
END OF PROGRAM

$BREAK(4) 77]
$DATA -) =
BEST VALUE OF PI HANDY IS 3.14159

3.6~1

3.6 MAMOS Organization and Coding Informatiom

MAMOS consists of a low core package (I0S) of many subroutines
(including I/0 subroutines), a monitor and loader, the MAD compiler, the
UMAP assembler, the ALGOL compiler, the MADTRAN translator, a subroutine
library, and several other records.

The low core package remains in core at all times when MAMOS has
control, Its logical function as part of the operating system is to provide
end of Job processing such as requested dumpe, and to call in gystem records,
The low core package occupies cells 2048 through 4095 so object programs have
cells 4096 through 32767 available, unless an installation desires to reserve
part of upper memory,

All I/0 functions under MAMOS are accomplished through use of IOEX,

A Job is processed under MAMOS in the following manner:

a) The low core package reads in the monitor-loader-accounting record and
glves control to the monitor,

b) The monitor does any necessary actions to terminate a previous job which
may not be signed off, The beginning of the job is found and the job is
signed on,

c) Mamos control cards are scanned and when a translator is necessary the
first record for that translator is read into core and control is given
to the translator, The translator carries out its function and returns
to the low core package.,

d) The low core package again reads in and gives control to the monitor
record,
Steps c¢) and d) are repzated until a $BINARY card, a $DATA card or an
end of file is detected. During these steps and if execution is legal,
any binary output from translation is stacked on the execution tape
(logical tape 3). Binary cards coantained in the job deck are simply
transfered to the execution tape if they are not preceded by the
$BINARY control card.

e) When a 5DATA card, a $BINARY card or an end of file is detected, a check
is made to see if execution is legal. If execution is not legal then
the job is terminated, Execution is legal if it was requested and if no
error was detected by the monitor and translators as the job deck was
processed.

f) If execution is legal, control is passed to the loader which loads aay
binary program decks which may have followed a $BINARY card, then the
execution tapz is loaded, and finally any other routines which are
necessary and available from the library.

g) Execution of the program begins. fxecution is usually terminated by
calling SYSTEM or ERROR subroutines in the low core package, or by
trying to read more data than —vas {ncluded in the job deck.

3.6-2

Low Core Package (I0S)

10S consists of many subroutines which are used primarily by MAMOS
executive routines and the library routines to accomplish input=-output,
A stripped down version of IOS could be useful for other applications under
other monitors,

There are two I/0 unit tables in I0S, and storage is set aside for
saving an I/0 table temporarily., The master I/0 unit table consists of the
standard I/0 unit definitions, and the working I/0 unit table consists of the
current unit definitions as the job is processed.

Both unit tables consist of entries of the form PZE SYSUNi or MZE
SYSUNi for each logical number which is defined, where SYSUNi is a standard
IBSYS unit name, A table of the current master I/0 units is given below.

The working I/0 unit table is usually identical to the master I/0
unit table, However, the working table may be saved by a subroutine, the
definitions may be altered in the working table, and when the desired I/O
is completed, the saved table may be restored.

There are three subroutines which automatically do single record
buffering, These routines are used almost exclusively for (1) reading the
input tape (SYSIN1 = logical tape 7), (2) writing the output tape (SYSOU] =
logical tape 6), and (3) writing the punch tape (SYSPP1 = logical tape 5).
These self~buffering routines may, with care, be used for reading/writing
of other logical units by altering the working I/0 unit table.

There is a fixed communication region in I0S starting at octal
location 3720, Most of the values in this region are defined in the system
symbol table of UMAP and are available to UMAP codes through use of the
pseudo-operation SST. All of the low core subroutine entry points are
included in the system symbol table,

Most of the subroutines of I0S are available to relocatable codes
such as MAD programs through a library subroutine which connects relocatable
calls to the low core subroutines,

LOGICAL I/0 UNITS FOR MASTER TABLE

Logical Number IBSYS UNIT

SYSLBI1

SYSUT1
SYSUT2
SYSUT4
SYSPP1
SYSoU1
SYSIN

SYSLB2
SYSUT3
SYSCK2
SYSCKI1

—O0OVwWONOANUL PWN -~

— —d

3.6=3

Use

System
Scratch
Execution
Intermediate 1
Punch

Output

Input

Library if desired
Intermediate 2
Available
Available

Tapes 10 and 11 are not normally used by the system so with the
library on SYSLB1 it is possible to operate MAMOS with a minumum of 8 tapes.
However, best operation is achieved when the library is the first file on

SYSLB2,

If desired, logical tape 5 may be assigned to SYSOU1 rather than

to SYSPPI1.
mixed mode records.
is in binary mode.

In this case, the routine which prints SYSOU1 must handle
Print information is in BCD mode and punch information

3.6~4

SUBROUT INES FOR NON-DATA SELECTS

The following routines are used for non-data reference to logical
tape numbers 2, 3, 4, 9, 10, and 11. They may be used to refer to logical
numbers 1, 5, 6, 7, and 8 but before doing so, a special cell in IO0S must
be set non-zero for each reference, This cell is called SO0K567 and is in
octal location 4040. Reference to illegal logical numbers results in the
printing of a message and termination of the job.

In the following calling sequences N is the logical tape number, and
except when specified differently, return is always to the second instruction
following the TSX,

Calling sequences

1) Rewind tape N
TSX REWTAP,4
TIX 0,0,N
2) Backspace tape N one record
TSX BSRTAP, 4
TIX 0,0,N
3) Rewind and unload tape N
TSX RUNTAP, 4
TIX 0,0,N
4) Backspace tape N one file
TSX BSFTAP, 4
TIX 0,0,N
5) Write end of file on tape N
TSX _ WEFIAP,4
TIX 0,0,N
6) Set tape N to low density
TSX SETLOW, 4
TIX 0,0,N
7) Set tape N to high density
TSX SETHIH, &4
TIX 0,0,N
8) Skip M records on tape N
TSX SKPREC, 4
TIX M,O0,N
9) Skip M files on tape N
TSX SKPFIL, 4
TIX M,0,N
10) Check activity of tape N
L TSX CHEKIO, 4
L+1 TIX T,0,N

If T=0 then control will be returned to L+2 only after tape N is
inactive,

If T#0 and tape N is inactive then control goes to T.

If TAO and tape N is active them control is immediately returned to
L+2.

3.6-5

Note: Skipping of files and records is overlapped, so computing (and I/0

on channels different than the one which N is on) may go on while
the skipping is dome.

DATA SELECT SUBROUTINE

Except for some system record reading and non-data selects, all
I/0 is accomplished under MAMOS through use of a select routine with four

entries, The four entries are for read and write in both BCD and binary
modes,

The routine is quite useful for programs which require special input
output, Also, I/0 buffering routines may be easily written through use of
this select routine, An important feature of the routine is that it may be
called at trap time,

The input output is accomplished exclusively through use of IOEX, but
the user need not know IOEX.

Calling Sequence

TSX XXXXXX, 4
TIX EOR,O,N

TIX L(IOC),W,ETT
TIX EOF,T,RTT

Return
XXXXXX = RDSBIN for reading binary records,
= RDSDEC for reading BCD records.
= WRSBIN for writing binary records,
= WRSDEC for writing BCD records.
Use

N = the logical tape number to be read or written.

WAO if it is desired to wait until the I/0 operation is completed before
returning to the caller,

T£O if only one try is desired for reading even though the
record may be redundant.

EOR, EIT, EOF, and RTT are trap time exits to the user's routines. Any
or all of the exits may be zero.

A user's exit must be to a routine which may set switches etc,, and then
return by means of a TRA 1,4,

L(IOC) = the location of the first of a block of I/0 commands. Up to 10
commands are allowed. If more than 10 commands are necessary then at
least one of the first eleven must be a TCH command,

The I/0 commands must terminate with a command which causes a channel
interrupt, i,e. the last command must be a IOXT.

The first ten of the I/0 commands are moved to storage within the
select routine so the original block at L(IOC) may be modified immedia-
tely upon return from the select routine.

3.6-6

Noise records as defined in IOEX will be accepted if there is
at least one input output and proceed command preceding the last

I/0 command, i.e, the IOXT. .Hence, tape may be erased by the
two I/0 commands.

Iogcp 0,0,0 (IOBP in UMAP)
IORT 0,0,0 (I0OBT in UMAP)

However, if only the second of the above two commands was used then
there would be a noise indication if writing.

Users Exits

EOR, EIT, EOF, and RIT, if non-zero specify entries to subroutines coded

by the user, Each of these subroutines must carry out its desired function
and return by means of a TRA 1,4,

An entry to a user's routine is made at trap time, i.e. when an interrupt
condition occurs due to channel command trap, a redundant read or write,

detection of an end of file in reading or detection of the end of tape in
writing.

On entry to a user's routine the following information is available.
a) The address of the accumulator contains the number of words read or
written by the chamnel command just completed or in use at time of

interrupt,

b) The decrement of the accumulator contains the logical number of the
unit in use at time of interrupt,

c) Index register 2 contains the channel number of the channel which
causes the interrupt. Channel A = 1 and Channel B = 2,

d) Index register 1 contains the two's compliment of the address of
the cell which has the result of a store channel instruction at time

of interrupt.

Restrictions on the User's Routine

1) The user's routine must exit by means of a TRA 1,4,
2) For efficient I/0 the user's routine should not be time consuming.

3) Only one of the user's routines is entered for a single trap. The
order of checking for an exit is as follows:

READING WRITING
End of file exit (EQOF) End of tape exit (ETT)
Redundancy exit (RTT) Redundancy exit (RTT)

End of record exit (EOR) End of record exit (EOR)

4)

3)

6)

7)

8)

3.6~7

If no EIT exit is supplied for writing and the end of tape is en-
countered, then 2 end of files are written on the tape, the tape
is rewound and unloaded, an on-line message is printed for the
operator and the machine pauses for a fresh tape. Then a check
for RIT and EOR exits will be made, None of the above actions are
taken if there is an ETT exit.

Activity checking by calling CHEKIO is permissible only if in the
sequence,

TSX CHEKIO,4
TIX T,0,N

T is non~zero., If T is zero, and logical unit N is active, then
an endless wait will occur,

Index registers 1 and 2, the AC, MQ, and indicators need not be saved
by the user's routine,

Calls to REWTAP, BSRTAP, RUNTAP, BSFTAP, WEFTAP, SETLOW, SETHIH, SKPREC,
SKPFIL, RDSBIN, RDSDEC, WRSBIN, and WRSDEC may be issued by a user's
trap time routine, but only for a unit on the same channel on which the

trap occurred,

Storage is allocated for several blocks of I/0 commands and parameters.
One of these blocks is reserved whenever a logical unit is active. It

is possible (if there is not one block per logical unit) that a block will
not be available when activity is required, A data select at non=-trap
time causes no trouble because an automatic wait for a free block will
occur, However, at trap time there may not be more than one block avail-
able and no more than one data select should be issued without insuring
there is an available block.

Restrictions 7) and 8) above may be overcome by means of a special
trap time routine which may be called by the user's routine, The calling
sequence is as follows:

L TSX ISITOK,4
L+1 TIX BUSY,0,N

Control will return to L+2 if it is permissible to select logical unit
N. Control is returned to 'location BUSY if (1) logical unit N is on a
channel different from the one for which the trap occurred or (2) logical
unit N is busy or (3) there is no storage block for I/0 commands.

On entry to ISITOK, it is assumed that the accumulator contains what
it had at the time the user's routine was entered, since the logical
unit number in the decrement of the accumulator is used in determining
if the channel which N is on is the same as the one for which the trap

occurred.

3.6-8

If ISITOK is to be entered more than once, then the second or greater
entry may be made to ISIT11 rather than ISITOK and the accumulator as
saved on the first call will be used.

It is always permissible to re-select the logical unit for which
the trap occurs, and for this type of use there is no requirement
to call ISITOK.

The restriction on I/0 command storage blocks could be completely
removed by allocating (by assembly parameter) one block per defined
logical unit, but since I0S is limited in its available storage there
can only be from 5 to 8 blocks, However, it is seldom that more than
5 units are in use at any one time.

3.6-9

READ INPUT TAPE SUBROUTINE

This subroutine has two entries and is used for reading of the system
input tape SYSINI, which is logical tape 7 under MAMOS.

Calliggﬁsequences

L TSX SCARDS, 4 or TSX SPEEK, 4
L+1 TIX A,0,EQF TIX A,0,EQF
L+2 Return Return

Use

Entry to SCARDS causes the next record on logical tape 7 to be stored
in locations A, A+l1,..., A+j-1 where j=14 if the record is BCD and j=28 if the
record is binary. Also, filling of the buffer is initiated and then control
returns to L+2, On return, the AC will be zero if the record following the
one just transmitted is BCD. The address portion of the MQ will contain 14
if the record transmitted was BCD and will contain 28 if the record transmitted

was binary.

Entry to SPEEK is the same as to SCARDS except the initiation of filling
the buffer is omitted. Hence, one may ''take a look'' at an input record
before reading it.

If the next record on the input tape is an end of file and EOF=0 then
a message is printed and the job is terminated, If EOF#0 and an end of file
is detected then control is sent to location EOF., Handling of end of file
exits is the same for both entries SCARDS and SPEEK,

Single record buffering is automatically started on the first call, and
also when the subroutine is called after an end of file is read.

The subroutine will not handle blocked input, and expects look ahead
words as follows:

Word 14 of a BCD record =(XXXX60606060)g or (XXXX00000000)g if the next
record is BCD,

Word 28 of a Binary record =(000000010000)g if the next record is BCD.

If SPEEK is called, the look ahead bits are transmitted with the
record, If SCARDS is called then look ahead bits in BCD records are replaced
by blanks, and look ahead bits in binary records are replaced by zeros.

'Noise records are ignored. Records which are permanently redundant
are accepted as read the last time., The number of tries before calling a
record permanently redundant is an assembly parameter of IBSYS.

3.6-10

WRITE OUTPUT TAPE SUBROUTINE

This subroutine is used for writing of the system output tape SYSQUI
which is logical tape 6 under MAMOS, It does single record buffering of BCD
records of length no greater than 22 words,

Calling sequence

L TSX SPRINT, 4
L+1 TIX A,0,K
L+2 Return

Use

Entry to SPRINT causes K BCD words (or 22 words if K > 22) to be
written in BCD mode on the output tape SYSOU1 as one record. The words are
taken from locations A, A+l,..., A+K-1 and transferred to an output buffer for
printing, Control returns to L+2,

During execution, SPRINT examines the first character in order to keep
track of the number of pages being printed.

The following characters have meaning for the purpose of page counting,
Character Meaning

Skip to new page.
Skip to middle of a page.
Skip to next fourth of a page.
Skip to next sixth of a page.
Same as 6.
Suppress space,
lank, or 9 Single space.
Double space.
Triple space,

1 Oo+ OO N =

All other characters are treated as blank by SPRINT in counting of pages.

If the standard, or estimated page count is exceeded during execution,
then a message is printed and the job is terminated, A page is considered as
60 printed or blank lines.

WRITE PUNCH TAPE SUBROUTINE

This subroutine has two entries and is used for all writing of the
system punch tape SYSPP1, which is logical tape 5 under MAMOS. It does single
record buffering of binary records, 28 words per record, BCD information is
rotated to binary before writing it on the punch tape as a binary record,

Calling sequence

L TSX SPUNCH, 4 or TSX DPUNCH, &4
L+1 TIX A,0,K TIX A,0,K
L+2 Return Return

3,6-11

Entry to SPUNCH causes K binary words + (28-K) zero words (or 28 if
K>28) to be written on the punch tape SYSPP1 as a 28 word binary record. The
words are taken from locations A, A+l,..., A+K-1 and transfered to an output
buffer for printing. Control returns to L+2,

Entry to DPUNCH causes K BCD words + (14-K) blank words (or 14 if
K>14) to be rotated to column binary form as 28 words. These 28 words are
then written on the punch tape SYSPP1 as one binary record.

If, during execution, the standard or estimated punched card count is
exceeded, then a message is printed and the job is terminated,

SUBROUTINES USED WITH BUFFERING ROUTINES

The following routines are used in conjunction with the buffering sub-
routines SCARDS, SPEEK, SPRINT, SPUNCH, and DPUNCH,

Calling sequences

T8X ENDCDS, &4 or TSX ENDPNT, 4 or TSX ENDPCH, 4
Return Return Return

The above entries cause unbuffering of logical tape 7 or 6 or 5. These
entries must be used before switching logical units associated with the
buffering routines,

TSX REWCDS, 4 or TsX REWPNT, 4
Return Return

The above entries cause logical tape 7 or 6 to be unbuffered and
rewound,

TSX BSRCDS, 4
Return

The above entry causes logical tape 7 to be unbuffered and backspaced
one record.

TSX BSFCDS, 4
Return

The above entry causes logical tape 7 to be unbuffered and backspaced
one file,

TSX NXFCDS, 4
Return

The above entry causes logical tape 7 to be unbuffered and one file
to be skipped,

T8X WEFPNT, 4
Return

The above entry causes logical tape 6 to be unbuffered and an end
of file to be written on logical tape 6.

3.6-12

1/0 UNIT TABLE SUBROUTINES

The following subroutines are used for saving, restoring, altering,
and initializing the working I/O unit table.

Calling sequences

1) Save the working I/0 unit_table,

TSX SAVTBL, 4
Return

2) Restore the previously saved I/0 unit table,

TSX RETTBL, 4
Return

3) Alter the working I/0 unit table,
TSX SETTAP,4
TIX M,0,W
Return
A delay occurs until logical unit W becomes inactive, then logical
unit W is altered to become the actual unit associated with logical unit M

of the master I/0 unit table,

4) Initialize the working I/0 unit table,

TSX ORGTBL, 4
Return

The working I/0 unit table is replaced by a copy of the master I/0
unit table,

5) Delete logical unit N from working I/0 table.

TSX VOID, 4
TIX 0,0,N
Return

This subroutine will cause logical unit N of the working table to be
illegal for use until its restoration by one of the above entries,

Example: Suppose during execution, it is desired to read logical tape 9
using the buffering routine SCARDS.

The following code would terminate buffering on the regular input
tape and alter the I/0 table, Then after logical 9 had been read, the I/0
table would be restored to its previous condition.

TSX SAVIBL, & SAVE PRESENT TABLE
TSX ENDCDS, 4 UNBUFFER THE INPUT TAPE

TSX REWTAP, 4 REWIND THE NEW INPUT TAPE

TIX 0,0,9 :

TSX SETTAP, 4 ALTER TABLE FOR NEW INPUT TAPE
TIX 9,0,7

*

T8X
TSX

CODE USING LOGICAL 9 OF MASTER AS THE INPUT TAPE
% WHICH IS READ BY THE SUBROUTINE SCARDS.

ENDCDS, 4 UNBUFFER THE NEW INPUT TAPE
RETTBL, 4 RESTORE TO PREVIOUS TABLE

3.6-13

3.6-14

OCTAL CORE DUMP SUBROUTINE

This subroutine has two entries and is used for taking octal
dumps of all or part of core storage,

Calling Sequences

L TSX SDUMP, 4 or TSX CDUMP, 4
L+1 TIX A,0,B TIX A,0,B
L+2 Return Return

The above entries cause the core storage block A,A+1,...,B to be
printed in octal, 8 cells per line, If all 8 words for a line are equal
and also equal to the 8th word of the previous line, then this line is not
printed. Instead, one line of periods (.) is printed for each group of
consecutive lines whose words are all equal.

If the SDUMP entry is used then each printed line also has the octal
address of the first word printed at the beginning of the line.

If the CDUMP entry is used then an octal address is printed as for
SDUMP except that the address is relative to 1. That is, the addresses
printed will be the octal equivalent of 1,8,16,....

SYSTEM RECORD READING SUBROUTINE

This subroutine is used for reading of all system records, Either
the select routine (described previously) or SYSLDR of IBSYS is used in
the reading.

Calling Sequences

TSX SELRCD, 4
TIX ip,0,N

Entry to SELRCD causes the record with identification ID to be found
on logical tape N, the record is read into core and control is given to the
specified entry point (ENTRY) of the record, If ID = O then the next system
record on logical tape N is read rather than searching for a record with
matching identification,

Restrictions

Logical tape N must be positioned within the file containing the
desired system record, and if a backwards search is necessary then the file
should end with a dummy system record which has an identification number of
(77777)g . System records within a file should have consecutive integers as
identification so that backward searching may be done correctly.

3.6-15

System Records

The form is as follows:

Word Contents

1 10CP RECNMX, 0,1 RECNMX = (4061)
2 BCI 1,NAME 8
3 I0CP RECIDN,O,1 RECIDN = (4060)8
4 PZE 1D
5 10CP SYSTRA, 0,1 SYSTRA = ('IOO)8
6 TRA ENTRY
7 10CP Al,0,N1

[N1 words}

10CP AN, 0, NN

[NN words]

IORT 0,0,0

This type of system record is used for all MAMOS records on the IBSYS
operating system tape(s).

ON-LINE PRINT SUBROUTINE

This subroutine is used to print on-line messages for the operators,

Calling sequence

TSX ONLINE, 4
TIX A,0,M
Return

Entry to ONLINE causes M BCD words to be printed on the on-line
printer, 12 words per line. The words are taken from storage locations
ALA+1,...,A+M-1,

ONLINE uses the IBSYS subroutine (PROUT to do the actual printing.

PAUSE SUBROUTINE

All pauses under MAMDS are done by giving the instruction TSX ,PAUSE,4,

. PAUSE goes to the IBSYS subroutine (PAUSE where the machine stop occurs.
It is very important for all machine stops during execution to occur in (PAUSE
so execution time will not be counted while the machine is halted.

3.6-16

FLOATING POINT TRAP ROUTINE

This routine has one entry (.FIRAP) and handles all floating point
traps under MAMOS, Cell 8 is initialized with a transfer to the floating
trap routine at the beginning of each job,

Overflow in any floating point operation is always considered fatal
and the job is terminated,

Underflow in the least significant half of the result of a floating
point operation is always set to zero and is not considered an error,

Underflow in the most significant half of the result of a floating
point operation is either treated as a fatal error, or set to zero and
ignored, The treatment of this condition depends on a switch which may be
set by the programmer,

If it is desired to ignore high order underflow then a TSX FTRAP,4
should be given,

If it is desired to treat high order underflow as a fatal error, then
a TSX NTRAP,4 should be given.

The routine at the beginning of the job is always set to treat high
order underflow as a fatal error.

When an overflow/underflow is determined to be fatal, a message is

printed describing the type of error, and the location of the floaring point
operation which caused the error, then the job is terminated.

TRACE ROUTINE

If the $SUBTRACE specification is used for a job, then the loader
links all subroutines it loads to the low core routine STRACE.

There is an on-off switch in STRACE, If the switch is ''on'' and
if $SUBTRACE was used then each call to a subroutine produces a line of
printed output which gives the name of the subroutine called and the loca-
tion from which it was called,

The switch in STRACE is set to '‘on'' at the beginning of each job,
but during execution the switch may be set ''on'' or ''off'' by means of
library subroutines,

A few of the subroutine calls generated by the MAD compiler for
arithmetic functions are not included in a subroutine trace print out,

3.6-17

LOGICAL TO ACTUAL UNIT SUBROUTINE

This subroutine gets the actual unit corresponding to a specified
logical unit,

Calling sequence

TSX GETNAM, &
TIX 0,0,N
Return

The actual unit which corresponds to logical unit N is converted to BCD
and returned in the logical accumulator, For example, if the actual unit
were A3 then the BCD word A30000 would be returned,

ERRONEQUS TRANSFER ROUT INE

Just before execution of a job is begun, all unused core is filled
with the instruction TSX SCATCH, 4,

An erroneous transfer to one of these cells causes a message to be
printed and the job to be terminated.

The octal equivalent of this transfer instruction is 007400403771,

END OF JOB ENTRIES

All jobs terminate by going to the low core entry called SYSTEM. Entry

to SYSTEM causes the current job to be terminated and the next job is then
processed,

Another entry to low core which terminates a job is called ERROR and
the only difference between ERROR and SYSTEM is that the ERROR entry causes
any requested dumps to be taken before transfering to SYSTEM.

TRANSLATOR ENTRY

All translators terminate by sending control to the low core entry
called TRANXT, Entry to TRANXT causes the monitor record to be read into
core and control goes to the monitor with an indication that a translator has
just completed its function.

3.7-1

3.7 THE UMAP ASSEMBLY PROGRAM UNDER MAMODS

UMAP under MAMDS is a modified version of UMAP (University of Michigan

Assembly Program) developed by the University of Michigan, UMAP and FAP (under
the FORTRAN II Monitor) are very similar and many programs written for UMAP
would also be compatible with FAP,

Major modifications and additions to UMAP (as received from the Univer-
sity of Michigan) to produce the UMAP under MAMOS are as follows:

1) Blocked input capability so UMAP accepts blocked input of the type
produced by the FAP assembler under FORTRAN II Monitor,

2) All 7090/7094 machine instructions, except those noted at the end of
the section, were made available,

3) The 'EVEN' pseudo-operation was put into UMAP so the 7094 double preci-
gsion instructions could be used.

4) Several pseudo-operations were put into UMAP to provide more compatibil=
ity between FAP and UMAP,

The programmer already familar with FAP may turn to the end of the
saction where differences between FAP and UMAP are given,

Most of the following description of UMAP under MAMOS is taken from
the write~up of the University of Michigan Executive System,

3.7-2

INTRODUCTION

UMAP is an assembler, as opposed to a compiler such as 'MAD', The exact
meanings of such terms are difficult to state, but basically the difference between
a compiler and an assembler is in the 'level' of the source language--the source
language of an assembler is closely related to the computer command structure,
whereas the source language of a compiler resembles the technical notation in which
problems are stated by human beings. Inherent in this difference is the fact that
while an assembly language provides a programmer with a maximum degree of flexi~
bility in constructing a program, it also requires a rather complete understand-
ing of the computer itself and its manner of operation,

A 7090/7094 machine-language program is a sequence of 36-bit binary
numbers which represent both the machine instructions necessary to perform the
desired task and the data to be operated upon. Working in such a language
entails rather obvious hardships upon a programmer, For this reason, symbolic
languages are usually used to communicate with a computer. A symbolic-language
program is, then, merely a representation of a machine-language program in a form
more convenient for human beings. Use of a symbolic language, however, requires
that a translation from this language to machine~language be performed before a
program may be run on a computer--this is the process of assembling or compiling.

Thus, UMAP accepts as input a program written in a specified symbolic
language and produces the equivalent machine-language program as its output.
The term 'UMAP' is used both as the name of the symbolic-language and as the name
of the program which tramslates this symbolic-language into machine-language.

The purpose of this section is to describe the symbolic-~language
which the UMAP assembler will accept as input., It is assumed that the reader
is familiar with such concepts as 'relocatable' program, 'PROGRAM COMMON' or
'ERASABLE' storage, and 'program card' which are not described here as far as
their function in a program is concerned, This section describes only the manner
for obtaining such quantities in a UMAP program.

PROCESSING BY UMAP

UMAP assumes that a program is relocatable and a main program. Either
of these assumptions may be modified by pseudo-ops which are available in the
language. Also, UMAP generates automatically a program card for the program and
a transfer vector. These are needed for loading the program and linking it to
other programs loaded with it. This generation may be stopped by the occur?ence
of any one of several pseudo-ops, The language comsists of a set of operation codes
plus rules on how to form the various entities needed. The operation codes may be
divided into two main types--pseudo-ops and machine instructions, Pseudo-ops are
operation codes which do not correspond to actual machine instructions, These'may
cause the generation of machine-words or may affect the processing of Fhe remélnder
of the program. Pseudo-ops accepted by UMAP are described later in this segtlon.
Machine instructions are simply symbolic names for the actual operatiomns built
into the 7090/70%94,

3.7-3

In translating a program, UMAP processes the source deck twice=--PASS
1 and PASS 2, 1In PASS 1, all operation codes are analyzed and deciphered,
The machine version of the operation code is preserved for PASS 2 processing.
Almost all symbols are found and defined on PASS 1, See the sub-sections on
symbol definition and PASS 2 symbol dfinition., The information for the pro=-
gram card (ERASABLE and PROGRAM COMMON storage, program length, number and name
of all subroutines called, and the names and locations of all entry points) is
gathered and the transfer vector is formed, Machine instructions and certain
pseudo-ops are scanned completely on PASS 1 to find all literals, all occurences
of the /TV/ qualifier, and, in the case of some pseudo-ops, to define the
location field symbol, Those pseudo~ops which require processing on PASS 1
are examined and the appropriate action taken , Finally, each card is placed on

an intermediate tape along with its deciphered operation code, flags pertaining
to PASS 1 errors, and information obtained during PASS 1 processing,

Between passes, the program card is generated and the transfer vector
is constructed., The symbols defined on PASS 1 are re-evaluated in terms of the
length of program common and the transfer vector. The program card and transfer
vector are printed to initiate the printed listing of the program,

In PASS 2 the program is read from the intermediate tape and fimal pro-
cessing is performed., Each card is analyzed and appropriate action taken, If
the card produces machine words, these are printed (in the octal number system)
on the listing, along with the original card. Also, if execution of the program
is expected, these bipary words are placed on a tape to await the execution phase.
If an object deck is requested, these bimary words are placed on an output
tape to be punched as binary cards. Some symbols are defined on PASS 2 if necessary.
See the PASS 2 symbol definition sub-section., All symbol definitions are checked.
If the PASS 1 and PASS 2 definitions don't compare an error flag (P flag) is pro-
duced on the listing. Whenever an error is found in processing, an appropriate
error flag is printed in the listing along with the card. See the sub=-section on
error flags,

After PASS 2 processing is completed, certain additions are made to the
listing. Multiply-defined and undefined symbols are listed, reference tables
for all defined symbols and for all literals are printed, and an assembly statistics
table is printed.

SYMBOLS

A symbol is a string of one to six non~blank characters, at least ome of
which is non-numeric, and none of which is among the following set of 'break’
characters=-

+ PLUS - MINUS
%* ASTERISK / SLASH
, COMMA = EQUAL
(LEFT PARENTHESIS) RIGHT PARENTHESIS

3.7-4

SYMBOLS (Continued)

Symbols are used as names for memory locations and program parameters, Due
to the right justification of symbols (with leading zeroes) during UMAP pro-
cessing, symbols may not start with a zero. For example, the following are
legal symbols-~

A
SYMBOL
12AB3
Al

SYMBOL DEFINITION

Symbols are normally defined on PASS 1 of UMAP, but, in certain con-
ditions, definition may occur on PASS 2, By 'definition' of a symbol is meant
an assignment of a numerical value and a mode to the symbol, There are three
possible modes for symbols--erasable, relocatable, and absolute. An absolute
symbol is one which refers to a fixed number; one which is invariant to where,
in memory, the program is located., An erasable symbol is one which is assigned
to erasable storage through use of the 'ERAST or TERLIST' pseudo-ops. Relocat~
able symbols are symbols whose values are dependent upon where, in memory, the
program is located, These symbols always refer to storage locations in relocat-
able programs, In an absolute assembly, all symbols are absolute, Symbols are
defined after they have occurred in the location field of a machine instruction,
in the location field of certain pseudo-~ops (e, g., "CALL' and 'VFD'), after
the /TV/ qualifier, as the name of a subroutine in a 'CALL' or 'CALLIO', or in
the variable field of certain pseudo-ops (e. g., 'ZERO', 'ASSIGN', 'EXTERN', and
'"ERLIST')., A symbol is normally defined once only in a given program.

PASS 2 SYMBOL DEFINITION

A certain limited amount of PASS 2 symbol definition may occur in UMAP
in connection with the 'EQU', 'BOOL', 'SET', and 'SYN' pseudo-ops. Normally
these pseudo-ops define symbols in their location fields as the equivalence of
their variable field expressions on PASS 1, If, however, the variable field is
undefined on PASS 1, then the location field symbol remains undefined until the
card is encountered again on PASS 2, At this time, if the variable field is
now defined, the location field symbol is defined, Note that this makes possible
the situation in which a symbol is undefined for part of the assembly and defined
for the rest of it. 1In connection with this, it should be noted that literals
are undefined on PASS 1, so that if one writes

A EQU =15

A is undefined until this 'EQU' card is encountered on PASS 2,

ELEMENTS AND TERMS

An element is either a single integer less than 235 or a single
symbol, either possibly preceded by one or more qualifiers, An absolute,
relocatable, or erasable symbol is regarded, respectively, as an absolute,
relocatable, or erasable element, An '¥*' appearing &8s an element (not as an
operator) has the msaning 'present location', In a relocatable program, an
'*! a3 an element is a relocatable element, In an absolute assembly, it is
an absolute element, Thus, the statement

ALPHA TRA *45
is the same as

ALPHA TRA ALPHA+5
An integer is always an absolute element,

A term is a string composed of elements and the operators

* for Multiplication and

/ for Division,
A term may consist of a single element, two elements separated by '*' or '/',
three elements separated by two operators, etc. A term must begin with an
element and end with an element, Two operators may not occur together, nor
may two terms occur together. For example, the following are all terms,

ABC

A/3%C

4*BCK/ 13K/A13*K1XY

ARITHMETIC EXPRESSIONS

An arithmetic expression is a string composed of terms separated by
the operators

+ for Addition and
= for Subtraction,

An expression may consist of a single term, of two terms separated by '+' or
'=?' of three terms separated by two operators, etc. Two operators may not
occur together, nor may two terms occur together, but an expression may begin
with an operator, No parenthesization is allowed in expressions, Examples of

expressions are

31

OHBOY
X1%2=1
-29
AB1-AB2+45

3.7-6

EVALUATION OF ARITHMETIC EXPRESSIONS

An arithmetic expression is evaluated as follows, First, each
element is replaced by its numerical value, Second, each term is evaluated
by performing the indicated multiplications and divisions from left to right

3

in t@e order in which they occur, In division, the integral part of the
quotient is retained, and the remainder is discarded., For example, the value

of the term '5/2*%2' is 4, 1In the evaluation of an expression (or any part of
it), division by zero is regarded as an error., Third, the terms are combined
from left to right in the order in which they occur., If the result is negative,
ifsis replaced by its two's complement., Finally, the result is reduced MODULO
2'“(except in the variable field of a 'VFD' pseudo-op). All evaluations are
done with full-word arithmetic (i. e., 36-bit signed arithmetic), only the final
result is truncated to the proper length, An expression is undefined if any
part of it is undefined, or if any error occurs in evaluating it. An undefined
expression has the value zero.

INTEGER CONVERSION MODE

At the beginning of an assembly, UMAP assumes that all integers en-
countered are in decimal mode. This conversion mode may be altered for large
segments of the program (a change in the global conversion mode), or for a
single card or part of a card (a change in the local conversion mode). Local
mode changes may be made through usage of a qualifier or by punching an '8'
or '0' (zero) in column 7. (An '8' in columm 7 is equivalent to a /K/ before
the location field, while a '0' in columm 7 is equivalent to a /D/ before the
location field). Local changes are reset before the next card is processed.
The global mode is always reset between cards to whatever it was before the
last card. The global mode may be modified through usage of the 'SAK',

' OCTMOD', or 'DECMOD' pseudo-ops. When octal mode is in effect, the occurrence
of a decimal integer will cause an expression to be treated as an undefined
expression., The integer conversion mode in effect applies to integers in all
fields of a card.

BOOLEAN EXPRESSIONS

An expression is Boolean if and only if

(1) It forms the variable field of a 'BOOL' pseudo-op, or
(2) It forms a Boolean subfield of a 'VFD' pseudo-op variable field, or
(3) It follows the Boolean qualifier (/B/), or

(4) It forms the variable field of a Type=-D machine instruction. The
Type-D machine instructions are 'SIL', ‘'SIR', 'RIL', 'RIR', 'IIL',
'IIR', 'INT', 'RNT', 'LFT', and 'RFI', and the extended sense
indicator instructions 'SIB', 'RIB', 'IIB', 'BNT', and 'BFT'. Note
that for the Type-D instructions Boolean mode is automatically set
for the variable field evaluation. Boolean expressions and symbols
are further defined as left-Boolean or right=Booolean (See the 'BOOL’
pseudo-op and the '/L/' qualifier).

3.7-7
In Boolean mode, all integers are assumed to be octal. Further,
the operations '+', '~', '*', and '/' have different meanings in Boolean mode:
+ Inclusive or
- Exclusive or
* And
/ One's complement

The bit relations which hold for these Boolean operations are as follows,

040 = O 0-0 = 0 0*0 = 0 /O =1
0+1 = 1 0-1 =1 0*1 = 0 /1=20
140 = 1 1-0 = 1 10 =0

141 = 1 1-1 =0 1*1 = 1

Although '/' is usually an operation involving only one operand (a unary
operator), by convention 'A/B' is taken to mean 'A*/B', The table for '/'
as a binary operator is as follows.

0/0 = 0
0/1 =20
1/0 = 1
1/1 =0

Note that due to the fact that the '/' may occur either as a unary operator

or a binary operator while the '/L/' qualifier is legal in Boolean expressions,
there is one special case which is indeterminate which may arise in Boolean
expressions, This occurs when 'L' is defined as a symbol and occurs in a
Boolean expression preceded by a unary '/' and followed by a binary '/' (e. g.,
'A+/L/B'). This difficulty is easily circumvented by not using 'L' as a
symbol or by writing the binary '/' as a unary '/' (e. g., 'A+/L*/B'). When-
ever the indeterminate case arises, UMAP assumes the '/L/' portion of the
expression represents the left~Boolean qualifier. Other conventions in Boolean
fields are as follows.

+A = A+ = A

A = A= = A

Al = A

+ =0

- = 0

* =0

/] = 7777777777778

The above tables and conventions define the four Boolean operations for one-
bit quantities. The operations are extended to 36~bit quantities by the rule
that each bit~position is treated independently,

307-8

EVALUATION OF BOOLEAN EXPRESSIONS

A Boolean expression is evaluateg as follows. First, all integers are
taken as octal and must be less than 23°, Second, the operations ‘*' and '/
iFe caiaieédouilfrom left to right, all quantities being regarded as having 36
its, ird, the operations '+' and '~' are carri i
quantities being regarded as having 36 bits. T;e iggﬁifmgzzmléeiztgoazégh:;-all
served, The left-most 18 bits are dropped except in the variable field 02 a
'VFD' pseudo~op. Any use of a relocatable or an erasable symbol in a Boolean
expression constitutes a Boolean error ('B' flag,) Since only the '/L/'
qualifier is legal in a Boolean expression, once Boolean mode is entered im a
subfield it cannot be turned off. A Boolean expression is a left-Boolean ex-
pression if a '/L/' occurs anywhere in it, or if a left-Boolean symbol occurs

anywhere in it. Otherwise, a Boolean expression is a right-Boolean expression.

MODES OF EXPRESSIONS

In addition to evaluating expressions, UMAP must also decide for each
expression whether its mode is absolute, relocatable, or erasable. This is
necessary in order to assign the proper relocation indicator bits for the infor=-
mation of the loader, The rule by which this decision is made is unavoidably
complex, but fortunately expressions normally assume rather simple structures.

Before describing the general rule for determining the mode of an
expression, a list of the more commonly used simple rules and the commonly made
errors will be given, These should give some insight into the meaning of the
general rule., The following simple rules may be stated.

(1) A relocatable element is a relocatable expression.

(2) A relocatable element plus or minus an absolute element is a relocatable
expression.

(3) An absolute element is an absolute expression,

(4) Any expression containing only absolute elements is an absolute
expression, (Thus, a Boolean expression has absolute mode.)

(5) The difference of two relocatable elements is an absolute expression.
(6) An erasable element is an erasable expression,

(7) An erasable element plus or minus an absolute element is an erasable
expression,

(8) The difference of two erasable elements is an absolute expression,

The following errors are quite commonly made in writing UMAP expressions, All
of these are relocation errors ('R' FLAG).

(1) The negative of a relocatable element.

(2) The negative of an erasable element.

3.7-9

(3) An absolute element minus a relocatable element.

(4) An absolute element minus an erasable element.

(5) The sum of two relocatable elements,

(6) The sum of two erasable elements.

(7) The sum of a relocatable element and an erasable element.

(8) The product of two relocatable elements,

(9) The product of two erasable elements,

(10) The product of a relocatable element and an erasable element.

A precise rule will now be given which applies to all expressionms,
however complicated, First, discard any term which contains only absolute
el=ments, Then examine each remaining term of the expression. If any term
contains more than one relocatable element, more than one erasable element,
or one relocatable element and one erasable element, then the expression is
a relocation error. Also, if in any term the character '/' follows the
occurrence of a relocatable element or of an erasable element, then the ex-
pression is a relocation error., If the expression passes these tests, then
do the following, Replace each relocatable element by an 'R', each erasable
element by an 'E', and each absolute element by its value. This yields an
expression in R and E with constant coefficients. Evaluate the expression as
in normal algebra., Then, if the result is R, the expression is relocatable,.
If the result is E, the expression is erasable., 1If the result is numeric, the
expression is absolute. Any other result indicates a relocation error.

Let Rl and R2 be relocatable symbols and N be an absolute symbol,
Then consider the expression

N*R1-R2+3*N-2

Following the above procedure, eliminate all absolute terms, leaving
N*R1-R2

These terms contain no error., Then replace with R and get
N*R~-R

If N has the value 1, this is an absolute expression, since 1*#R-R = 0, If
N has the value 2, this is a relocatable expression, since 2*R-R = R. For
any other value of N, this is a relocation error.

3.7-10

The expressions
*%

and
*wk

Are often used to indicate an address or a decrement computed by the program
at execution time, Each of these is an absolute expression whose value is zero.

In an absolute assembly, all symbols, and hence all expressions, are
absolute, A relocation error is impossible in absolute assemblies,

UMAP CARD FORMAT

The following symbolic card format is used for UMAP instructions~=

CARD COLUMNS FIELD NAME TERMINATION
1-6 Location Column 6
7 Print, Integer Columm 7

Mode Control

8-14 Operation Blank
*
'
(
16-72 Variable Blank
Column 72
73-80 Card ID Column 80

If the operation field is terminated by a blank, then the variable field
starts in the first non-blank column thereafter but before Column 17. The
same is true if the operation field is terminated by an '*', If the opera-
tion field is terminated by a comma, then the variable field starts in the
column immediately following the comma, Finally, if the operation field
terminates with a left parenthesis, then the variable field begins with that
left parenthesis. The operation field always begins in columm 8, Hence, in
light of the above conventioms, it is possible for the variable field to begin
as early as column 8 or columm 9.

LOCATION FIELD (Columms 1 To 6).

When UMAP translates a program into the binary equivalent program,
it assumes that storage locations are to be assigned consecutively starting
at zero., Thus, the programmer need not worry about the actual assignment to
storage of his program, However, there are many instances in which the pro-
gram must refer to some part of itself - e. g., a transfer to some new
instruction which is not in sequence, or a reference to some storage location
reserved by the program. UMAP makes this reference esasy by allowing use of
'symbolic' references within the program, If a particular instruction is to
be referenced from some other part of the program, a symbol may be placed in
its location field, and all references to the instruction may be made by means
of this symbol.

3.7-1

For example, in the instruction
ALP STO BETA

'YALP' is the location field symbol, To reference this instruction elsewhere,
the symbol 'ALP' may be used as follows:

TRA ALP

The symbol 'ALP' is automatically defined, by its occurrence in a
location field, as the equivalent of some machine location, Therefore, in the
translation process, whenever 'ALP' occurs in an expression it is replaced by
the numerical value which is the equivalent machine location. UMAP keeps a
list (The 'Symbol Table') of all symbols and their values, so that a programmer
may make all references in terms of symbols and is freed from the task of
machine location assignment,

The location field of a machine instruction should be blank if the
instruction is never referred to. The location fields of the various pseudo-
ops will sometimes require symbols. This depends upon the particular pseudo-
op and its function,

If column 1 of the card contains an '*', then the card is assumed to
be a comment card, This card is printed out in the assembly listing but does
not otherwise affect the program.

If an integer occurs in the location field, then the value of the
integer (converted according to the prevailing integer conversion mode) is
used to reset the storage location counter (see the 'ORG' pseudo-op) before
the card is processed, This is normally used in override assemblies only, and
usually causes phase errors if UMAP is producing the program card for the
program,

A final convention which applies to location fields is that if a
',' or '-' occurs in one, then the field is treated as all blank, This allows
the programmer to punch a count in the location fields of cards near ome
bearing a location field symbol. This may be used to indicate that references

are made to the symbol plus or minus a constant. Thus, one might punch

ALPHA CLA =7
+1 STO PAC
+2 ADD Z1Pp

Where elsewhere in the program there occurs

TRA ALPHA+2

3.7-12

PRINT AND INTEGER MODE CONTROL _(Column 7)

Ordinarily, column 7 i8 blank on a UMAP card, This columm may
however be used to control the mode of integer conversion on the card or
to control the print mode of the card, UMAP recognizes the follow)
characters in column 7 -- '0?, '8', 'P', and 'N', Any other character in
column 7 is ignored i. e., is treated as a blank., The interpretations of the
above four characters (in columm 7 only) is as follows,

ing four

1) '0' in colummn 7 -- This indicates that all integers on the card are to
be treated as decimal integers. This is equivalent to a /D/ before the
card is analyzed and may be reset by qualifiers appearing on the card.
(See the sub-section on integer conversion mode.)

2) '8' in column 7 -- This indicates that all integers on the card are to
be treated as octal integers. This is equivalent to a /K/ before the
card is analyzed and may be reset by qualifiers appearing on the card,
(See the sub-section on integer conversion mode.)

3) 'P' in column 7 -~ This indicates that the card is to be printed in
the assembly listing, 'P' in columm 7 overrides for one statement the
effect of such pseudo-operations as 'NOLIST', 'PCC', 'PMC', and 'BRIEF'.
Thus, individual cards bearing some particular importance may be printed
in full, while the remainder of the assembly is printed more briefly.
The effect of a 'P' in column 7 carries over to a following 'ETC' card
where such is legal and does occur,

4) 'N' in column 7 -~ This indicates that the card is not to be printed in
the assembly listing. This overrides for one statement any other print
control. However, if there is an error on the card (fatal or non-fatal),
it will be printed. Erroneous card printing cannot be overridden. The
effect of 'N' in column 7 carries over to any following 'EIC' cards where
such are legal and do exist,

OPERATION FIELD (Columns 8 to 14)

Machine instructions have a unique operation code which is recognized
by UMAP, Whereas the symbols appearing in the location field are arbitrary, the
operation codes are not, They must be those specified in this section. The sub-
section on operation codes gives all the codes which UMAP will recognize in the
operation field, (Note, however, that through use of the 'OPSYN' pseudo-op and
MACRD definitions, the programmer may introduce new operation codes,)

Certain operation codes may use indirect addressing. The convention in UMAP
is to indicate that indirect addressing is desired by appending an '*' to the end
of the operation code, If an operation code has an '*' appended, but cannot be
indirectly addressed, an 'I' flag results,.

If an operation code occurs which 18 not recognized by UMAP, or if
an operation code is not terminated properly, UMAP ignores the remainder of
the card. The card is treated as a '"BSS 1' and an '0' flag is given. (See,
however, the description of the 'NONOP' pseudo-op.)

An operation field may be left blank if desired. UMAP treats a
blank operation field the same as a 'PZE'.

3.7-33

VARIABLE FIELD (Column 16 to 72)

The variable field has a variety of uses depending upon the operation
code involved, For certain pseudo-ops the variable field is a list of symbols
(e. g., "ASSIGN', 'EXTERN'), while for others it is a list of expressions (e.g.,
'CALL', 'READ'), and for still others it is a list of data items (e. g., "DEC',
'oCT', 'VFD'). The form and meaning of the variable field for pseudo-ops is
described for each pseudo-op later in this section,

For machine instructions, the variable field is usually divided into
three subfields; The address subfield, The tag subfield, and The decrement sub~

field. In the 7090/7094 a word is 36 bits, and the four parts of this word
are as follows,

PREFIX BITS 1-3
DECREMENT BITS 4-18
TAG BITS 19-21

ADDRESS BITS 22-36

For certain machine instructions, an address, decrement, and tag are required,
while for others only an address is required (with a tag optional), and for

still others no variable field should be given at all., The programmer must
know, for each machine instruction, what information is required.

The various subfields of the variable field may be given in symbolic
form, with UMAP translating from the symbolic to the binary form. The address,
tag, and decrement subfields may all be given as expressions,

The variable field starts, on a card, after the termination of the
operation field. 1In all cases it must begin no later than columm 16. A blank
variable field is equivalent to a zero variable field. The same applies to any
subfield of the variable field. The variable field is terminated by the first
blank after the beginning of the variable field., Any comments punched on a
card after the variable field has terminated are printed with the card but do
not affect the processing of the card. 1If column 72 is encountered, the variable
field is forced to end. Columns 73 through 80 are never processed by UMAP,

The three subfields are written in the order 'Address Subfield', 'Tag
Subfield', 'Decrement Subfield' on a card, with the subfields separated by
commas, (Note that this order is the opposite of that in which these fields
occur in the resultant binary word.) It is permissible to leave blank any of
these subfields which are not needed on a card, but only from right to lefrt,
since the first blank terminates the card. Thus, the following forms may
occur in the variable field,

0P ADD
OP ,TAG
oP , »DEC

0P ADD,TAG
oP ADD, ,DEC
oP ,TAG, DEC
OP ADD,TAG,DEC

3.7-14

Note that commas (or adjacent commas) may be used to delete a field, Thus,
oP » »DEC
Is the same as

OP 0,,DEC
Or

oP 0,0,DEC

The address subfield usually specifies a machine location, in which
case it must be relocatable if the assembly is relocatable. For some machine
instructions, however, the address requires an absolute value which is not a

machine location (e. g., the shift instructions.) Thus, the following sequence
might occur,

ZAC

LDQ A+5
LGL 6

SLW BIBI
SUB BLANK
TZE K3

The tag subfield is used to refer to index registers. Usually the
actual integer is given as the tag subfield, but an absolute expression may
be given if desired. Thus, an example sequence of coding is:

AXT 10,2
CLA A+10,2
STO ARG
ISX SUB,4
PAR ARG

STO B+10,2

A tag subfield is computed modulo 8., If more than 3 bits are generated by
the instruction for the tag field, a 'T' flag results,

The decrement subfield most often is used with a set of instructions
which deal with the index registers (e. g., 'TXL', 'TIX', 'TNX'). In such
cases the decrement contains a number by which an index register is to be
changed or against which it is to be compared, Usually such a number is
absolute, but in some cases a relocatable decrement may be desired; Again,
the decrement may be an expression, An example sequence is:

LXA N,4

CLA Al,4

FAD C2A+10,4
XcA

FMP I-J+KM1,4
STO Al,4

TIX *-5,4,2

3.7-15

CARD 1D FIELD (Columms 73 to 80)

Columns 73 to 80 of a card are always ignored by UMAP, and hence
these columns may have any desired BCD punching in them. For the prograsmer's
convenience (and safety) these columns may be used to provide a sequenced
identification for the UMAP deck. Any punching in columms 73 to 80 is printed
in the assembly listing, along with the card, and thus aids in relating segments
of the assembly listing and the source deck,

QUALTIFIERS

'Qualifiers' are entities which allow local modifications to be made
in the scanning and interpreting of variable field expressions. The effect of
most qualifiers is limited to the duration of the card being scanned, and to
at least the next element in the variable field. The form of a qualifier is
'/5/', where S 1s a symbol designating the desired qualifier. UMAP recognizes
qualifiers only if the initial slash (/) initiates the variable field or
immediately follows a break character, A qualifier appearing in any other
context will result in an error during the scanning of the expression. UMAP
recognizes fourteen qualifiers, seven of which are associated with MACROS and
will not be discussed here (See the MACRO sub~section,) The seven remaining
qualifiers are as follows,

/B/ ~ BOOLEAN QUALIFIER
The remainder of the present subfield is evaluated in Boolean mode,
Boolean mode is turned off at the end of a subfield. For proper
functioning, a '/B/' should be the first thing in a subfield.

