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ABSTRACT

With the recently available antenna arrays and
receivers that are capable of receiving both components
of power reflected from distant bodies, the possibility
of using radar to determine the surface characteristics
of inaccessible bodies becomes a matter for consideration.
However, to accomplish this, it is necessary to have
available a vector solution for the scattering of electro-
magnetic waves from distant rough surfaces. This paper
is concerned with the obtaining of such a solution.

This analysis is based on the concept of differential
reflectivity as published by Erteza, Doran, and Lenhert
[1965]. The specific problem considered in this paper is,
first, the integral formulation of the direct- and cross-
polarized instantaneous back-scattered power from an
arbitrary homogeneous rough sphere. The second part of
the problem is the approximate solution of these integrals
for the case of a statistically rough sphere with a gaussian
roughness and with an exponential covariance function. The
source is considered to be an ideal conical source which
behaves as a short dipole at all frequencies. The trans-
mitted waveform is a pulse modulated sinusoid of frequency
Wy and pulse width T. The‘effects of multiple scattering

and shadowing are assumed negligible.



The integral expressions for the direct- and cross-
polarized power obtained for the case of a pulsed source
shows that, if the surface roughness is not a function of
9., the cross-polarized power is identically zero. An
approximate solution is obtained for the time-averaged
expected values of direct- and cross-polarized received
power from a normally distributed surface (in height
from an average sphere) for the condition that the ratio
of standard deviation to correlation distance is much
less than one over the square root of the radius of the
sphere in wavelengths. Comparison of this solution with
experimental data indicates that the moon must have a
roughness characteriéed by a much larger value of this
ratio. The minimum value of dielectric constant obtained
from this analysis equals 1.8260.

This analysis shows that the Re[ﬁ X ﬁ*] can be used
for the time averaged power from a pulsed source only in
a portion of the return pulse and then only if the stand-
ard deviation of heights is greater than one-tenth of a
wavelength. The analysis also shows that any statistical
matching with experimental data must take into considera-
tion the angular variation of the reflection coefficients.
This paper is concluded with recommendations for future

research.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and General Aspects of the Scattering of

Electromagnetic Radiation From a Rough Surface

The problems of scattering of waves from rough surfaces
have been studied continuously since the late 1890's. Aan
excellent reference and introduction to the scattering of
electromagnetic waves from rough surfaces is presented by
Beckmann and Spizzichino [1963] which covers both theoretical
work and applications. As indicated in this book, a general
and exact vector solution to the problem is as yet unavailable
due to the difficulties in satisfying Maxwell's equations and
the boundary conditions across an interface. 1In the case of
smooth bodies of revolution, exact vector solutions for the
reflection of an electromagnetic plane wave from the surface
are available in only a few cases. In these cases, the inci-
dent plane wave is expanded into an infinite set of waves
whose character is dependent upon the shape of the body and
which are centered on the body. Then the boundary conditions
are satisfied for each wave of the infinite set in one step
for the entire surface, and the reflected waves are summed up
to obtain the reflected fields. This method requires the
separability of the wave equation, which is possible in only
eleven coordinate systems. Also, excluding the plane surface,

the infinite series obtained are difficult to handle and,



except in the simplest cases, require the use of high speed
digital computers to obtain numerical values.

This approach does not appear feasible for the obtaining
of a general solution to the problem of scattering from rough
surfaces. An additional complication in the solution of scat-
tering from rough surfaces by use of the boundary conditions
is the necessity to take into consideration not only the inci-
dent field in the absence of the surface but also the effects
due to shadowing and diffraction, as well as multiple scattering.

With the advent of radar, the problem of scattering of
electromagnetic waves from rough surfaces, particularly from
terrains, became of special interest. As more high powered
and sensitive radars became available, the scattered field
from the moon could be detected. With this development, the
possibility of using radar to determine the surface character-
istics of inaccessible bodies became a matter for consideration.
However, to accomplish this it is necessary to have available
a more general solution of scattering of electromagnetic waves
from distant rough surfaces. Also, with recently available
antenna arrays and receivers that receive both the transmitted
polarization (called the direct-polarized component) and the
polarization orthogonal to the transmitted polarization {called
the cross-polarized component), it is necessary to obtain a
vector solution to the scattering problem. With such a solu-
tion, it is of interest to determine the effects of surface
characteristics (both roughness and electromagnetic) upon the

ratios of these two components.



With the possibility of making a manned landing on the
lunar surface within the next few years, some information as
to the surface characteristics is needed to design such land-
ing vehicles. One source of such information is the data
taken from earth-based radars. The majority of this data has
been taken using highly directive pélsed radars receiving
both polarizations; therefore, to determine the possible sur-
face characteristics, it is desirable to have a vector solu-
tion to the problem of scattering of narrow beam pulsed elec-
tromagnetic radiation from a rough sphere. The remainder of

this paper is concerned with the obtaining of such a solution.

1.2 Specific Problem Considered and Purpose of Investigation

The specific problem considered in this paper is, first,
the integral formulation of the direct- and cross-polarized
instantaneous back-scattered power from an arbitrary homogene-
Oous rough sphere. The second part of the problem is the ap-
proximate solution of these integrals for the case of a sta-
tistically rough sphere with a gaussian roughness and with an
exponential correlation function. The source is considered to
be an ideal conical source whose radiated field within the
cone is constant and equal to the maximum of a short dipole,
and zero outside the cone. The transmitted waveform is a
sinusoid of frequency Wy and = amplitude modulated with an
ideal pulse containing an integral number of cycles of the
transmitted frequency. The phasing is such that the trans-
mitted waveform is a continuous function of time. The re-

flecting sphere is assumed to be at a long distance from the



source, and the radius of curvature at any point is large
compared to the wavelength. Also, the effects of multiple

scattering and shadowing are assumed negligible.

