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FOREWORD

This quarterly report is submitted to the National Aeronautics and Space Administration,
Lewis Research Center, by the Lockheed-Georgia Company in accordance with the
requirements of NASA Contract NAS 3-7985.
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1 SUMMARY

This is the third quarterly report summarizing the work to date on Contract

NAS 3-7985 entitled, "The Effect of Nuclear Radiation on Material at
Cryogenic Temperatures." The studies under this contract include the effects
of (1) 1018nvt (E >0.5 Mev) at 30°R on tensile properties of titanium base
alloys; (2) irradiation temperature (30°R to 540°R) on tensile properties of
‘Aluminum 1099-H14 following irradiations up to 3 x 1017 nvt; (3) annealing
following irradiation at 30°R to 1017 nvt on tensile properties of Aluminum
1099; (4) irradiation at 30°R on axial, low-cycle fatigue properties of titanium
base alloys; and (5) temperature (140°R and 540°R) on tensile properties of
Titanium 55A and Aluminum 7178.

The tensile testing phase of the contract is being performed with government
owned test equipment which was available ot the beginning of the contract.

The in-pile and out-of-pile tensile test results from Titanium 55A are complete.
The out-of-pile tensile test results from Aluminum 1099 and Aluminum 7178 are
complete. The in-pile tensile test results from Aluminum 1099, including some
results of annealing after irradiation, and test results from Titanium-5Al-2.5 Sn
(ELI) are partly complete. A previously reported temperature dependence of

the ny/Ffu ratio (LNP: Effects of Nuclear Radiation on Materials at Cryogenic
Temperatures, NASA CR-54881, January 1965) in Aluminum 1099-H14, attrib-
utable to changes in intergrannular critical shear stress, was confirmed. Increases
in the tensile and yield strengths of Titanium 55A were observed up to integrated
fluxes of 1018 nvt. Test data on other materials is not sufficiently complete to
warrant further conclusions at this time.

The refrigeration system and other test equipment have continued to perform
satisfactorily, resulting in unusually efficient use of available neutron flux.

The low-cycle fatigue testing phase of the contract has required extensive mod-
ification of the hydraulic load control system and some changes to the test loops.
Required new components have been fabricated or purchased and have been in-
stalled. The electronics portion of the system has been operated in a preliminary
manner under cyclic operation and methods of calibrating are being developed.




2 INTRODUCTION

The combination of a fast neutron and cryogenic environment encountered in the
structural members of a liquid hydrogen nuclear rocket imposes service conditions
dissimilar to those encountered in other engineering applications. Both fast neu-
tron bombardment and extremely low temperatures affect the mechanical properties
of engineering materials; therefore the magnitude of the combined effect must be
determined to provide basic design information before materials for a reliable nuc-
lear rocket system can be selected. Since the neutron irradiation effects will
spontaneously anneal even at low temperatures, tests to provide the desired infor-
mation concerning the combined effect must be conducted with the specimens held
at the temperature of interest during the entire irradiation and testing period.

A screening program (ref. 1) was undertaken to assess the effect of fast neutron ir-
radiation on selected engineering alloys at temperatures near the boiling point of
liquid hydrogen (-423°F). Tensile tests on parallel sample sets of unnotched speci-
mens for each alloy at room femEl;eroture unirradiated, at 30°R (-430°F) unirradiated
and at 30°R irradiated to 1 x 1017 nvt (energies greater than 0.5 Mev), were per-
formed at the NASA Plum Brook Reactor Facility using a helium refrigerator and
testing equipment specially designed for in-pile testing under controlled tempera-
ture conditions.

Test results from the screening program indicated that titanium alloys possessed the
highest strength-to-weight ratio following exposure to the combined nuclear-

- cryogenic environment as well as being among the least susceptible to deterioration

of mechanical properties of the alloys tested. On the other hand, Aluminum 1099
(99.99% Aluminum) was found to be very sensitive to both irradiation and tempera-

ture of irradiation.

Based on the information obtained from the screening program, an in-pile test program
(see section 5) has been initiated to study in greater detail the effects of a combined
nuclear-cryogenic environment on the mechanical properties of metals. The objec-
tive of this program is o provide engineering data at higher integrated fluxes and/or
under different load conditions than heretofore attained at cryogenic temperatures

as well as data for more fundamental studies. lts scope consists of two general
phases, tensile testing and low-cycle fatigue testing. The tensile testing phase in-
cludes irradiations at 30°R to 1018nvt (E> 0.5 Mev), irradiations to 1017 nvt

(E> 0.5 Mev) at temperatures between 30°R and room temperature (540°R), and irrad-
iations to 1017 nvt (E >0.5 Mev) at 30°R followed by specimen warm-up prior to



fracture. The low-cycle fatigue testing phase includes both fatigue testing during
irradiation at 30°R and fatigue testing following irradiation at 30°R to 1017 nvt
(E>0.5 Mev). The tensile testing phase of the test program is preceding most of
the fatigue testing phase due to extensive modification of the hydraulic load con-
trol system and necessary test loops for cyclic loading.

Standard test specimens cannot be used in this test program due to various restric-
tions on the test equipment imposed by the nuclear cryogenic environment. The
tensile specimens being used represent a miniaturization of the standard ASTM

E-8 specimen (ref. 3). The miniature fatigue specimens required in this program
will represent a departure from any commonly used design, but are similar in geom-
etry to those used by other investigators (ref. 4).

Progress during the earlier reporting periods (ref. 5 and ref. 6) consisted of neces-
sary preparations, neutron flux mapping, temperature correlations, some modifications
of existing equipment, and some in-pile test results. During performance of in-pile
tests, polyurethane seals used in the test loops to isolate the static helium refrigerant
(under pressure in the head assembly) from the cooling water performed satisfactorily
after test specimen exposures to 1 x 1018nvt (E>0.5 Mev). These seals had been
subjected to gamma doses of 2.5 x 109 r.

During this reporting period, work continued on test equipment modification and
maintenance (section 3), on test procedure development (section 4), and on the
test program (section 5).,




3 TEST EQUIPMENT

Test equipment available at the beginning of this contract is being utilized during
performance of the test program. Most of this equipment had undergone major over-
haul and modification (ref. 2) in preparation for the nominal 140 hour irradiation
period to obtain 1018 nvt exposures. Maintenance and calibration schedules, estab-
lished during this overhaul effort, have kept the equipment operating reliably.

The various systems and components of the test equipment are discussed in the fol-
lowing sections. Test equipment maintenance and hazards analyses are discussed
separately in sections 3.8 and 3.9, respectively.

3.1 IDENTIFICATION

The test equipment (figure 1) for in-pile and out-of-pile testing under controlled
temperature and load conditions permits the test program to be performed wholly by
remote operations. This equipment and its operation, have been described prev-
iously (ref. 5 and ref. 6). For purposes of discussing information pertinent to the
design, modification, and performance characteristics, the equipment is separated
into the six categories shown schematically in figure 2.

3.2  TEST LOOPS

The test loops are stainless steel cylindrical envelopes, six inches OD by about
nine feet long, containing all necessary equipment for irradiating a test specimen
under controlled temperature conditions and fracturing the specimen, at tempera-
ture, in tension or compression without removal from the irradiation field. At the
aft end of the test loops, fittings are provided to connect the refrigeration system,
the load control system, and the instrumentation and data recording system. Other
fittings are provided for test loop cooling using deionized water (which must be
isolated from the helium refrigerant).

To perform the test program, five tension-compression test loops are currently being
used as follows:

Test loops 201-001 (the prototype loop) and 201-005-~design
studies to determine modification requirements
for low-cycle fatigue testing. (See section 3.2.2)



Test loop 201-002--in hot laboratory area where investigation
of various methods of repairing the inner helium
line are currently being evaluated. (See section

3.8.2.1)

Test loops 201-003 and 201-004--used during reporting period for
performing tensile test program. (See section
3.2.1)

3.2.1 Tensile Test Loops

During this reporting period, test loop 201-003 and 201-004 were used for a total
of eleven cycles* in performing material evaluation. Test loop 201-003 (with head
assembly 201-011) was used for five cycles of operation and test loop 201-004 (with
head assembly 201-006) was used for six cycles of operation.

Both test loops performed satisfactorily; however, an indication of leakage was ob-
served in the specimen loading actuator of test loop 201-004 when conducting tests
in reactor cycle 44P, The leakage was not of sufficient volume to compromise
testing accuracy; therefore, repairs were deferred until reactor cycle 45S, a
scheduled long down cycle (see section 3.8.2.1.2). '

3.2.2 Fatigue Test Loops

Low-cycle axial tension-compression fatigue tests are to be performed using existing
tension-compression test loops. The original specifications to which the test loops
were constructed required that they be capable of exerting tensile or compressive
loads, but not both in a cyclic manner. Considerable analysis and some modifica-
tion is required before reliable tensile-compressive fatigue data can be obtained
and the existing self-aligning features must be replaced by a more complex arrange-
ment. Tensile test loop 201-005 and the prototype tensile test loop (201-001)
without the self-aligning features are being used to experimentally determine the
extent of modification required.

