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This paper discusses the uniform cylindrical waveguide fonned by piacing 

one conductor inside a conducting tube. Because of  the complexity of the guide's 

cross section, the numerical technique of the pointmatching method i s  adopted 

to solve the boundcryvalue problem. The formulations are carried out for the c ~ s e  

when each of the conductors has an arbitrary cross section and also for the case 

when one of the conductors has  a circular cross section. 

The coaxial waveguide modes, in  which the field components have angular 

variations, split into odd and even modes when the center conductor begins to shift 

axis to brm the uniform eccentric waveguide. However, only even modes in the 

eccentric guide correspond to the coaxial modes with no angular variations. The 

dependence of the cutoff frequency on the eccentricity of the guide i s  determined 

numerically for even and odd TE and TM modes.' Experimental results verify the 

theoretical calculations for TE modes. QAst- 
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1. INTRODUCTION 

A two-conductor waveguide in which one conductor encloses the other 

and each hus an arbitmry cross section presents an interesting problem for the 

application of the pointlnatching technique. A special case of t h i s  guide i s  

when each of the two conductors has a circular cross section; such a circular 

eccentric guide has been used as an adjustable quarter-wave tmnsfoimer for 

TEM wave modes of propagation. ' The characteristic impedance of this trans- 

mission line decreases as the eccentricity between the inner and the outer con- 

ductors increases. When opemting at  relatively high frequencies, however, i t 

should be token into account that high order d e s  may be excited. 

eigenvalue problems in many areas of engineering science. 2-5 The boundary 

conditions o f  a two-dimensional problem are imposed at  a finite number of points 

around the periphery. Under this assumption, the partial differential equation of 

the problem can be reduced to a system of algebraic equations. This method is  

convenient especially when a high speed digital computer i s  available. In this 

paper, the cutoff frequencies of circular eccentric waveguides w i l l  be calculated 

by the point-matching method for the lowest and the next higher order TE and TM 

wave d e s ,  and the results are plotted for several geometrical configurations. 

Recently, the point-matching technique h a s  been utilized to solve 

It i s  observed that each o f  the degenerate wave modes (with angwlar-varying 

field distribution) in the circular coaxial waveguides are split into two modes when 

the guide becomes eccentric, namely: the even and the odd modes. The even mode 

i s  assigned to the mode for which the longitudinal field component i s  symmetric with 

respect to the line of eccentricity, while the odd mode i s  assigned to the mode for 

which the longitudinal component i s  anti-symrnetric with respect to the line of 

eccentricity. Each of the modes with no angularlrarying field in the coaxial 

waveguides h a s  only even modes in eccentric waveguides. 

t 

The line of eccentricity i s  defined as the line joining the centers of the 
t 

two conducton. 



Cutoff frequencies of both the lowest order even and odd TM wave modes are 

decreasing with increasing eccentricity. The cutoff frequency of  the lowest 

order even TE mode i s  increasing with increasing eccentricity. There is, 

however, very l i t t le change in cutoff frequency of the lowesf order odd TE 

mode i f  the ratio of the mdii  o f  the outer and inner conductors i s  equal to 

three or larger. 

The objective of +his paper I s  twofold: ?)  to obtain & t ~  of seven! 

circular eccentric waveguides of  different geometrical configurations, 2) to 

show that the eigenvalue problem of this type of two-conductor waveguide 

in which each conductor i s  arbitmy in cross-sectional shape, can be solved 

by the point-matching method. 

The measured data for two circular eccentric guides verify the theoretical 

values. 

2. THEORETiCAL FORMULATION 

Consider a two-conductor waveguide in which one conductor encloses 

the other. Let the guide be oriented such that the z-axis i s  enclosed by the 

inner conductor, and the cross section of the guide be symmetrical with respect 

to the x-axis as shown in Fig. l(a). Let a tirne-harmonic [exp ( iwt )  3 electro- 

magnetic wave propagate between the two conductors in the positive zdirection. 