1.5 Discussion of the Idealized Problem

There are several gross simplifications and strong as-
sumptions implicit in the idealized problem described in Sec-
tion 1.2 which merit discussion. First, the transmitted wave-
form is amplitude modulated with an ideal pulse such that the
waveform is a continuous function of time, but contains a dis-
continuity in slope which is not physically realizable. For
analysis of problems where the propagation or reflection char-
acteristics are of primary importance, it is common practice
to use physically unrealizable sources. Another physically
unrealizable assumption is that the source is an ideal conical
one. This assumption is made to simplify the analysis and yet
show the effect of beam limiting. If a specified antenna pat-
tern were given, it could easily be included in the description
of the incident field.

The reflecting rough sphere is assumed to be homogeneous
and isotropic which, for the case of the moon, is not the
actual case. The more realistic case of an inhomogeneous
body would considerably complicate the reflection coefficients
of the surface; these are, even in the case of the Fresnel
reflection, very difficult to integrate. Another assumption
is that the sphere is nonconductive. The effect of conduc-
tivities of naturally occurring terrains on the reflection

coefficients at radar frequencies is negligible. Consequently,

mn



it is felt that this assumption has a reasonable justifica-
tion.

In the analysis presented in this paper, multiple scat-
tering and shadowing are neglected. The effect of multiple
scattering could be included by properly modifying the inci-
dent field; however, this would require the evaluation of sev-
eral additional integrals, and was considered too complicated
for a first analysis. The effect of shadowing was neglected
to avoid the introduction of additional complication to an
already complicated problem. This effect may be taken into
account in the case of a statistically rough surface by sta-
tistically modifying the amplitude of the received power
[Beckmann, 1965].

In considering a statistically rough surface and averag-
ing over an ensemble of such surfaces, the random process is
assumed stationary, thus implying that an ensemble average
is equivalent to a time average. However, when attempting to
relate the results of this analysis to experimentally obtained
data from the moon, it should be realized that, while time-
averaged data are available, they are not equivalent to the
ensemble average obtained in this analysis. The assumption
of equivalence is generally made in the literature.

The effect of the earth's atmosphere and ionosphere is
neglected in the formulation of this problem. The Faraday
rotation of the transmitted and reflected signals which oc-
curs in the ionosphere causes an interchange of power between

the observed direct- and cross-polarized components.



Experimentally obtained data must be analyzed carefully to
eliminate the effect of the Faraday rotation before attempting

to obtain the surface characteristics.

1.4 Previous Investigations

A large number of papers has been published on the sub-
ject of the scattering of electromagnetic waves from rough
surfaces, especially in the last ten years. Many experimental
data have been accumulated and many theories have been devel-
oped to explain and predict measured data. However, none of
the theories is general and rigorous at the same time. Most
of the methods make one or more of the following assumptions
(Beckmann and Spizzichino, 1963].

1) The dimensions of scattering elements are much
larger or much smaller than the wavelength of

the incident radiation.

2) The radius of curvature is much larger than the

wavelength of the incident radiation.
3) Shadowing effects are neglected.
4) only the far field is calculated.
5) Multiple scattering is neglected.
6) The density of the scatterers is not considered.

7) The treatment is restricted to a particular model

of surface roughness.
8) The surface is perfectly conducting.
The results of the various treatments are limited to the
conditions under which their initial assumptions are considered
valid. The reader is referred to Beckmann and Spizzichino

(1963], Evans [1961], Janza [1963] or Fung [1965], each of



which gives excellent summaries of the previous work and
extensive bibliographies,

By far the largest number of rough surface scattering
theories is based on the Kirchhoff approximation of the bound-
ary conditions required for the evaluation of the Helmholtz
integral in the scalar case, or the Stratton-Chu integral in
the vector case. The most recent of such theories, using a
statistical description of the surface, was made by Fung [1965].
The basic assumptions of Fung are discussed so that the differ-
ences between his analysis and the one presented in this work
may be observed.

Fung made the basic assumption of the Kirchhoff approxi-
mation; namely, the radius of curvature is much greater than
the wavelength of the incident radiation. 1In addition the
following assumptions were made:

1) The surface is perfectly conducting, i.e., the
reflection coefficient is independent of angle
of incidence.

2) There is no shadowing of one part of the sur-
face by another.

3) There is no multiple reflection.

4) The random surface is continuous in the mean

and differentiable over a finite region.

5) The variation of the angle of incidence over
the domain of integration in the case of pulse

radar is negligible.

6) The radius of correlation is much smaller than
the dimensions of the illuminated area.

7) The illuminated area is pulse limited.



8) The average surface is that of a plane.

9) The time-averaged expected power, in the pulsed
radar case, can be obtained by using
1/2 Re [ExH*].

10) Only the direct-polarized component of power
is of interest.

The results of this analysis were applied to experimentally
obtained pulse radar return from the moon.

In the analysis of the present paper, assumptions 1, §5,
7. 8, 9, and 10 are removed or modified. The method used here
does not use the Kirchhoff approximation, but rather the con-
cept of differential reflectivity to obtain the integral equa-
tions. Both methods make the assumption of the general form

of the tangent plane approximation.

1.5 Summary of Chapter Development

This introductory chapter contains statement of the prob-
lem and basic assumptions of the model used. Chapter 2 con-
tains a development and delineation of restrictions of the
concept of differential reflectivity. This concept is the
basis of the analysis made here.

In Chapter 3 the integral equations are developed for
the direct- and cross-polarized instantaneous powers reflected
from an arbitrary rough sphere. This development requires
the inverse Fourier transform to obtain the instantaneous
powers. In conjunction with this chapter, Appendix A presents
the coordinate system transforms necessary to convert the
power reflected from an incremental area of the surface into

a receiver-based coordinate system, allowing the separation

8



of the two components of power. Also, Appendix B discusses
the false poles of the reflection coefficients and the de-
velopment of a power series expansion valid for small slopes.

