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The hydrodynsmics 

ABSTRACT 

of pneumatic tire hydroplaning are explained from a 

purely ana ly t i ca l  standpoint. L i f t  and drag forces  on an assumed planing 

surTace ( t i r e )  are abtained f c r  an i d e a l  f h i d  -mdergeing tm-dimensional 

motion. For the  condition of incipient hydroplaning the theo re t i ca l  l i f t  

coef f ic ien t  is found t o  be 0.8, compared to a value of 0.7 from experiment. 

The l i f t  and drag coef f ic ien ts  are shown t o  decrease as the  t i r e  l i f t s  f’urther 

off t he  runway. 

favorably with the experimental results. 

The pressure d is t r ibu t ion  on the pavement from theory compares 
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INTRODUCTION 

The planing or  ski ing of a pneumatic a i rplane t i r e  has, on numerous 

occasions, placed p i l o t s  i n  ra ther  precarious s i tua t ions .  This phenomenon of 

t i r e  hytiroplaning can a l s o  be of concern t o  ziotorists cm5sing a t  r e k t i v e l y  

high speeds (50-60 mph) on flooded highway pavements. 

r e s u l t s  from the  large water pressures developed between the  t i r e  and pavement 

surface. Whenever the  t o t a l  hydrodynamic force deve lop3  from t h e  dis t r ibuted 

water pressure on t h e  t i r e  equals t h e  t o t a l  load t he  t i r e  i s  carrying,hydro- 

planing occurs. 

s k i s  on the  water. 

by t h e  personnel of the  Langley Research Center of t he  National Aeronautics 

and Space Administration i s  of a pioneering nature. 

summarize recent experiment research on t i r e  hydroplaning. 

t h i s  invest igat ion is t o  explain t i r e  hydroplaning from a standpoint of 

t heo re t i ca l  hydrodynamics. Pr ior  t o  developing the  theory, t h e  per t inent  f l u i d  

var iables  are discussed. 

ex is t ing  experimental resu l t s .  

T i r e  hydroplaning 

The t i r e  then loses  contact with t h e  pavement and essent ia l ly  

The comprehensive experimental work on t i r e  hydroplaning 

Horne and Dreher (1) 

The purpose of 

Finally the  theo re t i ca l  r e s u l t s  are compared with 



DISCUSSION OF HYDRODYNAMIC VARIABLES 

A l l  of the  manifestations of t i re  hydroplaning are comprehensively 

discussed by Horne and Dreher. 

hydrcdynamics of t h e  fiow, but also the  e l c s t i c i t y  of t he  t i r e  should be 

included i n  a general theory. 

part of the  problem i s  considered. 

t o  be fixed f o r  t h i s  initial study. 

It i s  qu i t e  obvious though t h a t  not only the  

In t h i s  invest igat ion,  only the hydrodynamic 

"he shape of t h e  t i r e  w i l l  be considered 

The hydrodynamic or lift force  exerted on the t i r e  by t h e  water i s  a 

f'unction of t he  following geometric, flow, arid f l u i d  var iables  

i n  which A i s  a cha rac t e r i s t i c  area on which the  water pressure a c t s  and is 

a function of t i r e  geometry, D is the depth of water on the  pavement, U i s  

t h e  t r ans l a t iona l  speed of the  t i r e ,  and p, y, 0, and p are t h e  mss density, 

spec i f i c  weight, surface tension, arid dynamic v i scos i ty  of t he  water, re- 

spect ively.  The lift force  can be represented by 

FL = CL A % 3 

i n  which C 

following var iables  

can be shown from dimensionzl analysis t o  be a f m c t i o n  of t he  L 

CL = f' (NF, Nw, NR, T i r e  Geometry) 

The quan t i t i e s  I!$,, Nu, and N 

Weber number, and Reynolds number, respectively. 

are the dimensionless parameters Froude number, R 

Each of these  parameters 



- b represents the r e l a t ive  significance of the  mass densi ty  t o  each of t he  other 

th ree  f l u i d  properties.  

propert ies  present i n  t i r e  hydroplaning i s  discussed i n  the following. 

The re la t ive  significance of each of t h e  four  f l u i d  

i 
a)  Mass density.  The density of t h e  water becomes an  obvious 

s igni f icant  f l u i d  property i n  t i re  hydroplaning because of the severe 

curvature of t he  streamlines i n  t he  v i c i n i t y  of the  t i re  and t h e  high 

speeds involved. 

b)  Specific weight. The existence of a f r e e  surface introduces 

the  e f f ec t  of gravi ty  i n t o  the  problem as  wel l  as surface tension. 

e f f e c t  of gravi ty  on fluid-flow pat terns  can be represented by the well- 

known Froude number, which i s  proportional t o  the r a t i o  of f lu id - ine r t i a  

force t o  fluid-weight force, defined as 

The 

U N = -  * a  
i n  which g is the accelerat ion of gravity,  and L is  a charac te r i s t ic  

length. For t i r e  hydroplaningthe su i tab le  choice of charac te r i s t ic  

veloci ty  and length would be the t r ans l a t iona l  speed of the t i r e ,  U, 

ami t h e  depth of water, D, on t h e  pavement, respectively.  Inasmuch as 

hydroplaning normally occurs for high speeds 6 40 mph) and a t  shallow- 

water depths the Froude number can be considered t o  be qui te  large,  As 

discussed by Rouse (2) gravity-type flows a t  large Froude numbers can be 

well represented from analyses f o r  which gravi ty  as a variable is  absent. 

The e f f ec t  of gravi ty  on t i r e  hydroplaning is  believed t o  be insignif-  

icant  i n  the usual s i tua t ion ,  and w i l l  not be included i n  t h e  theory. 

2 



l- L c )  Surface tension. A s  with spec i f i c  weight, the liquid-gas 

property of surface tension i s  present as a var iable  because of t h e  

existence of the liquid-gas interface,  the f r e e  surface. The e f f e c t  of 

surface tension can be represented by the Weber number, a dimensionless 

parameter which can be defined as being proportional t o  the ratio of 

f lu id - ine r t i a  force t o  f l u i d  surface-tension force. The Weber number 

i s  defined here as 

U Nw = - m (5) 

For the  hydroplaning problem U would log ica l ly  be the t r ans l a t iona l  

speed of the t i r e ,  and L t h e  depth of water on the pavement, D. Surface 

tension a f f ec t s  motion only f o r  smll values of the  Weber number and, 

more par t icular ly ,  for  snall radii of curvature of the water surface. 

Inasmuch as the veloci ty  U is  large and the  depth D is small it is not 

readi ly  apparent t ha t  t he  Weber number w i l l  be e i t h e r  large or small. 

For large values of t he  Weber number the e f f ec t  of surface tension i s  

ins igni f icant  a d  can be neglected i n  analyses. It is  believed, how- 

ever, t h a t  surface tension does not appreciably a f f e c t  t h e  pressure 

and, consequently, is not a n  important parameter f o r  t i re  hydroplaning. 

