

TRWsystems

ONE SPACE PARK• REDONDD BEACH, CALIFOFNIA

GPO PRICE

\$ \qquad

CFSTI PRICE(S) \$

\qquad

Hard copy (HC) \qquad
Microfiche (MF) \qquad

TRACKING ACCURAEY NATRIX PROCESSOR

by W. 'ir. iemmon

11 December 1963

Prepared ior
jET PROPULSION ZAEORATOKY
Cainforma Instituie of Tecmology
Contract No. 950045

TRW/SPACE TECHNOLOGY LABORATORIES
One Space ?ark
Redondo Beaci. California

CONTENTS

Page

1. INTRODUCTION 1
2. REGRESSION TO A CONSTRAINED PARAMETER SET 4
2.1 NOTATION FOR A REGRESSION 4
2.2 THE FIT WCRLD 5
2.3 THE ESTIMATOR AND THE ERROR AFTER A REGRESSION 9
2.4 THE REAL WORLD 12
2.5 THE REGRESSION ALGORITHM 13
3. THE MATRIX TRANSFORMATION TECHNIQUES OF TAPP III 10
3.1 THE MATRIX FORMAT MABLE (T3) 10
4. 2 THE REPRESEN:ATION OPTIONS 18
3.3 THE SET-PARTITION OPTIONS TABLE (T1) 25
3.4 THE OUTPUT ENTITIES 28
5. A GENERAL DESCRIPTION OF TAPP III 31
6. 1 THE INPUT TAPE FORMAT 31
4.2 THE SUBROUTINES OF TAPP III 32
4.3 THE SEQUENCE OF OPERATIONS 36
REFERENCES 41
APPENDIXES
A TAPP III MASTER SYMBOL LIST A-1
B OUTPUT OPTION CONTROLS B-1
C THE FLOW DIAGRAMS C-1D THE CODING OF INPUT SYSTEMSAND PARTITIONSD-1

1. INTRODUCTION

The Tracking Accuracy Matrix Processor Program 15 the third program in the Tracking Accuracy Prediction Program series* and is therefore de noted as Mod III or TAPP III. The purpose of the Tracking Accuracy Matrix Processor (TAPP III) is to extend the range of applicability and the versatality of the TAPP-series and to eliminate the duplication of TAPP Mod I runs for cases involving the same trajectory and tracking noise models. To accomplish this, a simplified version of TAPP I is used to produce a tape, T_{13}, which drives TAPP III. Depending upon manual inputs, TAPP III produces either a statistical printout, 0_{3}, or a TAPP II Tape, T_{32}. or both. It is possible, therefore, to use this system to replace two previous versions of TAPPI.

In the T_{13} tape input to TAPP III, as generated by TAPP I, the trajectory, tracking stations, tracking intervals, and noise models are all specified. In operating TAPP III, one has the option of selecting or deleting the various stations or tracking intervals and thereby studying different tracking patterns without rerunning TAPP I. One of the principal features of TAPP III is that the assumptions used to fit the data to determine orbits, the so called "fit-world", may be entirely different from the "true" or "real-world". For example, in a trajectory determination one might neglect the uncertainty in the GM of the earth, μ_{e}, which is the same as setting $\sigma_{\mu}=0$, a priori. Using TAPP III, one can permit this assumption to be made in the fit world; make $\sigma_{\mu}>0$ in the real world, and then determine the deleterious effect on the orbit determination. This is a very simple, almost trivial, example of the types of problems which can be analyzed. A more sophisticated problem is to determine the deleterious effects of making erroneous assumptions in the fit world regarding the relationships between parameters.

To summarize, the new TAPP I, II, III system has two major advantages over previous versions of TAPP I:

[^0]a) The desired TAIPP III outputs are specified by coded inputs. This is not accomplished liy option flags but by a matrix language which permits one to choose a virtually arbitrary number of output entities. Each cntity is determined by a set of symbolic indices which permit a choice of approximately 50,000 substantially different types of output entities.
b) The assumptions used to fit the data (the fit-world) may be completely different from the true statistical model (the realworld). These assumptions include possible constraints among the constant parameters.

The printout of TAPP III, O_{3}, is designed to answer complex statis tical questions regarding erroncous assumptions in the fit world, as well as to present the usual tracking simulation accuracy results. In addition, by making several TAPP III runs using the same r_{13} tape, one can obtain results based on different assumptions without rerunning TAPP I.

Figure 1-1. General Information Flow for the TAPP Program

The second function of TAPP III is to act as a buffer program between TAPP I and TAPP II, see Figure 1-1. Thus, a set of inputs $\left(I_{1}\right)$ to TAPP I, consisting of output times and trajectory initial
conditions together with fit - and real-world tracking noise models, is used by TAPP I to produce a tape (T_{13}) of partials and normal matrices going with the specified time intervals. TAPP III accepts T_{13} and produces a tape (T_{32}) for use by TAPP II. Either simultaneously or separately, TAPP III can produce a statistical printout $\left(\mathrm{O}_{3}\right)$. The manual inputs (I_{3}) to TAPP III include the following information:
a) Print output times
b) Print output format
c) Tape output times
d) Tape output format
e) Flags stating whether or not a station is operating
f) Constraints assumed for the purposes of fitting the tracking data
g) "True" constraints
h) A priori normal matrix used for the fit

1) "True" a priori covariance matrix

Thus a single T_{13} tape may be processed in a large number of different. ways.

An important feature of TAPP III is that it extends the applicability of TAPP II to cases in which the constrants satisfied by the constant parameters are different in the fit and real worlds. This is accomphshed by a built-in tape output format which always provides TAPP II with partials and normal matrices under valid TAPP II assumptions. Thus the it-world constraints are always subtracted out of the "consider" parameters.

TAPP III may also be driven by tapes prodiced by tracking programs other than TAPP I. For example, a tracking frogram using exact integration techniques could be modified to produce a " T_{13} " tape of appropriate format. The modifications to the tracking program would be relatively minor since TAPP III imposes no requirements on the nature of the physacal constants and biases under regression.

2. REGRESSION TO A CONSTRAINED PARAMETER SET

One of the most important subroutines of TAPP III is to accept the normal matrices " A TWA" and " A TWMWA" accumulated from the TAPP I output tape, together with the assumed and true a priori statistics, to produce the assumed and true a posteriori statistics. A method is presented for accomplishing this for the most general type of linear minimum variance regression--nameiy, one in which the assumptions made, for the purpose of the regression, about the a priori statistics of the paramcters including the nature of their constraints, are completely different from the "true" a priori statistics.

This philosophy of treating constraints as part of the a priori siatis tucs of the parameters being fitted not only permits a generalization of the purpose of TAPP III but considerably simplifies its programming. Furthermore, the a priori and a posteriori statistics are stored in the TAPP I representation thus greatly reducing the updating problems. Both the input (a priori) and output (a posteriori) statistics are stored in the same format (a normal matrix for the fit world and a covariance matrix for the real world), which permits a relaitvely simple sequen:ing and further sim:lifies updating.

2.1 NOTA"ION FOR A REGRESSION

Le: z^{r} represent a random vector with a sample vector space V^{r} of dimension n_{r} : which $1 s$ being used as a set of measurements ior re. gressing to a random vector x° whith had a previously estimated valui.

[^1]μx^{0}. The random vector x° may be interpreted as the parameter set of TAPP I. The error $2: 1 \mathbf{x}^{\circ}$ previous to the regression is given by
\[

$$
\begin{equation*}
\delta x^{0}=x^{0}-\mu x^{0} \tag{2-1}
\end{equation*}
$$

\]

Let μz^{r} be the vaiue that z^{r} would have for $x^{0}=\mu x^{0}$ if no measurement errors were present. The residual of the measurement, defined by

$$
\begin{equation*}
\delta z^{r}=z^{r}-\mu z^{r} \tag{2.2}
\end{equation*}
$$

is assumed to be related to x^{0} by the regression equation

$$
\begin{equation*}
\delta z^{r}=A_{0}^{r} \delta x^{0}+\delta m^{r} \tag{2}
\end{equation*}
$$

where A_{0}^{r} is a $n_{r} x n_{0}$ matrix and where δm^{r} is the measurement error. After the regression, a new estimate $\mu^{\prime} x^{\circ}$ is formed by the relation

$$
\begin{equation*}
\mu^{\prime} x^{0}=\mu x^{0}+\mu^{\prime} \delta x^{0} \tag{2-4}
\end{equation*}
$$

where $\mu^{\prime} \delta x^{\circ}$ is the new estimate of the error in x° (obviously the old estimate of the error is zero). The new error in x° is given by

$$
\begin{equation*}
\delta^{\prime} x^{0}=x^{0}-\mu^{\prime} x^{0}=\delta x^{\circ}-\mu^{\prime} \delta x^{\circ} \tag{2-5}
\end{equation*}
$$

2.2 THE FIT WORLD

In this section, $\mu^{\prime} \delta x^{\circ}$ is a linear, minmum-variance estimator of δx° based on a set of second-moment statistical assumptions about x° and $\delta \mathrm{m}^{r}$. These statistical assumptions are called the fit world (FW), and are described below.

In the fit world, δx° has zero mean and x° is constrained with probability one to a submanifold of v^{0}. Thus the statistics of x° must be specified for a parametization of this submanafold defined by the n_{2} independent constraints

$$
\begin{equation*}
f^{2}\left(x^{0}\right)=r^{2}(F W P=1) \tag{2-6}
\end{equation*}
$$

where c^{2} is a nonstatistical (known) n_{2}-dimensiona: column vector, and where "FWP" means "fit world probability". To find a parametric representation of the submanifold ciefined by the constrants $(2-6)$, a $n_{1} \times n_{0}$ matrix C_{0}^{1} (where $n_{1}=n_{0}-n_{z}$) is chosen such that the n_{0} equations

$$
\begin{align*}
& x^{1}=D_{0}^{1} x^{0} \tag{2-7a}\\
& x^{2}=f^{2}\left(x^{0}\right) \tag{2-7b}
\end{align*}
$$

may be solved uniquely for x° in a sufficiently large region about μx°. Designating this solution

$$
\begin{equation*}
x^{0}=e^{0}\left(x^{1}, x^{2}\right) \tag{2-8}
\end{equation*}
$$

the parametric representation of (2-6) takes the form

$$
\begin{equation*}
=e^{0}\left(x^{1}, c^{2}\right) \quad(F W P=1) \tag{2-9}
\end{equation*}
$$

Thus according to the ilt world, ine n_{0}-dimenaional vector x^{0} may bi expressed as a function of the n; dimensionat vection x^{1}. In other words, x^{1} is the parameter set which is betag. "fitied on" and hence the components of x^{1} are the fit parametcrs of the previous terminology. The n_{2}-dimensional vector x^{2} is assimed in the fit world to have a perfectly known value. Defining

$$
\begin{align*}
& \mu x^{1}=D_{0}^{1} \mu x^{0}, \mu x^{2}=f^{2}\left(\mu x^{0}\right) \tag{2-10}\\
& \delta x^{1}=x^{1}-\mu x^{1}, \delta x^{2}=x^{2}-\mu x^{2}
\end{align*}
$$

