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A linear two-degree-of-freedom system with slight viscous damping
and subjected to EEENEE nonconservative loading is analyzed with the
aim of studying the effects of damping on stability of equilibrium,

It 18 found that in such systemg multiple ranges of stability and in-
stability may exist in a richer variety than in corresponding systems
without damping. Further, for certain systems, instability either by
divergence (static buckling) or by flutter may occur first as the com-
pressive load increases, depending upon the ratio of the damping
coefficients in the two degrees of freedom. It is shown finally that
systems exist for which the destabilizing effect of slight viscous
damping cannot be completely removed yhatévér the ratio of the (positive)

damping coefficients.




Introduction ‘ | A *
Zicgler's [1] discovery of the destabilizing effect of linear
viscous damping in a nonconservative elastic system provlded-an impetus

”for further studies of this remarkable phenomenon. In pérticular,
Bolotin [2] found that the destabilizing effect in an elastic system
 with two degrees of freedom is highly dependent on the ratio of the
damping coefficients and that it could be eliminated for a cgrtain par-
ticular value of this ratio. |

More recently, the influence of damping in nonconservative systems.
was discussed by Leipholz [3] and also by Herrmann and Jong [4]. Refe;
rences to further work on this subject are given in [2] and [3]. In
[L] attention was focussed on establishing a generic relationship between
critical loadings for‘nb damping, for'slight damping, as well as for
vanishing damping. If was found that while the presence of small linear
viscous damping may have a destabilizing effect, proper interpretation
of the limiting process of vanishing damping lgads to the same critical
load as for no damping.' |
f~ Tﬁe conclusions arti&gd at in [4] were based on the analysis of a
systemiin which the (nonconservative) loading was combletely specified
and no neighboring equilibrium position existed, i. e. stability was
lost by flutter. It was shown by Herrmann and Bungay [5] for a systenm
without damping, however, that by varyiﬁg a loading parameter, the pther—
wise identical system could lose stability either by flutter or byvggt
vergence (neighboring equilibrium position exists) or by both (at dif-

ferent loads) depending upon the value of this parameter.
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In view of fhe results obtained in [1], [2] and {4], it appears
to be desirable to extend the analysis of [5] by including linear
viscous damping considered in a particular system in [1] and [2]. To
this end the same model of a system with two degrees of freedom as in
[5] is investigated, but damping is also included.
The linearized equations of motion permit a detailed study of the
nature of the roots of the characteristic equation associated with
small motions in the vicinity of the static equilibrium position, using
the theory of equations (6] in addition to the Routh-Hurwitz criteria
(73 |
 The results of this investigati&n indicate that multiple ranges of
stability and instability may occur also in the presence of,slight dam-
ping and that the variety of possibili?ies_is even richer than in the
absence of damping. The critical loads, as already shown iﬁ (2], are
highly dependént on the ratio of the damping coefficients but, in addition,
two features, not known heretofore, are shown to exist: Firstly, for
otherwise identical systems the existence of neighboriﬁg equilibrium may
depend on the ratio of the damping coefficients. This means that by
Changing this ratio two otherwise identical systems may lose stability
' by either divergence (static instability) or by flutter (dynamic insta-
bility). The critical loads are different in the iwo cases. Secondly,
for a class of elastic systems the elimination of the destabilizing effect
of damping by an appropriate choice of the ratio of the damping coeffi-
cients is not possible., It Qns found.that for certain systems negative
ot damping Qould be required in order to make the critic#l load in the prxsence of
slight damping to be"id‘enti'.cal to that in the absence of xxxxa damping.
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In conclusion it should be emphasized that the investigation

presented here had solely the purpose of indicating the existence of

certain types of behavior of a simple model of a nonconservative
system. Whether or not linear viscous damping is realistic for actual
systems and whether the loadings considered are realizable é.ra questions

deferred to subsequent studies,

The Model

We consider a double pendulum, Fig. 1, composed of two rigid weight-
less bars of equal length £, which carry concentrated masses m = 2m,

m, = m. The generalized coordinates *, and ¢, are taken to be small in

2
the usual sense. A load P is applied at the free end at an angle aP,,

as shown in Fig. 1. At the hinges, the restoring moments cp, *+ le)l and

c(tpz- (pl) + bz(d»z- 01) are induced. The damping coefficients b, and b,

are taken as positive and no gravitational effects are included.
The kinetic energy T, the dissipation function D, the potential
energy V, and the generalized forces Ql and Q2 are:

-1 g2 2 . 2
T =5 nl%(36,° + 20,8, + 4,°)

~1.,2_1 2 _. 2
D=3 b4 +50,(8, -200, + 6 )

v=1 2 _ 2
Y > c(2¢pl Zvlvzfvz )

Q;l =P‘£(Q1 - 04’2)
Q, = P(1 - a)qz' .