It is t rue,  of course, t h a t  surface tension is  the  cause of the  break- 

up of the  jet t h a t  leaves the  v i c i n i t y  of the  t i re  i n  the form of a 

spray. This breakup is not believed, however, t o  a f f ec t  the  magnitude 

of the lift on the t i r e .  The theory that follows is based on the  

assumption t h a t  surface tension is  insignif icant .  

a) Viscosity. Since a l l  f l u i d s  possess v iscos i ty  i t s  inclusion 

or  exclusion from a theory must be ser iously considered. The well-known 

3 



c Reynolds number, which i s  a r a t i o  of f lu id - ine r t i a  fGrce t o  fluid-viscous 

force,  represents the r e l a t ive  importance of the t w o  f l u i d  properties,  mass 

density and viscosi ty .  The Reynolds number 

The cha rac t e r i s t i c  length would log ica l ly  be the  spacing between the  

t i r e  ard pavement when t o t a l  hydroplaning occurred. 

speed U i s  usually large and the v iscos i ty  of water is  qui te  low,  

meaning that, except f o r  very small values of L, the  Reynolds number 

will be large. 

Reynolds numbers and can r igh t ly  be neglected as a variable.  

would be expected t o  play somewhat of a ro l e  f o r  s l i g h t l y  damp ( a d  i f  

o i l y  as just  seer a ra in )  pavements on which s l ipping from lubr ica t ion  

can take place. 

augmented if t h e  t i r e s  a r e  smooth. 

flooded pavements, the density of the water would be the expected s ig-  

nif icant  f l u i d  property. These two extremes of t h i n  f i lm and v iscos i ty  

effect a d  moderate t o  flooded depth and densi ty  e f f ec t  have been d is -  

cussed by Horne and Dreher t o  some extent.  

a i rc raf t  seems t o  be one f o r  which the  water depth is  more than thin-  

f i l m  and the tire is not smooth, but grooved. 

escape of the  water under high pressure, thereby delaying hydroplaning. 

The mass densi ty  of t h e  water is  assumed t o  be the s ign i f icant  and the  

The t r ans l a t iona l  

The e f f ec t  of viscosi ty  becomes ins igni f icant  f o r  high 

Viscosity 

I n  t h i s  case hydroplaning o r  s l ipp ing  i s  grea t ly  

On the  other  extreme, tha t  is 

The normal s i t ua t ion  f o r  

The grooves allow f o r  

only f l u i d  property present i n  the proposed theory. 

strengthened by the experimental resu l t s  of Horne a d  Dreher. 

cha rac t e r i s t i c  a rea  of equation (2) i s  represented by the s t a t i c  footpr in t  

This assumption i s  

If the  

4 



area  and U by the  veloci ty  of the vehicle a t  the  incipient  condition of the 

hydroDlaning, Horne and Dreher found that CT, i s  e s sen t i a l ly  a constant, 0.7. 

Their r e su l t s  are from tests covering a range of i n f l a t i o n  t i r e  pressures 

from 24 psi t o  150 ps i ,  of vehicle speeds from 45 mph t o  120 mph, a.nd of 

lift force F (which i s  equal a d  opposite t o  the  vehicle weight force)  from 

925 lb. t o  22,000 lb. Their r e su l t s  prove tha t ,  f o r  the  tests run at least, 

t he  f l u i d  mass densi ty  i s  the  so ie  f iu id  propx-ty a f f e c t l a g  mcticn zxl, 

furthermore, strongly indicate  t h a t  the flow pa t te rn  i n  t h e  v i c i n i t y  of the  

t i r e  was essen t i a l ly  similar f o r  all tests. 

from the  f a c t  t h a t  C was essent ia l ly  constant f o r  a l l  t i r e s .  L 

I 

L 

The la t te r  statement follows 

5 



THEORY 

The foregoing discussion on the significance of t he  various f iu id-  

property variables present led t o  the conclusion that, f o r  moderate water 

depths and vehicle speeds, t he  fluid density is the significant. f l u i d  

variable.  

f lu id .  If such an assumption i s  ju s t i f i ed  no more l i b e r t y  would be taken 

if, fur ther ,  the  flow is  assumed t o  be i r ro ta t iona l .  The conditions f o r  

po ten t i a l  flow are now satisfied. 

Such a condition i n  essence specifies the assumption of an idea l  

The veloci ty  poten t ia l  is defined by 

4 

in which V i s  the  veloci ty  a t  any point and cp t he  veloci ty  potent ia l .  

order that t h e  useful t o o l  of complex variables may be u t i l i zed  the flow is  

fu r the r  assumed t o  be two-dimensional. 

t h i s  assumption as the actual f l o w  under and around a t i re  is de f in i t e ly  

three-dimensional. It is  obvious t h a t  t h e  results of the two-dimensional 

theory w i l l  have t o  be interpreted with caution i n  applying them t o  the  

ac tua l  t hree-d imensi onal problem. 

I n  

Considerable l iber ty  is taken with 

For two-dimensional motion i n  rectangular coordinates the  veloci ty  po- 

t e n t i a l  is defined as 

i n  which u and v are the  horizontal and v e r t i c a l  components of the  t o t a l  

veloci ty  V, i n  t he  x- and y-directions, respectively.  The stream function 

Jf i s  defined as 

6 



. 
I- 

Laplace's equation is s a t i s f i e d  f o r  both CP ard $ 

2 a2q + a21p * = o >  v c p =  - 
ax2 aY 

and 

Tie dymamical equation of Bernoulli 

i n  which p i s  the water 

which i n  t h i s  insdance 

1 (u2 + v )  2 + P  = P o  
2 

pressure a t  any point and p 

s atmospheric. 

i s  the  reference pressure, 
0 

Once the  po ten t i a l  f i e l d  represented 

by cp and/or Q i s  found the  dynamical quant i t ies  such as pressure var ia t ion,  

l i f t ,  and drag can be determined from Bernoulli 's  equation. 

The hydroplaning problem is one of unsteady flow t o  the s ta t ionary  

observer. 

changing t.he ax is  of reference t o  t h e  t ire.  

a je t  of constant depth 1) and i n f i n i t e  width s t r i k i n g  a curved surface (tire) 

which i s  s l i g h t l y  above o r  i n  contact with a plane surface as shown i n  Figure 1." 

This steady-flow problem i s  dynamically iden t i ca l  t o  t h e  unsteady-flow hydro- 

planing problem of the t i r e  t rans la t ing  a t  the  same speed, U. When the  t i r e  

i s  i n  contact w i t h  the  pavement, p a r t i a l  hydroplaning is said t o  ex i s t ;  when 

The problem can be transformed i n t o  one of steady motion simply by 

"he picture  now seen is that of 

- 
A l l  i l l u s t r a t i o n s  a r e  i n  Appendix A. 

7 



there  i s  a space between the t i r e  and t he  pavement t o t a l  hydroplaning is  

to The t h e w y  here is f o r  the  more general case of t o t a l  hydro- 

planing, of which partial hydroplaning i s  a spec ia l  case. 

The hydrodynamic problem depicted i n  Figure 1 is  t h a t  of free-streamline 

flow with a curved boudary. 

on the  water surface has the  constant value of U as gravi ty  i s  neglected. 

