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ABSTRACT

i

We have calculated the bremsstrahlung emitted from thermal
plasmas which co-exist with a flux of energetic (suprathermal) electrons,
We find that under some circumstances the radiation emitted can be
greatly increased compared to the emission from a Maxweliian plasma with
no energetic particles present, The enhanced emission occurs at the

fundamental and second harmonic of the electron plasma frequency,



1. INTRODUCTION

There are many astrophysical and laboratory plasmas which consist
of a "thermal" plasma co-existing with a flux of energetic particles. The
energetic particles may be distributed isotropically in velocities, or possess
a net streaming motion with respect to the "thermal" plasma, We have calculated
the bremsstrahlung emission from such plasmas using several different non-
relativistic velocity distribution functions which describe stable situations,
We find that under some circumstances the bremsstrahlung emitted at we and
2me (we is the electron plasma frequency) can be enhanced by several orders
of magnitude compared to the thermal emission from a Maxwellian plasma with

no energetic particles present,

In the following calculations we make use of an expression for the
emission of electromagnetic radiation by a field=free homogeneous plasma of

(1,2)

ions and electrons previously derived by Dupree these references will
be referred to as I and II throughout this paper)., The formula involves
integrals over products of spectral densities, See(Eﬁm)' Sii(Eﬁw)' ete,,
(see equation 2) for the fluctuating number densities of the electrons and
ions, The complicated integrations involved in obtaining the emission from
equation 2 have so far proved too difficult to carry out exactly,vso that in
order to convert (2) into something more transparent for some particular
plasmas we have made a number of approximations based on the behavior of the
spectral densities suv(gﬂw) as functions of k and w ., In particular we

note that for wave numbers |£| < kD s where kD is the Debye wave number,

the spectral density See has resonances at w = 0 and We s and Sii has



a resonance at w = O , These resonances correspond to a spectrum of longi=
tudinal electron plasma oscillations and ion waves excited in the medium in
the sense that they represent Fourier components of the spectral densities
for which w and k are approximately related as they would be for propaga-
ting Vlasov ion and electron plasma waves, It turns out to be convenient

to divide the contributions to the bremsstrahlung into two parts: a part
from the range IEJ > kD (which we call the collisional contribution), and

a part from [5} < k. (wave contribution),

D

Now for a plasma in thermal equilibrium the collisional contribution

to the radiation at frequency Q is given by approximately (in the notation

coln
) 2.n< > (1)
6ﬂ n Q V

emiss

of II),

where Ve is the electron thermal velocity, kO = K.T/e2 , and wr, is the
larger of Q or Wy o The wave-emission part in this case is represented
by two small resonances at = W, and 2me with a negligible area under

then,

If, on the other hand, we consider a plasma containing a flux of
energetic particles, it turns out that the wave emission part of the spectrum
- represented by two emission lines at Wy and 2we = can become pufficiently

enhanced that it becomes the dominant feature of the spectrum., One can




visualize the suprathermal particles as driving the wave field part of the
longitudinal fluctuation spectrum up to a high amplitude through a process of
Cerenkov emission of electron plasma oscillations, These electrostatic

waves, or components of the fluctuation spectrum, then "collide" with each
other and with low frequency ion density fluctuations and emit electromagnetic

radiation,

This enhanced radiation however depends sensitively on the velocity
distribution of the energetic particles since they also re-absorb (through
Landau damping) the Cerenkov electron plasma oscillations as well as emit them,
We shall see that the most radiative plasmas are those for which the velocity
distribution of the suprathermal particles in some given direction has a small
derivative in velocity space, This minimizes the Landau demping of the electron
plasma oscillations driven by the energetic particles, and consequently increases

the height of the resonance in see(Eﬂm) at W= o

2, BASIC EQUATIONS

Consider the energy U(K) in e transverse (radiation) mode of
wave-number X in a plasma, Dupree's result (IT 7.7) for the rate at which

energy is emitted into this mode can be written as,



2 2
(22) = z n q n,q (u . ) nmmrm— _L J” dw )
dt emiss BB oo (2")3 k2 o 121?5

uDYDaQB
2 5, (Krkaw) 8,0 (50 -0) + 2 Sy (ksw) 8 o (K=k,0=u)p  (2)

where the summations are over charged species of number density n, and charge
q, and plasma frequencies w, = (hnna q,fl/mo‘)j‘/2 o The quantity ¢ is the
electric field for an electromagnetic wave of unit energy density (i.e., € is
the polarization vector with normalization eog* = 2nr), and Q and K are

the frequency and wave=number of the emitted electromagnetic wave,

The functions n nBSaB(§3w) are spectral densities for the fluctuating
number densities, n, Gpa , of the various components, They are defined as the
Fourier transforms of autocorrelation functions for the normalized density

fluctuations,

Syg(Kew) = I ax e X J at e, (X,T) 6o, (Xex, T4t ))

It should be noted in equation (7.7T) of reference 2 that (dU/dt)emiss

is given in terms of a Laplace transform in time plus its complex conjugate,

If one makes use of the relations {in the notation of II)o




<‘Spa Gpsli,tg <6pa 6p8|=£°t>

<5°B I |§_a-t> ,

(3v)

the two complex conjugate terms of II 7.7 can be combined to give the above

equation (2) in terms of the Fourier transforms Sas(l:_gw) o

The spectral densities SaB can be expressed solely in terms of
the one=particle distribution functions, fm , (see the Appendix), For a

homogeneocus plasma free of external magnetic or electric fields they become;

Suplkew) = T o(kyin) + T3 (k,iw)

n,g, L nq L* >
B*8 “a , =l aa B =1
<nchl D a8> 878 ngd, D Ba/ "aa >
where
L L¥*
1 o 1 2 8
af n.q, D ngqg 3 v |[D Bv

-} 2 L)
Ua(}.(.'s) = Iumdy_ m » La(.k_.s) = =uy I-wdl (s+ikov)2

Re(s) > 0 , (6)
and D is the Landau denominator (or longitudinal dielectric constant)

D(k,s) =1 =} L, (k) . (1)
u




The integrals in equation (6) are defined for Re(s) > O and the functions

Ua N La represent their continuations throughout the s=plane, It should

also be noted that the arguments of all the functions on the right side of

(4) and throughout (5) are (k,iw) .

