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An analytical framework is provided to relate pertinent aspects of the 

experimental determfnation of microbial resistance to sterilization on the one 

hand and to the parameters which enter into the definition of aperational 

sterilization requirements on the other. This analytical model differs from 

existing models in that it is applicable to any resistance function, e .g . , the 

survivor curve need not be exponential. The model is used to correlate the 

results from survivor counting tests to sampling tests (end-point) and to 

evaluate the validity of extrapolating from survivor data to low probabilities 

of contamination when the latter are specified in a number of alternate ways. 
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1. Introduction 

Under the subject contract a study is in progress to evaluate analytical 

techniques currently used in the formulation and implementation of spacecraft 

sterilization requirements, and to evolve new techniques where appropriate. 

One area found to require considerable clarification and modification is the 

hsic analytical model which relates experimental procedures in the deter- 

mination of microbial heat resistance to the definition of Operational require- 

ments for spacecraft sterilization so as to achieve a specified, low probability 

of contamination. 

Current difficulties arise not from the absence of an analytical model 

but rather from the fact that the model behg used is based upon unproved 

hypotheses and there is ever increasing evidence that these hypotheses may 

be wrong. Specifically, it is currently accepted as a "law" that microorganisms 

exposed to a heat environment lose viability exponentially, i .e. the number of 

survivors is decreased by one decade in constant intervals of heating time. 

The validity of this "law" has been questioned ever since it was promulgated 

and is also being scruthized in the study under the present contract. However, 

this is not the subject of the present report. Of interest here is the fact that 

current analytical models in sterilizations are predicated upon the validity 

of the exponential "law". wit this is quite unnecessary since the model can 

also be formulated without constraints on the specific form of the survival 

function. Thus , the relationship between experimental test paramaters and 

probabillties of sterility (or contamination) of a spacecraft can be evolved on the 

basis of anundefined survival function. Clearly, such a formulation would be 

preferred since it is free of any questions concerning the validity of a 

particular survival function, and can facilitate the study of alternate survival 

functions. Such a model has been evolved and is described herein, It is 

referred to as a stochatic model shce  the unknown survival function is defined 

in terms of the survival times of each organism in a population and survival 

time is taken to be a random variable, 

. 
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* The principal use of this, as of any other analytical model, is to 

provide a framework for specific problem-oriented investigations . As 
previously rioted, one intended application for the model described herein 

is in the study of alternate survivor functions, i .e . other than the exponential . 
This effort is currently in progress and will be reported on at a later date . 
However , a few other applications are considered in the text and include the 

following: 

(a) Experimental Procedures 

The resistance of microorganisms to heat sterilization is generally 

determined in one of two ways. In a counting test, the number of survivors 

from an initial viable population is determined experimentally, leading to the 

survivor-time curve. The second method, frequently referred to as the 

end-point test, utilizes multiple samples of some initially viable populations 

heated to a range in time where at least some of the samples will show 

sterility when cultured after heating. A common basis is needed for these 

two tests and has been provided by Aiba and Toda'l) on the assumption that 

the survivor curve is exponential. The present model provides more 

general relationships in that they a re  applicable to any survivor function. The 

utility of the present formulation is illustrated by the fact that it explains the 

lack of correlation between Aibas' and Toda's analytical predictions and their 

experimental data , see reference (1) . However , more generally, the present 

model can be used to evaluate the relative merits of the two test methods 

and to define conditions under which one or  the other might be more desirable. 

(b) Extrapolation of Test Data 

Test data in a counting test generally do not cover a range of initial 

populations and times of heathg which incoudes the conditions of the ultimate 

sterilization process An extrapolation of test data is therefore necessary to 

predict the probability of sterility in the actual process. The general validity 

of such extrapolations has been questioned and recently both Fredrickson(') and 

Aiba and Toda'l) have provided an analytical basis for the extrapolation on the 

2 



assumption that the survivor function is exponential. The present formulation 

generalizes the analysis by removing the above assumption. In addition, 

alternate forms of specifying probability of contamination, e .go exactly 

one survivor vs . one o r  more survivors, are considered and their effect 

on the accuracy of extrapolation is evaluated . 
The following assumptions uuderly the analytical model developed 

herein: 

(1) Asingle species of organisms is considered 

(2) The deaths of organisms within a population are assumed to 

be independent events 

(3) The intensity of the sterilization environment is assumed 

to be constant. 