In Chapter 4, the sphere is taken to be statistically
rough with a gaussian distribution of heights and with an ex-
ponential correlation function. Ensemble averages of the in-
tegrals developed in Chapter 3 are taken and the integrals
are solved approximately and time averaged. In conjunction
with this chapter, Appendix C presents the derivation of the
expected values of the various statistical terms encountered.
Appendix D presents the generalized integration by parts neces-
sary for the g - q' integrations. In Appendix E, the gener-
alized ¥ integration is accomplished by an infinite series
expansion and then by exact integration. Also several special
Y integrals are considered in this Appendix. Appendix F pre-
sents the partial derivatives of the correlation function
needed in the final result.

In Chapter 5, the results are discussed with a view toward
a physical interpretation of the mathematical analysis. Par-
ticular emphasis is placed on the possible separation of the
electromagnetic and statistical properties of the surface with
a view to explain the radar backscatter obtained from the lunar
surface. A discussion of the more important results of this
analysis, and some suggestions for future research, conclude

Chapter 5.



CHAPTER 2

CONCEPT OF DIFFERENTIAL REFLECTIVITY

2.1 Development of the Concept of Differential Reflectivity

The concept of differential reflectivity as published by
Erteza, Doran, and Lenhert [1965]l will be reviewed and some
of the restrictions imposed in that paper will be removed.

-y

Differential reflectivity, 6(?1, r, . ®), is a dyadic quantity
which, when multiplied by a differential surface area and the
steady-state vector field incident on that area, yields an
expression for the contribution of that surface element to the
scattered field at an arbitrary observation point. Consequently
the differential reflectivity is a function of the following

variables:

1) Location and orientation of the surface with
respect to the observation point.

2) Properties of the two media separated by the

surface.
3) Frequency of the incident radiation, .
For the case of steady-state incident radiation, the re-

flected Hertzian potential field, ﬁr’ may be described by

D(%, o, t) = ég 6(F,, T, ©) - M(T,, w, t)as, (2-1)
o

lThe Concept of Differential Reflectivity was conceived
and formulated by Dr. A. Erteza.

10



where

Rl
Il

1 radius vector from the origin to the observation
point
r = radius vector from the origin to the surface point

incident vector field at surface element

i *0' @, t)

das
o)

-

6(x,, ¥ . )
S

dyadic differential reflectivity

o illuminated surface
The case of a pulsed sinusoidal source will be considered in
Section 2.3.

It should be noted that Weyl's method of expansion of
the spherical waves into plane waves [Stratton, 1941, pp.
577-5827] cannot be used unless the source is spherically
symmetric; however, in this paper an ideal conical source is
assumed. An ideal conical source is defined as one whose
electric and magnetic fields are uniform over any spherical
surface centered on the source within the cone and identically
zero outside of the cone. This method can also be used for
any arbitrary source or antenna pattern by including an
antenna factor in the integration of (2-1).

Considering only one member of the family of steady-state
waves, a derivation of the theory involving the concept of
differential reflectivity will now be shown. Let the Hertz
vector due to the component steady-state incident waves be

described by
, w, t) =a_c & Tiwt (2-2)

11



for all points ;o on the surface So' where

gv = unit vector in the ﬁi direction (determined by
polarization)

Co = co(w) and relates to the amplitude of the source

k = w/c = propagation constant in the incident medium

R, = |t - |

?S = radius vector from the origin to the source point

It should be noted that by the complex notation of (2-2) we

imply that the real time function ni is the real part of the

right-hand side of the equation; however, for the sake of

brevity this notation will be omitted except when it is neces-

sary for clarity.

For the case of reflection from a plane, if the origin

is taken in the infinite plane surface (x-y plane) of which

S is a region, and the source has rectangular coordinates

o]

(o, o, zs) as shown in figure 2-1, so that

-3 > - L2 2 2
R |ro rsl J%o +yg + oz
then (2-2) can be written as
ikR'

= 2 _ -iot CC e

Hi(ro, ®w, t) =a,cge B —§;——-6(xo - x
S
o

- 68(y, - yl)axidy)

where

12
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Rl

-
R
R
(o]
S 91
a
A D -
\ . X,
ro o
P
a
cpl aP \

X"direction

Figure 2-1
Reflection Geometry
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Using the Fourier integral expansion one may write

e dulx_-x!)+iv(y_-y!)
! vy = 1 oo o ‘o
8(x, - xo)é(yo -y.) = 1;7 SS e dudv  (2-4)
so that the incident field at each point, ;o' of the surface

is given by

-iwt kR, I iu(x_-x')+iv(y_-y')
S 3cCce o o o ‘o’ |
T 0
-0

o §§ e

ni(;o' w, t) =

. dudv}dxédyé (2-5)

If now

- [.2 2 2
r = J%o + yo + zo '
the following integral is obtained by analytic continuation.

- omiwt o o L AW

1(r, 0, t) = . SS RT §S a,Coe “dudv |dx'dy] (2-6)
S -
o

where

w, = u(xo -x0) + v(yo -yy) - zosz - (u2 + vz)

Expression (2-6) can be interpreted as the field due to
an infinite collection of plane waves, symmetrically distributed
about the local normal to the incident wave front, which com-

bine at a point on the reflecting surface to yield the net

14



incident field due to the original source. The Propagation
constant associated with each of the Plane waves is determined
so that the entire collection adds to a two-dimensional delta

function at the point in question.

Consider now a Hertzian plane wave having a propagation

vector with components [u, v, J&2 - (u2 + vz)] and a polariza-
tion in the direction gv to be reflected from the surface.