* For cycle definition, see section 3.8.1.




3.2.2.1 Design

The major components of the test loop under consideration are shown in figure 3.

The structural member installed in the test loop, as shown in figure 3, is the assem-
bly which supports the specimen loading actuator and also acts as a column directing
the loads, which occur during loop insertion into the reactor beam port, into the
carriage trunnion. The load applied in the test specimen is transmitted through

the head assembly back through this member to the actuator. The load resulting
from testing is distributed peripherally and transmitted eccentrically into the mem-
ber. Deflection studies (ref. 5 and ref. 6) show that modification of the structural
member of test loop 201-005 is not required.

The lost motion in the pull rod linkage of test loop 201-005 is assumed to be not
significantly greater than the 0.02 inch measured in the prototype loop at 3500
pounds load (ref. 5). This assumption is based on the fact that the linkages are
mechanically identical and has been confirmed by loading responses on going from
tension to compression, similar to those with the prototype loop.

The hydraulic actuator seals are being qualified for cyclic operation to 10,000
cycles. During a previous reporting period, (ref. 5), over 1400 cycles at high
loads with new seals, were obtained with test loop 201-001 without indication of
failure. No significant additional testing of the seals in either test loop 201-001
or test loop 201-005 has been performed since that reporting period.

The design of specimen holders for fatigue testing was completed during the previous
reporting period (ref. 6). This design, shown in figure 4, is based on the perfor-
mance of prototype holders and jam nuts with matching conical faces for maximum
specimen alignment and minimum slack due to variations in thread dimensions. The
system was designed using the smallest number of parts possible to minimize lost
motion. This design also meets heat transfer requirements in that heat flow through
the specimen is minimized. Two sets of these holders were ordered and received
during this reporting period.

The test loop head assembly organic seals for fatigue testing will be the same as
those used for tensile testing. These seals will be subjected to more severe dynamic
load conditions and some difficulties are anticipated, particularly with irradiation.
No difficulties have been experienced so far during the preliminary cyclic loading
(discussed in reference 5); to date there has been no cyclic loading at low tempera-
tures or in-pile.




‘ 3.2.2.2 Modification

After completion of the detail design and experimental evaluation of the fatigue
loop concepts incorporated in test loop 201-005, a similar modification will be
performed on one of the radioactive tensile test loops. Appropriate methods

and procedures for so doing will be developed during modification of tensile test
loop 201-005.

3.3  REFRIGERATION SYSTEM

The test specimen temperature is maintained at temperatures between 30° - 540°
Rankine using a gaseous phase helium refrigerator system. This system (ref. 5)
contains an electrically driven positive displacement compressor, counterflow
heat exchanger and four reciprocating expansion engines. The system was specif-
ically designed and fabricated for this application to provide a minimum of 1150
watts of refrigeration for maintaining any specified specimen temperature from
30°R to 540°R by varying engine speed, expansion engine pressure ratio, and the
heat input from manually controlled electrical resistance heaters installed in the
refrigerant distribution manifold.

During this reporting period, the system was operated for 743.0 hours and performed
satisfactorily in conducting all scheduled in~pile and out-of-pile testing. Main-
tenance was performed according to established schedules (see section 3.8.1.2).

Some difficulty has been encountered in operating the system to provide the limited
refrigeration required to dissipate gamma heat at or near room temperature, i.e.,
540°R (ref. 6). The engines, operating at low speed, stalled when helium contam-
inants collected and froze in the cylinders.

The problem may be defined as follows: Operation of the system with the high pressure
side of the heat exchanger at or near room temperature and the significant reduction

of the temperature through the engines will cause deposition of any contaminants,

such as water, in the engines. The elimination of all the moisture in the helium supply
is difficult since as any helium make-up in the expansion tank adds cumulatively

to the total moisture in the system. Also, the small quantities of moisture introduced
when specimen change-over is performed will add to that already in the system.

During low temperature operation this moisture will freeze out on the high pressure




side heat exchanger surface and remain there to be removed by blow down when
the refrigerator is warmed up.

Various methods of excluding the migration and freeze-out of helium contaminants
in the system are currently being explored. Investigation has indicated that helium
routed through an externally mounted counter-current heat exchanger submerged

in liquid nitrogen will provide the required refrigeration capacity to perform these
tests.

A specification for such a unit has been published and distributed to numerous cryo-
genic equipment manufacturers. The equipment as defined shall be capable of
eliminating stream borne contaminants through appropriate traps, filters and molec-
ular sieves and provide an effluent helium gas stream at a temperature that is
compatible with the refrigeration requirement.

To date, a number of the manufacturers have indicated that their current work load
would not permit undertaking the fabrication of the equipment; however, the
adaptation of presently manufactured equipment has been proposed and evaluation
of this proposal is currently underway. As proposed, the unit will include heat
exchanger, liquid nitrogen reservoir, and appropriate traps and filters. Inter-
connection of this equipment info the test loop system appears feasible and detailed
requirements are being established.

3.4 LOAD CONTROL SYSTEM

The existing specimen loading system for tensile testing utilizes a positive displace-
ment pump with demineralized water as the working fluid to provide the pressure
required by the hydraulic actuator positioned in the test loop. Strain rate can be
controlled through a variable speed drive connected to the pump.

The load transducer is located in the test loop and the extensometer is positioned
directly on the specimen to measure only the strain which occurs between the gage
marks. The pump and recording instrumentation are located in appropriate cabinets
positioned on the grating above the quadrant at the 0'-0" level.

To perform the low-cyclic fatigue studies this system is being modified (refs. 5 and 6)

to provide a closed loop servo system as shown in figures 5 and 6. The modified
system includes an oil operated actuator mechanically coupled to a demineralized



water operated actuator as shown in figure 7. The latter provides the required
flow and pressure to the actuator installed in the test loop.

Installation, check-out and calibration of the system was initiated during this
reporting period.

Hydraulic system check-out included flushing of the system and testing of the
installed hydraulic lines, under a pressure of 1.5 times actual operating pressures,
with NASA observors in attendance. The oil side lines were tested at 4500 psig
and the water side lines were tested at 1800 psig. The oil system was operated
for several hours, pumping oil through the flushing block, before changing the
line filters and switching the servo valve into the system,

The electronics portion of the system has been checked out under cyclic operation
using a simulated load in place of the dynamometer LVDT signal, and an accurate
method of calibrating the servo controller with respect to the command signal and
output to the recorders has been determined. One of the older type dynamometers
has been calibrated, using a galvanometer type voltmeter ,for use in preliminary
testing. A digital type voltmeter was purchased for the more refined calibrations
to be conducted during the next reporting period.

3.5 TRANSFER SYSTEM

To permit insertion and withdrawal of the test loops into the reactor, during reactor
operation, a transfer system was designed and installed in quadrant D of the Plum
Brook Reactor Facility. In addition, provision to change test specimens was incorpo-
rated by the installation of a hot cave with an access port in line with the assigned
reactor beam port HB~2, as shown in figure 1.

To position the test loop for insertion or withdrawal from either the beam port or
hot cave the supporting tables, which are submerged approximately twenty feet in
quadrant water, are aligned remotely using hydraulic pressure provided from an
axial piston pump using demineralized water as a working fluid. After positioning,
the loop carriage is coupled to the access port and the loop is inserted or withdrawn
by a worm-drive screw arrangement driven by a hydraulic motor.

During this reporting period, the transfer system was used for a total of eleven cycles*
of test loop insertion and removal. The system performed satisfactorily during this
operational period.

*For cycle definition, see section 3.8.1.
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3.6  SPECIMEN CHANGE EQUIPMENT

Due to the high activity level of the test loops after several in-pile exposures,
remote handling techniques are required for changing specimens. A hot cave pro-
vides adequate shielding for this operation. This cave is provided with manipulators,
support fixtures and special tools to permit change-over of the specimen. In
addition, minor repairs on the forward end of the test loop have been performed

in this hot cave.

During this reporting period, the specimen change equipment was used for instal-
lation and removal of eleven test specimens. No specimen change equipment
difficulties were encountered.

3.7 MISCELLANEOUS TEST EQUIPMENT

During this reporting period, the test loop transfer cask and associated equipment
were used to move two test loops to the hot laboratory area in accordance with
approved procedures. These loops, 201-003 and 201-004, were transferred to
permit rebuilding the load actuators, as described in section 3.8. After completing
repairs, the loops were returned to the containment vessel and positioned in quad-
rant D for use in the test program.