The solutions of the scalar Helmholtz equation, b r  the even and odd modes may 

be written in terms o f  coaxial wave modes as follows: 6 

* e = en J n &r)+ B en Yn(kr)] cos ne 
n=o 

= C b4 J (kr)+ B Y (kr)] s i n  ne 
0 on n on n n= 1 

where the subscripts e and o stand for even and odd respectively, n i s  an 

integer, and r and 0 are the polar coordinates. J and Y are the nth 
n n 



order Bessel functions of  the first and second kinds respectively. The quantities 

A and B are constants to be determined by the boundary conditions. The 

cutoff wave number k, i s  given by 
n n 

2 2  2 k = W P C  - k  
0 0  z 

where ~r and c are the constitutive parameters of free space, w i s  the 
0 0 

operating angular frequency, and k = 2n/X , i s  the propagation constant. 
2 9 

The wave function 9 = H for TE wave modes, and $ = E for TM wave d e s .  
Z Z 

The wave function rlr must sat is fy  either Dirichlet or Neumann boundary 

With the known longitudinal field components ti or EZ the transverse 

components con be computed by: 
Z 

conditions. 

field 

2 - 
= (jk /k ) C - Vt E L  + (WP /k ) T X  (Vf HZ) I  

Et z o z  

2 - 
H+=( - jk z /k ) [(WE: o z  /k ); x (vt EZ) + vt tiz] 

(3) 

(4) 

where i s  the unit vector in the z-direction, and v i s  the transverse 
t 

gradient operator. The cutoff wave number k and the expansion coefficients 

A and B 

satisfies the boundary conditions. Thus, by means of (1) - (4) the field inside 

the waveguide i s  completely described, and the power tmnsfer, the attenuation 

constant due to the finite conductivity of the walls, and other information about 

the guide can be determined by numerical techniques. 

for each wave mode ore bund by requiring that the wave function $ 
n n 

Assuming that the series in (1)and (2) converge rapidly and uniformly 

for the cases under consideration, the wave functions may be approximated by 

a finite number of terms, i.e. 

N - 1  
Jr = C [A J (kr) + B Yn(kr)] cos ne e en n en 

n=o  
N 

Jr = C [Aon Jn(kr) + B Y (kr)l s in  ne 
0 on n 

n= l  

4 
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The point-matching technique requires (5) or (6) to satisfy the boundary 

conditions at a finite number of points, namely, 2N points. Let the points 

(rl , el)? ('2 ? e,)? (rN , €I,,$ be a set of chosen points around the outer 

('2N 2N 
sectional contour. The boundary conditions at  these points for TM modes require 

cross-sectional contour, ami (r N+1? 6N+1)? ( 'N+2? ' N + 2 ) t  * * . *  

8 ) be the corresponding set of chosen points around the inner CMSS- 

C w  J (kr ) + B  Y (kr ) l cOsn9  = O  
n n n m  n n m sin m (7) 

and far TE d e s  require 

- 
n *  V c b  J (kr ) + B  Y (kr ne = o  (8) t n  n n  rn n n  m s i n  m 

where m = 1 , 2, 3, . . . 2N, and n i s  the unii vector normal to ihe surface. 

The limits of the summations are the same a s  those of (5) and (6). The constants 

A with neither one of the subscripts (e , 0 )  implies either even or add. 

Also, the upper and lower functions in (7) and (8) w i l l  always designate the even 

and B 
n n 

and odd wave d e s  respectively. 

C {kr k 9' (kr j 
n m n n  m 

In a more precise form, (8) may be written as 

-COS 
+ B  Y' (kr ) I .  ne n n m s i n  m 

- 
+ tana b J (kr ) + B  Y (kr )Isin n e m j  = o  

m n n m  n n m cos 

- -  - -  
where cosu = n o r  for m=l,2,...,N; cosu = - n o  r for m m m m 
m = N + 1 , N + 2, . . . , 2N; ami 1 
point (r em) as shown in Fig. l(b). The above formulations ensure the wave 

functions satisfying the boundary conditions simultaneously at the chosen points 

on the outer and the inner cross-sectional contours. Each of (7) and (8a) forms a 

system of 2N homogeneous algebraic equations of 2N expansion coefficients 

A and B with the cutoff wave number k as the parameter. To obtain non- 

trivial solutions of A and B the determinant of these coefficients must be 

zero. That is, 

i s  the unit vector in the d i r e c t i o n  at 
m 

m '  

n n 

n n '  

5 



where 

d.. = Ji(kri)sin C O S  it 
' I  I 

for TM d e s ;  and 

COS de. s<r. i9. J! (kr.) T i' tan a. sin i o .  Ji (kr.) 
' I  I s in  I I 1 I W S  I I 

(W C O S  
d ii = krj sin (i - N) 8. Y' (kr.) '3 (i - N) tan a, sin (i - N) 0. Yi ~ N(kr.) 