It follows from taking variations of $(2-7)$ and $(2-8)$ about μx° that for small values of δx°

$$
\begin{align*}
& \delta x^{1}=D_{0}^{1} \delta x^{0} \\
& \delta x^{2}=D_{0}^{2} \delta x^{0} \tag{2-11b}\\
& \delta x^{0}=E_{1}^{0} \delta x^{1}+E_{2}^{0} \delta x^{2}
\end{align*}
$$

where

$$
\begin{align*}
& D_{0}^{2}=\frac{\partial i^{2}}{\partial x^{0}}\left(\mu x^{0}\right) \\
& E_{a}^{0}=\frac{\partial e^{0}}{\partial x^{a}}\left(\mu x^{1}, \mu x^{2}\right) a=1,2
\end{align*}
$$

The matrices in (2-11) and (2-12) are called the FW transformation matrices. They are seen to satisfy the dentities

$$
\begin{align*}
D_{0}^{1} E_{1}^{0}-I_{1}^{1} & D_{0}^{1} E_{2}^{0}=0_{2}^{1} \\
D_{0}^{2} E_{1}^{0}=0_{1}^{2} & D_{0}^{2} E_{2}^{0}=I_{2}^{2} \tag{2-15;,d}\\
& E_{1}^{0} D_{0}^{1}+E_{2}^{0} D_{0}^{2}=I_{0}^{0} \tag{2-15x}
\end{align*}
$$

where i_{a}^{c} represents the $n_{a} \times n_{a}$ identity matrix, and where 0_{β}^{a} represents the $n_{a} x n_{\beta}$ zeromatrix.

Since δx° has zeromean, so have δx^{1} and δx^{2}. Because of (2-6; ,

$$
\begin{equation*}
\delta x^{2}=D_{0}^{2} \delta x^{0}=0 \quad(F W P=1) \tag{2-:6}
\end{equation*}
$$

hence from (2-12)

$$
\begin{equation*}
\delta x^{0}=E_{1}^{0} \delta x^{i} \quad(F W P=1) \tag{2-17}
\end{equation*}
$$

The subspace defined $5 y(2-17)$ is called the FW space.
In the fit worlc, the normal matrix of δx^{1} is assumed to exist and is designated S_{11}. Thus the matrix pair (E_{1}^{0}, S_{11}) completely defines the FW statistics of δx°. For some purposes it is desirable to represent these statistics by a matrix pair (E_{1}^{0}, S_{00}), where S_{00} is a normal matrix in V°. This may be accomplished artificially by letting $S_{o o}$ be any matrix for which

$$
\begin{equation*}
S_{11}=E_{1}^{0} T_{S_{00}} E_{1}^{0} \tag{2-18}
\end{equation*}
$$

Such a matrix is sald to be a valid extension of $\left(E_{1}^{0}, S_{11}\right)$. By virtuce of $(2-15 a) 1$ is seen that ore such valid extension, called a canonical extension of $\left(E_{1}^{0}, S_{11}\right)$, is given by

$$
\begin{equation*}
S_{00}^{c}=D_{o}^{1} T_{S_{11}} D_{0}^{1} \tag{2-19}
\end{equation*}
$$

In the fit world, $\delta \mathrm{m}^{\mathrm{r}}$ is uncorrelated with $\delta \mathrm{x}^{1}$ and is a zero-mean random variable with normal matrix $J_{r I}$ ("W" in the old terminology). This information is avalable from TAPP I as the $n_{0} \times n_{0}$ matrix

$$
\begin{equation*}
J_{00}=A_{0}^{r} T_{r r} A_{0}^{r} \quad\left(={ }^{n} A^{T} W A "\right) \tag{array}
\end{equation*}
$$

For future reierence it is noted that on defining

$$
\begin{equation*}
A_{a}^{r}=A_{0}^{r} E_{a}^{0} \quad a=1,2 \tag{2-21}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{a \beta}=A_{a}^{r T} J_{r r} A_{\beta}^{r} \quad a=1,2 ; \beta=1,2 \tag{2-22}
\end{equation*}
$$

"The superscript " T " represents the transpose of the matrix it follows.
then

$$
\begin{equation*}
J_{a \beta}=E_{a}^{\circ} T_{J O} E_{\beta}^{\circ} \tag{2-23}
\end{equation*}
$$

Thus J_{00} is a valid extension $0 i\left(E_{1}^{0}, J_{11}\right)$. It is as,sumed that the data is not poorly conditioned for regressing to δx^{0}-thus $\left(S_{11} \div J_{11}\right)^{-1}$ exists.

2.3 THE ESTIMATOR AND THE ERROR AFTER A REGRESSION

Since the estimate $\mu \cdot x^{c}$ must possess the same constraints as tiose possessed by x° in the fit world, $2 t$ follows that $\mu^{\prime} \delta x^{\circ}$ must possess the same constraints as those of δx° in the fit world. In other words, $\mu^{\prime} \delta x^{\circ}$ must be in the FW space. Hence

$$
\begin{equation*}
\mu^{\prime} \delta x^{\circ}=E_{1}^{o} \mu^{\prime} \delta x^{1} \tag{2-24}
\end{equation*}
$$

where $\psi^{\prime} \delta x^{1}$ is the linear, minimum-variance estimator of δx^{1}. This estimator may be rapidly found by substituting the constraint (2-17) into the regression equation (2-3). Thus

$$
\begin{equation*}
\delta z^{r}=A_{1}^{r} \delta x^{1}+\delta m^{r} \quad(F W P=1) \tag{2-25}
\end{equation*}
$$

where, by the definition (2-21), $A_{1}^{r}=A_{o}^{r} E_{1}^{0}$. Thus

$$
\begin{equation*}
\mu^{\prime} \delta x^{1}=\left(S_{11}-A_{1}^{r T_{J}} A_{1}^{r}\right)^{-1} A_{1}^{r T_{J}}{ }_{r r} \delta z^{r} \tag{2-26}
\end{equation*}
$$

Recalling the definition (2-22), $J_{11}=A_{1}^{r} T_{J_{r r}} A_{1}^{r}$, and defining

$$
\begin{align*}
& S_{11}=S_{11}+J_{11} \tag{2-27}\\
& n^{11}=\left(S_{11}\right)^{-1} \tag{2-28}
\end{align*}
$$

it follows that (2.26) may be written in the form

$$
\begin{equation*}
\mu^{\prime} \delta x^{1}=' \Lambda^{11} A_{i}^{r} T_{J_{r r}} \delta z^{r} \tag{2-29}
\end{equation*}
$$

In order to find $\mu^{\prime} 5 x^{\circ},(2-29)$ is substituted into $(2-24)$. Thus

$$
\mu^{\prime} \delta x^{0}=E_{i}^{0} \cdot \Lambda^{11}\left(A_{0}^{r} E_{i}^{0}\right)^{T} J_{r r} \delta z^{r}
$$

or

$$
\begin{equation*}
\mu^{\prime} \delta x^{0}=\Lambda^{00} A_{o}^{r T} T_{r r} \delta z^{r} \tag{2-30}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda^{\circ O}=E_{1}^{0} \cdot \Lambda^{11} E_{1}^{O T} \tag{2-31}
\end{equation*}
$$

The matrices ' S_{11} ' ' $\Lambda{ }^{11}$, and ' Λ^{00} have important $F W$ statistical inter pretations. From the theory of minimum-variance estimators, it follows that ${ }^{\prime} S_{11}$ is the FW normal mairix of the error

$$
\begin{equation*}
\delta^{\prime} x^{1}=x^{1}-\mu^{\prime} x^{1}=\delta x^{2}-\mu^{\prime} \delta x^{1} \tag{2-32}
\end{equation*}
$$

in x^{1} after the regression. Hence $\cdot \Lambda^{11}$ is the $F W$ covariance marrix oi $5^{\prime} x^{1}$. By $(2-5),(2-17)$, and $(2-24)$ it follows that the error $\delta^{\prime} x^{\circ}$ in x° after the regression is given by

$$
\delta^{\prime} x^{0}=E_{1}^{0}\left(\delta x^{1}-\mu^{\prime} \delta x^{1}\right)=E_{1}^{0} \delta^{\prime} x^{1}
$$

Hence ' Λ^{00} 1s the FW covariance matrix of $\delta^{\prime} x^{\circ}$. Because of the FW constraints, the FW normal matrix of δx° does not exist. However, on defining

$$
\begin{equation*}
S_{00}=S_{00}+J_{00} \tag{2-34}
\end{equation*}
$$

where S_{00} is any matrix catisfying $(2-18)$, then it follows from $(2-23 ;$ and $(2-27)$ that

$$
\begin{equation*}
S_{11}=E_{1}^{0} T_{O O} E_{1}^{0} \tag{2-35}
\end{equation*}
$$

In other words, if S_{00} is a valid extension oi $\left(E_{1}^{o}, S_{11}\right)$, then S_{00} is it valid extension of $\left(E_{1}^{\prime}\right.$ ' ' $\left.S_{11}\right)$. The use of (2-34) and (2-35) instead of (2-27) in the present TAPP ill program offers a number of advantages. Since Joo is available from TAPIP, it does not have to be "collapseci" by $(2-22)$. Furthermore, if S_{00} must be updated to the time of J_{00}, then this may be accomplishec by the propagation matrix avalable from TAPF whereas an updating of S_{11} would require a transformation of the upd.ing matiax.

The new error $\delta^{\prime} x^{\circ}$ may be expressed as a linear combination of the old crror δx° and the measurement error δm^{r}. Substituting (2-3) into (2-30) yields

$$
\mu^{\prime} \delta x^{\circ}=A^{00}\left(A_{0}^{r} T_{J} A_{r} A_{0}^{r} \delta x^{0}+A_{0}^{r T} J_{r r} \delta m^{r}\right) \quad(2 . .30 ;
$$

Substituting (2-36) into (2-5) and dofining

$$
\ell_{0}^{0}=1_{0}^{0}-1,1^{00} J 00
$$

and

$$
\begin{equation*}
\delta m_{0}^{T}=A_{0}^{r} T_{J r} \delta m^{r} \tag{2-36}
\end{equation*}
$$

yiclds

$$
\begin{equation*}
\delta^{1} x^{0}-\ell_{0}^{0} \delta x^{0}-\Lambda^{00} \delta m_{0}^{T} \tag{2-59}
\end{equation*}
$$

2.4 THE REAL WORLD

It is of interest to note that so far no assumptions have been made concerming the "actual" statistics of δx° and δm^{r}. These statistical assumptions are referred to as the real world (RW) and are described below. Once the real world $1 s$ defined, the statistics of the error $\delta^{\prime} x^{\circ}$ after the regression is determined by (2-39).