3.8 TEST EQUIPMENT MAINTENANCE AND CALIBRATION

During this reporting period, the maintenance and calibration program previously
developed by a reliability analysis was used to provide a scheduled equipment
maintenance program. Forms for recording the operational history of the equip~
ment were used together with maintenance logs to record the use and maintenance
performed during test operations.

The proposed maintenance schedules were adhered to, inasmuch as possible, to
perform routine inspection and repair. The repairs associated with any component
or system malfunction were performed, fime permitting, and the cause and nature
of repair recorded in the maintenance log. Other repair activities which could
not be completed during this reporting period are continuing as studies to provide
definitive methods or techniques to effect repair, and will require substantial effort
to complete.
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3.8.1 Maintenance and Calibration Schedule

The projected maintenance schedules for the test equipment and refrigerator system
are shown in figures 8 and 9. The schedules define the major sub-systems assoc-
iated with the test equipment and the components contained therein that require
periodic scheduled inspection, adjustment, repair and overhaul. To provide a
common criterion for maintaining records of the use and performance of scheduled
maintenance on the equipment, a use cycle was conceived and all the operational
forms were altered to permit conformance with this cycle.

The cycle is as follows:

. Insertion into hot cave for specimen installation.

. Removal from hot cave after specimen installation.
. Insertion into reactor beam port for test irradiation.
. Withdrawal from beam port ofter completing test,

and positioning the loop for insertion into the hot
cave for specimen change-over.

Normal operation of all the test equipment listed in figure 8 will follow this cycle.
In addition, this equipment will operate submerged in the quadrant water, and
with the exception of the carriages and test loops, it is accessible for maintenance
only when the quadrant is drained.

Deviation from the projected schedules are anticipated because scheduled main-
tenance will only be performed coincident with quadrant draining.

The projected refrigerator maintenance schedule (figure 9) is related to the hours |
of operation which are recorded cumulatively on a time meter which operates when

the expansion engines are operating. The maintenance performed is recorded in a

refrigerator maintenance log. Total operating time is also maintained by recording

start-up and shut-down time on the refrigerator operation forms.

The transfer system cycle form shown in figure 10 is typical of the equipment opera-

tion check lists that are maintained. They provide a combined check list and
operational history compatible with the scheduled maintenance program. The data
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on these forms is incorporated into a summary log, which, in turn, permits the
scheduling of maintenance requirements during reactor down periods.

3.8.1.1 Test Loop Scheduled Maintenance

To conform with the projected test loop maintenance schedule, shown in figure 8,
a form providing the required operating history is completed each time the foop

is used for performance of a test. The form includes all activities necessary to
complete an operational cycle, and the cumulative cycles of operation for the
test loop. This information is then used to establish when scheduled maintenance
is required. Any maintenance performed, scheduled or the result of a malfunction,
- was recorded in a maintenance log. A summary of these records indicating when
scheduled maintenance was performed versus the total operating cycles to date is
shown in figure 11.

During this reporting period, no malfunctions occurred during the performance of
in-pile testing; however, there were indications of leakage in the specimen loading
actuators and the loops were transferred to the hot laboratory area where the
actuators were removed. The units were disassembled, inspected and new seals
installed prior to reassembly. Each unit was hydrostatically and dynamically tested
prior to reinstallation into the loop. Scheduled maintenance of the test loops was
performed concurrently while the loops were in the hot laboratory.

3.8.1.2 Refrigeration System Scheduled Maintenance

The refrigeration system has operated a total of 2493 hours (743 hours this reporting
period) since the system was overhauled. The increased operating time (from 500 to
743 hours) between the scheduled maintenance was permitted to provide additional
time histories for future reliability analysis of the system. The extended operating
period was justified in that any malfunction could be repaired without jeopardizing
the testing schedules and that prior performance history (since overhaul) indicated
that the system would perform beyond the 500 hour period without malfunctions.

A summary of the total operating time of each expansion engine and an indication

of the type of maintenance performed is shown in figures 12, 13 and 14. When the
engines were cleaned, each was disassembled, requiring the installation of both
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O rings and valve body gaskets. Each time this was performed, this scheduled
maintenance requirement was considered fulfilled and a new period initiated.

Piston rods have been replaced in all of the engines now in service and those re-
moved will be inspected ultrasonically to establish their integrity. If these tests
indicate the rods are satisfactory, they will be reinstalled during future mainte-
nance periods.

In an effort to reduce observed helium leakage into the vacuum powder insulation
of the engine pods, the seal surface for the flange body gasket had to be refaced.
This required the fabrication of special holding fixtures and meticulous alignment
to perform the required machining. The results observed after installation of the
engines so modified have shown a significant reduction in the vacuum that can be
maintained, which is, in turn, reflected in total refrigerator capacity for a set of
operating parameters.

3.8.1.3 Carriage Scheduled Maintenance

A summary of the scheduled maintenance of the test loop carriages as projected in
figure 8 is shown in figure 15. During this reporting period, carriages number 2
and 3 were removed from the quadrant for the performance of scheduled mainte-
nance. Drive system bearings were replaced in carriage number 3 and other
components in both carriages were replaced after inspection. Both carriages were
tested and subsequently returned to the quadrant for use in the transfer system.

3.8.1.4 Transfer Table Scheduled Maintenance

A summary of the scheduled maintenance of the transfer tables as projected in
figure 8 is shown in figure 16. During this reporting period, inspection and adjust-
ments were made but no repairs were required.

3.8.1.5 Access Valve Routine Maintenance

Scheduled maintenance requirements shown in figure 8 for the beam port and hot
cave access valve equipment have been performed as indicated in figure 16. During
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this reporting period, routine inspections were made and the chevron seals at the
beam port valve were replaced while the quadrant was drained. These were not
required by the schedule but were performed to minimize the possibility of mal-

function.

3.8.2 Repairs and Adjustments

During this reporting period, a number of repairs and adjustments were required
for the test equipment. Some of these repair efforts were a continuation of effort
previously reported (ref. 6) and some were required due to equipment malfunction
during performance of the test program.

3.8.2.1 Test Loop Repairs

At the beginning of this reporting period, test loop required repair was in progress
for test loop 201-002. During the reporting period, additional repairs were re-
quired on test loops 201-003 and 201-004 and design modification of the head
_assemblies was initiated. These problems are discussed in the following sections.

3.8.2.1.1 Test Loop 201-002

As previously reported (refs. 5 and 6), leakage in one of the refrigerant lines was
noted in test loop 201-002. Further efforts during this reporting period enabled a
more precise determination of the position and nature of the leak. It appears to

be a circumferential crack in the weld of the aft joint between the bellows assem-
bly used to compensate for the change in length between the inner and outer helium
lines and the inner wall of the annular vacuum space insulating the refrigerant lines.

Attempts were made, using mock-up test fixtures with manufactured defects, to
determine a method of line repair in situ. One repair method tried was an attempt
to fill the defect with a metallic coating deposited by commercially available
electro-chemical methods. Both copper and nickel were tried as coatings. Initial

. difficulty was encountered in obtaining a chemically clean surface for plating the
ID of a stainless steel tube using methods feasible for remote techniques. A combi~
nation of electro-cleaning with alternating polarity and organic solvent chemical
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cleaning provided a surface on the tubing ID adequate for electro-plating. How-
ever, during deposition even at the lowest amperage available, the metal formed
nodular dendritic growths at the edge of the discontinuity, forming craters rather

than sealing the defect.

The electro-chemical approach was abandoned after this failure and several ad-
ditional attempts were made to seal manufactured defects using epoxy and silicone
sealants, Adequate room temperature sealing of the defects was obtained in several
instances using these materials. However, in all cases leaks developed on thermal
shocking with liquid nitrogen.

Further investigation of possible repair methods for this loop is being undertaken;
however, no method compatible with the remote handling requirements appears
feasible at this time.

3.8.2.1.2 Test Loop 201-003 and Test Loop 201-004

As reported in section 3.2.1, test loop 201-004 developed leakage in the specimen
loading actuator, This leakage, first observed during operation in reactor cycle
44P, was not considered sufficient to appreciably affect the load rate and there-
fore, the loop was retained in service throughout the reactor cycle. During reactor
down cycle 455, the loop was removed from the quadrant and transferred to the

hot laboratory work area.

Inspection of the actuator in the test loop indicated the difficulty was associated
with the rod end seals. These seals were replaced, the actuator was rebuilt and
reinstalled in the test loop and tested. The loop was returned to quadrant D and
is ready for operation in reactor power cycle 45P, scheduled for early in the next
reporting period.

The actuator rod end seals in test loop 201-003 were subsequently changed fol-
lowing a similar procedure. This was done to minimize the possibility of a similar
decrease in load rate occurring in this loop during in-pile testing.