From Bernoulli 's theorem the  veloci ty  everywhere 

The lift force on the t i re  can be determined by in tegra t ing  the  pressure 

d i s t r ibu t ion  thereon. The drag force can be e i t h e r  determined from the 

pressure d i s t r ibu t ion  on the t i re  or from a simple momentum analysis  involving 

the  unknown downstream depth, d,  and the  angle of the  j e t  a t  in f in i ty .  These 

two quant i t ies  a re  not known - a p r io r i  ard depend so le ly  on the  t i r e  shape and 

t i r e -pos i t i on  r e l a t ive  t o  t h e  pavement. 

vehicle weight a r e  not expl ic i ty  nor d i r e c t l y  taken i n t o  account. 

The e l a s t i c i t y  of the  t i r e  am3 the 

The t i re  

is  assumed t o  be f l ex ib l e  and deformed out of i t s  o r ig ina l  c i r cu la r  shape 

but no dynamic balance between water pressure, a i r - in f l a t ion  pressure, t i r e  

e l a s t i c i t y ,  t i r e - ro t a t ing  e f fec ts ,  and t i re  shape i s  made. M h e r m o r e ,  no 

attempt is made t o  e f f ec t  a dynamic balance of lift force ard vehicle weight 

force which d i c t a t e s  the clearance o r  space between t i re  and pavement a t  the 

downstream exi t .  The theory herein is simply a hydrodynamical one f o r  which 

forces  a re  determined f o r  an  assumed shape ard assumed posi t ion of the shape 

r e l a t i v e  t o  the  ptvement. 

Conformal Representation - The theory of complex var iables  through the  means 

of conforrnal representation is  a useful technique f o r  many two-dimensional 

free-streamline problems f o r  which i r r o t a t i o n a l  flow m y  be assumed. The 

so-ca.lled physical plane, o r  z-plane 

a 



i s  depicted i n  Figure 1 f o r  t h e  case of a j e t  s t r ikir ig  the ci.ii--sd surface. 

Point A i s  a t  minus i n f i n i t y  and point B a t  plus infinity.  

E tile f l u i d  i s  ass~xed t o  sepamte from t h e  t i re .  Point D is  a stagnation 

point.  

reaches i t s  minimum value on the  pavement. A t  points A, B, and F t he  ve loc i ty  

i s  U. 

A t  points C a d  

Theoretically point  F i s  also a t  inf in i ty .  A t  point  G t he  ve loc i ty  

The complex-potential plane defined as 

i s  shown i n  Figure 2. 

stream function $ is  assigned a value of 0 on AB. The values of the  other 

points  i n  the  plane are self-explanatory. 

Point I3 is a r b i t r a r i l y  given a value of ‘9 of 0. The 

The dimensionless complex veloci ty  

comprises the hodograph plane, as shown i n  Figure 3. The angle t h a t  the 

f lu id  ve loc i ty  mkes with the  x-axis i s  6,  which i s  defined as 

I n  the  hodograph plane l i nes  AFE and BC are arcs of a c i r c l e  of u n i t  radius 

inasmuch as they are free streamlines f o r  which V = U. The l i n e  AGB forms 

a s l i t  as G i s  a point of minimum veloci ty  on t h e  pavement. Line CDE i s  

curved i n  the  hodograph plane as  both t h e  angle 6 and t h e  ve loc i ty  V are 

changing on the  curved t i r e  surface. Point F can be e i t h e r  i n  t h e  t h i r d  o r  

9 



1 -  f o u r t k  qu.adrant, deppnding on whether 6 > n/2 or  ijF < n/2, respectively. F 

The function 

cons t i t u t e s  t h e  logarithmic iicdograph plane, shown i n  Figure 4. 

and BC are s t r a i g h t  as I n  V/U = 0. 

Lines AFE 

Simi la r i ly  l i nes  AG and GB are s t r a i g h t  

as 6 = 0. On CD ard ED, how:l--r, the logarithmic-hodogrqh l i n e s  a r e  curved 

as both 6 and I n  V/U a r e  varjing. This f a c t  extremely complicates t he  pro- 

blem of conformal representation as the  exact shape of l i n e s  CD and DE i n  the  

lcj-hodograph pla,ie are  not z ~ o m  a p r i o r i .  

of us ing  the  S c h m r t z - C k r i s t d f e l  transformat; on i s  rrecluded because of 

R-,*thermore the  usual prac t ice  - 

these non-polygonal l i nes  i n  t h e  log-hodograph plane. 

Since t h e  c l a s s i c a l  approach t o  free-streamline hydrodynamics i s  pre- 

cluded t w e  a l te rna t ives  were considered. 

head-on approach of d i r e c t  numerical analysis ,  involving f in i te -d i f fe rence  

The first involved the s t r i c t l y  

equations and/or re laxat ion techniques. The secolld a l t e rna t ive  was t o  use 

a n  unt r ied  approach. The l a t t e r  a l te rna t ive  was chosen with the  idea t h a t  

i n  addition t o  solving the  immediate problem a possible contribution could 

be made t o  the area of free-streamline theory with curved boundaries. 

Solution i n  Terms of 6 and I n  V/U - The technique t o  be used is based on 

the  f a c t  t h a t  a l l  a imlyt ic  functions s a t i s f y  Laplace's equation i n  t h e  

respect ive planes. Since 

1 dw 
U dz R = 3.n 5 = I n  1- -1 

10 



i s  an  ana ly t ic  function i f  only t he  single-valued part of the  In-function i s  

Q S P ~ ?  Zt follows t h a t  

2 a2g a26 

aY2 
V 6 =  - + - = o  2 ax 

and 

These two equations cons t i tu te  a boundary-value problem f o r  6 and/or In V/U 

i n  the  z-plane. Inasmuch as the location of the free-streamlines a re  not 

known a p r i o r i  t h i s  change i n  dependent var iables  does not simplify t h e  pro- 

blem. 

a d  I$ a r e  known 2 pr io r i .  

ana ly t ic  functions 

- 
I n  the w, o r  complex-potential, plane, however, the  bourdaries on cp 

It is a l so  apparent that, from the theory of 

a d  

In  Figures 5 and 6 the bourdary conditions f o r  6 and I n  V/U are shown. 

l i n e  AGB t he  angle of the  streamline 6 = 0 whereas I n  V/U varies,  reaching a 

minimum at  G. Incidentally,  point G does not necessarily have t o  be 

represented as a point i n  the  subsequent analysis as the  hodograph planes are 

On 



. 

not used. 

l i n e  CDE both 6 and I n  V/U a re  varying. 

approaches minus i n f i n i t y  and 6 has a s t e p  discont inui ty  of rr as the f l u i d  

leaving D f o r  C has the  opposite d i rec t ion  than that leaving f o r  E. 

6 or  I n  V/U can be a r b i t r a r i l y  specified on CDE. 

blem f o r  6 and/or I n  V/U i n  the  w-plane is much simpler than i n  the  z-plane 

because of the  s t r a igh t  l i nes  forming the  boundaries on the v-phix. Tk.,c 

boundary-value problem can be formulated f o r  6 on a l l  l i n e s  by use of t h e  

Cauchy-Riemann equations on l i n e s  AFE and BC. 

a r e  

On the  free-streamlines AF'E and BC I n  V/U = 0 and 6 varies. O n  

It should be noted t h a t  a t  D I n  V/U 

Ei ther  

The boundary-value pro- 

The equations i n  t h i s  instance 

arid 

On l i n e s  AFE and EC I n  V/U = 0. By the  f irst  Cauchy-Riemann equation X/a$ = 

0 on AFE and E. The boundary-value problem f o r  6 i n  the w-plane is shown i n  

Figure 6. On CDE 6 is  specified by a n  a r b i t r a r y  function. 

conditions on l i nes  DCB a d  DEF a re  not homogeneous, that i s  both Dir ichlet-  

and Neumann-type boundary conditions a r e  specified on the  same l ine ,  c l a s s i c  

2 techniques f o r  solving v 6 = 0 i n  the w-plane a re  not very useful. 