Assumption (3) above is noted to clarify the notation to be used. However 

it does not constrain the validity of the analytical relationships to constant 

sterilization environments . Thus, the sterilization time, t, can be replaced 

by a sterilization dose which is a function of time as well as of a variable 

sterilization intensity without invalidating results to be presented here . 
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2, Basic Analytical Relationships 

The princjpal building block throughout this report will be the well known 

binomial distribution for repeated trials where the probability of success (or 

failure) in any trial remains the same. We  are thus assuming that the death 

of one organism has no effect on the probabilities of survival of any other 

organism , i .e . they are taken to be independent events. 

For convenience, we list the following formulas relating to the binomial 
distribution, e.g. Uspensky (3) . 

P(r ,T) denotes the probability of obtaining r successes in T trials and p 

is the probability of success in any one trial. 

Some Urniting cases of interest here are the probability of zero successes 

in T trials, i.e. r = 0, and the probability of a success on every trial, i.e. 

r = T. From eq. (1) we have 

Equation 1 will define a discrete probability function of r when p and T 

are fixed to particular values . We are interested in the value of r which has 

the greatest probability of occurring. Using standard nomenclature , we 

denote this value of r as the expected value of r , E(r) , given by: 

E(r) = T - p  

Referring again to equation (1) as a d i s t r h d o n  functim. of r , the 

variance of r is given by 

02(r) = ~p ( 1  -p )  

(4) 

t 
II 
1 
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8 
3. Probability of Survival for a Single Organism 

Let Td be a random variable, denoting the time at which an organism, 

subjected to heat for a time ? will die. We then define f ( ~ ) d ~  as the probability 

that the organism dies at the time T, i .e as the probability that 

T< - Td - < ( T + d?). The probability that the organism will  die during the time 

interval zero to t is then given by 

0 

Pd(t) = P(0 5 Td 5 t) = f l(T)d? ( 6 )  
0 

The probability ps that an organism will survive the time interval t 

In what follows, we will deal with ps(t) o r  pdt) without requiring explicit 

knowledge as to what these functions are  For , as previously noted , one of 

the major objectives of the model is to facilitate determination of f ( ~ )  through 

ps( t) or pd( t) If f( T ) is assumed to be an exponential distribution of survival 

times, and it is emphasized that we neither require nor accept this assumption, 

then ps(t) would be given by 

t 
-1171 -FL? s r 

ps(t) = 1 - 3 I pe+ dT = 1 - l-e L 

0 0 
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4.  Number of Survivors in a Fixed Population 

Consider a population of No organisms subjected to heat sterilization 

for a time t and let N(t) be the number of organisms which have survi* up 

to the time t . Since we consider the deaths of organisms to be independent 

events, and looking at a particular time interval t, we can view each organism 

as being subjected to a trial. The total number of trials therefore equals No . 
If we call survival up to time t a success then pdt) is &fie proMility Q€ 

success in any one of these repeated trials . We can therefore apply equation 

(1)withT = N o a n d r  = N(t), Thus 

P[N(t), No] = N(t)! No-N(t) I ps(t)N(t) 1 - ps(t)p-N(t) (9) 

Figure 1 illustrates the results of a hypothetical experiment in which 

we take n samples, each containing an initial population of No viable organism, 

apply heat for a fixed time 

particular number of survivors Ni. W e  might attempt to  f i t  a discrete 

distribution to Figure 1 using equation (9) with pS(k) as a parameter . Having 

obtabed a suitable f i t ,  we would have one point of ps(t), Repeating this 

procedure for  different heating times, we could define the manner in which 

ps(t) varies with time . 

and note the number of samples n(Ni) having a 

Needless to say, the above would not be an efficient experimental 

procedure. We note, however, that the expected value of N(t) is, according 

to equation (4) 

E $(t)] = No p d t )  

Since we generally expect p d t )  to be a monotonic function of time, we 

draw a smooth (not necessarily straight) curve thru the measured values of N . 
Points on this curve ean then be thought of as averaged values of N, which 

we will denote a s  N , and the curve itself represents an estimated p d t )  which 

will be denoted as :At). Thus, 

A 

as shown in Figure 2. 
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4 W e  can thus obtain p&) from a counting experiment in which the 

ave-ed number of survivors, N'? are nonnabeci by dividing by N ~ .  