The reflected plane wave will be described through the use of
a dyadic reflection coefficient V (u, v). At an observation
point Q(fl), the total reflected field due to an illumination

of the surface so by the infinite set of plane waves is given

by
nr - -iwt 1 R ~( iwf
(r;, o, t) = e SS SS V(u, v)e “dudv| e
1 ;?
S 4 —®
o
ikR'
ac & — dx'dy’ (2-7)
T 0 Ro o ‘o
where

W, = u(xl - x) + v(y; - vg) + zrsz - (u2 + VZ;

which, when compared with (2-1), yields the differential re-

flectivity as

@©

~

iw
6(;1, ;o' w) = Zif Sg V(u, v)e Tduav (2-8)

15



The form of the components of the reflection coefficient v
will depend on the nature of the surface So in the general
case.

If the surface is spherical these components may be de-
rived from Mie's solution for a plane wave incident on a sphere
[stratton, 1941, pp. 563-567]. For an infinite Plane surface
such as is being considered here, they reduce to the ordinary

Fresnel reflection coefficients.

2.2 Evaluation of 2

For the purposes of computation it is useful to evaluate

the vector quantity
1 I ~ - lWr - -
T = iz Sg V(u, v) - a,C,e “dudv =& - a c (2-9)
-0

Referring to figure 2-1, the two coordinate systems having
their origin at the point P on the reflecting surface are de-
fined as follows: The Q system is defined by the surface
normal and the direction to the receiver at point Q with the
orthogonal set of unit vectors ;n’ gr and ;t7 and the K system
defined by the surface normal and the propagation vector k
with the orthogonal set of unit vectors EP’ EN’ ;n‘ Here gn
is the positive unit normal to the reflecting surface, gr is
the unit vector in the direction of the projection of R, on

1

the tangent plane through P, and ;t = gr x En (also in the

tangent plane). The unit vector ;P is in the direction oppo-
site to that of the projection of Xk on the tangent plane and

SN = En X QP. In the general problem the surface normal

16



| ‘ described in the primary reference system (x, y, z) changes

direction as one traverses the surface So under consideration;

therefore these two additional coordinate systems are needed.
For the case of Il-plane waves reflected from an infinite

plane, the off-diagonal terms of v (i.e., Vij where i, j =

P, N, or n and i # j) can be shown to be zero by converting

i to E ana H and the diagonal terms are

(|..12/;.;.l)n2 cos a - A“/nz - sine

(uz/i.ll)n2 cos o + th - sin‘a

Vpp(@) = -Vpp(e) = -

(w,/M5) cos a - an - sin’a
VNN(a) = (2-10)
(ul/hz) cos o + th - sin‘a

. where

a = angle of incidence = sin
n = index of refraction = kl/k
My = permeability of the reflecting medium

My = permeability of the incident medium (free space)

Thus VPP and VNN are identical with the Fresnel reflection
coefficients in this case. The vector (2-9) may be resolved
as
e
- 1 W 1 W

© i i
_ - r - r
= Z;? Sg aPVPP(a)CPe dudv + Z;Z S aNVNN(a)CNe dudv

-0

P iw

-

+ Zif SS a v, (a)c e Yauav =

o4

+ T+ 2 (2-11)
N n

17



where

In order to perform the integration of (2-11), u and v

are converted into cylindrical coordinates. Let

u = ANcos B =k sin @ cos B

<
il

A sin B = k sin @ sin B
X) - xXJ = p, cos P

Yy =Yy T Py sin g,

Py = R, sin 91

z, = Rl cos 91

6, = angle between a._ and gn

1 R

3, = By/IR|

Substitution (2-12) into {2-11) yields

[ZW [i%plcos(ml-ﬁ)+izlkcosa]
. S e dﬁJ%dA

which by Stratton [1941, p. 412] becomes

[izlkcosa]

—o___. n
E = a -—-g vhn[a(x)]Jo(Apl) e AdA
(o}

18
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Also by the same method one can obtain

I, gtct ® ,
£-2+%- Tr—; L£ (M (M) + £,(N)T,(Re))] .
iz kéosa 3 C it
ce 1 MM + _{?’Eg [£,(N)T_(M0;)
izlkcosa
- fz(x)JZ(Apl)] e AGA (2-15)
where
fl(x) = VPP[a(A)] + VNN[a(A)]
£,(N) = vPP[a(x)] - VNN[a(x)]
C = (3, . é{w)co = (&, - g + (8, - E)cy
¢, =3, -3, = (5, - B + (3, - agy

Approximate evaluation of ¥ and 3, as given in (2-14)
and (2-15), may be made by use gf theTsaddle—point method
[Brekhovskikh, 1960, pp. 245-255]1. This method consists of
first converting the A integration to & integration over a
contour Fo, converting the Bessel functions to Hankel func-
tions, and then expanding the Hankel functions in their
asymptotic representation over the appropriate contour T,.
The location of the saddle point, ao, is found and the con-

tour Fl is then deformed to the contour I' which passes through

the saddle point along the path of steepest descent (i.e., a
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pPath of constant phase). This new contour T is represented

by new variables defined by

2

fla) = fla)) - s (2-16)

and s varies over all real values from -« to +=,
In deforming of the contour Tl to I', the following items
must be taken into account:

1) Restriction of region of possible saddle-point
locations so that the asymptotic representation
of the Hankel function may be used.

2) The residues of any poles of Vpp and V. crossed
in the deformation of the contour.

3) The effect of crossing a branch point of Vg,

and VﬁN in the deforming of the contour.
These effects are assumed to be negligible in this section
and the exact limitations are determined in Section 2.3. Now
the integrand, excluding the exponential, is rewritten in
terms of the new variable s, expanded in a power series in s,
and integrated. The only difficulty arising in these manipu-
lations is that a pole close to the saddle point will limit
the radius of convergence of the power series. This will
again be neglected in this section and the restriction de-
lineated in Section 2.3. If p is assumed to be sufficiently
large, only the first term of the integral of the power series
need be considered.