The problem of mixed boundary conditions on DCB and DEF' can be a l lev ia ted  

Since the  boundary 

by tmnsforming the  w-plane i n t o  another plane f o r  which a l l  s t r a igh t  l i n e s  

have only single  bourdary conditions. The t r a n s f o m d  plane w i l l  be ca l led  

12 



t h e  w'-plane, where w '  = cp' + i$'. Its dimensionsless counterpart is  the  w 1- 
I n  order t h a t  the w -plane s a t i s f y  t h e  1 p 1 a . n ~ ~  where w, = w ' / ~ p ' ~  = 'pl + i$l. 

above condition it m u s t  have the  shape of a rectangle, as shown i n  Figure 7. 
I 

On l i n e  AB the  Dir ich le t  condition is  6 = 0. On l ines  AFE a& BC t he  Neumann 

c o d i t i o n  of a6/atp1 = 0 must be sa t i s f ied .  

three l i n e s  can be obtained from a theorem of conformal mapping, which states 

The bowdary c o d i t i o n s  on these 

t h a t  under t r a n s f o m t i o n  of an  anaiy-tic function (G)  bWUi&.q- cord?5tiolm en 

a function ( 6 )  of the type 6 = constant and grad 6 = 0 remain invariant,  

Churchill (3). On CDE or  EDC, however, 6 varies. The function f o r  6 on EDC 

will not remain invariant  under transformation from the w-plane t o  the  wl- 

plane. 

i n  the  w plane. 

4 

Since 6 i s  t o  be a r b i t r a r y  on EDC it w i l l  be specified i n  terms of 'pl 

1- 
The boundary-value problem now becomes one of a solut ion t o  

i n  a rectangle. 

the so lu t ion  f o r  arbitrary functions of 6 on EDC. Since 

The technique of Fourier s e r i e s  will be u t i l i zed  t o  e f f e c t  

and 

dw 
0 %  .;;3 , 



. 

The so lu t ion  f o r  6 = b(cp1, q1) i n  the w plane and the  determination of i ts  

harmonic conjugate In V/U enables the determination of R as a function of wl. 

F r o m  the  transformtZoii 'w' = x(vl) t he  derizm--tive dw,/dw can be obtained. 

Upon in tegra t ing  equation (24) t h e  shape of the  curved surface ( t i re)  i n  the  

1- 

1 

z-plane can be obtained. 

I n  order t h a t  the w-plane can be transformed i n t o  the  w -plane a n  in t e r -  1 

mediate plane is necessary. This plane is depicted i n  Figure 8 and it cal led 

the t-plane. The Schwartz-Christoffel transformation can be used t o  connect 

t he  t-plane t o  both the w-plane and the  w 

closed polygons. 

plane as the lat ter two planes a re  1- 

Since there  are a t o t a l  of s i x  points i n  each plane (it i s  

not necessary t o  include point G as it i s  not a corner i n  e i t h e r  the w- or 

w -plane), and three points may be located a r b i t r a r i l y  i n  the  t-plane, three 

points  have t o  have var iable  values on the r e a l  ax is  of the t-plane. 

1 

The 

a r b i t r a r y  points a r e  chosen t o  be A, B, a d  E, located a t  0, 1 and in f in i ty ,  

respectively. Point F is located a t  - a, where a can take on any value 

between 0 and a. Point C i s  located a t  tc. 

v a r y  from approximately tc t o  m. 

t o  connect t h e  t-plane with the w-plane 

A t  point D, t = b, which can 

Using the Schwartz-Christoffel transformation 

dw A ( t  - b) 
d t  t(t - 1) (t + a j  - =  

i n  which A is  a complex constant. By using partial f rac t ions  



t - b  + t - b  
a t  a ( 1  + a ) ( t  + a j  ( 1 + a ) ( t  - 1) 

Upon in tegra t ing  a d  simplifying 

i n  which B is a complex constant of integration. The constant A can be 

evaluated a t  point A t o  be 

A t  point B it i s  f o d  t h a t  

d a b - 1  
E = ;  l+a 

A t  point E the  constant of integrat ion can be evaluated t o  be 

The complex-potential function becomes 

or 

The l a t t e r  expression is  c l ea r ly  the analyt ic  function f o r  a source of 

s t rength m/ll at A, a sink of strength Ud/n at 5, and a sink of strength 

U(D - d>/n at F, all i n  the t-plane. 



By transforming the  t-plane t o  the w -plane 1 

A '  dW 

d t  
1 - =  

J t C m  n 
C 

(29)  

i n  which A '  is a complex constant. 

Bowman (41, it is a p ~ r e n t  t k a t  if t 

Jacobian e l l i p t i c  functions, the above expression can be integrated i n  terms 

of e l l i p t i c  functions. 

F r o m  the  theory of e l l i p t i c  functions, 

= l/k , ir? which k is the modulus of 2 
C 

From Byl.a ard Friedman (5) o r  Bowman 

w = - s n  1 K  

i n  which K is the complete e l l i p t i c  i n t eg ra l  of t he  first k i d  and sn is the  

sine-amplitude Jacobian e l l i p t i c  function. 

I 

The inverse re la t ionship  

(31) 2 2 t = sn [Kwl, k] = sn [Kwl] 

I n  the  w -plane 'pD has been made unity. 

of a rectangle i n t o  the  upper half  of the t-plane t h a t  

It follows from the transfortnation 

- K /K i n  which m c  - 
1 

1 
I 

I 

K'  is  t h e  complementary e l l i p t i c  integral of the  first kind. Since K K(k) 

and K '  = K(k'), i n  which k '  is  the  Complementary modulus re la ted  t o  t h e  I 

modulus by 

I 
1- it follows that by changing k t he  aspect r a t i o  of t h e  rectangle i n  t h e  w 

plane changes. The value of a an3 b i n  the  t-plane can be determined from the  

16 



loca t ion  of points F and D i n  the w -plane. Hence 1 

a d  

2 1 b = sn ( K b  + i K ’ )  = 
k2 s 2 f K r o  ) 

‘--Tl.D 

From the  d i f f e ren t i a t ion  relationships f o r  Jacobian e l l i p t i c  flmctions 

dWl 1 - =  
dt 2K[ sn(Kwl) cn(Kwl) dn(Kwl)] 