In the real world it is assumed that δx° is a zero mean random variable with covariance matrix $\pi^{\circ 0}$. Thus the possioility that $\delta x^{\circ}{ }_{1 s}$ constrained to a subspace of V° is unimportant, since it merely means that π^{00} is singular. Intially, however, the statistics of δx° may be given in the form of a covariance matrix of some parametization of the space to which δx° is constrained in the real world. Thus by analogy with the fit world, it is assumed that there is dvalable a set of RW transforma tion matrices $D_{0}^{3}, D_{0}^{4}, E_{3}^{0}, E_{4}^{0}$ such that the equations

$$
\begin{align*}
& \delta x^{3}=D_{0}^{3} \delta x^{0} \tag{2-40a}\\
& \delta x^{4}=D_{0}^{4} \delta x^{0}
\end{align*}
$$

have the inverse

$$
\begin{equation*}
\delta x^{0}=E_{3}^{0} \delta x^{3}+E_{4}^{0} \delta x^{4} \tag{2-41}
\end{equation*}
$$

where, letting "RWP" mean "real world probability",

$$
\begin{equation*}
\delta x^{4}=D_{0}^{4} \delta x^{0}=0 \quad(R W P=1) \tag{array}
\end{equation*}
$$

or

$$
\begin{equation*}
\delta x^{0}=E_{3}^{0} \delta x^{3} \quad(R W P=1) \tag{2-43}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\pi^{00}=\mathbb{E}_{3}^{0} \pi^{33} \mathbb{E}_{3}^{0 T} \tag{2-44}
\end{equation*}
$$

where π^{33} is the $R W$ covariance matrix of δx^{3}.
In the real world, $\delta \mathrm{m}^{r}$ is uncorrelated with δx^{3} and is a zero-mean random variable with covariance matrix $\Sigma^{r r}$ (called " M " in the old terminology). This information is available from TAPP I as the $n_{0} x n_{0}$ matrix

$$
\begin{equation*}
\tilde{J}_{00}=A_{0}^{r T} J_{r r} \Sigma^{r r} J_{r r} A_{0}^{r}\left(=" A^{T} W M W A "\right) \tag{2-45}
\end{equation*}
$$

Note that this "normal-type" matrix is merely the RW covariance matrix of the random variable $\delta \mathrm{m}_{0}{ }^{T}$ defined by $(2-38)$. The FW covariance matrix of $\delta \mathrm{m}_{0} \mathrm{~T}$ is J_{00}. In this sense, therefore, \tilde{J}_{00} is the $R W$ analog of J_{00}. In both the real and the fit world $\delta \mathrm{m}_{0}^{\mathrm{T}}$ is correlated with $\delta \mathrm{x}^{\circ}$.

From the RW statistics of δx° and δm_{0}^{T}, it is casy to determine the RW statistics of δx° from (2-39). Thus, since δx° and δm_{0}^{T} are uncorrelated and have RW covariance matrices π^{00} and \tilde{J}_{00}, respectively, it follows that the RW covariance matrix of $\delta^{\prime} x^{\circ}$ is given by

$$
\begin{equation*}
\pi^{\infty 0}=\ell_{0}^{0} \pi^{00} l_{0}^{0 T}+\Lambda^{00} \tilde{J}_{00}^{1} \Lambda^{00} \tag{2-46}
\end{equation*}
$$

2.5 THE REGRESSION ALGORITHM

The results of this section that are applicable to the programming of TAPP III are presented in the form of a set of computations-called The Regression Algorithm -which may be considered as a basic subroutine of TAPP ILI.

2.5.1 Inputs to the Algorithm

Fit World (FW) Inputs
a) $E_{i}^{0}\left(n_{0} x n_{1}\right.$ matrix): The FW Constraint Matrix**

This matrix represents the partials of the TAPP I parameters with respect to the fit parameters (taking into account the constraints assumed by the fit world).
b) $S_{00}\left(n_{0} x n_{0}\right.$ matrix): An Extended FW A Priori Normal Matrix

If S_{11} represents the a priori normal matrix of the fit parameters, then S_{00} may be any matrix such that $S_{11}=E_{1}^{O T} S_{00} E_{1}^{O}$.
c) $J_{o o}\left(n_{0} x n_{0}\right.$ matrix): The "A A^{T} " Matrix

Real World (RW) Inputs

d) $X_{00}\left(n_{0} x n_{0}\right.$ matrix): The RW A Priori Covariance Matrix

This matrix represents the "true" a priori covariance matrix of the parameters of TAPP I.
e) $\tilde{J}_{00}\left(n_{0} x n_{0}\right.$ matrix $)$: The "A ${ }^{T}$ WMWA" Matrix

2.5.2 Outputs of the Algorithm

a) An extended FW a posteriori normal matrix:

$$
S_{00}=S_{00}+J_{00}
$$

b) The FW a posteriori normal matrix of the fit parameters:

$$
S_{11}=E_{1}^{0} T_{1} S_{00} E_{1}^{0}
$$

c) The FW a posteriori covariance matrix of the fit parameters:

$$
\Lambda^{11}=\left(S_{11}\right)^{-1}
$$

[^2]d) The FW a posteriori covariance matrix of the TAPP I parameters:
$$
\Lambda^{\infty O}=E_{1}^{0} \Lambda^{11} E_{1}^{0 T}
$$
e) Partials of a posteriori errors in TAPP I parameters with respect to a priori errors in TAPP I parameters:
$$
L_{0}^{0}=I_{0}^{0}-\Lambda^{00} J_{00}
$$
f) RW a posteriori covariance matrix of TAPP I parameters:
$$
\cdot \Pi^{00}=L_{0}^{0} \pi^{00} L_{0}^{0}+\Lambda^{00} \tilde{J}_{00}^{1} \Lambda^{00}
$$

3. THE MATRIX TRANSFORMATION TECIINIQUES OF TAPP III

In TAPP III, a wide varirty of matrix manipulations is required. TAPP III must be able to permute, constrain, transform to different epochs, and partition the rows and columns of a number of different matrices. Furthermore, to fulfill its assigned tasks, thesc manipulations cannot be fixed, or determined by a few option flags. Indeed, it was found necessary to design a matrix language that would allow the uscr of the program to command, in any desired order, a number of different matrices, the rows and columns of which may relate to a large number of different parameter sets.

The possible output options are determined by the Coding Control Taties, which are "built into" the program as constants. The program is so general that the output options and the methods of coding them may be changed by appropriately modifyiag these tables. However, it would not be advisable to do this until an intimate knowledge of the program is attained.

3.1 THE MATRIX FORMAT TABLE (T3)

In TAPP III it is necessary to deal with many different types of matrices. Because of storage limitations, some matrices must "share" locations with a symbolic designation σ of each matrix a set of values that completely defines the representation of the matrix in the computer. This is accomplished by the table lookup operation,

$$
\left(F, \ddots_{t} ; \Delta_{1}, \Delta_{2}\right)=T 3(\sigma) .
$$

which looks up the symbolic contents a σ in the first column of $T 3$ and store: the contents of the asso fated entrin: of the table in $F, \ell_{t}, \Delta_{1}, \Delta_{2}$. The sigrificance of the contents of these iocitions is is follows:
i: The storage format of the matrix
\therefore : The location of the matrix
Δ_{1} : The number of rows of the matrix
Δ_{2} : The number of columns of the inatrix
The matrix defined by this table lookup operation is designated [0].

The storage format, F, of a matrix determines the method by which each entry of the mátrix is stored in the program. There are five types of matrix storage formats used in TAPP III:
$F=$ NS: The Matrix is Not Stored.
$F=R R:$ Rectangular by Rows. Let [σ] represent the matrix.labled by the symbolic contents of σ. The value of the a.th row, b-th column of σ is given by

$$
[\sigma ; a, b]=\operatorname{Con}\left[l_{t}-1+\Delta_{2}(a-1)+b\right]\left\{\begin{array}{l}
0<a \leq \Delta_{1} \tag{3..1}\\
0<b \leq \Delta_{2}
\end{array}\right.
$$

where "Con" means "contents of."
$F=T R$: Triangular by Rows. This format is used to store symmetric matrices (hence $\Delta_{1}=\Delta_{2}$). For this format:

$$
\begin{gather*}
{[\sigma ; a, b]=\operatorname{con}\left[\ell_{t}-1+\frac{\left(2 \Delta_{2}+2-a\right)(a-1)}{2}+b\right]} \\
\\
0<a \leq b \leq \Delta_{1}
\end{gather*}
$$

$F=$ IP: Indirect Permutation Matrix. This format is used to represt:nt a $n_{0} \times n_{0}$ permutation matrix by storing only the coordinates of its non-diagona!, non-zero entries. Since the entries are one, their values need not be stored. In physical format, an IP is merely a list of words of the form (a, b), indicatirg that there 18 a " 1 " in the $a-t h$ row, $b-t h$ column of [0]. Let u and v be two n_{0}-dimensional column vectors such that

$$
\begin{equation*}
u=[0] v . \tag{3.3}
\end{equation*}
$$

then the presence of a word (a, b) in the list represents the statement

$$
\begin{equation*}
" u(a)=v(b) " \tag{3-4}
\end{equation*}
$$

If any component $u\left(a^{\prime}\right)$ is not mentioned in the class of all such statements implied by the list, then $u\left(a^{\prime}\right)=v\left(a^{\prime}\right)$.
$F=1 K$: Indirect Constraint Matrix. This format is used to represent a $n_{0} \times n_{\delta}$ constraint matrix by storing only the coordinates and values of its non-diagonal, non-zero entries. In physical format, an IK is a list of word pairs of the form $(a, b), e$, where a and b are integers and e is a floating point number. The classes a and b of all a - and b-values, respectively, must have no values in common. If. [0] is operating on a n_{σ}-dimensional column vector v, then $[\sigma]$ is represented as a set of mutually commuting transformations. Each word pair (a, b), e induces the transformation

$$
\begin{align*}
& v(i) \longleftarrow v(i) \text { for } i \neq a \tag{3-5}\\
& v(a) \longleftarrow v(a)-e v(b)
\end{align*}
$$

In other words, e times the b-th component of v is subtracted from the a-th component of v. Thus, interpreting a word pair as representing the statement

$$
\begin{equation*}
" \frac{\partial v(a)}{\partial v(b)}=e^{"} \tag{3-6}
\end{equation*}
$$

an. IK matrix subtracts all non-zero constraints implied by the list of word pairs from the matrix v.

