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INTRODUCTION

"Squeeze~-film" action describes the viscous flow process by which the pressure in
a liquid bearing film increases above ambient when the bearing gap is closing down
and decreases below ambient when the bearing gap is opening up. In the case of

a gaseous film in an oscillating gap, aside from the corresponding oscillation in
the film pressure, its temporal average also becomes elevated above the ambient

by an amount which increases with the frequency and magnitude of oscillation.

This latter phenomenon can be used to support a bearing load and is the subject

of the present paper.

Several studies on gaseous squeeze-film bearings have been made, (Refs. 1, 2 and
3); they concern simple bearing shapes with certain prescribed mode of gap oscil-
lation. More complicated bearing shapes, e.g., conical and spherical bearings,

are also of interest. The mode of gap oscillation likely varies from one situation
to another. It is useful to have a method of analysis which is applicable to

arbitrary bearing shape and arbitrary mode of gap oscillation.

The time dependent gas lubrication equation is of the diffusion type and can be
solved by standard techniques applicable to initial value problems. 1In the case
of a gaseous squeeze-film bearings, the 'steady-state' solution is of primary
interest. Because the oscillation frequency is very high, the transient period
would encompass many cycles of oscillation. Thus, if one treats the analysis

with the initial value problem approach, the required computation would be rather
lengthy due to the transient period. Alternately, in seeking the 'steady-stute"
solution, one can use an asymptotic analysis to take advantage of the condition
that the frequency is very high. Effectiveness of the latter approach has already
been demonstrated in References 2 and 3 for special cases; this paper will deal

with the general asymptotic treatment of gaseous squeeze-film bearings.



¢

REVIEW OF BACKGROUND

According to the theory of hydrodynamic lubrication the fluid film pressure satis-
fies Reynolds' equation, which can be written in the vector form as follows (Ref.

4.

 is the vector sum of the absolute sliding velocities of the bearing surfaces.
9h3 phV { 3
div T grad p + ) + St (ch) =0 1)

Typically, the boundary condition requires the pressure to become ambient at the
peripheries. With gaseous lubricant and metallic bearing materials, the fluid film
is essentially isothermal; thus, for most gases, viscosity can be regarded as a con-

stant and density can be replaced by pressure in Reynolds' equation.

This equation can be rendered dimensionless by normalizing various variables with

appropriate reference quantities, which are:

Variable Reference Quantity Normalized Variable
Fluid Film Pressure P Ambient Pressure P, P = p/pa
Fluid Film Thickness h Mean Bearing Gap c H = h/C
Time t Time Constant 1/v T = VvVt
Surface Differential div, grad | Reciprocal of 1/R Div = R div
Operators Typical Dimension Grad = R grad
- V
Velocity \ R U= R




The normalized equation is

[

Div Y Pr’ Gradp + AUPH ) + o —g—; (PH) = 0 (2)
where,
A = compressibility number
- b

a

Q
I

squeeze number

12uv R\2
)
P, c

Consider now, that the bearing surface can be described in terms of orthogonal
curvilinear coordinates & and B as shown in Fig. 1. The peripheries of the

bearing film are at and a,. Let g_and g_ be respectively the linear measures
% a

2 B

of the two coordinates, then Eq. (2) can be rewritten as (Ref. 5):

g
——1—{2—0‘( -—@PH3§—§+ gBAPHUa)

8,85 g8y
3 B 3¢
+ 3B (- gB PH 3 + 8y APHUB)

o)
+ o3s (PH) = 0 3)
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Fig. 1

Schematic of Arbitrary Bearing Surface
Described in Curvilinear Coordinates
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For typical squeeze film bearings, one of the bearing surfaces undergoes a high
frequency oscillation, so that the squeeze number is very large (often > 103).

Thus, provided that A is finite, g B
oP

P s s . . . .
Sa and %E are bounded, then it is of interest to consider the asymptotic solution

and g_ are well behaved functions, and that

x

lim  PH = ¥_ (a,B). (4)
O —8moo
This asymptotic solution, however, is not uniformly valid because it is unable

to satisfy the boundary conditions:

PH

H (,8,7)

Q) .8,
? | (5)

PH |
Iaz,B,T

H (0,,8,7)

/
Aside from the fact that edge corrections are needed, which would link the
asymptotic solution and the true boundary conditions; formulation of the
asymptotic analysis further requires the generation of the governing equation

for the asymptotic solution and its own boundary conditions.
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GOVERNING EQUATION FOR THE ASYMPTOTIC SOLUTION