Lagrange's equations in the form
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are employed to establish the linear equations of motion

3b%) + (b* )8 - (PL - 20)e,+ mt%,- bp,+ (aPL = c)e, = O

mlz'dl - byd - oo+ m&zézf b4, = [(1-a)PL - cJo, = 0
which, upon stipulating solutions of the form

9 = Aie"t (1 = 1,2) -
-Yield the characteristie equat1§n

pod4v+ p193 + pzﬂ?.+ p3Q + pA =f°

with the coefficients

. R =2
P = Bl + 6B
7+B B
= 2A2- Q- F+ 5512 ]

Py = (1- a)(B+ 232)[- R )(3*2) ] |

R = (-afF -2 (e [ [F-%ﬂ JHES]

and the dimensionless quantities

— pm1l/2
'Q-l(':) /2,

bi - -
Bizm (1%1,2)_
F:E& |

c

o
(]
Nw ‘_.tﬂ
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t ins of the Characteristi t

The type of motion of the system and therefore the problem con-
cerning stability is closely related to the nature of the roots of the
characteristic equation. It was found in [4] that small damping rather
than vanishing or large damping 1s the cause of the destabilizing ef-
fect, and thus only small damping (B:l<< 1) will be considered in the

sequel. |
Let us introduce first the following quantities:
~
=1 1.2 : N
“6PP2716P | |
. \\_
= 2 (g~ R A
) (“ ?’.[F 2(2a) J
1= i l._
I=Ppep, -4 PIP3* 13 Pz
2 & [4(a®- 10a + 10)1-*2+ W25a - 32)F + 73]
I=¢ .. Lo,2_L .2 _ 1 3

6 P Pz"l. 48 lJ1"2"3 16 PoP3 “16 P1 P, =~ 216 P2

"n

- 'ﬁz [(8a + 96a - 336a + 224)1’3—
- (348a% - 1,464a + 1,032)F%
- (1,362a - 1,212)F - 161]

2. 2
P, I - 12K

=
1h

- 4[(a-1)%11] {F [(8-a)+6 325 f-(a-0.345) (u-1.305) }

2[(a- 1)

x {F —t F(a-a)-e 325 /-(a-o 345) (a-1. 305) J}
2[(a-1)20] b |

a=1 -z?zlp?
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2_ 2
X = pPoP; PPy =P P,

822 {( l—a)[32+12p+4-8a(p+2)]1~‘2- [2(pz+75+6) +
. 2(1‘.-u)(pz+11p—1o) + (1-0) (p%+8p+12)B,B,] F +
+ [1.[32+33[3+1,+(52+’7[3+6) Ble]} '
= 322 {(1-a)[32+1zp+4-8a(5+2)] F° -
- 2[}321’7[3+6+(1-a)(52+113-—10)]. F+
+ \(A,Bz+333+4)} o
where p ST P, ;na ot&ar symbol; have beep previously defined.
" It is known from the theory of equations [6] thats
(a) when 4 <0, the characteristic equation has two real .'and two
complex roots; | . v |

(b) when & > O and both H and K are negative, the four roots are |

| all real; -

(c) when A > O and at least one of H and K is positive or zero,

the four roots are all oompiex.

These criteria lead to the different root domains shown in Fig. 2.

The domain marked by crosses xooeoaxxes indicates the .existence of
four real i‘oots; that marked by dots xoooowooooox corresponds to two
real and two icomplex roots; and that marked by horizontéll dashes or by diagonal |
lines indicates the existence of four complex roots. The more detailed
nature of the roots and the related stable and unstable behavior of the
system may be deduced from the following.

(A) ind>0, H<0, KLO:

This domain is marked by crosses xxwooxxoars in Fig. 2. In it P,»

¢

py, and p, are alwa p., 13 always negative. Applying the
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well-known Descartes' rule of signs, regardless of the sign of P3» it
is scen that in this domain the four real roots of the characteristiq
equation are always pairs of two positive and two negative ones. Con-

sequently, this is throughout a reglon of instability by divergent

motion.