From eq . (5) and eq . (11) it is readily shown that the variance of 
n 
Ps is slven w 

Thus, by choosing a sufficiently large No, the variance can be made 

small. 
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6. Sterility of a Populatfon 

Consider no samples , each containing initially No *le organisms , and 

let ndt) be the number of samples which are sterile after time t. Similarly, 

%(t) will denote the number of contaminated samples at time t Clearly 

We can view each sample as one of n, repeated tr ials and define "success" 

in any one trial to mean that .the sample remahied contamfnated. This 

probability of "success" is therefore Pdt) , i .e. the probability of one or  

more survivors. Applying the binomial distribution to define the probability 

of w(t) contaminated samples, we obtain 

The expected value of %( t) is , by equation (4) 

E [.as] = n, PcW 

or 

In a manner similar to that discussed for survivor curves, an estimated 

value of PC can be obtained by plotting a smooth curvethru the data points given 

by ndt)/q,. Denoting again by %A the points on *is curve, we have 

It is of interest to relate Pc to ps since we may wish to obtain ps not by 

the counting methods previously described, but to infer it from sampllng 

test in which the measured parameter is PC . Towards this end, we first 

define PS as the probability that a s q l e  of No Mtially viable organisms 

will be sterile as a function of exposure time t. Since this implies no survivors, 

application of equation (9) with N * 0 yields 
7 7 No 

ps = P(OYN0) = 1' -ps( tq ,  
Since 

Pc = 1 - P s  

Pc = 1 - [l -p&)]No 20) 
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Let 3: &note tfie value of ps inferred from a sampling experiment, 

i .e. it is obtained from P, . Then, from equation 20 
I\ 

1 -4 

Equation 21 provides a means for converting results from sample 

sterility experiments to estimates of theorganfsm survival probability function. 
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6 . Extrapoladon from Fractional Survivors to ProbabiIfty of Contamination 

As shown in references (1) and (2),  the probability of contamination can 

-- 

be obtained with lirtle error by mn extrapolation of the survivor curve to values 

of N < 1 In the above references, only the case where 

distribution is considered. We can readily generalize the extrapolation to 

any distribpdion 4 7 )  (and hence for any shape of a survlval curve pdt )  ) by 

expanding equation 20 Into a Taylor series. Omitting the functional 

) is an exponential 

notation (t) for the sake of brevity, combining 11 and 20 and then expanding 

the exponential term 

into a Taylor series with a remainder Rc, we obtain 

S ince 

Since Rc is always positive, PC <E(N) . Thus as shown in Figure 3, 

fhe curve of pc must always be below the extrapolated E(N) . Since, by 

definition, Pc < 1, the extrapolation can only have meaning for values of N < l j  - 
Although the extrapolation has been discussed in terms of PC and the 

expected values E(N) it would be more proper to define it in terms of Pc and 

NA. In practice, curves such as the one shown in Figure 3, would be obtained 

by fitting an analytical relationship N$t) to the data points over the experimental 

range of N . The extrapolation would then consist of &tending the analytical 

curve by calculations, using values of N ~ I  

A 
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Figure 3. Extrapolation from Survivor Curve to Probabilities 
of Contamination 
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It is to be noted that PC always refers to a probability of contamination 

for a given inftfal population, Hence, the extrapolated Pc, which we denote 

as pCx, relates to tfie N, of the curve of N from which it was e x t r a p o ~ e d  

This is not a restriction since Pcx for any other population is readily 

obtained from the fact that curves of NA<t), when plotted on semi-log paper, 

can be translated up or  down to match different NO'S , In general, from eq . 11 

for the same ps(t) 

A 

The maximum error askeciated with the exmolat ion is seen to be small 

for values of Pc less than about 0 -1. Some numerical values are illustrated 

below , 

X 5- 
10-1 

10-2 

10-3 

10-4 

Max. error in P, 

+5% 

-to -5% 

to -05% 

to ,oos!% 

These errors indica,? that the extrapolation is quite accurate. Further- 

more, as previously noted, the extrapolated values will always be larger than 

Pc . The extrapolation therefore produces slightly conservative values of the 

probability of contamination Pc . 
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7. Extrapoladon from Fractional Survivors to Prohbillty of One Survivor 

Currently, planetary quarantine requirements for sterilized landing 

vehicles are specified not in t e r m s  of the prohbi l iv  tht the lander will be 

contaminated but rather in terms of a probabllity that it will have one viable 

organism. ?he latter ha8 been denoted as PN and would bc! given by equation 

( 9 )  88 

(261 
No-1 

PN = p(1, NO) = Nopgl -PSI 

It would also be convenient to obtain p~ by extrapolathg curves of WN) 

as was done for Pc. To evaluate such an extrapolation we again expand 

the right hand side of 26 into a Taylor series with a remainder denoted by R1. 