Equations (2)=(6) are our basic equations and will be used to

compute (du/dt) for various distribution functions fa(z) ,» We shall

emiss

include in the functions fa both the thermal and the suprathermal particles.

The way in which these fluctuations "scatter” off each other and
radiate can be represented diagramatically (Fig, 1), Thus consider the first
term in (2) which involves a convolution of SUY and SaB o The frequencies

and wave-numbers add to give the frequency and wave number of the final

electromagnetic wave,

For the particular case of an electron-ion plasma (subscripts e ; i )

for which Qe ® =qq s B, =D, =D, the spectral densities S SiiD and Sei

ee P

readily reduce to

n
0 _ e 2 i 2
- See(l‘-"") = |D|2 1= Lil + o Lel , (8)
n Re(U,) (u.)
i 2
"22'311(50“’) = - = |L, | 3 (9)




n, By Re(U,) Re(U, )
—— 2 oo sSsESesesmman * - o EREEERE—— - *
? sei(-l-‘-’w) = 2 Sie(']""w) !Dlz Li(l Li) |D|2 Le(l Le)

where the arguments for all the functions on the right of the above equations
are (E,im) . In the frequency ranges of interest to us, we shall only be

concerned with see and Sii °

It is also useful to note that if we define,

'Y Eol
F (u) = Lmdz_s u -5 f£.(x) (20)
then
2
W o JF
"] o du
Lu(g-'s) -3 I Ju ( is) » Re(s) > 0
k P 3 1 o =mae
k
and

Re[U&(‘k_,iw)] = :rk‘ Fa(%) °

Equation (8) for See is thus in agreement with that given by Rostoker and

Rosenbluth( 3) °

In order to obtain the emission intensity, I , from (2) we must
multiply (dU/dt)emiss by the density of states, dn/dQ , for the electro=-

magnetic modes, Thus we define

az(x) au dn
(6L ot



vhere dI/d2 is the energy emitted per second per unit frequency interval

per unit volume of plasma, For plasmas in which the propagation properties

of radiation are isotropic and for frequencies Q > w
2 2 + 2 c2
e

we have approximately

8 =z w K » and accounting for two polarizations,

=

=3 | {13)

n [+

a(e? wi)l/2

glg
1

Now in the follaowing calculations we shall be interested in the

bremsstrahlung at frequencies Q < several Wy o In this range

K = 0(kD Ve/c) << k, where V_ is the electron thermal velocity. For
this reason it is useful to expand the integrand of (2) in powers of [K| .

The result of doing this gives for the first two terms,

du au du '
(T‘E) 0 = (EF) + (E?) + O(K j (1)‘)
emiss 1 2

where for an electron=ion plasma

(dU> o r - r I—-T_kailzwz Z( (-k,y0m0)
s = e -—-- d_w- S (k w) S N ﬁk’gﬂw
dt 1 2n o (2")3 e sz ee =t ii

- 5 (=k4u) Sei<£o9=w)j . (15)




<au) nifuy = & e eelP(e)”
— — - dw S k,w) S =k Q
at/j a° - (2r)3 J-u K° celkow) B (=k,l-u)
dp.,
+ ofK2 = . (16)
Gpe

In making the expansion, the spectral density SWQ{.‘E."") in the integrand
of (2) is also Taylor expanded and the resulting term in BSuv/BE can be

integrated by parts making use of the symmetry of the integrand,

In a non-relativistic plasma the first term, (dU/dt;):L , dominates
(dU/d‘l:)2 in the region Q < several Wy s except in the neighbourhood
R = 2me . At this particular frequency (dU/dt)2 dominates since it contains
the effect of the wave-=wave scattering of electron plasma oscillatioms, For
@ = 2w_, the ion number density fluctuations involved in (16) are such that
Sp i =0 (% 6pe) » Thus we shall only retain the term involving the product

See See in (dU/dt)2 in the following calculations,

3. ISOTROPIC DISTRIBUTIORS

In this section we shall consider several isotropic distributions
fe,i( IX.I) which have high energy tails on them representing an isotropic
flux of energetic particles in a "thermal" plasma, For such distributions
the angular parts of the dk integrations can be carried out since the
spectral densities become functions of k = Ll&l . They will be written eas
|2

S,g(ksw) o Further, noting that [g|” =2r and K- g=K-e*=0,




equations (15) and (16) reduce to

8n“e ® w_ f»
dU) o I eI [
e | = e AK = dw {8 (k,w) 8., (k. R=w)
dt 1 3(hw)2 o 92 o ce' ! iitme

= 8, (k) Sei(kgﬁmw)} (17)

and

hn2e2th2 ® ®
dU> o Ye dk [ ,. ,
<€i > 1592(2w)2 o k2 o ee ee

It should be noted that we sometimes obtain a divergence at zero
in the' k integrals in (17) and (18). This is due to a breakdown of the
expansion in K/k of the original integrand in (2), In such cases we shall

cut off the k integral for IEJ < K << k. , and neglect the contribution

D
to (dU/dt)l , from the small range of wave numbers O 3 IEJ $K,
. ] .

The following three distributions will be considered:

, by w3
e 7[2(V2+V2)3 ’ i ‘ 1[2(V2+V2)3 ®
e i
(i1) £, = = exp [ - —12- f
i m oyR ) iMax >
i i

2
8 1=8)
a7 Bl (‘%)* S sy - vp) (20)

e 2Ve hnve

-

These functions have a finite energy density, but the next higher
moment, i.e., the flux of energy in one direction across a surface, diverges,
This does not alter the general behaviour of the spectral densities however,




with 0<B <1, (1-8) << 1,

(i1i) f. = f, ,

. e Max ¥ (1-8) Izl - vp) ellz]) (21)

where

I =0 if |v] <V
8 o'

E and = 1 otherwise, also VE > geveral Ve and

I-wdlg1s=l

Note that all the distribution functions are normalized to unity,
Also in the above three cases we have taken
‘_’s.Ja«.)”?
Vi \= 1
i.e., the thermal components of the electrons and ions in cases (ii) and (1ii)

have equal temperatures, and the kinetic temperatures of the complete distria

butions in (i) are also equal,

Case (1)