I cos I I i -N  1 

for TE modes; 

8 

where for (%)and (9c) 

0, 1, 2, ..., N - 1 
1, 2, 3, ...# N i = C  

and for (9b) and (9d) . N, N+1, ..., 2 N -  1 
' = ' N + I ,  N + 2 ,  ..., 2N 

and i = 1, 2, ..., 2N. 

Equation (9) w i l l  be referred to as the point-matching chamcteristic equation. 

The roots of (9) are the values of k which are infinite in number, each of 

which corresponds to a wave mode. Having determined the cutoff wave number 

for a specific mode, the expansion coefficients A 

found from (7) and (8a). 

and B 
n n 

can readily be 

It should be noted that the chosen points around the inner cross-sectional 

contour (inner points) depend on the w t e r  points and vice versa. The dependence 

i s  that for a polar coordinate 8 of an outer point, there i s  an inner point which 
m 

has the same polar coordinate. That is, 8 - where m = 1, 2, ..., N. 

Under this condition, (9) yields exact solutions when applied to the circular 

coaxia I guide. 

m - e N + m  

6 



3. ONE CONDUCTOR WITH CIRCULAR CROSS SECTION 

I f  one of the cross-sectional contours i s  circular, not only i s  the previous 

analysis applicable, but also (9) can be reduced from a determinant of order 2N 

to a determinant of order N, with the same accuracy or better. Due to the 

limited capacity o f  a digital computer, the evaluation of the smaller determinant 

i s  easier ond more economical. 

Let &e =+xis be a!iixti; d t h  the axis of the ei iwlai  ~ ~ i i d i i ~ t l f i g  t i i k  of 

radius a. The boundary conditions can be satisfied exactly at the boundary of 

r = a by setting E = 0 and E e  = 0 for TM and TE modes respectively. The 

boundary conditions on the other conductor with general cross section, 

where r depends on 6, are imposed point-wise. 

2 

Consider the TM modes first, the wave functions (5) and (6) are s t i l l  valid 

for this waveguide. The boundary conditions at r = a require that 

B = -A J (ka)/Y n (ka) (10) n n n  

Substituting (10) into (5) and (6), and matching the boundary conditions at finite 

number of points only at the general cross-sectiona'l contour yield 

ne )/Y (ka)]A = o  C {[J (kr ) Y (ka) - J (ka)Y (kr )I Cns 
n n m n  n n m  m n  n 

where (rl , 6,)  , (r2 , 02), ..., (rN , ON) are N points properiy chosen 

around the general contour. The limits of the summation are between 0 and 

(N - 1) for the even d e s  and between 1 and N for the odd modes. 

Since the bctor l /Y &a) i s  the same for every column of the matrix 

inside the braces of  (1 l ) ,  the determinant of this matrix being equal to zero i s  

equivalent to setting 

n 

D(k) = det Id 1 = 0 mn 

7 



where d = LJ (kr ) Y (ka) - J (ka)Y (kr )]"Os ne mn n m n  n n m sin m 

1 /Yn (ka) = 0 (1 3) 

Observe that the order of the deteminant of the point-mcstching charac- 

teristic equation i s  N. Evidently, i t i s  easier to evaluate (12) than the equations 

in (9). The root of (13) i s  k = 0 which i s  the solution of the TEM mode 

For h e  TE wave des,. the equation corresponding to (10) i s  given by 

B n = - A  n n  J' (ka)/Y' n (ka) (14) 