(34 1 

(35 1 

i n  which cn is  t h e  cosine-amplitude a d  dn the delta-amplitude function. The 

three  functions are  re la ted  by 

2 2 sn  (Kw ) + cn (Kwl) = 1 1 

and 

( 3 W  
2 2  2 k s n  (Kwl) + dn (Kwl) = 1 

The relat ionship fo r  dw/dw 

e l l i p t i c  functions with Kw 

can be expressed e n t i r e l y  i n  t e r n  of Jacobian 

as the  argument 

1 

1 

The solut ion f o r  n(w ) is determined by inspection once 
1 6 is  fouIld from 



. 

t he  boundary-value problem formulated i n  t h e  w -plane. 

of var iables  technique t o  equation (23) a possible solut ion i s  

Applying s e p r a t i o n  1 

i n  which 6 is a constant t o  be determined from the boudary conditions. For 

f3 = 0 the  s e p r a t e  so lu t ion  

The bourdary conditions a re  

AB: $,=O ; 6 = 0  

i n  which f (cp,) is  an a r b i t r a r y  function, discontinuous a t  D; it can be related 

t o  a continuous function g ( q )  by 

For fl = 0 the boundary condition on AB requires t h a t  b2 = 0. The Neumann 

boundary condition on AFE and BC requires t h a t  b = 0. On EDC 3 

18 



. 
From the  theory of Fourier ser ies ,  Churchill (6) 

1 1 

For fl # 0, the  boundary condition on AB requires t h a t  c2 = 0. 

condition on AFE t o  be s a t i s f i e d  c = 0. On BC the Neumann boundary condition 

means t h a t  s i n  A = 0. Hence A = nrr; n = l,2,3, .... The t o t a l  solution i n  

For the boundary 

3 

terms of Fourier s e r i e s  

Jr, + f An sinh nn$, cos nncp, K 6 = A o K '  
n = l  

The coeff ic ient  A i s  determined from the  boundary condition on EDC n 

(43) 

An sinh(nrrK'/K) = 2 f(cpl) cos nmp1drpl il' 
It will 3e shmn lzter tha t  A 

and BC. 

plane. 

mst be 0 i n  order t ha t  In V/U = 0 on both AFE 
0 

The boundary condition on BC w i l l  fix the  location of D i n  the wl- 

The function f(cp ) must be specified such tha t  the  boundary EDC has the  1 

proper curvature and resembles the  deformed portion of a t i r e .  Three separate 

elementary functions were t r i e d  in an attempt t o  produce a curved boundary on 

EDC t ha t  resembles a hydroplaning t i r e .  The f i n a l  re la t ionship  f o r  dz i s  



. 
expressed i n  terms of the solut ion for  a f l a t  p la te  times an expressim i n c h d i n g  . I 

I the  e f f e c t  of curvature. Since the effect  of curvature can be included i n  one 

term the  f l a t -p l a t e  solut ion w i l l  be effected first. For a f l z t  platc i c z l i c e d  

at an angle 6 with the  approaching f l o w  

In t h i s  case the  continuous function g(cp ) i s  a constant, 8. 1 
The coeff ic ient  

A = I T  
0 / 0 

The coef f ic ien t  A i s  determined from n 

f cpu) 
1 

f 
An sinh(nrrK'/K) = 2n cos nmp,dcp,- 2 0 1  cos nmp dcp 

1 1  

2 
n 

- -  
ID - s i n  nntp 

From the  theory of Jacobian e l l i p t i c  functions Jacobi 's  nme i s  defined as 

q = exp(-rrK'/K) ; 0 < q < 1 

Hence, 

(47) 

sinh(nrrK'/K) = $ [q-" - qn] 

20 



< 
and 

The general  solut ion becomes 

By inspection the harmonic conjugate 

On l i n e  AFE ln V/U i s  0. 

other words 

On l i ne  BC, however, In V/U # 0 unless A. = 0; i n  

This  re la t ionship means t h a t  the location of point D i n  the w -plane is  re la ted  

by the magnitude of 9. 
1 

By inspection the logarithmic complex veloci ty  

The i n f i n i t e  s e r i e s  can be expressed i n  terms of e l l i p t i c  f'unctions, Hmcock 

(7), such t h a t  

21 
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i n  which ll i s  Legendre's incomplete e l l i p t i c  i n t eg ra l  of the t h i r d  kind and Z 

i s  the Jacobian ze ta  function. For purposes of numerical computation it is  
I 

, more su i tab le  t o  r e l a t e  ll and Z t o  Jacobi 's  t h e t a  functions; from Hascock 

r 1 

Written f o r  inclusion i n  equation (24) 

L J 

For a curved boundary on EDC g(tp ) i s  not a constant and 1 

1 

The first term i s  iden t i ca l  t o  t h a t  f o r  the f l a t -p l a t e  solution except t h a t  

will vary, depending on the  expression g(v ) and the requirement t ha t  
'PID 1 
A 

f o r  a curved boundary as 

= 0 ( i n  order t ha t  In V/U = 0 on BC). The expression f o r  e -R can be wr i t ten  
0 

L J 

i n  which 

1 

0 
1 and, i n  which A' sinh (nnK'/K) = - 2 g(tpl) cos nnrpldcp n 

22 



For expedient calculat ion of the Jacobian e l l i p t i c  functions i n  the 

excpressiac fm dx/3g1 t h e  re lat i rmships  h e t ~ e e n  the Jacobian e l l i p t i c  functions 

and Jacobi ' s  e t a  and t h e t a  functions w i l l  be used. Frm Byrd and Friedman (5) 

and 

The f i n a l  expression f o r  dz 

O(Kwl + KcpD 

[@(Kw~ - KyD:] } G(wl)dwl 

For the  f la t  p l a t e  cp 

G(wl) depend solely on the function g(tp ) describing the  shape of EDC. 

= 0/n and G(wl) = 1. The parameter cp and the function LD u) 

1 

The three curved-boundary functions w i l l  be re fer red  t o  as the sine-, 

cosine-, and dn-functions. 

For the  sine-function 

23 



i n  which CI and A are constants. 

E &Id c i s  

The angle of the f lu id  leaving EDC at points 

The value of must be greater  t h a n  two i n  order t h a t  the f l u i d  leaves E in  

the second quadrant. I n  order t h a t  6 i s  negative, A > 1. I n  order t h a t  

A. = 0 

C 

The coeff ic ient  

n 
A ' z - 8  9 

- 1)(1 - 9'") n 

and 

For the  cosine-function 

g(cp,) = a [ A  + cos IlqI 1 ] ; A >1, CJ > 4 

The angles 

J 

24 



and 

The locat ion of D i n  w, -plane 
L 

The curved-boundary function 

Finally,  f o r  the  dn-function 

The angles 

and 

For point  D 

The expression f o r  the effect  of curvature 

25 
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The curved-boundary € u i c t l m  f(cp 1 i s  shmm h F5gx-e 9 for the  three 1 
functions. For the  sine-function o = 3 and A = 1. For the  cosine-function 

cj = 6 and A = '1. 

condition i s  a l so  displayed f o r  9 = n/3. 