The saddle-point method will be used to evaluate § and

%' First consider ¥ as given in (2-14): the conversion to
n

& integration requires a contour Fo as shown in figure 2-2

20



-2 °

Figure 2-2

Integration Contour To

T/2

ﬁaﬁ\\ all
\
# ’ \ T
) \
AN
\
Y \\
- o] L
-m/2 "
Figure 2-3

Integration Contours T

21

y

and T

al



to be used since k may be complex. Using (2-12), then (2-14)

becomes

\ aCk
- S (a)Jo(le sin _ sin a)

:tﬂl

ilecoselcosa
e sin @ cos ada (2-17)

4

The expansion of the Bessel function into Hankel functions of
the same kind will be made avoiding the apparent pole of the

Hankel functions at the origin.

() = 2 18{(z) - alP)(-2)]

7,(2) = 3 (8§t (z) - m{)(-2)] (2-18)

Since the integrand of (2-17) is an odd function of a, sub-

stituting {2-18) into (2-17) and changing the contour to ry

as shown by the solid line in figure 2-3 yields

dMl

S nlo)H 1)(kR sin 6, sin a) -

ilecoselcosa
- e sin a cos ada (2-19)

Under the assumption that le sin2 © >> 1, the large argument

expansion of the Hankel function can be used, keeping only the

first term.
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* 2_°n™n 2
5 f T T 2T J[Fle sin 6, S Vnn(®) -
N Tl

[ilecos(Gl—a)-iW/h]
e cos av/sin a do (2-20)
The saddle point of (2-20) is @, = ©,; then, by the saddle-
point method of integration, the contour is changed to T as
shown by the dotted line in figure 2.3. The effects of de-
forming the contour through any poles and remaining on the
same sheet are assumed negligible (see Section 2.3). Under
the assumption that le >> 1, saddle-point integration of

(2-20) yields

_; C x ikR
T=—28 y (0.) & " cos @ (2-21)
n 271 22 L 1

By the same method (2-15) becomes

- ikR -
- a;kC e a_kC

_ t r-r .
2= =7 Van(9) R cos 6, + —m=== Vpp(9;)

= cos 6, (2-22)

Thus by (2-21) and (2-22), (2-9) becomes

. ) . w cos Gl eile .
Z=o - arCe = T7Fc Ry [_anchPP(el)
+a.c . v,,(6,) + 3, C Ve (8,) ] (2-23)
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and substituting (2-23) into (2-7) yields

it ikR;, ikR
oL Sg = = [-3 c v, (e,)
2Tci R Ro nn PP‘\V1

Hr(;l, w, t) =

S 1
o

+a,cvpp(6)) +acve(e)] -
- CcOS 91 dxo'dy(; (2-24)

This is the reflected steady-state i field from a plane sur-
face provided le sin2 91 >> 1, no poles or branch points are
crossed in the deformation of contour, and no pole is close

to the saddle point. These limitations will be removed in

the next section.

2.3 Removal and Delineation of Restrictions

This section will discuss each of the restrictions im-

—

posed in the previous sections to evaluate E and g and to ob-
tain ﬁi. These restrictions were:

1) saddle point is not close to origin

2) No poles are crossed in deforming the contour

3) No pole is sufficiently close to saddle point

4) No branch points are crossed

5) Reflecting surface is a plane

6) sSteady-state reflection
Each of these restrictions will be considered individually

and the restrictions on the index of refraction n determined

such that (2-24) is a valid approximation for the general case.
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2.3.1 saddle Point Near Origin

In Section 2.2 it was seen that the expansion of the
Bessel functions in terms of Hankel functions in the evalua-
tion of the components of f was not valid unless le sin2 91
>> 1. 1In this section this restriction is examined more

closely and the conditions for its relaxation will be deter-

mined. First consider (2-17) for the n component of % .

3 2

C_k
_ “n"n ) .
= = S Vnn(a)Jo(le sin ©; sin a) -
T

5 ™!

o

[ilecoselcosa]
. e cos a sin ada (2-17)

If le sin 91 << 1, then by using the first term in the ex-

pansion of the Bessel function, (2-17) becomes

2

. Encnk ) [ikR,cose,cosa]

z = S V. (a) e cos @ sin ada 2-25

5 __777_'r nn( ( )
o

Letting ¢ = ' - ia" and F{a) = F(a', «"), the integral of

F(a) over contour TO can be represented as

S Fla)da = §/2 Fla', o)da' - i § F(m/2, a")da" (2-26)
r o o

o

Conversion of (2-25) to the form of (2-26) and using the

trigonometric identities
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sin ¢ = sin (@' - ia") = sin &' cosh a"

- i cos a' sinh a"

cos a = cos (@' - ia") = cos a' cosh a"
+ i sin ¢' sinh a" (2-27)
yields
. gncnk2 /2 [ikR,cos6,cose ']
E =~ v (a', o) e .

- cos o' sin a'da’ + S v (T/2, &)

[—lecoselsinha“]
. e sinh ¢" cosh a"da" (2-28)

Let the first integral in (2-28) be called I,, the second I,

and w = cos a'; then

[1lecoselw]

g ' (cos w, 0) e wdw (2-29)

Integrating (2-29) by parts and neglecting all but the first

term (assuming kR, cos ©; >> 1 and cos 8, = 1), yields

1

-1 .
Von(cos = 1, o) ikR,

L = 1XR, € (2-30)

Since in I,, Vnn(v/Q, a") is approximately constant for
very small a", then setting the derivative with respect to a"

of the remaining portion of the integrand of 12 equal to zero,
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the maximum is found to occur at a" = l/le. The maximum
value of the integrand is Vnn(v/Z)e-l/le. Since the inte-

grand is approximately zero at lO/le, then

L0/kR) v (m/2)e”t

R @)

ht 1 (kR

which is negligible with respect to Il‘ Thus, for 91 very

close to zero

- ikR
% -2, 0y e (2-32)
n 271 nn Rl -3

which is the same as the saddle-point solution for el - 0 as
given in (2-21).
By the same method, T is
T
a C.k 1kRy