Using the distributions (19) the integrations in (4)=(9) are

readily done by contours and we find for the Landau denominator,

wi( 3kV +iw ) w?( 3KV, +iw )
D(k,iw) = 1 + — 4

(22)
(kVe+im)3 (kv i+im)3




123

By similar methods the spectral densities become,

ng 5 2k3V2 i(BkVi+iw) 2
-2_' ID(EDiw)I See(l(‘sm) = _u—2—u-2-|——§- L m-—_3_
(wo+k vi) (KV, +iu)
2k3V3 NELETY (23)
+ w e 23
(w2+k2v§)2 e | (kv +iw)3
e
and
o | |2 2k3v§ W (3kV +ia) | 2
w—— D(&Diw) S n(kgw) = 1 % u—-:-—--?r
2 ii (w 2+k2V2)§ (kV_+iw)"
|
2k3V3 Y 3kVi+iw

+* san----:n:--—-a—-s(»° P ——— (21&)
w2+k2V§)2 l! (kVi+iw)3

If we define dimensionless variables X, = w/kVe ) X4 @ w/kVi 9

and the Debye length L = kBl =V /u, =V /o, , then See(k,m) can be

written
Ly 2 2
wn 3=x, =6x"
320 kLIDI S e(k.m) = ——-—%——- 1l + —.2—-—1_-:-%_3-
(1 + x_ ) L (l+x )
128x§ <: ‘> (9+x ) (25)
+ -171? 25
k'L (l+x (l+x ) (1+x2)2 ?
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with
b2, |2 2
DDy 23 L )3

a=e,i k°L°(1+x

) awe i Kk°L2(14x>
o [+ ]

We have plotted the dimensionless quantity n W, See(k,w) as
a function of (m/we) for several values of (k/kD) in figure 2, It
is clear that for k < kD there is a sharp resonance at w = Wy and a
low=frequency rescnance near w = 0 . These resonances become more pro=-
nounced a8 k becomes smaller, One can readily verify that the width of
the resonance at w = w, is, for small k , given by the Landau demping
decrement, Y, » for longitudinal electron plasma oscillations, This can

be obtained by calculating the zeros of (22) for small k which gives,
K 3
¥, (Resonance distribution) = 4w |w==] | (21)
L e kD'

The corresponding damping decrement for a Maxwellian plasma is

for small k ,

3 -2
1/2 : k
yL(Maxwellian) = we@-) e‘3/2 <§E\> exp (, -2-;12-5

so that the resonance at w z we and k < kD in the function See is

much sharper for the Maxwellian case, Its width would not be resolvable

in figure 2 for k = .1 kD

]



= 14 -

The function sii is similar to See at low frequencies, but

does not possess a resonance at w = Wy o

Cagse (ii)
The integrations using the distributions (20) in (4)=(12) are

again tedious but straightforward, The Landau denominator for this case

2 .
Bw '
e w w \ w
D(ipiw) 2 ] = 5 =] + "3 <R C{V > +1i1I <-1-{a‘7-s>/>
k'V e e e
e L
ek . oo (m (- - ) (28)
+ - =1 + R +i I 2
(kevi-mz) k2V§ R (Fvi> <;Vi )

1/2 2
I(x) =(g-> exp <-= %—) ,

@ =y /2 ) _’2/2 X 2/2
R(x) = — Imwdy %;TET_ ™ I e Cay | (29)

2n o

becomes,

where

)

We note for future reference the asymptotic expansions,

xR(X)=1+-i2'+ 000 (large x)
x

(29a)
L

x R(x) =x2-% + oo0 (small x)

Further, the spectral densities for the distributions (20) become




« 15 =

|D(£,iw)|2 S e(Esw) =

2 \
B I(w) n(1-8) I( | > 1 - “4 14l R(“’ { (u ))]
{kve /T s\ e e A wi')* o\

2
Bw (1—8)@
.1 I(.w_.) e -1+.£.( o +11( >
kVi kVi k2V§ kVe kV kV (k2v2 )

2

and

|k, 10)1? 5, (k) =
2
Buw w_(1-8)
kQVi [ KV ( (kve KV T_T(k Vf:-w )

2
4} w n(1l-8)
[k"v'e I(kv"') M 'é-kVE. Is( -

2

)

(30)

where I, is a step function, Ig(x) =0 if x<0,=1 if x>0,

If we set B = 1 , this reduces to the usual spectral density for

8 hydrogen plasma in thermal equilibrium(3'h),,

Next suppose B # 1 . Then it is clear from (20) that there is a

shell (in velocity space) of monoenergetic electrons in the thermal plasma,



- 16 =

and their contribution to See is represented by the terms multiplied by
(1-8) in (28)=(30), Now an extremely important feature of this distribution
igs that the energetic electrons do not contribute to the imaginary part of D,
as is clear by inspection of (28), Equivalently, they do not contribute to

the Landau damping of electrostatic oscillations,

o0
In figure 3 we have drawn fe(lxj) and fe(vx) = I °odvy v, fe(lxj)

for the distribution (20), The function ?; is simply

2
v
- 8 x (1=8)
T (v.) = eXp| = == | 4 Simme I (=|v_| + V_) (31)
e X v /o 2V2 2VE S x E
e e
where IS is the usual step function, For the range of phase velocities
0 < |w/k] < Vp it is again evident that the contribution to the Landau damping
of waves by the fast particles is zero since the damping decrement, Yp, 0 when

small is proportional to af;(vx)/avx v, = w/k . This fact can lead to a
greatly enhanced level of fluctuation in(30) for the wave number range k < kD

and VE > w/k > several Ve , due to the fact that the energetic particles are

Cerenkov-emitting electrostatic (longitudinal) waves but not contributing %

their reabsorgtion BX.Landau damgingo

Case (iii)
The distribution (21) has similar properties to that discussed above

for case (ii). Instead of a §=function at Vy however ve consider a continuous

flux of energetic particles confined to the region ]xj >V The gap in

E o




- 17 =

velocity space from several - V_ < |v] < Vp is a region where the only
particles present are the small number of thermal particles in the Maxwellian
tail, The result is again that electrostatic waves in the region of phase
velocities several - Ve S w/k $ VE suffer very little Lendau damping, How=
ever they are driven in this region by the fast electrons and so give rise
to an enhancement of those Fourier components of see in the above phsase

velocity range, In figure 4 we have sketched fe(Ivl) and ?;(vx) Jor

case (iiij,

The distributions (21) lead simply to

2

Dgydo) = 1 - ks |-+ (RG;;:.) ‘i I(E;L)\)
KV 1 N\ 1/)

