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ABSTRACT 

A l i nea r  tvo4egree-of-freedom system with s l i gh t  viscous damping 

and subjected to 

aim of studying the e f fec ts  of damping on s t a b i l i t y  of equilibrium. 

It is found that in such systems multiple ranges of s t a b i l i t y  and in- 

nonconsenrative loading is analyzed with the 

s t a b i l i t y  may e x i s t  in a r icher  variety than i n  corresponding systems 

without damping. Further, f o r  certain systems, i n s t a b i l i t y  e i the r  by 

divergence ( s t a t i c  buckling) or by f l u t t e r  may occur first as the com- 

pressive load increases, depending upon the r a t io  of the damping 

coefficients i n  the two degrees of freedom, 

systems d s t  for w h i c h  the destabilizing e f fec t  of slight viscous 

damping cannot be completely removed whatever the ratio of the (positive) 

It is shown f ina l ly  that 

I 
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I n t m d u c t i o ~  

Zicgler's [l] discovery of the  destabil izing effect of l i n e a r  

viscous damping i n  a nonconservative elastic system provided a n  impetus 

for fur ther  s tudies  of t h i s  remarkable phenomenon. I n  par t icular ,  

Balotin [2] found that the destabi l iz ing effect i n  an elastic system 

with two degrees of freedom is highly dependent on the  r a t i o  of the  

damping coeff ic ients  and that it could be eliminated for a cer ta in  par- 

ticular value of this ra t io .  

More recently, the influehce of damping i n  nonconsemative systems 

Refe- 

In  

w a s  discussed by Leipholz [3] and ais0 by Herrmann and Jong [ & I .  
rences to fu r the r  work on t h i s  subjsct a r e  given i n  121 and [ 3 ] .  

[ 4 ]  a t ten t ion  w a s  focussed on establishing a generic relationship between 

cr i t ical  loadings for no damping, f o r  s l i gh t  damping, as w e l l  as for 

vanishing damping. It was found t h a t  while the presence of small l i n e a r  

viscous damping may have a destabilfzing effect, proper interpretat ion 

of t he  l imit ing process of vanishing damping leads t o  t h e  same c r i t i c a l  

load as for no damping. 

The conclusions arrived a t  i n  [ 4 ]  were &sed on the analysis of a 

system i n  which the (nonconservative) loading was completely specified 

and no neighboring equilibrium position existed, i. e. s tabi l i ty  was 

lost by f l u t t e r .  It was shown by Herrmann and Bungay [ 5 ]  for a system . 

without damping, howwer, that by varying a loading parameter, the  other- 

wise ident ica l  system could lose  s tabi l i ty  e i ther  by f l u t t e r  or by @- 

vergence (neighboring equilibrium position exists)  o r  by both ( a t  d i f -  

ferent loads) depending upon the value of this parameter. 
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In view of the  results obtained i n  113, [2] and [C], it appaers 

to be desirable to extend the analysis of IS] by including l i n e a r  

viscous damping considered i n  a particular system i n  [l] and [2]. To 

this end the same model of a system with two degrees of freedom as i n  

153 is  investigated, but damping is also included. 

The l inearized equations of motion permit a detailed study of the 

nature of the  roots of the character is t ic  equation associated with 

s m a l l  motions in the  v ic in i ty  of the  static equilibrium position, using 

the theory of equations [ 6 ]  i n  addition to the  Routh-Hunritz criteria 

c71. 
The results of this investigation indicate  tha t  multiple ranges of 

s t a b i l i t y  and in s t ab i l i t y  may occur also i n  the presence of ,s l ight  dam- 

ping and that the var ie ty  of poss ib i l i t i es  is even r icher  than i n  the 

absence of damping. The c r i t i c a l  loads, as already shown i n  [2], are 

highly dependent on the r a t io  of the damping coeff ic ients  but, i n  addition, 

two features, not known heretofore, are shown to  exist: F i rs t ly ,  f o r  

otherwise ident ical  systems the existence of neighboring equilibrium may 

depend on the ratio of the damping coefficients. 