Consider the periodic problem, such that

H(a,B,T + 2n) = H(Q,B,T) (6)

P(a,B,T + 21) = P(a,B,T) (7)
Defining,

PH = v, (8)
then,

V(a, 8,7 + 21) = ¥(a,B,T) (9

In terms of ¢, Eq. (3) can be rewritten as

1 o | g5 oy _ .2 dH
gagf3 { o [ 8y (Hy Sa " ¥ aa) + am']
3 [ Ba o, 2w 2
+ 3B [ gB (Hy 3B 1 aﬁ) + aUBAV:l}

Integrate Eq. (10) with respect to 7 for one full period and make use of Eq. (9):
2n g
o) °B Q¥ 2 OH
j dT{ da [- By (H"laa V3P te UaA"

>3 [ & 2 38, _
+BB [— (Hw—j’- ¥ Bﬁ ausm]}—o (11)



Using the asymptotic approximation for ¢, then one gets

oy
d & 2 J3H
& [ P CR Brall v I AN ]

5 [ 8y oy
o) o 2 3H
S - —— (H - =
+5 | gB( Vo Sp T V. Sp t B Ugmm} 0 (12)
where
2n
H==—| md (13)
T 2% T
0
Equation (12) is the governing equation for v - Assuming that the problem is the

Dirichlet type, then the appropriate boundary conditions ought to be

v, (@.8) = F ()

(14)
¥ (2):B) = F,(B)

The exact forms for F1 and F2 remain to be determined.
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EDGE CORRECTIONS

Because the exact boundary conditions, Eq. (5), can not be satisfied by V¢ , an
o o]

edge correction is required to construct a uniformly valid solution.

Let the uniformly valid solution be

v =, (@,8) + v, (@,B,7) (15)

when o is very large, we must be negligibly small everywhere except in the edge
regions near the boundaries Oﬁ and a2' The role of We is to permit a rapid
transition between ¥, and the boundary conditions of y. Therefore, Q-wise

variation of we has a stretched scale in each of the two edge regionms.

>
For instance, for o = al’ we have the stretched coordinate

g, = o (o) (16)

n is a positive number yet to be determined.

We have
a\yw 0 b1t )
da "3 t° X,
> (17)
2 2
6_2\[=awoo+°2nawe
aa2 aaz BC12




o'

Substitute into Eq. (10):
2n, (2 oy

- C 4.12 < 3 (we)z + 0 -é-r_e = 0 {Lower powers of G}
z(ga) acl

In the limit, the righthand side is neglected and for both terms on the lefthand

side to be of similar order, it is required that
n=z (19)

Furthermore, since H and 8y do not vary with the stretched scale, they can be

replaced by their edge values

]

H(e,,B,7) = H (B,7)

(20)

8,(®-B) =G, (B)

Thus, the governing differential equation for we near a1 is

Hy 3? G, 2 oV,
2 2 o7 (21)
2(6))° 3¢,

Its boundary conditions are

[}
=
)
tr

we(tl = 0,B,T) 1 1
(22)

|
o

‘Ve (cl—-m, ﬁsT)




t

) 1

'

LS

Similarly, near Q,

H, 24 o,

(]
|
[o0]

g, =Vo' (a,-o)

with the boundary conditions

il
=
+=

We(gz = O’B’T) 2- 2

[
(=]

We(cZ—.w’B)T) =

~-10-

(23)

(24)

(25)

(26)

Note that although Eqs. (21) and (23) do not have B-derivatives, B-dependence of

We is caused by the pB-dependence of the coefficients and of the boundary conditdions.

We obeys the diffusion equation; the nature of its solution is well known.
exponentially small except in a narrow band bordering each ambient edge.

of each ambient edge is of the order lf%;ﬂ

It is
The width
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BOUNDARY CONDITIONS FOR THE ASYMPTOTIC SOLUTION

Integrate Eq. (11) with respect to (& once:

2n

[ ar]-
J

o

mgg-wzggugw]

ér Er

L

> [ B8 2 3H
+fdaf dr 3p [ ga(maﬁ ¥ aB)+ aUBAy]

= A(B) (27)

The first term can be slightly rewritten:

my L

da (28)

2
1o v
2aa(ﬂ“’) 2

vl
o

Substitute Eq. (28) into Eq. (27), multiply by ga/gB, integrate with respect to &

once more and rearrange:

2n

j ar my’