S _ t’t (o] =
= Tm [vpp(07) + vyy(0°)] R

ikR
e 1

a_C_k
+ g [Vpp(07) + v (07)] R (2-33)

: i 0 oy
which, since VPP(O ) = VﬁN(O ) is the same as (2-22) for

—

©, - 0. Thus, since ¥ is an analytic function, the saddle-

1
point solution as given in (2-23) is valid for all e, if

le >> 1.
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2.3.2 Effect of Branch Point and Branch Cut

There exists a branch point in both VPP and VﬁN at

th - sin® a =0 (2-34)

where ab is the location of the branch point. The cut from

this branch point will be taken as ImJ%2 - sin2 a = 0. The
2

sheet ImJ%z - sin™ @ > O will be called the upper sheet and

ImJ%z - sin2 a < 0, the lower sheet. This branch cut is
chosen since the contour Pl must pass over the upper sheet so
that the retransmitted wave in the reflecting medium does not
have an infinite amplitude as z - -=.

Now the location of the branch point with respect to the

contour T will be determined. The contour I" is defined by

2 (2-35)

cos (0, - a ) =1+ is

Since the contour is deformed the most for 0, = m/2 (its max-

imum value), (2-35) becomes

sin ac =1 + is2

for o, = /2 (2-36)
If it is assumed that an n exists where the branch point is
on the contour, then a_ =a, . For (2-34) to be true then the

radicand must be zero. Squaring (2-36) and substituting into

(2-34) yields

2

n -1 + s}4

2

- 2is“ =0
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Re(nz) -1 +st = O and Im(nz) 282 =0 (2-37)
since for free space with a conductivity 0y, = 0o

n? =y e (L + iy) (2-38)

rr

where

Ur = |J-1/U-2

€. = el/€2

€ = dielectric constant of reflectivity medium

€2 = dielectric constant of free space

oy
‘y — —————

wey
o, = conductivity of reflecting medium

Then no solution can exist for M€ > 1. This condition will
be assumed for the solution obtained in this paper. Therefore
the branch point is always above the contour T'. In view of
the fact that VPP and VNN are analytic functions of & in the
region bounded by I and Tl and the branch cut if crossed will
be crossed twice, no correction need be made to the saddle-

point integration.

2.3.3 Location of Poles of Reflection Coefficients

The location of the poles of VPP and VNN will be found

to determine if the contour has been deformed across a pole
and consequently the value of the residue of any such pole
will be added to (2-23). Consider first Vyny Whose poles «
are determined by the solution of the equation

N
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H, cos oy = —th - sin2 oy (2-39)

If it is assumed that |n2] > 1, no poles exist for M = 1.
However, for My > 1, the poles are determined by squaring

(2-39) and obtaining

Hence assuming €. > M, there are four values for oy = aﬁ

+ iaﬁ where aﬁ is restricted to the area of interest, namely

from -7 to T.

P,: 0 < aﬁ < T/2, aﬁ <0

P,: Symmetrical to P, (with respect to the origin)

3° T/2 < aﬁ < T, aﬁ >0

P): Symmetrical to P, (with respect to the origin)(2-41)

It should be noted that of these four poles, two are not true
poles but were obtained in the squaring process. Squaring

sin e, from (2-40) and substituting into (2-39), it is seen
that cos aq in (2-40) must have the negative sign. Thus, only
P3 and P4 are true poles. Again, using (2-39), it may be seen
that these poles lie on the lower sheet; therefore they will
not modify (2-23) due to residues or affect its validity due
to being too close to the saddle point, so long as |n2| > 1
and er > M-

Now consider V_. whose poles a_ are determined by the

PP

solution to the equation

P
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n - 2 . 2
o cos ap = —J[n - sin® @ (2-42)

cos O, =

(2-43)

where the minus sign on the cosine equation was determined by
using the sine term squared in (2-42) in order that only the
two correct solutions to (2-42) be obtained. Again assuming

er > Mo the two true poles are

Plz T/2 < op < T, op < 0

P,: Symmetrical to P, (with respect to the origin)

Using (2-42) it can be determined that these poles lie on the
upper sheet. Therefore it must be determined if these poles
lie between I and Tl. By referring to figure 2-3, it is de-

termined that pole P2 will not lie between I and Fl due to

its location; however, pole Pl might be crossed. Pole Pl

corresponds to the positive sign on the sine term in (2-43).
Since the contour T has had its maximum deformation when the
saddle point 0, = T/2, this case will be considered to deter-

mine if some values of u_, €_, and ¥ will cause the pole to
r

r

lie on the contour. Setting a_ in (2-36) equal to a,, it is

PI
seen that
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Re sin aj =1 (2-45)

Converting (2-43) into polar form
n /n -“r

[ 2 g2

) o

0<eo¢<mu/2

el® (2-46)

Si a. =
in P

where

However, when the magnitude of sin aP was determined, it was

found to be less than one so long as |n2| >1and € >u_.

Consequently pole Pl does not lie between T" and T but it

ll
may be arbitrarily close to the saddle point. This effect

will be examined in the next section.

2.3.4 Pole Near the saddle Point

In the saddle point integration, the_variable a was re-
Placed by s and the entire integrand, excluding the exponen-
tial, was expanded in a power series in s. It is necessary
that this power series be convergent. The power series will
converge inside a circle of radius Sy ¢ ©On whose boundary the
pole is located. For the saddle-point method, it is necessary
that the entire range of significant values of s, for which
the integrand is not yet very small, occupy a small portion
of the circle of convergence near its center. Using the
upper limit s4 of significant values of s as the value for

which the exponential decreases to a value of e_l, thus

s, = 1//KR] (2-47)
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Then the condition that |sl/so|2 << 1 becomes

KRy |s |2 >> 1 (2-48)

From the previous section it was seen that the only pole

that could approach the saddle point was pole Pl of VP which

P
approaches the saddle point only when 91 - m/2. The location

of the pole in the s plane is determined by

p) = L + is? (2-49)

cos (91 -«

Letting w = “ERI Sqgr ©) = /2, and using (2-49) and (2-43) it

is found that [Brekhovskikh, 1960]

w2 = —L (2-50)
2|n4|

Thus for (2-U48) to be satisfied and consequently (2-24) be

correct it is necessary that kR, >> 2|n2|.