changing this r a t i o  two otherwise ident ical  systems may lose stabi l i ty  

by e i the r  divergence ( s t a t i c  ins tab i l i ty )  or by f l u t t e r  (dynamic insta-  

This means that by 

b i l i t y ) .  

f o r  a class of elastic systems the elimirgition of the destabil izing effect 

The cri t ical  loads are different  i n  the two cases. Secondly, 
* 

of damping by an appropriate choice of the  r a t i o  of the damping coeffi- 

c i en t s  is not possible. It was found that for cer tain systems negative 

damping would be required i n  order to make the  c r i t i c a l  load i n  the  pmence of 

al ight  clanping to be identical  to that i n  the  absence of IDX;XRIW damping. 



In conclusion 

presented here had 

it should be emphasized that the investigation 

solely the purpose of indicating the existence of 

certain types of behavior oP a simple model of a nonconservative 

system. Whether or not l inear visaoue damping is  r e a l i s t i o  for actual 

systems and whether the loadings considered are realizable are questions 

deferred ta subsequent dxdies. 

The Moda 

We consider a double pendulum, Fig. 1, composed of two r ig id  weight- 

l e s s  bars of equal length 4, w h i c h  carry concentrated masses 9 = 2m, 

m2 - m. 
the usual sense. 

a s  shown in Fig. 1. 

The generalized coordinates q1 and q2 a re  taken to be small in - 
A load P is applied a t  the f r ee  end a t  an angle aq2, 

A t  the hinges, tlie restoring moments w1 + and 

c(q2- ql) + b (+ 

are taken as posi t ive and no gravitational effects  are included. 

el) a re  induced. The damping coefficients 4 and b2 2 2- 

The kine t ic  energy T, the dissipation function D, the potential  

energy V, and the generalized forces 9 and Q2 arm 
’ 

Lagrange’s equations in the form 



(i = 1$2) 

are employed to establish the linear equations of motion 

which, upon stipulating solutions of the fora 

w t  = Aie (i = 1$2) 

yie ld  the characteristic equation 

P o d  + P l d  + P# + P p  + Ph =; 0 

with the coefficients 

and the dimensionless quantities 

c 
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Root Doma ins of the Characteristic Eoua t ioq  

The type of motion of the system and therefore the problem con- 

cerning s t a b i l i t y  i s  closely related to the nature of the roots of t h e  

character is t ic  equation. 

than vanishing o r  large damping is the  cause of the destabil izing ef- 

fect, and thus only small damping (B,<C 1) w i l l  be considered in the  

It vas found i n  143 that small damping ra ther  

sequel. 

L e t  us introduce first 

3, h 2  
= 6 '0'2 - 16 '1 

17 

& P P  + h 
= '0'4 4 1 3 12 

I 

c 

A 

the following quantities8 
'. -. 

1 
'... 

2 [4(a2- loa + lo)F2+ 4(25u - 32jF + 731 

% 1  - - -  216 [(Sa3 + 96a2 - 336ar.+ 224)F3- 
- <348a2 - 1,464a + 1,032)8- 

- (1,362a - 1,212)F - 1611 

'- 

. 

K = pO2I - la2 
- 4[(a-l)2+1] { F - 



. f  

CI 

6 

. .  

+ 2( 1-1 ( p*+llp-lO) + ( 1-a) ( p2+8p+12) BIB2] F 4 

B: I (  1-a) [ p2+12p+4-Sa( p+2) 3 F2 - . 
- 2[P2+'7p+6+( 1-a) (8*+143-10)] F + 

where po, ..., p and other  symbols have been previously defined. 
'.> 

, 4  
It is known from the  theory of equations 161 that: 

(a) when A < 0 ,  the  character is t ic  equation has two real and two 

complex roots; 

when A > 0 and both H and K are  negative, the  four  roots  are (b) 

a l l  real; 

when A > 0 and a t  least  one of H and K is  posi t ive or zero, 

the four roots  are a l l  complex. 

( c )  

These c r i t e r i a  lead to  the different  root domains shownin Fig. 2. 