3.2 THE REPRESENTATION OPTIONS

A representation is a set of n parameters that completely describes the physical system assumed by TAPP 1. The representation options available are

[^3]indexed by the coments of the two locations T, x. Einch available representation $x^{\boldsymbol{T}, X}$ may be written in the form
\[

x^{\tau, x}=\left[$$
\begin{array}{l}
p^{\tau} \tag{3-7}\\
q^{x}
\end{array}
$$\right]
\]

 $\left(n_{\bar{o}}-n_{p}=n_{q}\right.$ dimensional), For its internal computations, TAPP III represents its statistical matrices in the standard representation \times (sometimea called the program representation), which is also a representation option defined by the option indices $\boldsymbol{T}=0, x=1$. Notations applicable to x are:

$$
x=x^{0,1}=\left[\begin{array}{l}
p^{0} \tag{3-8}\\
q^{1}
\end{array}\right] \equiv\left[\begin{array}{l}
i^{2} \\
q_{1}
\end{array}\right]
$$

TAPP Ill must be able to express normal and covariance matrices in arbitrary representations. It must also be able to find the partials matrix connect ing any pair of representations. To accomplish this, the program computes a transformation matrix $\langle\mu, T, x\rangle$ defined by

$$
\langle\mu, T, x|=\left\{\begin{array}{ll}
\partial x^{T, x j} \partial x & \text { if } \mu=0 \tag{3-9}\\
{\left[\partial x / \partial x^{T}, x\right.}
\end{array}\right]^{T} \quad \text { if } \mu=1
$$

and stored in the utility matrix X_{σ} called the transformation accumulator. Thus the index μ, called the parity flag of the iransformation matrix, cietermines whether of not partials are to be inverse-transposed (i. c., adjointed). In order to compute the iransformation matrix, the partials $\partial x^{T}, X / \partial x$ must be expressed as a product (or chain) of primative matrices (called links), such that cach link may be adjointed without the usc of a perberal inversion routine.

[^4]The first step in such a decomposition is to note that

$$
\begin{equation*}
\frac{\partial x^{\top, x}}{\partial x}=\frac{\partial x^{\top, x}}{\partial x^{\top, 1}} \cdot \frac{\partial x^{\tau, 1}}{\partial x} \tag{3-10}
\end{equation*}
$$

- The function of the Orbit Sot Options Tiable (sce Table B32) is to locate for the program the matrix that determines $\partial x^{T, 1} / \lambda x$. The function of the System Set Options Table (sce Table B3) is to locate the links of $\partial x^{\top, X} / \partial x^{\top, 1}$. To see how this is done, it is necessary to describe the functional relationships that are assumed to exist between the representations x^{\top}, x.

3.2.1 The Orbit Link

It is assumed that for each T, p^{\top} is a function of the standard representation, i.e..

$$
\begin{equation*}
p^{\top}=p^{\top}(x)=p^{\top}(p, q) \tag{3-11}
\end{equation*}
$$

and may be broken up in the form

$$
p^{T}=\left[\begin{array}{c}
r^{T} \tag{3-12}\\
V^{T}
\end{array}\right]
$$

where r^{\top} and v^{\top} are $n_{p} / 2$ dimensional vectors representing generalized position and momentum variables of classical mechanses. It follows from the well-known Poisson-Bracket relations between p^{\top} and p that

$$
\left(\frac{\partial p^{\top}}{\partial p}\right)^{*}=\Gamma \frac{\partial p^{\top}}{\partial p} \Gamma^{T} \cdot \Gamma=\left[\begin{array}{rr}
0 & 1 \tag{3-13}\\
-1 & 0
\end{array}\right]
$$

where (*) represents the adjoint operation and where 0 and 1 are $n_{p} / 2 \times n_{p} / 2$ zero and identity matrices (in this formula only). From equations (3-7), (3-8). and (3-11) it follows that $\lambda x^{T}, 1 / \partial x$, called the orbit link, is given by

$$
\begin{equation*}
\frac{\partial x^{T, 1}}{\partial x}=\left[\frac{\partial p^{T} / \partial x}{\partial q / \partial x}\right]=\left[\frac{\partial p^{T} / \partial p}{\sigma_{q p}} \frac{1}{1} \frac{\partial p^{T}}{T} \frac{1 \partial q}{q q}\right] \tag{3-14}
\end{equation*}
$$

where $O_{q p}$ is the $\left(n_{\delta}-n_{p}\right) \times n_{p}$ zero matrix and $I_{q q}$ in the $\left(n_{\sigma}-n_{p}\right) \times\left(n_{\sigma}-n_{p}\right)$ identity. From (3-13) the adjoint of the orbit link is given by

$$
\frac{\partial x^{T, 1}}{\partial x} *\left[\begin{array}{c:c}
\left(\frac{\partial p^{T}}{\partial p}\right)^{*} & 0_{\mathrm{pq}} \tag{3-15}\\
\hdashline-\left(\frac{\partial p^{q}}{\partial q}\right)^{T}\left(\frac{\partial p^{T}}{\partial p}\right)^{*} & 1_{q q}
\end{array}\right]
$$

3.2.2 The Orbit Set Options Table (TO)

From equations $(3-14)$ and $(3-15)$ it is seen that the matrices $\partial p^{\top} / \partial x$ uniquely determine the orbit links and their adjoints. These $n_{p} \times n_{0}$ matrices are stored in the computer in certain locations, which are, for some orbit set options (namely $T=4$ and $T=5$) row-partitionings of larger matrices of for mat RR. The function of the Orbit Set Options Table (see Table B2) is to associate with each orbit set index a set of values that determines the location of the associated orbit set partials $\partial p^{\top} / \partial x$. This is accomplished by the table lookup operation

$$
"\left(\mathcal{L}_{t}, \xi\right)=T O(T) "
$$

from which the location of $\partial p^{T} / \partial x$ is determined by

$$
\begin{equation*}
\operatorname{Loc}\left(\partial p{ }^{T} / \partial x\right)=A_{t}^{t}+\xi n_{p}^{n} \tag{3-16}
\end{equation*}
$$

From Table $B 2$ it is seen that there are two types of orbit set options. Those representing orbit parameters at various times ($T=0,1,2,3$) will always be valid and cannot be altered or added-to without modifying the overall sequencing. However, those options representing the second and third set of six miss
parameters $(9=4,5)$ are valid only for the present set of miss parameters assumed by TAPPI. The first set of six miss parameters is not an orbit set option since its partials do not satisfy (3-13).

3.2.3 The System Links

The system sets are supposed to represent physical constants and biases, hence they must be functionally independent of the standard orbit set p. Thus for all

$$
\begin{equation*}
q^{x}=q^{x}(x)=q^{x}(q) \tag{3-17}
\end{equation*}
$$

On recalling ($3-7$) and ($3-8$), it follows that

$$
\frac{\partial x^{\tau, x}}{\partial x^{T, 1}}=\left[\begin{array}{ll}
I_{p p} & o_{p q} \tag{3-18}\\
O_{q p} & \frac{\partial q^{x}}{\partial q}
\end{array}\right]
$$

This matrix, called the system chain of x, is independent of T, but must be factored into a product of analytically adjointable links before it can be produced by the program. Accordingly, it is assumed that to each system index x, except $x=1$, there is assigned a unique system index x^{\prime} (called the predecessor of $x)$, such that $x=x^{\prime}$ and

$$
\begin{equation*}
q^{x}=f^{x}\left(q^{x^{\prime}}\right) \tag{3-19}
\end{equation*}
$$

where f^{X} is either a permutation function (meaning that q^{X} is a reordering of the components of $q^{x^{\prime}}$) or a constraint function (meaning that f^{X} subtracts iunctions of one subset of the components of $q^{x^{\prime}}$ from another disjoint subset of its components). From (3-19)

$$
\frac{\partial x^{\varphi, x}}{\partial x^{\top, x^{\top}}}=\left[\begin{array}{ll}
1_{p p} & o_{p q} \tag{3-20}\\
O_{q p} & \frac{\partial q^{x}}{\partial x^{\top}}
\end{array}\right]
$$

Such matrices, called system links, are independent of T and are either per-. mutation or constraint matrices - both of which are very easy to adjoint, as is shown below.

Let P be an arbitrary permutation matrix. Then for arbitrary ${ }^{(n, 1)} \times 1$ matrices u, v

$$
\left(P_{u}\right)^{T}\left(P_{v}\right)=u^{T} v
$$

since both sides of this equation sepresent sums of the same product in a different order. Hence

$$
u^{T}\left(P^{T} P\right) v=u^{T} v
$$

for all u, v. It follows that $P^{T} P=1$. In other words

$$
\begin{equation*}
P *=\left(P^{-1}\right)^{T}=P \tag{3-21}
\end{equation*}
$$

Therefore, permutation matrices arc self-adjoint.
By definition, an arbitrary constraint matrix K may be written in the form

$$
\begin{equation*}
K=I-E \tag{3-22}
\end{equation*}
$$

where F is a matrix having the property that the class of all integers labeing the rows of E that possess non-zero entries has no member in common wath the class of all integers labelme the columns of E that possess non-zero inseares. Therciore E is nilpotent $\left(E^{2}: 0\right)$. Thus

$$
(I+E)(I-E)=1-E^{2}=I
$$

whence it follows from (3-22) that

$$
\begin{equation*}
K *=I+E \tag{3-23}
\end{equation*}
$$

3.2.4 The System-Set Options Table (T2)

The system chain of x is formed from system links by chain-ruling down to $x=1$ in the fashion:

$$
\begin{equation*}
\frac{\partial x^{\top, x}}{\partial x^{T, T}}=\frac{\partial x^{\uparrow, x}}{\partial x^{T, x^{\top}}} \cdot \frac{\partial x^{\top, x^{\ddagger}}}{\partial x^{\top, x^{11}}} \cdots \underbrace{\frac{\partial x^{\top, x^{(n-1)}}}{\partial x^{\top, x^{(n)}}}}_{\substack{\text { the n-th } \\- \text { link }}} \cdots \frac{\partial x^{\uparrow, x^{(} x^{-1)}}}{\partial x^{\top, 1}} \tag{3-24}
\end{equation*}
$$

where n_{x} is called the order of x. Thus n_{x} represents the number of links, including the orbit link in the chain of the transformation $\langle\mu, T, x|$. The function of the System-Set Options Table (see Table B3) is to assign to each meaningful ordered pair (x, n) the symbolic designation σ of the n-th x-link by means of the table lookup operation

$$
" \sigma=T 2(x, n) "
$$

It then follows from Section 3.1 that the operation

$$
"\left(F, \ell_{t}: \Delta_{1}, \Delta_{2}\right)=T 3(\sigma) "
$$

completely defines the matrix σ. In other words

$$
\begin{equation*}
[\operatorname{T} 2(x, n)]=\frac{\partial x^{T, x^{(n-1)}}}{\partial x^{T, x^{(n)}}} \tag{3-25}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\frac{\partial x^{T} x}{\partial x^{T} T}=[r(x, 1)] \cdot \cdots[T 1(x, n)] \cdots\left[T 1\left(x, n_{x}-1\right)\right] \tag{3-26}
\end{equation*}
$$

From Table $B 1$ and $B 3$ it is seen that cach of the links in this chain are either indirect permutations $(F=I P)$ or indirect constraint $(F=I K)$; hence they are not stored as full-sized ($n_{\sigma} \times n_{\sigma}$) matrices. Thus the multiplications implicd by $(3-26)$ are carricd out indirectly and from right to left. These multiplications are represented in the program as operations performed on the columns of the transformation accumulator X_{σ}. Furthermore, whether the links are used or the adjoints of the links are used is automatically determined by the value of the parity index μ. This is made possible by the order preserving property of the adjointing operation, together with the simple adjointing algorithms implied by equations (3-21) and (3-23).