/D/ - DECIMAL QUALIFIER

All integers remaining in the variable field are evaluated in decimal
mode,

/H/ ~ HOLLERITH QUALIFIER
The BCD representation of the following symbol (right-justified with
leading zeroes) 1s used in the evaluation of the expression - as opposed
to the 'defined value' of the symbol,

/K/ -~ OCTAL QUALIFIER
All integers remaining in the variable field are evaluated in octal mode.
This qualifier may also be written as /9/.

/L/ - LEFT-BOOLEAN QUALIFIER
Appearance of '/L/' anywhere in a Boolean expression causes the ex-
pression to be defined as a left-Boolean expression. '/L/' is a
legal qualifier only if it occurs in a Boolean expression,

/R/ = RELOCATION QUALIFIER
Causes the following integer to be computed modulo 215 and treated as

a relocatable address, This qualifier may be used in relocatable
assemblies only.

3.7-16

~

QUALIFIERS (Continued)

/TV/ =~ TRANSFER VECTOR QUALIFIER
Causes the following symbol to be defined by entering it into the
transfer vector, This qualifier is legal only if UMAP is generating
the program card.

Qualifiers may never occur in the location or operation subfields of a card.
If an undefined or illegal qualifier occurs in a subfield, the subfield is
treated as undefined and a 'Q' flag is given,

LITERALS

The constant~generating pseudo-ops (Such as 'OCT', 'DEC', 'VFD', 'BCI')
are available for the generation of tables of constants, but are often incon-
venient for the inclusion of single constants, To facilitate the usage of in-
dividual constants, an entity, known as a 'Literal', is recognized by UMAP,

In contrast to other types of subfields, a literal subfield contains
the actual data to be operated upon., Thus, references to a particular con-
stant may be done by simply giving the constant itself plus a key character
which indicates that the constant is a literal, The appearance of a literal
directs UMAP to translate it as would be done if it occurred in a constant-
generating pseudo-op, store the resultant constant at the end of the program
(along with the other literals), and replace the literal subfield with the
location in which the literal is stored,

A literal is formed by preceding the desired constant with an equal
sign (=), possibly followed by a second character., Three literals are rec-
ognized by UMAP, These are:

=H - HOLLERITH LITERAL

The next six characters in the variable field (including break char-
acters) after the 'H' are taken as a BCD constant, For example,

CAS =HABC123
=HABC123 converts into a constant whose octal equivalent is
212223010203,

=K =~ OCTAL LITERAL

The number following the 'K' is converted as an octal integer. This
number may have one of two forms == 'N' or 'NKE', where N is an octal
integer of 12 or fewer digits, with or without a sign, and E is a pre-
defined, absolute expression, Let M = value of E., Then, N is shifted
M octal places to the left, if M is greater than zero, or M octal
places to the right, if M is negative. For example,

CAL =K71326

LDQ =K71K4
=K71K4 Generates the constant 000000710000. The octal literal may
also be written as =0,

= - DECIMAL LITERAL
The . number following the equal sign (=) is converted as a decimal
number. The conventions concerning 'B' and 'E', floating point and
integer mode, apply here as on the 'DEC' card, For example,
FMP =0, 181
=0.1E1 Generates the constant whose octal equivalence is 201400000000,

3.7-17

LITERALS (Continued)

Literals may occur in almost any subfield that requires a machine
location, Thus, literals may occur in the address and decrement subfields
of machine instructions (except type D instructions), in the variable fields
of 'CALL' or 'CALLIO' type statements, on 'EIC' cards when they are used to
extend "CALL' or 'CALLIO' type statements and on 'RELIST', 'EQU', 'SYN', and
YSET' cards, Literals cannot occur if Boolean mode is in force, and they
cannot occur in a 'VFD'. Whenever a literal occurs, it must be the entire
subfield. Literals cannot form part of an expression, Other subfields may
follow a literal subfield, if desired.

The constants generated by literals are converted to binary in PASS
1 and saved in a table. A particular binary literal occurs only once in this
table, no matter how many times it occurs symbolicly in the program, Thus,
the literals =HOOOOOA, =K21, and =17 would generate the same binary literal
and only one entry to the literal table. Between passes, this binary table
is sorted according to 36=-bit logical comparisons and assigned to successively
higher locations following the highest location used by the program itself.
An example sequence using a literal is:

ZAC

LDQ A4S
LGL 6

SLW BIB1
SUB =H00000
TZE K3

This sequence could also be written using
SUB =K60

Another sequence using literals is,

AXT 60,1

ALP CLA RAD+60, 1
FDP =2.0
FMP =3.14159
STO P2RAD+60, 1
TIX ALP,1,1

In a relocatable program, a literal is a relocatable expression, while
in an absolute program, a literal is an absolute expression. If a literal occurs
illegally in a subfield, or if a literal is improperly formed, the subfield is
treated as an undefined subfield and a 'L' flag is given. .

Usually, the literals are printed at the end of an assembly following
the 'END' card and any 'RMI' assembly sequences. This may be changed by use
or the '"PUNLIT' pseudo-op or by use of the 'BRIEF' pseudo-op, which controls
the printing of the program literals. Neither of these pseudo-ops affects the

storage assigmment of the literals,

3.7-18

CALLING SEQUENCES IN UMAP

A 'calling sequence' is a set of machine words used to call into
action a subroutine and to specify the parameters needed by the subroutine
for its execution. Usually a calling sequence begins with a 'ISX' instructiom
transferring to the subroutine (possibly through a transfer vector) followed
by those words necessary for specifying the parameters, If the subroutine is
'external' to the calling program, then the transfer to it must pass through
a transfer vector. This requirement results from the method of loading of
relocatable subroutines., All subroutines in the MAMOS library must be entered
via a 'TSX' on index register four. Subroutines written by the programmer may
use any technique desired to establish contact between a calling program and
a called program, but external subroutines should be entered through a transfer
vector., Internal subroutines may use any method of entry. No transfer vector
is used for these. '

The structure of a calling sequence obviously depends upon the sub=-
routine called, A subroutine may require any desired structure. Subroutines
written by a programmer may thus have any arbitrary calling sequence, Sub-
routines in the MAMOS system fall into two classes with respect to calling
sequences =-- I/0 (Input/Cutput) type calling sequence and non-I/0 type calling
sequence, To provide for these two types of calling sequences, two pseudo-ops
are provided in UMAP -~ 'CALL' and 'CALLIO'., 'CALL' is used to set up & non-
I1/0 type calling sequence. 'CALL' and 'CALLIO' provide two functions, First,
they enter a subroutine name into the transfer vector, thus defining this sym-
bol, This occurs only if UMAP is generating the program card, and in this
case, the symbol in the first subfield of the variable field is entered into
the transfer vector, 1If UMAP is not generating the transfer vector, then
'CALL' and 'CALLIO' may be used, but the program itself must define the sub~
routine name, Second, the remainder of the variable field of the 'CALL' or
'CALLIO' contains the calling sequence. Two types of parameters may occur here,
the 'SINGLE' parameter or the 'BLOCK' parameter, The single parameter is set
apart by commas, while the notation ',...,' is used to indicate block parameters,
Thus,

CALLIO .PRINT,F,A,B,...,C,D,0
Is an I/0 call for the ',PRINT' subroutine, with a format named 'F', to read
*A', 'B' to 'C' inclusive, and 'D'. (I/0 calling sequences always end with
a 'zero parameter', i. e,, a word with zero in its address, tag, and de-

crement,) This calling sequence assembles the same as

CALLIO .PRINT

FMT F
10P A
I0P B, ,C
I0P D

ENDIO

3.7-19

Where 'FMI', 'IOP', and 'ENDIO' are extended machine instructions used
for I/0 type calls. An example of a non-I/0 type call is,

CALL ZERO,X,Y,...,Y+20,Z

Which is the same as

CALL ZERO

PAR X
BLK Y,,Y+20
PAR z

Where 'PAR' and 'BLK' are extended machine instructions, 'PAR' is used for
single parameters and 'BLK' for block designations. The first instruction of
the last calling sequence could also be written as follows,

TSX /TV/ZERD, &

A number of special pseudo-ops are built into UMAP to provide ease in
calling certain subroutines available in the system library,

PSEUDO-0P ASSEMBLES AS
COMMNT CALLIO ,CMMNT
LOOK CALLIO ,LOOK
PAUSE CALL . PAUSE
PRINT CALLIO ,PRINT
PUNCH CALLIO .PUNCH
READ CALLIO .READ
RESTOR CALLIO ,RSTOR
SAVE CALLIO ,SAVE
SETTO CALLIO ,SET
TAPERD CALLIO .TAPRD
TAPEWR CALLIO .TAPWR

The variable fields for all of these pseudo-ops are the same as for 'CALLIO',

except that the first element of the variable field is not the name of a sub-

routine since this is specified by the particular pseudo-op. Thus, the statement,
READ =H80C1* ,CARD,...,CARD+79,0

Is equivalent to the statement

CALLIO .READ,=H80C1* ,CARD,...,CARD+79,0

And could also be written

READ
FMT =HBOC1*
I0P CARD, ,CARD+79

ENDIO

3.7-20

PROGRAM CARDS

Normally, UMAP produces atuomatically a program card and a transfer
vector for a program., In order that this automatic feature function correctly,
the following rules must be observed,

(1) All program common storage must be defined by use of the 'PCLIST'
and '"PGMCOM' pseudo-ops.

(2) All erasable storage must be defined by use of the 'ERLIST' and
'ERAS' pseudo-ops.

(3) All external subroutines used by the program must be called by use
of the 'CALL' or 'CALLIO' type pseudo-ops or by use of the /TV/
qualifier. Internal subroutines cannot be called by use of the
'"CALL' or 'CALLIO' pseudo-ops or by use of the /TV/, This will
result in multiply-defined symbols.

(4) 1If the program being assembled is a subroutine, then all the entry
points must be named in the variable fields of one or more 'ENTRY'
pseudo-ops.

Violation of any of these rules can result in programs which will not load
for execution or which load and/or execute incorrectly,

There are those cases in which an automatic program card is not
desired, e. g., If a non-standard program card is needed or if the assembly is
a symbolic override assembly, It is possible to delete the automatic program
card., The occurrence in the program of any one of the following pseudo-ops will
do so, 'ABS', 'ENDPGM', 'FULL', 'PGM', 'REL'. If any one of these pseudo-ops
occurs, then the program itself is fully responsible for generating both the
program card (if one is desired) and the transfer vector (if one is needed).
Further, the /TV/ qualifier and several pseudo-ops are not recognized by UMAP
if the program card is off, and other pseudo-ops (e. g., "CALL' and 'CALLIO')
are processed somewhat differently. The pseudo-ops so affected are noted
later,

Pseudo-ops are available for facilitating the manual production of
program cards. Two pseudo-ops especially, 'PGM' and 'ENDPGM', are necessary
for this purpose, The 'PGM' informs UMAP that the cards which follow are to
be assembled and punched as a program card, This is necessary since program
cards have a different format than normal relocatable binary cards. The 'PGM'
is then followed by the symbolic cards which represent the desired program
card., It is assumed here that the reader knows the format and information con-
tent of a program card, The 'ENDPGM' pseudo-op simply informs UMAP that the
symbolic program card has ended, UMAP punches the program card, resets the
punch mode to relocatable binary, and sets the assembly mode to relocatable,
zeroing the storage location counter, This must, of course, be immediately
followed by program common Storage assignment (if there is any) and the transfer
vector,

3,7-21

As an example, consider the following subroutine named 'MINCOS',
which has three arguments (x,y,2), and which sets Z equal to the smaller
of COS X and SIN Y. The calling sequence for MINCOS is,

CALL MINCOS,X,Y,2

The subroutine could be written,

PGM PROGRAM CARD
PZE G,,2 LENGTH, ,NO, OF SUBS
PZE -1 ERASABLE, ,PROGRAM COMMON
BCI 1,MINCOS PROGRAM NAME
PZE B ENTRY POINT
ENDPGM
cas BCI 1,c08 TRANSFER VECTOR
SUB BCI 1,SIN
B CLA 1,4 START SUBROUTINE
STA c SET X
CLA 2,4
STA D SET Y
SXA AL
CALL cos COMPUTE COS X
o PAR *ok
STO F SAVE COS X
CALL SUB COMPUTE SIN Y
D PAR ok
CAS F COMPARE AND PUT
CLA F SMALLER IN AC
NOP
A AXT *% 4
STO* 3,4 STORE IN Z
TRA 4,4
F ERAS
G END

Note that in the above program the subroutine 'SIN' is called by the name
'SUB' within the program itself, This can be done when the program is con=-
structing its own program card, but it is otherwise impossible,

SYMBOLIC OVERRIDES TO BINARY PROGRAMS

At times it is desirable to make small changes in a binary deck, as
opposed to re-translating the entire symbolic source deck, to make corrections
in a program. Since the MAMOS system allows the mixing of binary and symbolic
segments in a given job, such changes may be made with UMAP assemblies instead
of manually punching binary cards. Such changes are called 'OVERRIDES' and
may be made to any binary deck, regardless of the original source language.

The assembly mode of an override should agree with the translation
mode of the original deck., (MAD and ALGOL compilations are always of relocat-
able mode, while UMAP assemblies may be absolute or relocatable,) The over-
ride section should follow, physically, those instructions in the deck which
are being overridden. Note that what happens is that the original incorrect
words are loaded with the program, but are then replaced by the override words
when they are loaded.

3,7-22

Certain handy conventions are available in UMAP for writing over-
rides. A numeric location field is treated as an origin before the card
is processed, so that 'ORG' cards are generally not needed in overrides.
Further, since in overrides one usually refers to octal locations, the 'SAK'
or '0GUTMOD' pseudo~ops may be used to set octal mode conversion for all
integers. This may be chauged locally, for one card, by use of the '0' or
'8' punched in column 7 of the card. (See integer conversion mode sub-section.)

Since UMAP produces a program card unless told to do otherwise, the
programmer must, in an override, turn this feature off. This is done through
use of the 'ABS' or 'REL' pseudo-ops, depending upon the assembly mode desired,
Thus, for example, the following absolute override,

ABS
OCTMOD
17320 CLA 21356
16142 STO 17300
STO 17301
END

Causes a 'CLA 21356g' to be loaded at 17320g, a 'STO 173006' to be loaded
at 16142g, and a 'STO 17301g' to be loaded at 161438. In any override, the
origin, for each correction, must correspond to the location of the instruc-
tions being corrected, but corrections to consecutive core locations need

have an origin for the first of the sequence only. When in octal mode, care

must be taken that all integers are written in octal, For example, if one
writes,

LGL 12
With octal mode in effect, it is equivalent to
LGL 10

In decimal mode, If a decimal 12 is desired, it should be written

OLGL 12
Or
LGL /D/12
Or
LGL 14

Octal mode will still be in effect for the next card.

Any address or decrement subfield which is numeric is agsumed to be
absolute., In absolute overrides this is desired, but in relocatable overrides
one usually desires relocatable addresses and sometimes decrements, The
/R/ qualifier is used to obtain such relocatable subfields.

3,7-23

Thus, an override might appear as,

REL
SAK

1760 PMP /R/1702,2
ST /R/371,1
END

Here, the 'FMP' and the 'STO' will have relocatable addresses when loaded,
If in an override a particular address occurs often, it is easier to define
a relocatable symbol with an 'EQU' card and use the symbol in the override.
An example would be,

REL
SAK
A EQU /R/106
1130 CLA /R/71
STO A
1136 STO A
1561 CLA A
STO /R/107
END

Certain difficulties arise with ralocatable overrides which do not
occur with absolute overrides. First, due to the manner of loading a re-
locatable program, a relocatable override cannot be put just anywhere later
in the deck, An override must be in the same program segment as the in-
struction it overloads, i, e,, thers muat be no program cards between them,
This is due to the fact that the relocation constant changes every time a
program card is encountered,

A second problem occurs in the assignment of relocation bits to sym-~
bols. Relocatable symbols are handled in one of two ways at loading time,
depending upon whether the symbol refers to a location inside the present
program or outside of it, Normally the user doesn't need to worry about this,
since UMAP is handling the relocation assignment and has available the entire
program for its information, For overrides, however, UMAP does not have at
its disposal the information concerning the original program, so the user must
supply part of it, For example, consider the following override.

REL
OCTMODD

123 CLA /R/163,4
STO /R/100,4
FAD /R/63,4
END

This override is assembled as a separate program whose length is 1268. The
address of the 'CLA' is 163g, and hence is outside of this program, while

the addresses of the 'STO' and the 'FAD' are inside the program, If the
original program is longer than 163g, this override is incorrect, since in
this case the 163g, should assemble as being inside the program, Thus, sup-
pose the original program has a length of 173g, To make the override correct,
the following convention may be used; If the 'END' card has a numeric location
field, then this number is taken as the program length.

3.7-24

Thus, the above override should end with
173 END

Note that the previous relocatable overrides will all assemble correctly,
since each override actually appears longer, to UMAP, than any address in
it. The general rule for relocatable overrides is to punch, in the location
field of the "END' card, the length of the program being overridden.

At times an override requires the addition of instructions to a
program as well as the changing of instructions already in it, In this case
'patches' must be made, Here a set of imstructions are loaded into some area
not used by the program and 'TRA' instructions into this area are loaded
onto the area to be corrected., Such a patch area must be within the given
program, for relocation purposes, but not used, Often programs specifically
set aside an area for patches, In overriding with patches it is possible that
information on the program card is no longer correct, so that a new program
card must be prepared, Through use of the 'BINARY' pseudo-op, the program
card and override can be assembled in one assembly. However, it is recommended
that in such cases the corrections be made in the symbolic source deck with a
re-translation, rather than with overrides.

Finally, literals should never occur in an override of any kind, Also,
program common assignment cannot occur, and no new erasable assignment should
occur, However, since erasable symbols are handled as special relocatable sym~
bols, overrides should refer to erasable locations by defining erasable symbols
and using them for all references,

ERROR COMMENTS

Normally, UMAP is able to complete two passes over the program despite
any errors which may be found in the program, However, certain types of errors
may occur which prevent the continuation of the assembly process, and thus the
listing is either incomplete or not given at all, For such cases, UMAP prints
out error comments describing the trouble, Also, the card being analyzed at
the time of the trouble is printed, The possible error comments are as follows,

COMMENT TROUBLE
Literal Table exceeded More than 200 different bipary literals,
Entry Table exceeded More than 50 different entry points,
Operation Table overflow More than 2000 new operations defined,
Transfer Vector overflow More than 50 different subroutines called,
Symbol Table overflow Too many symbols ip program - See the
' SYMBOL' pseudo-operation,
Macro Table exceeded Too many macro definitions or too many
remote assembly sequences,
Compile Table exceeded Macro callsg nested too deeply.
Symbol Table check-sum Bad check-sum in symbol table deck.
Missing 'END' card No 'END' card,
Created symbols exceeded More than 1000 created symbols.
'ETC' generated in 'RMT' Macro expansion caused an 'ETC' card to

be generated In a '"RMI' sequence.

3.7-25

In addition, there are those times when UMAP may suspect & machine error.
In such cases, assembly is halted with the comment,

'Possible machine error here - assembly discontinued'
ERROR FLAGS

In the lefi-hand margin of an assembly listing produced by UMAP there
will sometimes occur 'ERROR FLAGS', These flags are single letters, and their
presence on a line indicates that UMAP has found what appears to be an error
on the card printed on this line, It is possible for several flags to occur
on a given line, A complete list of these flage, with a description of their
assoclated error, follows,

FLAG ERROR
A Address missing, or address given but normally not used,
B Error in Boolean expression.
D Decrement missing, or decrement given but normally not used.
E Missing or illegal 'ETC' card,
G Error in generation of program comnstants,
I Indirect addresaing illegally specified.
L Incorrect literal construction, or a literal occurs illegally,
M Multiply~defined symbol on card.
METC Migsing 'ETC' card in a macro call.
N Non-fatal error on card,
0 Undefined operation code on card,
P Phase error - expression should be pre-defined, but ismn't,
or a symbol's definiticn, given on pass 1, does not check
on pass 2,
Q Error in qualifier specification, or qualifier illegally used,
R Error in formation of relocatable expression.
T Tag missing, or tag given but normally not used.
U Undefined symbol on card.
UPAR Unmatched parentheses in macro call,

The flags ‘'A', 'D', 'I', 'N', 'T', and those obtained by the 'FLAGOP' or
'FLAGSY' pseudo-ops are considered as non-fatal flags, All other flags are
considered as fatal. The occurrence of one or more fatal flags in an assembly
causes the assembly to be unsuccessful, and execution is not allowed.

UNDEFINED AND MULTIPLY~DEFINED SYMBOLS

Undefined symbols ('U' flag) are symbols which are used in the program
but which are never defined by the program. Multiply-defined symbols ('M' flag)
are symbols which are given two or more different definitions, A symbol may be
defined as often as desired if all definitions agree, Only when the definitioms
disagree is the symbol multiply-defined, MNear the end of the listing, a list of
all undefined symbols is printed, followed by a list of all multiply-defined
symbols. Also, every occurrence of such symbols is appropriately flagged,

3.7-26

REFERENCE TABLES

At the end of the listiag two reference tables are printed., The first
is the symbol reference table, PBach symbol defined 1s listed, with its mode,
its value, and the locotions of all references in the program to this symbol,
The symbol mods is indicatad by one of four letters:

A ABSOLUTE (Includes program common)
E ERASABLE

R KELOCATABLE

T

TRANGFER VECTOR

The second reference table is for the literals. All references to each literal
are printed out, Thuere are pseudo+ops in UMAP which allow the collection of
references tc symbols and to literals to be turned off, See the pseudo~op sub-
section,

UMAP OPERATION CODES

Ia the following descriptions, a pre-defined expression is an arith-
metic expression all of whose components are 'defined' at the time the ex-
prassion is encountered on PASS 1 procesasing by UMAP, (I. e., Each symbol in
the expression must already bte in the symbol table.) Throughout the assembly
process, a location counter 'L' is kept by UMAP to count the number of loca-
tions used by the program. This counter is updated for each location used
by the program, and it is used to define many of the symbols occurring in the
program, Always, L is set to the next available location for the program,

L is initially zero., Not all operation codes accepted by UMAP are described
in the following, See the MACRO sub-section for the descriptions of all macro-
related operation codes,

PSEUDO-0OPERATIONS

9LP = 9 LEFT PREFIX

Causes subsequent binary cards (until the next 'FUL', 'ABS', 'REL', or
'PGM' pseudo-op occurrence) to be punched in absolute mode with a prefix on the
first word of the card of N, where N is the value of the absolute expression in
the variable field of the '9LP'. Deletes the automatic program card feature,
N is taken modulo 3.

ABS ~ ABSOLUTE ASSEMBLY MODE

This pseudo-op causes the assembly to be in absolute mode deleting the
automatic program card,

ASSIGN - ASSIGN STORAGE

The variable field is a list of symbols separated by commas. Expres-
sions are not allowed, The symbols are assigned, in order of their appearance,
to locations L, L+1, L+2, etc. Note that these symbols are assigned at the point
at which the 'ASSIGN' {is found. Adjacent commas may be used to obtain blocks,

3.7-27

Thus, for example, the statement

ASSIGN A,,,,B,C,,,

Is eyuivalent to the statements

A BSS 1
B BTS 4
C BSS 4

BCD ~ BINARY-CODED-DECIMAL

Causes the generation of 'N' words of BCD information, where 'N' is
the ‘nteger in column 12 of the 'BCD' card. The words are stored in L through
L+N-1, If columm 12 is blank, 10 BCD words are taken from the card, 1Im all
cases, the first BCD word is assumed to start in colummn 13. An "*' in columm
12 signals UMAP to compute its own word count, See the 'BCI' pseudo-operation,
Location field symbol is defined as L.

BCI - BINARY-CODED-DECIMAL

The variable field consists of a one-digit integer count 'N', followed
by a comma, followed by a string of Hollerith characters, The 6*N Hollerith
characters after the comma are divided into groups of 6 characters (left to
right) and stored at L, L+1, L+2,...., L+N-1, If ten words are desired, the
variable field may start with a comma, In this case, the last word will be
left-justified with trailing blanks. BRlanks are included in a string of
Hollerith characters, A convention is available with 'BCI' which deletes the
need for the word count 'N', One may write

BCI * ,Hollerith String

In this case UMAP counts the number of BCD words on the card and replaces the
* by this count. This computed word count is obtained by deleting all blank
words from the right-hand end of the variable field. A partial word on the
right is left-justified with trailing blanks. Location field symbol is defined
as L, -

BES - BLOCK ENDED BY SYMBOL

N locations are reserved, where N is the value of the absolute, pre-
defined expression in the variable field, A symbol in the location field is
defined as L+N, 1, e,, as the first location after the block reserved,

BINARY - INSERT BINARY CARDS

This pseudo=op precedes a set of one or more binary cards which are
stored during PASS 1 of UMAP and reinserted, during PASS 2, into the binary
version of the program. There may be as many binary sections in a program
as desired. If, in a binary segment, a symbol table is found, then the sym-
bol table is read as in the 'RST' pseudo-op. Ordinarily, these binary
segments are placed only on the execution tape in PASS 2.

3.7-28

However, if the symbol 'PUNCH' is found in columms 1-6 of the 'BINARY' card
then the binary deck following it is placed on the output tape with new
sequenced ID, corresponding to the ID being used with the binary object
deck. Use of the "BINARY' pseudo-op allows the assembly of several sections
of overrides, interspersed throughout a binary deck, with only one call for

UMAP and with a continuity of the symbol table between all symbolic sectionms,

BOOL - BOOLEAN EQUIVALENCE

The symbol in the location field is assigned the value of the expres-
sion in the variable field., In evaluating the variable field, Boolean mode
is assumed, Eighteen bits are used in this definition, as opposed to the
usual fifteen bit values given to symbols. (See the sub-section on PASS 2
symbcl definition.) Symbols defined by 'BOOL' cards have absolute mode, The
symbol is defined as a left-Boolean or a right-Boolean symbol according as
the variable field is a left-Boolean or a right-Boolean expression, A Boolean
expression is left~Boolean if any symbol in it is left~Boolean or if a '/L/'
occurs anywhere in it; otherwise, the expression is a right~Boolean expression.

BRIEF - LISTING ABBREVIATION

After the occurrence of 'BRIEF' those pseudo-ops which usually produce
several lines on a listing (e. g., 'DEC', 'OCT', 'VFD', 'CALL') are abbreviated
by deleting all lines after the first one, Thus, the first object word genera-
ted plus the card itself are printed, but the remainder of the object words
generated by this card are not printed, FPurther, the 'BRIEF' mode prevents
the printing of the program literals,

BSS - BLOCK STARTED BY SYMBOL

N locations are reserved, where N is the value of the absolute, pre-
defined expression in the variable field, A symbol in the locatiomn field is
defined as L, 1, e., as the first location in the reserved block,

BTS - BLOCK TERMINATED BY SYMBOL

N locations are reserved, where N is the value of the absolute, pre-
defined expression in the variable field, A symbol in the location field is
defined as L+N~1, i, e,, as the last location in the reserved block.

CALL - NON-I/0 SUBROUTINE CALL

The 'CALL' pseudo-op is used to call external subroutines or, if the
automatic program card is deleted, internal subroutines. The variable field
is a set of expressions separated by ',...,' or by commas, The first element
of the variable field must be the name of the subroutine being called., If
UMAP 1is generating the program card, this name is automatically defined and
placed in the tramsfer vector, If the automatic program card is deleted, the
program itself must define this symbol., The elements of the variable field
following the subroutine name are assembled into a calling sequence, Single
variables are separated by commas,

3.7-29

CALL - NON-I/0 SUBROUTIKE CALL - cont'd

Block parameters are indicated by the format A,...,B which means 'A to B,
inclusive'., List elements may be symbols, constants, expressions, or
literals, 'CALL' is used to call all ON~-I/0 type subroutines, A 'CALL'
statement may be followed by one or more 'EIC' cards; in such cases, a sub-
field must end on the same card that it began on. A location field symbol
is defined as the first location generated,

CALL.O0 ~ I/0 SUBROUTINE CALL

This pseudo-op is the same as the 'CALL' pseudo-op, except that it
is used to call I/0 subroutines only. All comments concerning the variable
field of a 'CALL' statement apply.

COMMNT - .COMNT CALL

This pseudo-op assembles the same as 'CALLIO ,COMNT'. The variable
field, except for the first element, is the same as for 'CALLIO',

DATE ~ BCD DATE

This pseudo-op assembles, as two BCD words, the current date of the
assembly. The first word has the form 'DDBMMM' and the second has the form
'BYYYYB', where B is blank, D is day, M is month, and Y is year, If there is
a non-blank character in the variable field, this character replaces the final
blank in the second word. A location field symbol is defined as the location
of the first of the two words.

EEE_- DECIMAL DATA

The decimal-data items in the variable field are converted to binary
numbers and assigned to consecutive locations L, L+1, L+2, etc, Successive
items in the variable field are separated by a comma. The first blank to the
right in the variable field indicates that the field is terminated and that
all remaining punching is a comment, A symbol in the location field is de-
fined as the first location used by this card, i. e.,, as L. A 'DEC' card may
not be followed by an 'EIC' card, but it can be followed by more "'DEC' cards.
The obvious purpose of this pseudo-op is to introduce into the binary program
sets of constants.

When the variable field is evaluated, adjacent commas cause the number
zero to be generated, as does a comma followed by a blank. Thus, the number of
words generated by a 'DEC' card is always one more than the number of commas in
the variable field. If the varlable field of a 'DEC' card contains anything
other than a valid decimal-data item, the assembler will flag an error in the
listing (G flag).

3 . 7-30

In the UMAP language, a decimal-data item is used to specify in dec~
imal form a word of data to be converted to binary form and stored with the
program. A decimal-data item may occur in one of two places in a UMAP pro-
gram - in a decimal literal (See the literal sub-section) or on a 'DEC' card.
Three types of decimal-data items are recognized by UMAP,

1) DECIMAI, INTEGER

A decimal integer is composed of a string of digits possibly preceded by

a plus or a minus sign., (Note - in all the following, a minus sign is re-
quired to indicate a negative integer, while a plus sign is not required

for positive integers.) A decimal integer is distinguished from other types
of decimal-data items by the fact that the letter 'B', the letter 'E', and

the decimal point ',' are all absent.

2) FLOATING POINT NUMBER

A floating point number has two components as follows:
A) The principal part, which is a decimal number written with or with=-
out a decimal point, The decimal point may appear at the beginning or
end of the principal part, or within the principal part, or may be omitted
if the exponent part is present. If the decimal point is omitted, it is
assumed to be located at the right-hand end of the principal part,
B) The exponent part, which consists of the letter 'E' followed by a
signed or unsigned decimal integer. The exponent part must follow the
principal part, It may be omitted if the principal part contains a deci-
mal point,
A floating point number is distinguished from a decimal integer by the fact
that either a decimal point or the letter 'E' (or both) must be present. It
is distinguished from a fixed point number by the fact that the letter 'B' is
absent,

3) FIXED POINT NUMBER

A fixed point number has three components as follows:
A) The principal part, which is a decimal number written with or with-
out a decimal point. The decimal point may appear at the beginning or
end of the principal part, or within the principal part, or may be omit=-
ted completely., If the decimal point is omitted, it is assumed to be
located at the right-hand end of the principal part.
B) The exponent part, which consists of the letter 'E' followed by a
signed or unsigned decimal integer. The exponent part may be absent.
1f present, it must follow the principal part, and may precede or follow
the binary place part.
C) The binary place part, which consists of the letter 'B' followed by
a signed or unsigned decimal integer. The binary place part must be pre-
sent in a fixed point number, and must follow the principal part, but may
either follow or precede the exponent part if there is one,
A fixed point number is distinguished from the other types of decimal-data
items by the presence of the letter 'B'.

3.7-31

A decimal integer may represent any positive or negative binary
number whose magnitude is less than 235, For example, the decimal integer
'=31' would be converted to the 36-bit number whose octal representation is
-000000000037, which is the same as 400000000037.

A floating point number will be converted to a normalized floating
point binary word in the standard 7090 floating point binary format (See the
7090 manual), The exponent part, if present, specifies a power of 10 by
which the principal part will be multiplied during conversion. For example,

all of the following floating point numbers are equivalent and will be con-
verted to the same floating point binary number,

3.14159
31.4159E=-1
314159.E-5
314159E-5
«314159E1

A fixed point number is converted to a fixed point binary number
which contains an 'understood' binary point, Note that in the 7090 numbers
are either floating point or integral to the machine itself, The purpose of
the binary place part of the number is to specify the location of this under-
stood binary point within the 7090 word generated. Thus, the conversion of a
fixed point number is dome in the following steps:

1) The principal part, along with the exponent part, is converted to a
binary number with a binary point. This is the usual decimal to

binary conversion. Thus, the number 65B4E-1 would first be converted to
the binary number 110.1, which is 6.5 in decimal.

2) An 'understood' binary point is found by shifting the assumed binary
point from immediately after the sign bit to immediately after the Nth bit
after the sign bit, where N is the number following the ‘B'. If the number
N is negative, then the assumed binary point is shifted N bits to the left
from the sign bit, Thus, for our number 65B4E-1, the understood binary point
follows immediately the fourth bit after the sign birt.

3) Now the binary point in the number as converted and the understood bi-
nary point in the 7090 word are alined. Then the 36 bits which correspond

to the machine word are used as the word generated by this decimal data

item. Thus, in our example of 65B4E-1, alining the two points and taking

the 36 machine bits produces the octal number 150000000000, Note that two
leading zeroes have been inserted before the 1101 produced by the principal
and exponent parts - the first zero is the sign bit and the second zero comes
from the alining of the decimal points,

In the process of shifting the converted word to position the binary point,
significant bits may be shifted past the right-hand end of the word and lost,

In this case no error will be indicated, However, if non=-zero bits must be
shifted past the left-hand end of the word, an error will be indicated (G flag).
Thus, the integral part of a fixed point number must be small enough to fit in
the number of integral places allowed. Also, if the binary place part is neg-
ative, the number must be an appropriately small fraction, For example, the

3.7-32

Following fixed point numbers all specify the same configuration of bits,
but not all of them specify the same location for the understood binary point,

22.5B5
11.25B4
1125B4E=-2
1125.E-2B4
9B7E1

All of these fixed point numbers will be converted to the binary configuration
whose octal representation is 264000000000,

DECMOD - DECIMAL MODE

Sets the global conversion mode for integers to decimal. This mode
may be modified locally by use of qualifiers, but it is reset to decimal, fol-
lowing each card, until a 'SAK' or a 'OCTMOD' occurs,

DETAIL - LIST IN FULL

This pseudo-op reverses the effect of the 'BRIEF' pseudo-op. This
is the normal assembly print mode.

EJECT - LISTING PAGE EJECTION

This pseudo-op causes a new page to start in the listing. The 'EJECT'
is not printed in the listing.

END -~ END OF PROGRAM OR OF MACRO DEFINITION

The 'END' card terminates the processing of a deck or of a MACROD
definition, For program termination, a location field symbol is defined as
the total length of the program, including literals, program common, transfer
vector, and any remote assemblies. If the location field is numeric, the pro=
gram length is reset to this value, If the assembly is absolute and the vari-
able is absolute and the variable field is non-blank, 2 transition card is
punched with the value of the variable field as the transfer address. (In re-
locatable assemblies, transition cards must be punched with the 'TICD' pseudo-
op.) A UMAP program must end physically with an 'END' card.

ENDPGM - END PROGRAM CARD

Used with the 'PGM' pseudo-op to write program cards. -'ENDPGM' turns
off the effect of 'PGM', makes the assembly relocatable, and sets the location
counter to zero. 'ENDPGM' causes deletion of the automatic program card,

3.7-33

ENTRY - SUBROUTINE ENTRY

This pseudo-op indicates that the program is a subroutine and not a
main program. The difference is reflected in the program card. The vari-
able_field contains a list of symbols, separated by commas, which are to be
considered as entry names to this subroutine, These symbols must all be de~
fined within the program itself, Secondary entries may be obtained by pre-
ceding the symbol with a minus sign on the 'ENTRY' card. a main program with
additional entries may be obtained by an explicit zero appearing as a symbol
on an 'ENTRY' card. This is not the same as an "ENTRY' card with a blank
variable field., 'ENTRY' statements may occur anywhere in the program, and they
need not precede the definitions of the symbols which they are naming as entries.
'ENTRY' is undefined if the automatic program card is deleted.

EQU - EQUIVALENCE

The symbol in the location field is assigned the mode and the value of
the expression in the variable field., (See the sub-section on PASS 2 symbol
definition,)

EQUMAX - EQUIVALENCE TO MAXTMUM SUBFIELD

The location field symbol is given the value and the mode of the sub=
field of the variable field having the maximum value on PASS 1 processing.
(PASS 2 symbol definition does not apply to 'EQUMAX',) Undefined subfields
are treated as absolute subfields with a zero value., Negative subfields are
treated as large positive subfields (i. e., -1 is greater than +1). Subfields
may be symbolic expressions and are separated by commas, 'EQUMAX' may be fol-
lowed by one or more 'ETC' cards, but subfields may not be continued from one
card to another. In case of equal maximum subfields, the location field symbol
is given the mode of the first such subfield,

EQUMIN - EQUIVALENCE TO MINIMUM SUBFIELD

'EQUMIN' is the same as 'EQUMAX' except that the minimum valued sub-
field of the variable field is used instead of the maximum valued subfield,

ERAS - ERASABLE STORAGE ASSIGNMENT

A block of N+1 locations is reserved in erasable storage, where N is
the value of the absolute, pre-defined expression in the variable field. This
storage begins at the present value of the erasable storage counter and moves
down in core. The erasable storage counter starts at =119 = 77777g. A symbol
in the location field is defined as the first (i. e., the highest in core) of
these locations. To obtain only one erasable location, the variable field
should be left blank or should have a zero value. All erasable assignment must
be made with "ERAS' and 'ERLIST' if UMAP is generating the program card.

3.7-34

ERLIST - ERASABLE LIST

This pseudo-op is the same as the 'ASSIGN' pseudo-op, except that all
storage assignment is in erasable storage. Thus,

ERLIST A,,B
Is equivalent to
A ERAS 1
B ERAS 0
ETC - ET CETERA
This pseudo-op allows the extension of the variable field (of certain
pseudo-ops) over several contiguous cards., Those pseudo-ops which may be so

extended mention this fact in their descriptions. Location field of an 'ETC'
is always ignored,

EXECT ~ EXECUTION OUTPUT CONTROL

Causes UMAP to put out binary card images on the system execution
tape. 'EXECT' is ignored if a fatal error has occurred in the program, (See
'NEXECT'.) This pseudo-op acts internal to UMAP only and has no effect on the
actual execution of the program.

EXTERN - EXTERNAL NAMES

The variable field of this pseudo-op consists of a set of symbols sep-
arated by commas., Each of these symbols is entered into the transfer vector
for the program, ‘'EXTERN' is undefined if the automatic program card is deleted.

FLAGOP - OPTIONAL OPERATION FLAGGING

The variable field has the form 'A,B', where 'A' is the BCD name of an
operation in the operation table and 'B' is a single, non-break character.
After the occurrence of 'FLAGOP' the operation 'A' is always flagged with the
non-fatal flag 'B', The operation 'A' must be defined when the 'FLAGOP' pseudo-
op occurs in PASS 1, At most ten different ops may be optionally flagged during
an assembly,

FLAGSY - OPTIONAL SYMBOL FLAGGING

The variable field has the form 'A,B', where 'A' is a symbol and 'B' is
a single, non-break character, The symbol 'A' will be non-fatally flagged with
the flag 'B' throughout the assembly listing., The symbol 'A" must be defined
when the 'FLAGSY' pseudo-op occurs in the program on PASS 1. At most ten dif-
ferent symbols may be optionally flagged in a given assembly, If more than one
optionally flagged symbol occurs on a card, then only the flag corresponding to
the last symbol to occur on the card is printed.

3,7-35

FUL - FULL MODE PUNCHING

This pseudo~op causes the punching of full 24-word binary cards (i. e.,
non-relocatable cards). The 7-9 punch is automatically placed in column 1 of
such cards, but otherwise the card is exactly the 24 words specified by the pro=~
gram, The automatic program card is deleted by the occurrence of 'FUL'.

HEAD - HEAD SYMBOLS

The 'HEAD' card supplies to the assembly program a single character
(punched in column 1 of the 'HEAD' card). Any alphabetic or numeric digit is per-
missible, Each symbol in the program following the 'HEAD' pseudo-operation is pre=
fixed by this character except when a special indication to cancel the prefix opera-
tion is given. A new 'HEAD' pseudo-operation card will replace the prefix charac-
ter. Thus, several programs having non-unique symbols may be combined by heading
each program with a different character,

It is sometimes necessary to make cross-references between the individual
programs. To accomplish this, each reference must be written in the following
way. Let H be a heading character, and let K be a symbol, in the block headed by
H, to which reference is to be made, To refer to K (i. e., to use the value rep-
resented by K in an address, tag, or decrement) in a part of the program not head-
ed by H but by J, write,

H$K

The special character § indicates to the assembly program that K is to be pre-
fixed by H instead of by the prefix J given on the most recent 'HEAD' card.

It is important to note that if use is to be made of the heading feature,
all symbols used throughout the program will usually be restricted to five or

fewer characters. If any six-character symbols are used, these symbols will not
be headed. Some additional remarks are that,

1) A$B is not the same as AB, It is the same as AOOOOB.

2) ASBCDEF is the same as ABCDEF,

3) 000A, where 0 is zero, is the same as OA and the same as A,

4) A symbol in an unheaded portion of a program can be referred to from a
headed portion by preceding the symbol with a §, The fact that the § is not
preceded by a heading character indicates that reference is to an unheaded
section,

An additional feature of the 'HEAD' is the following. If a set of single
characters, separated by commas, occurs in the variable field, then all these
characters, plus the one in column 1, are saved for headings. Any symbol which
is found will be entered in the symbol table once for each separate heading.
References within this section are under the primary heading (from column 1) only,
but the symbols are defined for all the secondary headings given in the variable
field. This eliminates the need to define common symbols in each headed section.
The same could be done by making all common symbols 6 characters long. When the
next 'HEAD' card is found, all heading characters from the last 'HEAD' card are
suppressed,

3.7-36

INDEX -- INDEX SYMBOL DEFINITIONS

Variable field is a list of symbols, separated by commas, which have
been defined in the program, Each symbol, along with its definition, is

printed in the listing. (This printing is under 'DETAIL' and 'BRIEF' control)

LIST -~ TURN ON LISTING

This pseudo-op turns on the listing of the assembly of the program,
reversing the effects of 'NOLIST'. This is the normal listing mode.

LOC ~ RELOCATE PROGRAM SEGMENT

This pseudo-op controls the location counter L, over the range of one
binary card, without affecting the loading address of that card, 'LOC' is
normally used in conjunction with 'ORG' to assemble, with one loading address,
program segments which are to be moved in storage before they are executed.
The present storage location counter value L is used as the loading address
of the binary card, while the contents of the card are assembled as if the
location counter had the value N = value of the pre~defined variable field of
the 'LOC' card. This effect lasts until the end of the binary card or umntil
the next 'ORG' occurs, which ever comes first,

LOOK - ,LOOK CALL

Assembles the same as 'CALLIO ,LOOK'. The variable field, except
for the first element, is the same as for 'CALLID'.

MIDDLE - REDUCE ASSEMBLY TIME

The occurence of 'MIDDLE' causes UMAP to change intermediate tapes, re-
winding the present intermediate tape., This saves delay time between passes
waiting for this tape to rewind, 'MIDDLE' should occur at roughly the middle
of the deck, 'MIDDLE' is ignored if it occurs in the first intermediate tape
buffer load (i.e., in roughly the first sixty cards of the deck) or if it occurs
after the intermediate tape has already been changed.

NEWID - CHANGE OBJECT DECK ID

Beginning with the first non=blank character of the variable field, 8
Hollerith characters are taken from the variable field and used as the ID on
the next binary object deck card. The present card is punched when 'NEWID' occurs,
The numeric part of this ID, on the right, is incremented by one for each card
punched, The 'NEWID' card is not printed on the listing,

3,7-37

NEXECT - EXECUTION OUTPUT CONTROL

Causes UMAP to cease writing binarj card images on the system exection

tape, The 'NEXECT' acts internal to UMAP only, and does not affect actual execution
of the program,

NOBJCT - OBJECT OUTPUT CONTROL

Causes UMAP to cease writing binary card images on the system output
tape,

NOCOM - ND COMMENTS

0dd occurrences of this pseudo-op cause the deletion from the assembly
1isting of all 'REM' cards and all '*' type remark cards. Even occurences
cause normal printing control,

NOLIST or UNLIST - NO LISTING

Turns off the printing of the assembly. Only lines which have error
flags are printed. All references to symbols or literals are not recorded
for the reference table.

NONOP -~ UNDEFINED OUPERATION

Whenever an undefined operation is found, the definition of 'NONOP' is
used in place of the operation punched. Normally, this reacts as a 'BSS 1'
and causes an 0 flag on the listing. Through use of the 'OPSYN' pseudo-op,
the definition of "NONOP' may be changed to any operation desired, so that
the programmer may specify the definition to be used for undefined operatioms.

NULL - PSEUDO-OP NO-OPERATION

This pseudo-op is printed, but otherwise ignored by UMAP, It may be
used in conjunction with "OPSYN' to nullify the effects of certain operation
codes in a given assembly. A symbol in the location field is defined as the
present locationm.

0BJCT ~ OBJECT QUTPUT CONTROL

Causes UMAP to write card images on the system output tape,

OCT - OCTAL DATA GENERATION

The octal integers in the variable field, separated by commas, are
assigned to consecutive locations beginming at L. The first blank to the

3.7-38

right of the variable field indicates that everything which follows is a

comment, A symbol in the location field is defined as the location of the
octal numbers,

The numbers on an 'OCT' card may have the form 'N' or the form 'NKE’,
where N is an octal number of 12 or fewer digits, with or without a sign,
and E is an absolute mode expression, In the latter case, the number N is
shifted M octal places to the left, if M is positive, or M octal places to the
right, if M is negative, where M is the value of the absolute mode expression
E. Thus, 7K3 is assembled as 000000007000,

In the case of 12 digit octal numbers, the following equivalences hold
with respect to the high order bit ==~

“Omé4 ~1=5 -2m6 =3m=37
either form may be used in an assembly. For numbers of less than 12 digits,

leading zeroes are supplied, If any error is encountered on an 'OCT' card,
a G flag is given.

OCTMOD - DCTAL MODE

Sets the global conversion mode for integers to octal. This mode may
be modified locally by use of qualifiers, but it is reset to octal, following
each card, until a "SAK' or a 'DECMOD' occurs,

OPSYN -~ OPERATION SYNONYM

Defines or redefines the location field symbol as a synonym for the BCD
operation code in the variable field. The name in the variable field may be any
operation code present in the operation table when the 'OPSYN' occurs on Pass 1.
The following operation codes may not function correctly 1f called by a different
name ~ 'END', ‘'ETC', 'IRP', 'REM', 'RMT', 'BCT', and 'TITLE'.

ORG ~ ORIGIN SPECIFICATION

This pseudo-op resets the storage allocation counter to L = value of the
pre~defined variable field. This counter is initially zero.

If the assembly is relocatable and the variable field is absolute, then
a phase error (P flag) may occur when the next location field symbol occurs.
This is due to the incrementing of relocatable symbol values between passes,
while absolute origins are unchanged,

If this pseudo-op is writtem 'ORG*', then the re-origin occurs as de-
scribed, but the next segment of the program is not included in the computation
of the program length, This allows the origining of tables, for example, beyond

3.7-39

the end of the program. This cannot be done with a4 regular 'ORG', since this

would cause incorrect placement of the literals, This mode is reset by the next
'ORG' card.

A location field symbol is defined as the value of the variable field
with the mode of the assembly.

PAUSE - ,PAUSE CALL

This pseudo-op assembles the same as "CALL ,PAUSE', The variable field
except for the first element is the same as for 'CALL®,

PCC - CONTROL CARD PRINTING

Occurance of 'PCC' causes the printing mode to be switched (off to om or
vice versa) for those pseudo-ops which control the printing or assembling of
other operation codes, but which do not themselves generate machine words, In
'ON' mode, these pseudo-ops are printed. In 'OFF' mode, these pseudo-ops are
deleted from the assembly listing, 'ON' mode is the normal UMAP listing mode for
control cards,

PCCOFF - NO CONTROL CARD PRINTING

Deletes printing of control cards - see 'PCC’'.

PCCON ~ PRINT CONTROL CARDS

Causes printing of control cards -~ see 'PCC'. This is the normal print
mode.

PCLIST - PROGRAM COMMON LIST STORAGE

This pseudo-op is the same as the 'ASSIGN', except that all storage
assignment is in PROGRAM COMMON, Thus,

PCLIST A,,B
is equivalent to

A PGMCOM O
B PGMCOM 1

'*PCLIST' is undefined if the automatic program card is deleted.

PCMORG -~ PROGRAM COMMON ORIGIN

This pseudo-op allows the origining of parts of a program in PROGRAM

3.7-40

COMMDN, Either constants or program segments can be so origined. The origin is
taken as the value of the pre-defined, absolute expression in the variable field,
References may be made from such sections to other parts of the program, Special
binary cards are produced to provide for the loading of these sections., All symbols
defined in such sections are of absolute mode, This assembly mode is suppressed
upon encountering the next 'ORG' card., If the automatic program card is deleted,
'PCMORG' 18 treated as a 'ORG*', In using "PCMDRG', it should be noted that the
length of a program segment following a 'PCMORG' is not automatically added to
the length of PROGRAM COMMON as computed by UMAP for the program card. Thus, the
space needed in PROGRAM COMMON for such a segment must be reserved by the 'PGMCOM'
pseudo-op., This can be done symbolically as follows,

PCMORG START

(PROGRAM SEGMENT)

LAST (LAST STATEMENT IN THIS PROGRAM SEGMENT)
PGMCOM LAST=START

where ‘START' may itself be defined by a 'PGMCOM' card,

PGM - PROGRAM CARD

Causes binary cards to have a 12-punch in column 1 -- i.e,, program card
format, Automatically sets storage location counter to zero. This pseudo-op is
used to initiate the generation of a program card by the program rather than by UMAP,
Deletes the automatic program card, 'PGM' is equivalent to the sequence

9LP 4
ORG 0

PGMCOM - PROGRAM COMMON STORAGE ASSIGNMENT

A block of N+l locations is reserved in PROGRAM COMMON storage, where
N is the value of the absolute, pre-defined expression in the variable field.
This storage begins at the present value of the PROGRAM COMMON storage counter
and moves upward in core, The PROGRAM COMMON storage counter begins at the value
of the system relocation constant, A symbol in the location field is defined
as the last (i.e., the highest in core) of these N+l locations and is given
absolute mode. To obtain a single location, the variable field should be blank
or have the value zero, All PROGRAM COMMON storage must be assigned with
'PGMCOM' and 'PCLIST' if UMAP is generating the program card., 'PGMCOM' is
undefined if the automatic program card is deleted.

3.7-41

PRINT - ,PRINT CALL

This pseudo-op assembles the same as 'CALLIO0 .PRINT'. The variable
field, except for the first element, is the same as for 'CALLID'.

PST - PUNCH SYMBOL TABLE

Causes the symbol table to be punched between passes in a special column
binary form. These cards may be recognized by a 2 punched in the tag of the first
word. The cards may be read on subsequent assemblies by either the 'RST' or the
'BINARY' pseudo-ops. The symbol table deck is sequenced when punched, If an
8~character ID is given in the variable field of the 'PST' card, this ID is used
on the symbol table deck. If such ID ig not given, then the ID 'SMTBL' is used,
with sequence numbering starting at 001,

PUNCH -~ ,PUNCH CALL

This pseudo-op assembles the same as 'CALLIO .PUNCH'. The variable
field, except for the first element, is the same as for 'CALLIO'.