The domain marked by ~ s a e 9  
.4 

indicates  the existence of 

four real roots; t ha t  marked by dots P corresponds t o  two 

real and two complex roots; and that  marked by horizontal  dashes or by diagonal 

l i n e s  indicates the eldstence of four complex roots. The more detailed 

nature of the roots  and the related stable and unstable behavior of the  

system may be deduced f r o m  the following. 

(A) Doma i n A > O .  H < O .  K < Q r  
- *  

T h i s  domain is marked by cfoaaes in Fig. 2. I n  it po, 

pl, a d  p4 i ipwjrs  p s i t i v e *  n is 41v~ys negative. Applying the ' '2 

. I  
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well-k?own-Descartes* rule  of signs, regardless of the  sign of p3, it 

is  seen tha t  i n  this domain the  four real roots of the characteristic 

equation Eire always pairs of two positive and two negative ones. 

sequently, t h i s  is  throughout a region of i n s t a b i l i t y  by divergent 

motion. 

Con- 

. 

(B) Domains A < 01 
These domains are marked by dots i-- i n  Fig. 2. 

L e t  t h e  two real and two complex roots i n  these domains be represented 

Q =  I" * ip2 
r2 

From t h e  re la t ions between roots and coefficients i n  the theory of 

equations [ti] and the def ini t ion of  the expression X i n  the iiouth-Huxwita 

cr i ter ion 171, the  following. relationships hold 

As p i s  always 

above indica tes  
4 

which, i n  turn, 

PO 

negative i n  these three domains, the t h i r d  equation 

that 

shows that t h e  

Hence, these three domains are 

two real roots are of opposite sign, 

also regions of ins tab i l i ty .  Again, 
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recal l ing tha t  p < 0, it is seen from the above four equations tha t  4 
t he  real pa r t  of the conjugate complex roots  wi l l  be negative if X > 0 
or i f  X < 0 and p3 < 0, but w i l l  be positive i f  X < 0 and p3 > 0. 

Whence it follows that divergent motion w i l l  prevail  i n  t h i s  reZion, 

of t he  type as sketched in Fig. 3(a) if  X > 0 or i f  X < 0 and p 

o r  as i n  Fig. 3(b) i f  X < 0 and p3 > 0. 

i s  undamped (Bi = 0) , p1 and rl w i l l  vanish identically.  The undamped 

system wi l l  therefore undergo divergent motion of the  type as sketched 

i n  Fig. 3( c) . 
(C) Domain K > 01 

< 0, 3 
It is noted tha t  if the  system 

By defini t ion,  i n  all above cases the system is unstable. 
\ 

This domain i s  marked by horizontal dashes i n  Fig. 2. Let  us de&te 

the  four complex roots in t h i s  domain by 

Then, as before, the following relationships are obtained8 

4Ylb1[(yl+ bi)2 + (y2+ b2)21[(yl+ bl) 2 + (yz' b2)2] = 3 X = 

Po . Y 

which indicate  tha t  yl and b 

jugate  complex roots) w i l l  be both negative if X > 0 ,  but of opposite 

(the real pa r t s  of the  two pa i rs  of con- 1 

sign i f  x < 0. 

Now, within this domain, we have 

or 
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or 

x < o  
Therefore, the real par t s  of the two pa i rs  of conjugate complex roots 

are of opposite sign. The nature of these four roots  indicates that 

i n  t h i s  domain the  system w i l l  f lu t te r .  

(D) Domain A > 0. H > 0. K < 0: 
diagonal l i n e s  

This domain i s  marked byr-in Fig. 2. As the  four roots are 

a l l  complex, the signs of the real  pa r t s  of the  roots w i l l  also be 

governed by the signs of X as asserted above. 
\, 

vibrate  Kith decreasing amplitude (asymptotic s t ab i l i t y )  if the values of 

bus, the  system will 

a and F are i n  those par t s  of t h i s  domain where X > 0. However, the 

system wi l l  f l u t t e r  if the  values of a and F are i n  those par ts  where 

x < 0. 