Substituting (14) into (5) and (6) and again using the point-matching method on 

the general cross-sectional contour yields 

C 
n 

ne )/Y' (ka)]A = O  - sin + tan u b (kr ) Y' (ka) - J' (ka) Y (kr )I n(u)s 

(kr,,,) YX (ka) - J' (ka) Y' (kr )I kr ( cos ne ) / Y a  (ka) n n m  r n s i n r n  n 

(15) 

m n m n  n n m  m n  n 

where m = 1, 2, 3, .. . N 

The limits of the summation are the same as for TM modes. Equation (15) 

i s  similar i n  bnn to (1 1 ) ,  and by the same reasoning, the matrix inside the bmces 

of (15) leads to the form of (12) with 

COS d = b' (kr )Y '  (ka) - J' (ka) Y' (kr )I  kr 
mn n m n  n n m  m sin 

sin 
cos m 

ne tan a CJ (kr )Y '  (ka) - J' (ka)Y (kr ) ]  n n m  

and I/Y: (ka) = o 

m n m n  n 

Again k = 0 i s  the solution for the TEM d e .  

8 
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With the cutoff wave number determined, the expansion coefficients 

A end B 

that (1 I )  and (15) are reducable to exact solutions when applied to circular 

coaxial waveguides. 

can be computed by {IO), (I!), (14), I.& (15). !t is 9os\’ I te see n n 

4. COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS 

To verify the csrreciness of ihe previous f~rmu!ations, twc! ctrcu!ar eccentric 

waveguides were investigated experimentally. One of  the eccentric waveguides 

[see Fig. 23 under consideration i s  made of two circular copper tubes with radii 

a = 0.475 cm and b = 1 cm , the distance between the two axes L = 0.315 cm. 

(Let this be designated as number 1 waveguide.) The dimensions of the other 

waveguide (number 2) are a = 0.15875 cm, b = 1 cm, and L = 0.379 cm. The 

cutoff frequencies are measured by the resonant-frequency method , by which the 

guide i s  shorted on both ends, thus, forming a resonant cavity. The waveguide 

cavities of these two examples are 15.48 cm in length. The energy was fed 

through a rectangular s l i t .  

7 

From the field distributions [see Fig. 31, i f  the s l i t  i s  placed radially 

outward at  the largest dimension of the guide as shown in  Fig. 4(a), the energy 

fed into the guide induces the odd TE 

displaced by an angle of 90 from the position of the guide’s largest dimension as 

in  Fig. 4(b), (ETEl 1) i s  induced. The normalized cutoff wave 

numbers ka, are tabulated in Tables I and I I  for the No. 1 and the No. 2 guides, 

respectively. The measured data show in most cases better than two-place accumcy. 

The error i s  partly due to the physical construction of  the eccentric guides, 

otherwise, the accuracy i s  expected to be better. This can be seen when L = 0 

(coaxial guide) in No. 1, for which the theoretical cutoff frequency i s  

6.5513 Gc while the experimental value i s  6.5505 Gc. 

(denoted by OTEl l). I f  the s l i t  i s  11 
0 

the even TE 11 

The two waveguide cavities were also examined at frequencies from 4 Gc  

up to cutoff (6.546 Gc  and 7.237 Gc for OTEl, modes for No. 1 and No. 2 guides 

respectively), and no resonance was observed. 

9 



4 
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The theoretical values in Table I and Tab!e I I  are computed by (12) with 

the z-xis being coiiinear with the axis of the waveguide's inner circuiar tube. 

Eleven points were chosen on the outer cross-sectional contour and were appro- 

ximately evenly distributed. The calculated values are believed to have three- 

place accumcy since, for example, the values of  ka, 0.6263 and 0.65269 of 

the OTE,, mode for the No. 1 guide are oalculated by eleven points and fifteen 

po in ts  respectively, More evidence w i l l  appear later concerning the accumcy of 

the computation. 

Table I - Comparisons of cutoff wave numbers, 
ka, of No. 1 waveguide. 

Measured 0.6512 0.7205 

Calculated 0.6526 0.72OO 

Table II - Comparisons of cutoff wave numbers, 
ka, of No. 2 waveguide. 