PUNLIT ~ PUNCH LITERALS

Causes suspension of the assembly process im PASS 2 to print the literals
on the assembly listing and to punch the literals on binary cards, If 'PUNLIT' does
not occur, the literals are printed and punched after the recognition of the 'END'
card. Note that "PUNLIT' has no effect upon where the literals are assigned in
storage,

READ - _READ CALL

This pseudo-op assembles the same as 'CALLIOD .READ'., The variable field,
except for the first element, is the same as for 'CALLIO'.

REF - REFERENCE TABLE SWITCH

Occurrence of 'REF' causes the reference table switch to be changed (off
to on or vice versa). In 'ON' mode, references to symbols and to literals are
collected for printing in the reference tables. This is the normal reference
table mode in UMAP,

REPOFF - REFERENCES QOFF

Turns off references to program symbols and to program literals.

3,7-42

REFON - REFERENCES ON

Turns on references to program symbols and to program literals., This is
normal assembly mode,

REL - RELOCATABLE PROGRAM

Causes a relocatable assembly with suppression of the automatic program
card. Used when a non-standard program card is desired (with 'PGM') or for re-
locatable override assemblies where no program card is desired,

RELIST - RESTART LIST

Allows continuation of the variable field list structure in a calling
sequence after the initial list sequence is broken. Thus, a calling sequence may
begin with a 'CALL' or 'CALLIO', continue with 'ETC', break-off for machine coding,
then continue with 'RELIST', plus more 'EIC' if desired. Note that the list could
not be continued with an 'ETC', The 'RELIST' must occur first, For example--

READ F,N
LXA N,1
10P B,1
TIX *-1,1,1
RELIST C,D,0

REM - REMARK

The contents of columns 1-7 and 11-80 are printed on the listing. Columms
8-10 are blanked out,

RESERS - RESET ERASABLE

Causes the erasable storage location counter to be reset to -110=777778'

RESPGC - RESET PROGRAM COMMON

Causes the program common storage location counter to be reset to the system
relocation constant,

RESTOR - ,RSTOR CALL

Assembles as a 'CALLID ,RSTOR'. The variable field, except for the
first element, is the same as for 'CALLIO',

3.7-43

RMT ~ REMOTE ASSEMBLY

Causes the suspension of the normal assembly process to define all in-
structions up to the next occurrence of 'RMI' as a remote assembly sequence,
All remote assembly sequences are assembled when the "END' card is found, in front
of the program literals, unless they are called for earlier by a 'RMT' with an
asterisk in the variable field. Remote sequences are printed where they are found
in the deck and under 'PMC' control where they are expanded.

RST - READ SYMBOL TABLE

Causes suspension of the PASS 1 assembly process to read in a symbol table
from binary cards which immediately follow the 'RST'. The symbol table cards must
conform to the format produced by the 'PST'. The checksum on these cards is checked,
and the assembly terminates if a bad checksum is found or if a binary card is
found which is not a symbol table card.

The symbols read from this symbol table deck are added to the symbol table,
Previous symbol definitions are maintained. Symbol table overflow is possible while
reading a symbol table deck, The symbols read in are subject to all heading
characters in effect at the time the 'RST' is encountered (see 'HEAD'). However,
headings in effect at the time the symbol table was punched (other than a zero
head) take effect over headings at the time of reading., If it is desired to com~
pletely replace the symbol table by that of the deck, the 'RST' should be preceded
by a 'ZST'.

In relocatable programs which include a symbol table reading with either
' BINARY' or 'RST', and in which UMAP is generating the program card, the follow-
ing restrictions must be observed.

1. No PROGRAM COMMON may be reserved.

2., No transfer vector may be generated.

3. No literals may be used.

In absolute programs, no restrictions exist,

SAK - INTEGER CONVERSION MODE SWITCH

The occurrence of 'SAK' causes the global integer conversion mode to switch
to octal, if it is decimal, or to switch to decimal, if it is octal., This mode may
be modified locally by qualifiers, but is reset after each card. See also 'OCTMOD'
and "DECMOD'. This mode applies to integers in all fields of a card.

SAVE - ,SAVE CALL

Assembles as a 'CALLIO .SAVE., The variable field, except for the first
element, is the same as for 'CALLIO'.

3.7-44

SET - SET SYMBOL DEFINITION

Defines the symbol in the location field to have the value and the mode of
the expression in the variable field, If the symbol is already in the symbol
table, this new definition is given to it without multiple definition, If the
symbol is not in the symbol table, then it is entered with this definition. This

re~definition occurs in PASS 1 and in PASS 2. See the PASS 2 symbol definition
section,

SETTC - ,SET CALL

Assembles as a 'CALLIO .SET', The variable field, except for the first
element, is the same as for 'CALLIO'.

SPACE - LISTING SPACING

Causes a spacing of N lines on the listing, where N is the value of the
absolute expression in the variable field, If N is greater tham 20 or if N is
greater than the number of lines remaining on the page, then 'SPACE' is treated
as an "EJECT'., 'SPACE' is not printed in the listing,

SST - SYSTEM SYMBOL TABLE DEFINITION

'SST' allows the incorporation into a program of symbols from the MAMOS
SYSTEM SYMBOL TABLE, which is the table of definitions of most system symbols.
The variable field of 'SST' is a list of symbols to be defined, separated by
commas, Each of these symbols and its definition is placed in the assembly
symbol table, If the location field is non~blank, the location field symbol is
placed in the assembly symbol table with the definition of the first system symbol
in the variable field. All definitions are absolute and non-system symbols are
ignored, 'SST' should occur early in the program as normal UMAP PASS 1 processing
wipes out the system symbol table in UMAP, 'SST' is ignored if the system symbol
table has been clobbered, For any particular symbol in the system symbol table,
its definition can be obtained only once. Thereafter that symbol is ignored on 'SST'
cards, It is possible to fill up the assembly symbol table while processing a
'SST'. 1In this case the remainder of the 'SST' card, and all further 'SST' cards,
are ignored., An attempt to define a symbol in any other way, however, will cause
a fatal error in UMAP, In relocatable programs in which UMAP is generating the
program card, system symbols which are defined by an 'SST' and by a 'CALL' will be
multiply-defined. Only those system symbols which do not go into the transfer
vector should be defined by an 'SST'.

START - START OF PROGRAM

If the variable field is blank, then the present value of the storage

3.7-45

location counter is taken as the first executable statement of the program.

If there is a symbol in the variable field, then this symbol is taken as the name
of the first executable statement of the program, and the symbol must be defined
in the program (but not necessarily before the occurrence of 'START'). If no
'"START' occurs in the program, then UMAP assumes that the first executable location
in the program is immediately after the transfer vector, 'START' is undefined if
the automatic program card is deleted or if the program is a subroutine with no
zero name entry,

SYMBOL - SYMBOL TABLE LENGTH ASSIGNMENT

Through use of this pseudo-op, a program may at assembly time adjust the
UMAP symbol table and MACRO table lengths., A storage area of about 12,000
locations (this varies with the version of UMAP) contains the symbol table at one
end and the macro tables at the other, Normally, the symbol table is defined to
contain a maximum of 500 symbols, and the remainder of the 12,000 locations are
assigned to the MACRO tables, Thus, the macro tables contain about 11,000 locatiomns
since the symbol table is double-entry and requires 1,000 locations, The 'SYMBOL'
pseudo~op adjusts the normal settings of these tables as follows. Let 'N' be the
value of the absolute, pre-defined expression in the variable field of the 'SYMBOL'
card. Then the occurrence of this pseudo-op causes the symbol table to be re-
defined to contain a maximum of N symbols--i.e., a maximum length of 2*N locatioms.
The remainder of the 12,000 available locations are defined as the MACRO tables.
If the variable field of 'SYMBOL' is blank, then the present symbol table length
is taken as the maximum length. 'N' must be at least as great as the number of
symbols in the symbol table at the time 'SYMBOL' occurs so that no symbols are lost
from the table. Further, 'N' must be small enough that the new symbol table does
not overlap the present MACRO definition table. No MACRO definitions may be lost
due to adjustment of the tables, Use of the "ZST' and 'ZMT' pseudo-ops allows the
zeroing of these tables before using 'SYMBOL'. If any of the above restrictions
are violated, or if ‘SYMBOL' occurs in a MACRO, then 'SYMBOL' is non-fatally
flagged but otherwise ignored., 'SYMBOL' may occur as often as desired.

SYN - SYNONYM

'SYN' is the same as 'EQU'.

TAPERD - .TAPRD CALL

Assembles the same as 'CALLIO .TAPRD', The variable field, except for
the first element, is the same as for 'CALLIO'.

TAPEWR - ,TAPWR CALL

Assembles the same as ‘CALLIO .TAPWR', The variable field, except for
the first element, is the same as for 'CALLIO'.

3.7-46

TCD - TRANSFER CARD
Causes the punching of any accumulated binary output followed by the punch-

ing of a transfer card., If the assembly is absolute, then the value of the variable
field is used as the address of the transfer card,

TITLE - LISTING TITLE

Each page of the listing is headed by a title with a page number. When
'TITLE' occurs, the current page is terminated, a new title is made using columns
14~72 of the 'TITLE' card, and the next page is begun with this new title. To
title the first page of the listing, a '"TITLE' card must be the physically first
card of the UMAP deck. If an integer appears in the location field of the 'TITLE'
card, then the page numbering is set to this value for the next page. 'TITLE' is
not printed in the listing.

VFD - VARIABLE FIELD DATA GENERATION

This pseudo-op is primarily useful in constructing tables at translation time.
The constituents of the 'VFD' are as follows.

1, A symbol or blanks in the location field
2. The operation code 'VFD'
3., One or more subfields (as described below) in the variable field.

Each 'VFD' generates one or more object words, Each subfield of the vari-
able field generates one or more bits of an object word. Thus, the unit of in-
formation for this pseudo-op is the single bit.

The constituents of a subfield are as follows.

1, The Type Letter

This letter indicates the type of the subfield, Three types are permitted,.
Boolean (octal), Hollerith, or symbolic. The corresponding type letters
= o <

Boolean (octal) B or 0 or K
Hollerith H or C
Symbolic No alphabetic character at all

2. The Bit Count

This is an unsigned decimal integer which specifies how many bits of the
object word will be generated by this subfield.

3. The Separation-Character

A slash (/) is used to separate the bit count from the data item.

3.7-47

4, The Data Item to be converted., The form of the data item depends
upon the type of subfield......

A, In a symbolic subfield, the data item consists of one UMAP
symbolic expression.

B. In a Boolean (octal) subfield, the data item consists of one
octal integer or one UMAP Boolean expression,

C. 1In a Hollerith subfield, the data item consists of a string of
characters, none of which is comma or blank.

Consecutive subfields are separated by commas, Any number of subfields may be
given in a 'VFD'-'ETC' sequence, but no subfield may have a bit count which
exceeds 63. Note that a subfield may generate as many bits as desired, but no more
than 63 of them will be used. A 'VFD' card may be followed by as many 'ETC' cards
as desired, each of whose variable fields corresponds to the above stated re-
strictions, However, a subfield begun on one card must be terminated on that card.
UMAP automatically ends a subfield at the end of a card.

If there is a symbol in the location field of a 'VFD', this symbol is de-
fined as the location into which the first object word generated will be loaded.
Location field symbols are ignored on 'ETC' cards.

Successive subfields of the variable field of the 'VFD' are converted and
packed to the left to form generated object words, If N is the bit count of the
first subfield, then the data item in that subfield is converted to an N-bit binary
number, This N-bit binary number is placed in the left-most N bit=-positions of the
first object word generated. The sign position is here regarded as the first bit-
position., If N exceeds 36, the left-most 36 bits of the converted data item form the
first generated object word, and the remaining bits of the converted data item are
placed in the first N-36 bit-positions of the second generated object word. Each
succeeding subfield is converted and placed in the left-most bit-positions re=
maining after the preceding subfield has been processed. The object words thus
generated are assigned to successively higher storage locations., If the total
number of bit positions used by all the subfields is not a multiple of 36, then the
unused bit-positions at the right of the last generated object word are filled out
with zeroes,

The data item in a symbolic subfield is converted as a symbolic expression,
Let N be the bit count of the subfield. If the data item as converted occupies more
than N bits, only the right most N bits of the converted data item are used. If
the data item, as converted, occupies fewer than N bits, then sufficient zero bits
are placed at the left of the converted data item to form an N-bit binary number
(i.e., the converted data item is right-justified with leading zeroces within its
bit count), Neither of these conditions is regarded as an error by UMAP. The
asterisk may be used as an element in a symbolic subfield, In this context it

3.7-48

carries the usual meaning of present location. That is, the value of the asterisk

will be the location assigned to the generated object word which contains the left-
most bit of the converted subfield in which the asterisk appears., Failure to keep
this fact in mind may lead to errors, since the bits generated by one subfield may
occupy as many as three different generated object words, If the data item is a
relocatable expression or an erasable expression, then the subfield must be so
situated, relative to other subfields, that its right~most bit coincides with the
right-most bit of a generated object word, or with the right-most bit of the decrement
portion of a generated object word., This requirement stems from the scheme for hand-

ling relocation, A violation of this rule will be flagged by UMAP as a relocation
error (R FLAG).

The data item in a Boolean subfield may be an unsigned octal integer of

any length., 1If the bit count of the subfield is 36 or less, the data item may be any
valid Boolean expression. Note that an unsigned octal integer is one type of valid

Boolean expression. In a Boolean subfield, Boolean mode is always assumed. See
the Boolean expression section, Let N be the bit count of the subfield. If the
data item, as converted, occupies more than N bits, only the right-most N bits of
the converted data item are used, If the data item, as converted, occupies

fewer than N bits, then sufficient zero bits are placed at the left of the con-
verted data item to form an N=-bit binary number (i.e., the converted data item is
right-justified with leading zeroes within its bit count). Neither condition is
regarded as an error by UMAP, The B-type, O-type, and K-type subfields are treated
exactly the same. The user may use whichever notation is most desirable for him.

The data item in an H-type Hollerith subfield may consist of any combination
of characters other than comma or blank. Each character is converted to its six-bit
binary-code equivalent, Let N be the bit count for the subfield. If the data
item, as converted, occupies more than N bits, only the right-most N bits of the
converted data item are used, If the data item, as converted, occupies fewer than
N bits, then sufficient six-bit groups of the form 110000 (the BCD code for a
blank) are placed at the left of the converted data item to form an N~bit binary
number, If N is not a multiple of 6, then some sub-portion of the code for a
blank (i.e., some right-most part of 110000) will appear at the extreme left of the
N-bit result for this subfield, In other words, the data item is converted as if
the left-most character were preceeded by an unlimited number of blanks, If the
bit count is not a multiple of 6, then the left-most character used, or the left-
most blank used, is truncated from the left., None of these conditions are regarded
as an error by UMAP, The above applies to a C-type Hollerith field also, except
that leading zeros, instead of leading blanks, are supplied on the left of the con-
verted data item if it occupies fewer than N bits, It is only in this one case
that the C-type and H-type Hollerith subfields differ.

If the bit count of any subfield exceeds 63, it is taken as 63, and UMAP
will signal an error through the use of a G FLAG., If the bit count of a Boolean
subfield exceeds 36, then the data item cannot be a Boolean expression. It can
only be an unsigned octal integer.

3.7-49

For example, the statement
VFD C18/A,H18/A,C18/ABC,H18/ABC,C18/ABCDE,H18/ABCDE
generates the three octal words
000021606021
212223212223
232425232425

and the statements

VED 18/SYM1~-SYM2-10,H18/AB,C18/AB,B6/12345
ETC B12/SYM2+SYM3,B24/123456,G30/ABCD,C4/A
SYM1 BOOL 77777
SYM2 EQU 3
sM3 BOOL 41

generate the octal sequence
077762602122

002122450043
222324040000

ZERO - LOAD ZERO LIST

This pseudo-op is exactly the same as 'ASSIGN', except that at load time
zeroes are loaded into all locations defined. Thus,

ZERO A,,B
is equivalent to
A PZE
PZE
B PZE

ZST - ZERO SYMBOL TABLE

This pseudo=-op causes the removal, on PASS 1 only, of all the symbols
currently in the symbol table.

EXTENDED MACHINE CODES

All extended machine codes may have a symbol in the location field for
reference purposes,

3.7-50

BFT - BOOLEAN OFF-TEST

Assembles as 'LFT' or 'RFT' according as the variable field is a left-
Boolean or a right-Boolean expression, Boolean mode is assumed for the variable
field evaluation,

BLK - BLOCK PARAMETER

Indicates a block parameter in a non-1/0 calling sequence. Requires an
address and a decrement,

BNT - BOOLEAN ON-TEST

Assembles as 'ILNT' or 'RNT' according as the variable field is a left-
Boolean or a right=-Boolean expression. Boolean mode is assumed for the variable
field evaluation,

BRANCH or BRA - TRANSFER INSTRUCTION

Acts as a transfer when executed, Requires an address., Decrement may be
used for storage,

ENDID - END I/0 CALLING SEQUENCE

Terminates an I/0 calling sequence. Variable field should be all blank.

FMI - FORMAT SPECIFICATION

Specifies a format for an 1/0 calling sequence., Address should be the
format name., No decrement required.

IIB - INVERT INDICATORS BOOLEAN

Assembles as 'TIL' or 'TIR' according as the variable field is a left~
Boolean or a right-Boolean expression. Boolean mode is assumed for the variable
field evaluation,

I0BP, IOBPN, IOBT, IOBIN

Used in calling upon low=core I/0 control routines.

I0P - I/0 PARAMETER

Used to specify either single or block parameters in I/0 calling sequences.
Requires an address. If block parameter, decrement must be used.

3.7-51

Used in calling low-core I/0 control routines.

PAR -~ NON-1/0 SINGLE PARAMETER

Specifies a single parameter in a non-I1/0 calling sequence. Requires an
address, The decrement should not be given,

RIB -~ RESET INDICATORS BOOLEAN

Assembles as a "RIL' or as a "RIR' according as the variable field is

a left-Boolean or a right-Boolean expression, Boolean mode is assumed for the
variable field evaluation.

SIB - SET INDICATORS BOOLEAN

Assembles as a 'SIL' or as a 'SIR' according as the variable field is a left-
Boolean or a right-Boolean expression, Boolean mode is assumed for the variable
field evaluation,

SLF - SENSE LIGHTS OFF

When executed, turns off all sense lights. Variable field should be blank.

SIN - SENSE LIGHT ON

When executed, turns on sense light N, where N is the value of the absolute
expression in the variable field. N must be greater than zero and less than five.

SLT - SENSE LIGHT TEST

When executed, tests sense light N and skips the next instruction if it
is on (also turning off sense light N), where N is the value of the absolute ex-
pression in the variable field. N must be greater than zero and less than five.

SWT ~ SENSE SWITCH TEST

When executed, tests sense switch N and skips the next instruction if
switch N is depressed, where N is the value of the absolute expression in the
variable field, N must be greater than zero and less than seven,

3.7-52

TAPENR - TAPE NUMBER

Used to specify a tape number in an I/0 calling sequence, Address is
required. A decrement should not be given,

ZAC -~ ZFRO THE ACCUMULATOR

Causes the accumulator to be zeroed when executed. Requires no variable
field.

ZAD or ZSA - ZERO ADDRESS

When executed, causes the address portion of location X to be zeroed out,
where X is the value of the variable field,

ZDC or ZSD - ZERO DECREMENT

When executed, causes the decrement portion of location X to be zeroed
out, where X is the value of the variable field.

EVEN - FORCE NEXT LOCATION TO BE EVEN

This pseudo-op is used to ensure an even value of the program counter for
the data or instruction that follows. It is used primarily with 7094 double-
precision instructions. The variable and location fields of the EVEN pseudo-
op are blank.

If the program counter is odd when the EVEN pseudo-op is encountered, a
binary word containing the instruction AXT 0,0 is generated, Also, for re-
locatable assemblies, an indication is given in the program card that relocation
of the program should be by an even amount, and an extra AXT 0,0 is added follow-
ing the transfer vector if the number of entries in the transfer vector is odd.
If EVEN occurs in a relocatable program, the fourth word of the first program
card is made negative. This indication is used by the loader to ensure the pro-
gram is relocated with its origin at an even location,

COMMON - PSEUDO-OP FOR STORAGE ALLOCATION

This pseudo-op is used to reserve an area of upper core storage for data
storage or working space.. This pseudo-op is not normally used in programs operat-
ing under MAMOS, since the operation ERAS allocates storage in UMAP which is
compatible with MAD program erasable storage. The COMMON pseudo-op is provided
mainly for compatibility between UMAP and FAP, and storage is allocated in the
same manner as described for the FAP pseudo-op COMMON. The difference between

3.7-53

'COMMON' and 'ERAS' pseudo-ops in UMAP are:

1. The 'COMMON' origin is (77461)8 while the 'ERAS' origin is (77777)8

2. ‘'COMMON N' allocates N locations while '"ERAS N'allocates N+l locationms.
The 'COMMON' and 'ERAS' pseudo-ops can not both be used in the same UMAP program,

COUNT - PSEUDC=-OP

This pseudo-op is at present recognized and ignored, and is in UMAP for
FAP compatibility. The 'MIDDLE' pseudo-op should be used in UMAP to speed up long
assemblies,

LBL - BINARY CARD LABEL

This pseudo-op is provided for FAP compatibility, even though it does not
function exactly like the 'LBL' pseudo-~op of FAP. The 'LBL' pseudo-op of UMAP
functions exactly like the 'NEWID' pseudo-op. That is, the first 8 characters
of the variable field is taken as the new label for binary cards.

TTL - LISTING TITLE

This pseudo-op is provided for FAP compatibility, although it does not
function in the same manner as the FAP pseudo-op. Except for the inability to
title the first page of the listing with 'TTL', this pseudo-op in UMAP functions
in the same manner as the UMAP pseudo-op 'TITLE'., The 'TITLE' pseudo-ops of
FAP and UMAP are entirely different, but a UMAP assembly of a program con-
taining the 'TITLE' pseudo=-op of FAP would result in a correct assembly,

DESIST - STOP ASSEMBLY PROCESS

This pseudo-op causes the assembly process to be suspended. All cards
up to the next occurrence of a 'RESUME' pseudo-op are treated as comment cards
and printed under 'NOLIST' control,

RESUME - RESUME ASSEMBLY PROCESS

This pseudo-op turns on the assembly process which may have been turned
off by a previous 'DESIST' pseudo-op., If already on 'RESUME' is ignored.

3.7-54

OPD - OPERATION DEFINITION

The OPD (Operation Definition) pseudo-operation is used to define
a machine operation code, The octal number in the variable field of the
OPD pseudo-operation is assigned as the machine operation code definition
of the symbol in the location field of the OPD pseudo-operationm.

The octal number in the variable field of the OPD pseudo-operation
is considered as 36 binary bits which are described as follows.

BITS MEANING
1=-12 Operation Code.

13 - 14 Both bits non=-zero if indirect addressing is legal,
15 Non~zero if an address is required.
16 Non-zero if a tag is required.
17 Non-zero if a decrement is required.
18 Non-zero if the address does not contain part of the operation,
19 Non-zero for channel commands which may be indirectly addressed.
20 Non-zero for non-transmit channel commands,
21 Non-zero to indicate a machine instruction,
22 Used internally by UMAP,
23 Not used at present,

24 - 36 Remainder of op-code if bit 18 is zero.

If bit 18 is non=-zero then bit 35 is non-zero for variable length instructions,
and bit 36 is non-zero for sense indicator instructions,

PREFIX CODES

A set of operation codes is provided which allows for the symbolic
designation of each of the four parts of a machine word, i,e., the prefix,
the decrement, the tag, and/or the address, The operation code determines
which prefix is used as follows,

OPERATION CODE OCTAL PREFIX
PZE or ... or ¥¥¥%
PON or ONE
PTW or TWOD

PTH or THREE

MZE or FOR or FOUR

MON or FVE or FIVE

MTW or SIX

MTH or SVN or SEVEN

NouwmpPpwNe =0

The address, tag, and decrement subfields may then be provided in their usual
order in the variable field of the instruction. No variable field is required
for any of these., Any combination of subfields may be specified., Indirect
addressing is not allowed on any of these. All prefix codes may have a symbol
in the location field for reference purposes.

3.7-55

MACROS

I. INTRODUCTION

MACRO instructions are sequences of coding which have been given a
name and which may have variable parts. Such sequences, once defined in
a given program, may be incorporated into that program simply by giving the
name of the sequence along with the information to be substituted for the
variable parts of the sequence, Pseudo-ops are provided which allow a
limited amount of conditional assembly and repetition of segments of the
original sequence.

The term MACRO expansion will be used throughout this description.
MACRO expansion will mean the following two step process,

1) Determination of the set of arguments given in the MACRO call

with the creation of symbols, when necessary, for missing
arguments,

2) Generation of UMAP statements, as given in the MACRO definition,

with all dummy arguments replaced by the corresponding calling
arguments,

The entire process is performed in PASS 1 of UMAP. Step 1 occurs as soon
as the MACRO call is recognized as such., Step 2 actually involves a
communication process between the MACRO compiler (a sub~section of UMAP)
and UMAP proper. The MACRO compiler generates the UMAP statements one

at a time, After each statement is generated, control is returned to UMAP,
and the generated statement goes through the normal PASS 1 UMAP processing.
The assembly process is then interrupted, and control is returned to the
MACRO compiler for the next generation step. The replacement of arguments

is a purely symbolic process with no checking. Errors are caught during
the normal assembly process,

In reading the remainder of this description, it will be important
to remember that MACROS are defined and expanded during PASS 1 of UMAP and
thus_have no more connection with execution time than do other parts of
the assembly. The result of a MACRO expansion is a set of UMAP instructions
ready to be processed by the normal UMAP assembler, and all instructions
throughout this set must meet all the specifications normally imposed by
UMAP. As will be seen later, it is the responsibility of the user to in-
sure that the results of MACRO expansions are legitimate UMAP sequences.
Absolutely no checking is provided by the MACRO compiler during the
expansion process,

II., MACRO definition

The pseudo-op 'MACRO' is used to define a sequence of UMAP instructions
as a MACRO, The form of a MACRO definition is

NAME MACRO Al,A2,...,AN

R

NAME éND or NAME ENDM

where

3.7-56

NAME is the name of the MACRO.

al,A2,,.. are the variable parts of the definition, hereafter
called the arguments of the MACRO,

R is a set of UMAP instructions which are to be
assembled, with replacement of the variable parts,
when the MACRO 1is called, This set of instructions
will hereafter be called the range of the MACRO
definition,

The MACRO definition is terminated by an 'END' or 'ENDM' card which has "NAME'
in either the location field or the variable field, or which has a blank vari-
able field and a blank location field, In the latter case, all MACRO defini-
tions in progress (see 3 below) are terminated simultaneously, In the former
case, only the MACRO definition whose name occurs in the location field or
the variable field is terminated.

The following qualifications and restrictions apply to MACRO defi=-

nitions,

1) The MACRO name and each argument must be a legal UMAP symbol,

2)

3)

Expressions are not allowed in the definition. These symbols
need not be distinct from ordinary symbols occurring elsewhere
in the program, but they are unrelated. The first blank after
column 16 terminates the 'MACRO' card, Parentheses may not be
used in a symbol, -

The name of a MACRO may be the same as the name of some pseudo-
op or machine instruction already in UMAP, However, after defi-
nition of the MACRO, the MACRO definition will be used for all
occurrences of the name in the operation field, and the original
definition of the name is lost.

MACRO definitions may be nested, that is, the range of one MACRO
definition may contain the definition of another MACRO. In such
cases, however, MACRO definitions cannot overlap. That is, if a
MACRO definition begins inside another MACRO definition, then it
must end inside that MACRO definition, Several nested MACRO
definitions may end together on a single 'END' card, however, A
further restriction also exists, If MACRO definitions are nested,
then an inner MACRO is not defined until every MACRO within which
it is nested has been called, Thus, if MACRD 'A' is defined inside
the definition of MACRO 'B', then MACRO 'A' is undefined until MACRO
'B' has been called at least once, After MACRO 'B' has been called,
MACRO 'A' may be called as often as desired. Note that every time
MACRO 'B' is expanded, the definition of MACRO 'A' is changed.
MACRO 'A' may be called from inside MACRO 'B' (but only after the
definition of MACRO 'A' has been expanded at least once, either in
the same call or in an earlier call) or from outside MACRO 'B'.

4)

5)

6)

7)

8)

3.7-57

Note, however, that any arguments of MACRO 'B' which occur in 'A',
but which do not occur explicitly in the argument list of MACRO
'A', will have been replaced by the corresponding calling argu-
ments from the last call on MACRO 'B',

The definition of a MACRO may include calls for other MACROS,

even though they may not be defined at the time of the definition.
However, all such MACROS must be defined before the first call

for the original MACRO. The programmer must guard against

circular definitions. Such definitions cause a loop in the compiler
It is possible for a MACRO to call upon itself, or for MACROS to
call upon each other, by using the 'IFF' or 'WHEN' pseudo-ops to
control such calls, An example of this will be given later,

Those BCD characters which are not legal as part of a MACRO name or

argument will be called break characters. The complete list of
break characters is as follows.,

1) EQUAL (=) 7) APOSTROPHE (')

2) PLUS (+) 8) COMMA)

3) MINUS () 9) BLANK

4) ASTERISK (*) 10) LEFT PARENTHESIS

5) SLASH /) 11) RIGHT PARENTHESIS

6) DOLLAR (%) 12) ALL SPECIAL CHARACTERS

Any card in the definition is terminated by the first blank in

the variable field. 1In any case, the variable field is terminated
with columm 72, All break characters in the range of a 'MACRO'
(other than blanks or terminal $) behave exactly like commas,
Consecutive break characters in an argument string will not cause
the insertion of dummy arguments but will simply be skipped.

A 'MACRO' card may be extended by use of 'ETC' cards, In such
cases, an argument is normally terminated when a card is terminated
to split arguments, a dollar sign must be given to indicate that

the present card is terminated but the present argument is continued
on the next card which must be an 'EIC' card. If a 'MACRO' or

'ETC' card terminates with a blank, it may be followed by an 'ETC',
but an argument can't be split. In any case, the maximum number

of arguments that a given MACRO may have is 63.

Names of MACROS may not be headed, and any heading characters in
effect at the time of a MACRO definition are not incorporated as
part of the definitionm.

'REM' cards may be included within MACRO definitions and are
scanned for arguments. On 'REM' cards, blanks do not terminate

the card, but trailing blanks are not included in the definition,
#~-Type remark cards and remarks in variable fields in a MACRO defi-
nition are not included in the definitiom.

I1I.

3,7-58

Example
The following definition provides a three- address addition
instruction.
ADD3 MACRO A,B,C
CLA A
ADD B
STO c

ADD3 ENDM

3.7-59

IV, MACRO call

Once a MACRO has been defined, it is called for insertion into the
assembly by the appearance of the name of the MACRO in the operation field

with the information to be substituted for the variable parts of the defini-
tion in the variable field, The form of the call is

S NAME E1,E2,....,EN

where

S optional symbol in the location field. If given, it is
assigned as the next location to be assigned at the time of
the MACRO call.

NAME name of the MACRD being called,

E1,E2,...the information to be substituted for the variable parts of
the MACRO definition,

The arguments supplied in a MACRO call may be any UMAP expressions. Their
correspondence with the dummy arguments of the MACRO definition is determined
by their position in the sequence of arguments, Hence, the ith argument in
the MACRO call is substituted throughout the MACRO definition for the ith
dummy argument in the MACRO definition.

As an example, consider the following call.
ADD3 AB-2,C+/K/12,XYZ

with the definition given for ADD3 in the last section, the result of this
call would be the sequence

CLA AB-2
ADD C+/X/12
STO XYZ

the substitution process is entirely symbolic, The MACRO compiler simply
takes the string of characters which constitute the argument in the call and
substitutes this string for the corresponding symbol (dummy argument) in

the MACRO definition, The result of this substitution is then assembled by
the normal UMAP assembler and must satisfy all UMAP conditions.

In a MACRO call, a pair of pafentheses surrounding an expression
indicates that everything between the parentheses is to be taken as a
single argument in the expansion, For example, the call

ADD3 X1,=3,(Z1,1)

results in the sequence

3.7-60

CLA X1
ADD =3
STO 21,1

Parentheses may be nested in a call, However, whenever parenthesized
arguments are found, the outermost pair is stripped off, and everything
between them is used as a single argument. Any remaining parentheses
must be legally present, since they will occur in the expansion.

Any part of an instruction may be an argument in a MACRO definition,
For example, consider the following definition.

JUMP MACRO TXX,NAME,X

TXX X
NAME
X SYN *

JUMP ENDM

In the following expansion, an entire MACRO call will be substituted for
the argument 'NAME' above,

JuMP TPL, (ADD3,(X,1),Y,2),2Z

The result of two MACRO expansions (one for 'JUMP' and one for 'ADD3')
gives the following sequence,

TPL
CLA
ADD
STO
ZZ SYN

Z
s 1

* NN

Care must be taken in substituting for op-codes, 1If, for example, an
argument is named 'TIX', then a substitution will be made for every occur~
rence of 'TIX' in the MACRO definition,

If arguments are missing from the end of the argument list in a
MACRO call, symbols will be created to fill the vacancies. The symbols
will have the form '..N', where 'N' is a three digit integer,
For example, consider the call

JUMP TMI, (ADD3,R,S,T)

this results in the sequence

TMI ..001
CLA R
ADD S
STO T
..001 SYN *

3.7-61

An explicitly empty argument terminated by a comma will be treated as empty

(i.e., blank), Created symbols will be supplied only for arguments missing
at_the end of the argument string. For example, the call

ADD3 A,,

gives the sequence

CLA A
ADD
STO ..001

One valuable use for created symbols is in making local references within
the MACRO definition, Any symbol occurring in a location field in a MACRO
definition will also occur in a location field in each expansion of this
MACRO,., Hence, such a symbol will be multiply~defined in the assembly.

To prevent this, all such symbols occurring in location fields in MACRO
definitions should be added to the end of the dummy argument string. By
not giving these arguments in each call, created symbols will be used for
them, and no multiple definitions will occur,

Any heading character in effect at the time of the MACRO call will
be applied to all symbols in the resultant sequence,

For convenience in writing MACRO calls, and to allow a more functional
notation in such calls, redundant commas may be omitted, Specifically, a
comma need not appear before a left parenthesis nor after a right parenthesis
in MACRO argument lists, Such commas may be given if desired.

For example, the call

JUMP TPL, (ADD3,(X,1),Y,2),2Z
(as given earlier) could also be written
JUMP TPL(ADD3(X,1)Y,Z)Z2

As an example of the possible functional notation that can be used, consider
the example.

cos MACRO oP,X

ap
STO X
: CALL Cos,X
COoS END
AC MACRO
AC END

Note that 'AC' is an empty MACRO definition, Then to assemble a sequence
of coding whose purpose is to take the cosine of the cosine of the number
in the accumulator, the call would be

3.7-62

COS(COS(AC))

which expands to the sequence

STO ..002
CALL CO0s,..002
STO ..001

CALL COs,..001

It is not necessary to restrict expressions to be substituted into
the location field within a MACRO to 6 characters nor those to be substituted
into the operation field to 6 characters. One use of this feature is to
substitute bodily a whole instruction for such an argument, The only
restriction in such substitutions is that the programmer insert in the
expression to be substituted the proper blanks so that all resultant expanded
instructions have their various fields in the proper columns, Note that blanks
within parentheses do not terminate an argument.

Data pseudo-ops (i.e., 'OCT', "DEC', and 'BCI') may be included in a
MACRO definition if desired. 1If included, such data will be generated in the
program for each call on the MACRO, If the variable field of a 'BCI' starts
with a digit followed by a comma, the digit and following comma will be stored
as the 'BCI' word count, and the number of words indicated will be stored in
the definition, The variable field will be scanned beginning after the
comma, so that dummy arguments are recognized if set apart by break charac-
ters. If a non-numeric other than comma or asterisk starts a 'BCI' variable
field, then the variable field scan begins with that character, 1In this
case, the first thing in the variable field should be a dummy argument., On
a 'BCI' card, blanks will not stop the variable field scan, but terminal blanks
will not be stored in the definition unless they are part of the word count.
When 'DEC' cards appear in a MACRO definition, the letters 'E' and 'B' may
cause improper definition if used as dummy arguments, Likewise, if 'OCT' cards
occur in the MACRO definition, the letter 'K' may cause improper definition
if used as a MACRO dummy argument, The variable fields of 'DEC' and 'OCT’
cards are scanned, and any dummy arguments will be found if set apart by
break characters.

On a MACRO call, it is possible that a single card will not contain
the entire MACRO call argument list, To provide for this case, "ETC' cards

may be used to continue the argument list over several cards. The follow-
ing conventions hold for 'ETC' cards in a MACRO call --

1) Each card is terminated by the first blank column which is not
within parentheses, or by a dollar signm.

2) An argument is not assumed to be terminated when a card is
terminated. Hence, an argument may be split between two cards.

3) Any blanks within parentheses are considered part of the argument.
Hence, if such an argument is split between two cards, all

remaining blanks on the first card will be retained as part of

4)

the argument., A dollar sign may be used to indicate that the
argument is continued on the next card and that the remainder
of the present card should be ignored.

If a MACRO call or a following 'EIC' card ends with a dollar
sign, then that card must be followed by another 'ETC' card.

If the MACRO call or a following 'ETC' card terminates with a
blank, then it may be followed by an 'ETC' card if needed,

3.7-63

3.7-64

V. IRP Pseudo-Qperation

The indefinite repeat pseudo-op 'IRP' is used in pairs within a MACRO
definition to begin and end a block of instructions which are to be repeated

an indefinite number of times at the time the MACRO is expanded. The form
of such a block is

IRP A

where

A = dummy argument in MACRO definition
= block of instructions to be repeated

The block 'B' will be repeated once for each subfield of the argument 'A'
given in the MACRO call, and on each repetition the argument 'A' will be
replaced by the current sub-argument given in the call, 'A' must be a
UMAP expression defined before appearance of the instruction in a MACRO
call, For example, the definition

SUMSQ MACRO T
STZ T
IRP B
LDQ B
FMP B
FAD T
STO T
IRP
CALL SQRT,T
STO K

SUMSQ END

Defines a sequence which computes the square root of the sum of the squares
of the subarguments of 'B', The call

SUMSQ A,((X,1),(Y,2)),4+1
results in the sequence

STZ
LDQ

=

FAD
STO

LDQ

FAD
STO
CALL
STO A+l

. o w
NN

BBk PN

w
o)
-]
=)
>

’

3.7-65

The following restrictions and additioms apply to the use of the 'IRP'

pseudo-op.

1)

2)

3)

4)

5)

'IRP' may occur only inside a MACRO definition. If it occurs

elsewhere in a program, it is treated as an undefined operation
code,

An 'IRP' can't occur explicitly in the range of another 'IRP'.

However, a MACRO called from within an 'IRP' range may itself
contain other 'IRP' pairs.

An 'IRP' on an empty argument or an 'IRP' on a blank variable
field causes the skipping of all instructions in the 'IRP' range.

An '"IRP Q', where 'Q' is not a dummy argument in the definition,
causes the skipping of all instructions in the 'IRP' range.

An 'IRP' sequence can't occur inside a remote (see 'RMI' pseudo-op)
assembly segment,

Thus, for example, the call

SUMSQ A+5, ,A46

will generate the sequence

STZ A45
CALL SQRT,A+5
STO A+6

3.7-66

VI, SKIP Pseudo~Operation

The 'SKIP' pseudo-op allows a limited type of skipping within a MACROD

definition at the time of expansion of the MACRO.

Normally, it is used in con~-

junction with the 'IFF' or 'WHEN' pseudo-ops (described below). The 'SKIP'
pseudo~op will have one of two alternate forms.

1)

2)

The 'SKIP' pseudo-op can only occur within MACRO definitionms.

SKIP With blank variable field,
When this form of 'SKIP' is encountered, the expansion of the MACRO
is terminated immediately, i,e., all remaining instructions in the

MACRO are deleted,

SKIP P P = UMAP symbol or unsigned decimal integer,

If P is a UMAP symbol, then all instructions up to, but not in-
cluding, the one with P in its location field are skipped. 1If P is
an integer, then the next P statements in the MACRO definition

are skipped., P is assumed to be in decimal mode. In either case,
the following restrictions hold.

A) If '"SKIP P' occurs in the range of an 'IRP', then the SKIP
terminates as above or with the second 'IRP', whichever comes

first.

B) If '"SKIP P' occurs outside the range of an 'IRP', then the
SKIP can't end within an 'IRP' range., When such a situation

occurs, the remainder of the 'IRP' range is skipped automatically.

A 'SKIP' can, however, skip over any number of complete 'IRP'
ranges.

C) An 'ETC' pseudo-op is always ignored in the skipping process,
Thus, if the skipping is done with a count (i.e., 'P' is an
integer), then the count should not include any 'ETC' cards
which are to be skipped.

In all cases a skip is in the forward direction. A SKIP canmot re-
turn to an earlier part of the MACRO definition. If the end of a
MACRQ definition is encountered during a SKIP, then the MACRO ex-
pansion is terminated,

If it occurs

elsewhere in a program, it is treated as an undefined operation code.

3.7-67

VII. 1IFF Pseudo=-Operation

The 'IFF' pseudo-op provides for the conditional assembly of segments
of a MACRO definition at the time of the MACRO expansion. The 'IFF' has two
forms:

FORM 1 IFF P,A,B
FORM 2 IFF P,A,B,S
where
P UMAP expression
A UMAP symbol
B UMAP symbol
S UMAP symbol or unsigned decimal integer

To describe these two forms, the following definitions will be needed.

Q Q=1 1if the value of the expression P is non-zero,
Q=0, otherwise.
R R=1 if A and B are identical (i.e., if A and B are the

same symbol). R=0, otherwise,

Note that P is evaluated in PASS 1, Undefined expressions are given
the value zero. Literals are undefined in PASS 1, P may contain dummy
arguments and these will be substituted before the evaluation of P,

With the definitions of Q and R, the two forms of 'IFF' may now be

described,

Form 1 IFF P,A,P

The instruction immediately following the 'IFF' statement is in-
cluded in the MACRO expansion if and only if Q and R have the same value.
If Q and R do not have the same value, then the statement following the
'IFF' is deleted from the MACRO expansion,

Form 2 IFF P,A,B,S
This form of the 'IFF' statement is equivalent to the two statements

IFF P,A,B
SKIP S

The restrictions upon skipping with respect to 'IRP' ranges (see VI) apply
to this form of the 'IFF', also. Note further that 'EIC' cards are ignored
in skipping mode, Thus, whenever a SKIP with a count is initiated by an
'*IFF' in any of its permissible forms, the count should not include any
'"ETC' cards which are to be skipped.

3.7-68

Note the statement above that 'A' and 'B' are treated as symbols,
i.e., the value of each is the octal code for the BCD representation of the
symbol, If an expression occurs, the last symbol in the expression, or the
final digits of the last number in the expression, are used as the ;ymbol

'A' or 'B', 1If lit?ral occurs, the symbol used is the equal sign (=). To
insure proper functioning of the 'IFF' pseudo-op, both 'A' and 'B' should be
single symbols and not expressions.

As an example, redefine the MACRO JUMP to be

JUMP MACRO TXX,X,N
TXX X
NAME
IFF 1,N,1

X SYN *

JUMP END

With this definition, the 'SYN' card is included in the expansion only if
the final argument is a 'l'., Thus, the call

JUMP JPL,(CLA A,1),Y

generates the sequence

TPL Y
CLA A,l
while the call
JUMP M, (STO B),Z,1

generates the sequence

TMI z
STO B
Z SYN *

The 'IFF' may alsc be used to allow circular definitions within MACRO
in this case, the '"IFF' is used to eventually terminate the apparent circularity.
For example, consider the following MACRO which calls upon itself,

TXITAB MACRO A,B,C
TXI A,B,C
TXI A,B,-C
IFF c/2
TXITAB A,B,C/2

TXITAB END

3.7-69

The MACRO call
TXITAB X,Y,8

generates the sequence

TXI X,Y,8

TXI X,Y,-8

TXI X,Y,8/2

TXI X,¥,-8/2

TXI X,Y,8/2/2
TXI X,Y,-8/2/2
TXI X,Y,8/2/2/2
TXI X,Y,-8/2/2/2

Note that in the absence of the 'IFF C/2' statement, the MACRO compiler would
have gone into an infinite loop in trying to expand this MACRO call., Since

C/2 = 0 when C = 1 (due to integer division), the 'IFF' eventually skips the
MACRO call 'TXITAB A,B,C/2', thus terminating the MACRO. Had there been
additional instructions in the MACRO definition following this call, these would
now be expanded, once for each time the MACRO called upon itself, each time
using the arguments for the specific call upon the MACRO. Thus, the entire
MACRO is expanded once for each call made upon it in this recursive loop.

The reader should be able to verify the following interpretations of
'IFF' statements,

A) IFF O0,A,B Assemble the next instruction if A and B
are different symbols,

B) IFF 1,A,B,8 Skip to the statement labeled S5, if § is a
symbol, or skip S statements, if S is an integer,
if A and B are the same symbol.

c) IFF Z/N Assemble the next instruction if Z is greater
than N

p) IF Z/N,,,S Skip to the statement labeled S, if S is a
symbol, or skip S statements, if S is an integer
and if Z>N.

More generally, in terms of the variable Q defined above, the interpre-
tation of the two forms of the 'IFF' pseudo-op are as follows.

Form 1 IFF P,A,B
A) Q=0 Assemble the next instruction if A and B are different
symbols.
B) Q=1 Assemble the next instruction if A and B are the same

symbol.

3,7-70

Form 2 IFF P,A,B,S
A) Q=0 Skip to the statement labeled S, if S is a symbol,
or skip S statements, if S is an integer amd if A and
B are different symbols,
B) Q=1 Skip to the statement labeled S, if S is a-symbol, or

skip S statements, if S is an integer and if A and B
are the same symbol.

The 'IFF' pseudo-op may occur only in MACRO definitions, If it occurs elsewhere
in a program, it is treated as an undefined operation code.

3,7-71

VIII. MACRO Qualifiers

A set of seven qualifiers are available for use in Macro CALLS and
definitions, Three of these qualifiers (/CRS/, /MAC/, and /MI/) may be used
only in the 'IFF' pseudo-op as described below. Anywhere else, they are treated
as undefined qualifiers, A fourth qualifier (/NS/) can occur only in the 'IFF*

or 'WHEN' pseudo-ops, Anywhere elge, it i i i

; . R s undefined, The remaining three
qualifiers (/1/, /N/, and ;P?; may actually occur almost anywhere (i%e., are
treated essentially as the other qualifiers of UMAP) but are primarily available
for use in MACRO calls and definitionms.

The description of the qualifier structure and the restrictions on the
manner in which qualifiers may occur in an expression as described previously
apply in the use of any of the above seven qualifiers, Failure to comply with
these restrictions will cause a qualifier to go unrecognized (which will usually
result in an error of some other type in evaluating the pertinent expression)
or to be undefined,

A) /1/ Indirect Address Qualifier

1f the /I/ qualifier occurs anywhere in a variable field, it indicates
that the operation code for this card is to be indirectly addressed, For
example, the MACRO call
ADD3 (/1/A,1),B,C

results in the sequence

CLA /1/A,1
ADD B
STO c

which is equivalent to the sequence
CLA* A
ADD B
STO ¢

»1

care must be taken, when using /I/ in Macro calls, that indirect addressing is
given only to those op-codes for which it is legal,

B) /CRS/ Created Symbol Qualifier

The /CRS/ qualifier may occur only in the second argument of an 'IFF'
statement, If it occurs anywhere else, it is treated as an illegal qualifier.

With the /CRS/ qualifier, the third argument of the 'IFF' statement is
not used, and hence must be deleted by the programmer, Using the notation de-
veloped in VII, the two forms of the 'IFF' using /CRS/ are as follows.

Form 1 IFF P,/CRS/A

3.7-72

1) Q=0 Assemble the next instruction if A is not a
created symbol.

2) Q=1 Assemble the next instruction if A is a created
symbol,

Form 2 IFF P,/CRS/A,S

1) Q=0 Skip to the statement labeled S, if S is
symbol, or skip S statements, if S is an
and if A is not a created symbol.

2) Q=1 Skip to the statement labeled S, if S is

or skip S statements, if S is an integer

is a created symbol.

a
integer

a symbol,
and if A

Note that in skipping with a count (S an integer), 'ETC' cards are ignored and

hence should not be included in the count.

c) /Mac/ MACRO Name Qualifier

The /MAC/ qualifier may occur only in the second argument of an 'IFF'
statement, If it occurs anywhere else, it is treated as an illegal qualifier.

With the /MAC/ qualifier, the third argument of the 'IFF' statement is
Using the notation

not needed, and hence it must be deleted by the programmer,
VII, the two forms of the 'IFF' using /MAC/ are as follows,

Form 1 IFF P,/MAC/A

1) Q=0 Assemble the next instruction
MACRO name,
2) Q=1 Assemble the next instruction

name,
Form 2 IFF P,/MAC/A,S
1) Q=20 Skip to the statement labeled

or skip S statements, if S is
A is not a MACRO name.

N

s

o
I
=

Skip to the statement labeled
or skip S statements, if S is
is a MACRO name,

if A is not a

if A is a MACRO

if S is
integer

if § is
integer

a symbol
and if

a symbol,
and if A

Note that in skipping with a count (S an integer), 'ETC' cards are ignored and

hence should not be included in the count,

3.7-73

D) /MI/ MACRO Indirect Qualifierx

The /MI/ qualifier can occur only in the second argument of an 'IFF'
statement, If it occurs anywhere else, it is treated as an illegal qualifier,

With the /MI/ qualifier, the third argument of the 'IFF' statement is
not needed, and hence must be deleted by the programmer, Using the notation
developed in VII, the two forms of the 'IFF' using /MI/ are as follows,

Form 1 IFF P,/MI/

1) Q=20 If the call for the MACRO being expanded was
not indirectly addressed, assemble the next
instruction,

2) Q=1 If the call for the MACRO being expanded was

indirectly addressed, assemble the next instruction,
Form 2 IFF P,/MI/,S

1) Q=0 If the call for the MACRD being expanded was not
indirectly addressed, skip to the instruction
labeled S, if S is a symbol, or skip S5 statements,
if 8 is an integer,

Note that in skipping with a count (S an integer), 'EIC' cards are ignored and
hence should not be included in the count,

E) /NS/ No Skip Qualifier

The /NS/ qualifier may occur only in the second argument of an 'IFF'
statement or the second argument of a 'WHEN' statement. If /NS/ occurs any-
where else in a program, it is treated as an undefined qualifier,

The /NS/ qualifier has the effect of nullifying any skipping in the MACRO
definition which might arise from the 'IFF' or 'WHEN' statement in which it occurs.
The effect of /NS/ lasts only for the duration of the 'IFF' or 'WHEN' card on
which it occurs.