Further separation of s t a b i l i t y  from i n s t a b i l i t y  i n  the present 

This is i l l u s t r a t ed  for domain is governed so le ly  by the sign of X. 
' 

the  four cases of p = 0, 1, 11.071, and Q) as shown i n  Figs. 4, 5 ,  6, and 

7 where the regions shaded by 

s t ab i l i t y ;  those shaded by horizontal dash2s are regions of f lu t t e r ;  

those shaded by small t r i ang le s  are regions of divergent notion, of the 

diagonal l i n e s  are regions of 

type shown i n  Fig. 3(a) ; those shaded by dots  are regions of divergent 

motion of the  type shown i n  Fig. 3(b); and those shaded by crosses ars regions 

of divergent motion, i n  which the time increase of the  generalized 

coordinates is of the exponential type. 

It is t o  be noted that i n  the present domain (A > 0,  H > 0, and 
K < 0), if the  damping effects vanish, the four complex roots of the 

. .  . . .  

\ 
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characteristic equation will all be pure imaginary and d is t inc t .  

the  undamped system executes steady state vibrations and is stable 

throughout the  domain, as found in [SI. 

Thus 

Nature of Boundaries Senaratirw Different Root Domains 

In  this section the boundaries given by X = 0, p4 = 0, and K = 0 

will be examined. 

given by X = 0" will be rest r ic ted to mean only those pa r t s  of the  

cumes given by X = 0 which lie in the  domain 6 > 0, H > 0, and K < 0. 

(A) Boundaries X = QI 

For the  sake of convenience, t h e  tern "boundaries 

On these boundaries t he  characteristic equation has, by def in i t ion  

These two of X 171, two roots  equal in magnitude but opposite i n  sign. 

roots are 

where p1 is  posi t ive for posit ive damping. It is found that the curves 

p3 = 0, p4 = 0, and X = 0 have a common point 6f intersect ion which is 

given by 

a = q ' = B  *+ 30 + 1, 
2p2+ 5$ + 2 

Further, as p = 0 and X = 0 have o h y  one point of intersect ion a t  

(a', F') on p4 = 0, it is  evident t h a t  along the boundaries given by 

X = 0 p 

3 

i s  always positive. This can be seen fmm Figs. 4, 5, 6, and 7.  
3 

Consequently, % 
t h e  other  two conjugate complex roots is - !k = - 

are two d i s t inc t  pure imaginary roots. The sum of 
82 

p . which is negative 2 1  PO 

, . .  



11 . I  

(for posi t ive dampinS) Hence, along the boundaries given by X = 0 the 

character is t ic  equation has two pure imaginary roots equal i n  maqitude 

.bu t  opposite i n  sign and two conjugate complex roots with negative real 

part. 

of some init ial  disturbance. 

nonconsemative system can undergo such motions. 

(B) Point of Intersection of X = 0, p3 = 0, pL = 0: 

Thus, the system w i l l  execute steady state vibrations as a r e su l t  

It is only i n  t h i s  case tha t  the damped, 

A t  this common intersect ion w i n t  denoted by (a', P') , the charac- 

teristic equation has two gem mts, The other two mots ,  being 

given by 

2 
PoQ + PlQ + P2 = 0 ,  

are two conjugate complex roots  with negative real part. The two zero 

roots  will induce two terns of t h e  form cl + c2t i n  the general solution 

of 'pi. 

increase of 'pi is linear w i t h  respect to the t i m e .  

i s  the only one a t  which the  s t a b i l i t y  region for the  damped, nonconser- 

vat ive system is open. 

(C) Polnts of Intersection of pt = 0, X = 0,  S = 01 

Thus, the system will execute divergent motion i n  which the 

T h i s  point (a', F') 

L e t  us introduce the quantity 

s'= PIP2 - PoP3 -' 

which is one of the expressions entering t h e  Routh-Huntitz cri terion. 

Then, 
2 

= P p  - P1 P4 
It can be shown that the  curves p4 = 0, S =  0 ,  and X = 0 have two points 

of comon intersection,.denoted by (a', F') and (a", F'?, 
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where 

' These two points usually 

approaches infinity as 8 
exlst when p is finite, but the point (a"', P") 

A t  t h e  point (a', F') , t he  characteris- QD . 
t i c  equation has: one zero root, one posit ive real root  equal to 

therefore, the system wi l l  execute divergent motions. 