3. 3 THE SET-PARTITION OPTIONS TABLE (TI)

Thus far, a technique for obtaining a transformation matrix $\langle\mu, \tau, x|$ defined by equation (3-9) has been described. By use of such matrices in conjunction with the matrix options (see Table B3), it would be possible to find covariance matrices and normal matrices relative to any representation $x^{\boldsymbol{\top}}$, It would also be possible to find partials relating any pair of representations. As powerful as this tool is, it is inadequate from several viewpoints. Printing out a ($n{ }_{\sigma} \times n_{\gamma}$) matrix where n_{δ} may be as large as 50 would be rather awkward, if one is interested in only a small partition of this matrix. Also TAPP II requires partitionings of its matrices on the T_{32} tape. Finally, the transformation accumulator is inherently incapable of describing the partials of arbitrary miss parameters with respect to the standard representation (and this must be done if covariance matrices of such parameters are to be iound).

To alleviate these difficulties the partials matrix $\langle\mu, r, \rho\rangle$ is introduced. As its notation implies, this matrix, which is stored in the partials accumulator. X, is a function of the contents of the threc locations μ, T, p. As before (see Section 3.2.2):
u is the parity flag

- is the orbit-set option
The index ρ, called the set-partition option, serves as an input to the table lookup operation

$$
\begin{equation*}
"(x, n: 1, n)=T!(\rho) " \tag{3-27}
\end{equation*}
$$

 are used to donermime $\langle\mu, T, \rho|$ in a mamer described below.

Fo cacl: pais of intrgers (t, in) satitafying the inequalitires

$$
0 \leq t \leq i \leq n
$$

 with compunents

$$
\left(\phi_{i}^{t} v\right)(: \quad v(;+t), 0<i \leq h-t
$$

 cise fum, :

If $x \neq 0, p$ is called a system-partition option. Such an option designates both the desired system q^{x} and a partitioning of the representation

$$
x^{q, x}=\left[\begin{array}{l}
P^{T} \\
q^{x}
\end{array}\right]
$$

It is of interest to note that for $\mu=0$:

$$
\begin{equation*}
(0, \tau, \rho)=\frac{\partial\left(\Phi_{h}^{t} x^{\top, x}\right)}{\partial x} \tag{3-31}
\end{equation*}
$$

However, " $\left(1, T, \rho \mid=\left[\partial x / \partial \phi_{h}^{t} x^{T, x}\right)\right]^{T} "$ is not true unless $t=0, h=n_{0}$. This is because the parameter set $\phi_{h}^{t} x^{\boldsymbol{T}, \vec{X}}$ does not determine the representation $x{ }^{\boldsymbol{T}, x}$. If $x \neq 0, n$ is not needed to define the partials matrix; and therefore communicates to the program the number of links in the chain of partials defining the transformation matrix.

If. $X=0, \rho$ is called an isolated set option. An isolated set may be interpreted as a partitioning of an available set - that is, parameter sets whose partials with respect to the standard representation are stored in TAPP III. Notice that the partials matrix for isolated set options is independent of μ and r. However, since no machinery is available for adjointing the particles matrix of an available set, it is appropriate tc set $\mu=.0$ for this case. Let α_{n} designate the available set whose partials are stored at the location n. Then from (3-30) it follows that

$$
\begin{equation*}
(0,-, p)=\frac{\partial\left(\phi_{h}^{t} \alpha_{n}\right)}{\partial x} \tag{3-32}
\end{equation*}
$$

where the blank is used to indicate that the orbit set index is not used. Comparing equations (3-31) and (3-32) shows that system-partition and isolated set options may be treated on the same footing for $\mu=0$ - the only difference being that system-partition options require an additional index to define them.

.. 1 ac: : !

$$
u_{i}, \mu_{1}\left(\sigma_{1,} \|_{2}, u_{2},\left.N_{n}\right|^{\prime}\right.
$$

$$
\begin{equation*}
1---\left.\right|^{T}=1---1 . \tag{3-34}
\end{equation*}
$$

and omitting the brackets about σ_{0} in (3-33), an output entity may be designat. ed more economically in the form

$$
\begin{equation*}
7=\left(\mu_{1}, \tau_{1}, \rho_{1}\left|\sigma_{0}\right| \mu_{2}, r_{2}, \rho_{2}\right) \tag{3-35}
\end{equation*}
$$

The parity iags μ_{1} and μ_{2} cannot be chosen arbitrarily but depend upon the matrix option σ_{0} if Z is to have physical meaning, If (3-35) is valid, then it is gaid that σ_{0} has parity $\left(\mu_{1}, \mu_{2}\right)$.

3.4.1 The Coding of Covariance Matrices

A covariance matrix has parity $(0,0)$. Thus any values of r_{1}, r_{2} in the Orbit-Set Options Table and any values of ρ_{1}, ρ_{2} in the Set-Partition Options Table may be chosen. It le woll io keep in mind, however, that isolitert set options reguire less machinc time than do system-partition options (since the former mercly sets the formst of the partials Accumulator X, which is a dumny matrix). For example, although the partiais

$$
\begin{aligned}
& (0,1, p) \\
& (0,1,0 p) \\
& (0,1, f p) \\
& (0,1,0 p) \\
& (0,-1, k)
\end{aligned}
$$

are dil bemacni, the latat one should be chogeni.
3. 4. $:$ The Goding of Normat hatrars

 $r_{1}=r_{2}$ and $x_{1}=x_{2}$ (where, of course, x_{1} and x_{2} refer the the yothes whtame: for x, when p_{i} and p_{2}, reapectively, are abbstituted into(3-37) For this choice the ontphe entily takes the form

$$
\begin{equation*}
Z=\phi_{h_{1}}^{1}\langle 1, T, x| \sigma_{o}|1, T, x\rangle\left(\phi_{h_{2}}^{t}\right)^{T} \tag{3-36}
\end{equation*}
$$

and thus represents a partitioning of the rows and columns of the normal matrix referred to the representation $x^{\boldsymbol{T}, X}$. Excellent examples of output entities of this type are provided by RŌC for $\omega=4,5$, and 6 . One subtility must be mentioned here: the extended normal matrices S. and S^{\prime} (see Section 2) are valid only for $T=f p$ and $T=f 1$. The reason for this is that they were originally only defined for the parameters being fitted and were artificially extended into the standard representation

3.4.3 The Coding of Partials

The matrix option $\sigma_{0} \equiv 1$ has two valid parities, namely $(0,1)$ and $(1,0)$. It is easy to show, however, that

$$
\begin{equation*}
\left(0, \tau_{1}, \rho_{1}|1| 1, \tau_{2}, \rho_{2}\right)=\left(1, \tau_{2}, \rho_{2}|1| 0, \tau_{1}, \rho_{1}\right)^{T} \tag{3-37}
\end{equation*}
$$

The use of the identity matrix option inables one to find partials of the form

$$
\begin{equation*}
\left[\frac{\partial\left(\phi_{h_{1}}^{t_{1}} x^{T} 1^{\prime} x_{1}\right.}{\partial x^{T}, x_{2}}\right]\left(\phi_{h_{2}}^{t_{2}}\right)^{T} \tag{3-38}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\frac{\partial\left(\phi_{h_{1}^{\prime}}^{t_{1}} x_{n}\right)}{\partial x^{T_{2} x_{2}}}\right]\left(\phi_{h_{2}}^{t_{2}}\right)^{T} \tag{3-39}
\end{equation*}
$$

and, by the use of (3-37), their transposes.

4. A GENERA OESC:ATION OF TAPP HI

 possible, the operation of tim exberolimes and the overall logic fow of the program. A completi functjonal description of the program from the engineering viewprint is an ven an tho tables and flow diagrams of the appendixes. Therefore, this section, in conjurction with the matrixmanipulation fechriques and theory discussud in section 2 , serves as a guide to understanding the program, efmed in the appendixes. In order for this section to serve as a reference to the program, it is made as independent as possible from the rest of the report.

4. 1 THE INPUT TAPE FORMAT

In ordar for TAPPIto produce the input tape T_{13}, TAPPI is qiven a list of mput thmes, \bar{t}_{1}, \bar{T}_{2}. . . , \bar{t}_{n} (in ascending orderi and atedje

 manematatina the E_{1}; tape stored in the following furmat:

Mmitas jubumation

IDEN
$B\left(n_{m} \times n_{0}\right)$ matrix

Idmetfication of tape
The purtials of the misis parameters with respoct to the TAPP 1 parameters at injection

The k-th Record (The informationassociated with the tume anteval $\left(t_{k-1}, I_{k}\right), k=1,2, \cdots, H_{T}$ is stored in the following format:
j Epoch thme index(By dofimionj aither remains the same for erch succescive time intorval or, if it changes it changes to k-1.)
b
The current sime index

INFO
$U\left(n_{p} x n_{o}\right.$ matrix $)$

Tha: data block is reserved to supply any desirud information associated with time t_{k} for example. t_{k} itself, orbst paranmeter etc.)

The parijals of the time-varying parameters at t_{k} with respect to the TAPP I parameters at i_{j}
(For the $5-t h$ Station:)

```
s
\DeltaJ
\Delta\tilde{I}
The station number
The A TWA matrix fir the s-th station during the time interval \(i_{k-1}, t_{k}\) ) referred to the epoch \(t_{j}\)
Tise A TWMWA matrix for the \(s-t h\) station dirring the time interval ( \(t_{k-1} \quad t_{k}\) ) "eferred to the epoch tj
```

The end of this block is termmated by a zero value for s. The stations need not be in numerical order.

4.2 THE SUBROUTINES OF TAPP II

TAPP IIl keeps track of the following quantities:

Sequencing Controls

i^{*}
$I:$
$\vdots:$
$e^{:}$
J_{T}

Number of next print output block
Index of next print output time
Number of next recycle time
Index of next recycle time
Epoch index of the next T_{13} record i.c.. $k \div 1$ st record)

Output Block Identification
j
ℓ
k
INFO

Program epoch
Index of last recycle cime ${ }^{1}$
Index of current time n.e., record number
ldentafication of the k-th record
ω
COM

Entity number
Entity designation (coded zequence of commands for producing the desired out put)

Stored Partials (The following matrices are partials with respect to the standard representation ${ }^{2} x$ of the indicated parametcr sets:)
(∂^{j} / \hat{x}) orbit parameters at program epoc:
(upper $n_{p} \times n_{o}^{-} \times n_{o}$ identity matrix)
(op ${ }^{*} /(x)$ orbit parameters at aurrent itirue
V
($\partial p^{\ell} / \partial x$) orbit parameters at last recycle time2
w
($\partial p^{i} / \partial x$) orbit parameters at injection
B ($\partial \mathrm{m} / \partial \mathrm{x}) \mathrm{miss}$ parameter;
1 The last recycle time is the time at the beginning of the j^{1}-th tracking interval of T_{32}. In this context. recycle times are also midcourse correction times.