Thus
IFF P,/NS/A,B,S
is equivalent to
IFF P,A,B
and
WHEN A,/NS/R,B,S
is equivalent to

WHEN A,R,B

3.7-74

This makes possible the substitution of arguments of the form (V,T) for 'B'
without changing the original meaning of the 'IFF' or 'WHEN' statements,

F. /P/ and /N/ Print Control Qualifiers

These qualifiers are supplied to provide the functions normally served by
a 'P' or a 'N' in column 7 of a card, Thus, the occurrence of /P/ in a state~
ment causes that statement to be printed regardless of the print control mode
in effect (due to such pseudo-ops as 'NOLIST', 'PCC', or 'PMC'). Conversely,
the occurrence of a /N/ in a statement causes that statement to be omitted
from the listing unless an error is detected while analyzing the card. /P/ and
/N/ can occur anywhere that qualifiers are normally permitted., These qualifiers
are supplied because column 7 of a card in a MACRO definition is not preserved
for the MACRO expansion, and thus the 'P' and 'N' conventions of column 7 can't
in general be used. Only in the particular case in which a MACRO argument
occurs in a location field and a complete UMAP statement is substituted for that
argument can one use the column 7 'N' and 'P' controls. An example of the /N/
qualifier is given in the MACRO 'REP' defined in sub=-section IX, The effect
of a /P/ or a /N/ is carried over to any following 'ETC' cards where such are
legal.

G) Example Usage

The following examples, while not particularly useful MACROS, will
demonstrate some of the qualifiers discussed above,

QUALL MACRO P,B,A
IFF P,/CRS/A
TXL
TXI
IFF P, /MAC/B
TXL
TXI
IFF P,/MI/
TXL
TXI

QUAL1 END

QUAL2 MACRO P,B,A
IFF P,/CRS/A,S1
TXL

s1 TXI
IFF P,/MAC/B,S2
TXL

s2 TXI
IFF P,/MI1/,S3
TXL

S3 TXI

QUAL2 END

The reader should verify that the following calls and generated sequences
are paired,

A)

B)

c)
D)
E)
F)

H)

QUAL1

QUAL1*

QUAL1
QUAL1*
QUAL2
QUAL2%
QUAL2
QUAL2*

1,X,Y

1,QUAL2

TXI

TXI
TXI
TXL
TXI
TXL
TXI
TXL
TXI
SAME AS B)
SAME AS A)
SAME AS B)
SAME AS A)
SAME AS A)
SAME AS B)

3.7=-75

3.7-76

IX. WHEN Pseudo-Operation

Thef'WHEN' pseudo-operation provides for the conditional assembly of
segments of a MACRO definition at the time of the MACRO expansi '"WHEN'
pseudo-op has one of two alternate forms. xpansion. The "

Form 1 WHEN E,R,F
Form 2 WHEN E,R,F,S

where

E UMAP Expression

R a relation ~- R must be one of the following
B, Equal to
.NE, Not equal to
.GE, Greater than or equal to
.G. Greater than
.LE, Less than or equal to
L. Less than

F UMAP Expression
S UMAP symbol or unsigned decimal integer

To describe this pseudo-op, the following definitions are made.

V = Value of the expression E
W = Value of the expression F

where the expressions E and F are evaluated on PASS 1 of UMAP, (Undefined ex~
pressions are given the value zero--literals are undefined on PASS 1.) Now
define B as

B=20 If the Boolean expression V. R W is false,
B=1 If the Boolean expression V R W is true.

The two alternate forms of 'WHEN' then act as follows.
Form 1 WHEN E,R,F

B =0 Do not include the next statement in the Macro definition
in the present expansion of the MACRO.,

B =1 Do include the next statement in the MACRO definition in
the present expansion of the MACRO.

Form 2 WHEN E,R,F,S

0 Continue the MACRO expansion with the next statement in the
MACRO definition.

B=1 IfS is a symbol, skip all statements in the MACRO definition

up to, but not including, the one labelled S. If s is an

integer, skip the next S statements in the MACRO definition,

o
It

3.,7=-77

then continue the MACRO expansion. The restrictions upon
skipping, with respect to 'IRP' ranges (see VI), apply
here also, If the end of the MACRO definition is encoun-
tered while in skipping mode, the MACRO expansion is
terminated for this call. Note further that 'ETC' cards
are ignored in skipping mode so that when skipping by a
count (i.,e.,, when S is an integer) any 'ETC' cards to be
skipped should not be included in the count,

The 'WHEN' pseudo-op is treated as undefined if it occurs exterior to
a MACRO definition. It is also treated as undefined if any one of the first
three arguments is not given or if a relation 'R', other than those listed
above, is given,

As examples, the MACROS 'JUMP' and 'TXITAB' (see VII) may be redefined
using 'WHEN' instead of 'IFF' as follows,

JumMp MACRO TXX,NAME, X, N
TXX X
NAME
WHEN N,.E.,1
X SYN *
JuMP END
TXITAB MACRO A,B,C
TXI A,B,C
TXI A,B,C
WHEN c/2,.NE.,O
TXITAB A,B,C/2

TXITAB END

The calling sequences for these MACRO definitions are the same as given
in VII.

Note that, in contrast with the 'IFF' pseudo-op, only values of symbols
or expressions are used in the 'WHEN' pseudo-op, as opposed to the octal BCD
representations of such symbols.

Note also that the macro qualifiers /MAC/, /MI/, and /CRS/ (see VIII)
may be used only in the 'IFF' pseudo-op. They can't be used with the 'WHEN'
pseudo-op, The /NS/ qualifier may, however, be used in the second argument
of the 'WHEN' pseudo-operation,

As a final example, consider the following MACRO definition.

REP MACRO A,B,C
c SET /N/A=1
IRP B
B
IRP
WHEN c,.E.,0,1
REP c,(B),C

END

3.7-78

This MACRO expands the sequence 'B' of instructions 'A' times, Thus, the call
REP 3,((LGL 3),(ALS 3))
results in the sequence

LGL
ALS
LGL
ALS
LGL
ALS

WWwwwww

Note that the /N/ qualifier prevents printing of the 'SET' in the expansion.
'REP' 18 another example of a MACRO definition which calls upon itself, How-
ever, note the use here of the 'SET' pseudo-operation to perform the actual
counting of the number of expansions made. This, for several internal reasons,
is better than the approach used before with the MACRO 'TXITAB' since the symbolic
arguments in the repeated call do not become longer (and hence do not require
more room, either in the MACRO tables or in the card images generated) and all
expressions are easier to analyze., Note, too, that a third argument 'C' is
added and is used as a counter, 'C' is a created symbol in the above expansion,
since no corresponding call argument 18 given, This is the usual procedure in
constructing counters, Regular symbols may be used 1f desired, This procedure
allows several MACRO definitions to simultaneously count and to communicate
among themselves, One final point should be noticed in this MACRO definitiom.
Note that in the statement

REP c,(B),C

The parentheses are put back on the set of sub-arguments in 'B'., This is
necessary since these parentheses are stripped off when the argument is picked
up. Note also that the third argument is given here, This prevents the use
of a new created symbol for every call which "REP' makes upon itself,

3- 7=-79

X. RMT Pseudo-Operation

MACRO instructions may require the assignment of temporary storage
locations, the definition of constants, or other storage allocation, Such
storage may be set aside within the MACRO definition, in which case it must be
bypassed by transfer instructions, or the programmer may keep track of such re-
quirements for each MACRO instruction and provide the required definitions where-
ever convenient within the program, The pseudo-op "RMI! (standing for remote)
provides & means by which such storage requirements may be automatically handled
by UMAP after the completion of the rest of the assembly. Any instruction
cards which occur between two 'RMI' cards (with blank variable fields) will be
saved in storage and not assembled until either a 'RMT *' or a normal UMAP
'END! card is encountered, In either case, all cards saved for remote insertion
will be inserted into the program and assembled at that point, The various re-
mote sequences will be assembled in the order in which they were originally found.
Such remote sequencaes may include any UMAP operation codes, including calls for
MACROS, Such remotely expanded MACROS may themselves include remote sequences,
When all remote sequences have been generated, UMAP will go on to the card
following the 'RMI *'! or will terminate PASS 1 if the remote assembly was called
by an 'END' card. In the case of 'RMT #', additional remote sequences may occur
after it in the assembly, Such additional sequences will be assembled when the
next “RMT #!' or the 'END! card is encountered,

Remote sequences may be defined external to a MACRO definition, and the above
discussion still applies, 'RMT *' can't occur within a MACRO definition, nor can
an '"IRP' occur within a 'RMI' sequence. 'RMI' sequences should be used sparingly,
for they require storage space (taken away from the MACRO tables) and greatly
lengthen assembly time. An overflow of the MACRO tables during PASS 1 of UMAP,
due either to MACRO definitions and calls or to 'RMI'' sequences, causes immediate
suspension of the assembly.

In using remote sequences, care must be taken with respect to YHEAD' and
'SAK' modes. Remote assemblies are subject to the heading character and 'SAK'
mode in effect at the time of their assembly and not to those in effect at the
time of their definition as a remote sequence, Note that if a 'ZMI' occurs in a
program, all remote sequences defined previous to it are lost. Such sequences
should be expanded with a 'RMT *' before the 'ZMT'.

3. 7-80

XI., Symbol Concatenation

An additional feature available to MACRD definitions is the capability of
concatenating arguments to arguments or to other parts of the MACRO definition,
The user is warned that this is a capability fraught with danger for many reasons,
With the use of concatenation, it is extremely easy to generate in a MACRO ex-
pansion expressions which are devoid of all meaning to UMAP or symbols which
‘do not correspond to UMAP restrictions, In any given instance, it is advisable
not to use concatenatfon if other means are available,

The concatenation operator is the apostrophe ('). 1Its occurrence indicates
that its two operands are to be concatenated and henceforth considered as a single
symbol, It is the programmers responsibility to ensure that the results of such
concatenation are legal UMAP symbols or expressions,

For example, consider the following MACRO definition,

OUT MACRO A,B,C,D,E,F
PRINT F,A, ... ,A4B=1,0

RMT
F BCI %,1H4,C'H'D,B'E*
RMT
ouT END
The call
ouT Al1,10,7,(X(1) =),I10

regults in the instruction
PRINT «.001,Al,,..,A1+410-1,0
with a remote assembly of the format
..001 BCI *,1H4,7HX(I) = ,10I10%

The concatenation operator is not effective if it occurs inm a location field
or if it occurs in an operation field.

30 7=-81

X1I. NOCRS Pseudo-Operation

The occurrence of the 'NOCRS' pseudo~op suppresses the generation of created
symbols for arguments missing from the end of a MACRD call. After the occurrence
of 'NOCRS', all missing arguments are treated as explicity empty arguments,

It should be noted, in using 'NOCRS' and 'ORGCRS', that created symbols
are generated at the time a MACRO call is found and before any part of the ex-
pansion for this call occurs., Thus, whether or not symbols are created for
missing arguments in & MACRO call depends upon whether or not a 'NOCRS' is in
control at the time the MACRO call occurs, A MACRO definition cannot affect
this mode for its own arguments, but it can do so for MACROS which are called from
within the definition, Thus, suppose the following situation occurs,

M1 MACRO Al,A2
NOCRS
M2 A2
ORGCRS
END

M2 MACRO B1,B2
PZE Bl,,B2
END

Now suppose the call
Loc Ml Cc

is given, As the second argument of 'M1l' is missing, a created symbol (say
'.,.001') is generated for it. Therefore, the call for 'M2' is expanded (from
the '"M1' definition) as

M2 .<001
Note that the occurrence of 'NOCRS' within 'M1l' does not affect the created
symbols in expanding 'M1', The above call for 'M2' is missing the second
argument, but the occurrence of 'NOCRS' has turned off the generation of .
created symbols, Thus, this argument is treated as empty. Then, the 'PZE
of the 'M2' definition expands as

PZE .»001,,

Note that within 'M2' the first argument is replaced by '..001' and appears

3.7-82

to have been missing in the "™™M2' call, If the argument 'B2' occurs in 'M2'
in an 'IFF' statement and following the /CRS/ qualifier, then it will cause
that action to be taken which represents the case in which 'B2' is a created
symbol, The MACRGO compiler can not distinguish between the created symbol
generated in 'M1' (and passed along via the MACRO arguments to 'M2') and the

created symbol generated in 'M2' itself,

3.7-83

XIII, ORGCRS Pseudo~Operation

The 'ORGCRS' pseudo-op serves two functions. First, 'ORGCRS' may be used
to initiate the creation of symbols in MACRO expansions, In this case, the
variable field will usually be blank (but may be of the form 'CNNN' as described
below), and the created symbol process begins with the first one not used pre-
viously. Second, 'ORGCRS' may be used to re~origin the numeric part of created
symbols or to change the form of created symbols, If the symbol 'CNNN' occurs
in the variable field, where 'C' is any non~break character and 'NNN' is a three
digit integer, then the next created symbol will have the numeric part "NNN+l1'
with the leading characters '.C' (instead of '...'). (See the last paragraph of
XII for further comments on the effects of 'ORGCRS'.)

3.7-84

XIV, PMC, PMCON, PMCOFF, NOMAC Pseudo-Operations

Normally, MACRO expansions are printed in full except that the 'SKIP',
'WHEN', 'IFF', and 'IRP' pseudo-ops are never included in this printing. When
the 'PMC' pseudo-operation occurs, this MACRO printing mode flips from on to
off or vice versa ('PMC' is a binary switch). In the 'ON' mode, the complete
expansion of each MACRO is printed. This is the normal print mode for MACROS,

In the 'OFF' mode, only the MACRO call is printed in the listing. 'PMCON' always
turns on the printing of MACRO expansions, while 'PMCOFF' always turns this
printing off. 0dd occurrences of the 'NOMAC' pseudo-operation cause the deletion
from the assembly listing of MACRO definitions and remote sequence definitions.
Even occurrences reverse this setting, This pseudo-op has no effect upon the
listing of MACRO and remote sequence expansions,

3.7-85

XV, ZMT Pseudo-Operation

This pseudo-operation causes the removal of all MACRO definitions and/
or remote sequences from the MACRO tables on PASS 1 processing., All MACROS
defined prior to a 'ZMI' will be undefined operation codes subsequent to it
(and not subject to the definition of 'NONODP'), ‘ZMT' may not occur within a
MACRO, but it may occur as often as desired in an assembly., This pseudo-op
may be used to prevent MACRO table overflows during PASS 1 processing, Note that
the programmer may also accomplish this objective through the use of the
'SYMBOL' pseudo-operation. 'ZMI' does not reset the created symbol count,
See 'ORGCRS',

3.7-86

XV, MACRO Depth Number

When MACRO expansions are printed, a depth number is printed, for each
instruction in the expansion, in columms 111, 112, and 113 of the listing.
This is an octal number, and it indicates the nesting depth of the MACRO calls
at the time of the expansion., There is no set limit to this nesting. MACRO
calls may be nested as deep as desired, except that MACRO table overflows may

occur for great nesting depths,

3.7-87

XVII. MACRO Errors

If there is an error on a 'MACRO' card (e.g., a blank location field) or
in a MACRO call (e.g., more left parentheses than right parentheses), a 'U' flag
results and the definition is not entered or the call is not expanded, If an 'ETIC'
card incorrectly occurs in a MACRO definition or a MACRO call, an 'E' flag results
and the definition is not entered or the call is not expanded., Unfortunately, these
errors are rather obvious and are the only ones which prevent the definition entry
or the call expansion, The more common MACRO errors result in incorrect sequences
of coding, sometimes with no fatal errors so that the assembly appears to be success-
ful, This latter type of error results especially from incorrect arguments in a
correct call (e.g., the wrong sequence) or from an incorrect splitting of arguments
between one card and a following 'EIC' card in either a MACRO definition or a
MACROG call., To prevent the latter, it is advisable to always use the '$' convention
in splitting arguments between cards, Quite often, however, errors in a MACRO
call or definition result in UMAP sequences which give rise to the usual error
types -~ illegal qualifier or literal, undefined symbol or op-code, multiply-
defined symbol, etc, Other than a careful analysis of the MACRO definition and
the MACRO call, possibly with a hand simulation of the call, there is no ready-
made procedure for determining why a MACRO did not give the desired coding sequence.
The best procedure to follow, especially if the MACRO definitions are relatively com-
plicated, is to test the MACRO definitions with all types of calls, for which they
should work, in a separate assembly.

3.7-88

XVIII, Further MACRO Examples

A, A three address addition MACRO

To facilitate the writing of a program, it may be convenient to define the
numerical operations ('ADD', 'SUB', 'MPY', 'DVP', 'FAD', 'FSB', 'FMP', 'FDP')
as three-address MACROS, The specific example of a three~address floating addition
MACRO will be developed here., Thus, one might define

FADD MACRO A,B,C
CLA A
FAD B
STO C
END
Then, the call
FADD (A,l),(B,Z),(A,l)

produces the sequence

CLA A,l
FAD B,2
STO A,l

However, when one starts programming with this definition of 'FADD', one soon
realizes a shortcoming. Quite often the first number is already in the accumul-
ator (AC) or is in the multiplier-quotient (MQ), and hence the definition is no
longer efficient, Thus, one might change the definition to

FADD MACRO A,B,C
WHEN J9/AC, /NS/ . E.,/H/A
SKIP 5
WHEN /H/MQ,/NS/.E.,/H/A
SKIP 2
CLA A
SKIP 1
Xca
FAD B
STO C
END
Thus, the call
FADD (A’l)’(B’Z)’(A’l)

produces the sequence

CLA A,1
FAD B, 2
STO A,l

while the call

FADD A,C,(B,2),(A,1)

3.7-89

produces the sequence

FADD B,2

STO Al
and the call

FADD MQ, (B,2),(A,1)
produces the sequence

XCA

FAD B,2

STO A,l

In a similar fashion, the 'FADD' definition may be extended so that the second
and third arguments are treated in a like manner. An interesting MACRO de=-
finition to experiment with is one in which the symbols 'AC' and 'MQ' may be
used, as above, in any combination in the three MACRO arguments,

B, °'CALL' and 'CALLIO' as MACROS.

Another use of MACROS is to define operations which simply do not exist in
UMAP. Suppose, for example, that UMAP did not contain the 'CALL' and 'CALLIO'
pseudo-ops. These could then be defined as MACRDOS. One such set of MACRO de-
finitions is the following.

CALL MACRO NAME , ARG
TSX /TV/NAME, 4
IRP ARG
PARAM TXH,TIX,ARG
IRP
END

CALLIO MACRO NAME, ARG
TSX /TV/NAME, 4
IRP ARG
PARAM 10P, I10P,ARG
IRP
END

PARAM MACRO OP1,0P2,AR1,AR2,AR3
IFF 1,/CRS/AR1
SKIP
IFF 1,AR2,...
0P2 AR1, ,AR3
IFF 0 ’ARZ yene
opl AR1,,0
END

Note that due to the 'IRP' pseudo-ops in the above definitions, certain paren-
thesizing is needed in calls on these MACROS which is not normally needed in
using the 'CALL' and 'CALLIO' pseudo-ops, Thus, the call

CALL ZERO, ((A,...,B),C,D)

3.7-90

results in the sequence

TSX /TV/ZERO, 4
TIX A,,B
TXH c,,0
TXH D,,0

while the call

CALLIO . PRINT, (4, (C,...,C+10),=K1234,0)

results in the sequence

TSX /TV/.PRINT, &
I0P A, ,0

10P C,,C+10

10P =K1234,,0
10P 0,,0

Further, given these definitions, one could easily define additional pseudo-ops
such as 'READ' and 'PAUSE' as

READ MACRO ARG
CALLIO .READ, (ARG)
END

PAUSE MACRO ARG
CALL . PAUSE, (ARG)
END

C. Key Word Formation MACRO

Consider the following task. Suppose that a program reads, from data
cards, words of length greater than 6 characters, so that these words camnnot
be stored in BCD form in single locations, To prevent the usage of excess
machine storage, the programmer decides that he will recognize a given word,
not by its total set of characters, but by looking at an abbreviated set of
characters extracted from the given word. For example, he might decide to
delete every other character of the word and keep only the last 6 of the re-
maining characters as a 'KEY WORD' with which to recognize the original
word. Then, the program must contain a set of all possible 'KEY WORDS' in
order to decipher according to this scheme, To help in writing the program,
the programmer decides to build a set of Macros which will do this decoding
for him at assembly time, thus saving him this effort. One such set is the
following.

KEY MACRO A,B,C,D,E,F,G,H,1,J,K,L,M,N,0,P,Q,R,S
KEY1 0,0,0,0,0,8,D,F,H4,J,L,N,P,R,S
END
KEY1 MACRO A,B,C,D,E,F,G,H,I,J,K,L,M,N
IFF 0,/CRS/G,2
BCI 1,B'B'C'D'E'F
SKIP
KEY1 B,C,D,E,F,G,H,I,J,K,L,M,N

END

3.7-91

The MACRO 'KEY'! deletes every other character of the original word (which is
obviously supplied to it one character per argument), and the MACRO 'KEYl'
shifts the remaining characters until the last 6 are obtained. It is assumed
that the original word has at least 2 characters and at most 18 characters,
Thus, the call

KEY M,0,T,H,E,R
results in
BCI 1,0000HR
while the call
KEY P,R,0,8,L,E,M,T,Y,P,E,S,Y,M,7,1

results in

BCI 1,ETPSM1

3.7-92

COMBINED OPERATIONS TABLE OF UMAP

The following table lists most of the machine operations, pseudo=-
operations, and extended machine operations which UMAP handles,

The TYPE column in the table contains up to 3 characters which help to
describe the operations. The meaning of these characters are as follows.

The instruction is indirect addressable.

The instruction requires an address.

The instruction requires a tag.

The instruction requires a decrement.

The instruction is a 7094 instruction,

The instruction is a pseudo-instruction,

The instruction is an extended machine instructionmn.
The instruction is used mostly for MACRO definition,
The instruction is an indicator instruction,

The instruction requires a Boolean address,

WZREYNbL,oOS>H

All pseudo-operations have a page number enclosed in parenthesis., A
description of the pseudo-operation may be found on the specified page.

All instructions not having P or E in the TYPE column are machine instruc-
tions and their descriptions may be found in the manual IBM 7094 Principles of

Operatioms.

CODE

9LP
ABS
ACL
ADD
ADM
ALS
ANA
ANS
ARS

AXT
BCD
BCI
BES
BET
BLK
BNT
BRA
BSS
BTS
CAL
CAQ
CAS
CHS
CLA
CLM
cLS
coM
CRQ
CVR
DCT
DEC
DLD
DST
DVH
DVP
ENB
END
ENK
EQU
ERA
ETC
ETM
FAD
FAM
FDH
FDP
FMP
FMT
FOR
FRN

(3.7-50) extended machine instruction

(3.7-50) extended machine instruction

floating point divide or proceed

OCTAL CODE TYPE COMMENT AND/OR PAGE
P (3.7-26) assembly control
P (3.7-22) assembly control
0361 Al add and carry logical word
0400 Al add
0401 Al add magnitude
0767 A accumulator left shift
4320 Al and to accumulator
0320 AT and to storage
0771 A accumulator right shift
4774 AT address to index complemented
0774 AT address to index true
P (3.7-27) data generation
P (3.7-27) data generation
P (3.7-27) storage allocation
EBN
2000 E (3.7-50) extended prefix code
EBN
7000 EA (3.7-50) extended prefix code
P (3.7-28) storage allocation
P (3.7-28) storage allocation
4500 AX clear and add logical word
4114 AD convert by addition from MQ
0340 AT compare AC with storage
0760...2 change sign of AC
0500 AT clear and add
0760...0 clear magnitude of AC
0502 AT clear and subtract
0760...6 complement magnitude of AC
4154 AD convert by replacement from MQ
0114 AD convert by replacement from AC
0760...12 divide check test
P (3.7-29) data generation
0443 Al4 double load
4603 Al4 double store
0220 AT divide or halt
0221 AT divide or proceed
0564 Al enable channel interrupt
P (3.7-32) assembly control
0760...4 enter keys from console to MQ
p (3.7-33) symbol definition
0322 AI exclusive or to accumulator
P (3.7-34) statement continuation
0760...7 enter transfer trap mode
0300 AI floating point add
0304 Al floating point add magnitude
0240 Al floating point divide or halt
0241 Al
0260 AT floating point multiply
5000 EA (3.7-50) extended prefix code
4000 E (3.7-54) extended prefix code
0760...11 floating point round

3.7-93

floating point subtract magnitude

(3.7-50) extended machine instruction

load complement of address in index

load complement of decrement in index

CODE OCTAL CODE TYPE COMMENT AND/OR PAGE

FSB 0302 AT floating point subtract

FSM 0306 AT

FUL P (3.7-35) assembly control

FVE 5000 E (3.7-54) extended prefix code
HPR 0420 A halt and proceed

HTR 0000 Al halt and transfer

IFF PM (3.7-67) MACRO control

IIA 0041 N invert indicators from AC

1IB EBN

IIL 4051 BN invert indicators of left half
IIR 0051 BN invert indicators of right half
IIS 0440 BIN invert indicators from storage
I0P 5000 EA (3.7-50) extended prefix code
10T 0760...5 input/output check test

IRP PM (3.7-64) indefinite repeat
oo 0000 E (3.7-54) extended prefix code
LAC 0535 AT

LAS 4340 AL logical compare AC with storage
LBL P (3.7-53) assembly control

LBT 0760...1 low bit test

LDC 4535 AT

LDI 0441 AIN load indicators from storage
LDQ 0560 Al load MQ

LFT 4054 BN left half indicators off test
LGL 4763 A logical left shift

LGR 4765 A logical right shift

LLS 0763 A long left shift

LNT 4056 BN left half indicators on test
Loc P (3.7-36) assembly comntrol

LRS 0765 A long right shift

LT™M 4760,..7 leave trapping mode

LXA 0534 AT load index from address

LXD 4534 AT load index from decrement

MON 5000 E (3.7-54) extended prefix code
MPR 4200 Al multiply and round

MPY 0200 AI multiply

MSE 4760 A minus sense

MTH 7000 E (3.7-54) extended prefix code
MTW 6000 E (3.7-54) extended prefix code
MZE 4000 E (3.7-54) extended prefix code
NOP 0761 no operation

NZT 4520 Al storage non-zero test

0AI 0043 N logical or AC to indicators
OCT P (3.7-37) data generation

OFT 0444 AIN off test for indicators

ONE 1000 E (3.7-54) extended prefix code
ONT 0446 AIN on test for indicators

OPD P (3.7-54) operation definition
ORA 4501 Al logical or to accumulator

ORG P (3.7-38) assembly control

ORS 4602 Al logical or to storage

0SI 0442 AIN

logical or storage to indicators

3.7-94

3.7-95

CODE OCTAL CODE TYPE COMMENT AND/OR PAGE

PAC 0737 T place complement of address in index
PAY 0044 N place accumulator in indicator

PAR 3000 EA (3.7-51) extended prefix code

PAX 0734 T place address in index

PBT 4760, ..1 P-bit test

PCA 0756 T4 place complement of index in address
PCC P (3.7-39) assembly list control

PCD 4756 T4 place complement of index in decrement
PDC 4737 T place complement of decrement in index
PDX 4734 T place decrement in index

PGM P (3.7-40) assembly control

PIA 4046 N place indicators in accummlator

PMC PM (3.7-84) assembly list control

PON 1000 E (3.7-54) extended prefix code

PSE 0760 A plus sense

PST P (3.7-41) assembly control

PTH 3000 E (3.7-54) extended prefix code

PTW 2000 E (3.7-54) extended prefix code

PXA 0754 T place index in address

PXD 4754 T place index in decrement

PZE 0000 E (3.7-54) extended prefix code

RCT 0760...14 restore channel traps

RDS 0762 A read select

REF P (3.7-41) assembly list control

REL P (3,7-42) assembly control

REM P (3.7-42) remark pseudo-op

RFT 0054 BN right half indicators off test

RIA 4042 N reset indicators from accumulator
RIB EBN (3.7-51) extended machine instruction
RIL 4057 BN reset indicators of left half

RIR 0057 BN reset indicators of right half

RIS 0445 AIN reset indicators from storage

RMT PM (3.7-43) assembly control

RND 0760...10 round

RNT 0056 BN right half indicators on test

RQL 4773 A rotate MQ left

RST P (3.7~43) assembly control

KAk 0000 E (3.7-54) extended prefix code

SAK P (3.7-43) assembly control

SBM 4400 AT subtract magnitude

ScA 0636 AT4 . store complement of index in address
SCD 4636 AT4 store complement of index in decrement
SET P (3.7-44) assembly control

SIB EBN (3.7-51) extended machine instruction
SIL 4055 BN set indicators of left half

SIR 0055 BN set indicators of right half

SIX 6000 E (3.7-54) extended prefix code

SLF 0760...140 (3.7~51) sense lights off

SLN 0760...14X A (3.7-51) sense light on

SLQ 4620 AT store left half of MQ

SLT 4760...14X A (3.7-51) sense light test

CODE

SLW
SSM
SSP
SST
STA
STD
STI
STL
STO
STP
STQ
STR
STT
STZ
SUB
SVN
SWT
SXA
SXD
SYN
TCD
TCH
TIF
TIO
TIX
TLQ
TMI
TNO
TNX
TNZ
TOV
TPL
TQO
TQP
TRA
TSX
TTL
TTR
TWO
TXH
TXI
TXL
TZE
UAM
UFA
UFM
UFS
USM
VDH
VDP
VFD

OCTAL CODE

0602
4760...3
0760,..3

0621
0622
0604
4625
0601
0630
4600
5000
0625
0600
0402
7000
0760...16X
0634
4634

1000
0046
0042
2000
0040
4120
4140
6000
4100
0140
0120
0161
0162
0020
0074

0021
2000
3000
1000
7000
0100
4304
4300
4260
4302
4306
0224
0225

TYPE

AT

AT
AT
AIN
Al
ATl
Al
Al

Al
Al
Al

AT
AT

AIN
AIN
ATD
AT
Al
Al
ATD
ATl
AT
Al
Al
Al
AI
AT

AI

ATD
ATD
ATD
Al
AT
Al
AT
ATl
Al
ATD
ATD

3.7-96

COMMENT AND/OR PAGE

store logical word

set sign minus

set sign plus

(3.7-44) symbol definition
store address

store decrement

store indicators

store location counter

store

store prefix

store MQ

store location and trap

store tag

store zero

subtract

(3.7-54) extended prefix code
(3.7-51) sense switch test
store index in address

store index in address
(3.7-45) symbol definition
(3.7-46) assembly control
transfer in channel

transfer if indicators off
transfer if indicators on
transfer on index

transfer on low MQ

transfer on minus AC

transfer on no overflow
transfer on no index

transfer if AC not zero
transfer on overflow

transfer if AC plus

transfer on MQ overflow
transfer on MQ plus

transfer

transfer and set index
(3.7-53) assembly list control
trap transfer

(3.7-54) extended prefix code
transfer on index high
transfer with index incremented
transfer on index low or equal
transfer if AC zero
unnormalized add magnitude
unnormalized floating add
unnormalized floating multiply
unnormalized floating subtract
unnormalized subtract magnitude
variable length divide or halt
variable length divide or proceed
(3.7-46) data generation '

CODE

VLM
WRS
XCA
XCL
XEC
ZAC
ZAD
ZDC
ZET
ZMT
ZSA
ZSD
ZST
BOOL
CALL
DATE
DFAD
DFAM
DFDH
DFDP
DFMP
DFSB
DFSM
DUAM
DUFA
DUFM
DUFS
DUSM
EFTM
EMTM
ERAS
EVEN
FIVE
FOUR
HEAD
I10BP
I0BT
I10CD
I0CcP
I0CT
IO0RP
IORT
10sp
I10ST
LFTM
LMTM
LIST
LOOK
NULL
READ
SAVE

3.7-97

OCTAL CODE TYPE COMMENT AND/OR PAGE
0204 ATD variable length multiply
0766 A write select
0131 exchange AC and MQ
4130 exchange logical AC and MQ
0522 AI . execute instruction
4754 EA (3.7-52) extended machine instruction
0634 EA (3.7-52) extended machine instruction
4634 EA (3.7-52) extended machine instruction
0520 AT zero storage test
PM (3.7-85) MACRO control
0634 EA {3.7-52) extended machine instruction
4634 EA (3.7-52) extended machine instruction
P (3.7-49) assembly control
P (3.7-28) symbol definition
P (3.7-28) subroutine call
P (3.7-29) assemble current data
0301 Al4 double precision add
0305 AT4 double precision add magnitude
4240 Al4 double precision divide or halt
4241 Al4 double precision divide or proceed
0261 AT4 double precision multiply
0303 AI4 double precision subtract
0307 AT4 double precision subtract magnitude
4305 Al4 double precision unnorm. add magnitude
4301 AT4 double precision unnorm, add
4261 A4 double precision unnorm, multiply
4303 Al4 double precision unnorm. subtract
4307 AI4 double precision unnorm. subtract magnitude
4760, ..2 enter floating trap mode
4760...16 enter multiple tag mode
P (3.7-33) storage allocation
P (3.7-52) storage allocation
5000 E (3.7-54) extended prefix code
4000 E (3.7-54) extended prefix code
P (3.7-35) assembly control
4000 EAD (3.7-50) extended I/0 command
3000 EAD (3.7-50) extended I/0 command
0000 AD I/0 under count and disconnect
4000 AD I/0 under count and proceed
5000 AD I/0 under count and transfer
2000 AD I/0 a record and proceed
3000 AD I/0 a record and transfer
6000 AD I/0 until signal and proceed
7000 AD I/0 until signal and transfer
4760...4 leave floating trap mode
0760...16 leave multiple tag mode
P (3.7-36) assembly control
P (3.7-36) .LOOK call
P (3.7-37) assembly control
P (3.7-41) .PRINT call
P (3.7-43) .SAVE call

CODE OCTAL CODE TYPE COMMENT AND/OR PAGE

SKIP . PM (3.7-66) MACRO control

WHEN PM (3.7-76) MACRO control

ZERO P (3.7-49) define cleared cells
BRIEF P (3.7-28) assembly list control
COUNT P (3.7-53) assembly control
EJECT P (3.7-32) assembly list control
ENDIC P (3.7-19) I/0 pseudo=-op

ENTRY P (3.7-33) defines entry point
EXECT P (3.7-34) binary output control
INDEX P (3.7-36) assembly list control
T0BPN 4000 EAD (3.7-50) extended I/0 command
TOBTN 3000 EAD (3.7-50) extended 1I/0 command
I0CDN 0000 AD non~-transmit I/0 and disconnect
I0CPN 4000 AD non~transmit I/0 and proceed
I0CTN 5000 AD non-transmit I1/0 and transfer
I0RPN 2000 AD non-transmit I/0 and proceed
I0RTN 3000 AD non-transmit I/0 and transfer
TI0SPN 6000 AD non-transmit I/0 and proceed
OPSTN 7000 AD non-transmit I/0 and transfer
IOTRA 1000 EA (3.7-51) used in calling low core I/0
MACRO PM (3.7-55) MACRO definition
NEWID P (3.7-36) assembly punch control
NOCOM P (3.7-37) assembly list control
NOCRS PM (3,7-81) MACRO control

NOMAC PM (3.7-84) MACRO list control
NONQP P (3.7-37) operation definition
OBJCT P (3.7-37) assembly punch control
OPSYN P (3.7-38) operation definition
PAUSE P (3.7-39) .PAUSE call

PCCON P (3.7-39) assembly list control
PMCON PM (3.7-84) MACRO list control
PRINT P (3.7-41) .PRINT call

PUNCH P (3.7-41) .PUNCH call

REFON P (3.7-42) assembly control
SETTO P (3.7-44) .SET call

SEVEN 7000 E (3.7-54) extended prefix code
SPACE P (3.7-44) assembly list control
START P (3.7-44) define entry point
THREE 3000 E (3.7-54) extended prefix code
TITLE P (3.7-46) assembly list control
ASSIGN P (3.7-26) storage allocation
BINARY P (3.7-27) assembly control
BRANCH 7000 EA (3.7-50) extended operation
CALLIO P (3.7-29) I/0 subroutine call
COMMNT P (3.7-29) .COMNT call

C OMMON P (3.7-52) storage allocation
DECMOD P (3.7-32) set decimal mode
DESIST P (3.7-53) stop assembly process
DETAIL P (3.7-32) assembly list control
ENDPGM P (3.7~32) assembly control
EQUMAX P (3.7-33) symbol definition

3.7-98

CODE OCTAL CODE TYPE COMMENT AND/OR PAGE

EQUMIN P (3.7-33) symbol definition
ERLIST P (3.7-34) storage allocation
EXTERN P (3.7~34) transfer vector control
FLAGDP P (3.7-34) assembly list control
FLAGSY P (3.7-34) assembly list control
MIDDLE P (3.7-36) assembly control
NEXECT P (3.7-37) assembly punch control
NOBJCT P (3.7-37) assembly punch control
NOLIST P (3.7-37) assembly list control
OCTMOD P (3.7-38) assembly control

ORGCRS PM (3.7-83) MACRO control

PCCOFF P (3.7-39) assembly list control
PCLIST P (3.7-39) assembly list control
PCMORG P (3.7-39) assembly control
PGMCOM P (3.7-40) storage allocation
PMCOFF PM (3.7-84) MACRO list control
PUNLIT P (3.7-41) assembly list control
REFOFF P (3.7~41) assembly list control
RELIST P (3.7-42) assembly list control
RESERS P (3.7-42) assembly control
RESPGC P (3.7-42) assembly control
RESTOR P (3.7-42) .RSTOR call

RESUME P (3.7-53) resume assembly process
SYMBOL P (3.7-45) adjust symbol table length
TAPENR 5000 EA (3.7-52) extended operation
TAPERD 3 (3.7-45) .TAPRD call

TAPEWR P (3.7-45) .TAPWR call

UNLIST P (3.7-37) assembly list control

3.7-99

3.7-100

FAP Operations Not In UMAP

The following machine operations available in the FAP Assembly Program
are not defined in UMAP. They may, if necessary, be defined in a program through
use of the 'OPD' pseudo-operation,

BSFX SCHX WTBX
BSRX SDNX WTDX
BTTX SDLX ECTM
ETTX SPRX ESNT
LCHX SPTX LSNM
RCDX SPUX
RCHX STCX
RDCX TCRX
REWX TCOX
RICX TEFX
RPRX TRCX
RSCX WEFX
RTBX WPBX
RTDX WPDX
RUNX WPUX

Where X = A,B,C,D,E,F,G, or H,.

Also, 7909 data channel commands, 7631 file control orders, and 7640 hypertape
control orders are not defined in UMAP,

FAP Pseudo=-Operations Not In UMAP

The pseudo-operations TAPENO, DUP, IFEOF, 704, 7090, OPVFD, MOP and MAC
which are available in FAP are not defined for UMAP.

Also, the $§ notation for subroutine calls is not available in UMAP.

FAP Pseudo-Operations Which Operate Differently In UMAP

The FAP pseudo-operations HEAD, COUNT, TITLE, SST and TTL are defined
differently from the same pseudo-operations in UMAP,

Use of the FAP pseudo-operations COUNT, TITLE, and TTL in a UMAP program
will not affect the correctness of the assembly,

3.8-1

MAMOS LIBRARY SUBROUTINES

INTRODUCTION

PURPOSE: This section of the MAMOS manual is designed to make the user of
MAMOS aware of the subroutines available to him, and to give him the
necessary information concerning the use of those subroutines. Not all
subroutines available to the user are listed in this collection. The
low-core subroutines are described elsewhere in the manual, and are not
included in this section.

The user will find, at the end of this section, an index of the sub-
routines, both by name and by function. Included in the index are the
entry points to the subroutines, the length of the subroutines in
octal and the number of erasable locations used in octal. The length
is given as a means of calculating the amount of core space occupied
by a program and its subroutines.

CALLING SEQUENCES: Calling sequences will be given in those languages
(i.e., UMAP, MAD or FORTRAN) for which the subroutine is designed to
work. The name of the subroutine may change depending on the language
used in calling it. In writing FORTRAN programs to be translated by
MADTRAN, the user must remember that the source program given to the
compiler is actually in MAD. The decision as to whether to use the
FORTRAN or MAD calling sequence for subroutine calls will depend upon
the particular function of the entry point in question, and is left up
to the user. 1In general, if a calling sequence is not given for a
particular language, the routine cannot be used in that language.

ARGUMENTS: The descriptions of the arguments in subroutine write-ups are
usually a source of confusion. To aid the user, certain terms and
phrases will be defined here. It is important that the distinctions
made here be remembered when consulting any of the write-ups in this
section.

1. 1In MAD and FORTRAN, when an argument is a single variable (not an
array), the letter specifying the argument stands for a constant,
the name of a variable, or (unless otherwise specified) an expres-
sion. The value of each argument is the value of the variable in
the mode specified. In UMAP, the letter is the symbolic address
of the value of the variable.

2. Array designations may occur in two ways, either by the name of
the variable or by its first entry (or, equivalently, its first

element or base element). Throughout this section, the word array
will be used to indicate either a vector or a higher dimension
array.

A. ARRAY NAME: If the data is stored in array A, then the name
of the array is A. 1In MAD, the subroutine will locate the dimen-—
sion vector of the array and use this information to find any
other element of the array. In FORTRAN, the name A is equivalent
to the base element of the array. In UMAP, the name A refers to
the symbolic address of the first entry.

B. FIRST ENTRY OF ARRAY: If the data stored in the array begins
in A(8), then A(8) must be given in the calling sequence if the
first entry is required. Note that A(1l,1) is usually the first
entry of a two-dimension array. In UMAP, the first entry is the
symbolic address of the first data element.

3.8-2

INTRODUCTION (CONTINUED)

3. Many subroutines have a computation switch, usually of floating
point mode. (This mode is used due to the difference between
MAD and FORTRAN integers.) Therefore, one may write:

MAD I = SUB. (ARGS)

FORTRAN I = SUB (ARGS)
I will automatically be declared an integer in FORTRAN and must
be so declared in MAD. The translators will convert to the proper
form of the integer. Further, in MAD one may write:

TRANSFER TO S (SUB. (ARGS))
where S(I) is a statement label. Here again, the integer conver-
sion is automatically provided.

4, 1If a subroutine uses N cells of erasable storage, then they will
be the high N locations in core storage. Thus, if 3 erasable
locations are used, they will be -1 = 77777, -2 = 77776, and
-3 = 77775.

5. Many of the subroutines store their arguments in erasable. It is
of great aid when debugging programs (with the aid of a dump), to
have this information available. For this reason, often the
erasable location where the argument is stored is noted, enclosed
in parentheses, after the description of the argument itself.

6. In UMAP, some of the arguments may be tagged and the tag will be
effective in computing the effective address of the argument.

For instance:

CALL SIN

PAR ARG,2
will compute the sine of the value found in location (ARG-C(IR2)).
Naturally, Index register 4 cannot be used for this purpose. Unless
specifically mentioned, arguments cannot be tagged. In the follow-
ing write-ups, these tags will be referred to as optional tags.

7. Some subroutines require as arguments, a location to which control
may be transferred by the subroutine. These can be given directly
by MAD or by UMAP, but to do this in FORTRAN requires the following
dodge. Assume that we wish to give the subroutine named XXX the
formula number 6 as an argument. A possible sequence is then:

ASSIGN 60 to N
GO TO N, (6,60)
60 ASSIGN 6 to N
CALL XXX (N)
Or, another possibility is:
ASSIGN 6 to N
IF (I) 3, 3, 4
3 GO TO N, (6)
4 CALL XXX (N)
The main point is that the N must be used in at least one assign
statement and N must be tested at least once by an assigned GO TO.

NOTES:

1. 1In MAD there exists a special subscripting option (see the MAD
manual), which allows a user to define his own method of computing
subscripts. Those arrays which utilize this option may not be
used as input arguments to subroutines not written in MAD (which
includes almost all library subroutines), which require as input
the name or first element of an array. All arrays used as input
to the library routines must be dimensioned in the standard way.

3.8-3

INTRODUCTION (CONTINUED)

2.

There are several equivalent ways to call a subroutine using
UMAP. In any given write-up, only one way will be given, since
the others are directly derivable. In general, if XXX is the
name of a subroutine, L is a single parameter and the block B
to B+10 is another parameter:

CALL XXX,L,B,...,B+10
is equivalent to

CALL XXX

PAR L

BLK B,,B+10
is equivalent to

TSX /TV/XXX,4 (The /TV/ is needed only if UMAP is

PAR L generating the program card.)

BLK B,,B+10
See the UMAP write-up in this manual for further details.
All library subroutines follow the share conventions and preserve
index registers and sense indicators. However, unless it is other-
wise stated, the subroutines will not necessarily preserve the AC,
MQ, overflow light, divide check light or sense lights.

The majority of this section of the MAMOS manual comes from the MESS write-
up of the University of Michigan Executive System.

The following symbols are used in this write-up for describing limits,
ranges and magnitudes of arguments and results:

SYMBOL MEANING
.E. Equal to.
.NE. Not equal to.
.P. To the power.
.G. Greater than.
.GE. Greater than or equal to.
.L. Less than.
.LE. Less than or equal to.

PI1 o

3.8-4

LOGICAL OPERATIONS

ENTRY POINTS: ANA, ORA

PURPOSE: Provide the logical operations AND and OR for use in MAD programs.

CALLING SEQUENCES:

MAD X = ANA.(A,B) (AND)
MAD X = ORA. (A,B) (OR)
ARGUMENTS:
A First argument
B Second argument
X Bitwise OR (ORA.) or bitwise AND (ANA.) of the 36-bit

arguments A and B.

FLOATING-POINT ARCSINE AND ARCCOSINE

ENTRY POINTS: ARCSIN, ARCCOS
PURPOSE: Compute ARCSIN(X) and ARCCOS(X) for floating-point argument X.

CALLING SEQUENCES:

MAD Y = ARCSIN. (X)
Y = ARCCOS. (X)

FORTRAN Y = ARCSIN(X)
Y = ARCCOS (X)

UMAP CALL ARCSIN
PAR X,T

NORMAL RETURN - RESULT IN AC.

CALL ARCCOS
PAR X,T
NORMAL RETURN - RESULT IN AC.

ARGUMENTS:
X Floating-point argument for which the arcsine or arccosine
is desired. X must satisfy the inequality .ABS.X .LE. +1.

Y The resulting functional value.
For the arcsin routine, Y will fall in the interval
-PI/2.LE.Y.LE.+PI/2 .
For the arccos routine, Y will fall in the interval
0.LE.Y.LE.PI

T Optional tag.

SUBROUTINES REQUIRED: SQRT

ERROR CONDITION:
ABS.(X) .G. +1
This causes an argument to the SQRT routine to be negative.
SQRT will print out a comment to this effect, and control will be
returned to the system error routine.

3.8-5

FLOATING POINT PRINCIPLE VALUED ARCTANGENT

ENTRY POINTS: ATAN
PURPOSE: Compute principle value of ARCTAN(X) for floating point argument X.

CALLING SEQUENCES:

MAD Y = ATAN. (X)

FORTRAN Y = ATAN(X)

UMAP CALL ATAN
PAR X,T
NORMAL RETURN - Y IN THE ACCUMULATOR.

ARGUMENTS :

X The floating point argument for which the arctangent is
desired.

Y The desired angle in floating point, -PI/2.LE.Y.LE.PI/2.

T Optional tag.

OCTAL LOCATION FINDER

ENTRY POINTS: ATLOC

PURPOSE: Prints ' AT LOCATION XXXXX', where XXXXX is either a location
given or the location ATLOC was called from.

CALLING SEQUENCES:
MAD EXECUTE ATLOC. (LOC)
UMAP CALL ATLOC,LOC
FORTRAN CALL ATLOC(LOC)

ARGUMENTS :
LoC When non-zero, the 2's complement of LOC will be printed.
When zero, the location from which ATLOC is called will be
printed.

SUBROUTINES REQUIRED: SPRINT

FLOATING POINT SINGLE VALUED ARCTANGENT

ENTRY POINTS: ATN1

PURPOSE: Compute in the range of O to 2PI the single value of ARCTAN(Y/X)
for floating point arguments X and Y.

CALLING SEQUENCES:

MAD Z = ATNL.(Y,X)
FORTRAN Z = ATN1(Y,X))
UMAP CALL ATN1

PAR Y,T1

PAR X,T2

NORMAL RETURN -~ Z IN THE ACCUMULATOR.

3.8-6

(FLOATING POINT SINGLE VALUED ARCTANGENT ~ CONTINUED)

ARGUMENTS :
X,Y The floating arguments, where TAN"1(Y/X) is the desired angle.
Z The desired angle in floating point (radians), O.LE.Z.LE.2PI.

T1,T2 Optional tags.

SIMULTANEOUS LINEAR EQUATIONS

ENTRY POINTS: BAKSUB

PURPOSE: Perform the double back-substitution L *# ¥Y =B and R * Z = Y
where L is a monic lower triangular matrix and R is upper
triangular. The sub-diagonal elements of L and the non-zero
elements of R are assumed to be stored in the same matrix A
(see subroutine GAUSS).

RESTRICTION: WNo check for singularity or inconsistency is made by this
subroutine. It is, therefore, advised that the solution be
checked. All checking is left up to the user.

CALLING SEQUENCES:
FORTRAN X = BAKSUB (N,A,Z,B)

MAD X = BAKSUB.(N,A,Z,B)
UMAP CALL BAKSUB,N,A,Z,B
RETURN - FLOATING-POINT SWITCH IN AC.
ARGUMENTS :
N Integer dimension of the square matrix A.
A First element of the matrix A in which L and R are stored. For
further information see the write-up for subroutine GJRDT.
Z For a successful return, Z will be the solution vector.
B Right hand side of the system of equatioms.
X Floating-point switch
1. Successful computation.
0. Overflow, cannot continue.

SUBROUTINES REQUIRED: FSPILL,RSPILL

3.8-7

ONE WORD BCD TO BINARY CONVERSION

ENTRY POINTS:

BCDBN, MBCDBN

PURPOSE: Convert one BCD word into the equivalent integer.

CALLING SEQUENCES:

MAD
FORTRAN
UMAP

ARGUMENTS :
N

I
T

1 = BCDBN. (N)

I = MBCDBN(N)

CALL BCDBN

PAR N,T

NORMAL RETURN - I IN THE ACCUMULATOR

The BCD word to be converted to an integer. All blanks are
completely ignored.

The integer equivalent to the BCD argument, N.

Optional tag.

ONE WORD BINARY TO BCD CONVERSION

ENTRY POINTS:

BNBCD

PURPOSE: Convert a binary integer into its BCD equivalent which is right
justified and filled in with leading zeros. The primary use of
this subroutine is modifying formats with integers read in as
data.

CALLING SEQUENCES:

MAD
FORTRAN
UMAP

ARGUMENTS :
I
N

T

N = BNBCD.(I)

X = BNBCD(I)

CALL BNBCD

PAR 1,T

NORMAL RETURN - N IN THE ACCUMULATOR.

The integer to be converted.

The BCD equivalent of the integer I. Zeros are filled in on
the left to complete the BCD word.

Optional tag.

MATRIX INVERSION

ENTRY POINTS: BORDS

PURPOSE:

Inversion. of a real symmetric matrix upon itself. The determinant
is calculated as a by-product. The matrix is inverted by the
method of successive bordering. For success, this method
requires that submatrices of the form

AL, ... AL,

A(J,1) ... A(J,T)
for J = 1,2,...,N be non-singular. If the determinant of the
matrix is non-zero, this condition is always satisfied.

CALLING SEQUENCES:
FORTRAN See write-up for subroutine IBDS.

MAD
UMAP

ARGUMENTS :
N
A

D

X = BORDS. (N,A,D)
CALL BORDS,N,A,D
RETURN - X WILL BE IN THE AC

Integer dimension of the square matrix A. N may not exceed 100.
First element of the matrix. For further information, see the

write-up for the subroutine GJRDT.
After a successful return, D will contain the determinant.
Floating-point switch;

1. Successful inversion.

~K. Negative integer giving the dimension of the smallest

principal minor equal to zero.

3.8-9

BESSEL FUNCTIONS

ENTRY POINTS:

BSL1

PURPOSE: Compute Bessel functions J(N,X), I(N,X), Y(N,X), K(N,X),
EXP(-X)*I(N,X), and EXP(X)*K(N,X), for real values of
X.GE.0. and for integral values of N, O0.LE.N.LE.5, where
N is the order of the desired Bessel function.