(a"', F"), the  four mots are: 

equal to i (- 

after the in i t ia l  disturbance, the system w i l l  execute steady state 

A t  the  point 

one zero mot ,  two pure imaginary roots  

and one.negative real root equal t o  - ; hence, 
P1 PO 

vibrations about a cer ta in  position which i n  general i s  not the posit ion 

whose stabil i ty is being studied. 

(D) Boundaries p = 0, Excluding the Points (u',F') , (u' ,F8) , and (a"',F'? t 

Along these boundaries t h e  character is t ic  equation has one zero 

root  and three other roots given by 

2 2 + p p  + p2Q + p) = 0 PO 

where, by the theory of equations and for small damping (Bi<< 1) , the  

three  roots w i l l  be a l l  real if p2< 0, but one real and two complex if 

p2 2 0.  I n  t h e  range of ei ther  F < F' or a > a"a1ong p = 0 ,  the  four 4 
roots are 

conjugate 

found to be: one zero mot, 

complex roots with negative 

one negative real root, and two 

real part. The nature of these 
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four roots indicates  that a f t e r  the i n i t i a l  disturbance the system may 

execute t ransient  vibrations and then come t o  rest a t  a position which 

i n  general i s  not the  position whose stabil i ty i s  being studied. 

phenomenon can be interpreted as a stabilizing effect of viscous dam- 

This 

ping because the same system with no damping vould execute divergent 

motion. 

The curves p2 = 0 

intersection points a t  

of F'< F 5 2.219 along 

(i.e. H = 01, p4 = 0, and K = 0 have two common 

(0.423, 2.219) and (1.182, 4.281). 

= 0 the four roots are: 

I n  the range 

one zero root, one p4 
posit ive real root, and two conjugate complex roots with negative real 

part .  In  t h e  range 2.219 < F < 3 along p4 = 0, the four roots are: 

one zero root, one posit ive real root, and two negative real roots. 

Thus, in the  range of F'S F < 3 along p4 = 0 ,  the  system will execute 

divergent motions. 

I n  the  range F"< F < 4.281 along p = 0, the four roots are: one 4 
zero root, one negative real root, and two conjugate complex roots with 

posit ive real p a r t  and thus f l u t t e r  w i l l  occur. I n  the  range F > 4.281 

along p = 0, the  four roots are: one zero root, one negative real 

root and two posit ive rea l  roots; hence, the system w i l l  undergo diver- 
4 

gent motions. 

(E) Boundary K 2 8p - 
The exact curve of K = 0 is 1 

As B and hence p1 and p are assumed small, of the order of [4], 

t he  las t  three terns i n  parentheses are higher order terms and may be 

neglected. Thus 

i 3 
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K 8p4 - p2* = 0 

is a boundary curve which i s  very close to t h e  exact curve K = 0. 

b * for p i n  IC, we have Substi tuting p2 4 

1 [ = - 8  h (P1P2 - 4PJ 2 0 

which indicates that the  system w i l l  be unstable when a and F are on 

t h e  boundary curve given b.r K = 8p4 - p2 2 -  - 0 except a t  t h e  point where 

X vanishes and p 

b i l i ty  mechanism w i l l ,  on the  whole, be of t he  f l u t t e r  type, except a t  

is  posi t ive (steady state vibrations). The insta-  
3 

the  points where the exact expressions of K and H are a l l  negative 

(divergence) 

. 

Influence of DamDfnP Ratio on Ins t ab i l i t y  Mechanismg 

In the  preceding sections i t  was established t h a t  s tabi l i ty  is 

' possible only i n  the region ( A  > 0, H > 0,  and K < 0) which is marked by diago- 

na l  l i n e t i n  Fig. 2. In  this region the sign of X governs the type of 

motion; i. e. , 
C r i t i c a l  

they are 

the  system is stable  if 1 2  0 and unsta'ble if X < 0. 

loads for divergence, i f  any, are given bj. p = 0; i.e. , 4 

1- a 

On the other hand, cr i t ical  loads for f l u t t e r ,  i f  any, are always given 

by X = 0; i. e., they are I 

where 1 # a # a*, and I 
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The two ve r t i ca l  l i n e s  a = 1 and a = a. (Figs. 4 to 7)  are asymptotes 

of X = 0. For a = 1 the cri t ical  load is given by 

which was studied i n  [41. 

i f  any, becomes 

For a = a. the  cri t ical  load f o r  f l u t t e r ,  

The curves of c r i t i c a l  loads for = 0, 1, 11.071 and OD are i l l u s t r a t e d  

i n  Figs. -4, 5 ,  6, and 7. 