(B) ains 4
These domains are marked by dots uooososoemwescoomez in Fig. 2.

Let the two real and two complex roots in these domains be represented

by

p, x1p,
Qz{l 2
o

1*T%2
From the relations between roots and coefficients in the theory of
equations [6] and the definition of the expression X in the Routh-Hurwitz

criterion [7], the following relationsmps hold

. U
2Apyt 1) = - Py - -3 (Bl+ 6B,) < 0

2Apy ()%= 12) + 1yl 9,9] = - 51 =-3%
P, 1
: ("12" "22)("12’ "22) = BA = % P,
| | 5

2

. 2 242 2.2 _X__1
soyry {lloy* ) MR RIRE rz}‘pa‘sx

o
As p, is always negative in these three domains, the third equation '

above indicates that

2 2
r2 > r1

A vwhich, in turn, shows that the two real roots are of opposite sign.

Hence, these three domains are also regions of instability. Again,
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recailing i,ﬁat pL <. 0, it is seen from the apove four equations that
the real part of the conjugate complex roots will be negative if X > O |
orifX(Oandp3<O, mtwillbepositiveifX(Oand p3>0.
Whence it féllows that divergent motion wiil prevail in this region,
of the type as sketched in Fig. 3(a) if X > O or if X < O and P3 { 0,
or as in Fig. 3(b) if X <O and p; > O. It is noted that if the system
is undamped (Bi =0), py and r, will vanish identically. The undamped
system will therefore undergo divergent motion of the type as sketched
in Fig. 3(c). By definition, in all above cases the system is unstable.
(C) Domain K > 02 | . -

This domain is marked by horizbﬁtal dashes in Fig, 2. Let us d_enB‘te
the foui‘ complex roots in this domain by

Q ={Y1"* ar)

- bl £ 152
Then, as beforé, the following relationships are obtained:

B R | ,
20yy+ 8)) =P C 2 (B)+ 68,) < 0

0o [+

bory 2 Ly * 0)?+ Cr* ) Myt 2 + (- 397 = 35 "X

_ Py
which indicate that ylland & (the reéxl parts of the two pairs of con-
jugate complex roots) will be both negative if X > O, buﬂ of opposite
sign if X < 0. ‘ o B

Now, within this domain, we have
~a o2
K= 8p4 P, >0
or-
2
P> § P
‘which, in turn, leads tc



X< -3 (upy -pyp)? <0
or o -

X<O0
Thereforé, the real parts of the two pairs of conjugate complex ro§ts
Are_of opposiie sign. The nature of ﬂhese four roots indicates that
in this domain the system will flutter. |
(D) Domain A >0, H>0, K<0:

diagonal lines

This domain is marked by/ocoex in Fig. 2. As the four roots are
all complex, the signs of the real parts of\the roots will also be
governed by the signs of X as ;géerted above. Thus, the system will
vibrate with decreasing amplitude (;;;hptotic stability) if the values of
a and F are in those parts of this domain where X > 0. However, the
system will flutter if the values'of a and F are in those parts where
X <o. | ' |

Further separation of stability from instability in the preseﬁt'
domain is governed solely by the sign of X. This is illustrated for
the four cases of B = b, 1, 11.071, and « as shown in Figs. 4, 5,>6, and
7 whefg thé regions shaded by meeepesact diagonal lines are reg@éns of
stability} those shaded by horizontal dashes are regions of flutter;
those shaded by small triangles are regions of divergent mation, of the

type shown in Fig. 3(a); those shaded by dots are regions of divergehﬁ

motion of the type shown in Fig. 3(b); and those shaded by crosses ars regions

of divergent motion, in which the time increase of the generalized '
coordinates is of the exponential type.
It is to be noted that in the present domain (A > 0, H> 0, and

K < 0), if the damping effects vanish, the four complex roots of the A
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characteri:st.ic equation will all be pure imaginary and distinct. Thus
the undamped system executes steady state vibrations and is stable

throughout the domain, as found in [5].

Nature of Boundaries Separating Different Root Domains

In this section the boundaries given by X = O, pL =0,and K=0
will be examined. For the sake of convenience, the term "boundaries

given by X = O" will be restricted to mean only those parts of the

curves given by X = 0 which lie in the domain 4 > 0, H > 0, and K < 0.