3.8.2.2 Refrigeration System Repairs

As discussed previously in reference 5, the evacuated thermal insulating space in
one set of flexible helium transfer lines was known to be leaking. The loss of the
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vacuum surrounding the inner line caused a heat leak into the lines far exceeding
the permissible rate and also reduced the available refrigeration to a level where
a test specimen temperature of 30°R could not be maintained in the test loop.

The transfer lines terminate in a thermally isolated enclosure containing refrig-
erant shut-off and by-pass valves normally used to isolate the test loop from the
refrigerant stream and to permit circulation of the refrigerant in the transfer lines
to maintain them at low temperature during specimen change-over. These valves,
in all three transfer line assemblies, have frequently malfunctioned or leaked

so severely that they cannot be used for their intended application, thus requiring
the utilization of manually operated valves in the manifold to isolate the test
loops.

As previously reported (ref. 6) a leak developed in the flexible line of another
transfer line assembly. This assembly was shipped to the manufacturer after the
initial assembly which had been modified and repaired was received at Plum Brook
Reactor Facility.

Design modification includes incorporation of soft seats in the valves and pro-
vision for seat replacement without cutting or welding of the valve chest as
formally required.

The manufacturer was unable to locate the leak in the inner flexible section of
the helium transfer line; therefore, the entire section was replaced.

Subsequent leak testing performed by flowing hot gas through the inner line and
valve installation and applying heat to the external line with electrical resistance
tape type heating elements, to affect back-out of the vacuum space, indicated a
leak existed. Initially, the leak was assumed to be the result of high bake-out
temperatures damaging the indium seal used to isolate the vacuum space from the
flow through the valve body. However, subsequent leak testing after replacement
of the seal indicated other leaks existed in the other leg of the transfer line assem-

bly; therefore, it was not conclusively ascertained that the indium seal was leaking.

Replacement of the other inner flexible line and final leak testing were observed
by Lockheed personnel and the results indicate the system integrity is satisfactory.

The crossheads incorporated in each of the engine pods were removed for repacking

the stuffing boxes for the engine valve and piston rods. After replacement of these
packings the crossheads were reinstalled and connected to the engines.
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3.8.3 Corrosion of Test Equipment

As previously reported in reference 6, evidence of corrosion had been observed in
test head assembly 201-010. A design modification of the head assembly (see
section 3.8.2.1.4) has been initiated incorporating numerous design features
recommended by the corrosion engineer previously consulted. Reducing the welding
of thin gage metal, cleaning and passivation consistent with total test loop design
are incorporated together with other improvements to minimize the possibility of
deionized water contacting potential corrosion areas. Other features were not
incorporated due to design implications on the test loop; however, the new require~
ments will minimize corrosion susceptability and result in increased head assembly

life.

As discussed in detail in reference 6, the welded stainless steel actuator bellows
assemblies which separate helium from cooling water in the test loops have exhibited
corrosion at the welded peripheral seams. To alleviate this problem, the welded
bellows in the test loops will be replaced by two sections of two=ply hydraulically
formed bellows, welded end-to-end and welded to suitable adapters at the ends.
The end-to-end welding is required because the section lengths are limited by

the forming technique. The spring rate of the new bellows assembly is about
22 Ib/in.

The first replacement was made in the prototype loop to determine the best instal-
lation procedures before replacement of the bellows in the other loops. Following
the replacement of a bellows in the prototype loop, a new bellows was installed

in the non-irradiated test loop 201-005, to permit further refinement of the tech-
niques. The methods developed provided leak-free joints in these loops. However,
it remains to be determined if they are adequate for fabrication of leak-free welds
in the limited working exposures permitted on the irradiated test loops. Replace-
ment of the bellows in the irradiated test loops, however, will not be attempted
until necessitated by a bellows failure.

3.9 EXPERIMENT DESIGN MANUAL AND HAZARDS ANALYSIS

As previously reported (ref. 5), revisions of the Experiment Design Manual and
Hazards Analysis were required since:

. The present test program includes irradiation exposures

at 140°R, 320°R and 540°R as well as at 30°R. Prior
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3.9.1

experiment approval from the Plum Brook Reactor Facility
Safeguards Committee was predicated on operation at
30°R, freezing-out gaseous impurities in the refrigerant

prior to irradiation of the gas.

The present test program includes cyclic loading from
tension to compression, thus changing the stress pattern
on the test loop head from that used as a basis of the
stress analysis on which prior experiment approval was

based.

Analysis of Hazards Due to Gas Activation

The modification of the Experiment Design Manual and Hazards Analysis required

by the increased irradiation temperature was completed and reported in the pre-

ceding reporting period (ref. 6). Briefly, these changes consisted of an activation

analysis of the possible impurities in the refrigerant and determination of the de-

gree of hazard incurred in the event of the maximum credable incident.

It was determined that only three product radioisotopes, H3, Ar41 and Ne23,
would be present in the refrigerant after irradiation in significant quantities. Since
the maximum credable incident would be rapid release of all of the refrigerant
into the relatively small volume (=8800 ft3) of the compressor building, calcula-

tions were based on refrigerant dilution to that volume. A summary of the significant
data for these radioisotopes is shown below:

ACTIVITY MPC*
Isotope | Half-Life
diluted to 8800 ft3 | Controlled] Uncontrolled
dis/sec pe ue/cm3 Area Area
H3 12.26y |3.40 (+7)**| 9.43 (+2)| 3.49 (- 6) 2.0(-3) | 4.0 (- 5)
Aré4] 1.83h |7.85(+4) | 2.12 (0)| 8.50 (- 9) 2.0 (-6) | 4.0 (- 8)
Ne23 38.00s |6.60 (+3) 1.78 (<-1)| 7.15 (-10) 3.0 (-9) 1.0 (-10)

Since Neon-23, the only isotope exceeding the maximum permissible concentration
for uncontrolled areas under conditions of instantaneous release, has a half-life of

* MPC - Maximum Permissible Concentration ( pc/cm3)

* %
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less than forty seconds and the system circulation period is several minutes, no
hazard from release of refrigerant exists. Similar calculations indicated no hazard
from personnel exposure to piping or equipment components. The calculations and
conclusions were included in the Experiment Design Manual and Hazards Analysis
and the Plum Brook Reactor Facility Safeguards Committee has granted approval
for experiment operation at all temperatures up to 540°R. These calculations and
conclusions are presented in greater detail in reference 6.

3.9.2 Analysis of Hazards Due to Cyclic Loading

A refined hazards analysis, including various components in the test loop, opera-
ting in tension and compression in cyclic loading up to a maximum of 3500 pounds
load, was initiated during this reporting period. The analysis is to determine if
the head bolts and seal arrangement, the specimen holder and the end cap of the
head assembly are subject to fatigue failure under the most severe operating con-
ditions and if such a failure could constitute a hazard to the reactor or test facility
operation. The analysis will be more extensive than originally anticipated; but

it will be submitied for NASA approval early in the next reporting period.
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4 TEST PROCEDURES

The test procedures discussed in the following sections are required for the
acquisition of data under the carefully controlled test program environmental
conditions and the reduction, analyses and interpretation of the data thus
generated. Brief discussions of test specimen designs, flux mapping, tensile
test methods, fatigue test methods, and post-exposure structural studies follow.

4.1 TEST SPECIMEN DESIGN AND FABRICATION

The test specimens used in this program are miniaturized due to various restric-
tions on the test equipment imposed by the nuclear cryogenic environment. Two
specimen designs, one for the tensile test program and one for the fatigue test

program, are required. The configuration of these test specimens is shown in
figures 17 and 18.

4.1.1 Tensile Specimens

The tensile specimen shown in figure 17 and discussed in detail in reference 5,
represenfs a miniaturization of the standard ASTM E-8 specimen (ref. 3). It is
essentially a cylindrical tensile coupon, approximately two inches overall length,
with threaded ends. The specimen gage length is 0.5 inch with a nominal diam-
eter of 0.125 inch at the mid-point in the gage length, which conforms to the
standard 4:1 gage length to diameter ratio. There is a slight taper to the mid-
point of the gage length to insure fracture in that area.

All the tensile specimens required for the current scope of the test program have
been manufactured and delivered to Pium Brook.

4.1.2 Fatigue Specimens

Fatigue specimen design is not as standardized as tensile specimen design and the
fatigue specimens to be used in this program will represent a departure from any
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commonly used design. However, the specimen geometric configuration is
similar to that used by other investigators, such as Coffin (ref. 4). This will
allow some degree of comparison between this data and data from other labor-
atories. The specimen design under investigation is shown in figure 18,

The thirty specimens previously ordered (ref. 6), fifteen fabricated from Aluminum
1100-0 as typical of low strength materials and fifteen from 18 Ni 300 Maraging
Steel as representative of high strength materials, have been received at Plum
Brook for use in preliminary testing and procedure development.