2.3.5 Effect of Nonplanar Reflecting Surface

In the derivation of the differential reflectivity it was
assumed that the reflecting surface was a Plane. If the body
is not a plane, two effects must be either neglected or taken
into account. These are: (1) the modification of the inci-
dent field due to multiple reflections in the incident medium,
and (2) modification of the reflected field due to the retrans-
mitted wave in the reflecting medium intersecting the surface
at another point. These two effects are illustrated in fig-

ure 2-4 at points B and C, respectively. The effect at B can
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be negated, in the case of a smooth body, by requiring con-
vexity [Erteza, Doran, and Lenhert, 1965] or, in the case of
a rough surface, by assuming that multiple reflections are
negligible, as will be done in this work.

The case at C is more difficult. However, if the radius
of curvature is very large or the reflecting body is lossy,
then the contribution at C due to illumination at A can be
made negligibly small. For the case of a smooth spherical
surface the results obtained by Erteza, Doran, and Lenhert
[1965] for steady-state full illumination matched with those
obtained using Mie's reflection coefficients for the radius
of the spherical surface greater than 100 wavelengths. At
this point the approximations made in Section 2 can give errors
of the order of one percent; thus it cannot be stated that the
concept of differential reflectivity gives an incorrect answer
for a smaller radius of curvature. Consequently it will be
assumed that the differential reflectivity is a good approxi-

mation for the rough surface case so long as the roughness is

not extreme.

2.3.6 Pulsed Source

If the source is considered to be an elementary dipole
whose current is a pulsed sinusoid of angular frequency Wy
and pulse width T, it is necessary to replace the incident
time varying radiation with an infinite set of steady-state
waves obtained by means of the Fourier transform of the re-
sulting Il field. The resulting Il field at the reflecting

surface is [van Bladel, 1963, p. 194]
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! - 1 t 3.(;', t' - RO'/C)
i ﬂi(ro, Oy v t) = Tme g dt S R av (2-51)
o o
o \"
| where j(r', t' - R)/c) is the current density in the antenna

-

R' =R_-r

| r vector from the center of the antenna (defined by

—

rs) to a point in the antenna
; These vectors are shown in figure 2-5. Let the current den-
sity be defined by

j(z', t* - Ré/c) = gvj(;') sin wo(t' - Ré/b) .

- [u(t' - R)/c) - ult' - R /c - T)]
(2-52)

which can be expressed in complex form as

¢ -iw (t' - R'/c
J(E'. £ - R /c) = m{-3 j(F') e o o’e)

[u(t’ - Rl/C) - u(t' - R'/c - 1)1}
(2-53)

ik,R'
The series expansion of e 2 O/Ré is [stratton, 1941, p. 431]

o 2% o . (1)
——ﬁg—— = ik, ib(Zn + l)Pn(cos y)Jn(er')hn (kZRO)(2-54)
n=

where y is as shown in figure 2-5

Pn(cos y) are the Legendre polynomials
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jn(kzr') are the spherical Bessel functions

o hﬁl)(szo) are the spherical Hankel functions of the
| first kind

Under the conditions that k,r' << 1 and k,R  >> 1, (2-54) can
be approximated by the first term (n = 0) and the R in the
argument of the unit steps may be replaced by Ro. Substitu-

tion of (2-53) and the first term of (2-54) into (2-51) gives

-a koRo & i
(2,0, t)=Im— % Q e 9 [u(t' -R_/c)
i‘to’ Tof i4weo R, (e}
o

- - )
- uft' - R /c - T)] ( j(r')av' at'- (2-55)
._V -y
The assumptions of a thin, straight-wire antenna of length £
with uniform current density on any transverse cross section
and with current distribution I({) over its length yield
L/2

Q j(£")av' = Q 1(£)ag = Mweocl (2-56)
v -1/2

The substitution of (2-56) into (2-55) gives

R - t : 1
- ry _ - e 2 o] , ( —l(l)ot ,
O (r ., o , t) = Imac, —‘ﬁg_——f-J e u(t' - R /c)
- 0
. oh
- u(t' - R /c - T)ag; (2-57)

-

Taking the Fourier and inverse Fourier transforms of (2—57)

and rearranging yields
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- - 1 > ;.’Te O -iwt i lﬂ)tl
t1 it
. [-S e o [u(t’ - R /c)
o
- u(t' - R /c - T)]dt'wdtl}dw (2-58)

i
Converting (2—58) to the real part and taking the Fourier

transform of the t'-integral yields

a_e

e - _ l T
-Ch -—

® lszOe-i(Dt J»

[u(t1 - R/c) - u(t; - R /c - T)]dtl]dm}

(2-59)

Since the development of the reflected fields of Section
2.1 used an amplitude of C (w) for the steady-state wave, it
is necessary to obtain Co(w) for each of the steady-state
waves from (2-59) and then sum these waves to obtain the time

varying incident or reflected fields. Then

> ¢ () iR L
C w e e s
o _ 1 o
0 (T, o, t) = Re{ﬁ S = dm} (2-60)

-C0

where
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=
A
il

S [u(tl - Ro/b) - u(tl -R/c -T)] -

-0

iwt

1
. e dtl
-i(w - o )T
_ e ° 1
ilw - wo)

Thus the pulsed case shown in (2-60) is of the same form as
the steady-state case of (2-2) with only C,(w) redefined.