(A) Boundaries X ‘Q,F,ﬂ) =0
On these boundaries the characteristic equation has, by definition
of X [7], two roots equal in magnitude but opposite in sign. These two

roots are

Y
9,272 ('511-)

where Py is positive for positive damping. It is found that the curves

1/2

P3 = O, P, = 0, and X = O have a common point of intersection which is
" given by
7 BZ+ 26 + 1
a=a = >
2p™+ 58 + 2
=281
F=F B+1

Further, as p3 = 0 and X = O have only one point of 1ntersection at

(a’, F') on P, = 0, it is evident that along the boundaries glven by

X = 0 pj is always positive. This can be seen from Figs. 4, 5, 6, and 7.
Consequently, 91’2 e;re two distinct pure imaginary roots. The sum of

A : - P . .
the other two conjugate complex roots is - ;]* = - ’]é‘ Py which is negative

o
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(for positive dampins)» Hence, along the boundaries given by X = O the

characteristic equation has two pure imaginary roots equal in magnitude

.but opposité in sign and two conjugate complex roots with negative real

part. Thus, the system will execute steady state vibrations as a result
of some initial disturbance. It is only in this case that the damped,
nonconservative system can undergo such motions.

(B) Point of Intersection of X =0, p3_ =0, P, = 0:

At this common intersection point denoted by (a’, F’), the charac-
teristic equation has two gero roots.  The other two roots, being

given by

poﬂz +p2tp, =0,
are _t{.:o conjugate complex roots with negative real part. The two zero
roots will induce two terms of the fo%m ¢, t eyt in the general solﬁtion
of ?s- Thus, f;he system will execute divergent motion in which the
increase of ¢; is linear with respect' to the time. This point (a’, F’)
is the only one at which the stability region for the damped, nonconser-

-~

vative system is open.

(C) Points of Intersection of P, = 0, X=0, S= 02

Let us introduce the quantity

N

S= PPy = Py,P3

which is one of the expressions entering the Routh-Hurwitz criterion.

Then,
2
X=p5 PP,
It can be shown that the curves p, =0, S=0, and X = O have two points

of common intersection,.denoted by (a’ , ) and (u”, F"),
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vwhere
a'}= 2+ 2283+1,440) T [(53%+1803+800)2 - 6 1/2
o 16(15p+112) |
pr = ——5(3+8)
2(p+10-4a")
F": 5(B+8) :
2(p+10-4a"’)

These two points usually exist when B is finite, but the point (a”, F‘?
approaches infinity as B+ . At the point (a”, F*), the characteris-

~ tic equation has: one zero root, one positive real root equal to

p p p
(- ;1 )1/2, two negative real roots equal to - (- ;1 )1/2 and - =+ ;
° () ()

therefore, the system will execute divergent motions. At the point

(a"’, F"), the four roots are: one zero root, two pure imaginary roots

P . , P :
equal to = (- ;1 ;& and one .negative real root equal to - ;l ; hence,

1 _ o

after the initial disturbance, the system will execute steady state
vibrations about a certain position which in general is not the position
whose stability is being studied. -

(D) Boundaries P = 0, Excluding the Points (a’,F’), (a’,F'), and (a",F"):

Aiong these boundaries the characteristic equation has one zero
root and three other roots given by

X 2 ‘ _
P°Q3 + pln + pZQ +-p3 =0

where, by the theory of equations and for small damping (Bi<< 1), ihe
three roots will be all real if p2< 0, but one real and two complex%if
P, 2 0. In the range of either F < F’ or a > a* along P, = 0, the four
roots are found to be: one zero root, one negative real root, and two

conjugate complex roots with negative real part. The nature of these
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four rooishindicates that after the initial disturbance the system may
execute transient vibrations and then come to rest at a position which
in general is not the position whose stability is being studied. This
phenomenon can be interpreted as a stabilizing effect of viscous dam-

ping because the same system.with no damping would execute divergent |
motion. .