The structural studies of the specimens failed in fatigue in the preceding quarter
(ref. 6) were continued; this activity is discussed in section 4.5,

4,2  FLUX MAPPING

Accurate knowledge of the fast flux available in HB-2, both spectral shape and
level, is necessary to determine the irradiation exposure required to provide the
~ desired integrated flux for each specimen.

The fast flux was measured at various reactor operational parameters during the
preceding reporting period (ref. 6) using fast neutron threshold foils (table 1).
The results of these measurements are reported in detail in reference 6 and shown
in figure 19.

A meeting of NASA and Lockheed personnel was held early in this reporting period
for a discussion of the flux mapping activities. It was concluded that there was
no significant change in flux level or spectral shape since the conclusion of the

screening program. The flux curves used in the earlier program (ref. 1 and ref.
6) are still in use as the basis of exposure calculations.

4.3  TENSILE TEST METHODS

Tensile testing requires the measurement and recording of several data for post-
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testing evaluation. These data include:

. Measurement and recording of the load on the specimen
continuously from the initial application until specimen
failure.

. Measurement and recording of the elongation of the
specimen continuously from initial application of the
load until a point after the total elongation represents
more than 0.2 percent permanent strain.

. Measurement of specimen temperature throughout irrad-
iation and testing.

. Measurement of elongation (a measure of total permanent
strain) and reduction of area (a measure of non-uniform
strain) on failed specimens as a post-irradiation examina-
tion.

The test methods required to provide accurate records of these parameters have
been discussed in some detail in a previous report (ref. 5). A brief summary of
these methods will be included in the following section, with a more detailed
discussion of the specimen temperature control development work conducted
during this reporting period.

4.3.1 Load-Strain Measurement and Recording, Data Reduction, Ductility
Measurements

Load measurements are monitored with a ring type dynamometer, using a linear
variable differential transformer (LVDT) to measure the ring deflection resulting
from the applied load. Elongation is measured using an extensometer in which a
LVDT measures the incremental separation between two knife edges initially 0.50
inch apart on the gage length of the specimen.

For load-elongation recording, the monitoring instruments convert the load or

elongation into electrical signals, of which the strength is a function of the magni-
tude of the measured parameter. The electrical impulse from each of these instruments
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is amplified and plotted automatically by an X-Y recorder. Load appears as
the Y plot, elongation as the X plot and the resultant load~elongation curves
are recorded on graph paper as a permanent record of these test data. The
extensometer is capable of measuring only about 0.010 inch elongation with
reliable accuracy. After this limit of approximately two percent total strain
has been reached, the recorder is switched to a load-time plot traveling at a
rate of 0,02 in/sec.

The load-elongation curve developed during testing on the X~Y recorder and
the initial specimen dimensions provide data for the determination of the ulti-
mate tensile strength (Fty) and the tensile yield strength (Fty). The modulus of
elasticity may be approximated from these curves, but an exact determination
of this value is unobtainable due to the method of extensometer installation
imposed by the necessity of using remote handling techniques.

Elongation and reduction of area values are obtained by fitting the broken
specimens together and measuring the fractured gage length and minimum diam-
eter by means of a micrometer stage and hair line apparatus accurate to £ 0,001
inch. These values are reported as the change in magnitude from original speci-
men dimensions expressed as a percentage of the original value.

All of these methods conform to the requirements of ASTM Specification E-8
(ref. 3), with an extensometer installation classification of B-2 under ASTM
Specification E-83 (ref. 3).

4,3.2 Specimen Temperature Control

Test specimen temperature control is required for three different test conditions:
(1) expose and fracture at specified temperature without intervening warm-up,
(2) expose at 30°R followed by warming to and fracture at higher temperature,
and (3) expose at 30°R, anneal at a higher temperature and fracture at 30°R.

The direct measurement of these temperatures using thermocouples or other
temperature measuring transducers was not considered practicable when per-
forming a series of these tests (ref. 1). An alternate method of establishing the
temperature at the specimen was incorporated into the refrigerator. This involves
measurement of the temperature at the manifold inlet and return using platinum
resistance type thermometers. These temperature measurements together with the
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return manifold sensor temperature establish the operational characteristics of
the refrigerator permitting the determination of performance parometers which
are related to the specimen temperature.

The control conditions required by (1) above, essentially the maintenance of a
predetermined specimen temperature during irradiation and testing under steady-
state conditions, were established during an earlier reporting period and described
in reference 5.

The technique used consisted of calibration of three copper-constantan thermo-
couples attached to a Titanium 6Al-4V test specimen against a NBS calibrated
platinum resistance thermometer and using this instrumented specimen as a
working standard to establish refrigeration system operating parameters required
for the maintenance of the desired specimen temperature both in~pile and out-
of-pile. This activity is reported in detail in reference 5 and reference 6 and
the important results are summarized in tables 2 and 3.

The control conditions required by (2) and (3) above have not as yet been com-
pleted since, as mentioned in section 5, the higher temperature in-pile testing
is not far advanced. This activity will be a continuing one during the tensile
testing program; however, no new data was available at the time of this report.
Temperature versus time plots for each of the various test conditions will be pre-
sented in a subsequent report.

4.4  FATIGUE TEST METHODS

After modification of test equipment (see sections 3.2.2 and 3.4) and determina-
tion of a suitable test specimen (see section 4.1.2), low-cycle fatigue character-
istics of the selected materials will be studied. The test procedure will consist of
applying a predetermined stress load at a cyclic rate of 6 cpm for 10,000 cycles
unless the test is interrupted before this point by specimen failure.

Written preliminary procedures for the fatigue test methods have been prepared

- and approved by NASA, The approval of the preliminary procedures authorizes
- out-of-pile fatigue testing. These tests will be inagurated in the next reporting
period. As reported elsewhere (section 3.9), the revisions to the Experiment
Design Manual and Hazards Analysis required prior to in-pile fatigue testing are
in the process of preparation.
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4,5  STRUCTURAL STUDIES

Structural studies are to be performed with the aid of optical microscopy,
electron microscopy, and X-ray diffraction. Procedures for these methods are
being developed in cooperation with NASA Plum Brook Reactor Facility personnel.

As previously reported (ref. 6), a fatigue specimen failed during test loop develop-
ment had been submitted to the NASA Plum Brook Hot and Metallurgical Labor-
atories Section for the development of electron microscope techniques.

Replication techniques for electron fractograph studies on the failed surface were
developed. Figure 20 shows an electron fractograph made from a replica pre-
pared during this program. Fatigue striations are not distinct on this fractograph,
but the fractured surface shows the equiaxed dimples which are characteristic

of fatigue failures occurring during tensile loading. Shear dimples, which

would be indicative of specimen misalignment, were not observed, Additional
replicas have been prepared using refined techniques in an effort to improve
detail reproduction. Electron micrographs from these later replicas were not
available in time for publication in this report.
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5 TEST PROGRAM

The scope of the test program, including the basis for material selection, has been
previously reported (ref. 5 and ref. 6) and consists of the following major items
of investigation:

. Effects of cryogenic irradiation and annealing
on tensile properties of Aluminum 1099-H14.

. Effects of irradiation at 30°R on commercially
pure titanium and on several titanium alloys.

. Effects of cryogenic temperatures on tensile
properties of Aluminum 7178-T6 and commer-
cially pure titanium.

. Effects of irradiation on low-cyclic rate fatigue
properties of titanium and fitanium alloys.

The scope of the program is logically divided into two phases:

. The tensile testing phase, including the items
listed in table 4, to be discussed in section 5.1.

. The fatigue testing phase, including the items
listed in table 5, to be discussed in section 5.2,

The materials, pure aluminum, titanium and titanium alloys, to be tested during
this program were selected on the basis of their potential usefulness in nuclear-
cryogenic space hardware and their ability to yield fundamental information in
terms of basic mechanisms occurring in metals and alloys during and following fast
neutron irradiation at cryogenic temperatures. All test specimens used in the pro-
gram are fabricated from materials manufactured using extraordinary precautions
and provided with complete chemical and metallurgical pedigrees. A summary of
the pedigree information is given in tables 6 and 7.

27



During this reporting period, forty-four out-of-pile tensile tests were performed to
complete the out-of-pile tensile testing phase of the program. Also, a total of
eleven tensile specimens were successfully irradiated from 5 x 1015 nvt to 1 x 1018nvt
and tested at temperatures ranging from 30°R to 320°R. No fatigue testing within

the scope of the program was performed during this period.

5.1 TENSILE TESTING

The tensile testing phase of the program, as shown in table 4, consists of testing

both unirradiated control specimens and irradiated specimens of polycrystalline high
purity aluminum, Aluminum 1099-H14 and irradiated specimens of three titanium
alloys; Titanium 55A, Titanium 5Al-2.5 Sn, and Titanium 6Al-4V, Aluminum 7178~
T651 and Titanium 55A are tested at two temperatures, unirradiated, to obtain data
for use in specimen size correlation studies being performed by NASA.