2

Bw \\

e 5] [] . []

J - -l b — R | memene + 1 I an— = [ (32)
2 IR (G;ve) (kve>/ Ge

with

n
o) . 2
- !D(_ls_,lm)l See(_]i,m) =

8 w ) n (?) ® <l/’ ) <. ) 2
s J{eemm | 4 = F - ]l - =————— +1i1I
kVe kVe k “Ge\k kzvi kV kvi

2
1 (w Bug w (m ) (m >> 2
b omme ]| e || et -] b —— R wauee * 1 T| e +L (33)
kVi kVi k2vi k e \~\§Ve kVe Ge
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and
n
2
== |D{k,1w)] 8, 4 (k,w)
2
Bw 2

1 (w ) e w w j w ))

wame  T( cogmm— ] = owwmew [ ] 4+ R s | @ § T ewrasem = L

kV i kV g k2vz kV < G{Ve (RV Ge

L
{ 2

The functions R and I are those defined in (29), Also,

w

P ()=2(l=B)J av g(v)
gell m (VEgu)vv

where the larger of VE or u 1is used at the lower limit, and

2 )
. (2). (l-B)we r’ du FGe(u) 0
Ge\k =o (U = %-ﬁ- i0)

L, APPROXIMATIONS FOR ISOTROPIC DISTRIBUTIONS

By inspection of figure 2 and equaticn (23) for See(k,w) we
see that for k < kD this function is highly peaked at the two frequencies
W R o and O . Further, for k > kD the peak at w 2 R vanishes but
that at the origin remains, For this latter range of k the function
See(k,w) has two "shelves" as a function of w., Roughly speaking it is

<

nearly constant for 0 S w S k V, » then for w > k V, it drops off rapidly

i




=19 =

until it reaches a second nearly constant value throughout the range several
k Vi Spsk Ve » This second shelf then drops towards zero for w > k Ve o
One can verify that these features are also characteristic of the other distri=

butions (20) and (21) provided (1 = B) << 1 ,

In the following calculations we concern curselves with electromagnetic

radiation of frequency  1in the range w < w< few We s where Wy <Cw<cw

o

e

Now (17) involves S and S with arguments w and Q = w,

ee ! sii ’ Sie ei

Thus with Q in the above range of frequencies either w or 2 = w must

be 0(Q) . However for a frequency argument of O0(Q) , the spectral densities

b

are of relative magnitudes, S__ = 0(1} , S

ee

2
- of B T~ ofB
te T 54 7 O(M) and 5,5 = off)

gsince M >> m and the ions do not contribute much to high frequency number

0).

n

density fluctuations. Further, at low frequencies See(w = 0) = Sii(w
Thus from inspection of (i7) we see that the dominant contribution to (dU/d.t)1 o
derives from the first term for emission frequencies in the range W< Q< few Wgo

It comes from the integration frequencies w 1in the region w * 9 so that

the prcduct See(k,w) Sii(k,Q-w) x 0(1) 1in the integral (17),
Now we find it useful to split the k integrations in (17) and (18)
into two parts as follows,

k

rdk -»jD r ax (35)

wave collisional
part part



and meke aprroximations for See and S appropriate to these twoc ranges,

ii
The first integral derives mainly from the resonances in See and Sii for

wvhich « and k are approximately related as if the spectral density'

described a spectrum of propagating Vliasov electron plasma oscillations and
ion waves, The second integral derives from a wide range of w for a given
k , We shall refer to the above contributions to the integral over k as
the wave and collisional contributions respectively. In general the separa-
tion of (35) into two parts is somewhat arbitrary, However, as we shall see
the large enhancement of radiation emission over the thermal value comes
from a resonance in See for k << kD , and in this case the separation is

well defined indeedf

"Collisional" Contribution (k > kD)

Consider the integral

J dk I’wdw 5o (ko) Sii(k,nmw)

kp

S.o(ksw) 1s largest in the region |w/k VeI <1, d.e, xk V2w S kV o
Also Sii(k,nnw) is appreciable only if |(Q-w)/k Vi[ <1 ., This latter

condition allows us to replace,

o Q+kVi
I dw > I dw 3
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and the condition for S&e to be appreciable becomes  * kVi < kVe, i.e.,

approximately k > Q/Ve » Thus, we now evaluate the above integrals approxi-

mately as,

K, (+kV, )
] dk dw 5, (kyw) 5, , (k,Q=) (36)
(larger of L v:s) (anvi)

The upper limit ko is the usual inverse distance of closest approach
(ko >> kD)o (The wave part of the k integral in (35) does not need to be

"cut off" and therefore does not suffer from this "defect" of the theory.)

Now consider case (ii) with (1 = 8) = 0 , Using (29a), (30) reduces

in the sbove range to,

3
weB, L/ 1l/2 ka
- See(k'w)" 3 (k2 2)2 ?
+*
*p (37)
n 1/2 h
(o] w 1 : k
2 ii 2 kVi (k2 R 2k§)2
It then readily follows from the first term of (17) that
au coln wg m kove
(E%" X == o\ = (38)
emiss 6n noﬂ Ve L

where wp, is the larger of w, Or Q .
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Equation (38) is the result usually given(2°5°6°7)

for the
bremsstrahlung emission from a plasma in thermal equilibrium, This
"collisional contribution" varies only by multiplicative factors of 0(1)

if we depart from the Maxwellian case and consider the resonance distri=

butions (19),

To (38) we must also add the "wave-emission" contribution from

the sharp resonances in See or Sii at wzx 0 Wy o k < kD . For

thermal equilibrium these resonances do not give an appreciable contribution
to the emigsion since they have a neglibible area under them. However for

some non=thermal situations they give rise to a resonance emission in

(dU/dt)z;‘Ye at Q% w

2w and these resonances may become the
iss e ® e ®

dominant contribution to the total emission, We shall next calculate these,

Wave=contribution to the Emission (k < kD)