2 $x=\left[\frac{p^{j}}{q}\right] \begin{aligned} & \text { where } p^{j} \text { represents the orbit parameters at the program cporh } \\ & \text { and } q \text { represents the TAPP I system of constant parametcrs. }\end{aligned}$

Tracking Accuracy (The following matrices are referred to the program epoch:)
J
The A^{T} WA matrix from l to k
\tilde{J}
The A^{T} WMWA matrix from $\ell, 10$ a

A Priori Statistics (Also referred to program epoch)
S
π

The fit world normal matrix
The real world covarjance matrix

Before discussing the overall sequencing of TAPP III, it is necessary to briefly describe the functioning of the following subroutines:

4.2.1 The Partials Accumblator Subroutine

This subroutine was discussed in detail in section 3. However, the concepts developed in that section are outlined below for easy reference.

In TAPP III there are many types of parameter sets that must be considered. Since all pertinent statistical matrices are stored relative to the standard representation x, it 4 possible to transform them to any representation a (or partition thereof), provided a subroutine is available that can generate $\partial a /^{\partial} x$ or $\left(\partial^{\partial} / \partial a\right)^{T}$ and appropriately partition its rows. This is the task assigned to the partials accumulator subroutine. Basically, this subroutine accepts as inputs the symbols μ, T, ρ to produce an output, designated by (μ, τ, ρ), at the variable location X (called the partials accumulator). For certain values of ρ (referred to as the isolated set options) μ and τ are ignored, and X is set equal to certain partitioning of the stored partials. Other values of ρ (called the system-partition options) represent both a choice of constant parameters q^{x} and partitioning of representation

$$
x^{\top, x}=\left(\frac{p^{\top}}{q^{x}}\right)
$$

where p^{\top} is the orbit parameter option labeled by the indext. In the latter casc a fixed set of locations X_{0} (called the transformation accumulator) is filled in accordance with the relation

$$
x_{0}=\left\{\begin{array}{l}
\partial x^{\top}, x^{\top} / \partial x \text { for } \mu=0 \\
\left(\partial x / \partial x^{\top}, x\right)^{\top} \text { for } \mu=1
\end{array}\right.
$$

and X is set equal to the regured partitioning of X_{0}.

4.2.2 The Executive Program (Sce Figure C2)

The Excoutive Program uses the partials accumulator to produce an output option (called an entity) at the set of locations Z from the coded command COM. This command consists of five words, which contain values of the seven variables $\sigma_{0} ; \mu_{1}, T_{1}, \rho_{1} ; \mu_{2},{ }^{T}{ }_{2}, \rho_{2}$ stored in the format

The Executive Program accepts COM as an input to produce output

$$
Z=\left(\mu_{1}, \tau_{1}, \rho_{1}\left|\left[\sigma_{0}\right]\right| \mu_{2}, \tau_{2}, \rho_{2}\right)
$$

where $\mid ..)=\left(.\left.\cdot\right|^{T}\right.$ and where $\left[\sigma_{0}\right]$ is a matrix option labeled by the index σ_{0}.
4. 2. 3 The Statistical Input Program (See Figure C3)

This program accepts the inputs
$S_{0}\left(n_{f 1} \times n_{f l}\right) \quad$ Fit world normal matrix of the fitted parameters at injection
$A_{0}\left(n_{r l} \times n_{r l}\right) \quad$ Real world covariance matrix at injection of those parameters that are nominally unconstrained in the real world

These inputs are introduced by the read-in program as the a priori inputs to TAPP III and produce the outputs

$$
\begin{aligned}
& \left.S^{\prime}=\mid 0,0, f 1\right) S_{0}(0,0, f 1 \mid \\
& \left.\Delta^{\prime}=\mid 1,0, r l\right) \Lambda_{0}(1,0, r l \mid
\end{aligned}
$$

which are transformations of the a priori statistics to the standard representation.

4. 2. 4 The Statistical Output Program (See Figure C3)

This program processes the input matrices J, \tilde{J}, S, \bar{X} and produces, with the aid of the Partials Accumulation Subroutine, the outputs

S' The fit world normal matrix at current time
$\Delta^{\prime} \quad$ The fit world covariance matrix at current time
$\overline{\mathrm{N}} \quad$ The real world covariance matrix at current time
in the following manner:

1) $S^{\prime} \longleftarrow S+J$
2) $Z \longleftarrow\left(1,0\right.$, fl $\left.\left|S^{\mathfrak{l}}\right| 1,0, f 1\right)$
$z \longleftarrow z^{-1}$ $N^{\prime} \longleftarrow \mid 1,0$, fi $) \mathrm{Z}(1,0, f 1 \mid$
3) $X_{0} \longleftarrow I-\Lambda^{\prime} J$
4) $Z \longleftarrow X_{0} \bar{\Lambda}^{t} X_{o}^{T}$ $\bar{\Omega}^{\prime} \longleftarrow Z$
5) $X_{0} \longleftarrow \Lambda^{1}$
$z \longleftarrow X_{0} J X_{0}^{T}$
$\bar{\Lambda}^{\prime} \longleftarrow \bar{\Lambda}^{\prime}+Z$

4.3 THE SEQUENCING OF OPERATIONS

TAPP III is initiated by the Read-In Program, which places the manual inputs in their allotted locations. The sequencing is initialized as follows:

$$
\begin{aligned}
& \mathrm{i}^{*}=0 \\
& \ell *=0 \\
& i^{\prime}=0 \\
& \ell^{\prime}=0 \\
& \mathrm{j}_{\mathrm{T}}=0 \\
& \mathrm{j}=-1 \\
& \ell=0 \\
& \mathrm{l}=0 \\
& \mathrm{k}=0
\end{aligned}
$$

The initial information IDEN and B of T_{13} is read into the locations INFO and B of the program, after which TAPP III enters the k-th cycle for $k=0$. During the k-th cycle, the epoch for the $k+1$ st record of T_{13} is read-in, whereupon the program executes the following four phases (indicated by the phase flag PH) in the indicated order:
$\mathrm{PH}=1$. The Update Phase
$\mathrm{PH}=2$. The Print Output Phase
$\mathrm{PH}=3$. The Recycle Phase
$\mathrm{PH}=4$. The Tape Read-in Phase

The events that occur during the first three phases are controlled by the following mode flags, which are introduced as manual inputs:
$\delta_{\mathrm{PM}} \quad \begin{aligned} & \text { If this flag is zero, there is no print output, and } \\ & \text { no statistical computations occur. }\end{aligned}$ no statistical computations occur.
δ_{p} If $\delta_{p}=1$, each recycle output is printed.
δ_{T} If $\delta_{T}=1$, each recycle output is written on the T_{32} tape.

4.3.1 $\mathrm{PH}=1$ The Update Phase

The purpose of the update phase is to update the stored quantities, provided $j_{T} \neq j$. If $j_{T}=j, P H=1$ is skipped. Thus when the $k+1$ st record of T_{13} is referred to a new epoch, the program epoch will be the same al the end of $\mathrm{PH}=1$, thereby enabling the read-in of the $k+1$ st record to give valid results when the program enters the read-in phase. If an update occurs (and $k \neq 0$), the program executes the Update Phase Commands (UPC) which cause the matrices $V, W, B, J, \tilde{J}, S, \bar{X}$ to be updated

$$
\begin{array}{cl}
\text { Operation } & \text { Formal Command } \\
V \leftarrow V \partial x / \partial x^{k}=\partial p l / x^{k} & (I ; 0,-, p \ell ; 1,1,0) \\
W \leftarrow W \partial x / \partial x^{k}=\partial p^{i} / \partial x^{k} & (I ; 0,-, p i ; 1,1,0) \\
B \leftarrow B \partial x / \partial x^{k}=\partial m / \partial x^{k} & (I ; 0,-, m ; 1,1,0) \\
J \leftarrow\left(\partial x / \partial x^{k}\right)^{T} J\left(\partial x / \partial x^{k}\right) & (J ; 1,1,0 ; 1,1,0) \\
\tilde{J} \leftarrow\left(\partial x / \partial x^{k}\right)^{T} & J\left(\partial x / \partial x^{k}\right) \\
S \leftarrow\left(\partial x / \partial x^{k}\right)^{T} & (\tilde{J} ; 1,1,0,1,1,0) \\
S\left(\partial x \pi \partial x^{k}\right) & (S ; 1,1,0 ; 1,1,0) \\
\bar{\Lambda} \leftarrow\left(\partial x^{k} / \partial x\right) & \left(\partial x^{k} / \partial x\right)^{T} \\
& (\bar{\Lambda} ; 0,1,0 ; 0,1,0)
\end{array}
$$

The update of S and $\bar{\Lambda}$ is omitted if $\delta_{P M}=0$. After executing the above updates, the program perform tae following operations for all k (including $k=0$).

$$
\begin{aligned}
& U \leftarrow \pm \\
& j=k
\end{aligned}
$$

In eifect, therefore, when the epoch of the $k+1$ st record changes. it is changed to the representation associated with the current (k-th)time; that is,

$$
x \leftarrow x^{k}=\left[\frac{p^{k}}{q}\right]
$$

4.3.2 $\frac{\mathrm{PH}=2 \text {. The Print Output Phase }}{1}$

If $\mathrm{k}=\ell *$ and $\delta_{\mathrm{PM}}=1$, a print output is executed, otherwise $\mathrm{PH}=2$ is bypassed. During a print output the following events occur in the indicated order:

1) If $k=0, S^{\prime}$ and $\bar{\Lambda}^{\prime}$ are computed by use of the Statistical Input Program. Otherwise $S^{\prime}, \Lambda^{\prime}$, and $\bar{\Omega}^{\prime}$ are computed by use of the Statistical Output Program.
2) The heading of the $i^{2}-t^{2}$ sutput to O_{3} is printed. This heading takes the format

$$
\begin{gathered}
i *, j, l, k, \text { INFO } \\
-38-
\end{gathered}
$$

3) For $\nu=1,2, \ldots,{ }^{n} p o$ the Print Output Commands (POC), which are manual inputs, are executed by the Executive Program and are printed out to O_{3} in the format

$$
\begin{gathered}
\omega ; \sigma_{0} ; \mu_{1}, \tau_{1}, \rho_{1}, \mu_{2}, \tau_{2}, \rho_{2} \\
{[\text { Contents of } z]}
\end{gathered}
$$

4) The index of the next print output time is selected from the Print Output Times (POT), which are manned inputs, by the following ' operations

$$
\begin{aligned}
& \mathrm{i} \%=\mathrm{i} *+1 \\
& \ell \%=\operatorname{POT}(\mathrm{i} *)
\end{aligned}
$$

4.3.3 $\mathrm{PH}=3$. The Recycle Phase

If $k=\ell$ ' the program recycles, otherwise $P H=3$ is bypassed. During a recycle the following events occur in the indicated order:

1) The matrices S^{\prime}, A^{\prime}, and $\overline{\lambda^{\prime}}$ are computed from the Statisti, al Output Program. If these matrices were previously computed in PH . 2. or if $\delta_{\mathrm{PM}}=0$, this step is skipped.