For a = 0 (conservative case) in .  Fig. 4 t h e  point (0,-1), which is  

an intersect ion point of two branches of the  curves given by X = 0, is 

i tself  on the  boundary given 2 = 0; therefore, t h i s  point corresponds 

to steady state vibrations of t h e  system. 

a point representing stabil i ty rather than a point which indicates  an 

The point (0,-1) i s  thus a l s o  

isolated c r i t i c a l  load f o r  the conservative system (a 

However, depending on the r a t io  of damping coefficients,  a nonconserva- 

0) with damping. 

tive system (a # 0) may have multiple c r i t i c a l  loads f o r  f l u t t e r ,  i n  

addition to  those f o r  divergence, a t  the  same value of a anywhere i n  the 

range a (0, except for 

w i l l  occur. Fig. 4 i l l u s t r a t e s  that f o r  P = 0 f l u t t e r  w i l l  occur for 

any a, except a = 0, while Fig. 5 shows t h a t  t h e  smallest range of a, 

< a < 1 where-cr i t ical  loads f o r  f l u t t e r  only > 9 

’ i n  which f l u t t e r  is possible, becomes m i n i m u m  (9 I < a < 1.305) when the 

damping: coeff ic ients  are identical  (i.e. = 1). 

, - ,  

i 
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It wag found i n  153 tha t  the presence or absence of neighboring 

the behavior of the equilibrium positions was strongly influenced 

nonconservative loading and also by the  constraints of the system. 

A fur ther  result of t he  present etudy is that t h e  ratio of tho damping 

coeff ic ients  may exert an analogous influence, and may thus render the  

static c r i t e r ion  inapplicable for eystems i n  which without damping the 

c r i t i c a l  load could be determined statically. 

that i n  the  range $ < a < $ the  static s t a b i l i t y  c r i te r ion  is applicable 

i f  

For instance, i t  i s  seen 

= 00 (see Fig. 7), hit breaks down i f  P = 0 (see Fig. 4) . 
Similarly to appl icabi l i ty ,  the  sufficiency of the s ta t ic  stabil i ty 

I c r i t e r ion  ( i n  the  sense of supplying a l l  c r i t i c a l  loads) a lso depends on 

the r a t i o  of damping coefficients. To exemplify this feature,  l e t  us 

examine again Figs. 4 and 7 .  In  the  range a < $ w e  note tha t  t h e  static 

s tabi l i ty  c r i te r ion  is suff ic ient  i f  fi = Q), tut proves to be insuf f ic ien t  

i f  p = 0. The equation p4 = 0 expresses, in f ac t ,  t he  s t a t i c  stabil i ty 

cr i ter ion;  i.e., the  condition of the  s t a t i c  equilibrium of the system 

i n  the vicinity of i ts  neutral  configuration. Thus the s ta t ic  s tabi l i ty  

c r i t e r ion  is implied i n  the  kinet ic  stability cr i te r ion  which is usual ly  

suf f ic fen t  i n  determining a l l  critical loads f o r  the nonconservative 
1 

sys tm. 

It i s  possible to ident i fy  the range of a i n  which f l u t t e r  cannot 

occur and thus the application of the k ine t ic  c r i te r ion  i s  not required. 

This range w i l l ,  however, depend on the r a t i o  of the  damping coeffici-* 

ents. 

i n  t h i s  section. 

To detennine this range, w e  consider the expression Fflu derived 
2 Flu t t e r  cannot occur i f  the quantity (P2 - 2 q  + l ) a  + 

+ 33pa - 9p appearing under the  square root i n  that expression is nega- 

tive. Thus f l u t t e r  may occur in t he  following ranges . 