The curves p, = 0 (i.e. H=0), p, = 0, and K = 0 have two common
intersection poinﬁs at (0.423, 2.219) and (1.182, 4.281). In the range
of F/'< F € 2,219 along P, = 0 the four roots are: one zero root, one
positive real root, and two conjugate complex roots with negative real
paft. In the range 2.219 <.F <3 albng P, = 0, the four roots ares
one zero root, one positive real root, and'tuo ﬂegativé real roots,
Thus, in the range of F'< F < 3 along P, = 0, the system will execute
divergent motions. ; ‘ |

In the.range F" < F < 4.281 along P, = 0, the four roots are: one
zero root, one negative real root, and tﬁo conjugate complex roots with
positive real part and thus flutter will occur, In the range F > 4.281
along P, = 0; the four roots aret one zero root, one negative real
root and two positive real roots; hence, the system will undergé diver-

gent motions.

. (E) Boundary K = BPL - pz2 = 01

The exact curve of K = 0 is
= -p.2 - 1.2 b Y A
K apL Pz , (plp3 2 Pl P2 + 64 Pl ) ‘ 0
As B1 and hence P and Py are assumed small, of the order of 1073 (4],

the last three terms in parentheses are higher order terms and may be

neglected, Thus



14

~ a. 2 _
K= 8pL Py 0
is a boundary curve which is very close to the exact curve K = 0,

Substituting Jé‘ p22 for P, in X, we have

x=-1% g (PPy - l.p3)2.$ 0
which indicates that the system will be unstable vwhen @ and F are on
the boundary curve given by K= 8p4 - p22 = 0 except at the point where
X vanishes and P3 is positive (steady state vibrations). The instg-
bility mechanism will, on the whole, be of the flutter type, except at

the points where the exact expressions of K and H are all negative

- (divergence) .,

Influence of Damping Ratio on Instabili'tx'Mgghani_s_mg

In the preceding .sections it x}as established that stability is
possible only in the region (a >0, H> 0, and X < 0) vhich is marked by diago-
nal lineﬁ in Fig. 2. In this region the sign of X governs the type of ‘
motiorr i.e., the system is stable if X 2 o and unstable if X< 0.
Critical loads for divergence, if any, are given by P, = 0; i.e.,

they are :
F.di.v 2(1% l1-a )
On the other hand, critical loads for flutter, if any, are always given

by X = 0; i. e., they are

4

flu v | 8(p+2)(a-1) (a-a o)

wherel#a#ao, and o o
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_ -‘32'0'12‘}*0'_[‘
% = "8(p+2)

The two vertical lines a = 1 and @ = a, (Figs. 4 to 7) are asymptotes
of X =0, For a =1 the critical load is given by

F
a1 . 2(p%7pe6)

flu

which was studied in [4]. For a = ac" the critical load for flutter,

if any, becomes

+2) (43%+330+

F =
o, pherp-s0p®-332p+2s

flu

The curves of critical loads for B = 0, 1, 11.071 and ® are illustrated

in Figs. 4, 5, 6, and 7.

For @ = O (conservative case) in.Fig. 4 the point (0,-1), which is

an intersection poinf. of two branches of the curves giw'ren by X=0, is .~

itself on the boundary given by X = 0; therefore, this point corresponds
to steady state vibrations of the system. The point (0,;-1) is thus also
a point representing stability rathex; than a point which indicates an

isolated critical load for the conservative system (a = 0) with dampmg.
However, depending on the ratio of damping coefficients, a nonconserva-
tive system (a # 0) may have multiple critical loads for flutter, in

addition to those for divergence, at the same value of a anywhere in the
2 < @ €1 where critical loads for flutteernly

9
will occur. Fig. 4 illustrates that forp =0 flutter will occur for

range a §0 except for

any &, except a = 0,' while Fig. 5 shows that the smallest range of a,
in which flutter is possible, becomes minimum (g < @ < 1.305) when the

damping coefficients are identical (.{.e. B= 1).



16

It was found in [5] that the presence or absence of neighboring
equilibrium positions was strongly influenced by the behavior of the
jnonconservative loading and also by the constraints of the system.

‘A further reaultvéf the present study is that the ratio of the damping
céefficients may éxert en analogous influence, and ma} thus render the
static criterion inapplicable for systems in which without damping the’
critical load could be determined statically. For instance, it is seen

'.that in the range % <ac< g the static stability criterion is applicable

if B = = (see Fig. 7), tut breaks down if § = 0 .(see Fig. 4).