5.1.1 Effects of Cryogenic Irradiation and Annealing on Aluminum 1099-H14

Aluminum 1099 is a high purity (99.99%) aluminum and, although it is of little value
as a structural material, was selected for study because it has exhibited very large
effects due to irradiation at 30°R (ref. 1). The material also exhibited some annealing
effects as well as effects due to deformation prior to irradiation. This combination

of effects offers a good opportunity for study of irradiation-cryogenic mechanisms at

a relatively low level of integrated neutron flux.

The testing of Aluminum 1099, as set forth in table 4, consists of out-of-pile con-
trol tests and in-pile tests for the following four studies:

. Effects of irradiation at 30°R
Effects of irradiation temperature

Effects of annealing and test temperature
following irradiation

Effects of annealing
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The control tests on the unirradiated Aluminum 1099-H14 specimens were completed
during this period. Testing of irradiated specimens was continued; nine specimens
were tested at several test conditions during this period. The results of these tests
now available are given in tables 8 through 12, The temperature dependence of
the mechanical properties of Aluminum 1099-H14, unirradiated, is shown in figure
21. The testing of irradiated specimens is insufficiently advanced to allow evalua-
tion of the test results.

5.1.1.1 Effects of Test Temperature, No Irradiation, Control Tests

Aluminum 1099-H14 was tested at 30°R, 140°R, 320°R, and 540°R without irradia-
tion to obtain control test data for the nuclear cryogenic irradiation and annealing
studies. These data are complete and are given in table 8, along with pertinent
data from the previous screening program (ref. 1). The magnitude of the cryogenic
effects on the tensile properties are shown in the family of curves plotted in figure
21. Figure 22 shows a family of load-elongation curves for the various test temp-
eratures.

Extra test values were obtained for control purposes at the various temperatures to
determine if there were any possible systematic effects of temperature changes prior
to testing. If existant, such changes could be attributed to differential thermal
contraction in the specimen loading components of the test loop and would have to
be considered in the evaluation of the annealing data taken with the test loop
components subjected to the same temperature changes. It should be noted that
special precautions during insertion of the specimen and preparation for testing

are meant fo exclude this possibility. If observed at all, such effects would be ob-
served in the yield sirength values. Evaluation of the data indicates that in nearly
all cases, there are no statistically significant differences (at the 90% confidence
level).

There is a significant difference, small compared with irradiation effects, at 320°R
but this difference is attributable to location in the stock from which the specimens
were taken. The test specimens are numbered according to the location from which
they were taken in the sheet stock and are generally chosen at random for a partic-
ular test condition. This results in effects due to variations in the material and
tensile properties within the stock being averaged out. However, in this particular
case there was an error in the choice of specimens with the resulting nonrandom
location which could easily account for the small but statistically significant dif-
ference between the yield strength values from the two groups of tests at 320°R. This
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conclusion is confirmed by differences in ultimate strength and ductility values,
small compared with test temperature effects, which can also be attributable to
location in the stock.

Although there are no significant differences between the various groups of tests

at 30°R, there is a significant difference between these values as a group obtained

in the new program and the values obtained at the same temperature in the screening
program (ref. 1). These differences have to be attributed to differences in work
hardening during fabrication because of the lack of similar differences in the ultimate
strength and ductility values. Although little work has been done at extremely low
temperatures on this material, test data from other laboratories (ref. 7) indicates

the probability of a cold-work dependent divergence of Fty at temperatures below
140°R for commercially pure aluminum (Aluminum 1100).

Because the noted differences can be attributed to stock variation and fabrication
variables rather than to differences in test conditions, the means and the ranges

of all the values obtained at the particular temperatures are being used as control
data.

Examination of the family of curves shown in figure 21 shows that the Fty is rela-
tively insensitive to temperature variation while the Fyy is strongly temperature
dependent, particularly below 140°R. This, naturally, produces a profound effect
on the Fty/Fiy ratio. Also worthy of note is the rather sharp drop in reduction of
area occurring near 140°R. The relatively high reduction of area to elongation
ratio at temperatures above 140°R indicate a large degree of necking down during
late plastic behavior; a value near unity for this ratio at lower temperatures is
indicative of uniform plastic strain.

Although the range of the data for the Fty obscures the magnitude of a specific
effect, the overall relationship of the several tensile test parameters justifies the
general validity of the difference of cryogenic strain mechanism discussed in the
summary report of the screening program (ref. 1).

5.1.1.2 Effects of Irradiation at 30°R

This study is to determine the effects of neutron irradiations up to 3 x 1017 vt
(E>0.5 Mev) at 30°R on Aluminum 1099-H14. The specimens are held at 30°R
throughout irradiation and tensile testing.
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The partial test data so far obtained for several integrated flux levels are presented
in table 9.

Preliminary analysis of the partial data indicates the probability of a marked depend-
ence of the Fyy, the Fty/Ftu ratio and the ductility parameters on irradiation level.
However, detailed discussion of these effects will be deferred until completion of
the 30°R irradiation testing of Aluminum 1099-H14,

5.1.1.3 Effects of Irradiation Temperature

This study of the effects of irradiation temperature on Aluminum 1099-H14 has begun
and the data so far available are shown in table 10. The specimens are maintained

at a specified temperature throughout neutron irradiation to 1 x 1017 nvt, (E>0.5 Mev)
and testing.

The data are only partially complete and further discussion will be deferred until a
later report.

5.1.1.4 Effects of Annealing and Test Temperature Following Irradiation

This study is to determine the magnitude of irradiation effects remaining at various
temperatures following irradiation at 30°R. The specimens are irradiated to 1 x 1017
nvt (E>0.5 Mev) at 30°R and then warmed to a higher temperature and annealed at
that temperature for an hour and tested at that temperature.

The data so far obtained is given in table 11. Further discussion will be deferred
until the tests are completed.

5.1.1.5 Effects of Annealing Following Irradiation

This study is to determine the magnitude of annealing at various temperatures of
irradiation effects occurring at 30°R. The specimens are irradiated to 1 x 1017 nvt
(E >0.5 Mev) at 30°R and then warmed to a higher temperature and annealed at
that temperature for an hour. They are then cooled to and stabilized at 30°R and
tested.
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The data so far obtained is given in table 12, Discussion of the annealing effects
will be presented in a later report when these tests are complete.

5.1.2 Effects of Irradiation at 30°R on Titanium and Titanium Alloys

The titanium alloys of primary alpha structure usually exhibit good cryogenic prop-
erties due to the hexagonal close-packed structure of this phase. They have a high
modulus of rigidity and a high strength-weight ratio which is comparable with the
best aluminum alloys. Also, they have allowable working temperatures which are
higher than the aluminum alloys. This makes them more suitable for rocket compo-
nents since initially during rocket firing at cryogenic temperatures they may see
elevated temperatures.,

The tensile testing phase of the program, as set forth in table 4, consists of three
investigations:
Effects of irradiation at 30°R on commercially

pure titanium (Ti-55A).

. Effects of interstitial content in Ti-5Al-2.5 Sn on
changes due to irradiation at 30°R

. Effects of initial heat treatment of Ti-6Al-4V

on changes due to irradiation at 30°R

Out-of-pile test data and in-pile test data for irradiations to 1 x 1017 nvt (E>0.5 Mev)
were obtained in the screening program (ref. 1), and some additional data were ob-
tained during a previous reporting period (ref. 6). During the present reporting

period two additional in-pile tests to 1 x 1018 nvt (E>0.5 Mev) were completed.

5.1.2.1 Effects of Irradiation At 30°R on Titanium 55A

Titanium 55A, although of only moderate strength, has good forming characteristics
and meets the requirements for some nuclear rocket applications; however, it was
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selected for study in this program primarily because it is essentially commercially
pure elemental titanium and may yield important fundamental information. It has
exhibited a small but measurable increase in yield strength due to fast neutron
irradiation of 1017 nvt at 30°R.

This phase of the test program was completed in a previous period and reported in
reference 6. The test results are repeated in table 13 and plotted as a function
of integrated neutron flux at 30°R in figure 23. Figure 24 shows typical load-
elongation curves for the various irradiation levels included in the testing phase
of the investigation.

The data plotted in figure 23 show that there is a direct dependence of Fty and Fty
on irradiation level (to 1018nvt) accompanied by a significant but not critical
reduction in ductility parameters. No degradation of any mechanical property

of sufficient magnitude to compromise engineering integrity after exposures to
1018 nvt was observed.