2 For the dn-function 0 = 3 and k = 0.9999. The f l a t -p l a t e  

The computation of Jacobi 's  e t a  and t he t a  functions and the  numerical 

integrat ion of equation (58) i s  greatly f a c i l i t a t e d  i f  the functions are  

expressed i n  terms of i n f in i t e  ser ies ,  as outlined i n  Appendix B. A computer 

program for  the numerical evaluation of the parameters involved i n  the  theory 

i s  included as Appendix C. The resu l t s  of the theory are discussed i n  the 

f ol lming .  
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DISCUSSION OF RESULTS 

The r e su l t s  of t h i s  investigation are discussed with reference t o  the 

force exerted on the t i r e  surface by the water and the  pressure d is t r ibu t ion  

on the pavement. Tne force on the t i r e  can be resoived i n t o  its v e r t i c a l  arid 

horizontal  cmponents, commonly called l i f t  and drag, respectively. When the  

l i f t  force equals the weight force transmitted t o  the wheel, hydroplaning w i l l  

occur. The amount the t i r e  l i f t s  off the  pavement surface depends on the t i r e  

shape, water depth, and the speed of the vehicle. 

equilibrium posit ion of the t i r e  f o r  each speed greater  than tha t  required f o r  

incipient  hydroplaning. The l i f t  coefficients from t h i s  study are compared with 

experimental r e su l t s  of Horne and Dreher i n  the following. A comparison i s  a l so  

made between the theore t ica l  and measured pressure d is t r ibu t ion  on the pavement. 

The shape of the planing surface selected t o  simulate t h e  wetted portion of a 

hydroplaning t i r e  i s  discussed first. 

There w i l l  obviously be an 

Resulting Shape of Planing Surface - The shape of the  curved surface simulating 

the  t i r e  i s  assumed i n  the theore t ica l  development. 

were chosen t o  produce shapes resembling the wetted portion of a t i r e .  

known as the sine-, cosine-, and dn-functions. The l e a s t  sa t i s fac tory  i s  the 

dn-function as it re su l t s  i n  very s l igh t  curvature and too  great a clearance 

between t i r e  and pavement. 

siderable more curvature on EDC, but is  not en t i r e ly  adequate. 

shape of the  t i r e ,  the i n i t i a l  water depth, and the clearance between the  t i r e  

and pavement are most r e a l i s t i c  when the sine-function i s  used. For the sine- 

function the  t i r e  shapes and flow patterns tha t  appear t o  more closely simulate 

t i r e  hydroplaning a t  various degrees a re  shown i n  Figures 10 through 14. 

Three d i f fe ren t  functions 

They are 

The cosine-function r e su l t s  i n  a t i r e  having con- 

The resu l t ing  

One 
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pat te rn  resu l t ing  from the  cosine-function i s  shown i n  Figure 15. The physical 

var iables  foi- each sita8tim prese,n,ted a re  the clearance in terms of the water 

depth, h/D, the angle of t he  water leaving the t i r e  a t  points E and C, the  length 

of the t i r e  surface referenced t o  the water depth, 4/D, and, t o  some degree, a 

change i n  t i r e  shape. For the resu l t s  presented the  ra t ion  &/D i s  greater  than 

4; the  r a t i o  h/D w a s  chosen t o  be less  than 1/2; t he  angle at E was varied from 

109.3" t o  150"; and the angle at  C was maintained greater  than -9". The shape 

of the  t i r e  i s  seen t o  change only s l igh t ly  as the e l l i p t i c  modulus, k, i s  

varied.  The theory does not include the unwetted portion of the  t i r e ;  t h a t  is ,  

above point E. Hence a l l  resu l t ing  shapes t h a t  showed the water j e t  leaving 

point E and curving severly clockwise towards the imagined continuation of t he  

t i r e  shape E were discarded. 

The resu l t ing  shapes do resemble the  water-contact area of a hydroplaning 

t i r e .  Figure 10 simulates essent ia l ly  incipient  hydroplaning as the  water 

leaving under the t i r e  const i tutes  a small f r ac t ion  of the  i n i t i a l  depth. 

Figures 11 through 13 show the flow pat tern as the  hydroplaning becomes more and 

more severe. For Figure 14 the  angles 6 and 6 a re  d i f fe ren t  than those f o r  

the shapes shown i n  Figures 10 through 13. 
C E 

Comparison of L i f t  Forces - The hydrodynamic l i f t  force can always be related 

t o  a lift coeff ic ient  through equation (2) 

P zi! 
FL = CLA 2 

As mentioned i n  the  sect ion concerning the  various fluid-property e f fec ts ,  

Horne and Dreher represented the character is t ic  area, A, by the  s t a t i c  foot-  

p r i n t  area and U by the  veloci ty  of the  vehicle at  the  condition of incipient  
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1 -  

hydroplaning. To an approximation, then, t he  load on the wheel can be equated 

t o  pi  A, i n  which pi i s  the  t i r e  i n f l a t ion  pressure. 

associated with incipient  hydroplaning can be computed from t e s t  r e s u l t s  f r c m  

The lift coef f ic ien t  
* - 

As a cjf this defiiiitioii of chai-actel-istic ai-,== thzre  i s  oie 

value of the  lift coeff ic ient  associated with incipient  hydroplaning of a given 

t i r e .  Below incipient  hydroplaning speeds C 

speeds CL 

a l l  t i r e  pressures and water depths as the  flow pa t te rn  obviously depends on 

. Above inc ip ien t  hydroplaning L "Li 

cLi . It i s  not apparent, however, t h a t  CLi should be a constant f o r  

these quant i t ies .  I n  any case Horne and Dreher found tha t ,  from tests covering 

a range of t i r e - i n f l a t i o n  pressures from 24 p s i  t o  150 ps i ,  of vehicle  speeds 

from 45 mph t o  I20 mph, and of vehicle loads from I25 lb t o  22,000 lb, CLi 2: 0.7. 

Their t e s t s  covered values of water depths grea te r  than those associated with 

the  viscous phenomenon ( lubr ica t ion) .  

I n  comparing theo re t i ca l  r e su l t s  w i t h  those of Horne and Dreher there  i s  a 

question as t o  what cha rac t e r i s t i c  area t o  use. Since t h e  theory i s  based on 

two-dimensional flow only one dimension needs t o  be chosen f o r  the  cha rac t e r i s t i c  

area, A. The water depth, D, i s  not chosen as it does not appear t o  be a sig- 

ni f icant  var iable  i n  the  r e s u l t s  of Horne and Dreher. It is  believed t h a t  the  

area of the  t i r e  i n  contact with the  water would most c losely represent the  t i r e  

footpr in t  area used i n  the  analysis  of t he  experimental r e su l t s .  

un i t  width of t i r e  i s  thence chosen t o  be 4, the  t o t a l  length of t he  planing 

p la te .  The l i f t  coef f ic ien t  f o r  hydroplaning i s  defined by 

The area A per 



. 

i n  which F i n  t h i s  case i s  the force per  unit width of t i re .  The l i f t  

coefficleii t  s h ~ d d  dccrease fsr 
L 

@yen t i r e  shape 2nd w a t e r  d q t h  as the 

clearance, h, i s  increased. Physically t h i s  means t h a t  as the speed of the 

vehicle  i s  increased there  i s  a subsequent increase i n  the clearance as l e s s  

f l u i d  has t o  have i t s  momentum changed t o  provide the  same lift force.  Each of 

the  t i r e  shapes and clearances presented here simulate an assumed equilibrium 

condition; t h a t  is ,  the t i r e  i s  held a t  i ts  pa r t i cu la r  clearance by a balance of 

l i f t  force and vehicle load f o r  t h a t  water depth, t i r e - i n f l a t i o n  pressure, and 

vehicle speed. It should be noted t h a t  the t i r e - i n f l a t i o n  pressure i s  only 

ind i r ec t ly  involved i n  the theory by t h i s  concept of equilibrium condition. 