Similarly to applicability, the sufficiency of the static stability
criterion (in the sense of supplying all critical loads) also depends on
rthe ratio of damping coefficients. To exemplify this feature, let us
examine again Figs. 4 and 7. in the range a < % we note that the static

"stability criterion i§ éufficient if ﬁ = o, but proves to be insufficient
if B = 0. The equation P, =0 expresses, in fact, the static stability
criterion; i1.e., the condition of the static equilibriumvof the system
in the vicinity of its neutral configuration. ‘Thus the static stability
criterion 1s'1mplied in the kinetic stability criterion which is usually

‘sufficient in determining all critical loads for the nd;conéervative
system. R

Ié is possible to identify the range of a in which flutter cannot
occur and thus the application of the kinetic criterion is not required.

Thisvrange will, however, depend on the-ratio of the damping coeffici--
ents. To determine this.range, we consider the expression Fflu derived
in this section. Flupter cannot occur if the qgantity (Bz - 22p + 1)a2+
+ 33Ba - 9B appearing under the square root in that expression is nega-

tive. Thus flutter may occur in the following ranges
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aza;anda*s«xz IfB>a orp<a,

- or . _
‘a1>a>a2 1ra1>p>.2
vhere |
— 1 _ [21.954
8,2 = 1 +J120 = "¢
and'

2 - ’
27 = 2(3‘31?(Bt82) . ’ (al Zp# az)v
Ifg= a, or B= a,, the range in which the kinetic stability criterion
must be considered will be only a 2 i?l' . Consequently, if there exist
any ranges of a thch are outside the above specified ranges, the static
stability criterion alone will be sufficient to determine all the cri-

tical loads, despite the nonconservativeness of the loading. However,

according to the preceding section, if a < a’ or a > a” the static

stability criterion will definitely be applicable but not necessarily

sufficient in determining all critical loads. .

Possibility of Elimination of Destabilizing Effects -

Critical loads for flutter in the undamped system analyzed in [5]
are given by the equation K(a,F,Bi) = 0 with the terms due to small.

damping neglected, i.e., by the equation
K(a,F) = - [4(a“-2a+2)F° + 4(a-8)F + 41] = 0

Critical loads for flutter in the damped system analyzed here are given
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vhose loci constitute, in fact, a family of curves in the @ - F plane

with B as the parametric constant, Different curves of the critical

load for flutter will be obtained if different'values are assigned to
B in X(a,F,p) = O. |

To study the interrelation between the éurves of critical loads
given by K(u,F).= 0 and X(a,?,p) = 0, let usieinmine the envelope of
the family of curves defined by x(‘a,i?,p) = 0. It is known (8] that,
if an envelope exists, it must satisfy -

X(a,F,p) = 0 | |

and

op X(a ,F,p) =0

~

Elimination of B in these two equations yields

(F-2) [(1-0) F-2])[4(1-0) F-51° . K(6,F) = O
where K(a,F) is as defined before. However, this equation may contain
some curvesrvhich are other than the envelope (8]. Deleting these, the

true envelope is found as'given by

[(1-a)r-'-z] . K(a,F) = 0 |
Thus, the curve for critical flutter loads of the system with no damping |
;s a b?anch of thp envelope of the family of curves of the critical flut-
ter loadé.of the same system with demping. This remarkable relation
shows a significant connéction between the two poverning equations of.
the critical loads for flutter of the uﬁdampéd and the damped syste@s.

In consequence of the above reiation, it appears possible to eii—

minate therdestabilizing effect of damping on the critcal loads for flut-

ter in the damped system if we choose the value of 3 which defines a

curve of the family X(a, ,ﬂ) = 0 tangent to K(G,F) =0 (the envelope) at
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the given value of a. Eliminating F in X(a,F,B) = O and gﬁ X(a,?,3) = 0, -

we find that this value of B is given by the positive, real root of the
quintic | ‘

- (8a-3) (7a-3) (4a-3)p> - (896u’- 5,936a+ 8,196a° - 3,870a +
+594)B*~ (12,800a*- 60,928a%+82,6800°- 38,664a + 5,832)3°-
- (80,128a%- 365,280a+ 502,4164>- 234,576a + 34,992)p%~
- (353,280a%- 1,480,320a>+ 1,925,856a%~ 874,800a + 128,304)f =

2

- (838,656a%- 2,941,056a7+ 3,411,072a%- 1,469,664a + 209,952)

=0

and the critical load for flutter in this case is given by

, _
F = (15-320) B+ (24-128q)3 + (84-496u)

2[(6-17a+8a2) >+ (24-92a+32a°)p + (120-484a+256a) ]

which will be identical to thé criticai lo#ds'for flutter of the same
system with no damping. ‘

For example, if the elimination of the destabiiizing.effect of
damping for the case @ = 1 i3 desired, B must b? equallto the positive,
| real root of the quintic | '

B2+ 6p - 8ep? - 88482 - 2,616p - 2,448 = 0
L.e., . L
B=14+542=1100
~vhich, together with a = 1, yields

F:%-J’é': 2.086 .