Case (i)
Consider the resonance for k < kD o W We o Expanding (22) in
kVe/w , We have
wi 3k2Vi 81k3vz
Dgiw)z (-5 - == |- —= (9
w w w
e e
and from (23),
n0 5 2k3V2
-2—|D| S o (kew) 2t == (ko)
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Thus
n 2K7V2
T Seelkw) = ST (k1)
> kV
k<l&D,m.=we ow =3k V2) ———
w
e

Next, we observe that at the low frequency end, see is nearly
flat in the region 0 < w < kV, and for w > kV, §__ decreases as w
In the low frequency region the second term of (23) dominates, We shall;
for the purpose of being able to carry through the integrations; represent
’See in this region by a resonance function with the same approximate height

and width as (23) by simply evaluating (23) at w = 0 and multiplying the

result by khv /( + thh) Thus a function that reproduces S, in

the resonance regions =~ but not accurately away from resonance -~ isgg

o 3 2377
z ee(i'w) N + % (42)
2(w +x 'V, ) s o 2 6hk"V_ 4
(PaRBBR) 4 et
w
e
Similaerly,
n, k3V2
= 5y (k) & =——g—ppr (43)
2 2(w +k vi)
Note, for low frequency fluctuations, 5 =8 0

ee ii
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Now consider the  integrations in (17) and {18), If we neglect
terms of order the line widths of the resonances we can for the purpose of
integration further simplify things by writing é=-functions in (42) and (43) of

equivalent weight to the areas under the resonances, Thus noting k > 0 ,

n
= S olkw) & 5 8(w)
oo+ 22 o, - 25
+8- 6w+we+ o + 1 wew ==
e/ € “e /] K
n
= 5, (kw)> Z8lw) (L5)

rw
and 6&(w) is interpreted so that J Slw) dw = %’o
)
Equation (45) can also be viewed as an approximation based on teking

the limit M-+ o for the ion mass, In this limit,

54 =<(Spi (Spill(_> er 8(w)

vhere <Gpi Gpil}_;_> is the single time density correlation function, A
calculation of <<§pi 6pi|EJ> will show that for k < kD is differs from
l/2no only by multiplicative factors of 0(1)., Our final results for

the emission will be similarly limited in accuracy,

It now readily follows from (17) and (18) that for the frequency

range of interest,
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au wave) eewi Ky | 3k2V2 3k V
('dTb. Ja% —2T j dk é Q-w = + & Q'.‘U) + -_— : ( 46 )
o

}wave) kn°e%u x2 Jkn

du

dt i% Lmdw See (k) See(i'nsw)

2 15Q (21:)

e2th

...._?.5 [6(m+2m )+ 8(a2 = 20 )] (L7)
2Loq

IR

) (wave)

The contribution to o = 1we in (du/dt 5 is neglected as small

compared to (dU/dt)](.wave)o

If we next compute the total emission using (12) and (13) the

contributions of the "wave-emission” to radiation at @ = wg and Q = 2we

become,
I(wa.ve) _ an (&8 (weve) dn
o, = at ), aQ
mVi Ve 3 we 3 '
= e | e = = ergs/sec/em?) (48)
96m~ \n L°/ \_ L
\'2

(wave) _ 1 £
Izwe ) 3201r3 n L <c -? ' )

where L = k]')'l is the Debye length,

It is interesting at this point to compare this with the corresponding




emission at Wy and 2me from a Maxwellian plasma, Similar approximations

to those made above are carried out using (28)=(30) with g=1 and we find,

Iéwave) (Resonance distribution)
Ye - @(.a)
Iéxave) (Maxwellian) 1 ve >
e
Igzave) (Rescnance distribution) 1
= Ic >

IianE) (Maxwellian)
e

where C is a constant of order unity and is defined following equation (55),

Note, the emission contributions Iézave) (Max) are in addition to the

egwe
collisional or continuous spectrum part (38), We see that although there are
differences vetween the resonance and Maxweliian distributicns, they are not

spectacular differences,

Cases (ii) and (iii)

The distributions (20) are a special case of {21), so we shall here

consider case (iii) and later specialize the results for case (ii),

First, in the spectral demnsity S,  given by (33), we observe that
the energetic particles contribute to the enhancement of fluctuations with
VE 2 %-) seversal Ve » but not to their Landau damping as represented in

equation (32) for D . This range of phase velocities contributes most to
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the vave-emission part of the radiation and we shall neglect other contri-

butions and make approximations to S i1 and See appropriate to this range,

Now consider the resonance in See(}iﬁw) in the neighbourhood

w 2w o Recalling that I(x) = /i/Z exp(-x"/2) , we shall assume that

w
throughout the range V. > = >several Vo o0 = O(we) » K< kg
w w \
1>> (1=B8) »>> I(’EV: >> I(T:V;) 20, (50)

If wve also make use of the asymptotic expansions {29a), equation (33)

becomes,
n
S |p|2 Ly (9
z o] See(-la’w) wEw Tk FGe(_k) »
2 2
wi 3k2v: Ye W
D(k,iw) Xl wms s e o --—=2V2 Iy o (51)
wsw w w k e
e e e

Next, define a dimensionless integral over the energetic particles,
G(Vy) = j Ve v av g(v) (52)
VE

Then neglecting terms of order the line breadth of the resonance at w = W

the function See(-li’w) can be replaced in the integrals by the following

$ =functions,

32
27k
s ()| _ = e (1-B)G 5@ _ /w2+3k2"'v2)
ee WEW nwV w \ e e
e cekE I( e ;
kv"'e'/

+ 6(4» +\/w§+3k2V§ ) (53)
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We also require an approximate form for see(Eﬁw) z Sii(hﬁw)
at w = 0 . In this case these functions have a weak maximum near the origin
at w = kVi . Thus we proceed in a similar manner as before by evaluating