The flow pa t te rn  depicted by the shape of Figure 10 i s  believed t o  most 

c losely simulate incipient  hydroplaning as there  i s  a minimal amount of water 

flowing under the  t i re .  

can only be compared t o  t h e  experimental one of 0.7 if the charac te r i s t ic  areas 

i n  equation (2)  are  ident ica l .  

wet,ted length of the p l a t e  i n  “Uhl theory i s  not unlike the s t a t i c  foo tpr in t  

area used i n  the analysis of the experimental r e s u l t s  f o r  the following reason. 

As  shown by Horne and Dreher the actual  e f fec t ive  area of the pavement t h a t  i s  

subject t o  s ign i f icant  water pressures i s  a v e r t i c a l  project ion of the s t a t i c  

footpr in t  area. To an approximation, then, the e f fec t ive  wetted area of t he  

t i r e  i s  the s t a t i c  footpr in t  area. If the wetted area of the curved surface 

incorporated i n  the  theory can be assumed t o  be s i m i l a r  t o  the s t a t i c  foo tp r in t  

area then the lift coef f ic ien ts  a r e  s imilar ly  defined f o r  theory and experiment. 

If t h i s  s imi l a r i t y  ac tua l ly  e x i s t s  then it i s  not surpr is ing t h a t  the l i f t  

coef f ic ien t  from theory (0.8) i s  greater than t h a t  from experiment (0.7) as the  

three-dimensional e f f ec t  precludes a uniform pressure d i s t r ibu t ion  completely 

The theo re t i ca l  l i f t  coef f ic ien t  of approximately 0.8 

It i s  believed t h a t  the  area based on the 



i 

across the  t i r e .  1. 

Figures 11 through 13 are  considered t o  simulate a t i r e  undergoing t o t a l  

hydroplaning. 

l i f t  coef f ic ien t  i s  seen t o  decrease, meaning tha t ,  f o r  the same wheel load, 

the  vehicle  speed necessar i ly  has t o  be grea te r  than t h a t  f o r  smaller clearances. 

I n  a c t u a l i t y  the  clearance automatically becomes grea te r  as the speed i s  increased. 

As the  clearance between the t i r e  and pavement i s  increased the  

Drag Force - The hydrodynamic drag force i s  defined by 

F = C A  pj' 
D D  

L 

i n  which C 

l i f t  Coefficient,  C For the theo re t i ca l  analysis  the drag force i s  per  u n i t  

width of t i r e  and A i s  defined as the  planing surface width, 4, times the  un i t  

width. are indicated i n  Figures 10 through 15 f o r  the respective D 
planing surfaces. As the  clearance increases f o r  the  planing surface the  drag 

coeff ic ient  decreases as l e s s  f l u i d  has i t s  momentum changed. 

m a d e  t o  compare the theo re t i ca l  values of C 

area used by Horne e t  a1 (9) f o r  the  drag equation d i f f e r s  from the  area defined 

here - 

i s  a drag coefficient,  depending on the same quant i t ies  as the  D 

L' 

Values of C 

Eo attempt is  

with experiment as the  cha rac t e r i s t i c  D 

Pressure Distribution on the  Pavement - The d i s t r ibu t ion  of the water pressure 

on the  pavement can be computed f r m B e r n o u l l i ' s  equation. 

t o  represent the pressure d is t r ibu t ion  i n  terms of a pressure coef f ic ien t  

It i s  more s ign i f i can t  



Where the  pressure i s  atmospheric C = 0; whereas at a stagnation point C = 1. 

Since the  only stagnation point i n  t h e  flow i s  on the  planing surface C < 1 on 

the pavement. Foi the condition of incipient hydroplaning C w i l l  approach 

uni ty  somewhere orL the pavement. 

P P 

P 

P 

The theo re t i ca l  pressure d is t r ibu t ion  on the pavement i s  shown i n  Figure 16 

f o r  a typ ica l  planing surface. 

bution, ~ r o m  E"z*lie (8) i s  S ~ G F ~ ;  ss EL c ~ = ; " r = i ~ ~ ; r ?  in F i g x e  1-7. 

The corresponding experimental pressure dis t r i -  

13 hnt.h iKL1js- 

t r a t i o n s  the horizontal  coordinate i s  i n  terms of the water depth, or  x/D. 

marked s imi l a r i t y  between theory and experiment fu r the r  indicates  t h a t  the  

planing surface i n  e f f ec t  e s sen t i a l ly  simulates a t i r e  undergoing incipient  t o  

t o t a l  hydroplaning. Figures 16 and 17 were not superposed as there  is 

ac tua l ly  no way t o  reference the  horizontal  coordinates of the theo re t i ca l  sur- 

face t o  those of the  ac tua l  t i r e .  The maximum value of C = 0.91 from experi- 

ment corresponding t o  a maximum value of C 

the  t i r e  actual ly  had a greater  clearance than the  planing surface displayed i n  

Figure 16. The planing surfaces of Figures 1.1, E, and 13, having grea te r  

values of the clearance, h/D, w i l l  possess maximum values of C 

l e s s  than 0.99. The negative pressure i n  f ron t  of the  t i r e  i n  Figure 17 can not 

be explained by the  theory. 

The 

P 
= 0.99 from theory indicates  t h a t  

P 

on the  pavement 
P 



CONCLUSIONS AND RECOMMENDATIOTJS 

The object of t h i s  study w a s  t o  develop a theory t o  demonstrate the  

phenomenon of pneumatic t i r e  hydroplaning from the  standpoint of hydrodynamics. 

__ yne s t rength  of any theory rests i n  its comparison w i t h  e x p e r h m t a i  r e s u l t s .  

It i s  concluded t h a t  the  planing surface r e su l t i ng  from the theory exhib i t s  

similar hydrodynamics behavior as a hydroplaning pneumatic t i r e  as (1) the  l i f t  

force from theory r e s u l t s  i n  C = 0.8 a t  inc ip ien t  hydroplaning compared with L 

CL = 0.7 from experiment, and (2)  t h e  t h e o r e t i c a l  pressure d i s t r ibu t ion  on the  

pavement (runway) i s  very similar i n  shape t o  the  measured pressure d i s t r ibu t ion .  

It i s  a l s o  concluded tha t ,  for  moderate water depths and grooved t i r e s ,  the  l i f t  

coef f ic ien t  f o r  inc ip ien t  hydroplaning i s  e s sen t i a l ly  a constant. Moreover, the  

assumption of am i dea l  f l u i d  f o r  t i r e  hydroplaning i s  j u s t i f i e d  except f o r  the 

extreme case of smooth t ires and/or t h i n  films of water on the  pavement. 