CALLING SEQUENCES:

MAD
FORTRAN
UMAP

ARGUMENTS :
X
I

L = BSLl.(X,I,N,B,K)
L = BSL1(X,I,N,B,K)
CALL BSL1

PAR X
PAR I
PAR N
PAR B
PAR K

NORMAL RETURN - L IN THE ACCUMULATOR.

Floating point argument X.

Integer argument specifying the type of Bessel function
desired.

for J(N,X)

for I(N,X)

for K(N,X)

for Y(N,X)

for EXP(-X)*I(N,X)

for EXP(X)*K(N,X)

Integer argument N, the order of the desired function,
0.LE.N.LE.5.

The desired Bessel function of the argument X.

Integer argument which indicates the number of binary digits
desired for convergence. K = 0, then all bits must agree,
K = 1, then 26 digits are asked for, K = 5 specifies 22
bits, etc.

Computation flag (floating point).

AUV ESWN =

L =1. Successful return. Desired Bessel function
stored in B.
L =2. Error return. Specified arguments would

result in function too large for machine.

SUBROUTINES REQUIRED: SQRT, COS, SIN, EXP, ELOG

3.8-10

MATRIX FACTORIZATION BY CHOLESKY DECOMPOSITION

ENTRY POINTS: CHOLES

PURPOSE: Factorization of a real symmetric positive definite matrix A into
an upper triangular matrix R and a lower triangular matrix L such
that

= (R TRANSPOSE) and A =L * R.
Only the diagonal and upper diagonal elements need be stored in A
on entry, and on exit the matrix L will be stored in the diagonal
and lower diagonal elements. The above diagonal elements of A are
not changed by CHOLES. If the matrix is not positive definite,
this symmetric factorization is impossible without introducing
imaginary elements in the factors.

CALLING SEQUENCES:
FORTRAN X = CHOLES (N,M,A)
)

MAD X = CHOLES. (N,M,A
UMAP CALL CHOLES,N,M,A
RETURN - X WILL BE IN THE AC.
ARGUMENTS:
N Integer dimension of the square matrix A.
M Integer row length of matrix as stored in core storage.
A First element of the matrix. For further information, see
the write—up for the subroutine GJRDT.
X Floating-point switch.
1. Successful decomposition.
0. Overflow, cannot continue.

-1. Cholesky decomposition impossible.
See above. The smallest principal minor that is non-
positive definite may be found by examining the
diagonal elements of the matrix on return. If A(IL,I)
is zero or negative, the I-th order minor is non-
positive definite.

SUBROUTINES REQUIRED: FSPILL, NASQl, RSPILL

3.8-11

COMPLEX ARITHMETIC

ENTRY POINTS: CMADD, CMSUB, CMMUL, CMDIV
PURPOSE: Does floating point complex arithmetic.

CALLING SEQUENCES:

MAD EXECUTE CMADD. (R1,I1,R2,I2,RANS,TANS) Addition
EXECUTE CMSUB. (R1,I1,R2,I2,RANS,IANS) Subtraction
EXECUTE CMMUL. (R1,I1,R2,12,RANS,TANS) Multiplication
EXECUTE CMDIV. (R1,I1,R2,I2,RANS,IANS,ERR) Division
FORTRAN CALL CMADD (R1,U1,R2,U2,RANS,UANS) Addition
CALL CMSUB (R1l,U1,R2,U2,RANS,UANS) Subtraction
CALL CMMUL (R1,U1l,R2,U2,RANS,UANS) Multiplication
CALL CMDIV (R1,U1,R2,U2,RANS,UANS,ERR) Division
UMAP Addition Subtraction Multiplication Division
CALL CMADD CALL CMSUB CALL CMMUL CALL CMDIV
PAR R1 PAR R1 PAR Rl PAR R1
PAR Il PAR Il PAR 1I1 PAR 1I1
PAR R2 PAR R2 PAR R2 PAR R2
PAR 12 PAR 1I2 PAR 12 PAR 12
PAR RANS PAR RANS PAR RANS PAR RANS
PAR TIANS PAR TIANS PAR TANS PAR IANS
PAR ERR
ARGUMENTS :
Rl Real part of first operand.
I1, U1 Imaginary part of first operand.
R2 Real part of second operand.
12, U2 Imaginary part of second operand.
RANS Real part of answer.
IANS,
UANS Imaginary part of answer.
ERR Use of this argument is optional. If used, attempted division
by zero will cause a return to the location specified.
Otherwise, execution will be terminated. (Fortran users

should see point 7 under notes in the introduction to
this section.)

ERROR CONDITION:
If R2 and I2 both equal zero when using CMDIV and ERR is given, control
will be transferred to the location specified. Otherwise, the comment
'kkk% COMPLEX DIVISION BY ZERO' will be printed and a dump given if
requested.

SUBROUTINE REQUIRED: .EXIT FOR CMDIV

3.8-12

COMPLEX SQUARE ROOT

ENTRY POINTS: CMSQRT
PURPOSE: Compute square root of complex number.

CALLING SEQUENCES:

MAD EXECUTE CMSQRT.(A,B,C,D,)
UMAP CALL CMSQRT

PAR A

PAR B

PAR C

PAR D

NORMAL RETURN WITH REAL PART IN AC, IMAGINARY PART IN MQ.

ARGUMENTS :
A Real part of argument.
B Imaginary part of argument.
C Real part of result.
D Imaginary part of result.

SUBROUTINES REQUIRED: SQRT

SYMBOL MANTPULATION - PACKING

ENTRY POINTS: COMPZ, ZCOMPZ

PURPOSE: COMPZ. Packs a sequence of left-justified BCD characters into full
word (6 characters per word) BCD form. If the last word is incom-
plete, it is left-justified with trailing blanks. ZCOMPZ. is the
same as COMPZ., except that the last word, if incomplete, is right-
justified with leading zeroes.

CALLING SEQUENCES:

MAD X = COMPZ.(M,A)
MAD EXECUTE COMPZ.(M,A,B)
MAD X = ZCOMPZ. (M,A)
MAD EXECUTE ZCOMPZ. (M,A,B)
ARGUMENTS :
A First entry of a vector of left—justified BCD characters which
are to be packed into full-word form.
B If B is given, the results of the packing process are stored

in sequence, starting in B. If B is not given, (i.e., only M
and A are given), only the first M, up to and including six,
characters from A are packed.

M Integer number of left-justified BCD characters to be used,
starting in A.
X Result of the packing process in the specific case only in

which B is not given in the calling sequence.

3.8-13

MATRTX FACTORTZATION BY IL-R DECOMPOSITION

ENTRY POINTS: CROUT

PURPOSE: Factorization of an arbitrary real matrix A into an upper
triangular matrix R and a monic lower triangular matrix L.
The original matrix is overwritten by the factors R and L in the
same fashion as the subroutine GAUSS. Interchanges are not
used and hence it may not be possible to factor the matrix.
It should be kept in mind that this factorization without
interchanges is an unstable numerical procedure, except for a
small class of matrices. The best example of this class is the
set of all real positive definite matrices. The factorization
is accomplished by the compact form of Gaussian Elimination
called the Crout reduction. The reader is referred to
'Introduction To Numerical Analysis' by Hildebrand, p. 429.

CALLING SEQUENCES:
FORTRAN X = CROUT (N,A)
(N,A)

MAD X = CROUT.
UMAP CALL CROUT,N,A
RETURN - X WILL BE IN THE AC.
ARGUMENTS ;
N Integer dimension of the square matrix A,
A First element of the matrix. For further information, see
the write~up for the subroutine GJRDT.
X Floating-point switch.
1 Successful decomposition.

0. Overflow, cannot continue.
-1. Factorization is impossible without interchanges.

SUBROUTINES REQUIRED: FSPILL, RSPILL

3.8-14

MATRIX FACTORIZATION BY L-R DECOMPOSITION

ENTRY POINTS: CROUTP

‘PURPOSE: Crout reduction with interchanges of an arbitrary real matrix A
into two factors, an upper triangular matrix R and a monic lower
triangular matrix L. The Crout reduction is a compact form of
Gaussian Elimination and requires more running time but usually
suffers from slightly less round-off error. The operation of
CROUTP and GAUSS are otherwise the same. See subroutine GAUSS.

CALLING SEQUENCES:
FORTRAN X = CROUTP (N,A,XCH)

MAD X = CROUTP. (N,A,XCH)
UMAP CALL CROUTP,N,A,XCH
RETURN - X WILL BE IN THE AC.
ARGUMENTS :
N Integer dimension of the square matrix A.
A First element of the matrix. For further information, see
the write-up for the subroutine GJRDT.
XCH Vector for record of interchanges used in the elimination.
If XCH(I) is non-zero then when row I was used as a pivot row,
an interchange with row XCH(I) was necessary. XCH(I) will be
zero if no interchange was necessary. XCH will be integral in
all cases. If the L*R product is formed the interchanges must
be performed in the reverse order to obtain the original matrix,
(i.e., interchange rows
XCH(N-1) and N-1,
XCH(1) and 1.)
X Floating-point switch.
1. Successful decomposition.
0. Overflow, cannot continue.

SUBROUTINES REQUIRED: FSPILL, RSPILL

3.8-15

SYMBOL MANTIPULATION - UNPACKING

ENTRY POINTS: DCOMPZ, DZCOMP

PURPOSE: DCOMPZ unpacks a sequence of full BCD words into left-justified
BCD characters with five trailing blanks. DZCOMP is the same
except that it replaces leading zeroes in a word with blanks.

CALLING SEQUENCES:

MAD EXECUTE DCOMPZ. (N,A,B)
EXECUTE DZCOMP. (N,A,B)
UMAP CALL DCOMPZ CALL DZCOMP
PAR N PAR N
PAR A PAR A
PAR B PAR B
ARGUMENTS :
N Integer number of words in A which are to be decomposed.
A Vector of words to be decomposed. Elements of A are
assumed to be stored backwards.
B Vector into which decomposed characters are placed, one

character per word with trailing blanks. Dimension of B
must be at least 6N, and B will be stored backwards.

DISMOUNT TAPE

ENTRY POINT: DISMNT
PURPOSE: Prints instructions to the operator to remove a user's tapes,
rewinds and unloads the tapes, and stops for removal. (This

should be used only for selective removal.)

CALLING SEQUENCES:

MAD EXECUTE DISMNT. (UNIT1,PRO1,UNIT2,PRO2,...,UNITN,PRON)
FORTRAN CALL DISMNT(UNIT1,PRO1,UNIT2,PRO2,...,UNITN,PRON)
UMAP CALL DISMNT
PAR UNIT1
PAR PRO1
PAR UNIT2
PAR PRO2
PAR UNITN
PAR PRON
ARGUMENTS: There are two arguments for each tape to be removed.
UNIT Logical number (full word or fortran integer) of the tape
drive from which the tape is to be removed.
PRO If zero, tape should be stored with file protect ring

inserted. If non-zero, tape should be stored with file
protect ring removed.

ERROR CONDITION: An attempt to remove a tape which was not requested by the
subroutines MOUNT or REPLACE will be treated as an I/0 error
condition.

SUBROUTINES REQUIRED: .ERR

3.8-16

DOUBLE-PRECISION OPERATIONS

ENTRY POINTS: DFAD, DFSB, DFMP, DFDP, SFDP, DCEXIT

PURPOSE:

Perform the double~precision floating-point operations of
addition, subtraction, multiplication and division. 1If the
high order word is stored in location Y the low order word

must be in location Y+l. The subroutines 'DFAD', 'DFSB',

'DFMP', and 'DFDP' are designed to perform the basic arith-

metic operations on double-precision numbers stored in this

fashion. The high order word of the result is always
normalized and the low order word always has the same sign
and a characteristic 27 (base 10) less than the high order

word. The entry 'SFDP' ignores the low order word of the

divisor by assuming it zero. If the high order word of the
divisor is zero the subroutine 'ERROR' is called. This may
be avoided by calling 'DCEXIT' beforehand and specifying the
instruction to which control is to be transferred.

CALLING SEQUENCES:

MAD

EXECUTE #F*%, (A,B,C)
EXECUTE DCEXIT. (LOC)

FORTRAN CALL *F** (A,B,C)

ARGUMENTS:
A

B

C
LocC

CALL DCEXIT (LOC)
CALL *F** A,B,C
CALL DCEXIT,LOC

High order word of the addend, subtrahend, multiplicand, or
dividend.

High order word of the augend, minuend, multiplier, or
divisor.

High order word of the sum, difference, product, or quotient.
Instruction to be given control if a division by zero (high
order word) is attempted. Fortran users should see point 7
under arguments in the introduction to MAMOS.

NOTE: The current I/0 conversion routine .IOH uses these subroutines and
hence they will be in core whenever it is.

SUBROUTINES REQUIRED: ERROR.

3.8-17

DOUBLE PRECISION FLOATING POINT ARITHMETIC

ENTRY POINTS: DPFA, DPFM, DPFDV

PURPOSE: Perform double precision arithmetic operations on double
precision numbers which are floating point.

CALLING SEQUENCES:

MAD

FORTRAN

UMAP

ARGUMENTS :
Al

A2
Bl

B2
Cl

c2
LOC

T1,T2,
«s.,T6

EXECUTE DPFA. (Al1,A2,B1,B2,C1,C2) Addition
EXECUTE DPFM. (Al,A2,B1,B2,C1,C2) Multiplication
EXECUTE DPFDV. (Al1,A2,B1,B2,C1,C2,LO0C) Division

CALL DPFA (Al,A2,B1,B2,C1,C2) Addition

CALL DPFM (Al,A2,B1,B2,C1,C2) Multiplication
CALL DPFDV (Al,A2,B1,B2,C1,C2) Division
Addition Multiplication Division

CALL DPFA CALL DPFM CALL DPFDV

PAR Al,T1 PAR Al,T1 PAR Al,T1

PAR A2,T2 PAR A2,T2 PAR A2,T2

PAR B1,T3 PAR B1,T3 PAR B1,T3

PAR B2,T4 PAR B2,T4 PAR B2,T4

PAR Ci,T5 PAR C1,T5 PAR C1,T5

PAR C2,T6 PAR C2,T6é PAR C2,Té6

NORMAL RETURN NORMAL RETURN PAR LOoC

NORMAL RETURN

High order part of the first addend, of the first factor, or
of the dividend for addition, multiplication or division,
respectively.

Low order part paired with Al.

High order part of the second addend, the second factor, or
the divisor for addition, multiplication or division,
respectively.

Low order part paired with Bl.

High order part of the answer resulting from the double
precision operation performed on the arguments above.

Low order part of the answer.

Location for return if zero denominator (in DPFDV only) is
detected. (This argument may be omitted. If not given and
a zero denominator is detected, then an error comment is
printed and control is returned to the system.)

Optional tags.

SUBROUTINES REQUIRED: .EXIT (DPFDV ONLY)

3.8-18

MATRIX MULTIPLICATION USING DOUBLE PRECISION

ENTRY POINTS: DPMAT

PURPOSE: Perform the matrix multiplication A = A * B where A and B
are real N*N matrices. Each element of the product matrix
is accumulated in double precision and then chopped to
single precision. Note that the result is automatically
placed in A. B is unchanged by DPMAT.

CALLING SEQUENCES:
FORTRAN X = DPMAT (N,A,B)
MAD X = DPMAT.(N,A,B)
UMAP CALL DPMAT,N,A,B
RETURN - FLOATING-POINT SWITCH IN AC.

ARGUMENTS :
N Common integer dimension of the matrices A and B. N may
not exceed 99.
A First element of the matrix A, For further information
see the write-up for subroutine GJRDT.
B First element of the matrix B. For further information
see the write—up for subroutine GJRDT.
X Floating-point switch;
1. Successful multiplication.
0. Overflow, cannot continue.

SUBROUTINES REQUIRED: FSPILL, RSPILL

DOUBLE-PRECISION SQUARE ROOT

ENTRY POINTS: DSQRT

PURPOSE: TForm the double-precision floating-point square root of the argument
and return it with the sign of the argument, i.e., the square root
of a positive number is positive and of a negative number is negative.

CALLING SEQUENCES:

MAD EXECUTE DSQRT. (A,B)
FORTRAN CALL DSQRT (A,B)
UMAP SEE THE SUBROUTINE NASQ.
ARGUMENTS :
A High order word of the argument, the low order word must be in
location A+l.
B High order word of the signed square root, the low order word

will be returned in location B+l.

SUBROUTINES REQUIRED: NASQ

3.8-19

LINEAR EQUATIONS

ENTRY POINTS: DSLEl, DSLE2

PURPOSE:

Solve in double-precision the system of simultaneous linear
equations with coefficient matrix A of dimension M and right
hand side B. The method is Gaussian Elimination with partial
pivoting, followed by a single back-substitution. A deter-
minant, which may be scaled as described below, is also
computed. Two entries are provided. 'DSLE1l' assumes a single-
precision input system and converts to double by scaling each
equation by its maximum element -- the solution is returned
in single-precision. The entry 'DSLE2' assumes a double-
precision system, performs no scaling and returns a
double-precision solution.

CALLING SEQUENCES:

MAD

UMAP

ARGUMENTS :
M

A

X = DSLE1l. (M,A,B,D)
X = DSLE2. (M,A,B,D)

CALL DSLEl CALL DSLE2
PAR M PAR M
PAR A PAR A
PAR B PAR B
PAR D PAR D

RETURN WITH X IN THE ACCUMULATOR

Integer (MAD type, not FORTRAN) dimension of the coefficient
matrix.

For 'DSLE2' this argument is ignored. For'DSLE1l' it is the
first element of the coefficient matrix. It is assumed that
the (I,J)-element has linear subscript, relative to A, of
(I-1)*M+(J-1). This is standard MAD type storage. The
matrix A is not destroyed by either entry. The A-region

and the D-region may overlap in storage provided A is not
contained in the region D(1)...D(2*M*M),

Right hand side and solution vector for both entries. For
'DSLE1l' this vector is single-precision but of length at
least 2*M. for 'DSLE2' the vector is double-precision IBM
7094 type, i.e., if the high order word of an element is in
B(NU) (assuming MAD storage), then the low order word is in
B(NU-1). The entry 'DSLE2' assumes that the right hand side
of the I-th equation is stored in B(2*I) and B(2*I-1).

Both entries return the same information in this region of
length at least 2*M*M., The D-region will contain the double-
precision L*R factorization of the coefficient matrix. The
high order word of the (I,J)-element has a linear subscript
relative to D of 2*((I-1)*M+J) and the low order word has
this subscript minus 1, (i.e., the elements are IBM 7094 type
double-precision). This result should be approximately the
same as that produced by "GAUSS". Note restriction (5).

3.8-20

LINEAR EQUATIONS (CONTINUED)

RESTRICTIONS:
(1)
(2)

(3)

(4)

(5)

'DSLE1l' ignores the contents of the D-region and immediately
sets up the scaled coefficient matrix with subscripts as
described above. 'DSLE2' assumes that the double-precision
coefficient matrix is stored in the D~region in the manner
described above. ’

For both entries the number D is taken as a scale factor for
the determinant and the high order word of the determinant
is returned in D. TIf the input value of D is zero then the
determinant will be returned as zero. This will not cause,
however, a singularity return. A double-precision IBM 7094
type determinant is avallable in erasable, the high order
word in 77776 and the low in 77777. Note restriction (4).
Returns

(1) 1. Successful computation.

(2) 0. Overflow, cannot continue.

(3) -1. - Singular matrix.

(4) -2. - Zero row in matrix (impossible with DSLE2).

'RSPILL' is called immediately before the return.
'DCEXIT' is called just before the return and set so that
'ERROR' will be called if division by zero is attempted.
The matrix A and the vector D may occupy the same storage
region, provided the region reserved for A is not contained
in that reserved for D.
The sign of the low order determinant word in 77777 may
have the wrong sign. The high order word in 77776 has
the correct sign.
In performing the L*R factorization which is stored in
the D-region, physical interchanges are not used, only
row address vector entries, i.e.,

R(1)...R(M), where R(I)=(I-1)*M.
Consequently the rows of the matrix are jumbled. The row
address vector is stored in erasable and has base address
77764.

SUBROUTINES REQUIRED: DCEXIT, DFDP, DFMP, DFSUB, ERROR, FSPILL, RSPILL, SFDP.

3.8-21

EIGENVALUES AND EIGENVECTORS

ENTRY POINTS: EIGN

PURPOSE: To compute all eigenvalues and/or eigenvectors of a real
symmetric matrix by the Jacobi method. The elements of the
matrix must satisfy the condition SM = SUM((A(I,J)/AM).P.2)
.LE.2.P.257, where AM = MIN/A(I,J)/ .NE.O.

CALLING SEQUENCES:

MAD S=EIGN. (A,N,K,V,F)

FORTRAN S=EIGN(A,N,K,V,F)

UMAP CALL EIGN
PAR A
PAR N
PAR K
PAR v
PAR F
NORMAL RETURN~S IN THE ACCUMULATOR.

ARGUMENTS :

A First element of a floating point array in which the matrix is
stored. There must be no extra locations between the rows or
columns in this array. In MAD this is accomplished by setting
the third entry of the dimension vector for A equal to N before
reading the data. In FORTRAN the original dimension statement
would have to specify an array dimension equal to N by N. 1In
all cases (MAD, UMAP, FORTRAN) the spaces may be eliminated by
considering the matrix as a linear array with the rows or
columns stored sequentially. The original A array is destroyed
by the computation and the eigenvalues replace the diagonal
elements of the A matrix.

N Integral order of the matrix A,

K Integer switch: TIf K=0, no eigenvectors desired. If K=1,
eigenvectors are to be computed.

v First element of a floating point array in which the eigenvec-

tors are to be stored. As with the A array, V is treated as a
linear vector by EIGN. The first vector corresponding to the
first diagonal element of A will be stored in the first N
locations of V. The second vector in the second N, etc. If
K=0, V is a dummy argument.

F If either SM.GE.2.P.128 or AM.P.2.LE.2.P.-123, but the restriction
stated in the purpose is not violated, then a return is made
with S = 2.0 (see S) and the elements of the original array are
scaled with an appropriate scale factor which is stored in F.

S Computation switch - floating point.

S$=1.0 Error return - SM.GE.2.P,257.

8§=2.0 Successful computation but the matrix (and the eigen-
values) has been scaled by a factor stored in F.

$=3.0 Normal return, successful computation.

3 . 8_22

FLOATING POINT LOGARITHM

ENTRY POINTS: ELOG
PURPOSE: Compute LN(X) for floating point argument X.G.O.

CALLING SEQUENCES:

MAD Y = ELOG. (X,LOC)

FORTRAN Y = ELOG(X)

UMAP CALL ELOG
PAR X,T
PAR LOC
NORMAL RETURN - Y IN THE ACCUMULATOR.

ARGUMENTS :

X Floating point argument for which the log (to the base E) is
desired.

Y The floating point log of the argument X.

LocC Location for return if error detected. (This argument may
be omitted.)

T Optional tag.

ERROR CONDITIONS:
If X .LE. 0. the error routine is initiated. 1If LOC is given,
control is returned to the caller. Otherwise,
'%%%*ELOG ARG NEGATIVE OR ZERO'
is printed on the output tape and control is returned to the
system, giving a dump of core 1f requested.

SUBROUTINES REQUIRED: .EXIT

3.8-23

EXIT SUBROUTINE

ENTRY POINTS: .EXIT

PURPOSE: Provides error return to system from non-I/O subroutines.

CALLING SEQUENCE:

UMAP CLA N+1,4
CALL .EXIT
BLK COMENT,T,L
PAR XR4

COMENT BCI L,C...

ARGUMENTS :

N Number of arguments for the subroutine not including the
optional error return argument.

COMENT Location of first word of comment to be printed.

T If zero, an optional error return is not permitted, and
'CLA N+1,4' is not needed. If non-zero, the subroutine
user may specify an optional error returnm.

L The number of six letter machine words making up the
comment .
XR4 Optional argument containing 2's complement of number XXXXX
to be printed out with additional comment 'AT LOCATION XXXXX'.
C Carriage control for comment line, which is followed by

the comment.

NOTE: 1Index register 4 1is assumed to have been restored to its condition

at the time of doing the "CLA N+1,4' (not necessary if no error
return).

SUBROUTINES REQUIRED: SPRINT, ATLOC, ERROR

3.8-24

EXPONENTIATION — THE BASE E

ENTRY POINTS: EXP
PURPOSE: Raise E to the floating point exponent X.

CALLING SEQUENCES:

MAD Y = EXP. (X,LOC)
FORTRAN Y = EXP (X)
UMAP CALL EXP
PAR X,T
PAR LOC
NORMAL RETURN - Y IN THE ACCUMULATOR.
ARGUMENTS:
X The floating point power to which E is to be raised.
Y Result in floating point.
LocC Location for return if error detected. (This argument may
be omitted.)
T Optional tag.

ERROR CONDITIONS:
If X .G. 87.3, the result will exceed machine size, and the error
procedure 1is begun. If LOC is given, then control is returned to
that location. If LOC is not given, the comment ‘'#***EXP ARG EXCEEDS
87.3' is printed, followed by a dump (if requested).

SUBROUTINES REQUIRED: .EXIT

3.8-25

ERROR FUNCTION SUBROUTINE

ENTRY POINTS: ERF

PURPOSE: To compute ERF(X), where ERF(X) is defined as ERF(X) = 2/SQRT.(PI)

times the integral from zero to X of EXP (-(T.P.2)) DT where
ERF(-X) = -ERF(X).
For a shorter, faster, less accurate subroutine, see ERRFN,

CALLING SEQUENCES:

MAD Y = ERF. (X)
FORTRAN Y = ERF(X)
UMAP CALL ERF,X

RETURNS WITH VALUE IN ACCUMULATOR
Both X and Y are floating point.

ACCURACY:
Plus or minus 2 in eighth significant digit.

Adapted from Ames Research Center AL-ERF (Share Dist. no. 836)

SUBROUTINES USED: EXP

ERROR FUNCTION SUBROUTINE

ENTRY POINTS: ERRFN, FREQ

PURPOSE: To compute the error function, ERF, (for definition see the
write-up on ERF) and the normal frequency function. For a more
accurate, but longer and slower routine, see ERF.

CALLING SEQUENCES:
Error Function -

MAD Y = ERRFN. (X)
FORTRAN Y = ERRFN(X)
UMAP CALL ERRFN,X

RETURNS VALUE IN ACCUMULATOR
Normal Frequency Function -

MAD Z = FREQ. (X)
FORTRAN 2 = FREQ(X)
UMAP CALL FREQ,X

RETURNS VALUE IN ACCUMULATOR
X,Y, and Z are floating point.

ACCURACY:
Plus or minus 1 in fifth significant digit.

Adapted from Share Dist. no. 897

3.8-26

ENTRY POINTS: EXP1l
PURPOSE: Raise an integer base to an integer power.

CALLING SEQUENCES:

UMAP CALL EXP1
PAR I,T1
PAR J,T2
PAR LocC
NORMAL RETURN - N IN THE ACCUMULATOR.
ARGUMENTS:
1 Integer base.
J Integer exponent.
T1,T2 Optional tags.
LOC Location for return if error found (this argument may be omitted.)
N Result. If I =0 or J.L.Oor (I =0 and J =0), N=0. If

J =0 and I.NE.O, N = 1.
ERROR CONDITION:
If N.GE.2.P.35, the error procedure is initiated. If LOC is given,
control is returned to the caller. Otherwise, the comment, 'EXP1 ANS TOO
LARGE' will be printed and a dump given if requested by the programmer.

SUBROUTINES REQUIRED: .01311, .EXIT

EXPONENTIATION — FLOATING POINT BASE AND INTEGER EXPONENT

ENTRY POINTS: EXP2
PURPOSE: Raise a floating point number to an integer power.

CALLING SEQUENCES:

UMAP CALL EXP2
PAR B,T1
PAR J,T2
PAR LOC

NORMAL RETURN - X IN THE ACCUMULATOR.

ARGUMENTS :
B Floating point base.
J Integer expomnent.
T1,T2 Optional tag.
LOC Location for return if error detected. (This argument may be
omitted.)
X Result, IfB =0, X=0. If J =0 and B.NE.Q, X = 1.

ERROR CONDITION:
If X is out of range of machine size, the error procedure is
initiated. If LOC is given, control is returned to the caller.
Otherwise, the comment 'EXP2 ANS OUT OF RANGE' is printed and a
dump is given 1f requested by the programmer.

SUBROUTINES REQUIRED: .01301, .EXIT

3.8-27

EXPONENTIATION -~ FLOATING POINT BASE AND FLOATING POINT EXPONENT

ENTRY POINT: EXP3

PURPOSE :

Raise a floating point number to a floating point power.

CALLING SEQUENCES:

UMAP

ARGUMENTS:
B
A
T1,T2
X

CALL EXP3
PAR B,T1
PAR A,T2

NORMAL RETURN -~ X IN THE ACCUMULATOR.

Floating point base.

Floating point exponent.

Optional tags.

B.P.A in floating point. I1f B =0, X = 0.

ERROR CONDITIONS:
If the base 1is negative and the exponent is non-integral, the comment,
'EXPONENTIATION ERROR — NEGATIVE BASE, NON-INTEGRAL EXPONENT, OR ANS
TOO LARGE' is printed and a dump is given if requested.

SUBROUTINES REQUIRED: .EXIT, .01300, SQRT, ELOG, EXP

FLOATING POINT SPILL ROUTINE

ENTRY POINTS: FSPILL, RSPILL

PURPOSE :

The entry 'FSPILL' turns on the floating-point trap mode indicator
and provides for the following action in the event of a floating-
point spill.

Underflow -- Set either or both of the registers causing under—

flow to zero and continue the computation from the point at

which the floating-point trap occurred.

Overflow -- Transfer to the instruction specified by the argu-

ment in the last call of 'FSPILL'. The transfer is accomplished

without destroying any of the internal registers or indicators.
This entry also saves the contents of location 8 (the floating-
point trap location) if 'FSPILL' has not been called before or if
'RSPILL' has been called since the last call of 'FSPILL'. The
entry "RSPILL' restores the contents of location 8 that were
previously saved by 'FSPILL' and turns on a switch so that 'FSPILL'
will save location 8 the next time it is called. Until the next
call of 'FSPILL' the 'RSPILL' entry will act as a dummy subroutine.
both entries preserve all indicators and all internal registers
except the MQ register (this latter is also preserved unless
something must happen to location B8).

CALLING SEQUENCES:

MAD

EXECUTE FSPILL. (LOC)
EXECUTE RSPILL.

3.8-28

FLOATING~-POINT SPILL ROUTINE (CONTINUED)

FORTRAN CALL FSPILL (LOC)

CALL RSPILL
UMAP CALL FSPILL,LOC
CALL RSPILL
ARGUMENTS :
1.0C Instruction to be given control if an overflow occurs.

Fortran users should see point 7 under arguments in the
introduction to this section.

FLOATING-POINT UNDERFLOW SWITCH

ENTRY POINTS: FTRAP, NTRAP

PURPOSE: Normally, a floating point underflow is considered an error and
control is returned to the system. If FTRAP is executed prior
to the underflow, the number that caused the underflow will be
set to zero and computation will proceed. If NTRAP is executed,
underflow will again be treated as an error.

.

CALLING SEQUENCE:

MAD EXECUTE FTRAP.
EXECUTE NTRAP.
UMAP CALL FTRAP

CALL NTRAP
FORTRAN CALL FTRAP
CALL NTRAP

FLOATING POINT GAMMA FUNCTION

ENTRY POINTS: GAMMA
PURPOSE: Compute GAMMA(X) for floating point argument X.

CALLING SEQUENCES:

MAD Y = GAMMA. (X)
FORTRAN Y = GAMMA(X)
UMAP CALL GAMMA,X
STO Y
ARGUMENTS :
X Floating point argument.

Y Floating point result.

3.8-29

FLOATING POINT GAMMA FUNCTION (CONTINUED)

COMMENTS :
1. If X is zero or a negative integer, then GAMMA(X) = .1E35.
2. "SAFE" range of argument for GAMMA function is
-34.2 .LE. X .LE, 34.4. Outside these values, floating
point overflow or underflow will occur.
3. For Algorithm, see Algorithm No. 31, COMM. ACM, FEBR, 1961.

MATRIX FACTORIZATION BY I-R DECOMPOSITION

ENTRY POINT: GAUSS

PURPOSE: Factorization of an arbitrary real matrix -A- into a product of
an upper triangular matrix -R- and a monic lower triangular
matrix -L- by Gaussian Elimipation with interchanges, i.e.,
A =1L % R. The matrix -L- has the further property that the
absolute value of L(I,J) is less than or equal to 1. This
decomposition is unique. The matrix ~R- is stored in the
upper half of the original matrix and -L- in the lower half,
the diagonal belonging to the matrix -R-. See subroutine CROUTP.

CALLING SEQUENCES:
FORTRAN X = GAUSS (N,A,XCH)
MAD X = GAUSS. (N,A,XCH)
UMAP CALL GAUSS,N,A,XCH
RETURN - X WILL BE IN THE AC.

ARGUMENTS:

N Integer dimension of the square matrix A.

A First element of the matrix. For further information see
the write-up for the subroutine GJRDT.

XCH Vector for record of interchanges used in the elimination. If
XCH(I) is non-zero then when row I was used as a pivot row, an
interchange with row XCH(I) was necessary. XCH(I) will be zero
if no interchange was necessary. XCH will be integral in all
cases. If the L*R product is formed the interchanges must be
performed in the reverse order to obtain the original matrix,
i.e., interchange rows

XCH(N-1) AND N-1,
XCH(1) AND 1.

X Floating-point switch.

1. Successful decomposition.
0. Overflow, cannot continue.

SUBROUTINES REQUIRED: FSPILL, RSPILL

3.8-30

SIMULTANEOUS LINEAR EQUATIONS BY MATRIX INVERSION

ENTRY POINTS: GJRDT

PURPOSE:

Computes (M-N) solution vectors of a set of N simultaneous real
linear equations in N unknowns. The inverse of the coefficient

matrix is automatically produced, as is the determinant. The method

used is a Gauss—Jordan reduction of an arbitrary augmented matrix
upon itself using a complete pivotal strategy.

CALLING SEQUENCE:
FORTRAN X = GJRDT

MAD
UMAP

ARGUMENTS :
N

M

(N,M,A,D)
X = GJRDT. (N,M,A,D)
CALL GJRDT,N,M,A,D
RETURN - X WILL BE IN THE AC.

Number of equations, i.e., the row dimension of the matrix.
N must be an integer and less than 100.
M = N + (the number of solution vectors desired), i.e., the
column dimension of the matrix. Notice that if N = M, no
solution vectors are computed, but the matrix is inverted.
M must be an integer.
The highest location in core that contains an element of the
matrix - the location of the A(l,l1) element where

A(1,1) ... AQL,N) ... A(l,M))
A= ceens

A(N,1) ... A(N,N) ... A(N,M)
The matrix must be stored backwards by rows and must be packed.
A(1,1) must be the highest location and proceeding in the
direction of decreasing storage, addresses must be
A(1,2)...A(1,M),A(2,1)...A(2,M),...,A(N,M)
without any gaps. This mode of storage is normal MAD storage.
On return from GJRDT the determinant of A will be in this

location.
Floating-point switch.
1. Successful computation.
-1. Singular matrix. The condition for singularity is

that the determinant be zero.

3.8-31

SIMULTANEOUS LINEAR EQUATIONS BY MATRIX INVERSION

ENTRY POINTS: GJRDTP

PURPOSE:

Inverts the matrix and computes (M-N) solution vectors of a
set of N simultaneous real linear equations in N unknowns.

The determinant of the matrix is automatically computed.
GJRDTP performs a Gauss-Jordan reduction of an arbitrary
augmented matrix upon itself using a partial pivotal strategy.
For most systems GJRDTP and GJRDT will produce results which
differ only in the digits subject to round-off error. Unfor-
tunately there is no clear cut rule as to which subroutine to
use for a given set of equations. 1In any case, GIJRDT is the
most reliable.

CALLING SEQUENCE:
FORTRAN X = GJRDTP (N,M,A,D)

MAD

UMAP

ARGUMENTS :

X = GJRDTP. (N,M,A,D)
CALL GJRDTP,N,M,A,D
RETURN - X WILL BE IN THE AC.

For a description of the arguments, see the write-up for subroutine

GJRDT.

3.8-32

HARMONIC ANALYSTIS

ENTRY POINTS: HAS1, HASI1S

PURPOSE:

Given a set of points Y(I) (I = 0,1,2,...,K~1) corresponding
to a set of equally spaced arguments X(I), this subroutine
computes the coefficients A(I), B(I), C(I), D(I) of the
following series

Y(X) = A(0) + SUM(A(N)*COS(NX) + B(N)*SIN(NX))

Y(X) = A(0) + SUM(C(N)*SIN(NX + D(N)))
M is the parameter designating the number of harmonics and
M.LE.K/2 if K is even or M.LE.(K-1)/2 if K is odd. The
function Y(X) is assumed to be periodic of period 2PI with
Y(0) = Y(K).

CALLING SEQUENCES:

MAD

EXECUTE HAS1.(K,M,Y,A,S)
EXECUTE HAS1S. (K,M,Y,A)

FORTRAN CALL HAS1(K,M,Y,A,S)

UMAP

ARGUMENTS:
K
M
Y

A

T1,T2

CALL HAS1S(K,M,Y,A)

CALL HAS1 CALL HASIS
PAR K,T1 PAR K,T1
PAR M, T2 PAR M,T2
PAR Y PAR Y

PAR A PAR A
PAR s NORMAL RETURN

NORMAL RETURN

Integral number of points Y(I).

Integral number of harmonics desired.

First element of a floating point vector in which the input

points are stored.

First element of a floating point vector in which HAS1 will

store the answers. This array must be of length at least 7 +

5M. The answers are stored in groups of 5 beginning at A as
eeeee,A(N),B(N),C(N),D(N),C(N)/C(MAX).

Temporary storage region supplied by the programmer of length

at least 2K. This region is used by HAS1 to store values for

Sine and Cosine. HAS1S computes values for Sine and Cosine

every time that they are needed. Both subroutines will

produce the same results.

Optional tags.

SUBROUTINES REQUIRED: SIN, COS, ATN1l, SQRT

3.8-33

MATRIX INVERSION

ENTRY POINT: 1IBDS

PURPOSE: This subroutine is a modification of BORDS that assumes a FORTRAN
calling program. An extra argument has been added as a result of
the FORTRAN method of dimensioning. For further information, see
the write-up for subroutine BORDS.

CALLING SEQUENCE:
FORTRAN IX = IBDS (N,M,A,D)

ARGUMENTS :

N FORTRAN integer giving the true dimension of the matrix. N
must be less than 150.

M FORTRAN integer giving the FORTRAN dimension of the matrix.

A Name of the matrix. The matrix -A- is assumed to conform to
normal FORTRAN two dimensional array storage.

D On return from IBDS, D will contain the determinant of -A-.

IX FORTRAN integer switch.

1 Successful inversion.
-K Negative integer giving the dimension of the smallest
principal minor equal to zero.

INCOMPLETE ELLIPTIC INTEGRALS

ENTRY POINTS: IEF1

PURPOSE: Given the amplitude A and the modulus B, to evaluate the
incomplete elliptic integrals of the first and second kind.

CALLING SEQUENCES:

MAD EXECUTE IEF1. (A,B,E,F,G)
FORTRAN CALL IEF1(A,B,E,F,G)
UMAP CALL IEF1
PAR A
PAR B
PAR E
PAR F
PAR G
NORMAL RETURN
ARGUMENTS :
A Floating point amplitude A of the integral.
B Floating point modulus B of the integral.
E The incomplete elliptic integral of the second kind,
E(A,B), in floating point.
F The incomplete elliptic integral of the first kind,
F(A,B), in floating point.
G Computation switch. (floating point)
G = 1.0 Normal return, computation successful.
G = 2.0 B out of range , B.G.8.99985.
G = 3.0 A out of range , A.L.0O or A.G.PI/2

SUBROUTINES REQUIRED: SIN, SQRT

3.8-34

SET IOH FIELD SIZE ERROR CONDITION

ENTRY POINTS:

IOHSIZ

PURPOSE: Normally, if in a format the user gives a field size too small
for an integer or floating point number, this is considered an
error and execution is terminated. Use of IOHSIZ allows this
number to be printed (or punched) in a truncated form, and for
execution then to continue.

CALLING SEQUENCES:

MAD
FORTRAN
UMAP

ARGUMENTS :
N

EXECUTE IOHSIZ. (N)
CALL IOHSIZ (N)
CALL TOHSIZ

PAR N

If N contains zero, then thereafter, when a number too large
for the field width occurs, normal procedure will be followed,
i.e., a comment will be printed and the job will be terminated.
If the contents of N are non-zero, then thereafter an over-
sized number for an E,F, or I field will be punched or
printed. It will be right justified with the left end,
including the sign, truncated. Execution will then

continue.

SUBROUTINES REQUIRED: .ERR, SPRINT, SKIP6, .03311, DFMP, DFDP

3.8-35

NUMERICAL INTEGRATION OF SINGLE OR MULTIPLE INTEGRALS

ENTRY POINTS: ITINT

PURPOSE: To compute:

Bo - Bl(xo) Bk_l(Xo,...,Xk_z)
FO (Xo) Fl (XO’X].) e Fk-l (Xo, e ,Xk_z ‘Xk—l)DXk—l' .. DX,
Ao A1 (Xo) A1 gy v -+ Xp2)

for any integer K.GE.l by Gaussian Quadrature method. A value
for the L-th integral in the above expression is computed from

the sum;
*
Aﬁﬂ %fZH AﬂNﬁH
FLPXL + FlTDXl' +...+ FLPXL
—1)%*
AL AlfH A1‘+(NL 1)*H

where Ny may be a function of X,,...,%X); and H = (BlfAl)/NL
and where

Ay+(T+1)*H
F1DXy,
A;+T*H

is approximated from M;, evaluations (possibly a function of
Xo""’XL—l) of Fy on the interval AlfT*H.L.XL.L.AL+(T+l)*H
(all other X's held fixed. M greater than 1, less than 9.)
This makes necessary many entrances into ITINT and many exits
from it; one exit and entrance for each evaluation of each
Fq, one initial entrance and one final exit.

In order to tell the user what is to be done on each exit,
ITINT takes on an integer value in the range 0,1,2,...,K-1,K
depending on whether a value for one of the F's is to be
computed or the integration is complete.

USE: In MAMOS the use of ITINT would conform to the following rough
drafts:

MAD USAGE.

INTEGER K, ITINT.

DIMENSION Q('10K'), F('K-1'), A('K-1'), B('K-1"), ZN('K-1"),
1 ZM('k-1'), X('K-1")

—————————————— (Set up values at least for
—————————————— ZN(0), ZM(0),A(0),B(0)

NUMERICAL

3.8-36

INTEGRATION OF SINGLE OR MULTIPLE INTEGRALS (CONTINUED)

(MAD USAGE - CONTINUED)

INTEG TRANSFER TO S(ITINT.(F,A,B,ZN,ZM,Q,K,X))

5(0) : : : : : : : : : : : : : : (Compute a value for F(0), and possibly
______________ set up values for ZN(1),ZM(1),A(1),B(1))
TRANSFER TO INTEG

S(2) -~ ===~ ---

______________ (Compute a value for F(1), and possibly
______________ set up values for ZN(2),zZM(2),A(2),B(2))
TRANSFER TO INTEG

S(/K-1/)- = = = = = = = = = = = =
—————————————— (Compute a value for F(K-1))

TRANSFER TO INTEG

S(UKN= == == === ===~~~
—————————————— (Integration complete, answer in Q(0))
'K-1' stands for an integer constant whose value is at least as
great as K's value reduced by one (and similarly for '10K'), and
/K-1/ stands for the integer constant having K's value minus one
(and similarly for /K/).

EXAMPLE :

INTEGER ITINT.
DIMENSION Q(20),F(1),A(1),B(1),2N(1),ZM(1),X(1)

START READ DATA (ZN(0),ZN(1),ZM(0),ZM(1),A(0),B(0))

INTEG TRANSFER TO S(ITINT.(F,A,B,ZN,ZM,Q,2,X))

S(0) F(0) = X(0)

A1) = -X(0)
B(1l) = X(0)
TRANSFER TO INTEG

S(1) F(1) = SIN.(X(0)*X(1))
TRANSFER TO INTEG

S(2) PRINT RESULTS Q(0)

TRANSFER TO START
END OF PROGRAM

FORTRAN USAGE.

DIMENSION Q('1OK+1'),A('K'),B('K'),F('K"),ZN('K"),zM('L"),X('K")

———————————— (Set up values for A(1),B(1),ZN(1),
ZM(1) at least)

I = ITINT(F,A,B,ZN,ZM,Q,K,X)) + 2
GO TO (2,3,...,/K+1/,/K+2/), I

(Compute F(1), and possibly set up
values for A(2), B(2), ZN(2), ZM(2))

3.8-37

NUMERICAL INTEGRATION OF SINGLE OR MULTIPLE INTEGRALS (CONTINUED)

(FORTRAN USAGE - CONTINUED)

3 - - .- TTTTTTT™ " (Compute a value for F(2), and possibly
. ____-_- : _ - : set up values for A(3), B(3), ZN(3), ZM(3))
GO TO 1

/KAL) = = = = = = = = = = =~
—————————————— (Compute a value for F(K))
GO TO 1

JR¥2[= = = = = = = = = = = = = =~
—————————————— (Integration complete, answer is Q(1))
(Since FORTRAN does not allow zero subscripts, FORTRAN users
should, while reading the method section, mentally increase
all subscripts by one. The notation '10K=1' etc. is explained
below the rough draft for MAD users.)

EXAMPLE:

DIMENSION Q(21),F(2),A(2),B(2),ZN(2),ZM(2),X(2)
777 READ INPUT TAPE 7, 5, A(1l),B(1l),ZN(1),ZN(2),ZM(1),ZM(2)
5 FORMAT (6F10.3)
1 1 = ITINT(F,A,B,ZN,7ZM,Q,2,X) + 2
GO TO (2,3,4), I
2 F(1) = X(1)
A(2) = -X(1)
B(2) = X(1)
GO TO 1
3 F(2)
GO TO 1
WRITE OUTPUT TAPE 6, 6, Q(1)
FORMAT (E15.6)
GO TO 777
END

SIN(X(1)*X(2))

o

UMAP USAGE.

—————————————— (Set up values at least for
-------------- A, B, ZN, ZM)
INTEG CALL ITINT

PAR F

PAR A

PAR B

PAR ZN
PAR M
PAR Q

PAR K

PAR X

3.8-38

NUMERICAL INTEGRATION OF SINGLE OR MULTIPLE INTEGRALS (CONTINUED)

(UMAP USAGE - CONTINUED)

PAX 0,4
TRA LOCVEC, 4
TRA LK
TRA LKM1
TRA L2
TRA Ll

LOCVEC : : : : : : : : : : : : : (Compute value for F, and possibly set
_____________ up values for ZN-1,ZM-1,A-1,B-1)
TRA INTEG

Ll -~ === === - - (Compute a value for F-1, and possibly
------------- set up values for ZN-2,ZM-2,A~2,B-2)
TRA INTEG

IKMI -~ -~ === ===~ == (Compute a value for F-C(K)=1, where
------------- C(K) represents the contents of
------------- location K.)
TRA INTEG

LK - =~-=~=======--
------------- (integration complete, answer in Q)

Q BTS '10K+1"

F BTS 'K

A BTS 'K'

B BTS 'K'

ZN BTS 'K'

ZM BTS 'K'

X BTS 'K'

(For an explanation of 'K' and 'l10K+1' see the rough draft for MAD.)

ARGUMENTS :

Q The name of the first location of a floating-point "scratch
vector". Upon completion of the integratiom, location Q will
contain the value of the integral.

F The name of the first element of a floating-point vector im which
the evaluations of the integrands (that is, the F's —— see

method) are stored.
A,B The name of the first elements of the floating-point vectors in
ZN,ZM which the A's (lower limits of the component integrals), B's
(upper limits), N's (number of subintervals into which each
component interval of integration (A,B) is to be divided), and

3.8-39

NUMERICAL INTEGRATION OF SINGLE OR MULTIPLE INTEGRALS (CONTINUED)

M's (number of evaluations to be made of each integrand
function on each subinterval) -- see method —— are stored.
The values in ZN and ZM need not be integral numbers. The
integer parts of thelr values will be used. '

K An integer variable or constant giving the multiplicity of
the integral to be solved (K .GE. 1).
X The location of the first element of a floating-point vector

in which the current values for the X's have been stored by
ITINT prior to each exit. All evaluations of each integrand
function, F, are to be made using these values.

TAPE LABELING

ENTRY POINTS: LABEL
PURPOSE: Writes a label on a user's tape.

CALLING SEQUENCES:

MAD EXECUTE LABEL.(NAME,UNIT,LOAD,DENS,MODE)

FORTRAN CALL LABEL (NAME,UNIT,LOAD,DENS,MODE)

UMAP CALL LABEL,NAME,UNIT,LOAD,DENS,MODE

ARGUMENTS :

NAME One word BCD name to be used in label.

UNIT Logical number (full word or FORTRAN integer) of the tape
drive on which the tape to be labeled is mounted.

LOAD If zero, single load point. If non-zero, double load
point.

DENS If zero, tape is in low density. If non-zero, tape is in
high density. (This should normally be non-zero.)

MODE 1f zero, BCD. If non-zero, binary.

SUBROUTINES REQUIRED: BNBCD, .ERR

SHIFTING OPERATIONS

ENTRY POINTS: LSH, RSH

PURPOSE: Provide shifting of single words by arbitrary number of
binary digits-

CALLING SEQUENCES:

MAD X = LSH.(A,N) (Left shift)
MAD X = RSH.(A,N) (Right shift)
ARGUMENTS :
A Word to be shifted.
N Integer number of binary shifts.
X Result of shifting A by N bits to the left (LSH.) or to the

right (RSH.). Vacated positions are filled with zeroes.

3.8-40

TAPE MOUNTING

ENTRY POINTS:

MOUNT

PURPOSE: Prints instructions to the operator to mount a user's tapes,
stops for mounting, and then checks the tapes' labels to see
if the correct tapes were mounted.

CALLING SEQUENCES:

MAD

FORTRAN

UMAP

ARGUMENTS :
NUM

NAME
UNIT

DENS

PRO

MODE
DATE

DATE=MOUNT . (NUM1,NAME1,UNIT1,DENS1,PRO1,MODE1,NUM2 ,NAME2,
UNIT2,DENS2,PRO2,MODE2, . ..,NUMN,NAMEN,UNITN,DENSN, PRON ,MODEN)
DATE=MOUNT (NUM1,NAME1,UNIT1,DENS1,PRO1,MODE1,NUM2 ,NAME2 ,
UNIT3,DENS2,PRO2,MODE2,...,NUMN,NAMEN, UNITN,DENSN, PRON , MODEN)
CALL MOUNT

PAR NUM1

PAR NAME1

PAR UNIT1

PAR DENS1

PAR PRO1

PAR MODE1

PAR NUMN

PAR NAMEN

PAR UNITN

PAR DENSN

PAR PRON

PAR MODEN

DATE RETURNED IN THE ACCUMULATOR

There are six arguments for each tape to be mounted.

Number (full word or FORTRAN integer) assigned to tape. If
zero, the subroutine LABEL is called using NAME, DENS and
MODE as arguments. If negative and non-zero, the subroutine
LABEL is called and a double load point is requested.

One word BCD name used in tape label.

Logical number (full word or FORTRAN integer) of the tape
drive on which the tape is to be mounted.

If zero, tape is in low density. If non-zero, tape is in
high density. (This should normally be non-zero.)

If zero, file protect ring should be inserted. If non-zero,
file protect ring should be removed.

If zero, BCD. If non-zero, binary.