(34) at w = kV, and multiplying the result by k V [( V ) hV;t]

i

so that the "equivalent rescnance" has the same height and width as the true

one at w = kVi . In this case since {1 = B} << 1 and using the asymptotic

expansions {29a),

w

5

3

2I(1) Vi
(k’w) ~ = ~ N (Su)

11 WYy n [(2-r(1)%417(1)] [ ok vf V. khﬁg]

Note that the existence of a tenuous flux of energetic electrons in the medium

does not appreciably alter the low frequency resonance in Sii 0

For the purposes of integration if we again neglect terms of order

the line breadths we can write,

n
= 5., (kw) =71 C8w) (55)

where the 8=function is defined as in (45) and C = I(l)/[(2=R(l))2 +* 12(1)]°

As we pointed out in the paragraph following equation (45) we can
also regard (55) as the result of taking M » = in which case
Sy = <<Gpi 6pi|k:> 2r §(w) which would lead to a value for the constant

C = n <§pi Gpilk:>o In this case the well known equilibrium correlation
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function including self correlation is

2 .2
< N (k° + kD)
8p, Gpilk> ==
o]

(k2 + 2k§)

‘Thus for small k < kD s C=1/2 in this approximation, This is to be

compared with I(l)/[(2-R(1))2 + 12(1)] =z ,35 which we obtained from our

approximate representation (54) for Siq o

It now follows that

2 2
( )(wave) 2Gm e“w CVi(l-B) [kD kfk [6 o /w—i:-Bk_zVE)

+ 6f o+ VuleatVe (56)
e e

au (wave) GaesznhVZ(l-B)2 kD
—-)z o = --—- [6(9-20: ) + 6(n+2m )]
15V )
E kD('
(57)
The k integrals have been cut off at a lower limit such that me/k n VE

i.eqy, k= kD(Ve/VE) , since the spectral densities calculated do not apply

in the range we/k > VE

reduce the level of fluctuation,

where Landau damping due to the fast electrons will
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Multiplying (56) and (57) by the density of states (13), noting

IEJ = (92 - wz l/2/c , and integrating over 40 ; we obtain the emission

intensities at the first and second harmonics,

2 3
I(wave)h, C(1=8) G ™e Ve L[l (58)
w = Jl =3 |Ye\T 3 v ’
e 3 n L L E ’
3 2
I(wave)& ﬂ@(l-ﬁ)g G° 7 il,,‘é.? © y&j-}- (Xne-) (59)
2we = 5 2 ncL e ¢ /’L3 \VE 7

where

(60)

and the approximations to J1 . J2 follow from the inequality exp(Vé/sz) >> 1 ,

It is clear that the emission of bremsstrahlung at wg and 2we
represented by (58) and (59) can be meny orders of magnitude larger than the

thermal (Maxwellian) level for these two haromics, The exponential factors




in (60) control this situation, The distribution (21) is also much more highly
radiative than (19) for example although both distributions represent plasmas

containing suprathermal electrons,

The basic reason for this is due to the gap in velocities

v, < IEJ <V which only the few Maxwellian tail particles occupy, Longitudinal

E

Cerenkov waves (included in See) are emitted into the phase velocity range
Ve < §-< VE by the energetic electrons, but only reabsorbed (Landau damped)

by the few thermal particles far out on the Maxwellian tail,

In applying (58), (59) to physical situations the following condi=~
tions should be noted, The fluctuation densities Sas were calculated
assuming an infinite homogeneous plasma, In such a plasma there is an equili=
brium established between the emission and re=gbsorption of electrostatic
(longitudinal) waves for the small wave-number part of the spectral demsity,
This can only be the case for a bounded plasma if the propagation length
2 = (w/k)y;l(k) for a Fourier component of wave-number k , is less than the
smallest linear dimension LS of the plasma, where Yy,
decrement, The first condition for the applicability of (58)={60) to a

is the Landau damping

bounded plasma is thus,

2
v
3/2 e E
Ls >> 1, e \/-g- (g) exp -2-\75) (618,)
e

where I is the Debye length,



Mso (58) and (59) will not be valid if the fluctuation spectrum
saB is so large as to invalidate the perturbation theory (in powers of the
plasma parameter g = (noL3)nl<< 1} which underlies (2), {(4), and (5), From
inspection of the expressions for See(w z we) we see that the expansion
remaing valid provided Y, > O{g) . From physical considerations one
would expect the resonance expressions for See to be correct if i, >V,
where v, is the electron collision freguency, In this case Landan damping
rather than correlation (ccllisional] damping is primarily rvesponsible for
the re=-asbsorption of electrcn plasma oscillations emitted by the energetic
electrons in the plasma. However v is an 0(g} quantity, so that the

above requirement can be written Y, 2% Vs i,e,, using the Spitzer collision

frequency and neglecting terms O0(1) this conditicn becomes,

o

3 -2
v ' -
-\-/.-E> exp (m -3.‘15 »5 -n-}-eé- an (noL‘)) . (61b)
e v nL
~ e (o]

5. BREMSSTRAHLUNG FRCM STABLE ELECTRON STREAMS IN A PLASMA,

In this section we are concerned with the case of an electron beam
traversing a Maxwellian plasma of electrons and ions. The beam electrons
are assumed to have a spread of velocities such that the distributions are
stable, which of course is a necessary condition for applicability of the

emigssion formula (2),




The following two cases are considered:

Cage (i)
f, = 6(3. + P,l) y M> =
“\3/2 2 {v+U )
1 v (1=8) -
f = R s exp/. +* = XD = twmmceomme b (62)
€ <;wV§ \ 2V§ (2nvi)3/d 2v§
where
U =y 1-8) (63)
(1 - B8) << 1 2 (6)4)
vl 2 U U2
-vn- v—e- exp - -‘%‘ L (l - B) = § >0 [ (65)
e/ \ e 2Ve