For fu ture  s tud ies  it i s  recommended t h a t  t he  e l a s t i c i t y  of t he  t i r e  as well 

as three-dimensional hjrdrodynamic e f f ec t s  be considered. 
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BOUNDARY CONDITION FOR In V/U 
UNKNOWN ON CDE 

A 

I n V / U = O  / 

F : / I n V / " = O  

Figure 5 .  Boundary Conditions f o r  In V/U i n  w-Plane. 
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' d S / d , b  = 0 
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/ 4 
6 = 0  

Figure 6. Boundary Conditions f o r  6 i n  w-Plane. 
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.@PENDM B 

ELLIPTIC FUNCTIONS -rwMERICAL TECHNIQUES OF COMPUTATION 

For moderate values of 

Whittaker and Watson 
% 

i n  which 

(67) k t 2  = 1 - k2 

2 k Jacobi 's  nome can be computed from t h e  ser ies ,  

The e l l i p t i c  i n t e g r a l  of t h e  f i r s t  kind is  r e l a t ed  t o  q by 

W 2 

K = . [ 1 + 2  2 qn2] 

n=l 

And, by def in i t ion  of the  nome 

2 For values of k 

se r i e s  for q does not converge rapidly enough. 

near 1 ( the  largest chosen i n  t h i s  study w a s  1 - t h e  

From Byrd and Friedman-, f o r  

9 
Whittaker, E. T. and G. N. Watson, A Course of Modern Analysis, Cambridge 

University Press, Cambridge, 1944. 
w 

Byrd, P. F. and M. D. Friedman, Handbook of E l l i p t i c  In tegra ls  for Engineers 
and Fhysicists,  Springer-Verlag, Berlin, 1954. 
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2 k approaching uni ty  the e l l i p t i c  parameters are best  determined by 

K = A -I k f 2  [A - 11 + & k f 4 [  A - 13 +a k f 6  [A - $3 + - . . (72) 6 256 

4 
i n  which A = In p , 

and 

q = exp(-nK'/K) 

These two se r i e s  give adequate convergence for values of k 2 as large as 

1 - 10-5O. 

The rapidly converging i n f i n i t e  ser ies  for the  e ta  and t h e t a  functions, 

Byrd and Friedman, are su i tab le  f o r  numerical calculat ions 

and 

1 l 2  
H(KW~) = 2 ( - p 1  q(n- 2)  sin[(n - 5)m1] 

n=l  

n=l 

OD n c 
O1(Kw1) = 1 + 2 1 

(74) 

( 7 5 4  

n= l  

The location of point F i n  the  t-plane depends on the  value of the  modulus, 



. 
- 

k, and the  location of F i n  the w -plane. 

r e l a t ions  

From equation ( 3 3 )  and the above 1 

The locat ion of point D i n  the t-plane i s  computed from equation (9) t o  be 

The ac tua l  geometry of the flow pattern and the  shape of the t i r e  have t o  

be determined by integrat ing equation (58). 

expressed i n  terms of the  i n f i n i t e  ser ies  f o r  each l i n e  of the w -plane on 

which the  equation is  integrated.  

pression in  equation (58) i s  reduced t o  i ts  r e a l  and imaginary par t s .  

integrat ion i s  performed by using the trapezoidal rule ,  Simpson's rule,  or a 

numerical integrat ion equation of higher order, depending on the r a t e  of change 

of the integrand f o r  the  conditions specified. The shape of the  t i r e  i s  deter-  

mined by integrat ing equation (58) from E t o  C i n  t he  w plane. 

example, on l i n e  EDC 

The e t a  and the t a  functions are  

1 

For each streamline i n  the  z-plane the ex- 

The 

As an 1- 

and 
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. The function 9 (Kw ) on EDC i s  evaluated from i 1 

n = l  

n=l  

The other f m c t i o n s  i n  equation (58)  are evaluated similarly. Caution has t o  

be taken at the sirlgular point D. 

a t  D. 

The integrand of equation (58) i s  inde teminate  

By using L'Hospital 's ru le  the integrand i s  found t o  be f i n i t e .  The 

shape of the streamlines AFE and BC can a l s o  be determined by numerical inte-  

grat ion of equation (58) along the respective l i n e s  i n  the w -plane. 
1 

The pressure d is t r ibu t ion  on the  t i r e  and the runway c a n  be determined from 

equation (2 ) .  

pressure d i s t r ibu t ion  m e r  i t s  surface. The l i f t  coef f ic ien t  

The t o t a l  force on the t i r e  can be determined by integrat ing the  

D 

and the  drag coeff ic ient  

i n  which C i s  the pressure coefficient,  defined as 
P 

V 2  c = 1 -  (E) P 
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The drag coef f ic ien t  can a l s o  be complted (as a check) from a simple momentum 

analysis  t o  be 

2[1. - $1 [l - cos 6 F ] 
- - 

cD P 

i n  which 6, i s  the  angle t h a t  the j e t  leaving the  t i re  a t  E f i n a l l y  m a k e s  at  

F with the  pos i t ive  x-direction. 

The water depth a t  d i s  computed from equation (27)  

+ 

The angle fiF i s  computed from equation (55).  

- = a ,  d b - 1  
D b l + a  

. 

The clearance t h a t  the t r a i l i n g  edge of the surface makes with the pave- 

ment, h, i s  computed by in tegra t ing  equation (58) from B t o  C i n  terms of the  

v e r t i c a l  coordinate, y. 

The pressure d is t r ibu t ion  on t h e  pavement i s  computed from equations (55) 

and (06).  

grat ing from a point near B on BC toward C. 

B on AB having the same value of the  veloci ty  potent ia l ,  cp, as t h a t  a t  the 

corresponding point on BC the pressure d is t r ibu t ion  on AB can be referenced t o  

CDE - 

The coordinates on l i n e  AB a re  referenced t o  point C (or  E)  by inte-  

By in tegra t ing  from a point near 

The pa rme te r s  i n  the theory tha t  may be varied f o r  each of the  assumed 

curved-surface functions are  the  modulus, k, the location of F i n  the w -plane, 1 

(I,, and the parameters describing the curved-boundary function, (J and A. 

Rea l i s t i c  planing surfaces and clearances are obtained only i f  the square of 

the modulus, k , is  considerably greater than 0.99. Values chosen f o r  I$ = 

(K/K')JrlF were 0.7 and 0.9. 

2 
2F 

The chosen values of 0 and A depended on the 
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curved-boundary function used. 

t he  e l l i p t i c  functions and i n  integrating equation (58) is presented i n  

Appendix C. 

The computer program u t i l i z e d  f o r  evaluating 
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c 

APPENDIX C 

DIGITAL COMPUTER P R O W  

Because of the complexity of the  relat ionships  involved and the la rge  

number 03 i n f i n i t e  s e r i e s  appearkg  iii the theory, a high-speed d i g i t a l  c c q x t e r  

was essen t i a l  i n  order that numerical results may be obtained. 

wri t ten i n  ALGOL 60 fo r  use by the Burroughs B-5500 of the  Rich Electronic 

Computer Center of the Engineering Experiment Station. The coordinates of the 

planing surface, the pressure d is t r ibu t ion  on the runway and the gross quant i t ies  

such as l i f t  and drag coef f ic ien ts  and length of the p h n i n g  surface a re  the out- 

put. 

imately 250 seconds. 

The program was 

The computer time required fo r  each planing surface assumed was approx- 
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