Titanium 55A is essentially a polycrystalline titanium of commercial purity. This
material was tested in the annealed condition, but with standard interstitial con-
tent; therefore, the population of "foreign" substitutional solute atoms should

be small but the number and distribution of interstitial atoms should be similar to

the interstitial populations in alloyed materials. Since alpha titanium is a hexa-
gonal close packed lattice material, slip might be expected to be fairly laminar -
particularly with a relatively small population of substitutional atoms. The presence
of interstitials might be expected to increase turbulence of the flow during slip.
Since the reported Fty is based on 0.2% offset rather than on divergence from Hookes
Law, the relatively low (for titanium alloys) Fty/Ftu ratio of about 0.7 at 30°R,

both unirradiated and at 1 x 1017 nvt, indicate a rather laminar behavior; the increase
of this parameter to 0.75 at 6 x 1017 and 0.78 at 1 x 1018indicates an increase in
turbulence resultant from lattice imperfections induced by increased irradiation

. levels,

5.1.2.2 Effects of Interstitial Content in Ti-5Al1-2.5 Sn On Changes Due
To Irradiation At 30°R

Titanium - 5% Al - 2,5% Sn is a fairly high strength alpha phase alloy (Fty=120 Ksi
at room temperature). It is now commercially available in the extra low interstitial
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grade (less than 0.125% interstitials, and designated eli) and possibly would be
specified in this grade by designers for use in shells, pressure vessels and gump
parts of nuclear rockets, However, recent nuclear cryogenic tests to 1017 nvt
(E>0.5 Mev) at 30°R indicate that the ultimate strength of the eli material is
adversely effected by the neutron irradiation. It is conceivable that higher irrad-
iations might cause adverse effects on various properties, including fatigue strength,
which would negate any inherent advantages of the eli material. In addition,
tensile testing of both grades of this alloy might yield fundamental information on
the general role of interstitials in nuclear cryogenic processes occurring in all metals
_and alloys.
'

During this reporting period in-pile tensile testing following irradiation of 1 x 1018
nvt (E>0.5 Mev) at 30°R was begun on this material in the extra low interstitial
(ELI) grade. Test results are presented in table 14 along with data obtained prev-
iously (ref. 1). It is deemed advisable to defer further discussion of this material
until complete test data is available, not only on Titanium 5A1-2.5 Sn (ELI), but
also for Titanium 5Al-2.5 Sn (Std) to allow a comparative evaluation of the effects
of interstitial content.

5.1.2.3 Effects of Initial Heat Treatment of Ti~6Al-4V On Changes Due
To Irradiation At 30°R

Titanium ~ 6% Al - 4% V is an alpha-beta alloy in which the beta phase is meta-
stable in the annealed condition and largely transformed to alpha by aging. The
ultimate strength of the aged materials is about 170 ksi at room temperature with
favorable cryogenic characteristics and it is very likely to be specified for shells
and pressure vessels in space hardware. Irradiation to 1017 nvt at 30°R causes
measurable increases in the strength of the aged material but not the annealed
material. High irradiations at the same temperature may confirm this effect and
may possibly yield fundamental information regarding the effects of nuclear irradia-
tion on precipitation processes. Such effects are still not very well understood
although they are of wide general interest to both basic researchers and applications
people.

These materials are to be irradiated to 1 x 1018 nvt (E> 0.5 Mev) at 30°R and

tested at 30°R in this program; but as of the end of this reporting period none of
these tests have been completed.
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5.1.3 Effects Of Cryogenic Temperature On Tensile Properties Of
Aluminum 7178-T651 And Titanium 55A

The tests of Aluminum 7178-T651 and Titanium 55A at 140°R and 540°R, unirradiated,
have been completed and are given in tables 15 and 16. These data are for use in
specimen size correlation studies being performed by NASA personnel and further
discussion is not warranted.

5.2 LOW-CYCLE FATIGUE TESTING

The low-cycle fatigue testing phase of the program is shown in table 5. The fest
materials to be used are the same as those used in the titanium and titanium alloys
portion of the fensile testing program.

No test results are as yet available from low-cyclic rate fatigue testing.
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TABLE 4 TENSILE TEST PROGRAM (SCOPE)

Material Condition Number Exposu re Remarks
Specimens nvt Temperature (°R)(])
(E>0.5 Mev) Exposure  Post-Exposure
1099 Al -H14 3 5x 1015 30 -- (10)
1099 Al -H14 3 5x 1016 30 -- (10)
1099 Al -H14 3 1x 1017 30 -- (2)(9)
1099 Al -H14 3 3x 1017 30 -- (9)
1099 Al -H14 3 0 140 -- (9)
1099 Al -H14 3 1x 1017 140 - -
1099 Al -H14 3 0 320 -- (9)
1099 Al -H14 3 x 1017 320 - (9
1099 Al -H14 3 1x 1017 540 -- -
1099 Al -H14 3 0 30 140 (3)
1099 Al -H14 3 1x 1017 30 140 ( 4)
1099 Al -H14 3 0 30 320 (3)
1099 Al -H14 3 1x 1017 30 320 (
1099 Al -H14 3 0 30 540 (
1099 Al -H14 3 1x 1017 30 540 (
1099 Al -H14 3 0 30 140 (
1099 Al -H14 3 1x 1017 30 140 (
1099 Al -H14 3 0 30 320 (
1099 Al ~H14 3 1x 1017 30 320 (
1099 Al -H14 3 0 30 540 (5) (9)
1099 Al -H14 3 1x 1017 30 540 (
Ti-55A Annealed 5 0 540 - (
Ti-55A Annealed 5 0 140 - (
Ti-55A Annealed 3 6 x 1017 30 - (
Ti-55A Annealed 3 1x 1018 30 - (
Ti-5A1-2.55n  Annealed 3 1x 1018 30 -- (
(ELI)
Ti-5A1-2.55n  Annealed 3 1x 108 30 -- (8)
(STD)
Ti-6Al-4V Annealed 3 1x 1018 30 -- (8
Ti-6Al-4V Aged 3 1x 1018 30 -- (8
7178 Al -Té51 5 0 540 -- (7
7178 Al -Té51 5 0 140 -— (7
(1). Data from tests at 30°R and 540°R without irradiation available from screening program (ref. 1).
(2). Data from one specimen for this condition available from screening program (ref. 1).
(3). Control specimen, to be stabilized at exposure temperature before stabilizing and testing at
post-exposure temperature,
(4). To be stabilized at post-exposure temperature before testing at post-exposure temperature.
(5). Control specimen to be stabilized at exposure and post-exposure temperatures before
stabilizing and testing at 30°R.
(6). Temperature to be reduced to and stabilized at 30°R before testing at 30°R.
(7). Data from five additional specimens available from screening program (ref. 1).
(8). Data from tests at 30°R and 540°R without irradiation and at 30°R with 1 x 1017 vt
irradiation available from screening program (ref, 1),
(9). These tests completed at the end of this reporting period.
(10). These tests partly completed at the end of this reporting period.
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TABLE 5

FATIGUE TEST PROGRAM (SCOPE)

No. Speci- Exposure
Material mens (Max) Test Type °R Cpm Location

Ti-55A 9 Fatigue During Exposure 540 6 Out-of-pile
Ti-55A 9 Fatigue During Exposure 30 6 Out-of-pile
Ti-55A 9 Fatigue During Exposure 30 6 In-pile
Ti-5A1-2.5 Sn (Eli) 9 Fatigue During Exposure 540 ) Out-of~pile
Ti-5A1-2.5 Sn (Eli) 9 Fatigue During Exposure 30 6 Out-of-pile
Ti-5A1-2.5 Sn (Eli) 9 Fatigue During Exposure 30 6 In-pile
Ti-5Al-2.5 Sn (Std) 9 Fatigue During Exposure 540 6 Out-of-pile
Ti-5A1-2.5 Sn (Std) 9 Fatigue During Exposure 30 6 Out-of-pile
Ti-5A1-2.5 Sn (Std) 9 Fatigue During Exposure 30 6 In-pile
Ti-6Al1-4V (Ann) 9 Fatigue During Exposure 540 6 Out-of-pile
Ti-6Al-4V (Ann) 9 Fatigue During Exposure 30 6 Out-of-pile
Ti-6A1-4V (Ann) 9 Fatigue During Exposure 30 6 In-pile
Ti-6Al-4V (Aged) 9 Fatigue During Exposure 540 6 Out-of-pile
Ti-6Al-4V (Aged) 9 Fatigue During Exposure 30 6 Out-of-pile
Ti-6Al1-4V (Aged) 9 Fatigue During Exposure 30 6 In-pile

Post-

No. Speci- Exposure Exposure
Material mens (Max) Test Type nvt(E>0.5 Mev) °R °R Cpm