Equation (63) is the condition that there is no current in the plasma, and
(65) the condition for the electron beam of demsity (1 = 8) to be stable,
The above case is identical to that considered by Rostoker(a) in a related
calculation of the coulomb energy density in wave~number space for a fluctu=

ating plasma,

If we increase Ue to the point where &§ - 0 in (65) then we
reach a situation in which one wave number k parallel to He and of
magnitude = we/Ue first becomes unstable, For this unstable wave number the

spectral density See diverges. However the radiation emitted as given by (16)
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involves integrals over k and w ., We can approximate these if & 1is
small to estimate the contribution from the resonance at the nearly unstable
wave~number, However it turns out that these integrals are finite as ¢ > 0
and represent an uninteresting change in the bremsstrahlung -~ i.e,, there is
no spectacular increase in the emission such as that represented by equations

(58) and (59),

The reason appears to be that only a single wave number is first
unstable, All the rest are Landau damped, For enhanced emission we require
that a range of wave-numbers are bordering on instability = or at least that
a range of wave~numbers have an extremely small Landau damping, ‘e shall
next treat an example of this latter case in more Jdetail,

Case (ii)

Consider the distribution

{1=8 )
fe = B feMax + Vo xO

Blvy) 8(v,) (66)

where we have set M > =, i e,, the ions form a uniform positive background
with a small amount of drift velocity to satisfy the zero=current condition,
The function Ic(vx) will be chosen as a step=function IC 21 for

0 = v, s Vp eand I, = 0 otherwise.

The spectral density foi th: electroas then readily follows as,
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n 2

o T 8 w k(1-8) w
- G (k w) = v EXP [ = we—mc— + I —-)
2 ee x|D|? {Tve/zw 2k2Vi Ve O\k

B we (1=8) Bzwhwz /
pIf = {1 s mSs (1o R () )- ooy o T (B
k Vi e e T 'E k Ve K\ e
(67)
For the wave emission contribution from k < kD and w = me we
2,2 i )
assume that exp(=w"/k Vi) << (1 =B) << 1 , Thus for ky >k > (Ve/VE)kD .
n w2 2 w w » ]
o n(1=8) { e e 2/ e
- G (kpw)g ernenatmrie l = —-) +* I< )
2 ee kaE u’2 / kévi kVe J
72 (1-8) k3V2 »
oty [6(w= ) + S{wbw ;] (68)
o (% e e
2k Vg, N5
e
Also for -(Ve/VE)kD > kx > -kD .
~
n, ﬂk‘Vi
T S (kuwlz ~3 (6(umw ) + S(wtw )] (69)
e

It readily follows that the rate at which the second harmonic mode of the

radiation field is excited is,
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(}ﬁ;> X —— [ dk  dk, J dk_ [6(a+2w ) + 8(0= 2w )]
2 Ly o) v v € e
e (-E)k
\YE L
o\/2 Jeg)? (kv u
'<;> 3 exp ( = o (70)
Kk V 2k V~
x E N €

Since (VE/Ve) >> 1 , most of the contribution to the k integrals

comes from ky =k, 20 and k =z (v /v

. )kD .« Thus the emission at the

E

second harmonic reduces to,

5 70 \O U 8
p{wave) 3/B(1-8) mVi _(ii XS><Y£) [1 ce|2<§-a1'-?c-m> exp fE—- (71)
20, ¥ TS 33 \&/\FG/ == 7% ave /0

where ix is & unit vector along the x axis,

It is clear that the emission is agsin considerably increased above
its thermal level by the presence of the exponential factor in (T1), The
applicability of this result is as before subject to the conditions (61&)

and (61b),

6, CONCLUDING REMARKS

The large amounts of radiation represented by formulas (58), (59)
and (T1) are essentially the result of choosing a particular class of distri-

bution functions which describe a Maxwellian plasma co-existing with a flux
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of suprathermal electrons., These distributions have the property that the
energetic particles do not contribute to the Landau damping of longitudinal
waves but only to their emission into a certain range of phase velocities.
Such waves are only demped by the Maxwellian particles., This results in an

enhanced fluctuation spectrum and corresponding increased emission of radiatiom.

On the other hand we found that a resonance distribution (19), for
which the suprathermal electrons do contribute gppreciably to Landau damping

at all phase velocities, gave little increase in the emission,

The above distributions represent two extremes and many physical
situations may also be described by distributions which lie somevhere between
them, However the radiative case for the isotrepic function (21) which has a
gap in velocity between the thermal and energetic particles is a physicall&
quite realizable situation = and is likely to occur in many astrophysical
plasmas., One application of our results, which we shall explore in detail in
a later paper, is to theories of Type II solar radio outbursts, These bursts
are generally thought to originate in electron plasma oscillations which in

turn are driven by energetic electrons in the solar corona,
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APPENDIX

Derivation of the Spectral Density

In this appendix we derive formulas (lL<6) for the spectral
density function Saﬁ(l:_,w) » A formula for See(lc_,w) has been given

by Rosenbluth and Ros’t:oke::'3

o A general expression for SaB(Eﬁw) ; including
transverse fields, is given in (I5.7), But the evaluation of this expressicn
directly is needlessly complicated since the spectral density functions
required in (2) describe the fluctuations of charges interacting through
Coulomb fields only. However, the derivation leading to {I5,7) is purely
algebraic, and therefore it could have been carried through using only
Coulomb forces, We now outliine this procedure and use it to determine an

explicit formula for S (kyw) -

B

As in I , GNa(;_,l,t) is a six dimensional phase space density
fluctuation, and <Na(y_)>= fa(z.) is a one particle distribution function,
In the Coulomb approximation, the operator in the linearized Vlasov equation

(after Fourier transforming the r dependence) can be written

(e) q, of (v) ik
T (EQG.Y) = GGYiEOY- - n-lna‘ T o F h'ﬂ'anY Id& (Al)
And with this notation, the linearized Vlasov equation becomes
2 sx +] 7% (a,8)em, =0 ; (A2)
3t a R -

8
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or simply
) " (¢)en _
== 6N + T '8N =0 (A3)

in the notation of I ,

(o
The solution to {A3) is given by the operator P‘c)(g,t) where

(c)
30 7 (i, t) B
-———a—:;-st + T(C)(k) P(Lj(kgt> = 0 ) (AL)
t =) =
P(C)(};,O) = Identity . (AS)

The Laplace transform of P(c‘)(ﬁat) s lo€oy

P(c)(ki_os) =[5 + T(c)(’l't_’)]‘l (A6
is explicitly given by (II16.3).