The BCD date in the label. It has the form DD/MM where DD
is the day of the month MM. If there is more than one
group of arguments, the date will be that on the tape
specified by the last group.

3.8-41

MOVE ARRAYS

ENTRY POINTS: .MOVER
PURPOSE: Moves or reverses linear arr#ys.

CALLING SEQUENCE:
MAD EXECUTE MOVER. (L1,L2,.....,LN)

ARGUMENTS : The ,LI, are of the form ,A, or ,A...B, . The arguments
are used by a MOVER in pairs, as follows:
I. ,A...B,C...D,
The contents of A through B are moved
into C through D. /C-D/+1 words are moved.
The contents of A through B are unchanged.
II. LA,B,
The contents of A through B are reversed.
(I.e., the contents of A through B are
moved into B through A.)

DOUBLE-PRECISTION SQUARE ROOT

ENTRY POINTS: NASQ

PURPOSE: Form the double-precision square root of the absolute value
of the double~precision floating-point number in the AC and
MQ registers, the high order word occupying the AC. Return
the square root in the AC and MQ registers, in the same
fashion, with the sign of the original number. Three single-
precision and two double-precision Newton-Raphson iterations
are used, the single-precision operation on an argument
scaled to lie in the range .5 to 2.

CALLING SEQUENCE:
UMAP (Place argument in AC and MQ if it is not already there.)
CALL NASQ

(Result will be in AC and MQ registers.)

SUBROUTINES REQUIRED: DFAD, DFDP

3.8-42

NORMALLY DISTRIBUTED RANDOM NUMBER GENERATOR

ENTRY POINTS: NDRN1A, NDRN1B, NDRN1C, NDRN1D

PURPOSE: Produce a random number such that a set of such numbers will
have a specified mean and standard deviation.

CALLING SEQUENCES:

MAD EXECUTE NDRN1B. (A,B,C)
FORTRAN CALL NDRN1B(A,B,C)
UMAP CALL NDRN1B
PAR A
PAR B
PAR C
NORMAL RETURN
ARGUMENTS ¢
A Floating point standard deviation of the desired distribution.
B Floating point mean of the desired normal distribution.
C Floating point random number.

SPECIAL ENTRIES: NDRN1B uses an integer parameter J to compute each random

number. J is initially set at (2.P.35~1) and changes with each execu-

tion of NDRN1B. The following entries enable the programmer to pick up

the current value of J and to use it as input to NDRN1B in order to
initialize a sequence of random numbers during execution of the
calling program.

1. PURPOSE: Save the current value of J that would have been used
to calculate the next random number.

CALLING SEQUENCES:

MAD EXECUTE NDRN1D. (I)
FORTRAN CALL NDRN1C(K)
UMAP CALL NDRN1D

PAR I

NORMAL RETURN
2. PURPOSE: Initialize the parameter J with the input integer.

CALLING SEQUENCES:

MAD EXECUTE NDRN1A. (I)

FORTRAN CALL NDRN1A(K)

UMAP CALL NDRN1A
PAR I

NORMAL RETURN

ARGUMENTS :
I Full word integer which may be used as an initiali-

zation of the parameter J. The initial normal value
of T is 34359738367.

K Name of an integer array of length 3. FORTRAN integers

3.8-43

NORMALLY DISTRIBUTED RANDOM NUMBER GENERATOR (CONTINUED)

are stored in the decrement portion of the machine
word and hence the parameter J must be fed to NDRN1
in 3 parts. The initial normal value of K is

K(1) = K(2) = 32767, K(3) = 31.

SUBROUTINES REQUIRED: ELOG, SQRT

SUBTRACE ON-OFF SWITCH

ENTRY POINTS: OFFTRC, ONTRC

PURPOSE: To provide control at execution time of the subroutine tracing
feature of the system initiated by the $SUBTRACE processing
function. These subroutines are effective only if the process-
ing function was used. Executing OFFTRC will suppress the
printing of the subroutine trace, and executing ONTRC will
resume the printing if it has been suppressed.

CALLING SEQUENCES:
MAD EXECUTE OFFTRC.
EXECUTE ONTRC.
FORTRAN CALL OFFTRC
CALL ONTRC
UMAP CALL OFFTRC
CALL ONTRC

PROGRAM COMMON PUNCH

ENTRY POINTS: PCPCH

PURPOSE: Produces absolute column binary cards with loading address,
check sum, and ID.

CALLING SEQUENCES:

MAD EXECUTE PCPCH.(A,L1,L2,.0c00es)

UMAP CALL PCPCH
PAR A
.o L1
e L2
eee LN
NORMAL RETURN

ARGUMENTS :

A First word of 2 BCD words to be used as ID on each card.
Words stored in A, A-1

LI Standard MAD-UMAP argument list elements.

SUBROUTINES REQUIRED: SPUNCH

3.8-44

PLOTTING SUBROUTINE

ENTRY POINTS: PLOT1, PLOT2, PLOT3, PLOT4, OMIT, FPLOT4

PURPOSE: Rapid machine plotting of numeric information for use with MAD,
UMAP or FORTRAN calling programs. The resulting graph is copied
onto a decimal output tape (6 for the MAMOS system) for subse-
quent off-line printing.

METHOD: The philosophy used in writing this routine was to treat a region
of core storage (subsequently called the image region or simply the image)
much as a piece of graph paper when plotting data manually.

First the image region is blanked out and a grid formed of I's and -'s
(with +'s at the intersection points) is placed in the image. Given the
numerical limits of the abscissa and ordinate (i.e., the maximum and
minimum values of the two variables, say X and Y), the routine can place
any specified BCD plotting character at the appropriate position in the
image for a given pair of data values (X ,Y).

Each point (X ,Y) is plotted individually and independently of any
preceding point. In other words, the data need not be presorted. Any
number of points (X ,Y) with any corresponding BCD plotting characters
can be placed in the image. A character falling on a grid line replaces
the grid character in that position. A character falling on a previously
plotted character will replace that character. Thus only the last plotted
of two coincident data points appears in the final image. Points falling
outside the grid limits (not in the image region) are ignored.

When all desired points have been placed in the region, the image is copied
onto the specified decimal output tape for subsequent off-line printing or
punching. Any number of duplicate copies of the graph can be produced.

USE: The subroutine has four entries which perfcrm the following functions.

PLOT1 sets up the grid spacing and the total width and length of the
graph image. It also determines the location of the decimal points
and the multiplying factors (powers of 10) for values of the
ordinate and abscissa to printed at the grid lines.

PLOT2 prepares the grid, examines the maximum and minimum values of the
abscissa and ordinate and establishes internally a formula for
computing the location in the image region corresponding to the
point (X ,Y).

PLOT3 places a specified BCD plotting character in the appropriate
position(s) corresponding to the given value(s) of (X ,Y).

PLOT4 (or FPLOT4) writes the image of the completed graph on the
output tape for subsequent printing off line. A label for the
ordinate is printed vertically (one character per line) at the left
edge of the page. Values of the abscissa and ordinate are printed
at the grid lines outside the bottom and left edges of the graph.

PLOTTING SUBROUTINE (CONTINUED)

+MAD CALLING SEQUENCES:

EXECUTE PLOT1.(NSCALE, NHL, NSBH, NVL, NSBV)
EXECUTE PLOT2.(IMAGE, XMAX, XMIN, YMAX, YMIN)

EXECUTE PLOT3. (BCD,

X, Y, NDATA)

EXECUTE PLOT4.(NCHAR, LABEL)
+FORTRAN CALLING SEQUENCES:

CALL PLOT1 (NSCALE,
CALL PLOT2 (IMAGE,
CALL PLOT3 (BCD, X,
CALL FPLOT4 (NCHAR,

NHL, NSBH, NVL, NSBV)
XMAX, XMIN, YMAX, YMIN)
¥, NDATA)
NHABCDEF.....)

3.8-45

ARGUMENTS :

NSCALE Is a vector (array) in the users program having one or five
locations. If the user wishes to use the standard scale
factors and decimal point positions (see below), NSCALE should
equal zero. To alter the standard factors NSCALE must be any
non-zero quantity. In this case the NSCALE array must have
five locations containing the following information.

FORTRAN MAD
*LOCATION LOCATION

CONTENTS FUNCTION

NSCALE(1) NSCALE(0) *%
NSCALE(2) NSCALE(1) I

Alter standard factors.
Printed values of the
ordinate (Y) are 10.P.I
times actual values.
Printed values of the
ordinate (Y) have J
digirs following the
decimal point (J.LE.8).
Printed values of the
abscissa (X) are 10.P.K
times actual values.
Printed values of the
abscissa (X) have M
digits following the
decimal point (M.LE.9).

NSCALE(3) NSCALE(2) J

NSCALE (4) NSCALE(3) K

NSCALE(5) NSCALE (4) M

Standard scale factors. When NSCALE is zero the standard
scale factors are used. The effective values of I, J, K,
and M are 0, 3, 0, and 3 respectively. The actual values
are printed with three decimal places.

NHL Is the number of horizontal grid lines in the graph image.
NSBH Is the number of spaces between horizontal grid limes.
NVL Is the number of vertical grid lines in the graph image.

+ Restrictions and modes of arguments given later.

* The FORTRAN and MAD locations differ by one because FORTRAN arrays
have no zeroth element.

** Any non—-zero value.

3.8-46

PLOTTING SUBROUTINE (CONTINUED)

NSBV Is the number of spaces between vertical grid lines.

NOTE: 1In keeping with standard notation for graph paper,
(i.e., 10 X 10 to the inch) NHL and NVL are really one
less than the actual number of lines. It is not customary
to consider the axes when counting lines in the grid.

IMAGE Is an array (vector), dimensioned in the users program,
consisting of N sequential locations not used between
execution of PLOT2 and PLOT4, where

N = P*(NSBH*NHL + 1)
P = (NSBVANVL + 1)/6 rounded up to nearest integer.

XMAX Is the value of the abscissa at the rightmost grid line.
XMIN Is the value of the abscissa at the leftmost grid line.
YMAX Is the value of the ordinate at the uppermost grid line.
YMIN Is the value of the ordinate at the lowermost grid line.
BCD Is the BCD (Hollerith) plotting character, and may be any

legitimate left-adjusted BCD character (letter, digit, blank
or special character *,.= etc.).

X Is a single location (or array name) containing the X
coordinate(s) of the point(s), (X ,Y).

Y Is a single location (or array name) containing the Y
coordinate(s) of the point(s), (X ,Y).

NDATA Is the number of data points (X ,Y) associated with the

arrays X and Y. With NDATA equal to 1, a single point will

be plotted for a single execution of PLOT3. With NDATA equal
to Q, Q points (X ,Y) taken in sequence from vectors of

length Q starting at X and Y are plotted for a single execution
of PLOT3.

NCHAR Is the number of BCD (Hollerith) characters (including blanks)
in the label array (vector).

LABEL Is the name of an array (vector) which contains the string of
BCD characters to be printed at the left edge of the output
page, i.e., a label for the ordinate of the graph. This
vector is stored backward in locations LABEL, LABEL-1, LABEL-2,
eesesy, and in a MAD program will normally be preset with a
vector values statement.

LABELLING THE ORDINATE: Use of FPLOT4 in FORTRAN.
As mentioned under the above explanation of the argument LABEL, the MAD
user will normally preset the string of BCD characters to be printed
along the left edge of the output page using a vector values statement.
FORTRAN II, however, has no provision for presetting symbolic locations
accessible to the programmer during execution. Consequently, the
printing entry for FORTRAN calling programs, FPLOT4, has a somewhat
different calling sequence than the MAD entry, PLOT4. The string of
characters for the ordinate LABEL appears directly in the calling sequence
as the second argument (Hollerith). The N preceding the H (specifying
the Hollerith string) should be the same as the value of NCHAR.

3.8-47

PLOTTING SUBROUTINE (CONTINUED)

THE PLOTTING CHARACTER:
The plotting character can be set up by a substitution statement
of the form;
BCD = 1H* (FORTRAN)
BCD = $*$ (MAD)
or entered directly into the argument list for PLOT3 as;
CALL PLOT3 (1H*,X,Y,NDATA) (FORTRAN)
EXECUTE PLOT3.($*$,X,Y,NDATA) (MAD)

UMAP CALLING SEQUENCES:

The UMAP calling sequences are identical with those compiled by MAD
and FORTRAN. Examples are given in both the MAD manual and the
FORTRAN II reference manual. If the label characters are preset in
the normal UMAP fashion (ascending addresses in storage), the
FPLOT4 entry should be used for printing.

CALL FPLOT4

PAR NCHAR

PAR LABEL
In keeping with the SHARE-FORTRAN conventions, all index registers
are preserved.

RESTRICTIONS ON ARGUMENTS:

NHL .G, (o
NSBH .G. C
NVL .G. C
NSBV .G. C
(NSBVANVL) .LE. 113
BCD Must be a left-adjusted

legitimate BCD (Hollerith)
character, i.e.

1H-, 1H%, 1HA, 1H1, ETC.(FORTRAN)
$-$, $*%$, SAS, $1s, ETC. (MAD)

MODES OF ARGUMENTS:

(1) Those arguments which deal directly with data values (XMAX, XMIN,
YMAX, YMIN, X, Y) must be in floating point mode.

(2) Those arguments which deal with the arrangement of the image and
the scale factors (NSCALE, NHL, NSBH, NVL, NSBV, NCHAR) and the
number of data points NDATA can be;

(A) Floating point.

(B) FORTRAN type integers (15 binary bits in the decrement
of the 7090/7094 machine word) of absolute value less
than 32768.

(c) MAD-like integers (low order 18 binary bits in the tag
and address portions of the 7090/7094 machine word) of
absolute value less than 262144.

The routine automatically determines which mode is being used
for each argument.

(3) LABEL and BCD must contain Hollerith information only.

NOTE: The sign of NHL, NSBH, NVL, NSBV, NDATA, and NCHAR is ignored.

3.8-48

PLOTTING SUBROUTINE (CONTINUED)

SUGGESTIONS FOR THE USER:

1.

Standard Grid.
If the user desires to use a standard grid configuration with the
standard scale factors, PLOT1 need not be executed. This standard
graph consists of a full page graph 101 columns wide and 51 lines
long with 10 vertical grid lines (NVL), 5 horizontal grid lines
(NSBH and NSBV). The image array must be dimensioned at least 867
(decimal) locatioms.
Positioning the Graph on the Printed Page.
The graph is always adjusted toward the left edge of the page.
The topmost line is printed one space below the last line printed by
the user before executing PLOT4. For example, to start at the top
of a page the user can execute a statement of the type;
PRINT COMMENT 1 (MAD)
or WRITE OUTPUT TAPE 6, 5 (FORTRAN)
5 FORMAT (1HL)
prior to execution of PLOT4 or FPLOT4.
Printing Information Above and/or Below the Graph.
If desired, the user can print a title above the graph before
executing PLOT4 (or FPLOT4), or a label for the abscissa below the
graph after executing PLOT4 (or FPLOT4). This is done, of course,
with a PRINT FORMAT (MAD) or WRITE OUTPUT TAPE (FORTRAN) statement
in the calling program.
Length of the LABEL Vector.
The LABEL vector need not have as many characters as the number of
printed lines in the final image. The characters given are printed
in sequence, one per line, starting at the topmost line until all
NCHAR characters have been used. Blanks are inserted automatically
for any succeeding lines.
If no LABEL for the ordinate is desired, set NCHAR to 0 (zero). The
LABEL argument is then immaterial, but some second argument must be
given for PLOT4 (ox FPLOT4).
Plotting More Than One Set of Data — Changing the Plotting Character.
The number of individual (or sets of) data points to be plotted is
not limited in any way. PLOT3 may be executed as many times as
desired. The plotting character can be the same or different for
each of the PLOT3 executions.
Points Which Are Not Plotted.
Data points will not be plotted under the following circumstances:
1. The value of one or both of the coordinates (X,Y) lies outside
the range XMIN to XMAX or YMIN to YMAX.
2. The value of X or Y is not in floating point mode.
3. NDATA = 0.
Points which are not plotted are simply ignored by the routine. Thus,
the user need not pretest his data for occurrence inside the grid
limits,
Printing More Than One Copy of the Graph.
PLOT4 (or FPLOT4) can be executed as many times as desired. One copy
of the graph is produced per execution.

3.8-49

PLOTTING SUBROUTINE (CONTINUED)

.8.

Executing Other Instructions Between PLOT Entries.

Any number of instructions can be executed between execution of
successive PLOT entries, provided only that the image region is not
disturbed between execution of PLOT2 and the final execution of
PLOT4 (or FPLOT4). For example, if IMAGE is in common or erasable,
no subroutines which use the same locations in common or erasable
should be called between execution of PLOT2 and PLOT4 (or FPLOT4).
Graphs Which Cover More Than One Page.

The number of lines in the graph is (NSBH*NHL+1). There is no limit
on this quantity provided only that it is compatible with the number
of locations in IMAGE (N on page 3). Thus a graph can cover anywhere
from a small part of one page to several pages. For the multi-page
graph, the normal skip between pages (across the page perforations)
will take place. Where storage is a limiting factor, see section H
for producing a graph of any arbitrary number of pages.

SPECTIAL FEATURES FOR UNUSUAL APPLICATIONS:

A.

Intermediate Printing While Plotting.
After PLOT2 has prepared the grid and PLOT3 has plotted some data
into the IMAGE region, PLOT4 (or FPLOT4) can be executed to give a
current copy of the graph. PLOT3 can then be reexecuted to plot some
more data. When PLOT4 (or FPLOT4) is reexecuted, the graph will
contain all the points placed since the last PLOT2 entry.
Preparing a New Grid After Printing. _
If, after printing via PLOT4 (or FPLOT4), it is desired to prepare a
new image of the same grid configuration as the previous one, it is
only necessary to reexecute PLOT2, i.e., PLOT1l need not be reexecuted
if the arguments would be the same as used for the previous execution
of PLOTI1,
Printing Numeric Fields As Integers (Without Decimal Point).
If integer printout of the numeric values of the abscissa or ordinate
at the grid lines is desired, the appropriate decimal point parameter
in the NSCALE array should be set to any negative value less than or
equal to -1.
Printing In the Body of the Graph.
Since any BCD characters can be placed in the IMAGE, given the proper
coordinates, a title can be placed in the body of the IMAGE by plotting
one character at a time with the appropriate coordinates. However,
since the entire IMAGE region is available at all times, alphabetic
constants (6 BCD characters per 7090/7094 word) can be placed directly
into the image using a substitution statement of the type,

IMAGE(M) = S$Y VS X$ (MAD)
where M is the appropriate subscript in the IMAGE vector. To determine
the proper M, a short description of the image region layout follows.
Each horizontal line image for the printed page uses P locations in
the IMAGE array where P is calculated as previously described in this
writeup (see section on arguments). For a MAD program, the first
(top) line is assigned to locations IMAGE(Q)...IMAGE(P-1), the second
line from IMAGE(P)...IMAGE(2*P-1), the third from IMAGE(2*P)...
IMAGE (3*#P-1), etc. If it was desired to print ' Y VERSUS X ' in the

3.8-50

PLOTTING SUBROUTINE (CONTINUED)

center of the third line of the standard IMAGE, for which P = 17, the
statements

IMAGE(42) = $Y VERS (MAD)

IMAGE (43) = $SUS X$
could be executed after execution of PLOT2 and before execution of
PLOT4. For FORTRAN programs (which have no zeroth subscript), these
subscripts would be one greater in all cases, i.e., the first line
would be assigned to locations IMAGE(1l)...IMAGE(P), etc. The substi-
tution statements would be of the form

GRAPH(43) = 6HY VER (FORTRAN)

GRAPH(44) = 6HSUS X
NOTE: Because FORTRAN II restricts integers to the decrement of the
7090/7094 machine word, substitution statements involving BCD constants
can be used only if the variable involved has a floating point name.
Hence, the use of the name 'GRAPH' instead of 'IMAGE' for the IMAGE
region. Since this type of substitution statement is not a recog-
nized part of the FORTRAN language, but is nevertheless accepted by
the 7090/7094 FORTRAN II compiler, care should be exercized in its
use.
Modification of the Grid System.
As written, the routine prepares a Cartesian grid system only. How-
ever, by setting NHL and NVL both equal to 1 (one), only the border
lines of the IMAGE will be prepared by PLOT2. The user can subse-
quently prepare his own grid (log-scaled for example) by plotting it
(the grid) with repeated execution of PLOT3 using the desired grid
character as the plotting character BCD and the appropriate
coordinates, or grid lines can be laid down using the technique of
D, above.
Blanking Out the Grid System or Undesired Character(s).
If the user desires no grid at all (including the borders) he can
blank out the entire IMAGE array after execution of PLOT2 but before
execution of PLOT3. When PLOT4 (or FPLOT4) is subsequently executed,
values of the ordinate and abscissa will be printed at the borders
as if the blanking operation had never taken place (unless the
subroutine OMIT has been executed, see G below).
Deleting the Printing of Certain Portions of the Graph.
Provision has been made for deleting the printout of the following
items:
. Numeric values of the abscissa at the grid lines.
. Numeric values of the ordinate at the grid lines.
. Items (1) and (2).
. The complete bottom horizontal grid line.
. Items (1) and (4).
. Items (2) and (4).
. Items (1), (2) and (4).
This is accomplished by executing the entry OMIT any time before
execution of PLOT4 (or FPLOT4). The calling sequence for OMIT is;

EXECUTE OMIT. (ARG) (MAD)
or CALL OMIT (ARG) (FORTRAN)
where ARG is a positive number corresponding to one of the above

~NOoOUERwWN e

3.8-51

PLOTTING SUBROUTINE (CONTINUED)

seven numbers. If ARG is greater than 7, it will be treated modulo 8.
ARG may be of any mode.

To restore printing of any of the seven items, OMIT can be called with
ARG a negative number corresponding to the number of the item(s) to be
restored.

Examples where it would be desirable to delete printout of the ordinate
and/or abscissa values might be the plotting of a histogram or when
the grid system has been modified (see E and F, above). The feature
of deleting the printing of the bottom line is useful for joining two
graph segments (see H, below).

NOTE: Deleting printout of the bottom line by EXECUTE OMIT.(4) does
not delete printout of the abscissa values. The procedure for delet-
ing both the bottom line and the abscissa values is EXECUTE OMIT.(5).
Producing a Graph of Any Arbitrary Size.

Because of storage limitations, there is a practical upper limit to
the size of the IMAGE region, and, hence, to the size of the graph
which can be produced by a single execution of the sequence PLOT2,
PLOT3, PLOT4. However, a graph of any arbitrary size can be prepared
in piecewise fashion where the IMAGE region at any one time contains
only one segment of the complete graph. As each segment is prepared
by PLOT2 (with its appropriate YMAX and YMIN) and printed (with the
bottom line deleted, see G, above) by PLOT4 (or FPLOT4), it will join
with the previous segment to form the appearance of one continuous
graph. The following example written in MAD illustrates the prepara-
tion of a graph of N segments.

EXECUTE OMIT. (5)

PRINT FORMAT TOP

EXECUTE PLOT1.(0,1,12,4,25)

DELTAY = (YMAX-YMIN)/N

THROUGH LAST, FOR I = C,1,I.E.N

EXECUTE PLOT2.(IMAGE,XMAX,XMIN,YMAX-I*DELTAY,

1 YMAX-(I+1)*DELTAY)

EXECUTE PLOT3.($%$,X,Y,NDATA)

WHENEVER I.E.N-1, EXECUTE OMIT.(-5)
LAST EXECUTE PLOT4.(12,LABEL(2%I))

PRINT FORMAT BOTTOM

VECTOR VALUES TOP = §

VECTOR VALUES BOTTOM = $§

VECTOR VALUES LABEL = $

INTEGER I, N

DIMENSION IMAGE(221)
NOTE: If this technique is used, only one complete copy of the graph
can be produced.

3.8-52

PLOTTING SUBROUTINE (CONTINUED)

ERROR CHECKS:
PRINTED COMMENTS:

The subroutine contains many error checking features. For
arguments incompatible with the restrictions listed previously,
the comment "IMPROPER ARGUMENT" will be printed along with the
appropriate entry PLOT1, PLOT2, etc.

If an error occurs in PLOT1 and/or PLOT2, the comment will be
printed and subsequent executions of later entries will be deleted
without comment (see computation switch below), until the offend-
ing entry is executed successfully.

If the user attempts to execute PLOT3, PLOT4 or FPLOT4 with-
out a previous execution of PLOT2 (or, without execution of PLOT2,
subsequent to any execution of PLOT1l), the comment 'NO PREVIOUS
PLOT2" will be printed.

COMPUTATION SWITCH:

A floating point constant is returned to the accumulator after
execution of each entry. If no difficulties are encountered
during execution, a zero is returned. Amn error in PLOT1, PLOT2,
PLOT3 or PLOT4 (or FPLOT4), or a deletion of execution caused by
the unsuccessful execution of an earlier entry, causes a
1.0, 2.0, 3.0 or 4.0, respectively, to be returned. The calling
sequences for any or all MAD entries can thus be altered to form

R = PLOT2.(IMAGE,XMAX,XMIN,YMAX,YMIN) (MAD)

WHENEVER R.G.0, TRANSFER TO TRUBL

R = PLOT3.(5*$,.....

TRUBL (The error condition statement)

Because FORTRAN does not permit the use of Hollerith arguments
in the calling sequence of functions (appearing in expressions), the
FORTRAN user has access to the computation switch from PLOT3 only if
the plotting character is entered as a variable name rather than as
a Hollerith argument. Thus

R = PLOT3(BCD,X,Y,NDATA) is legal
while R = PLOT3(1H*,X,Y,NDATA) is not legal.

By the same token, the switch is not available for FPLOT4 when
it is called with a Hollerith argument (when a label for the ordinate
is desired). However, the switch is still available when FPLOT4 is
called by a UMAP program.

A typical FORTRAN sequence using the switches might appear as

follows:
BCD = 1H*
R = PLOTI1(NSCALE,NHL,NSBH,NVL,NSBV) (FORTRAN)
IF (R) 102,102,110
102 R = PLOT2(IMAGE, XMAX,XMIN,YMAX,YMIN)

IF (R) 103,103,110
103 R = PLOT3(BCD,X,Y,NDATA)
IF (R) 104,104,110
104 CALL FPLOT4 (..... cessean
110 (The error condition statement
If any points are not plotted by PLOT3, a -3.0 is returned to
‘the accumulator. This may or may not be considered an error.

3.8-53

PLOTTING SUBROUTINE (CONTINUED)

ARGUMENT MODIFICATION BY THE ROUTINE:

In some cases, the routine modifies the positioning of the
decimal point or shifts the entire abscissa printout to accomodate
all the desired numbers in the width of the printed page.

If the suggested scale factors are such that overflow or
underflow of the machine word would result, the factor is reset to O.

If the value of the ordinate or abscissa is too large to be
printed in the alloted space, it will be truncated from the left
in printout.

Under no circumstances is the content of an argument location
in the calling program modified.

SUBROUTINES REQUIRED: SPRINT

SAMPLE PROBLEMS FOR THE PLOTTING SUBROUTINE:
Three sample problems have been prepared. The first has been coded
in both MAD and FORTRAN, the second two have been coded in MAD only.
The first 1s a simple example which reads a set of data values
from input cards and plots them, 1llustrating;
(1) Use of standard grid and scale factors
(2) Plotting of an array of data points with a single
execution of PLOT3.
The second is a more complex example which plots the solutions
Y and DY/DX to the differential equation
D2Y/DX2 + A DY/PX + B = O.
The differential equation is solved using the Runge-Kutta
subroutines from the library tape (see RKDEQ,SETRKD write-ups.)
It illustrates:
(1) Modification of standard grid and scale factors.
(2) Plotting of one character per execution of PLOT3.
(3) Use of different plotting characters in the same graph.
(4) Printing a variable number of copies of the graph.
The third prepares a polar plot of the polar function Polf,
a spiral of the form
R = K*ANGLE.
This program illustrates:
(1) Erasure of the grid prepared by PLOT2.
(2) Placing a mew grid in the IMAGE region by plotting
the grid characters one at a time use PLOT3.
(3) Printing inside the graph by placing BCD constants
in the image region.
(4) Use of the computation switch to stop the iteration
loop involving the plotting of data points.
(5) Use of the subroutine OMIT to delete the printing of
numbers at the edge of the graph.
All examples illustrate the printing of a label for the ordinate
and the first two show the printing of a title above the graph and a
label for the abscissa below the graph.

3.8-54

PLOTTING SUBROUTINE (CONTINUED)
SAMPLE PROBLEM NUMBER ONE.

$COMPILE MAD, PUNCH OBJECT PLMADOOO
R
R PROGRAM TO ILLUSTRATE PLOTTING MULTIPLE POINTS WITH MAD
R USING THE STANDARD GRID AND SCALE FACTORS
R
DIMENSION X(100), Y(100), GRAPH(867)
INTEGER N
FIRST READ FORMAT ENTR, N,XMAX,XMIN,YMAX,YMIN
READ FORMAT DATA, X(1)...X(N)
READ FORMAT DATA, Y(1)...Y(N)
EXECUTE PLOT2.(GRAPH,XMAX,XMIN,YMAX, YMIN)
EXECUTE PLOT3. ($*$,X(1),Y(1),N)
PRINT FORMAT TITLE
EXECUTE PLOT4.(32,0RD)
PRINT FORMAT ABS
TRANSFER TO FIRST
R
R FORMAT STATEMENTS
R
VECTOR VALUES ENTR = $I10,4F10.4%$
VECTOR VALUES DATA =$7F10.4%$
VECTOR VALUES TITLE =$1H1,S54,14HPLOT OF X VS Y /1H *$
VECTOR VALUES ABS = $1H0,S55,14HTHE ABSCISSA X *$
VECTOR VALUES ORD =$ THE ORDINATE Y $
END OF PROGRAM
$SDATA

$MADTRAN,PRINT OBJECT, PUNCH OBJECT PLFTROOO
c

c PROGRAM TO ILLUSTRATE PLOTTING MULTIPLE POINTS WITH FORTRAN

C USING THE STANDARD GRID AND SCALE FACTORS
C

DIMENSION X(100),Y(100) ,GRAPH(867)
1 READ INPUT TAPE 7,100, N, XMAX, XMIN, YMAX, YMIN
READ INPUT TAPE 7,101, (X(I), I=1,N)
READ INPUT TAPE 7,101, (¥(I), I=1,N)
CALL PLOT2(GRAPH, XMAX,XMIN,YMAX,YMIN)
CALL PLOT3(1H*,X(1),Y(1),N)
WRITE OUTPUT TAPE 6,102
CALL PLOT4(32, 32H THE ORDINATE Y)
WRITE OUTPUT TAPE 6,103
GO TO 1

FORMAT STATEMENTS

[eNeNe]

100 FORMAT (110,4F10.4)
101 FORMAT (7F10.9)
102 FORMAT (1H1, 54X, 14HPLOT OF X VS Y /1H)
103 FORMAT (1HO, 55X, 14HTHE ABSCISSA X)
END
$SDATA

3.8-55

PLOTTING SUBROUTINE (CONTINUED)

SAMPLE PROBLEM NUMBER TWO

$COMPILE MAD, PUNCH OBJECT RKMADOOO

FIRST

WRITE

STEP

ouT

LOOP

R
R PROGRAM TO ILLUSTRATE PLOTTING ONE CHARACTER AT A TIME
R WITH MAD
R .
DIMENSION F(2),Q(2),Z(2),DUMMY (833)
INTEGER K,NPLOTS
VECTOR VALUES MARGIN = $ Y AND PRIMES
VECTOR VALUES N = 1,0,1,0,1
EXECUTE SETRKD.(2,Z(1),F(1),Q,X,H)
READ FORMAT INPUT,A,B,Z(1),Z(2),H,MAXY,MINY,NPLOTS
EXECUTE PLOTL.(N,4,12,5,20)
EXECUTE PLOT2.(DUMMY,10.,0.,MAXY ,MINY)
PRINT FORMAT HEAD
X = 0.
PRINT FORMAT RESULT,X,Z(1),Z(2)
EXECUTE PLOT3.($*%$,X ,Z(1),1)
EXECUTE PLOT3.($+$,X ,2(2),1)
WHENEVER X.G.10.,TRANSFER TO OUT
K = RKDEQ. (0)
WHENEVER K.E.1
F(1) = Z(2)
F(2) = -A*Z(2) - B*Z(1)
TRANSFER TO STEP
END OF CONDITIONAL
TRANSFER TO WRITE
THROUGH LOOP,FOR K = 1,1,K.G.NPLOTS
PRINT FORMAT TITLE,A,B
EXECUTE PLOT4. (30,MARGIN)
PRINT FORMAT BOTTOM
TRANSFER TO FIRST
R
R FORMAT STATEMENTS
R
VECTOR VALUES INPUT = $7F10.5,I2%$
VECTOR VALUES HEAD = $1H1,S13,47HTABULATED SOLUTION OF THE DIF
1FERENTIAL EQUATION /1H0,S17,1HX,S19,1HY,S16,6HYPRIME*S
VECTOR VALUES RESULT = $1H ,3F20.4%$
VECTOR VALUES TITLE = $1H1,S43, 37HSOLUTION OF THE DIFFERENTIA
1L EQUATION /1H ,S43,12HY-DOT-DOT + F5.2,9H Y-DOT + F5.2,
26H Y = 0 /1HO*$
VECTOR VALUES BOTTOM=$1HO,S49,26HTHE INDEPENDENT VARIABLE X//
11H S44, 36HPLOTTING CHARACTERS. Y(*), YPRIME(+) *$
END OF PROGRAM

PLOTTING SUBROUTINE (CONTINUED)

SAMPLE PROBLEM NUMBER THREE.

$COMPILE MAD, EXECUTE, DUMP, PUNCH OBJECT

START

ERASE

PLACI
PLACP
PLACM1

PLACPL

READ

PLACE

$DATA
4.0
* -,25

-]

3.8-56

POLAROCOO

POLAR PLOT OF A SPIRAL TO ILLUSTRATE ERASURE OF THE GRID,

USE OF THE SUBROUTINE OMIT. AND THE COMPUTATION SWITCH.

R
R PREPARATION OF A NEW GRID, PRINTING INSIDE THE IMAGE,
R
R

INTERNAL FUNCTION POLF.(ANGLE) = K*ANGLE
DIMENSION IMAGE(686)

BOOLEAN BOOL

INTEGER IMAGE, CHAR, I
RMAX

EXECUTE PLOT1. (0,1,48,1,80)
EXECUTE PLOT2. (IMAGE,RMAX,-RMAX,RMAX,~RMAX)

READ FORMAT INPUT ,

THROUGH ERASE, FOR I = 0,1, I.G.686

IMAGE(I) = § $

DELTAY = RMAX/24.
DELTAX = RMAX/40.

THROUGH PLACI, FOR Y=RMAX,-DELTAY,Y.L.-RMAX
EXECUTE PLOT3.(I,0.0,Y,1)
THROUGH PLACP, FOR Y=RMAX,-1.0,Y.L.-RMAX
EXECUTE PLOT3.($+$,0.0,Y,1)
THROUGH PLACM1, FOR X =-RMAX,DELTAX,X.G.RMAX
EXECUTE PLOT3.($-$,X,0.0,1)
THROUGH PLACPL, FOR X =-RMAX,1.0,X.G.RMAX
EXECUTE PLOT3.($+$,X,0.0,1)

IMAGE(349) = - 0 §
IMAGE(6) = § 90 §

IMAGE(336) = $180 —-$
IMAGE(678) = § 270%

READ FORMAT DATA, CHAR, K, BOOL

SWITCH = O.

THROUGH PLACE, FOR THET = 0., .1, THET.G.25..0R.SWITCH.NE.O.
SWITCH=PLOT3. (CHAR,POLF. (THET) *COS . (THET) ,POLF. (THET) *

1SIN. (THED, 1)
PRINT FORMAT SKIP

EXECUTE PLOT4(36 ,MARGIN)
WHENEVER BOOL, TRANSFER TO START

TRANSFER TO READ

VECTOR VALUES INPUT = $F10.4%$
$C1,F9.4,11%$

VECTOR VALUES DATA
VECTOR VALUES SKIP
VECTOR VALUES MARGI
END OF PROGRAM

N

$

1H1/1HO/1HO*$
$

POLAR PLOT OF THE SPIRALS

3.8-57

UNIFORMLY DISTRIBUTED RANDOM NUMBER GENERATOR

ENTRY POINTS: RAM2A, RAM2B, RAM2C, RAM2D

PURPOSE: Produce a random number in the interval (0,1). A set of random
numbers generated by RAM2 has a uniform distribution.

CALLING SEQUENCES:

MAD X = RAM2B. (0)
FORTRAN X = RAM2B(0)
UMAP CALL RAM2B
PAR 0
NORMAL RETURN - X IN THE ACCUMULATOR
ARGUMENTS:
X Floating point random number, O .LE. X .LE. 1.

SPECTIAL ENTRIES:
RAM2B uses an integer parameter J to compute each random number. J is
initially set at 2.P.35 - 1 and changes with each execution of RAM2B.
The following special entries enable the user to pick up the current
value of J and to use it as input to RAM2 in order to initialize a
sequence of random numbers at a later execution of the calling program.
1. PURPOSE: Save the current value of J that would have been used to
calculate the next random number.
CALLING SEQUENCES:

MAD I = RAM2D.(0) (INTEGER MODE)
FORTRAN CALL RAM2C(K)
UMAP CALL RAM2D

PAR I

NORMAL RETURN
2. PURPOSE: Initialize the parameter J with the input integer.
CALLING SEQUENCES:

MAD EXECUTE RAM2A. (I)

FORTRAN CALL RAM2A(K)

UMAP CALL RAM2A
PAR I

NORMAL RETURN

ARGUMENTS :
I Full word integer which may be used as an initialization of
the parameter J. The initial normal value of I is
34359738367.

K Name of an integer array of length 3. FORTRAN integers are
stored in the decrement portion of the machine word and,
hence, the parameter J must be fed to RAM2 in 3 parts. The
initial normal value of K 1s- K(1) = K(2) = 32767, K(3) = 31.

3.8-58

UNIFORMLY DISTRIBUTED RANDOM NUMBER GENERATOR

ENTRY POINTS: RANDOM

PURPOSE: To provide the means for generating random numbers, uniformly
distributed over the interval O0.LE.X.LE.1,

CALLING SEQUENCES:

MAD Y = RANDOM. (RNO)
FORTRAN Y = RANDOM (RNO)
UMAP CALL RANDOM,RNO
STO Y
ARGUMENTS :
Y The variable whose value is set by the subroutine RANDOM,
RNO The variable whose value is used to propagate the generation

of random numbers. The initial value of RNO may be set by
the user by reading into the location. Any non-zero positive
initial value will cause the routine to generate the pseudo-
random sequence corresponding to the initial value. If the
initial value of RNO is zero, the routine will perform a
logical checksum of certain locations in low core, including
the clock and various buffers, so that the probability of
repeating the same sequence of random numbers on successive
approaches to the machine is very small (less than .0000002).
The argument RNO must not be an absolute constant. For ex-
ample, the calling sequence Y = RANDOM. (0) is completely
incorrect and will result in completely meaningless operation
of the program. (The subroutine RANDOM. modifies the value
of the argument on each entry. Thus, in this illustration,
the effect is to change the value of the constant zero to
random values., If the modified value of the constant zero were
used to clear an array, obvious chaos would result)

COMMENTS: RANDOM employs the thoroughly tested power residue method of
random number generation. The periodicity of this method is
2.p.35 - 1.

3.8-59

NORMALLY DISTRIBUTED RANDOM NUMBER GENERATOR

ENTRY POINTS: RANDND

PURPOSE: To provide the means for generation of random numbers whose
distribution has a given mean value and given standard deviation.

CALLING SEQUENCES:

MAD Y = RANDND. (MEAN,SIGMA,RNO)
FORTRAN Y = RANDND(XMEAN,SIGMA,RNO)
UMAP CALL RANDND,MEAN,SIGMA,RNO
ARGUMENTS:
Y The variable whose value is set by the subroutine RANDND,
MEAN

(XMEAN) The floating point variable whose value is the mean of the
desired distribution.
SIGMA The variable whose value 1s used to propagate the random
number sequence. Since RANDND calls upon RANDOM, the user
should read the write-up on the subroutine RANDOM.

SUBROUTINES REQUIRED: RANDOM, ELOG, SQRT.

3.8-60

REPLACE TAPES

ENTRY POINTS: REPLCE

PURPOSE: Prints instructions to the operator to replace a user's tapes
with other tapes belonging to the user. It first calls on
DISMNT and MOUNT and then stops for the operator to replace the
tapes. Labels on the new tapes are handled in the same way as
if they were mounted with MOUNT.

CALLING SEQUENCES:
MAD DATE = REPLCE. (NUM1,NAME1l,UNIT1,DENS1,PRO1,MODE1,NUM2 ,NAME2,
UNIT2,DENS2,PRO2 ,MODE2,...,NUMN,NAMEN,UNITN,DENSN,
PRON ,MODEN)
FORTRAN DATE = REPLCE(NUM1,NAME1l,UNIT1,DENS1,PRO1,MODEl,NUM2 ,NAME2
UNIT2,DENS2,PRO2 ,MODE2,...,NUMN,NAMEN ,UNITN,DENSN,

PRON ,MODEN)
UMAP CALL REPLCE
PAR NUM1
PAR NAME1
PAR UNIT1
PAR DENS1
PAR PRO1
PAR MODE1
PAR NUMN
PAR NAMEN
PAR UNITN
PAR DENSN
PAR PRON
PAR MODEN

DATE IS RETURNED IN THE ACCUMULATOR.

ARGUMENTS :
There are six arguments for each tape to be replaced.
NUM Number (full word or FORTRAN integer) assigned to the new
tape. See MOUNT for use of zero and negative numbers.
NAME One word BCD name used in tape label of new tape.
UNIT Logical number (full word or FORTRAN integer) of the tape

drive of the tape to be replaced. If thils number is positive,
the ring of the replaced tape will be removed. If unit is
negative, a ring will be inserted in the replaced tape.

DENS If zero, the new tape will be in low density. If non-zero,
the new tape will be in high density. (This should normally
be non-zero.)

PRO If zero, file protect ring should be inserted in the new
tape. If non-zero, file protect ring should be removed from

the new tape.

3.8-61

MODE If zero, the new tape will be BCD. 1If non-zero, the new
tape will be binary.
DATE The BCD date in the label of the new tape. It has the form

DD/MM where DD is the day of the month MM. If there is
more than one group of arguments, the date will be that on
the tape specified by the last group.

SUBROUTINES REQUIRED: DISMNT, MOUNT

RUNGE-KUTTA SOLUTION OF DIFFERENTIAL EQUATIONS

ENTRY POINTS: RKDEQ, SETRKD

PURPOSE: Solves a system of N first order ordinary differential equations
by the Runge-Kutta fourth-order method. The equations are
assumed to be of the form:

DY(1) /DX = F(1) (X,¥(1),...,Y(N))

DY(N)/DX = F(N) (X,Y(1),...,Y(N))
where X is the independent variable.

CALLING SEQUENCES:

MAD EXECUTE SETRKD. (N,Y,F,Q,X,H) SETUP

S = RKDEQ. (0) EXECUTION
FORTRAN CALL SETRKD (N,Y,F,Q,X,H) SETUP

S = RKDEQ(O) EXECUTION
UMAP SETUP EXECUTION

CALL SETRKD CALL RKDEQ

PAR N NORMAL RETURN - S IN THE

PAR Y ACCUMULATOR

PAR F

PAR Q

PAR X

PAR q

NORMAL RETURN

SETRKD. must be entered before the first entry to RKDEQ.
Thereafter, SETRKD. must be entered only when a change occurs

in the parameter list. (Note that this does not include changes
in parameter values.)

NOTE: 1In MAD and FORTRAN, the arguments used in SETRKD must be single
variable names, subscripted if desired, except for N and H, which may
be constants. Expressions may not be used as arguments.

ARGUMENTS :

N

Y

3.8-62

Number of equations to be solved (integer variable or constant).

Name of the first element of a floating point vector in which
the solution values Y(I) will be stored by RKDEQ. The initial
values of Y(I) should be stored here prior to the first entry.

Name of the first element of a floating point vector in which
the values F(I) of the derivatives are stored.

Name of the first element of a temporary storage region used
by RKDEQ. This region must be of length at least N.

The floating point value of the independent variable X. This
must be set to the initial value of X prior to the first entry.
The independent variable is automatically incremented by RKDEQ.

Floating point value of the increment for X, i.e., the step
size. This value may be changed between solution points, if
desired.

Floating point computation switch,

S = 1.0 compute the values of the derivatives F(I) using the
current values of X and Y(I) and return to RKDEQ.

S = 2.0 the solution values Y(I) for the present value of X
are stored in Y.

SAVE BLOCKS OF CORE FOR LATER RELOADING BY SYSTEM

ENTRY POINTS: SAVCOR

PURPOSE:

Saves up to ten blocks of core on designated tape as a standard
binary system record, with checksum, for later loading by
SEQPGM (if tape is properly positioned in front of the record
first), or by SELRCD. After reloading, either of 2 alternate
exits may be taken.

CALLING SEQUENCE:

MAD

UMAP

EXECUTE SAVCOR. (TAPE,Al,...,B1,A2,...,B2, ETC., AN,...,BN,

EXIT1,EXIT2)
CALL SAVCOR
PAR TAPE
BLK Al,,Bl
BLK A2,,B2
BLK AN, , BN
PAR EXIT1

PAR EXIT2

3.8-63

ARGUMENTS :

TAPE

Al,B1
A2,B2
AN, BN
EXIT1

EXIT2

Logical tape number of tape on which core is to be saved.
Tape is not positioned before or after writing, nor is an
end-of-file written before or after writing.

Blocks of core locations from Al to Bl,

A2 to B2, etc., are written as one record.

when later reloaded, these blocks will load

into original locations.

Location to which transfer is to be made if sense light 2
is off when record is reloaded.

Location to which transfer is to be made if sense light 2
is on when record is reloaded.

RESTRICTION: A maximum of ten blocks may be used.

SUBROUTINES USED: WRSBIN

CALLING SUBROUTINES FOR PING-PONG SEGMENTS

ENTRY POINTS: SELPGM, SEQPGM

PURPOSE:

SEQPGM is used in ping-pong to call the next core in sequence.
SELPGM is used to select one of the cores as the next core to
be executed.

CALLING SEQUENCES:

MAD

EXECUTE SEQPGM. (TAPE)
EXECUTE SELPGM. (I, TAPE)

FORTRAN CALL SEQPGM(TAPE)

ARGUMENTS :
I

TAPE

CALL SELPGM(I,TAPE)

CALL SEQPGM
PAR TAPE
NO RETURN

CALL SELPGM
PAR I

PAR TAPE
NO RETURN

Integer core number designated to be the next core to be
executed.

Tape on which the next core will be found. This parameter may
be omitted. If omitted, tape 2 will be assumed.

SUBROUTINES REQUIRED: SELRCD

SET LOW CO

3.8-64

RE TRAP LOCATIONS

ENTRY POIN

PURPOSE:

NOTE:

TS: SET2, SETS8

To allow users to set trap return locations in low core with their
own tramnsfers.
SET2 sets location 2, which is the trap location for the
STR instruction.
SET8 sets location 8, which is the trap location for floating-
point trap.

The I/0 routines and the list manipulation routines (.SET, .SAVE,
.RSTOR) use STR's and hence location 2. They do not save the pre-
vious instruction that was in the location. Also, during I/0 and
LIST manipulation, the user must not modify location 2 from the
TSX to the subroutine until after the ENDIO (STR 0).

CALLING SEQUENCES:

MAD EXECUTE SET2. (L)
EXECUTE SET8. (L)

FORTRAN CALL SET2(M) See point 7 under arguments in
CALL SET8 (M) introduction to this section.

UMAP CALL SET2 CALL SETS8
PAR X PAR X

ARGUMENTS :
L Statement label of the statement to go to when the trap occurs.
M A variable that has been assigned the formula number of the
statement to go to when the trap occurs.
X A location containing 'TTR RETURN' where return is the location

to go to when the trap occurs.

SET END OF FILE RETURN

ENTRY POINTS: SETEOQO¥, SETEFL

PURPOSE:

Normally, when an end-of-file is found on a tape while reading,
if the tape is the input tape, the comment '**%* ALL INPUT DATA
HAVE BEEN PROCESSED' is printed and the job is terminated. TIf
the tape is a scratch tape, the comment '*%** END OF FILE ON
SCRATCH TAPE' is printed and the job is terminated. This pro-
cedure can be altered by using SETEOF or SETEFL.

CALLING SEQUENCES:

MAD

EXECUTE SETEOF. (LOC,N)
EXECUTE SETEOF. (0)

FORTRAN CALL SETEFL (LOC)

CALL SETEFL (0)

CALL SETEOF CALL SETEOF
PAR LOC PAR ZERO

PAR N

3.8-65

ARGUMENTS :
LocC Instruction to which control is transferred when an end of
file mark is encountered by the input read subroutines. (FORTRAN
users should see point 7 under arguments in the introduction
to this write-up.)

0 This is the integer zero. After it is used as the argument, an
end of file mark will cause a normal return to the executive
system.

N This argument is optional. If used, N will be set equal to the

logical number (integer mode) of the tape being read.
ZERO A location containing zero.

SET I/0 ERROR RETURN

ENTRY POINTS: SETERR, .ERR

PURPOSE: Allows user to retain control when an error is detected by the
input-output subroutines. Otherwise, control is returned to
the executive system, which terminates the job.

CALLING SEQUENCES:
MAD EXECUTE SETERR. (LOC,E)
EXECUTE SETERR. (0)

FORTRAN CALL SETERR(LOC)
CALL SETERR (0)

UMAP CALL SETERR CALL SETERR
PAR LOC PAR ZERO
PAR E
ARGUMENTS :

LoC Instruction to which control is transferred when an error is
detected by the I/0 subroutines. (FORTRAN users should see
point 7 under arguments in the introduction to this write-up.)

0 This is the integer zero. After it is used as the argument,
an error detected by the I/O subroutines will cause a normal
return to the executive system.

E This argument is optional., If used, E will be set equal to
the integer error number (see appendix I).

ZERO A location containing zero.

(.ERR is the entry point to this subroutine that the I/0
routines use when an error has been found. They print out
the error comment and then call on .ERR to either go to the
user or return to the system.)

SUBROUTINES REQUIRED: ERROR, SPRINT, SYSTEM

3.8-66

SET END OF TAPE TEST OPTION

ENTRY POINTS: SETETT

PURPOSE:

CALLING SE
MAD

Allows user to change normal procedure when end of tape is en-—

countered during a write operation (except on output tape).

QUENCES:
EXECUTE SETETT. (LOC,N)
EXECUTE SETETT. (0)

FORTRAN CALL SETETT (LOC)

ARGUMENTS:
LoC

ZERO

CALL SETETT (0)

CALL SETETT CALL SETETT
PAR LOC PAR ZERO
PAR N

Instruction to which control is transferred when end of tape is
encountered while writing a tape other than the output tape.
(FORTRAN users should see point 7 under arguments in the intro-
duction to this section.)

This 1s the integer zero. After it is used as the argument, an
end-of-file mark is placed on the tape, and the tape is rewound

and unloaded for replacement by the operator. This is the normal

procedure.

This is an optional argument. If given, N will be set equal
to the logical number of the tape on which the end of tape was
encountered.

A location containing zero.

FLOATING POINT TRAP CONTROL

ENTRY POINTS: SETFIP, RSTFTP

PURPOSE:

SETFTP allows the user to supply his own trap control routine
for floating point trapping.
RSTFTP restores trap control to the system trap routine.

CALLING SEQUENCES:

MAD

UMAP

ARGUMENTS :

WHERE
WHAT

EXECUTE SETFIP.(WHERE,WHAT,WHRTO)
EXECUTE RSTFTP.