Ti-55A 9 Post-Exposure Fatigue 0 30 30 6
Ti-55A 9 Post-Exposure Fatigue 1x 1017 30 30 6
Ti-5A1-2.5 Sn (Eli) 9 Post-Exposure Fatigue 0 30 30 6
Ti-5A1-2.5 Sn (Eli) 9 Post-Exposure Fatigue 1x 107 30 30 6
Ti-5Al-2.5 Sn (Std) 9 Post-Exposure Fatigue 0 30 30 6
Ti-5A1-2.5 Sn (Std) 9 Post-Exposure Fatigue 1x 1017 30 30 6
Ti-6Al-4V (Ann) 9 Post-~Exposure Fatigue 0 30 30 6
Ti-6Al-4V (Ann) 9 Post~Exposure Fatigue 1x 1017 30 30 6
Ti-6Al-4V (Aged) 9 Post~Exposure Fatigue 0 30 30 6
Ti-6Al-4V (Aged) 9 Post-Exposure Fatigue 1x 1017 30 30 6
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Load Control
System

Refrigeration System

Sample
Change
Equipment

Test Loop

Transfer System (Includes hot cave and HB-2 valves)

FIGURE 2

Miscellaneous

Test Equipment

TEST EQUIPMENT (BLOCK DIAGRAM)
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Cycle

Counter
Function Ramp Servo Valve Load
} Generator Signal Controller Monitor
Conditioner
Hydraulic Servo
Oil Pump Valve &
Manifold
Oil Water
Cylinder Cylinder Load
Cell
N
Test Loop
Actuator
Specimen
FIGURE 5 FATIGUE LOAD CONTROL SYSTEM (BLOCK DIAGRAM)
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TEST LOOP

| Instrumentation
Calibration Load Transducer

| Electrical Integrity /
Extensometer "m ----- ve s asleemroloesea]eecac]eeresfoecocesfereceesfonscoe
Mechanical Integrity Y Y Y Y /

Pressure Integrity
Refrigerator System-Helium

Static Sumergence-Water
Coolant System-Water
Load Actuator Mechanism
Dynamic Characteristics
" “Hydraulic Unifs (Mini Pump) f f f f
CARRIAGES
Drive System Y
Hydraulic Motor
Drive Gearing %
Drive Bearings /
Yoke Support Bearings
Limit Switches
TRANSFER TABLES
Carriage Drive (Longitudinal)
Hydraylic Units
Stop System - Fixed : : /
Stop System - Hydraulic
Clutch Mechanism
Rack & Pinion Drive
Limit Switches \ /
Transverse Drive
Hydraulic Units
Bearing Assemblies
1 tem - Fixed
Stop System - Hydrgulic
limit Switches 4 / 4
Rotational Drive (North Table) ;
Stop System - Fixed
Limit Switches \'4
BEAM PORT AND HOT CAVE
ACCESS VALVES

e
~
-
-
-ty
Pl
o~
-

<l
o~

SRS

Pt Val
~

P | Wl P | D
~

ly

|_Carriage Coupling Assembly $
Seal Integrity %_
50

Primary Water Isolation System
Cycles 0 5 10 15 20 25 30 35 40 45

V Inspection & Adjustment if Required
¥ Disassembly and Inspection

VW Replacement Overhaul

f . Fatique Equipment

FIGURE 8  TEST FACILITY EQUIPMENT MAINTENANCE SCHEDULE
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tOOP NO.

CARRIAGE NO.

REACTOR CYCLE NO.

HOT CAVE INSERTION CHECK LIST

DATE TIME

"Reactor-Hot Cave" Switch
in Hot Cave Position

"Master-Hot Cave" Switch
in Master Position

Hot cave valve in quadrant
open (visuol inspection)

Communication between
operators

"Master-Hot Cave" Switch
changed to"Hot-Cave" position

Hot cave valve open - Verified

Insertion Complete

"Master-Hot Cave" switch returned
to "Master" position

TRANSFER SYSTEM CYCLE

CYCLES TO DATE

CYCLES TO DATE

OO0o00aagao

O

. s
9

initia

{

initio

nitia

| 4

|

nitia

]

initia

BEAM PORT INSERTION CHECK LIST

DATE TIME

Track position with respect
to beam port

Sample Temperature
a. Inlet helium temperature °F

b. Outlet helium temperature °F

Check dynamic hydraulic
pressure high range {550 psig)

Manual test loop cooling water
valves open

Test loop cooling water Flow Verify
Sea! water fiow on

Seal water pressure, psi

Beam port valve position

Test loop position {ful! forward)

Time Insertion Complete

REMARKS:

OJ

OO0O0000a0gano

(I

5
=l
o

initio

nitia

HOT CAVE REMOVAL CHECK LIST

DATE TIME

Communication between operators
"Master-Hot Cave" Switch
in "Hot Cave" Position

"Reactor~Hot Cave" Switch
in "Hot Cave" Position

Hor cave volve closed
"Master-Hot Cave" Switch
changed to"Master" Position

Hot Cave valve in quadrant
in "closed" position

Loop "normal rear” position

OO0 oaooad

BEAM PORT REMOVAL CHECK LIST

DATE TIME

Manual test foop cooling

water valves closed

"Seal" light off

Beam port valve closed

Test loop cooling warer flow off

Seal Water flow off

Test loop position
{normal rear)

Time Withdrawal Complete

]DDDDDD

initia

tnitia

|

initial

initia

]

initia

]

|

initia

'J

nitio

initial

FIGURE 10

TRANSFER SYSTEM CYCLE OPERATION FORM
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TEST LOOP NUMBER 201-002

Instrumentation

Calibration Load Transducer
Electrical Integrity
Extensometer

Mechanical Integrity

Pressure Integrity
Refrigerator System-Helium
Static Submergence-Water
Coolant System-Water
Load Actuator Mechanism

Hydraulic Units (Mini Pump)

TS N WA

aaaadaa o bl

Cycles
TEST LOOP NUMBER 201-003

Instrumentation

Calibration Load Transducer
Electrical integrity
Extensometer

Mechanical Integrity

Pressure Integrity

Refrigerator System-Helium
Static Submergence-Water
Coolant System-Water

Load Actuator Mechanism
Hydraulic Units (Mini Pump)

bl )

[N E RN EW N ww

Cycles
TEST LOOP NUMBER 201-004

Instrumentation

Calibration Load Transducer
Electrical Integrity
Extensometer

Mechanical Integrity

Pressure Integrity

Refrigerator System-Helium
Static Submergence-Water
Coolant System-Water

Load Actuator Mechanism
Hydraulic Units (Mini Pump)

it l b1y

s s da g bt g laag

Cycles
TEST LOOP NUMBER 201-005

Instrumentation

Calibration Load Transducer
Electrical Integrity
Extensometer
Mechanical Integrity
Pressure Integrity
Refrigerator System-Helium
Static Submergence-Water
Coolant System-Water
Load Actuator Mechanism

Hydraulic Units (Mini Pump)

TR T I 1 daabadeded )

sty

Cycles

sl i da gl gy
2 '
o
<y
\AAAA SR AL ALAAAAALALA A/
' 4
%
17
Y
2% '/
T TETE & FEYTE NWET
<A 2
——— 7
—VV-VYVVVVYYYY
TV 7
' <7
' 7
e g
e L e el
sl gl ale gy

T Inspected & Adjusted As Required

¥ Disassembled and Repaired
v Overhauled

FIGURE 11

7

0

30 40

MAINTENANCE HISTORY - TEST LOOPS 201-002, 201-003, 201-004 AND 201-005
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CARRIAGE NUMBER 1

Drive System
Hydraulic Motor
Drive Gearing

Drive Bearings

Yoke Support Bearings
Limit Switches

lllllllll

Jllllllll

g la g

Lo a i

poa 1 laag

CARRIAGE NUMBER 2

Drive System
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FIGURE 20 ELECTRON FRACTOGRAPH OF FAILED FATIGUE SPECIMEN
18 Ni 300 MARAGING STEEL, 26.5 CYCLES AT 5 CPM, 270 KSI
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ABSTRACT

This is the third quarterly report summarizing, to date, studies (under Contract
NAS 3-7985) of the effects of nuclear radiation on materials at cryogenic temp-
eratures. These studies include the effects of (1) 1018nvt at 30°R on tensile
properties of titanium base alloys; (2) irradiation temperature (30°R to 540°R) on
tensile properties of Aluminum 1099-H14 following irradiations up to 3 x 1017 nvt;
(3) annealing following irradiation at 30°R to 1017 nvt on tensile properties of
Aluminum 1099; (4) irradiation at 30°R on axial, low-cycle fatigue properties of
titanium base alloys; and (5) temperature (140°R and 540°R) on tensile properties
of Titanium 55A and Aluminum 7178. This report describes maintenance of and
modifications to existing test equipment, preparations for testing, tensile test
results from Titanium 55A, partial in-pile tensile test results from Aluminum 1099
(including annealing) and Titanium-5A1-2.5 Sn (ELI), and out-of-pile tensile test
results from Aluminum 1099 and Aluminum 7178.
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