2a) If $\delta_{T}=1$, the I_{32} heading is written.
2b) If $\delta_{p}-1$, the 0_{j} heading for a recycle output is primed in the format

$$
A^{\prime}, \mathrm{i}, \ell . \kappa, \text { INFO }
$$

3) If $k \neq 0$, and if δ_{T} and δ_{P} are not both zero, then for $\omega: 1,2$, . . . $n_{R O}{ }^{t!}$ w-th command of the Recycle Output Commands (ROC), winth are manial inputs, is executed by the Executive Progran. Each output is communicated io T_{32} or O_{3} or both. in accordance with the following logic:
a) If $\delta_{T}=1$, the contents of Z are written on T_{32} in a tape format compatione withet APP II.
b) If $\delta_{P}=1$, the contents of Z are printed out to δ_{3} in the same format as that of $\mathrm{PH}=2$.
4) The last rewelefine. . set equal to the corrent time and the next recyele time jndex is suiecied trum tha Recycle Times (RET), a monas! input, by the followige uperations:

'	k
\checkmark	U
S	S
$\bar{\square}$	N^{\prime}
J	0
$\hat{\mathrm{i}} \div$	0
$:$	$1^{4}+1$
!	RET (1)

4. 3. 4 PH:: 4. The Tape Read-In Piasis

If $k-n_{I T}$, the program stope. If $k<n_{1 T}$, the program extewtire a readi-in of the $k \div 1$ st recore of i_{1} (except for the epoch time matre w this record, what was read in at the beginning of the k-th cycle) in the iollowing manner:

1) k, INFO, and U arrobtamed from T_{13}.
 in the following manner: fithe fime Station Flag $\Delta_{\mathrm{TS}}(\mathrm{k}, \mathrm{s})$ (then

$$
\begin{aligned}
& J \leftarrow J: \Delta J \\
& J<j \cdot J I
\end{aligned}
$$

 2い:。

REFERENCES

1. "Monte Carlo Simulation of Midcourse Guidance (TAPP MOD II, , " dy W. H. Pace, Jr., STL No. 8976-6012-RU-000, dated 31 October 1962.
2. "Capability Guide .. Tracking Accuracy Prediction Program (TAPP MOD I) (Revised), " by A. S. Liu, STL No. 8976-6013-RU-000, 1 November 1962.
3. "TAPP III, Part 1. Regression to a Constrained Parameter Set," STL No. 9861.5-182, by W. W. Lemmon, dated 6 March 1963.
4. "TAPP III, Part 2. Specification of the Format of the Tape Input to TAPP III, "STL No. 9861.5-194, by W. W. Lemmon, dated 29 March 1963.
5. "Partial Derivatives of Radar Observational Parameters (for TAPP I), " STL No. 9851-76, by K. Heuhn, dated 27 March 1963.
6. "Computer Program Guide, Tracking Accuracy Prediction Program (TAPP MOD I-III), " by M. Kemp.
7. "Computer Program Guide, Tracking Accuracy Prediction Program (TAPP MOD I-III)," by S. Senda.

Following is a complete list of defmations of the sjmbols used in the program. If a symbol represents a matrix with a rows and β columns, its format is indicated by $(n ; a x \beta)$, where n is its stordge format. If $n=R R$, the storage is rectangular by rows; if $n=T R$, the storage is triangular by rows. Triangular fo: at ats only ised for symmetric matrices. If each entry of the matix consists of V conscciative words (where $V \neq 1$), this fact is indisated by the notation ($n, V ; a x \beta$). The following additional notation is used to indicate special types of symbols:
$(\equiv \theta)$ indicates that the first location represented by the symiool
is the same as that of the symbol θ.

NS indicates that the matrix represented by the symbol is no: stored but is generated internally by the program when needed

DM indicates a dummy matrix; that is, a matrix whose first. location is a variable determined by the program.

A. 1 PROGRAM INPUTS

Tape Description

${ }^{n_{I T}} \quad$: Number of tape input times
${ }^{n}$ TS : Number of tracking stations
no : Number of parameters in the original representation
$n_{p} \quad$: Number of parameters in the orbit set (must $=6$ or : 12)
n_{m} : Number of parameters in the mass set

Print Controls

$\delta P M$: Prant Mode Flag. If $\partial P M=0$, there is nc print output, and all statistical computations are omitted
n* : Number of print ou'puts
POT : (RR; $\left.n^{*} \times 1\right)$ Print Output Time List. This hist contains the indices, in ascending order, of the input tape tumes at which a print output is desired.
$n_{p O}:$ Number of print output :ommands

A-2 :

POC : \quad AR. $5: n_{\text {po }} \times 1^{\prime}$ Prirt: O.p. Command Lis.
Recy l. Corirols

 ireices, bas ctiding ordex, of the inpu: tape tames

 - vele i.me
or : Tapepe vie Flig. if $\delta_{p}=1$, is tape is writeno the re w le sime
n_{RO} : N mber o: re.i.leo 'r :s

Common Wo:1d

rims
$n_{i-1} \quad$: Namber of ommor parameters inp $\leq r_{i=1} \leq r_{0} ;$

'Kı: \quad N:mber of ommon :orsirfunto
K. \quad : RF: $\mathrm{K}_{k} \times 2$; Common Constrain: Fatitals List. Fit Wo:ld'FW:

$K_{i} \quad: \quad$ RRR; $n_{k f} ; 2 ; F W$ Consiratr: Pirtats Lis:

$n_{r 1}$: Number of unconstrained parameters
${ }^{n_{P r}} \quad: \quad$ Number of permutations in P_{r}
$P_{r} \quad: \quad$ (RR; $n_{p r} \times 1$ RW Permutation List
${ }^{n_{K r}}$: Number of RW constraints
$K_{r} \quad: \quad$ (RR; $n_{k r} \times 2$ RW Cons'raint Partials List

Optional Miss Partitions

$\operatorname{tm} 1=0$ nominally $:$ tail of first optional miss partation hml $=6$ nominally $:$ head of first optional miss partition tm2 $=0$ nominally : tail of second optional miss partition hm2 $=3$ nominally $:$ head of second optional miss partition tm3 $=3$ nominally $:$ tail of thrd optional miss partation hm3 $=6$ nominally $:$ head of third optional miss partifion tm4 $=6$ nominally $:$ tail of fourth optional miss partition hm4 $=12$ nominally : head of fourth optional miss paride.on
tm5 $=12$ nominally : tail of fifth optional miss partition
hm5 $=18$ nominally . head of fifth optional miss partition
tm6 - tail of sixth optional miss partition
hm6 - head of sixth optional miss partition
tm7 .. tail of seventh optional m:ss partition
hm7 - head of sevenih optional miss partition
tm8 - tail of eighth optional miss partition
hm8 .. head of eighth optional miss pit'ition
tm9 - tail of ninth optional miss pirtition
hm9 - head of ninth optional miss partition

A. 2 PROGRAM CONSTANTS

Important Fixed Matrix Locations

$\mathcal{F}_{\text {txo }}:$ Contains the location of X_{0} (Transformation Accumulator)
$\mathcal{L}_{\text {ty }}$: Contains the location of Y (Intermediate Storage)
$\mathcal{P}_{\mathrm{tz}}$: Contains the location of Z (Input-Output Area)
Symbolic Addresses of Major Subroutines
GET X : The Partials Accumulator Subroutine
EXEC : The Executive Program
SIP : The Statistical Input Program
SOP : The Statistical Output Program
Output Coding Control Tables
T3 : (RR, 3; 26×1) The Matrix Format Table
T0 : (RR, 1; 6×1) Orbit-Set Option List
T2: (RR, 2; 13x1) System-Set Option Table
T1 : (RR, 3; 33×1; Set-Partion Option Table
Update Conirols
$n_{U P}$: The number of update commands
UPC: (RR, $\left.5 ; n_{U P} \times 1\right)$ Update Command List Constant Matrices
$\Gamma:\left(R R, n_{0} \times n_{0}\right)$ Orbit Set Partials Adjoining Matrix
$\pm \quad: \quad\left(R R, n_{p} \times n_{0}\right)$ Orbit: Set Rows of the ($n_{0} \times n_{0}$) Identity Matrix
I : (NS) The ($n_{0} \times n_{0}$) Identity Matrix

A. 3 PROGRAM OUTPUTS

Sequence Controls

PH : Program Phase Flag. This flag indicates the computational phase of the program in accordance with the following coding:

Value of PH	Name of Phase
1	Update (Epoch Shift)
2	Print Output
3	Recycie
4	Tape Read-In

८* : Number of next Print Output Phase (Not valid if $\partial \mathrm{PM}=0$)
$\ell *:$ Time index of next Print Output Phase, $\ell *=\operatorname{PoT}(\llcorner *)$ (not valid if $\partial \mathrm{PM}=0$)

ᄂ. : Number of next Recycle Phase
$\ell^{\prime} \quad: \quad$ Time index of next Recycle Phase ($\ell *=\operatorname{RET}(\llcorner$ '))
jT: Epoch index of next tape input record (k+1 st record)
Output Block Identification
j : Index of program epoch
l : Index of last recycle time (time from the start of the tracking run)
k : Index of current time
INFO: Information associated with the k-th record

Output Entity Identification

$\omega \quad$: Output entity number
COM : Command defining the ω-th output entity. This set of locations is split up in the program into the following 7 quantities
$\sigma_{0} \quad: \quad$ Matrix Option Index

Representation of the Columns of the Matrix Option $\left[\sigma_{0}\right]:$
$\mu_{1}:$ Column Parity of $\left[\sigma_{0}\right]$
τ_{1} : Orbit Set Option
ρ_{1} : Set-Partition Option
Representation of the Rows of the Matrix Option $\left[\sigma_{0}\right]$:
$\mu_{2}:$ Row Parity of $\left[\sigma_{0}\right]$
T_{2} : Orbit Set Option
ρ_{2} : Set-Partition Option
Stored Partials. In the following locations are stored the partials of the indicated parameter sets with respect to the program representation $x(=x j)$.
$I:\left(R R, n_{p} \times n_{o}\right) . \partial p^{j} / \partial x$. Orbit set at program epoch
$U:\left(R R, n_{p} \times n_{0}\right)$. $\partial p^{k} / \partial x$. Orbit set at current time
$V:\left(R R, n_{p} \times n_{o}\right) . \partial p^{\ell} / \partial x$. Orbit set at last recycle time
W : (RR, $\left.n_{p} \times n_{0}\right), \partial p^{2} / \partial x$. Crbit set at injection
$B \quad: \quad\left(R R, n_{m} \times n_{0}\right) . \partial m / \partial x$. Miss set
Tracking Accuracy (from l to k, referred to x)
J. : (TR, $n_{0} \times n_{0}$). The "A ${ }^{T}$ WA" Normal Matrix
\tilde{J}. : (TR, $n_{0} \times n_{0}$). The "A ${ }^{T}$ WMWA" Normal Matrix
A Priori Statistics (at ℓ, referred to x. Not valid if $\delta_{P M}=0$)
S : (TR, $n_{0} \times n_{0}$). Fit World Normal Matrix (Extended)
$\pi \quad:\left(T R, n_{0} \times n_{0}\right)$. Real World Covariance Matrix
 possess the indicated significance only if $\partial_{\mathrm{PM}}=1$.
סcs : Current Statisties Validity Flag. If $\delta \mathrm{cs}=1$, which occurs only if $k=\ell *$ or $k=\ell^{\prime}$, the following matrices contain valid information unless otherwise indicated.
$S^{\prime} \quad: \quad\left(T R ; n_{0} \times n_{0}\right)$ Fit World Normal Matrix (Extended)
$\begin{aligned} & \Lambda^{\prime} \quad: \quad\left(T R ; n_{0} \times n_{0}\right) \text { Fit World Covariance Matrix (not vilid } \\ & \text { if } \mathrm{k}=0 \text {) }\end{aligned}$
$\pi^{\prime} \quad: \quad\left(T R, n_{0} \times n_{0}\right)$ Real World Covariance Mairix
$\Sigma(Z): \quad\left(R R, n_{0} \times n_{0}\right)$. Real World Tracking Noise Covariance Mairax (valid only if $\omega=1, \mathrm{PH}=2$)