CALL SETFTP,WHERE,WHAT,WHRTO
CALL RSTFTP

Location where the floating trap occurred.
Trap bit information from location 0.
Each of the four right-hand bits that is one has the

meaning listed below.

3.8-67

BIT POSITION MEANING

32 Operation was a divide.

33 Overflow in either AC or MQ or both.
34 AC factor exceeded.

35 MQ fraction is excessive.

(See IBM 7090/7094 Reference Manual)

WHRTO Location to go to when trap occurs.

SET UP FOR PLOT SUBROUTINE (IT MAKES PLOT PAINLESS)

ENTRY POINTS: SETPLT, USTPLT

PURPOSE: This subroutine 1s designed to be used with the PLOT subroutine
(which is on library tape). The PLOT subroutine produces graphs
of the quantities given 1t by the user. (For a detailed ex-
planation, see the PLOT write-up.) It is a powerful and versatile
tool, but is, as a result, rather complicated and clumsy to use.
It requires that the user make 4 entries to the subroutine with
a total of 16 arguments, and in order to determine the values for
these arguments (such as the number of horizontal lines, number
of spaces between horizontal lines, etc.), the user must do con-
siderable precalculation. The user must also know the range of
answers in advance so he can set the maximum and minimum values
for the abscissa and for the ordinate. This is all work that
can be done by the computer, and SETPLT is a subroutine that does
it.

FEATURES: SETPLT inspects the data to be plotted, calculates the arguments,
and then executes PLOT such that:

1. All points to be plotted lie in the range of the graph.

2. Gridwork is square.

3. Numeric labels on abscissa and ordinate grid lines are ''mice"
values.

4. Graph is approximately square.

5. If the points to be plotted have abscissa and/or ordinate
values whose magnitude is greater than 10.P.7, the numeric
labels to the grid lines are modified by a scale factor, and
a heading is printed out informing the user of the size of
the scale factor.

6. If the size of the graph is indeterminate in either the
Y(vertical) and/or the X(horizontal) direction (ie. a hori-
zontal or vertical line, or a point), an appropriate comment
is printed out and the maximum and minimum values of the
appropriate axes are adjusted so that the values may be
graphed.

3.8-68
RESTRICTIONS: A1l points (X,Y) which are to be plotted must be obtained
and stored in tables before executing SETPLT.

CALLING SEQUENCES:- There are two calling sequences available, a regular
and an alternate one.

REGULAR CALLING SEQUENCE: User executes only SETPLT (or USTPLT).
User does not execute PLOT.

MAD EXECUTE SETPLT. (L,XLOC,YLOC,NUM,BCD,NCHAR,LABEL)
FORTRAN CALL SETPLT(L,XLOC,YLOC,NUM,BCD,NCHAR,NHABCD...)
UMAP CALL USTPLT

PAR L

PAR LABEL

or any equivalent UMAP subroutine call

ALTERNATE CALLING SEQUENCE: This is for users who want to use

"OMIT" to change the graph before it is printed, who want to print
more than one copy of the graph, who want to use different plotting
characters for different parts of the data, or, in general, who want
to take advantage of some of the special features of PLOT (for
details on these special features, see the PLOT write-up). When
using this alternate calling sequence, user executes SETPLT, and then
must execute PLOT3 and PLOT4 (or FPLOT4) himself.

MAD EXECUTE SETPLT. (L,XLOC,YLOC,NUM)
FORTRAN CALL SETPLT(L,XLOC,YLOC,NUM)
UMAP (for this alternate calling sequence either the

name SETPLT or USTPLT may be used.)
CALL USTPLT,L,XLOC,YLOC,NUM
or equivalent subroutine call.

ARGUMENTS :

L Non-zero if maximum graph length is to be one page.
Zero otherwise. (In this case, length .LE. 2 pages)

XLOC Location of first value of X or points (X,Y) to be plotted
(in table of X values).

YLOC Location of first value of Y of points (X,Y) to be plotted
(in table of Y values).
(These two tables must be stored backwards in storage, as MAD
and FORTRAN do. The values of X and Y stored in these must be
floating point values.)

NUM Number of points to be plotted (either MAD,UMAP, or FORTRAN
integer).

BCD Left-adjusted BCD(Hollerith) plotting character,

NCHAR Number of BCD characters (including blanks) in the LABEL array.

LABEL Name of array containing the string of BCD characters to be
printed at left edge of output page (label for ordinate). Must
be stored backward when using MAD (using vector values state-
ment), or forward when using UMAP (using BCD or BCI block).
Must be stored 6 characters to the word (C6).

3.8-69

NHABCD... For FORTRAN users, the string of characters for the ordinate
label appears directly in the calling sequence. The N preceed-
ing the H (specifying the Hollerith string) should be the same
as the value of NCHAR.

SUBROUTINES REQUIRED: .PRINT, PLOT1, PLOT2, PLOT3, PLOT4, FPLOT4, ELOG,
.01301

SAMPLE PROBLEM: This problem is the first example problem at the end of
the PLOT write-up, rewritten to use SETPLT. It is suggested that the
reader compare them. Both MAD and FORTRAN versions are given.

$COMPILE MAD, PUNCH OBJECT PLMADOGO
R
R PROGRAM TO ILLUSTRATE PLOTTING MULTIPLE POINTS WITH MAD
R
DIMENSION X(100), Y(100)
INTEGER N
FIRST READ FORMAT ENTR, N

READ FORMAT DATA, X(1)...X(N)

READ FORMAT DATA, Y(1)...Y(N)

PRINT FORMAT TITLE

EXECUTE SETPLT. (1,X(1),Y(1l),N,$*$,32,0RD)

PRINT FORMAT ABS

TRANSFER TO FIRST

R

R FORMAT STATEMENTS

R

VECTOR VALUES ENTR = $110%$

VECTOR VALUES DATA =$7F10.4%$

VECTOR VALUES TITLE =$1H1,S54,15HPLOT OF X V8 Y /1H *$
VECTOR VALUES ABS = $1H0,S55,14HTHE ABSCISSA X *$
VECTOR VALUES ORD =$ THE ORDINATE Y §
END OF PROGRAM

$DATA

$MADTRAN, PRINT OBJECT, PUNCH OBJECT PLFTR0O00
C
C PROGRAM TO ILLUSTRATE PLOTTING MULTIPLE POINTS WITH FORTRAN
C
DIMENSION X(100),Y(100)
1 READ INPUT TAPE 7,100, N
READ INPUT TAPE 7,101, (X(I), I=1,N)
READ INPUT TAPE 7,101, (Y(I), I=1,N)
WRITE OUTPUT TAPE 6,102
CALL SETPLT(1,X(1),Y(1),N,1H*,32,34H THE ORDINATE
XY)
WRITE OUTPUT TAPE 6,103
GO TO 1

FORMAT STATEMENTS

[eNeKe]

100 FORMAT (110)
101 FORMAT (7F10.9)
102 FORMAT (1H1,54(1H),15HPLOT OF X VS Y /1H)
103 FORMAT (1HO,55(1H),14HTHE ABSCISSA X)
END
SDATA

3.8-70

FLOATING POINT SINE AND COSINE

ENTRY POINTS: SIN, COS
PURPOSE: Compute COS(X) and SIN(X) for floating point argument X.

CALLING SEQUENCES:
MAD Y = C0S. (X,LOC)
Y = SIN.(X,LOC)

FORTRAN Y = COS (X)

Y = SIN (X)
UMAP CALL cos
PAR X,T
NORMAL RETURN - Y IN THE ACCUMULATOR.
CALL SIN
PAR X,T
PAR LOC

NORMAL RETURN - Y IN THE ACCUMULATOR.

ARGUMENTS :
X Argument in floating point for which the SIN(X) or COS(X)
is desired.
Y The resultant function of the argument X.
T Optional tag.
LOC Location for return if error detected. (This argument

may be omitted.)

ERROR CONDITION: TIf X .G. 6.8719477E10, the error procedure is initiated.
If LOC is given, control is returned to the caller. Otherwise, the
statement "SINCOS ARG TOO LARGE" will be printed and a dump will be
given if requested by the user. 1In the dump, the original argument X
will be in -1 for SIN and the argument minus PI/2 will be in -1 for
cos.

SUBROUTINES REQUIRED: .EXIT

SKIP TAPE ROUTINE

ENTRY POINTS: SKIP

PURPOSE: Permits programmers writing in compiler languages to skip files
and records on scratch tapes with the efficiency of SKPFIL and SKPREC.

CALLING SEQUENCES:
MAD EXECUTE SKIP. (NFILES,NRECDS,NTAPE)

FORTRAN CALL SKIP (NFILES, NRECDS, NTAPE)

ARGUMENTS :
NFILES Number of files to be skipped (may be zero).
NRECDS Number of records to be skipped after skipping the requested
number of files (may be zero).
NTAPE Logical tape on which files and records are to be skipped.
All arguments are of integer mode.

SUBROUTINES REQUIRED: SKPFIL, SKPREC

3.8-71

SIMULTANEOUS LINEAR EQUATIONS

ENTRY POINTS: SLEC, SLEG, SLEM

PURPOSE: SLEC and SLEG solve the system of linear equations A * X = B by
factoring A, with interchanges, into a monic lower and an upper trian-
gular matrix. A double back-substitution with compensating interchanges
is used to complete the solution. SLEC uses subroutine CROUTP for
factoring, and SLEG uses the subroutine GAUSS. SLEM assumes the matrix
A has already been factored and performs a double back-substitution with
compensating interchanges (these interchanges are based on the vector
Y in the calling sequence).

RESTRICTION: These subroutines use BAKSUB to perform the double back-
substitution. It is thus necessary that the user check the solution for
accuracy, since BAKSUB completely neglects singularity and incomsistent
equations. Look at the restriction under subroutine BAKSUB.

CALLING SEQUENCES:

FORTRAN X = SLEC (N,A,Z,B,Y)
SLEG (N,A,Z,B,Y)
SLEM (N,A,Z,B,Y)
MAD X = SLEC.(N,A,Z,B,Y)
SLEG.(N,A,Z,B,Y)
SLEM.(N,A,Z,B,Y)
UMAP CALL SLEC,N,A,Z,B,Y
SLEG,N,A,Z,B,Y
SLEM,N,A,Z,B,Y :
RETURN - FLOATING-POINT SWITCH IN AC.
ARGUMENTS :
N Integer dimension of the square matrix A.
A First element of the matrix. For further information, see
the write~up for subroutine GJRDT.
Z For a successful return, Z will be the solution vector.
B Right hand side of the system of equations. (Floating point
vector)
Y Interchange record from factorization subroutine. See
write-up for subroutine CROUTP.
X Floating-point switch.
1. Successful computation
0. Overflow during factorization, cannot continue.

~1. Overflow during back-substitution, cannot continue.

SUBROUTINES REQUIRED: BAKSUB, CROUTP, GAUSS

3.8-72

GENERAL, CONVERSION ROUTINE

ENTRY POINTS: SPREAD, GATHER, FSPRED, FGATHR

PURPOSE: This routine gives the user access within core to the I/0
conversion routines (.IOH) normally used in transmitting data to
and from the computer. SPREAD (FSPRED) is used to move a region
into a list according to a format. GATHER (FGATHR) is used to
collect a list into a region according to a format.

CALLING SEQUENCES:

MAD

UMAP

FORTRAN

ARGUMENTS:
REGION:

FORMAT:

EXECUTE SPREAD. (REGION,FORMAT (THE LIST))

EXECUTE GATHER. (REGION,FORMAT, (THE LIST))

Note that (THE LIST) represents the third and following
arguments. The length of the LIST is arbitrary and the
parentheses are not actually written. The LIST arguments

may be single variables, expressions or block parameters.

The list behaves as in normal I/0 except that values obtained
early in the LIST may not be used later in the same LIST.

CALL SPREAD CALL GATHER
PAR REGION PAR REGION
PAR FORMAT,,1 PAR FORMAT, ,1
PAR LIST PAR LIST
OR OR
BLK LIST-3,,LIST-15 BLK LIST-7,,LIST-10
ETC. ETC.

CALL FSPRED (REGION,FORMAT, (THE LIST))

CALL FGATHR (REGION, FORMAT, (THE LIST))

Note that (THE LIST) in FORTRAN may consist of single
parameters or expressions only. (Block parameters cannot
be compiled in FORTRAN.) The length of the LIST is
arbitrary.

Base element of area into which LIST will be moved or from
which LIST will be extracted. The process is exactly like
I1/0 except that all data remains in core. A unit record is
132 characters for SPREAD. GATHER will consider the length
of the list and will transmit the list in groups of 132

(or fewer) characters (6 characters/word). Partial words
are filled with blanks.

Base element of FORMAT vector. The FORMAT is assumed to be
stored backward in both MAD and FORTRAN. UMAP users may
indicate that their FORMAT is stored forward by making the
decrement of the FORMAT argument non-~zero (see calling
sequences above).

(THE LIST): List arguments. See comments above. (6 characters/word)

Remember that a unit record is 132 characters. If the LIST is not
satisfied by the time that the FORMAT is exhausted, the next group of
words in REGION will be moved and so on until the LIST is satisfied.
As usual the LIST determines the end of the processing, rather than
the FORMAT.

SUBROUTINES REQUIRED: .IOH

3.8-73

SQUARE ROQT

ENTRY POINTS: SQRT
PURPOSE: Form square root of floating point number X.

CALLING SEQUENCE:

MAD Y = SQRT.(X,LOC)
FORTRAN Y = SQRT (X)
UMAP CALL SQRT
PAR x,T
PAR L.oC
NORMAL RETURN - Y IN THE ACCUMULATOR.
ARGUMENTS:
X Floating point argument of which square root is desired.
Y Floating point square root of X.
T Optional tag.
LoC Location for return if error detected. (This argument may

be omitted.)

ERROR CONDITIONS: If X .L. O, then the error procedure is initiated. If
LOC is given, control returns to the caller. Otherwise, the comment
"NEGATIVE SQRT ARG" is printed and a dump is given if requested. X
will be in the accumulator in the dump.

SUBROUTINES REQUIRED: .EXIT

HYPERBOLIC TANGENT

ENTRY POINTS: TANH
PURPOSE: Compute the hyperbolic tangent of a floating point number.

CALLING SEQUENCES:

MAD Y = TANH. (X)

FORTRAN Y = TANH(X)

UMAP CALL TANH
PAR X,T
NORMAL RETURN - Y IN THE ACCUMULATOR

ARGUMENTS :

X Floating point argument for which the hyperbolic tangent
is to be computed.

T Optional tag.

Y Result in floating point.

3.8-74

SINGLE TABLE INTERPOLATION

ENTRY POINTS: TAB
PURPOSE: Given the value of an independent argument X, perform a Kth
order interpolation on a table of (X(I),Y(I)) values for the

corresponding dependent argument Y.

CALLING SEQUENCES:

MAD Y = TAB. (X,XT,YT,M1,M2,K,N,SW)
FORTRAN Y = TAB(X,XT,YT,M1,M2,K,N,SW)
UMAP CALL TAB

PAR X

PAR XT

PAR YT

PAR M1

PAR M2

PAR K

PAR N

PAR SW

NORMAL RETURN - Y IN THE ACCUMULATOR

ARGUMENTS :

X Independent floating point argument X for which the corres-
ponding value Y is desired.

XT Name of the first entry in the table of floating point
independent variables, X(I).

YT Name of the first entry in the table of floating point
dependent variables, Y(I).

M1 Integral number of storage location steps between each
entry of the independent variable table. Normally M1 =1
when the variables are stored in sequential locations.

M2 Integral number of locations between each entxy of the
dependent variable table. Normally M2 = 1.

K Integral order of interpolation desired, K .LE. 5.

N Integral number of entries in the independent variable table
(number of pairs (X(I),Y(I))).

Sw Floating point computation switch.

SW = 1.0 Normal return, interpolation successful.
SW 2.0 AC or MQ overflow or underflow or divide check -
error return.
Y Floating point dependent variable, the interpolated value
for the independent variable X.

[}

SQUARE MATRIX TRANSPOSITION

ENTRY POINTS:

PURPOSE:

TRANS

Transpose a square matrix.

CALLING SEQUENCES:

MAD
UMAP

ARGUMENTS :
A

N
D

EXECUTE TRANS. (A,N)

CALL TRANS
BLK A,,D
PAR N

NORMAL RETURN

The name of the square array to be transposed.

calls, the matrix must be stored
The integer degree of the square
The name of the dimension vector

3.8-75

For UMAP
according to MAD rules.
array.

for the array to be

transposed.
MAD rules.

ARBITRARY MATRIX TRANSPOSITION

ENTRY POINTS: TRANS1

PURPOSE: Transpose an arbitrary matrix.

CALLING SEQUENCES:

MAD EXECUTE TRANS1.(A,M,N,B)
UMAP CALL TRANS1
PAR A
PAR M
PAR N
PAR B
NORMAL RETURN
ARGUMENTS ¢
A First element of the array to
a backwards-stored (MAD type)
M The integer number of rows in
N The integer number of columns
B

This vector must be

set up according to

be transposed. This must be
array.
the array.

in the array.

Temporary storage region to be furnished by the call of

length at least (M*N-2)/36 + 1.

3.8-76

CONVERGENCE TESTING IN ITERATION SUBROUTINES

Since many questions have arisen concerning the convergence testing in
the interation subroutines, this explanation is being added. UITRI,
UITR2, and UITR3 use essentially the same tests for convergence.

1. TEST 1 - Relative Test.
This test allows a specified percentage of error. It is especially
useful when the magnitude of the root is not known. For instance,
if an absolute test were used and an EPS of .0l were used, a root
near 1,000,000 would probably never pass the test. However, this
relative test cannot be used to test for a root of O .

The test is of the form
/(X(1)-X(I-1))/X(1)/.LE. EPS1
When /X(I)/.G. EPS1, TEST 1 will be used.

2. TEST 2 -~ Absolute Test.
This test is usually used for a root near zero, but may be desirable
in other cases.

The test is of the form
/X(1)-X(I-1)/.LE. EPS2
When /X(I)/ .LE. EPS1, TEST 2 will be used.

3. USE.
A. Relative Test.
If a relative test is desired, EPS2 will not be used unless
the root becomes less than EPS1.
Examples EPS1 = .0001
EPS2 = .00001
When X(I) .G. .0001, the test is /(X(I)-X(I-1))/X(I)/.LE..0001
When X(I) .LE..000l, the absolute test is used. /X(I)-X(I-1)/.LE. .00001.
B. Absolute Test. -
An absolute test will be used whenever /X(I)/ .LE. EPS1.
Example EPS1 = 2,000,000
EPS2 = .0001
When X(I) .LE. 2,000,000 the test will be /X(I)-X(I-1)/.LE. .0001.

3.8-77

SINGLE ITERATION

ENTRY POINTS: UITR1l, UITR1A

PURPOSE: Given X = F(X), to find a value of X within a given epsilon
of error. If F(X) contains an iteration, this subroutine is not
recommended.

CALLING SEQUENCES:
MAD EXECUTE UITR1. (X,EPS1,EPS2,K) (SET UP)
S X =F.(X)
I = UITR1A. (X)
FORTRAN CALL UITR1(X,EPS1,EPS2,K) (SET UP)
J X =F®X)
I = UITR1A(X)
UMAP CALL UITR1 (SET UP)
PAR X
PAR EPS1
PAR EPS2
PAR K
NORMAL RETURN
A COMPUTE X = F(X)
CALL UITR1A
PAR X
NORMAL RETURN - I IN THE ACCUMULATOR.

ARGUMENTS:

X The name of the floating point argument in the equation X = F(X).
X contains an initial guess at the time of execution of UITRI1.

EPS1 Floating point epsilon values for the error tests. (See UITR,

EPS2 convergence tests for iteration subroutines.)
If /F(X(N))/.G. EPS1 then the test /(F(X(N))-X(N))/F(X(N))/.LE.
EPS1 is used for convergence. If /F(X(N))/.LE.EPS1l, then the
test /F(X(N)) - X(N)/ .LE. EPS2 is used. X(N) is the Nth
iteration value.

K Integer maximum number of iterations.

S,J,A Statement label, statement number, symbolic address, rexpec-—

tively, of that portion of the program where the function
X = F(X) is calculated. Entry into UITRIA is expected after
computation of the function.
I Computation switch (floating point)
I = 1.0 Another iteration is required, recompute the function
Z = F(X) and return to UITRIA.
Normal return, the solution value is in X.
Error return, the ratio A is one, where
A= (FEM))-FEE-1)))/E@®)-X(N-1)).
I = 4.0 Error return. The specified number of iterations
has been exceeded.

I =

2.0
I = 3.0

NOTE: For a discussion of the convergence tests utilized in UITRI,
see the write-up entitled "CONVERGENCE TESTING IN ITERATION SUBROUTINES."

3.8-78

SINGLE ITERATION - INTERVAL HALVING

ENTRY POINTS:

UITR2, UITR2A

PURPOSE: Given F(X) = 0 to find a value for X within a given error in a
specified interval (A,B).

CALLING SEQUENCES:

MAD

FORTRAN

UMAP

ARGUMENTS :
A
B
DELX

EPS1
EPS2

NOTE:

EXECUTE UITR2.(A,DELX,B,EPS1,EPS2,K,X)
I = UITR2A. (F)

CALL UITR2(A,DELX,B,EPS1,EPS2,K,X)

I = UITR2A(F)

CALL UITR2

PAR A

PAR DELX

PAR B

PAR EPS1

PAR EPS2

PAR K

PAR X

NORMAL RETURN

COMPUTE F

CALL UITR2A

PAR F

NORMAL RETURN - I IN THE ACCUMULATOR

Floating point lower limit of the interval (A,B).

Floating point upper limit of the interval (A,B).

The interval (A,B) is stepped across from A, in increments of
DELX, until a change of sign occurs in the function F(X). Then
this interval is halved a specified number of times until the
root is found or the iteration count is exceeded. DELX is
floating point.

Epsilon values for convergence tests.

(See UITR1 write-up.)

Integer number of iterations to be allowed.

Floating point independent variable. X is the desired root
after successful execution of the subroutine.

In FORTRAN and MAD, the floating point expression whose value
is F(X). In UMAP, F is the location of the value of this func-
tion. F must be computed before initial entry into UITRZ2A.
Computation switch - floating point.

I =1.0 New iteration required. 1In MAD or FORTRAN, return to
UITR2A. 1In UMAP, recompute the function F and then return

to UITR2A.

I = 2.0 The interval (A,B) has been completely scanned and no
root was found.

I = 3.0 Number of iterations (K) exceeded without meeting the
the test. The current approximate of the root is in X.

I = 4.0 Normal return, computation successful.

For a discussion of the convergence tests utilized in UITR2,
see the write-up entitled "CONVERGENCE TESTING IN ITERATION

SUBROUTINES."

3.8-79

SIMULTANEOUS ITERATION

ENTRY POINTS:

UITR3, UITR3A

PURPOSE: Given a set of simultaneous equations of the form
X(1) = F(1) (X(1),X(2),...,X(N))

X)) = F(N) (X(1),X(2),...,X())
to find the values of X(I) within a given margin of error. The method
and execution of UITR3 corresponds to that of UITR1 except for the
number of equations.

CALLING SEQUENCES:

MAD

FORTRAN

UMAP

ARGUMENTS :
N
K
X

EPS

NOTE:

EXECUTE UITR3.(N,K,X,EPS) (SET UP)

I = UITR3A.(0) (EXECUTION)
CALL UITR3(N,K,X,EPS) (SET UP)

I = UITR3A(0) (EXECUTION)
CALL UITR3 (SET UP)
PAR N

PAR K

PAR X

PAR EPS

NORMAL RETURN - I IN THE ACCUMULATOR.

CALL UITR3A (EXECUTION)
PAR

NORMAL RETURN - I IN THE ACCﬁMULATOR.

Integer number of equations.

Integer number of iterations to be used.

The first element of a floating point vector of length at least

4N + 2 in which the X(I) are stored. The vector contains the

initial guesses in the first N locations on entry into UITR3A.

The answers, of course, appear in the first N locations of the

X vector after successful execution of the subroutine.

The first element of a floating point vector in which EPS1(I)

and EPS2(I) are stored to be used for the convergence tests.

For any of the given variables X(I), the EPS1(I) and EPS2(I)

correspond to the EPS1 and EPS2 in UITR1. The epsilons are

stored in order EPS1(1l),EPS2(1),EPS1(2),EPS2(2), ...,

EPS1(N),EPS2(N).

Computation switch - floating point.

I = 1.0 Successful computation - the solutions are in the first
locations of the X vector.

2.0 Error return - the roots are unobtainable. The N+1

location of the X vector will be 1.0 if the iteration

count is exceeded, and it will be 2.0 if the slope of

the function is unity. The N+2 location of the X

vector contains the number of the equation in which

the trouble occurred in floating point.

Compute the first function, F(l),and return to UITR3A.

Same as 3.0.

Compute the second function, F(2), and return to UITR3A.

Same as 5.0.

1

OO0

A
[
o n W

= 1.04+2.0*N Compute the Nth function and return to UITR3A.
= 2,0+2.0*N Same as I = 1.0+2.0%*N.

=
U

For a discussion of the convergence tests utilized in UITR3, see
the write-up entitled "CONVERGENCE TESTING IN ITERATION SUBROUTINES."

3.8-80

VARIABLE PRECISION INTEGER ARITHMETIC

ENTRY POINTS: SETUP, CONVRT, ADD, SUB, MPY, DIV, RMNDR, RECNVT, IF

PURPOSE: These subroutines allow the execution of arithmetic on integers

USE:

whose values range to a maximum of from -10.P.500 to 10.P.500.

The integers each occupy up to a maximum of 50 words of storage. They
are to be read in using the format specification MI10, where M is the
number of I10 fields needed to contain the integer. The integer, on the
input card, must be right-justified in those MI10 fields, and there must
be no blanks between any of the digits. The subroutine "SETUP" sets the
precision of the arithmetic and the precision of the input. The sub-
routine "CONVRT" then converts these radix 10.P.10 integers that were
read in to radix 2.P.35 integers so arithmetic can be done on them
(i.e., it packs them). The subroutines "ADD,'" "SUB," 'MPY,"'"DIV," and
"RMNDR' are available to do arithmetic on the integers. The subroutine
"IF" tests an integer in a manner similar to a FORTRAN "IF" statement.
The subroutine '"RECNVT" converts the integers back to radix 10.P.10 so
they can be printed out with I10 formats. See the example program at
the end of this write-up.

CALLING SEQUENCES:

MAD EXECUTE SETUP. (N,M)
EXECUTE CONVRT. (A)
EXECUTE RECNVT. (A,Z)
EXECUTE ADD.(A,B,C)
EXECUTE SUB.(A,B,C)
EXECUTE MPY.(A,B,C)
EXECUTE DIV.(A,B,C)
EXECUTE RMNDR. (A,B,C)
K = IF.(A)

FORTRAN CALL SETUP(N,M)
CALL CONVRT(A)
CALL RECNVT (A,Z)
CALL ADD(A,B,C)-
CALL SUB(A,B,C)
CALL MPY(A,B,C)
CALL DIV(A,B,C)
CALL RMNDR(A,B,C)
CALL IF(A,L)

UMAP CALL SETUP,N,M
CALL CONVRT,A
CALL RECNVT,A,Z
CALL ADD,A,B,C
CALL SUB,A,B,C
CALL MPY,A,B,C
CALL DIV,A,B,C
CALL RMNDR,A,B,C
CALL IF,A
----- RETURN WITH K IN THE ACCUMULATOR.

VARTABLE PRECISION INTEGER ARITHMETIC (CONTINUED)

ARGUMENTS :

Al]l arguments and function returns are integers.

3.8-81

One less than the precision of the arithmetic desired.
(Precision is the number of storage words each integer can

occupy.)

One less than the precision of the input values before using

CONVRT. Must have 0O .LE. M .LE. N

Vectors at least N+l locations long reserved by MAD or FORTRAN
DIMENSION or UMAP BTS statements (i.e., backwards vectors).

The action of the subroutines is:

ADD C=A+B
SUB C=A-~-B
MPY C=A%B
DIV C=A/B
RMNDR C = Remainder of A / B

Vector at least N + 1 +((N+1)/16) locations long reserved by

MAD or FORTRAN DIMENSION or UMAP BTS statements.

Integers returned by 'IF'. L is FORTRAN-type integer, K is

full word integer
If A.L.O then K,L =1
If A.E.0 then K,L 2
If A.G.0 then K,L 3

ERROR COMMENTS: There are three error comments possible.
SUB, or MPY results out of range and attempted division by zero.
Control is transferred to .EXIT immediately.

Adapted from Share Distribution No. 1293,

SUBROUTINES REQUIRED: .EXIT

EXAMPLE:

They cover ADD,

This example is written in MAD. It reads in two numbers, A and B,

adds them, and if the sum is greater than zero, divides it by 2. Finally,
the result is printed out. Note the fact that absolute constants are

not to be used as arguments to CONVRT, as

a vector whose contents it can change.

5(3)

S(1)
S(2)

NORMAL, MODE IS INTEGER

DIMENSION A(20),B(20),X(20),TWO0(20)
READ DATA N,M

SETUP. (N,M)

READ FORMAT $7I10%$,A(M)...A(0),B(M)...B(0)
CONVRT. (A)

CONVRT. (B)

TRANSFER TO S(IF.(A))

SETUP. (N,))

TWO=2

CONVRT. (TWO)

DIV. (A,TWO,A)

CONTINUE

RECNVT. (A,X)

PRINT FORMAT OUT,X(N+1)...X(0)
VECTOR VALUES OUT = $1HO,20I10%$
END OF PROGRAM

CONVRT expects as an argument

3.8-82

ZEROS OF A COMPLEX POLYNOMIAL

ENTRY POINTS: ZER2, ZER3, ZER4, ZER5, ZER6

PURPOSE: Find the zeros of a polynomial with complex coefficients which

is of arbitrary degree, evaluating both real and complex zeros.
Roots of multiplicity greater than two are generally unobtainable.

CALLING SEQUENCES:

MAD M = ZER2.(N,A,R)
FORTRAN M = ZER2 (N,A,R)
UMAP CALL ZER2

PAR N

PAR A

PAR R

NORMAL RETURN - M IN THE ACCUMULATOR.

ARGUMENTS ; .
N An integer specifying the degree of the polynomial.
A First element of a floating point vector with the co-

efficients of the polynomial stored as follows. Assume
the polynomial to be of the following form:

P(X) = A(0)X.P.N+A(L)X.P.N-14+A(2)X.P.N-24+. . .4A(N-1) X+A(N)
Then, first element of A is the real component of A(0).
Second element of A is the imaginary component of A(0).
Third element of A is the real component of A(l).
(2N+2)th element of A is the imaginary component of A(N).

R First element for a floating point array which ZER2 will
set to the roots of the polynomial, the first element being
the real part of one root, the second element being the
imaginary part of the same root, ..., the (2N)th element is
the imaginary part of the Nth root.

M Computation switch - floating point.

M = 1.0 Normal return. The roots are stored in R as
described above.

M = 2.0 Error return. Arguments are out of range. AC
or MQ overflow.

M = 3.0 Error return. Impossible to locate the roots within
the alloted number of iterations (25).

M = 4.0 Error return. First derivative of polynomial at
X = X(I) is zero or the coefficient of X.P.N. is
zero. (Where X(I) is the Ith value of X in the
iteration) i.e., division by zero has occurred.

SPECIAL FEATURES: The special features of ZER2, discussed in this section,

are not ordinarily needed. They are available, however, if difficulties
develop.

For each entry to ZER2, a counter for the number of iterations allowed
is set to 25. This initial value may be modified prior to entering
ZER2 by specifying the desired number of iterations with the statement:

3.8-83

ZEROS OF A COMPLEX POLYNOMIAL (CONTINUED)

MAD EXECUTE ZER3. (I)
FORTRAN CALL ZER3(I)
UMAP CALL ZER3,I

where I contains the new iteration count (integer).

A succession of three trial initial approximations is allowed for each
root in ZER2. If the count is exceeded with the first of these, the
second is tried -- if the second also fails, the third is tried. Only
if the third also fails is an error return given. The three trial
approximations are A+IA, A+IB, A+IC where A=1.0, B=10.0, C=1060.0. The
quantities A,B,C may be modified by the following statement:

MAD EXECUTE ZER4. (A,B,C) e
FORTRAN CALL ZER4(A,B,C)
UMAP CALL ZER4,A,B,C
where
A+IA = First approximation.

A+IB Second approximation.
A+IC = Third approximation.

In ZER2, if the difference between successive approximations to the
real and imaginary parts is less than 2.P.~K times the larger of the
characteristics of the approximations - corresponding to a difference
in the (27-K) least significant bits of the mantissa - convergence is
indicated. ZER2 assumes K=25. This tolerance may be altered by
specifying a new K as indicated in the calling sequences in the next
section.

An essential zero of 10E-9 is used by ZER2 and may be changed to some
other value if desired. When either the real or the imaginary
component of any approximant becomes less than the essential zero in
effect, it is replaced by an actual zero. This essential zero may be
any quantity greater than 10E-19 - a smaller essential zero generally
leads to accumulator underflow. This mantissa test and the essential
zero may be modified by the following statement:

MAD EXECUTE ZERS. (K,S)
FORTRAN CALL ZER5(K,S)
UMAP CALL ZER5,K,S
where
K = 1Integer number for the mantissa tolerance test and

must be greater than zero and less than 27.
Floating point number for essential zero.

S

It is possible to trace the successive approximations to the roots
and note their convergence. The approximations come in sets of four
parts. The first part is the real component of the first or previous
approximation. The second part is the imaginary member of the same
approximation. The third part is the real component of the current
approximation following the first or previous approximation. The
fourth part is the imaginary member of the same approximation. These
approximations are obtained by the following statement:

3.8-84

ZEROS OF A COMPLEX POLYNOMTAL (CONTINUED)

MAD EXECUTE ZER6. (C)
FORTRAN CALL ZER6(C)
UMAP CALL ZER6,C

where C denotes where to store the set of approximants - they are
stored backwards in core starting at C. The return M from ZER2 will
be 1.0, 2.0, 3,0, or 4.0 for normal and error returns (as previously
described) or M will be 5.0 to indicate a return with a new set of
approximants stored in C. As each new set is obtained from ZER6, the
previous set stored at C is destroyed. To continue the iteration for
the roots, control must be transferred back to the calling sequence

for ZER2. To stop taking the approximates, the following statement
should be given:

MAD EXECUTE ZER6 (0)
FORTRAN CALL ZER6(0)
UMAP CALL ZER6,=0

The calling sequence of the special features affects only the items
specified - no computations are performed until the subroutine is
entered in the normal manner (i.e., via a call for ZER2). Once the
routine is modified for one or more of the special features, it re-
mains in that state until restored by the user. A return to the
next instruction occurs after each of these special feature entries.

STORE CONSTANT

ENTRY POINTS: ZERO, SPRAY

PURPOSE: ZERO Stores zero.
SPRAY Stores arbitrary constant.

CALLING SEQUENCES:

MAD EXECUTE ZERO.(L1,L2,.....,LN)
UMAP CALL ZERO
L1
L2
LN
ARGUMENTS :
The LI are standard argument list elements of the form
MAD A...B or A

UMAP BLK A,,B or PAR A .

SPRAY is called exactly as ZERO except that the first argument is a
single constant (in MAD) or the location of a single constant

(in UMAP) which is to be stored instead of zero.

3.8-85

1/0 SUBROUTINES

I.

II.

INTRODUCTION.

This write-up describes the usage and the structure, but not the inter-
connection of the I/0 routines that provide conversion via a format.
For a description of the interconnection, see Appendix VI of this sec-
tion. This write-up assumes that the reader is acquainted with MAD
and/or UMAP.

I/0 SUBROUTINE CALLING SEQUENCES.
In this section, the means of calling on the I/O subroutines from MAD
and UMAP are given. In the case of MAD, only the statement type is
given. Details may be found in the MAD MANUAL. 1In the case of UMAP,
only one of the numerous ways to write the subroutine call is given.
For further details, see the UMAP write-~up in this manual. Note that
in UMAP, the pseudo-operations IOP, FMT, TAPENR and ENDIO all trans-
late as STR.
A. GENERAL STRUCTURE OF THE MAD/UMAP CALLING SEQUENCES.
1. The first word is a TSX via index register 4 to the 1/0
routine. E.G., TSX .PRINT,4.
2, 1f a tape number must be specified, the address of the next
STR specifies the tape number as a full word integer. E.G.,
STIR = 4
3. The next STR can be of two types. If the decrement is greater
than 1, it is assumed to be type II. Otherwise, it is assumed
to be type I.
TYPE I Address is the location of format. Decrement is the
direction in which the format is stored in core.
(0 means forward, 1 means backward.)
TYPE II Address is the location of symbol table.
Tag is the direction in which the format is stored imn
core. (0 means forward, 1 means backward.) Decrement
is the location of format.
Typical UMAP usage is FMT FORM. MAD typically generates what
could be written in assembly code as
STR STLOC,1,FORM.
Type 1I usage is necessary only if format variables are used.
4, The following word(s) contain the list. (See the section on
list structures for a discription.)
5. The last word is a STR with zero address and decrement. This
is the signal for termination of the calling sequence.
In MAD, the calling sequence is set up in this form by the trans-
lator. 1In UMAP, the user is responsible for putting the calling
sequence in the correct form.
B. SPECIFIC CALLING SEQUENCES.
1. Reading cards from system input tape.

MAD - 'READ FORMAT'
UMAP - CALLIO .READ
FMT FORMAT

(LIST)

ENDIO

3.8-86

1/0_SUBROUTINES (CONTINUED)

This subroutine causes BCD information to be read from the
system input tape and converted to binary, according to the
format specification. Since it is written on the input tape

in card-image form, the format specification may not describe
more than 80 columns. If an end-of-file is found (i.e., no
more data cards), the job will be terminated (unless SETEOF has
been executed. See the writeup for SETEOF in this section of
the manual).

Printing lines on system output tape.

MAD - 'PRINT FORMAT'
UMAP - CALLIO .PRINT
FMT FORMAT
(LIST)
ENDIO

This subroutine causes the binary information indicated by
the list to be converted to BCD according to the format and
written on the system output tape as lines to be printed.
Since the information is written in line-image form on the
tape, the format specification may not describe more than
132 columns per line.

Looking at cards from system input tape.

MAD - 'LOOK AT FORMAT'
UMAP - CALLIO .LOOK
FMT FORMAT
(LIST)
ENDIO

This is the same as reading cards, but without going past the
card. Hence, the next time a 'READING CARDS' or 'LOOKING AT
CARDS' I/0 call is processed, the same card will be again
transmitted. The format given can only specify one card. 1If
more than one is specified (via one or more slashes in the
format or format termination with list unsatisfied), each
instruction to get a new card causes the same card to be
rescanned,

Punching cards on system punch tape.

MAD - 'PUNCH FORMAT'
UMAP - CALLIO .PUNCH
FMT FORMAT
(LIST)
ENDIO

This subroutine causes the binary information indicated by

the list to be converted to BCD according to the format and
written on the system punch tape as cards to be punched.

Since information is written in card-image form on the tape,
the format specification may not describe more than 80 columns.

3.8-87

1/0 SUBROUTINES (CONTINUED)

5.

Reading tape (input from arbitrary tape).

MAD - 'READ BCD TAPE N'
UMAP CALLIO .TAPRD
TAPENR =N
FMT FORMAT
(LIST)
ENDIO

This subroutine causes BCD information to be read from the
specified tape unit and converted to binary form according

‘to the format. In the MAMOS system, the only tape units

that can be specified for this subroutine are 2,3,4,7,9,10
and 11. Tape 7 is the 1nput tape, and the others are
available as scratch tapes. If tape 7 is specified, the
format may not describe more than 80 columns. For other
tapes the format may not describe more than 132 columns.
If an end-of-file is encountered during reading tape, the
job will be terminated unless the subroutine SETEOF has
been executed. See the SETEOF write-~up in this manual.
Writing tape (output on arbitrary tape).

MAD - 'WRITE BCD TAPE N'
UMAP CALLIO .TAPWR
TAPENR =N
FMT FORMAT
(LIST)
ENDIO

This subroutine causes the binary information indicated by
the list to be converted to BCD form according to the format
and written on the specified tape unit. 1In the MAMOS system,
the only tape units that can be specified for the subroutine
are 2,3,4,5,6,9,10,11. Tape 6 is the print output tape.
Information written on it will be printed on the off-line
printer, and, hence, the format must not specify more than
132 columns. Tape 5 is the punch output tape. Information
written on it will be punched on cards and, hence, the

format must not specify more than 80 columns. For the other
tapes, the format must not specify more than 132 colummns. If
the end of tape is encountered during writing, the tape is
rewound, a comment is printed to the operator, and the compu-
ter stops to allow the tape to be replaced. The writing of
information continues on the new tape (without loss of
information). This procedure can be modified by using the
subroutine SETETT. See the SETEIT write—up in this manual.
Printing on the on-line printer.

MAD - 'PRINT ON LINE FORMAT'
UMAP - CALLIO .COMNT
FMT FORMAT
(LIST)
ENDIO

This subroutine causes the binary information indicated by the
list to be converted to BCD according to the format and printed
on the on-line printer. It is to be used only for comments to

I/0

3.8-88

SUBROUTINES (CONTINUED)

III.

the operator, not for output. The format specification should
not contain a carriage control and may not describe more than
72 columns.

STRUCTURE OF A LIST UNDER MAD/UMAP
The list designates locations whose contents are to be converted and
transmitted. In MAD, the lists are automatically produced by the
translator. In UMAP, the user is responsible for putting them in the
correct form. List words are of two types - single variables and
blocks.
1. Single variable ~ the list word is of the form
IOP A
or IOP A, T
'T' may refer to any of the three index registers, but the user
should remember that the 'TSX' to the subroutines has changed the
value of index register 4.
2. Block - this is used to designate an entire region (say, from A
to and including B) of consecutive locations. The form of the
list word is
I0P A,,B
The entire region is transmitted, starting with A and ending with
B, both when A is less than B and when B is less than A.
A typical list might be
I0P ALPHA
10P v, ,V+10
10P R-5, ,R+7
0P A, ,A-100
I0P DENOM
and a typical output calling sequence for this might then be
CALLIO .PRINT
FMT FORM1
I0P ALPHA
10P v, ,V+10
10P R-5, ,R+7
I0P A, ,A-100
I0P DENOM
ENDIO
The reason for the operation 'IOP', which is translated as the operation
"STR', lies in the use of the trapping mode. When an STR is executed,
the contents of the instruction location counter, which is pointing to the
instruction following the 'STR', is put into location 0, and the computer
transfers to location 2. Previous to this, the I/0 routine has inserted
into location 2 a transfer to its internal subroutine where it gets a new
list element. The subroutine doing the conversion scans the format (see
section IV - format scan action) until it needs a value of some entry on
the list. It then does a transfer indirect to location 0, which effectivly
causes a transfer to the location one past the last entry on the list. 1In

3.8-89

I/0 SUBROUTINES (CONTINUED)

Iv.

the above example, this is always an 'IOP' ('STR') operation and it is
trapped back to the subroutine, at the same time giving its location to
the subroutine (contents of location 0), so the subroutine can obtain
the address of the next variable (or region) on the list. This process
is continued until the 'ENDIO' ('STR' with zero address and decrement)
is found which causes an entry to that part of the subroutine which
terminates input/output and then returns to the instruction immediately
following the 'ENDIO', thus going back to the user's program.
It follows that the user may, if he desires, make the list much more
complicated. Consider the following list:

10P ALPHA

T0P V,0,V+5

AXT 1,4

Q 1IoP W+l,4

TXI *+1,4,2

TXL Q,4,60

I0P C
As before, the value of ALPHA and of V through V + 5 will be converted
and transmitted. The subroutine will return for another value, but
will instead set index 4 equal to one, then execute the IOP (at loca-
tion Q) and get trapped so as to furnish the subroutine with the
effective address of W. The subroutine returns for another value and
we increase index 4 by 2 and test it against the upper bound of 60.
If not yet finished with the loop, we go back to Q and repeat the loop
until the contents of index register 4 exceed 60. When this occurs,
the next variable furnished to the subroutine is C. There is no limit
to the amount of computation one can perform between the 'IOP's, but
an ENDIO must eventually occur.

FORMAT SCAN ACTION.
When a user calls a specific I/0 routine (such as .PRINT), this routine
sets up certain parameters (such as location of format, maximum number
of columns allowed, etc.) in a communication region and then calls on
the subroutine .IOH which does the format scan.

The scan begins at the first character of the format and in normal
context. It scans character by character from the beginning of the
format toward the end, setting switches and parameters, until a break
character is found or a change of context is signalled.

When a break character is found, processing is begun of the format
term whose end is indicated by the break character. If the format term
is a data—-transmission format term, reference to the list is made. If
input, the list is referenced to get the value to be converted, and then
the conversion is done. If output, the conversion is done, and then the
list is referenced to get the location where the converted value is to
be put. In all cases, if there are no more list words when the list is
referenced (list exhausted), the format scan stops and the I/0 statement
is terminated, just as if the format terminator had been hit. 1If the
format term is a non-data-transmission format term, it is processed
immediately. When processing of the format term is complete, switches
and parameters are reset, and the format scan continues with the next
character.

3.8~90

1/0 SUBROUTINES (CONTINUED)

When a change of context is signalled, processing of this new context
begins immediately. When the end of the format is sensed, if it is an
output format, an output record is produced (i.e., line is printed, card
is punched, etc.). Then the list is inspected to see if it is exhausted
(all items processed). If so, then the I/0 call is terminated. If not,
.I0H begins rescanning the format, in the same direction as before. 1If
no parentheses were used in the format, the scan restarts from the begin-
ning of the format. 1If parentheses were used, the format scan restarts
at the right-most zero-nesting-level left parenthesis, using its
multiplicity, if any. (Zero-nesting-level means that it is inside no
other parentheses).

V. MEANINGS OF EACH CHARACTER IN FORMATS.
Since the meaning of a character in a format depends on the context it
is in, a separate listing of character meanings is provided for each
context. For each of the contexts other than normal one, a statement
of its purpose and the way entry to and exit from this context is speci-
fied are given. It should be noted that context changes are only to or
from normal context.
A. NORMAL CONTEXT.
The characters are listed here in ascending order according to their
octal representation. Note that in all cases where multiplicity
applies, omitting the multiplicity is equivalent to giving a multi-
plicity of 1.
(00 OCTAL) DIGITS
(01 OCTAL)
(02 OCTAL)
(03 OCTAL)
(04 OCTAL)
(05 OCTAL)
(06 OCTAL)
(07 OCTAL)
(10 OCTAL)
(11 OCTAL)
Whenever a digit is encountered it causes the accumulation of a number
to begin or continue. These numbers, depending on their position, are
interpreted as field widths, multiplicities, etc.
-— (12 OCTAL)
= (13 OCTAL)
These are illegal characters.
-—- ! (14 OCTAL) PRIME
The prime signifies a change from normal to format variable context,
and from format variable context to normal context.
—_— (15 OCTAL)
(16 OCTAL)
(17 OCTAL)
These are illegal characters.
o + (20 OCTAL) PLUS SIGN
A plus sign is ignored.
—_— A (21 OCTAL)
BCD control character - "A' and 'C' are interchangeable. See descrip-
tion under 'C'. (There are two characters for the same thing because
'A' has been traditionally used in FORTRAN formats and 'C' in MAD/UMAP
formats.)

WCo~NOTUBMSWLWNRFEO

3.8-91

I/0 SUBROUTINES (CONTINUED)

B (22 OCTAL)

Variable base modifier. Normally, conversion is done from binary

in the machine to a decimal (base 10) external form, and from a

decimal external form to binary in the machine. The user may

specify other external form bases for integers by including the
modifier N B where N is the conversion base wanted. N must be
greater than 1 and less than 20. For those bases greater than

10, the additional characters needed are taken from the beginning

of the alphabet. For base=19 (the largest possible) the characters

used are (in ascending order)- 012 3456 789 ABCDETFGHI.

For example, 5B2T10 will cause 2 integers to be read or printed in

base 5.

NOTE 1. 8BI-- in a format is not the same as K--, since for
integers the left-most bit is considered a sign, whereas
for octal numbers it is considered as part of the left-
most digit. Also, octal conversions in which the con-
verted number exceeds the specified field width are
truncated, but integer conversions that exceed the field
width are errors.

NOTE 2. The numbers found in the formats themselves are always
taken to be base 10.

o (23 OCTAL)

BCD control character. The control characters 'C' and 'A' are used

to read in and print out BCD information (characters). In the

7090/7094 a character is represented by 6 bits, so there are 6

characters to a machine word. The BCD specification assumes that

whatever is named on the list to be transmitted exists in the
machine as characters. The basic format term is of the form

N C W where N is the multiplicity and W the field width. To see

how transmission occurs, imagine the left end of the word in storage

lined up with the left end of the specified field. For input, as
many characters as the field width specifies are moved from the
field directly into the storage location. If fewer than six, they
fill in the left end of the word and blanks are used to fill out

the rest of the word. If more than six, the first six fill up the

word and the rest are lost. For output, as many characters as the
field width specifies are moved from the storage word directly into
the field. 1If fewer than six, the left-most characters are used.

If more than six, the six characters in the word are put in the

left-end of the field and blanks are used to fill out the rest of

the field.

For example, if a card contains the characters ABCDEFGHIJK in
columns 1 through 11, and it is read in according to the specifica-
tion 2C3*, the two 6 character words that are read into the
computer are:

ABC (with three trailing
DEF blanks on each)

while the specification C6* would cause a single word to be read:
ABCDEF

and C7,C3* would cause the words
ABCDEF and H1J (with 3 trailing blanks)
to be read.

3.8-92

I1/0 SUBROUTINES (CONTINUED)

FORM OF THE INPUT FIELD - There is no form. All characters are
allowable. A blank is like any other character and is not ignored.
Fields come in left-justified with trailing blanks.
FORM OF THE OUTPUT FIELD - There is no form. Fields go out left-
justified with trailing blanks.
APPLICABLE MODIFIERS - R,W,Z

D (24 OCTAL)
Double-precision modifier. TIf the modifying character 'D' appears
in an E,F, or G format term, it indicates that this format term
refers to a double-precision number, and conversion will be carried
out in double precision. Standard 7094 double-precision form is
assumed in that the number is contained in two machine words, each
is a complete floating point number with exponent and fraction, and
the exponent of the low order half is 27 smaller than the exponent
of the high order half. Both halves must be named on the list, the
high order half first. The precision of single precision floating
point numbers is 8 significant digits. For double precision numbers
it is about 16. (Significant digits means considering all the
digits, not just those after the decimal point. A single precision
number of magnitude 108 when converted by an F-type specification
would have 8 digits in front of the decimal point, hence any digits
that appeared after the decimal point would not be significant.)
The range of double precision numbers is the same as the range of
single precision numbers, about 1038 to 10738,

E (25 OCTAL)
E-type floating point control character. E-type conversion assumes
that the number named on the list is a floating point number in
storage. The form of the format term is N E W.D where N is the
multiplicity, W is the field width, and D is the number of digits
after the decimal point.
FORM OF THE INPUT FIELD - An E-type input number as it appears on
an input card must have the form <+XXX.XXXXXE+YY . The sign and
digits following the E represent the exponent of 10 by which the
number in front of the E is to be multiplied. I.e., this number
means 1YY
+XXX .XXXXX TIMES 10~
The sign of the fractional part may be omitted if it is positive.
If it is negative, the minus sign must be included. Any number of
digits may be used in the fractional part, but only 8 digits of
accuracy are retained. If the decimal point is present, the 'D' in
the format term is ignored. If the decimal point is not present,
the 'D' specifies that the right-most 'D' digits of the fractional
part come after the decimal point. Hence the punched number
+9032E3 described by the specification E10.4 would be understood
to be the number +.9032E3. The exponent must be included in the
field width. 1If the sign of the exponent is included, the E may be
omitted. If the E is present, the + sign may be omitted for posi-
tive exponents. If the exponent is to be negative, the minus sign

3.8-93

1/0 SUBROUTINES (CONTINUED)

must be included. The exponent must be within the limits of the
7090/7094 between about +38 and about -38. Leading zeroes on the
exponent may be omitted. Blanks are ignored throughout the whole
field. An all blank field is read in as -0. Numbers in E input
fields may be either the E~type described above or the F-type to
be described under the control character F.
FORM OF THE OUTPUT FIELD - Numbers printed or punched in E fields
have the form (if 5 decimal digits are requested, for example)
+ . XXXXXE+XX although + signs are not produced. The number is
rounded, not truncated, to the number of digits wanted after the
decimal point. The sign, decimal point, 'E' and exponent must be
included when figuring the field width, so W must be greater than
or equal to D+5 (if the numbers will always be positive) or D+6
(if the numbers could be negative)., If the number when converted
requires more columns than the field width allows, an error comment
is printed and the job is terminated. (To modify this procedure,
see Appendix T to this write~up and see the write-up on IOHSIZ in
this manual.) If the converted number requires fewer columns than
the field width specifies, the number is right-justified in the
field. 1In fact, some spacing can be achieved by giving large
field sizes, since blanks automatically occur to the left of a
number pushed to the right end of an oversized field.
APPLICABLE MODIFIERS - D,L,M,P,V,W.