This yields 

PN N@d1 -R1) ( 27) 

(28) R1 = N o ~ d 1 -  1/NoK1- Q s )  
No-2 

Since 

NOPS = E(N) = P$ 
i.e . pNx is a e  value of pN obtained by extrapolating E(N), we can 

write 

p ~ x  - PN = APN = PNx OR1 (29)  

To compare the extrapolations of Pc andG'N, equations 22 and 29 are 

slightly rearranged below: 

Since p$ R1 is always positive, p~~ will also be a conservative value 

of p ~ .  By reasoning similar to that applied for R,, 
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Figure 3 can be applled to thfs extrapoladon by replacing Pc with PN 

and R, with APN. Maximum values of APN are fllustr~ed below 

Max. error inpN 

1% 

1% 
0.1% 

Again, the inaccuracy in the extrspolation is on the side of conaervatlve 

estimates of PN and the mlcmftudes of the errors, although twice as large 

as that for Pcx, are sufflciently small for p$ - rC lom2 to make the extrapolation 

of PN quite accurate. 

16 



8 .  Summarv and Conclusions 

The principal function of interestin characteriztng the resistance of 

a given strain of organisms to a sterilizing environment is the probability 

density of survival times, f( T )  , It la, however, more convedht  to use 

the s u M v d  function 
interval of time up to t, since the two are interrelated thru the hteg radon 

pe(t), i-e . the probability of survival in me 

t P 
P&) = 1-J f ( 7 m  ( 7) 

0 

pdt)  can be determined experimentally in one of two ways. In a counting 
A experiment, $Jt) is given by a plot of N /No as a function of the heating 

time t . Such a plot is independent of No . Hence a plot of the log of N versus 

t for a specific value of log No can be translated up o r  down to other values 

of log No without change h the shape of the curve and regardless of the shape, 

i .e . it need not be a stratgllt line on a semi-log plot of N( t) . 

A 

An afternate approach to the evaluation of ps(t) is to measure the 

number of samples out of an initial q-, samples which are not sterile after 

exposure up to a time t. If each sample had an initial papulation N,' , the 

measurement is tfiat of the probability P, mat a population 

or  more survivors. However Pc thus obtained can be related to'?, through 

A 
will have one 

A 

w e n n o r e ,  if a sufficiently large number of samples is used, i .e. 

50 or  morqto yield some non-sterile samples at long heating times , p, can 

be found to an accuracy of better than 1% from 
A 

Since either a counting or a sampljng experiment can be used to obzain 

secdons of the curve of $At), the quesdon arises as to which of these methods 

would be more accurate. It can be shown that if NoC, the populadon in the 

counting experiment, is the same as NoB no , the total population in the 

sampling experiment, the variance is essentially the same as the variance 

17 
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in $:, i .e. the estimates of pB WOUM be of equal accuracy in both caeee . m e ,  

however, is only valid if the initial populations NoC and NoB are both assumed 

to be hown exactly. Shce this is not generally true, the question as to which 

scperimental method fs to be preferred remains to be answered and should be 

examined including the uncertafnties in the measurements of No . 
Having established pdt )  in a functional form, variou~ probabilities of 

organism survival for any initial population can be established. Although the 

pIcsirabillty of definingplanetary quarantine requirements in terms of a 

probability of exactly one survivor (pN) can be questioned, there is little 

difference between such a requirement and the alternate specification for a 

probability of one o r  more survivors (Pc). In either case, provfded the 

magnitudes of Pc o r  pN are loe2 or less, they can be obtained from 

In general, pdt)  would be obtained experimentally over a range of time t 

much smaller than the time needed to achieve the desired p~ (or Pc) . n u s ,  

if lo8, pdt)  = 10"'. To measure this value of pdt )  

with any kind of accuracy would, in the case of a counting test, require a 

population of 1OI2 and heating times which would reduce the population to 10 

o r  more. Since, generally, population sizes in experimental determinations 

of ps(t) are much less than 1d2, it is essential that an appropriate functional 

relatlonship for pdt)  be available so as to minimize errors due the analytical 

extension of the curve to the range of unmeasured values . 

b 

pN'10 -3 and No 
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