\ 9 
i 



or 

? > a > a 2  

where 

and 

If p = al or p = a2, the range i n  which the k ine t ic  s tabi l i ty  c r i t e r ion  

must be considered will be only u 2 

any ranges of a which are outside the above specified ranges, the static 

stabil i ty c r i te r ion  alone w i l l  be suff.icient to determine a l l  the cri- 

tical loads, despite the  nonconservativeness of the  loading. However, 

Consequently, i f  there exist 11 

according to the preceding section, i f  a < at or a > a" t h e  static 

stabil i ty c r i te r ion  dll defini te ly  be applicable but not necessarily 

suff ic ient  i n  detennining a l l  critical loads. . 

- 

Poss ib i l i ty  of Elimination of Destabil iziw Effects ~ 

C r i t i c a l  loads for f l u t t e r  i n  the undamped system analyzed i n  [5J 

a r e  given by the equation K(a,F,BI) = 0 with the  terns due ' to  small 

dmPiW neglected, Le., by the equation 

2 K(u,F) = - [4(a -2u+2)$ + 4(a-S)F + l+l] = 0 

Critical loads for flutter in the damped systan analyzed here are given 
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whose l o c i  constitute, i n  fact ,  a family of curves in the  a - F plane 

‘with p as t he  parametric constant. 

load f o r  f l u t t e r  will be obtained if different  values are a.ssigned to 

Different curves of the  cri t ical  

i n  X(a,F,#3) = 0. 

To study the interrelat ion between the curves of crit ical  loads 

given by K(u,F) = 0 rind X(u,F,P) = 0 ,  l e t  us examine the envelope of 

the family of  curves defined by X(cr,F,B) = 0. It is  known [g] that, 

i f  an envelope exists, it must satisfy 

X(a,F,p) = 0 

and 

Elimination of p i n  these two equations yields  

(F-~)[(~-U)F-~][L(~-U)F+]~ K(a,F) = 0 

where K(a,F) is  as defined before. However, t h i s  equation may contain 

some curves which are other than the envelope [S]. 

true envelope is found as given by 

[(1-u)F-2] K(a,F) = 0 

Deleting these, the 

Thus, the  curve for c r i t i c a l  f lutter loads of the system with no damping 

i s  a branch of the envelope of the family of curves of the c r i t i c a l  f l u t -  

t e r  loads of the some system with damping. This remarkable re la t ion  

shows a significant connection between the two governing equations of 

the  c r i t i c a l  loads for f l u t t e r  of the undmped and the damped systems. 

I n  consequence of the above relation, it appears possible to  eli- 

minate the destabil izing effect  of damping on the critml loads f o r  f lu t -  

t e r  in the damped system if we choose the value of j3 which defines a 

curve of the  family X(a,P,p) = 0 tangent to K(a,F) = 0 ( the  envelope) a t  
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the given vklue of a. 

w e  find tha t  this value of 8 i s  given ty the  posit ive,  real root of the  

Eliminating F i n  X(a,F,p) = 0 and a X(u,P,g) = 0,  ap 

quintic 

+594)p4- (12 ,800~~-  60,928a3+82,680a2- 38,664a + 5,8j2)p3- 

- (s0,128a4- 365,280a3+ 502,41&i2- 234',576a, + 34,992)p2- 

- ( 353,280a4- l,480,320a3+ 1,?25,856a2- 874,800a + 128,304)$ - 
- (838,65h4- 2,9dL,056a3+ 3,411,072a2- 1,469,664a + 209,952) 

= o  

and the cri t ical  load for f l u t t e r  i n  this case is given by 

*+ -128dS + (8t - L 9 b I  
2 2  2 21 (6-17~~+8==32~~u2) $ + (12O-484~+256a ) ] 

F =  

which will be ident ical  to the critical loads for f l u t t e r  of the same 

system with no damping. 

For example, if the elimination of the destabil izing e f fec t  of 

damping for the  case ca = 1 i s  desired, p'must be equal to the  positive, 

real root  of the  quint ic  
1 

p5'+ 6$4 - 8 q 3  - - 2,616$ - 2,448 = 0 

i .e.,  . 