As in I we attach subscripts L and 2 to the coordinates and write

the correlation function

O

<6N(£l,xl) N(_I;g,}_/e)> -<6N(L) GN(_2_)> ) (A7)

The integral and summation operators P(l) and P(2) operate only on
coordinates with _l_ and a subscripts respectively, The Fourier transform
of the correlation function (for a spatially homogeneous plasma) is denoted

by
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i}; (r =T, )

(ony) sv2)x) = f iz - z,) e =G @)y (18)

Now, according to (Soh)g, the two=time correlation function is

given by
Nl ,+t) 8N(x,, T k)

Pl (Lx,0) Gomip) sm2)[K) 5t >0 (49)

The operand on the right-hand side is the time-asymptotic two particle
correlation function including self-correlation, According to {I8,2) this

function is given by

<6Na(}_) GNB(_2_)|§_> = lim ) P(")(_l_,ger,a,u)

T+ ugv
P(c)(2 =k, Ty8,v) 8(v,=v,) 8(u,v) ;l-l- <Nu(-£)> , (A10)
u

or in the notation of I

Gy sn@lx >

= 1im P(c)(-]i.l_i'.'l') P(C)(_z-’°£gr) A’(c)(}_.?_) <N(£)> , (A11)

_'t-)co
which defines the quantity A"(c)(}_,,_g_)D Using (AlL) and (AS), this can be

written



Gmw 8wk )

(e)

- - J dt P(C)(_l_,g_,r) P‘f°)(g,-1_s_,1) [T(C)(}_,}Q * T (2,-k) ]
o

2t (z,2) <mwY + 0,2 ) (A12)

I'4
Now using this formula in (A9) along with the relation P\c)(t) P(c)(r) =

P(C)(t+r) , we obtain

Cem(g,m+t) 8N(2,T) k> = - J dtP(‘C)Q_,_IE_,T-Pt) P(c)(’%,u.li,f)
[e]

(L) + 72,00 220 Gy

+ P(1e,) 80 (1,2) N(}_)} | (A13)

Teking the Laplace transform (with respect to time) of both sides gives

J dte'iwt<6N(£,T+t) sN(2,T) [k = <{6N(1) 8N(2) |k 1w >
(o]

+im
ds 1 (c) ; (e)
" - I BT T P (L) PO (2ekee)

' @+ 72,01 02 i)

+ P(c)(_l-o}f_ﬁiw) A"(c)(}_,?_) <N(2..)> ' (ALL)
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To obtain density fluctuations, we integrate both sides over 2 and Y5 o
(8080 |ky10) = I dy, I ay, <§N(_l_) 5N(g)l_15_,iw> ‘, (A15)
(c)

Consequently the P operators occurring on the right=hand side of (All)

(e)

[
will be replaced with the operators } dvp » For the case of zero

magnetic field (I16,3) gives the familiar result

J dgp(c)(i,s.a,u) = [:::: II;%S-;;) + sau:} Jf ;:%;i , (A16)
with D(k,s) given by (7).
Using (A1) the (u,v)®® component of
(20 (1K) + 7(2,-007 a1 (1,2) <)) (A17)

becomes

g T(c)(_l_,g.u.v) 6y =) fly) s, n;l
+ g T(c)(g_;_l_t_.\’.v) §(y; = v) fY(y_l) Sy n;’l
ar (1
ORI éfs ig: ° -%éign q, fv(g)
q, ik  3f (2)
+ Uy =T T q, £,(1) h (A18)

Substituting (A18) and (A16) into (All) and using (Al15) yields



- Lk =

. 1
L (k,s)
. _ |ds 1 T J
<GpuGDBLk_,lw> = J2TTi L OmB+E Z |:n aQ B"(kgs) + Gdu
uyvlia™a -

J dv) [n\sq\z LS(“}E,PS) :I J ay,
+ 5\)8

s+ikey, +¢ Ngdg D(=k,=s8)

r ) {2
ik LA (L) af (2) ]

bn —= 0 | b £ (2) = e o £ (1)
q~uq*\:k2 [mu 'r)xl Ve m BXQ ¥ —_I

(A19)

° \: Y K
[nsqs Lylkste) ]rdll &)
aB

- T T T n
n a, D(k;iw) lwtikoy, +¢ 8

And with a little algebra, this tecomes

+im .
(Gp Yo |k iw>- ds L r +r*
o "Rt g 2ni iw=s+e aB Ba

n.q L (k,iw)
B B Q o= xl
¥ I:naqa 5(_13,,1«») + 6(16 Ug(_lioi“’) A 9 (A20)

vhere T , and U, are given by (5) and (6) with iw = s .

The spectral density Sas(}i,w) is the Fourier transform with respect
to time, and (A20) is the Laplace transform, However, the two are easily

related,
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4o :
Sas(l:.,w) = J dt e'u‘;t <épa(T+t)épB(T)I£>

=00

rﬂ

=iut o : ® iwt .
. Jo dt e <Gpa(¢+t~)6pB(T)]l{_> + Jo it e <spa('r-t)5p8('r)l§)
and using (3b)

= <6padpal£wiw>+<69360ul_k‘,iw>* , (A21)

Substituting (A20) into (A21), and using

I+iw ds ( 1 - 1 ) = J+iwds §(8=iw)

i 2ni iw=S+E iw=8=€ e

one irmediately obtains (L).
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Figure Captions

Figure 1

Schematic representation of the scattering of longitudinal

fluctuations into a transverse wave of wave number K and frequency @

Figure 2

A plot of the spectral density See(k,w) for an electron=ion
: : . 3 2,.2. .2 3
plasma with velocity distributions f = LWv> /% (vT+VT _)” and
e,i e,i e,i
1/2

v, = (M/m) i = h3Vi o

Figure 3

The electron distribution functions fe(lxj) and ?;(Vx) for

a Maxwellian plasma co=existing with s mono=energetic flux of electrons,

Figure U
The electron distribution functions f_(|y{) and ?;(vx) for
a Maxwellian plasma with an isotropic flux of energetic electrons in the

range Ixj > VE 0
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