I 1 OTE1l I ETEl 1 

Measured 0.2779 0.2840 

Calculated 0.2791 0.2849 

5. CUTOFF FREQUENCIES OF ECCENTRIC WAVEGUIDES 

As shown in the fast sections, the experimental data of eccentric waveguides 

substantiate that the point-matching characteristic equation (1 2) i s  applicable for 

calculating the cutoff frequencies of TE wave modes. The validity of (12) for TM 

wave d e s  w i l l  be demonstmted in Section 6, 

10 



In Fig. 5 through Fig. 10, the normalized cutoff wwe  numbers ka of 

eccentric ~ ~ v e g v i d e s  plotted VS. the m ~ a ! i ~ t A  zccentiicitjj L/CI with the 

mdius mtio b/a considered as the pammeter, For the TE d e s ,  the mdius 

mtios of 1.5, 2.0, 3.0 and 4.0 are shown, while for the TM modes the ratios of 

2.0 and 4.0 only are shown. The eccentricity varies from the minimum value of 

zem to the maximum value. 

The behavior o f  the cutoff frequencies with varying eccentricity i s  

irregular for a l l  higher order d e s .  However, the cutoff frequency decreases 

with increasing of eccentricity for both lowest order odd and even TM modes, 

i .e. the OTMl and the ETMlO. This phenomenon i s  reversed for the ETE 

The eccentricity however, has l i t t le effect on the cutoff characteristics of the 

OTEll d e  except when the two conductors are almost touching. In this case, 

the cutoff frequency becomes iower than that o f  the coaxial guide. The pain 

mode. 1 1  

and OTM and ETM of the eccentric guides are split 
mn w p9 

and TM 
mn p9 

OTE and ETE 

from the degenerate TE 
mn 

modes o f  the coaxial waveguide with the 

same radius ratio, respectively. However, the TE 

coaxial guides correspond only to the even modes in the eccentric guides. 

and TM modes of the 
mo mo 

The plots in Fig. 5 through lOare based on the calculated values of 

11 (12) with three-place accuracy or better. The cutoff wave numbers of OTE 

mode for b/a = I .5 are computed by (12) using 11, 13, 15 and 18 points on 

the boundary and the results are shown in Table Ill. Those for ETEl, mode of  

the same guide computed by 11 and 18 points are shown in Table IV. The chosen 

points on the outer contour are approximately evenly distributed. 

11 
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0.3 

0.79446 
0.79450 
0.79450 
0.79450 

Table I l l  - Comparison. of cutoff wave numbers ka of OTE mode with 11 b/a = 1.5, calculated by 11, 13, 15 and 18 points. 

0.4 0.45 

0.77616 ------- 
0.78068 0.76631 
0.78067 0.76581 
0.78069 0.76634 

15 
18 

- ~ ~ ~~ 

0.2 

0.801 02 
0.801 02 
0.801 02 
0.801 02 

0.80415 
0.80415 

y 0.1 0.2 0.3 0.4 0.5 
of Poin 

1 1  0.8 1224 0.83544 0.88145' 0.96824 1.1459 

18 0.8 1224 0.8345 0.88147 0.96906 1.1459 

Table IV - Comparison of cutoff wave number ka of ETEl mode with 
b/a = 1.5, calculated by 1 1  and 18 points. 

i 

6. DISCUSSION 

The point-matching technique i s  a convenient method for computing the 

cutoff wave numbers of eccentric waveguides. The point-matching characteristic 

equation (12) was verified experimentally for TE wave modes. The validity of (12) 
for TM wave modes can be verified from the boundary conditions point of view. 

12 



. 
Substituting the particular wave number of  TM mode under consideration 

[cslculateed by (12) 1 info (1 i)* tb erpnzinn coefficients A 

be determined algebmically. Rewriting (1 1) with r replacing r yields, 

can then 
n 

C m 

where ka and A 

the cuwe &ere the b ~ n d a r y  conditions ti .et $!rc I Q) = 01 i s  satisfied 

beside at r = a imposed previously b e  (lo)]. It can be seen that the 

function r 

From (5), (6) and (10) through (12) obviously r 

on the'geneml cross-sectional contour. I f  the intervals between the chosen 

points are made sufficiently small, (smaller than the cutoff wavelength) the 

deviation between the actual cross-sectional contour and that described by 

(16) i s  expected to be small. The cutoff wave numbers of TM wave d e s  

calculated by (12) wi l l  give as good an accuracy as desired. 

are known constants, rc , function of 8, describes 
n 

given by (16), represents a single-valued closed contour. 
C 

passes the chosen points 
C 

From the previous analysis, it i s  seen that (12) i s  obtained by matching 
\ 

the boundary conditions exactly at the circular crossJectiona1 contour and 

approximately at the general cross-sectional contour. The limitation of using 

(12) on the general contour are the same as those discussed in Reference (5). 