The critical load for @ = 1 in the undamped system determined in [1,4,5)
is identical to the falue we obtained above. The complete elimination

of the destabilizing effect for this case is thus attained as is



the value of F, /F increases as ﬁ increases and approaches 29/ 5(37-6 V5 )
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11lustrated in Fig. 6. For a= 7, a similar procedure will show that

the destabilizing effect is mnpletely removed when B = . This is

illustrated in Fig. '7.

| The possibility of complete elimination of the destabilizirg ef-

fect depends on the existence of a positive, real root in the fore-

going q\nntic. The range of a where the elimination of the destabilizing
effect is oi‘ interest to us is, of course, 0 1.23 <a<l. 305. However,
it 1s found that in the range A

3 3
7<G<L

the quintic has no'pos;itive, real root. Thus in this range the system

will always éxperience some destabilizing for whatever value of B in

itsrangeosﬂsw.

For instance, let us consider the case & = 0 6 -where the critical

load for the system with no damping is

=5 (37 - -
Fo = 55 (37 64'5) 2.033

While the. critical lond for the system with damping is given by

F= a1 + 2 - (p+6)f0,363% 2,883 +
d , (3.2p+6.4)(a -0.6)
where . o
_ _ 2, 23 +
% T 8(pr2)

: ‘The ratio of Fd to F versus [3 is plotted in Flg. 8. It is noted that

u

= 0.984, instead of 1, as the upper limit when ﬂ appmaches infinity,

1. e the destabilizing effect of damping is at least 1.6% if the value

of a ia kept at 0. 6 The discovery of this novel phenomenon ia a further
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indication of the rather pechliar effects associated with damping 1nﬁy
‘nonconservative systems. | _

In the range 1.182 < a < 1.305 the undamped. sy;tem has multiple
critical loads for flutter given by K(a,F) = O. 4 However, an investi-
gation of the roots of the quintic shows that for any a in the range
1.182 < a € 1.285 theré is only one positive, real root which defines
a curve of the family X(a,F,B) =0 tangent to the lower part of K(a,F) = 0.
Thus, in the range 1.182}g a < 1.285 the damped system has no critical
load which is given by the upper part of K(a,F) = 0.

As an alternative, the possibility of eliminating'the effects of
damping could also be studied by equating the frequencies first and then
the critical forces, obtained with and without damping; The frequency

‘of the undamped system is given by

Y
InQ = > ’7—2(2-4)?

vhile the frequency of the system vith damping 1s given by [7]

(Bl+32) ~(1-a) (B,+2B )F
ImQ = pl B +6B |

Equating the two expressions and ellminating F in K(a,F) =0, leads to

28(a- 2)(a- Dp% 4(1602-33a+9) B+ 4(182a2—297a+81) =0

-

vhich in turn gives the range

3 3

7 <a< 4 | o |
in which elimination of the damping effect is not possible for positive
damping. - |

Fig. 9 illustrates the function B(a) which insures elimination of




\
damping effects. For completeness the required values of negative 3‘

in the range 3 <al 3 have also been indicated.

q 4
C u Remar

The foregoing stability analysis of a simple, linear system with
two degrees of freedom ﬁith slight viscous damping and subjected to
" nonconservative forces leads to several conclusions concerning the
existence of certain features. These included ﬁultiple ranges of sta-
bility and instability, nonremovable destabilizing effects due to dam-
ping and the influence of damping on instabiiity mecﬁanisms.

It should be emphasized that these conclusions are consequences
of the model selected for study. They are believed to be of conside-
rable interest in thehselveS‘but no question is ralsed here as to the .
possibility of realization of systems which would be representable by
the model studied. This question will be treated in separate studies,
together with the associated prdblem concerning the validity of initial

assumptions, which can be resolved only by systematid'experiments.
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