F (26 OCTAL)
F-type floating point control character. F-type conversion assumes
that the number named on the list is a floating point number in
storage. The form of the format term is N F W.D or N F W where N
is the multiplicity, W is the field width, and D is the number of
digits after the decimal point. The shorter form is assumed to be
equivalent to the longer form where D is 0. I.e., F6 is the same
as ¥6.0.
FORM OF THE INPUT FIELD - An F-type number as it appears on an
input card must have the form 4+XXX.XXXXX. The + sign may be
omitted if the number is to be positive, but if the number is to be
negative, the minus sign must be there. Any number of digits may
be used, but only 8 digits of accuracy are retained (due to the
limits of the 7090). Blanks are ignored. An all blank field is
read in as -0. If the decimal point is present, the 'D' in the
format term is ignored. 1If the decimal point is not present, the
'D' specifies that the right-most 'D' digits come after the decimal
point. Hence the punched number +9032 described by the format term
F10.2 would be understood to be the number +90.32, Numbers in F
input fields must either be the F-type described above or the E-
type described previously.
FORM OF THE OUTPUT FIELD - Numbers printed or punched in F fields
have the form (if 5 decimal digits are requested, for example)
+XXX . XXXXX although + signs are not produced. The number is
rounded, not truncated, to the number of digits wanted after the
decimal point. If no digits are produced after the decimal point,
the point itself is not produced. If the number when converted

3.8-94

1/0 SUBROUTINES (CONTINUED)

requires more columns than the field width allows, an error comment
is printed and the job is terminated. (To modify this procedure,
see Appendix I to this write-up and see write-up on IOHSIZ in this
manual.) If the converted number requires fewer columns than the
field width specifies, the number is right-justified in the field.
In fact, some spacing can be achieved by giving large field sizes,
since blanks automatically occur to the left of a number pushed to
the right end of an oversized field.
APPLICABLE MODIFIERS - D,L,M,P,V,W.

G (27 OCTAL)
Significant digits control character. This is exactly the same as
the F field, except that on output, instead of having the decimal
point fixed and the significant digits vary around it, the number
of significant digits printed out is fixed and the decimal point
floats. The form of the format term is N G W.D where N is the
multiplicity, W is the field width, and D is the number of signifi-
cant digits wanted. This usually includes the decimal point and,
possibly, a minus sign, so only D-1 or D-2 digits are actually
produced. If the decimal point is not present, it has vanished off
the right end of the field. The D characters are right~justified
in the W columns of the field width. The number is first converted
entirely, and then the left-most D characters are put out as output.
Hence, the number put out is a truncation, not a rounding, of the
complete number. D must be less than or equal to W. If D is
greater, an error occurs (see Appendix I of this write-up and
write-up IOHSIZ in this manual for modification of this procedure).
For example, the numbers 12345., 1234.5, 12.345, .12345, and .00123,
printed according to 5G6.4, would give 1234 1234 12.3 .123 and
.001.
FORM OF THE INPUT FIELD - Same as for F fields.
FORM OF THE OUTPUT FIELD - Same as for F fields.
APPLICABLE MODIFIERS - Same as for F fields.

B (30 OCTAL)
Hollerith control character. An H causes a change of context from

normal context to Hollerith context.

I (31 OCTAL)
Integer control character. This conversion assumes that the numbers
named on the list exist in storage as full-word integers. The form
of the basic format term is N I W where N is the multiplicity and
W is the field width.
FORM OF THE INPUT FIELD - The number in an I-type input field must
be of the form (for example) +XXXXX. TIf the number is to be posi-
tive, the + sign need not be punched. If the number is to be nega-
tive the minus sign must be punched. The only legal characters in
the body of the integer are those digits and letters which are less
than the base. Unless otherwise specified, the base is 10 (decimal)
and so the only legal characters are 0 through 9. Blanks are
ignored. An all blank field comes in as -0.

3.8-95

1/0 SUBROUTINES (CONTINUED)

FORM OF THE OUTPUT FIELD - The number produced by I-type conversion
is of the form (for example) +XXXXX except that + signs are not
produced. If the number when converted requires more columns than
the field width allows, an error comment is printed and the job is
terminated. (See Appendix I of the write-up and the write-up on
IOHSIZ in this manual for modification of this procedure.) 1If the
converted number requires fewer columns than the field width
specifies, the number is right-justified. Since blanks occur
automatically to the left of a right-justified number, some spacing
can be achieved by giving an oversized field.

APPLICABLE MODIFIERS - B,L,M,V,W.

3 (32 OCTAL)
This is an illegal character.
. (33 OCTAL) PERIOD
Punctuation. The period is used in E, F and G specifications. It
tells the format scanner that the number accumulated so far is to
be considered the field width, and that a new number is to begin
accumulating.
) (34 OCTAL) RIGHT PARENTHESIS
Multiple grouping. See left parenthesis (OCTAL 74) for description
of using parentheses.
(35 OCTAL)
(36 OCTAL)
(37 OCTAL)
These are illegal characters.
- (40 OCTAL) MINUS SIGN
This causes the sign of the number being accumulated by the format
scanner to be reversed.
J (41 OCTAL)
This is an illegal character.
K (42 OCTAL)
Octal control character. This mode of conversion makes no assumption
about the form of the number in storage. It just reads in or prints
out the number as octal. The form of the basic format term is
N K W where N is the multiplicity and W is the field width.
FORM OF THE INPUT FIELD - A K-type input field is of the form
+XXXXX . The sign is optional. There must be no more than 12
digits in the number, and each digit must be one of 01234567. Blanks
are ignored. Am all blank field comes in as +0. The transmitted
numbers are right-justified in the machine word with leading zeroes.
FORM OF THE OUTPUT FIELD - A K~type output field is of the form XXXXX.
No sign is produced. If W (field width) is less than 12, the right-
most W digits of the word are put out. If W is greater than 12, the
full word is put out in the field, right-adjusted. Since blanks
occur to the left of a right-adjusted number, this provides a means
of spacing the number.
APPLICABLE MODIFIERS - L,W.

3.8-96

1/0 SUBROUTINES-(CONTINUED)

L (43 OCTAL)
Left-adjusted modifier. This modifier changes things as follows:
K,0 FIELDS
Input
Normally the number is right-justified with leading
zeroes in the machine word. With the L modifier, it
is left-justified with trailing zeroes.
Output
Normally the number is placed at the right end of an
oversized field. With the L modifier it is placed at
the left end, with blanks filling the unused portions
to the right.
E,F,G,I FIELDS
Output
Normally the number is placed at the right end of an
oversized field. With the L modifier it is placed at
the left end, with blanks filling the unused portions
to the right.
M (44 OCTAL)
Floating dollar sign modifier. When this modifier is used in E, F,
G or I output format terms, a dollar sign is inserted into the field
immediately to the left of the first digit. If the number is nega-
tive (so there is a minus sign), the dollar sign goes immediately
to the left of the minus sign.
N (45 OCTAL)
"Don't" modifier. If the N modifier occures before a slash in an
output format, it means don't blank out the line and don't reset the
line pointer to column 1 after printing. If the N modifier occurs
before the format terminator in an output format, it means don't
print the line or reset it when exiting (if the list is exhausted).
These two applications of 'N' along with the subroutine STQUO (see
section VII) will allow building up a print line column by column,
adding each number with a separate I/0O statement, but not printing
the line until it is complete. This avoids using the + carriage
control and wasting printer time.
0 (46 OCTAL)
Octal control character. The control characters 'K' and '0' are
interchangeable. See the description under 'K'. (The reason for
the two control characters meaning the same thing is that FORTRAN
formats have traditionally used '0O' and MAD/UMAP formats 'K'.)
P (47 OCTAL)
Scale factor modifier. This feature is allowed for E and F fields.
A scale factor may be applied to an F number according to the for-
mula EXTERNAL NUMBER = INTERNAL NUMBER X 10F (where the scaling
is accomplished before the conversion is done). The scale factor
followed by the letter P is prefixed to the basic field specifica-
tion as in the example 2P2F7.3,F7.3* . Thus, three numbers which
would print .522 -1.567 93.671 according to the specification 3F7.3%
would print instead .005 -.016 93.671 if the specification -2P2F7.3,
F7.3* were used. It must be noted that this scale factor actually
changes the values of the numbers to which it applies. It affects

3.8-97

I/0 SUBROUTINES (CONTINUED)

only those numbers to which it is directly applied, however. For
E fields, the scale factor causes the number itself to be modified,
but the exponent is correspondingly modified so the true value of
the number remains unchanged. Thus, the number .9321E-3 would
print as 93.2100E 05 according to the specification 2PE1l6.4*.
Unlike an F number, the value 1s the same in either case.

Q (50 OCTAL)
This is an illegal character.

R (51 OCTAL)
Right-justified modifier. Normally, characters read and printed
with A and C control characters are left-justified, both in the
machine word and in the field. If the R modifier is used, on input
the characters are right justified in the machine word (with lead-
ing blanks), and on output the characters are right justified in
the field. The description of how it works in this case is the
same as for L, except that 'LEFT' should be replaced by 'RIGHT'
wherever it occurs.

0 (52 OCTAL)
$ (53 OCTAL) DOLLAR SIGN
These are illegal characters.
* (54 OCTAL) ASTERISK
Format terminator. The asterisk terminates the format scan for
MAD/UMAP calls.
APPLICABLE MODIFIERS - N.
(55 OCTAL)
(56 OCTAL)
(57 OCTAL)
These are ililegal characters.
BLANK(60 OCTAL)
Blanks are ignored.
/ (61 OCTAL) SLASH
New line or card control character. 1If input, a / causes a new input
record to be read in and the line pointer is reset to column 1. If
output, a / causes an output record to be sent out, and then the line-
image is blanked out and the line pointer reset to column 1.
APPLICABLE MODIFIERS - N.
S (62 OCTAL)
Skip control character. The form of the format term is N § W where
N is the multiplicity and W is the number of columns to skip. The
action of this format term is to add W to the line-pointer. W may be
either positive or negative. E.g., to produce "BA" in an output
line-image by putting in 'A' first and then backspacing and putting
in 'B', the format must contain 1HA,S-2,1HB.
WARNING - When a print line or similar output record is produced, it
is assumed that the last column produced is immediately to the left
of the line pointer and only enough words to contain this column are
put out. (Each word contains 6 columns.) If negative skips or
backwards transfers have occurred, some of the line may fail to get
printed. To avoid any difficulties, the format term T132 can be
inserted as the last one before the line is printed.

I1/0

3.8-98

SUBROUTINES (CONTINUED)

T (63 OCTAL)

Transfer (or tabulator) control character. The form of the format
term is T N where N is a column number. This format term causes
the line-pointer to be reset to N. The warning given for the 'S’
character also applies here.

U (64 OCTAL)

This is an illegal character.

v (65 OCTAL)

Commas every three digits modifier. When this modifier is included
in an E, F, G, or I output format term, it causes commas to be
placed every three digits to the left of the decimal point (or to
the left of the right end of the number, if there is no decimal
point). These commas must be allowed for in the specification of
the field width.

W (66 OCTAL) .
Blank if zero modifier. If the modifier occurs in an A,C,E,F,G,I,K,
or O output format term, any number that is all zero will not be
printed out. Instead, blanks will be put in its place. Note that
this does not mean that zeros cannot be printed out. A number may
very possibly be not all zero and yet, when converted, round to zero.

X (67 OCTAL)

Space control character. The form of the format term is N X where
N is the number of columns to be spaced. Its action is the same as
N S1.

Y (70 OCTAL)

This is an illegal character.

Z (71 OCTAL)

Leading or trailing zeros modifier. BCD information that is read in
normally ends up with trailing (or leading, if an R modifier was in
the format term) blanks. If a Z modifier is included in the format
term, this will cause trailing (or leading) zeros, rather than blanks.
E.G., RZCl reading in the letter 'A' from a card will give a word
with 000000000021 (OCTAL) in it.

¥ (72 OCTAL) RECORD MARK
This is an illegal character.

s (73 OCTAL) COMMA
Punctuation. The comma separates format terms.

((74 OCTAL) LEFT PARENTHESIS
Punctuation. A group of format terms may be repeated by enclosing
the group in parentheses and preceding the left parenthesis by the
multiplicity. Thus 3E10.3, 2(I2,3F10.1),2C5% is equivalent to
E10.3,E10.3,E10.3,12,F10.1,F10.1,710.1,12,¥10.1,F10.1,F10.1,C5,C5%.
Nested parentheses are allowed. There is no limit to the nesting
depth. However, information about parentheses is kept in a push-
down list in erasable, with each nesting level causing a two word
entry. Hence, the deeper the nesting depth, the more erasable
storage is used. If the multiplicity in front of a left parenthesis
is zero, this means do what is inside zero times which means do not
do it. This causes a switch from normal context to format-off
context.

3.8-99

1/0 SUBROUTINES (CONTINUED)

(75 OCTAL)
(76 OCTAL)
(77 OCTAL)

These are illegal characters.

HOLLERITH CONTEXT.

Hollerith context is entered when an H is encountered in mnormal

context. The purpose of the Hollerith context is to provide

characters in the format which can be put in the print-line, or,
alternatively, replaced by characters from the card image. This
is used for titles, labels and other constant information. If

there was a count in front of the H that signalled the change to

Hollerith context, it is a counted Hollerith context. Otherwise

it is uncounted.

COUNTED - The first character in the Hollerith context is the one
immediately following the H. The last character in the
Hollerith context is the Nth character following the H (where
N is the count).

OUTPUT - All the characters in the Hollerith context are moved
into the line-image, where they form a Hollerith field.
The first goes into the line-image at the column the line-
pointer is pointing to, the line-pointer is advanced one
column, the second goes into the line image at the column
the line-pointer is pointing to, and so on. Thus
S8HTRIANGLE will cause the word "TRIANGLE" to be put into
the output line.

INPUT - All the characters in the Hollerith context are
replaced by the characters in the line-~image. The first
is replaced by the character in the column the line-
pointer is pointing to, the line-pointer is advanced one
column, the second is replaced by the character in the
column the line-pointer is pointing to, and so on. Thus,
a card punched as follows:

1 DATA SET NO. 3-A JULY 19, 1963
might be read in with a format specification
72H (72 blank spaces) *

Later, this specification could be used to print the same
information as a heading for the results.
WARNING: The specifications S72*% and 72(1H)*, while
indicating 72 blank spaces, do not allow the reading in of
an entire card, as indicated above, since they do not
provide a region of 72 characters in length in the format
into which the information on the card may be read.
UNCOUNTED - The first character following the H is taken as a break
character, and all characters between it and the next occurance
of this same break character are considered to be in the
Hollerith context. Output and input are exactly the same as
given above. The two examples given above, when written to use
uncounted Hollerith contexts, are H*TRIANGLE* and
H= (72 blank spaces) =%

3.8-100

1/0 SUBROUTINES (CONTINUED)

c.

FORMAT VARIABLE CONTEXT.

Use of the format variable context allows substituting the value of

a variable in the program making the I/0 call into a format anywhere

a number would otherwise be placed. This substitution takes place

at the time the format variable context is encountered during the

scan of the format. A prime is the signal both for entry to and
exit from format variable context, i.e., primes delimit format
variable context. The context must have one of the following three
forms: 'A' TA(D! 'A(LI,J)' where A is a format variable name
and I and J are either integer constants or format variable names.

The format variable names must be composed of no more than six

letters or digits and the first character must be a letter. The

format variables may be of any mode - floating—point numbers are
automatically converted to integers, numbers in other modes are
used as they are in storage.

USAGE IN MAD - All format variables must be names that exist in the
program in which the I/0 statement occurs whose format uses the
format variables. 1Il.e., dummy arguments cannot be used as for-
mat variables. All variables used as format variables must be
so declared within the mad program. See the MAD MANUAL.

USAGE IN UMAP - See Appendix II of this write-up.
EXAMPLES:
(A) Values of X(I) can be plotted versus time (as represented by
lines in the paper) as follows (assuming column 66 to represent
0):
THROUGH QQ, FOR I=1,1,I.G.N
QQ PRINT FORMAT OUT
VECTOR VALUES OUT =$T66,S'X(I)",1H**$
FORMAT VARIABLE X,I
(B) The following are legitimate (although highly improbable):
"SCALE' P 'NBR' F 'WIDTH' . 'DECDIG' #
TA(L)' P 'A(2)' E TA@3)' . TA(4)', 'A(S)' B 'A(6)' I 'A(7)' *
(C) Usage as switches:
H=THE TRIANGLE IS=,'SWITCH'(H* NOT%*),
H= A RIGHT TRIANGLE=%
and assuming SW1=.NOT.SW2, the following might be used:
'SW1' (5E) 'SW2(5F)15.5
Note that the multiplicity for the E or F must be inside the
parentheses to keep it separate from the parenthesis multipli-
city represented by SW1 or SW2.
NOTE - When using a format variable for the multiplicity, remember
that varying the multiplicity does not vary the number of items on
the list. If it is necessary to skip list items, use data-
transmission format terms with zero field width to do it.
FORMAT-OFF CONTEXT.
A multiplicity of zero in front of a format term or left parenthesis
means do it zero times, i.e., do mot do it. Therefore, 0F10.5 will
do nothing, and S10,0(S10,F10.5,3HTRA/),I3* will skip 10 and print

3.8-101

1/0 SUBROUTINE (CONTINUED)

out a 3 column integer. Nothing inside the parentheses will be
done. (This finds most use when there is a format variable context,
rather than an explicit zero multiplicity, in front of the left
parenthesis.) A zero multiplicity in front of a left parenthesis
causes a change from normal context to format—off context. When
scanning in this context, the only things recognized are left and
right parentheses. The format terminator is not recognized. The
context changes back to normal context when the right parenthesis
that matches the left parenthesis which had the zero multiplicity

is found.

VI. CARRIAGE CONTROL.
The first column of every print line is treated differently than the
other columns by the computer that does the off-line printing. The
first column is inspected and if it is a legal carriage control (see
table on page 3.6-10 of this manual), the printer carriage is positioned
according to the carriage control, the first column is blanked out, and
the line is then printed. If the first column is not a legal carriage
control, the printer single spaces, and then the entire line is printed
out.

VII. STQUO.

There is another entry point to the general conversion subroutine,

.IOH, which the user may call on directly. Since this is very closely

tied in with the format scan, it is presented here, rather than as a

separate subroutine. (Still another entry point, IOHSIZ, is described

at page 3.8-34 of this manual.)

PURPOSE: This allows starting an I/0 statement without reading in a
new card (input) or blanking out the line-image (output). The
line-pointer is left where it was at the conclusion of the last
I/0 call. This effect occurs only on the first I/0O call after
each call on STQUO. On subsequent I/0 calls, things are reset, as
normal. This subroutine is usually used in conjunction with the
N modifier,

CALLING SEQUENCES:

MAD EXECUTE STQUO.
UMAP CALL STQUO

NOTE: When STQUO is used, the .IOH control information in erasable

(see Appendix III of this write-up) must be left undisturbed between

I/0 calls.

3.8-102

APPENDIX I

ERROR COMMENTS

The normal procedure after detection of an error is to print a descrip-
tion of the error along with other pertinent information and then terminate
execution of the program. This procedure can be altered by executing the
subroutine SETERR prior to the I/O statement. See the write-up on SETERR.
The table below gives the error comments and their associated error numbers.
The error numbers are increased by 100 if the error occurs during output
(e.g., error number =1 if an illegal character appears in the format during
input, and error number =101 if an illegal character appears in the format
during output).
ters or numbers that are filled in.

ERROR
NUMBER

1

2

s

10
11
12

13

14
15

16
17

or

or

In each of the error comments below, X's stand for charac-

ERROR
COMMENT

ILLEGAL CHARACTER IN FORMAT
OFFENDING CHARACTER IS 'X' (XX OCTAL)
FORMAT SPECIFIES MORE THAN XXX COLUMNS
(WHERE XXX IS THE APPROPRIATE NUMBER FOR THE TYPE
OF INPUT/OUTPUT)
ILLEGAL CHARACTER ON CARD IN COLUMN XXX
OFFENDING CHARACTER IS 'X' (XX OCTAL)
NUMBER NOT IN MACHINE RANGE
NUMBER EXCEEDS SPECIFIED FIELD WIDTH. NUMBER IS
XXXXXXXXXXXX (OCTAL)
SAME NUMBER, CONVERTED ACCORDING TO FORMAT, IS
(NUMBER IS PRINTED OUT AS CONVERTED)
THE NUMBER CAME FROM LOCATION XXXXX VIA THE STR AT
LOCATION XXXXX
ILLEGAL BCD TAPE NUMBER
ILLEGAL BINARY TAPE NUMBER
BINARY CARD IN BCD DATA
BCD CARD IN BINARY DATA
BAD BINARY BLOCK
TOO MANY BINARY BLOCKS
BASE FOR CONVERSION IS LESS THAN 2 OR GREATER THAN 19
MORE RIGHT PARENS THAN LEFT PARENS
NUMBER EXCEEDS SPECIFIED FIELD WIDTH
(NORMALLY ERROR 5 WILL OCCUR. IF THIS ONE OCCURS IT
MEANS BUFFER LENGTH WAS EXCEEDED.)
THE NAME XXXXXX IS NOT A FORMAT VARIABLE IN THE CALLING
PROGRAM
DIMENSIONING OR SUBSCRIPTING ERROR
MULTIPLE CONVERSIONS SPECIFIED IN FORMAT TERM, PROBABLY DUE
TO MISSING COMMA OR BAD HOLLERITH COUNT
LIST NON-EMPTY BUT FORMAT SPECIFIES NO CONVERSIONS
FORMAT WORD IS CORE CONSTANT

3.8-103

APPENDIX T - ERROR COMMENTS (CONTINUED)

Error comments 6 through 9 are generated by the BCD and binary tape
subroutines. The others are generated by .IOH. Each of the above error
comments generated by .IOH is followed by:

ERROR FOUND WHILE PROCESSING FORMAT WORD 'XXXXXX'

WHICH OCCURRED AT LOCATION XXXXX
OUTPUT LINE
PRESENT or IMAGE IS
INPUT CARD
(LINE-IMAGE PRINTED HERE)

1/0 STATEMENT BEGINS AT LOCATION XXXXX.

APPENDIX II

FORMAT VARIABLES
AND SIMPLE I/0 IN UMAP

Both use of format variables and use of the simple I/0 routines require
a symbol table which contains all variables that will be used as format
variables or which will be referred to in simple I/0. The location of the
symbol table that is given in the subroutine call is the location of a back-
wards—-stored two entry table. The base location of this table is a word
containing the length of the table. The structure of the table entries is:

LOCATION I BCD name of variable.
LOCATION I+1 ADDRESS - location of variable,
TAG — Mode of variable.
DECREMENT - Location of dimension vector
for this variable. (0 if

there is no dimension vector).
PREFIX - +0 if variable is not subscriptable.
-0 if the variable is subscriptable.
The modes are:
Floating point
Integer
Boolean
Function name
Statement label.
If the variable is going to be referred to with a double subscript, a dimen-
sion vector, as described in the MAD MANUAL, must be provided. A simple
example of a symbol table would be
BCI 1,SWITCH
PZE SWITCH,2
STLOC PZE 2
and an I/0 call using it
CALLIO .PRINT
FMT STLOC, ,FORM
ENDIO

LN EO

. 3.8-104

APPENDIX II - FORMAT VARIABLES AND SIMPLE I/0 IN UMAP (CONTINUED)

Where the format is
FORM BCI

* H=A IS=,'SWITCH'(H* NOT*),H= TRUE=*

A larger example will be given later.

SIMPLE 1/0: The UMAP calling sequences to do the equivalent of the MAD
simple I/0 statements are:

READ DATA

- CALL .RDATA,STLOC

READ AND PRINT DATA - CALL .RPDTA,STLOC
PRINT RESULTS - CALL .PRSLT,STLOC,LIST,0

PRINT BCD

RESULTS - CALL .PRBCD,STLOC,LIST,O

PRINT OCTAL RESULTS - CALL .PROCT,STLOC,LIST,O
PRINT COMMENT - USE THE SUBROUTINE SPRINT
WHERE STLOC is the location of the symbol table.

LIST

EXAMPLES: The first
prints it out.

is a normal subroutine list (single parameters or
blocks), not an I/0 list. (I.e., 'BLK's or 'PAR's,
not 'IOP's.)

example reads in an M by N matrix, transposes it, and

$ASSEMBLE , EXECUTE , DUMP
AGAIN CALL .RDATA, STLOC
CALL .PRSLT,STLOC,N,M,0
LDQ N
MPY M
XCA
SBM L1
SUB =1
ALS 18
STD Ll
CALL TRANS1,MATRIX-1,M,N,TEMP

PRINT
PRINT

L1 I0P
ENDIO
TRA

*

FMT BCI

FMT2 BCI

TEMP BTS

LABEL BTS

MATRIX BTS

N PZE

*

M PZE
PZE

MDIM PZE

*

FLOAT EQU

INIGR EQU

STBEG BCI
PZE
BCI
PZE
BCI

FMT,LABEL,...,LABEL-22,0
STLOC, . ..,FMT2
MATRIX-1, ,**

AGAIN

*,22C6%

*, 1HO, 'M'F6.1%
15

30
500

*% DIMENSION VECTOR FOR MATRIX

DEFINE MODES

SYMBOL TABLE

3.8-105

APPENDIX II - FORMAT VARIABLES AND SIMPLE I/0 IN UMAP (CONTINUED)

MZE MATRIX, FLOAT ,MDIM
BCI 1,LABEL
MZE LABEL, INTGR
STLOC PZE STLOC-STBEG
*
END
SDATA
LABEL=$1TITLE
$

M=3, N=2, MATRIX(1,1)=1,2,3,4,5,6 *

The second example reads in N,M, a vector, and the length of the vector,
and then prints out the Nth through Mth elements of the vector. It
illustrates the use of zero field width to get rid of 1list elements. It
also shows the use of a macro to make the symbol table construction

easier.
SASSEMBLE, EXECUTE, DUMP
AGAIN CALL .RDATA,STLOC GET N,M,LENGTH,VECTOR
STz SK2
CLA N
SUB =]
STO SK1
SUB M
STA SK2
CLA LENGTH
SUB M
STO SK3
LAC LENGTH, 1
TXI *+]1,1,VECTOR
SXD L1,1
PRINT STLOC,...,FMT
Ll 10P VECTOR-1, ,**
ENDIO
TRA AGAIN
*
FMT BCI * 1HO, "SK1'F0, 'SK2'F5, "SK3'FO*
ASSIGN N,M,LENGTH,SK1,SK2,SK3
VECTOR BTS 20

*
SYMTAB MACRO NAME,SBBL,MODE,DIMV

BCI 1,NAME
IFF 0,/CRS/DIMV
SBBL NAME ,MODE , DIMV
IFF 1,/CRS/DIMV
SBBL NAME ,MODE

SYMTAB END

*

FLOAT EQU 0

INTGR EQU 1

STBEG SYMTAB N,PZE,INTGR

3.8-106

APPENDIX TII - FORMAT VARTABLES AND SIMPLE I/0 IN UMAP (CONTINUED)

STLOC
*

$DATA

SYMTAB
SYMTAB
SYMTAB
SYMTAB
SYMTAB
SYMTAB
PZE

END

M,PZE,INTGR
LENGTH,PZE, INTGR
VECTOR ,MZE , FLOAT
SK1,PZE,INTGR
SK2,PZE, INTGR
SK3,PZE,INTGR
STLOC-STBEG

N=2,M=5,LENGTH=8,VECTOR(1) = 1,2,3,4,5,6,7,8 *
N=1, M=5, LENGTH=5, VECTOR(1l) = 1,2,3,4,5 *

APPENDIX TII

STORAGE USAGE OF .IOH

To save space for the user temporary storage, buffers, the line-image,
and a communication region with the other I/0O subroutines are kept in low
core, between 7300g and 7777g. Control information and the push~down stack
for parentheses are kept in erasable. The control information is as
follows (all locations are in octal):

LOCATION
77752
77751

77750
77747

77746
77745
77744

77743
77742

CONTENTS (ALWAYS INTEGER)

MULTIPLICITY

CURRENT COUNT (THIS IS THE COUNT THAT IS BEING
ACCUMULATED DURING THE FORMAT SCAN)

BASE FOR CONVERSION

PRECISION (INTERNALLY SET COUNTER USED DURING
CONVERSION)

SCALE FACTOR

LINE POINTER

PUSH-DOWN POINTER (CONTAINS NUMBER OF WORDS OF
PUSH-DOWN STACK BEING USED)

FIELD WIDTH

BASE (HIGH-ORDER END) OF THE PUSH-DOWN STACK.

The locations 77753 to 77777 are not disturbed.

The above storage allocations, being dependent on the internal structure
of .IOH, are capable of changing at future dates.

At any given time, these cells hold the current control information for
the format term being processed. Since this control information must be
preserved during an I/0 call, any function whose call is imbedded in an 1/0
list must not disturb this section of erasable. Only functions, not sub-
routines, occur in I/0 lists.

APPENDIX IV

A BRIEF TABLE OF THE CHARACTERS

TYPE
Control
Data—-transmission
Non-data-transmission
Modifying
Break

Change of context

IN NORMAL CONTEXT

CHARACTERS

ACEFGIXKO
H/ *STX
BDLMNPRVWZ
(), *

0 IN FRONT OF (

3.8-107

APPENDIX V

A BRIEF TABLE OF APPLICABLE MODIFIERS

CONTROL CHARACTER MODIFIERS
A,C RWZ
E DLMPVW
F DLMPVW
G DLMPVW
I BLMVW
K,O LW
H
/ N
* N
S
T

3.8-108

3.8-109

APPENDIX VI

LISTING OF OTHER SUBROUTINES
IN MAMOS MANUAL

EXPONIENTIATION SUBROUTINES
MAD automatically inserts calls to these in programs it generates when
it finds a '.P.' in the source program.

A, .01311 Integer base, integer exponent
B. .01301 Floating base, integer exponent
Cc. .01300 Floating base, floating exponent

Calling sequence for the above 3 subroutines is TSX XXXXXX,4 (where
XXXXXX is the name of the subroutine) with the base in the accumulator
and the exponent in the MQ. Result is in the accumulator on return,
mode of result is mode of base.

INPUT-OUTPUT SUBROUTINES
BCD (I/0 with conversion via format)

I.

A,

DESCRIPTION. .
The user, or the translator under the user's direction, calls
directly on a preliminary routine (e.g., .PRINT). Each prelimin-

ary routine puts the following information in 4 special control
locations in low core and then calls the conversion routine
(.IOH) -- max number of columns, location of format information,
direction of format information storage, location of a routine
to call to do the input or output, location of the symbol table
(if any), whether on-line or off-line, whether input or output.
When the conversion routine needs a card image or has a line
image ready to go out, it transfers to the location given it in
the control information, which is the location of a 'connecting
routine'. This 'connecting routine' may (e.g., .WR.) or may not
(e.g., WR) be an actual subroutine in the sense that its name is
in the library dictionary. (It is actually another, but separate,
section of the preliminary routine.) The 'connecting routine'
sets things up and then calls on a low-core 'transmission' sub-
routine (e.g., SPRINT) to do the actual tape writing or reading.
In the list below, the four routines are listed in order for
each function - preliminary, conversion, connecting, and trans-
mission (e.g., .PRINT -- ,IOH -- .WR. —-— SPRINT).
INPUT ~ from system input tape (7).
1. Called by 'READ FORMAT' in MAD, or direct user call of .READ

(or equivalent) in UMAP.

.READ -- .IOH -- .RD. —-- SCARDS
2. Called by 'LOOK AT FORMAT' in MAD, or direct user call of

.LOOK (or equivalent) in UMAP.

.LOOK -- .IOH -- .RD. —- SPEEK
INPUT ~ Arbitrary tape.
1. Called by "READ BCD TAPE' in MAD, or direct user call of

.TAPRD (or equivalent) in UMAP.

.TAPRD -- .IOH -- .RD. -- SCARDS (If tape NBR = 7)

.TAPRD -- ,I0OH -- RD -- RDSDEC (Otherwise)

3.8-110

APPENDIX VI - LISTING OF OTHER SUBROUTINES IN MAMOS MANUAL (CONTINUED)

D.

PRINT OUTPUT - On system output tape (6).

1. Called by 'PRINT FORMAT' in MAD, or direct user call of
.PRINT (or equivalent) in UMAP.
.PRINT —- ,IOH -- .WR. -- SPRINT

PUNCH OUTPUT - On system output tape (5).

1. Called by 'PUNCH FORMAT' in MAD, or direct user call of
.PUNCH -- .IOH -- .PC. —-- DPUNCH

OUTPUT - Arbitrary tape.

1. Called by 'WRITE BCD TAPE' in MAD, or direct user call
of .TAPWR (or equivalent) in UMAP.

.TAPWR -~ .IOH -- .WR. —-— SPRINT (If tape NBR = 6)
.TAPWR -~ .IOH -~ .PC. -- DPUNCH (If tape NBR = 5)
.TAPWR -~ .IOH -- WR —-- WRSDEC (Otherwise)

PRINT ON LINE.
1. Called by 'PRINT ON LINE FORMAT' in MAD, or direct user call
of .COMNT (or equivalent) in UMAP.
.COMNT -- ,I0H -- PR -- ONLINE
(and .IOH calls on SKIP6 at end)
SIMPLE INPUT/OUTPUT ROUTINES.
1. Called by 'READ DATA' in MAD
.RDATA -- SCARDS
(.RDATA does its own conversion and, hence, calls only on
the low-core subroutine SCARDS for the card images.)
2. Called by 'READ AND PRINT DATA' in MAD
.RPDTA -- SCARDS
(.RPDTA is another entry to .RDATA)
3. Called by 'PRINT COMMENT' in MAD
.PCOMT -- SPRINT
(In this case, no conversion is necessary, so the low-core
subroutine SPRINT is called directly.)
4, Called by 'PRINT RESULTS' in MAD
.PRSLT -~ .PRINT -- .IOH -- .WR. -- SPRINT
(.PRSLT sets up format and list and calls on .PRINT, and
then the sequence i1s the same as for .PRINT)
5. Called by 'PRINT BCD RESULTS' in MAD
.PRBCD -- .PRINT -- .IOH -- .WR. -- SPRINT
(.PRBCD is another entry to .PRSLT)
6. Called by 'PRINT OCTAL RESULTS' in MAD
.PROCT -- ,PRINT -- .IOH -- .WR. -- SPRINT
(.PROCT is another entry to .PRSLT)
GENERAL AUXILTARY ROUTINES.
1. SKIP6 Causes online printer to skip to next sixth of a page.
2. DBLSPC Causes online printer to double-space.

II. BINARY (I/0 WITHOUT CONVERSION)

A.

DESCRIPTION.
1. GENERAL.

The MAD translator, under the user's direction, calls directly
on a combined preliminary and select routine (e.g., .RBIN). The
purpose of this routine is to preset certain instructions involving
tape selects. A check is also made to see if the tape requested is
a legal tape and, if so, if it is a system I/O tape. In the latter
case, calls for I/0 buffer tape routines (SCARDS and SPUNCH) are
substituted for selects normally used on scratch tapes. In these

3.8-111

APPENDIX VI - LISTING OF OTHER SUBROUTINES IN MAMOS MANUAL (CONTINUED)

cases the I/0 list may not specify more than 28 words, of which
only 26~2/3 may be effectively read or punched.

Control is then transferred to an I/0 list processor
routine. In MAD, the preliminary routine calls a physically
separate subroutine, .IOB, which returns to the preliminary
routine which gives the actual select. The I/0 lists themselves
are identical to those of equivalent BCD tape routines.

2. MAD.

When writing scratch tapes in MAD, every element of the I/0
list is converted into a channel command to transmit the speci-
fied location(s) to or from tape. A vector of these is built up
in an area of low core. The maximum length of this vector is
200. Thus, a MAD binary tape statement may not generate more
than 200 separate list items. An attempt to process a list
generating more than 200 channel commands will result in the
error comment 'TOO MANY BINARY BLOCKS', and execution will be
terminated. Because a data channel transmits successive words in
order of increasing address, a MAD block I/0 list element (e.g.,
V(1)...V(10)) will always generate a channel command such that
the word with the lowest address (i.e., the highest subscript) is
transmitted first (e.g., IOBP V-10,,10). To try to minimize
accidental errors, 'REVERSE ORDER' blocks (e.g., V(10)...V(1)
are considered illegal by .IOB. An attempt to process one will
produce the error comment 'BAD BINARY BLOCK', and execution will
be terminated. Care should be used when writing and reading
scratch tapes with differently structured I/0 lists, since any
blocks will be transmitted 'BACKWARDS' from the order stated
(e.g., V(10), then V(9), etc., through V(1), not V(1) through
V(10)). When a list terminator (STR 0,,0) is recognized, the
last channel command is changed to an IORT. A return is then made
to the calling preliminary routine which selects the tape through
the direct binary select routines, using the vector of channel
commands just generated. Then a delay is initiated to wait until
tape transmission has been completed, at which time control is
returned to the MAD program. Thus each MAD binary tape statement
will process one physical record on tape.

If transmission is occurring on a system I/0O tape .IOB is
not called. Instead, a simple list processor, like that of .IOH,
which is contained iIn the preliminary routine, is used to process
the card image read or the card image to be punched via the sys-
tem I/0 buffer routines.

Below are the subroutines called by binary tape statements
in MAD. 1In every case, the left-most name is that of the prelim-
inary and select routine, and the right-most name is that of a
low core routine, either a buffer routine for system I/0 tapes
or a direct select routine used with scratch tapes.

INPUT - From system input tape (7).
1. Called by 'READ BINARY TAPE 7' in MAD

.RBIN -- SCARDS

3.8-112

APPENDIX VI - LISTING OF OTHER SUBROUTINES IN MAMOS MANUAL (CONTINUED)

C.

INPUT ~ From arbitrary tape
1. Called by 'READ BINARY TAPE' in MAD
.RBIN -- .I0B -- RDSBIN
PUNCH OUTPUT - On system peripheral punch tape (5).
1. Called by 'WRITE BINARY TAPE 5' in MAD
.WBIN -- SPUNCH
OUTPUT - Arbitrary tape.
1. Called by 'WRITE BINARY TAPE' in MAD
.WBIN -- ,IOB —-- WRSBIN

LIST MANTPULATION SUBROUTINES

I.

II.

IIT.

IV.

Called by 'SET LIST TO' in MAD, 'SETTO' pseudo-op in UMAP, or
direct subroutine call:

.SET
Called by 'SAVE DATA' in MAD, 'SAVE' pseudo-op in UMAP, or
direct subroutine call:

.SAVE
Called by 'SAVE RETURN' in MAD, or direct subroutine call:

. SAVRN
Called by 'RESTORE DATA' in MAD, 'RESTOR' pseudo-op in UMAP, or
direct subroutine call:

.RSTOR
Called by 'RESTORE RETURN' in MAD, or direct subroutine call:

.RSTRN
.SET, .SAVE, and .RSTOR setup and manipulate push-down type lists.
.SET has one argument which is the first element of the array to
be used as the list. This element must be preset to the initial
list length, and thereafter will have in it the current list
length. .SAVE and .RSTOR have I/0 calling sequences which ter-—
minate with blank IOP instructions. .SAVE puts elements on the
specified list in the order that they occur in the calling
sequence. .RSTOR obtains elements from the end of the list and
puts them in the locations specified by the calling sequence
and in the order that they occur in the calling sequence. Any
computation desired may occur within the calling sequence.
.SAVRN and .RSTRN are similar to .SAVE and .RSTOR. They are
used to save and restore the prolog of the MAD function they are
called from,

PAUSE SUBROUTINE
Called by 'PAUSE NO.' statement in MAD, and 'PAUSE' pseudo-op in UMAP.
Causes the machine to stop in execution in such a manner that the
program may be continued by pressing the start button. Time during
the pause is counted as processing time, not execution time and,
hence, does not count against the user's execution time estimate.
All high speed registers are preserved.

3.8-113

APPENDIX VI - LISTING OF OTHER SUBROUTINES IN MAMOS MANUAL (CONTINUED)

SUBSCRIPTION SUBROUTINES

I.

II.

ITI.

NOTE:

.03311 and .03310 (two names for same routine).
When MAD finds a 2 dimensional subscript, A(I,J), it calls on
this subroutine to find the linear subscript, R, that corres-
ponds to it. (I.e., A(R) and A(1I,J) refer to the same element)
CALLING SEQUENCE IS CLA I
LDQ J
TSX .03311,4
BLK A, ,ADIM
where ADIM is the name of the dimension vector for A. R is in
the accumulator on return.
MTX.
When MAD finds a 3-or-higher dimensional subscript, A(I,J,K,...),
it calls on .MTX to find the corresponding linear subscript.
CALLING SEQUENCE IS TSX .MIX,4
BLK A,,ADIM
PAR
PAR
PAR

e oRG

linear subscript is in the accumulator on return.

SYMM

.SUBS

Special subscription subroutines called by MAD when the special
subscripting option is used.

Since these are called by MAD, they assume MAD-type storage of
vectors.

TAPE MANIPULATION ROUTINES

I.

IT.

I1T.

Iv.

VI.

BACKSPACE RECORD.

A. Called by 'BACKSPACE RECORD OF TAPE' in MAD
.BSR

BACKSPACE FILE.

A. Called by 'BACKSPACE FILE OF TAPE' in MAD
.BSF

REWIND.

A. Called by 'REWTIND TAPE' in MAD
<RWT

REWIND AND UNLOAD.

A. Called by 'UNLOAD TAPE' in MAD
. RUN

WRITE END-OF-FILE.

A. Called by 'END OF FILE TAPE' in MAD
.EFT

SET DENSITY.

A. Called by 'SET LOW DENSITY TAPE' in MAD
.SETLO

B. Called by 'SET HIGH DENSITY TAPE' in MAD
.SETHI

3.8-114

INDEX TO MAMOS SUBROUTINE LIBRARY - BY ENTRY POINTS

ENTRY POINT NAMES LENGTHg ERASABLE USEDg PAGE
ANA, ORA 12 0 3.8-4
ARCSIN, ARCCOS 143 0 -4
ATAN 72 3 -5
ATLOC 26 0 -5
ATN1 202 11 -5
BAKSUB 153 4 -6
BCDBN, MBCDBN 31 2 -7
BNBCD 25 2 -7
BORDS 221 317 -8
.BSF 12 0 -113
BSL1 1441 10 -9
.BSR 12 0 -113
CHOLES 177 304 -10
CMADD 7 0 -11
CMDIV 44 2 -11
CMMUL 17 1 -11
CMSQRT 122 10 -12
CMSUB 7 0 -11
.COMNT 77 0 -110
COMPZ, ZCOMPZ 55 1 -12
CROUT 143 150%% -13

CROUTP 176 150%% -14

3.8-115

ENTRY POINT NAMES LENGTH, ERASABLE USEDg PAGE
DCOMPZ, DZCOMP 41 0 3.8-15
DFAD, DFSB, DFMP, DFDP, SFDP, DCEXIT 147 0 -16
DISMNT 143 0 -15
DPFA 14 1 -17
DPFDV 120 4 -17
DPFM 23 3 -17
DPMAT 102 317 -18
DSLELl, DSLE2 1207 146%* -19
DSQRT 37 0 -18
.EFT, (EFT) 14 0 -113
EIGN 620 16 -21
ELOG 102 4 -22
ERF 153 6 -25
ERRFN, FREQ 105 4 -25
.EXIT 55 0 -23
EXP 113 5 -24
EXP1 4 0 -26
EXP2 4 0 -26
EXP3 4 0 -27
FSPILL, RSPILL 60 0 -27
GAMMA 66 2 -28
GAUSS 145 145%% ~29
GJRDT 216 317 -30
GJRDTP 210 317 -31
HAS1, HAS1S 516 50 -32

3.8-116

ENTRY POINT NAMES LENGTHg ERASABLE USEDg PAGE
IBDS 446 234%% 3.8-33
1IEF1 236 17 -33
.10B 127 0 -110
.IOH, STQUO, (FIL), (RIN), IOHSIZ 4147 0 -85
TOHSIZ See .IOH ROUTINE -34
ITINT 362 1 - -35
.LOOK, .READ, .RD., (CSH) 147 0 -109
LSH, RSH 13 0 -39
MOUNT, LABEL 1373 0 -39,40
MOVER 113 1 -41
MTX 33 0 -113
NASQ 105 0 -41
NDRN1A, NDRN1B, NDRN1C, NDRN1D 171 3 -42
OFFTRC, ONTRC 11 0 -43
PCPCH 222 0 -43
. PCOMT 17 0 -110
PLOT1, PLOT2, PLOT3, PLOT4, OMIT,

FPLOT4 1777 0 -44
.PRINT, .WR. 64 0 -110
.PRSLT, .PRBCD, .PROCT 1007 0 -110
.PUNCH, .PC., (SCH) 0 0 -110
RAM2A, RAM2B, RAM2C, RAM2D 64 1 -57
RANDND 73 0 ~59
RANDOM 30 0 -58
.RBIN 234 0 -111

.RDATA, .RPDATA 1102 0 -110

ENTRY POINT NAMES

REPLCE

RKDEQ, SETRKD
.RUN, .RWT, (RWT)
SAVCOR

.SAVRN, .SAVE, .RSTRN, .RSTOR, .SET
SELPGM, SEQPGM
SET2, SET8
SETEOF, SETEFL
SETERR, .ERR
SETETT

SETFTP, RSTFTP
.SETLO, .SETHI
SETPLT, USTPLT

SETUP, CONVRT, ADD, SUB, MPY, DIV,
RMDR, RECNVT, IF

SIN, COS

SKIP

SLEC, SLEG, SLEM
SPREAD, GATHER, FSPREAD, FGATHR
SQRT

(STH), .TAPWR
.SUBS, .0311, .0310
SYMM

TAB

TANH

TRANS

TRANS1

LENGTHg

31

141

25

165

213

35

14

24

66

25

37

21

701

1333

177

33

110

154

57

207

42

41

307

136

66

116

ERASABLE USEDg

4064

320

3.8-117

PAGE

3.8-60

-61

-64
-65
-66
-66

-113

-110
-113
-113

-74

=75

~-75

ENTRY POINT NAMES

(TSH), .TAPRD
UITR1, UITR1A
UITR2, UITR2A
UITR3, UITR3A

.WBIN

ZER2, ZER3, ZER4, ZER5, ZER6

ZERO, SPRAY
.01300
.01301
.01311

.03311, .03310

*%*This routine uses a variable amount of erasable storage.
is the minimum erasable needed.

3.8-118

LENGTHg ERASABLE USEDg PAGE
215 0 3.8-109
164 0 -77
322 0 -78
304 0 -79
211 0 -112
670 25 -82

34 0 -84
66 11 -109
76 3 -109
64 3 -109
15 0 -113

The number given

INDEX TO MAMOS SUBROUTINE LIBRARY ~ BY FUNCTION

FUNCTION
Arbitrary Matrix Transposition.
Bessel Function

Binary Input/Qutput

Calling Subroutines for Ping-Pong Segments. . . « « « + o « « + &

Complex Arithmetic.
Complex Square Root
Dismount Tape . « . « « « « « &

Double Precision Floating-Point
Double Precision Operations . .
Double Precision Square Root. .
Double Precision Square Root. .
Eigenvalues and Eigenvectors. .
Error Function Subroutine . . .
Exit Subroutine
Exponentiation ~ Floating-Point

Exponentiation - Floating-Point

Base and Floating-Point Exponent.

Base and Integer Exponent

Exponentiation - Integer Base and Integer Exponent.

Exponentiation - The Base E . .

Floating-Point Arcsine and Arccosine. . . . « « ¢« « & + ¢« ¢ « & &

Floating-Point Gamma Function .

Floating-Point Logarithm. . . .

Floating-Point Principle Value Arctangent + « « « o + « .

Floating-Point Sine and Cosine.

Floating-Point Single Value Arctangent. . . . « + « ¢ o« « ¢« « o &

Floating-Point Spill Routine. .

Floating-Point Trap Control . .

3.8-119

PAGE

3.8-75

-110

-17
-16

-18

=27

-66

FUNCTION

General Conversion Ro;tine. « s e e
Harmonic Analysis . . . « « « « o« &
Hollerith Input/Output.
Hyperbolic Tangent. . « « &« « « + .
Incomplete Elliptic Integrals . . .
Linear Equations. . . . « ¢« ¢« + « .
List Manipulation Routines.
Logical Operations.

Matrix Conversion . . « « + « &« +

Matrix Factorization by Cholesky Decomposition.

Matrix Factorization by L~R Decomposition .

Matrix Inversion. . . « « « « o + &

Matrix Multiplication Using Double Precision. .

Move Arrays . . . « ¢« « ¢ ¢« o o « .

Normally Distributed Random Number Generator. .

Numerical Integration of Single or Multiple

Octal Location Finder
One Word BCD To Binary Conversion .
Plotting Subroutine
Program Common Punch.

Replace Tapes . « « & « o o o o o &

Integrals

Runge-Kutta Solution of Differential Equations.

Save Blocks of Core For Later Reloading By System

Set End of File Return.
Set End of Tape Option. . . . « . .

Set I/0 Error Return. . + + « « + «

3.8-120

PAGE
3.8-72

-32

-19
-112
-4
-8
-10
-13,14,29
-33
-18
-41
-42,59

=35

FUNCTION

Set I0H Field Size Error Condition.

Set Low Core Trap Locitions .
Set Up For Plot Routine
Shifting Operations
Simultaneous Iteration. . . .
Simultaneous Linear Equations
Simultaneous Linear Equations

Single Iteration. . . . « . .

By Matrix

Single Iteration - Interval Halving

Single Table Interpolation. .
Skip Tape Routine
Square Matrix Transposition .
Square RoOOt . « o o & o & o &
Store Constant. . . . +» « « &
Subscription Routines
Subtrace On-Off Switch. . . .
Symbol Manipulation
Symbol Manipulation - Packing
Tape Labeling . . « . + « « &
Tape Manipulation Routines. .

Tape Mounting

.

Inversion

*

Uniformly Distributed Random Number Generator

Variable Precision Integer Arithmetic .

_Zeros of A ComplexPolynomial

NASA-Langley, 1966 CR—1188

3.8-121

PAGE
3.8-34
-64
-67
-39
-79

-6,71

-30,31

=717

-113
-43
-12
-15
-39

-113