Numerical computations show that (12) 6 i l s  to determine the cutoff frequencies 

of  TE d e s  for cross-sections with re-entmnt corners. 

To verify the formulation of Section 2, the cutoff wave numbers ka of  

ETE 

compared with those obtained by (12) as shown in Table V. The wlwlat ions 

are using the same set of chosen points as discussed in  Section 2. Observe that 

(9) i s  valid but the accumcy i s  not as good as that obtained by using (12) 
especially when the eccentricity i s  large. 

modes for circular eccentric waveguides are calculated by (9) and 1 1  

13 
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(9) 

(12) 

b/a = 1.5 b/a = 3 
0.1 0.2 0.3 0.4 0.8 

0.81222 0.83140 0.86601 0.51833 0.53204 

0.81224 0.83544 0.8814 0.51827 0.53304 

Table V - Comparison of ka of ETE calculated by (9) and (12). 11 

In the analysis in Sections 2 and 3 are formulas for the computation of 

waveguides with cross sections more complex than that of the eccentric guides. 

Cutoff frequencies computed in Sections 4 and 5 serve as an example of  the 

applications of the point-matching technique. With the expansion coefficients 

bund as outlined, the attenuation constant due to the finite conductivity of the 

conductors may be estimated. 
8 

J 

14 
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FIGURE CAPTIONS 

Fig. 1 (a) The geometry of the two-conductor waveguide under 
considemtion. 

(b) The angle a at the chosen points. 

Fig. 2 The cross Jection of the eccentric megu ide .  

Fig. 3 (a) The field configuration of  the ETEl d e .  

(b) The field configuration of the OTEl, mode. 

Fig. 4 (a) The coupling hole for exciting OTE mode. 

(b) The coupling hole for exciting ETE mode. 
1 1  
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Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 

Fig. 9 

Fig. 1 0  

Cutoff wave numbers of eccentric guide with b/a = 1.5 
for TE modes. 

Cutoff wave numbers o f  eccentric guide with b/a = 2.0 
for TE modes. 

Cutoff wave numbers of eccentric guide with b/a = 3.0 
for TE modes. 

f 

Cutoff wave numbers of eccentric guide with b/a = 4 
for TE modes. 

Cutoff Hlplve numbers of eccentric guide with b/a = 2.0 
for TM modes. 

Cutoff wave numbers of eccentric guide with b/a = 4 
for T M  modes, 



. 
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Fig. 1 (a) The geometry of the two-conductor waveguide under considerotion. 

(b) The angle a ut the chosen points. 



. 
. 

Fig. 2 The cmss section of the eccentric waveguide. 



. 

Fig. 3 (a) The field configuration of the ETE,, mode. 

(b) The field configuration of the OTEl mode. 



I. 

Fig. 4 (a) The coupling hole for exciting OTE mode. 
1 1  

1 1  (b) The coupling hole for exciting ETE mode. 

The arrows indicate the electric field of the excitation. 
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Fig. 5 Cutoff wave numbers of eccentric guide with b/a = 1.5 

for TE modes. 
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Fig. 6 Cutoff wave numbers of eccentric guide with b1a-e 2.0 f o r  TE modes. 
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Fig. 7 Cutoff w v e  numbers of eccentric guide with b/a = 3.0 for  TE modes. 
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Fig. 8 Cutoff wave numbers of eccentric guide with b/a = 4 for TE modes, 
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Fig. 9 Cutoff wave numbers of eccentric guide with b/o = 2.0 for TM modes. 
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Fig. 10 Cutoff wave numbers of eccentric guide with b/a .= 4 for TM modes. 