A. 4 UTILITY LOCATIONS

$\xrightarrow{\text { Tracking Accuracy Tape Read-In (from }} t_{\text {to }}^{x ;}$; ${ }^{\text {to }} t_{k}$, referied

s : Station Number
$\Delta J\left(\equiv S^{\prime}\right):\left(T R ; n_{0} \times n_{0}\right)$ The "A"WA" matrix for the s-th station $\Delta \tilde{J}\left(\equiv \Lambda^{\prime}\right):\left(T R ; n_{0} \times \dot{n}_{0}\right)$ The "A WMWA" matrix for the s-th station

Partials Accumblator $(x=(\mu, T, \rho \mid)$
$\mu \quad: \quad$ Parity of x
$T \quad$: Orbit Set Option of x
$p \quad$: Set-Partition Option of x
$\mathcal{L}_{\text {tx }}$: The location of x
$n_{1 x}$: The number of rows of x
$X: \quad$ ($D M$) (RR; $n_{1 \times} \times n_{0}$): ' The Partials Accumulator
$X^{T}: \underset{\substack{\text { of } \\ \\ \text { of } x}}{\left(R R, n_{0} \times n_{1 x}\right): \text { Fixed locations for storing the transpose }}$

Transtormision simulator $\left(X_{0}=\langle\mu, T, X)\right.$
δ_{x} : Transformation Acemmulator Validity Flag. if ${ }^{\delta} x=1$, X_{0} onetime; a valid transformation matrix defined by the ford :es $\mu \mathrm{s}$, Tx, Xx

M : Parity of X_{c}
T_{X}. Orbit Set Option of X_{0}
$x_{x} \quad$ Systern Option of X_{0}
X_{0}. RR, row r_{0} The Transformation Accumulator Nanciral Partitioning of X_{0}

The Input-Ouspui Are (x)
 by the Exc:ive Program as though z contained the in o "or iden:iy I.
$r_{1 z}$: The n amber of rows of z
$n_{2 z}$. The number of :columns of z
C - (RR, no 'ri The mpain-Output Area Intermediate Storage Area (Y)
${ }^{n} 1 y$ The timber of rows of Y
$n_{2 y}$: The number of columns of Y

The Row-Tansformed Matrix (\bar{y})

$\chi_{t \bar{y}}:$ The lor:ation of $\bar{\gamma}$
$n_{1 \bar{y}}$: The number of rows of \bar{Y}
$\bar{Y}:(D M)\left(R R, n_{1} \times n_{0}\right)$. The Row Transformed Matrix
Miscellaneous. Most of the following symbols represent locations lied by the table look :p routines (see Appendix B)
σ : The symbolic input to T3
F : The format of a matrix
\mathcal{L}_{t} : The first !or ir some cases one minus the first) location of a matrix
Δ_{1} : The number of rows of a matrix
Δ_{2} : The number of colicmns of a matrix
$X \quad$: The System Index $: ~ X=0$ indicates an isolated set)
n : For $x \neq 0$: the number of links required to chain-rule from x, X^{T} to the standard representation x
t : One minus the first location of a parameter set partition (the tail of a partition)
h : The last 10 :action of a parameter set partition
$\xi \quad: \quad$ The Orbit Set Partition Type

$$
\begin{aligned}
& \xi=0 \longleftrightarrow t=0, h=n_{p} \\
& \xi=1 \longleftrightarrow t=n_{p}, h=2 n_{p} \\
& \xi=2 \longleftrightarrow t=2 n_{p^{\prime}} h=3 n_{p}
\end{aligned}
$$

a - The row index of a matrix entry
b : The column index of a matrix entry

APPENDIX B, OUTPUT OPTION CONTROLS

Table B-1. Matrix Format (T3)

(
$\underset{H}{m}$

${ }_{n}^{n}$

Table B-2. Orbit-Set Options (T0)

T0

ORBIT PARAMETERS AT:
Epoch (t_{j}) (This entry is not needed in the program)
Current Time (t_{k})
Last Recycle Time (t_{l})
Injection Time (t_{i})
TARGET PARAMETERS (for present TAPP I miss)
2nd Set of n_{p} Miss Parameters (UDC)
3rd Set of n_{p} Miss Parameters (DCA)

Table B-3. System-Set Options

INPUTS	$4 \mathrm{~T} 2(\mathrm{X}, \mathrm{n}) \rightarrow$	
$x{ }^{n}$	σ	
PZE	BCI	INTERMEDIATE COMMON SYSTEM (not in T1)
$2{ }^{2} 1$	$\mathrm{P}_{\mathbf{c}}$	$8 x^{T, 2} / \partial x^{T, 1}$
		COMMON SYSTEM
312	$\mathrm{P}_{\mathbf{c}}$, $\partial x^{T, 2} / \partial x^{\top, 1}$
311	K_{c}	$\partial x^{\top, 3} / \partial x^{T, 2}$
		FIT SYSTEM
$\begin{array}{l\|l} 4 & 3 \end{array}$	P_{c}	$\partial x^{T, 2} / \partial x^{\top, 1}$
42	K_{c}	$\partial x^{\top, 3} / \partial x^{T, 2}$
411	$\mathrm{K}_{\mathbf{f}}$	$8 x^{T, 4} / 8 x^{T, 3}$
513	P_{c}	INTERMEDIATE REAL SYSTEM (not in T1) $\partial x^{\top, 2} / \partial x^{\top, 1}$
$\begin{array}{l\|l} 5 & 2 \\ 5 & 1 \end{array}$	K_{c}	$\theta x^{T, 3} / \partial x^{T, 2}$
	P_{r}	- $\partial \mathrm{x}^{\top, 5} / 8 \mathrm{x}^{\top, 3}$
,		REAL SYSTEM
$6 \mid 4$	P_{c}	$\partial x^{\top, 2} / \partial x^{\top, 1}$
6 , 3	K_{c}	$\theta x^{T, 3} / \partial x^{T, 2}$
612	P_{r}	$8 x^{T, 5} / 8 x^{T, 3}$
611	K_{r}	$\theta x^{T, 6} / \partial x^{T, 5}$

Table B-5. Permanently Stored Commands

APPENDIX C. THE FLOW DIAGRAMS

Figiare C..1. Partals Aucimulator Subionine

$$
\text { r:.. } 2
$$

Figure C..2. The Enetutive Program

Figure C.0. The Statistical Output Program

Figure C-4. TAPP III Master Sequencing

APPENDIX D. THE CODING OF INPUT SYSTEMS AND PARTITIONS

Table D-1. Coding of the Information in Figure D-1

Tape Description

$$
\begin{aligned}
& n_{0}=29 \\
& n_{p}=6
\end{aligned}
$$

Common Assumptions

$$
\begin{aligned}
& n_{c 1}=18 \\
& n_{\mathbf{P}_{\mathbf{c}}}=12
\end{aligned}
$$

$$
P_{c}=\begin{array}{ll}
10, & 14 \\
12, & 19
\end{array}
$$

13, 18
14, 25
15, 26
16, 22
18, 19
19, 10
22, 12
25, 13
26, 15
27, 16
$n_{k c}=7$
$K_{c}=\begin{array}{r}22,7 \\ \partial f c / \partial a\end{array}$
22, 11 8fc. $/ \mathrm{Be}$ 22, 14 $\mathrm{ff} \mathrm{c} / 8 \mathrm{~s}$ 23, 11 $\partial \mathrm{qc} / \partial \mathrm{e}$ 23, 16 $\partial \mathrm{qc} / \partial \mathrm{p}$ 25, 8 $\theta \mathrm{gc} / \mathrm{\theta b}$ 25, 10 $\partial \mathrm{gc} / 8 \mathrm{~b}$

Fit World

$$
\begin{aligned}
& n_{f 1}= 13 \\
& n_{K f}= 4 \\
& K f= 15,11 \\
& \partial \mathrm{tf} / \partial \mathrm{e} \\
& 17,8 \\
& \partial \mathrm{kf} / \partial \mathrm{b} \\
& 17,9 \\
& \partial \mathrm{kf} / \partial \mathrm{c} \\
& 18,9 \\
& \\
& \\
& \text { unf } / \partial \mathrm{c}
\end{aligned}
$$

Real World

$n_{r 1}=14$
$n_{P_{r}}=4$
$P_{\mathbf{T}}=\begin{array}{ll}11, & 17 \\ 13, & 15\end{array}$
15, 11
17. 13
$n_{k r}=4$
$K_{r}=15,13$ $\partial \mathrm{er} / \partial \mathrm{t}$ 16, 11 $\partial \mathrm{pr} / \partial \mathrm{k}$ 18. 9 our / dc 18, 10 bur / oh

[^0]: Documented in References 1, 2 and 5.

[^1]: "In this section all column vector spaces are designated " V^{a} " wher ${ }^{\text {a }}$ is a lecter or number. The dimension of the vector space is designated b) ' A, and sample member of $V^{\text {a }}$ possess a superscript " a ". Matr:cestaning members of V^{α} into V^{β} are designated " M_{a}^{β} ", where " M " may be replaced by any capital letter. This notation is a specialization of the covariant--contravariant notation of tensor analysis to matrix alge bra. Understanding its motivation is not essential to the development.

[^2]: This matrix, or more accurately, its transpose, is set up in a set of temporary locations from coded lists of permutations and constants.

[^3]: *Stating that a representation is available does not mean that the actual parameters or their nominal values are present in the program. TAPP III manipulat:is only the partials and statistical matrices describing the properties of these random parameters about fixed nominal values determined by TAPP I.

[^4]: The alljoint is chosen inste:ad of the inverse because the atjoint prescerves the order of matrix multiplication, therehy sumplifyin! the logical seguencing of the program.