[o}

g
fda{&y g—g+ 2 g, U - Z-g-gA(B)}

B
25
+ 2§qda ao [ e --g-ﬁ(u\y-al 2 Ly J
gg 3B 8, OB oB GBM
o

+ B(B)

(29)

-11-
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Because all integrands on the righthand side of Eq. (29) are bounded, the entire

righthand side of Eq. (29) must be some well behaved function of & and B; that is

2n
f dr B2 = I (a.p) | (30)

[o]

More specifically, %é is bounded.  Therefore,

I(oy ,B) + o{ 1/\/?}

2 (31)

X dr B(ay,B,7) + 0 {1/\‘7}

(o]

1o,

+
where @, denotes a location just internal of the edge region near al But,

1
because of the nature of the edge correction, we also have
2n
+ + 2, +
1(o,",B) -J ar By ,8,7) ¥o(",B)
o

+ O{ exp(-\/g)} (32)
20 € (0)7,8) ¥v2(a, ) + 0 {exp (-\/?b}

Therefore,
2x

f dr H3(a1,B,T)

2 + (s} 1
v _(a; »B) = — + 0{ } +0 {exp(-'\/?)}
1 2 o, ,p) Vo,

-12-
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Neglecting 0{ vl—o} and 0O {exp(-'\/?)} , and noting that it is no longer
necessary to distinguish o from Q; we have
2n
3
dr  H(4,B,7)

2 o
v ( ’B) = — (33)
-1 2n H(o, ,B)

Similarly, it can be derived,
2

jd-r HB(QZ,B,T)

vo(a,,B) = —— (34)
25 H(az’ﬁ)

Equations (33) and (34) are the desired boundary conditions for the asymptotic
solution. Now, formulation of the asymptotic analysis is complete. Comparing
Egs. (10) and (12), it is seen that the governing differential equation for 1 is
quasi-linear and is formally identical to that for a non-time-dependent self-
acting gas bearing. For given bearing surface geometry, 8y and gB; sliding

velocity, Ua and U_; and prescribed squeeze motion, H(®,B,7); the solution can

B
be found by methods already developed for self-acting gas’ beatings.

-13-
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COMPUTATION OF BEARING FORCE
Suppose the bearing gap can be expressed as
H = H(a,B) + H (asp) cost (35)
and it is of interest to calculate the temporal average of the component of the
squeeze-film bearing reaction in a given direction. Let the angle of inclination
of a normal vector of the bearing surface from the given direction be 6(q,B),
then the desired average force is
F
PaRZ 27 '
= ox gﬁzgB cos@ dodﬁf (H - 1) dr (36)
t o
-
L Because the solution of ¥ has been divided into three regions, the force can be
accordingly so divided. That is
F
— = f + £ + f (37)
o0 1 2
P.R
a
f

2% ¥
=%;jfgagscosedadsj G- 1) ar
(o]

A g

'y



}l

® M

Yo

[

Now,
21
Woo
J' (H— - 1) ar
o
2%
¥
=j —=dr
H + H, cosT
o 1
2\|r°° -1

tan

Vm? - (Hl)z‘

A
= 2 m—— - 1
®° - @)

Therefore,

v
£ = = -1\ g g. cos® dudp
w — \ aB
[[ Va? - (H102

Due to the edge correction near o, we also have

£

U

2n\ o

where 91 = 9((11,6).

2n
1 -&
o gCtgB cos® dxdpB J i dt
Ml o]

1
{ Gl gB(al,B) cosGl dﬁJ’ dcl
o

<

Ok"—\;)

27

2n

~15-

(38)

(39)




&_, we have

Similarly, due to the edge correction near A
o 2n J
£, = 1 G (a Jcos8, d d KE d
2 = 2 B{(®p:B)cos8, dp C2 g, 97
2nV o o o 2

where 92 = G(GZ,B)

-16-

(40)




-17-

SUMMARY AND CONCLUSIONS

The high frequency gaseous squeeze-film bearing can be analyzed by considering

the internal region and edge regions separately.

The internal region obeys the asymptotic equation which is formally similar to

the equation for the time- independent self-acting gas bearing; consequently, its

solution can be obtained by any of many methods already developed for the latter

problem.

In an edge region, the governing equation is a form of the diffusion equation

with relatively simple coefficients.

So far as the temporal average of the bearing force is concerned, the contribution

of the edge region relative to that of the internal region is 0(1/1/0), where ©

is a dimensionless frequency. In typical situations, 0 is often in excess of

103, so thdat the effects in the edge region(s) can be neglected.

1 A ga
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