$ = 4 + 5&'= 11.071 

which, together with a = 1, y i e l d s  , 

F = -J5 = 2.086 

The c r i t i c a l  load for a = 1 i n  t h e  undamped system determined i n  [1,4,5] 

i s  ident ica l  to the value w e  obtained above. 

of the destabil izing effect for this case is thus at ta ined as Is 

The complete elimination 
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1 For a = a similar procedure vi11 show that 4' i l l u s t r a t ed  in Fig. 6. 

the destabil izing effect  is completely removed when p = QD . 
i l l u s t r a t ed  i n  Fig. 7. 

This is 

The poss ib i l i ty  of complete elimination of the destabil izil lg ef- 

fect depends on the existence of a positive, real root  in the fore- 

going quintic. 

e f f ec t  i s  of i n t e r e s t  to us  is, of course, 0.423 I; a 5 1.305. 

it is found tha t  i n  the range 

The range of a where the elimination of t h e  des tab i l iz ing  

. However, 

the quint ic  has no positive, real &t. 

will always experience some destabil izing for whatever value of 

Thus i n  this range the  systan 

i n  

i ts  range 0 <'$ < Q) . 
For instance, l e t  us consider the case a = 0.6, where t h e  critical 

load for the  system with no damping is 
- 

F = 5 (37 - 6J5) = 2.033 
e 

While t h e . c r i t i c a l  load for the  system with damping is given by 

The r a t i o  of Fd t o  Pe versus P is plotted i n  Fig. 8. 

the  value of Fd/Fe increases a s  p increases and approaches 29,'5(37-6&) = 

= 0.984, instead of 1, as the upper l i m i t  when 

i . e . ,  the destabi l iz ing effect of damping is a t  least 1.6% if the  value 

It is noted that 

approaches infinity; 
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indication of t h e  r a the r  peculiar effects  associated with damping i n '  

nonconservative systems. 

In the range 1.182 < a < 1.305 the undamped system has multiple 

cr i t i ca l  loads for f lut ter  given 

gation of the  roots of the quintic shows that for any a i n  the range 

K(a,F) = 0. However, en lnvestl- 

1.182 5 a < 1.285 there is only one positive, real root which defines 

a curve of the  family X(a,P,p) = 0 tangent to the lower par t  of K(a,F) = 0. 

Thus, i n  the range 1.182 < a < 1.285 the damped system has no c r i t i c a l  

load which is given by the upper part of K(a,F) = 0. 

As an al ternat ive,  the possibi l i ty  of eliminating the effects  of 

damping could also be studied by equating the frequencies first and then 

the cri t ical  forces, obtained with and without darnping. The frequency 

of the  undamped system is given bp , 

I m Q  = $ j- 
w h i l e  the  frequency of the  system with damping is given by 173 

. 4 w t i n g  the tu0 expressions and eliminating F i n  K(u,F) = 0 ,  leads t o  

which i n  turn gives the range 
! 

i n  which elimination of t h e  damping ef fec t  is not possible for posit ive 

damping. 

Fig. 9 i l lustrates the  function p(a) which insures ellmination of 
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damping effects.  

i n  the range-; < a < 
For completeness the  required values of negative 8 

have also been indicated. 

Concludhz Remar& 

The foregoing s t a b i l i t y  analysis of a simple, l i nea r  system with 

two degrees of freedom with s l ight  viscous damping and subjected t o  

nonconservative forces leachto several conclusions concerning the 

existence of cer ta in  features. These included multiple ranges of sta- 

b i l i t y  and in s t ab i l i t y ,  nonremovable destabi l iz ing e f f ec t s  due to dam- 

ping and the influence of damping on i n s t a b i l i t y  mechanisms. 

It should be emphasized that  these conclusions are consequences 

of the  model selected for study. They are believed to be of conside- 

rable  interest i n  themselves but no question i s  raised here as to the 

poss ib i l i t y  )of real izat ion of systems which would be representable by 

t he  model studied. This question w i l l  be t reated i n  separate studies, 

together with the associated problem concerning the va l id i ty  of init ial  

assumptions, which can be resolved only by systematic experiments. 
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