Consequently,

® ik(Ro+Rl)

e _ 1 T 1 we
rIr(rl' Do # t) = 2TCci S {7? S R_R; €
S -CD

~-iwt

o
[-23,CVpp(0;) + 3,C Vpp(0))
+ 3,0,V (0;)] cos 0 antds (2-61)
where C ., C_ ., and C_ are related to C_(w) as previously de-

fined but C_(w) is now defined as shown in (2-60).

2.4 conclusion

In summary, the concept of differential reflectivity
developed in this chapter was found to be valid for reflection
from a smooth convex surface of either large radius of curva-
ture or composed of a lossy material so long as kRo >> |n2|

— ——y
and M. < €_. In the case of a rough surface where a . a.,

r
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;t vary with position, it is necessary to assume that multiple
reflections both in the incident and reflecting medium are
negligible. This can be forced by requiring a large radius

of curvature of the surface and possibly lossy material in

the reflecting surface. Again, in the rough surface case, it
is necessary to assume kR  >> |n2| and u_ < €_.. With these
assumptions the concept yields the equation for the reflected

Hertzian potential as

® ik(R_+R, )
R we -iwt
Hr(rl, ® t) = 4W ” S S R, e [- an n PP(Q )

+ Ercrvpp(el) + a (6,)1 cos @ awas (2-62)

t t NN

where So is the illuminated surface.
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CHAPTER 3

APPLICATION OF THE CONCEPT OF DIFFERENTIAL
REFLECTIVITY TO A ROUGH SPHERE

5.1 Definition of Coordinate Systems

In this section the coordinate systems necessary for the
application of the concept of differential reflectivity are
developed for a rough sphere whose average radius is a. The
variation in the radius of the rough sphere at a point 6, ¢
is denoted by H(G. ®). From Chapter 2, using ;o = rogro as
the vector from the origin to a point on the reflecting sur-

face, the equation of the surface is given by

¥ =r_ - [a + H(O, @ﬂ =0 (3-1)

The unit outward surface normal vector En is found by normal-

izing the gradient of (3-1) ir normal spherical coordinates

-

(aro' ag a@).

NIRRT g N N1, B U
n VY] L5ro ro T e %o r, sin © S “@i VY]

It should be noted at this point that if the sphere is per-
fectly smooth, gn is identical with groo Performing the in-

dicated operations of (3-2) on ¥ as defined in (3-1) yields

e 1 oH(e, - 1 JH(©, 9) - |_-1
®h " | %o T ?; ) %9 r_ sin © o a¢jJ

(3-3)
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where

5 2 2
o e B [y S el

r
o

It is now necessary to define several orthogonal coordi-
nate systems so that ﬁr’ and consequently the direct- and
cross-polarized power, may be calculated for the case where
the transmitter and receiver are coincident. These coordinate
systems are shown in figure 3-1. The coordinate system used
and defined in Chapter 2 with unit vectors (gn’ ar' gt) has

its origin at the reflecting point P. The reference, or in-

-

ertial coordinate system (;x' ay EZ), has its origin at the
center of the sphere with 32 in the direction of the trans-

mitter and gx in the direction of a linearly polarized ﬁi

(i.e., a, = a;). Another cocordinate system (aR, ag. am)

has its origin at the reflecticn point P with QR in the direc-

tion of the receiver (in the case of the sphere with receiver
also on z axis it lies in the meridian plane), 3@ the stand-
ard spherical unit vector as used previously in this section,

and ay = am X ap (also in meridian plane defined by aro and

ae). Several additional quantities shown in figure 3-1 need

to be defined. These are: a, is a unit wvector in the direc-

L

tion of the projection of gn on the meridian plane, Gn is the

-

angle from a to EL in the meridian plane, and ?, is the

ro

angle from gn to 32 in the plane perpendicular to the meridian

- -
plane containing a, and a@.
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\ ) . . , .

} Matrix notation for the coordinate unit vectors is used

| . , :
so that transformations between the various coordinate systems
may be more easily made. The coordinate column vectors are

defined as

-;nq -gRq —gxﬁ -~r0~
- FO P A S - E P (3-4)
_Et_ ’Emﬂ FEZU ng |
The (3 x 3) coordinate transformation matrices Aij are de-
fined as
Ry = AR, (3-5)

and are calculated in Appendix A.

3.2 Determination of Er and ﬁr

The reflected power will be determined in Section 3.3
from the reflected electric and magnetic field intensities
(Er and ﬁr) by application of the Poynting theorem. Therefore
it is necessary to now determine Er and ﬁr from ﬁr as defined
in (2-62). Assuming that (k.ZRl)_2 is regligible with respect
to (kZRl)_l, consider only the integrand [Stratton, 1941,

p. 435]

2«-4 - —
-kap x [ap x 6ﬁr(rl, o, )]

6Er(rl, w. ., w) o

(o]
sH_(T,, o, ©) = ake,lay x s (7], o), )] (3-6)

where éﬁr is the integrand of (2-62). Let
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v = -(a, - ;x)VPP(el)gn * (gr ) gx)VPP(el)gr
+ (3, - a3 )vg(e;)a, (3-7)

then (2-62) can be rewritten for the monostatic case (i.e.,

R =R, =R)

o~ R
® o weiZkr e—iwt
o (7, o, t) = —%—g S o - V cos 0 ands (3-8)
4rlcei S e R
(o]

gl . .
The vector V can be written in matrix form as

where V., is the row matrix

l

vy = [-(a, - 3)vpp(0)), (3, - 3, )vpp(6;). (G, - &, )Vige(6;)]
(3-10)

Since the vector operations in (3-7) operate only on V, trans-

formation to (x, y, z) coordinates by use of (3-4) and (3-5)

yields the following terms:

E, =apx (ag x V) = ViA10818,3R5

H =ap x V=Va,ha Ay (3-11)

where e, and h; are (3 x 3) matrices determined by a

and gR b KZ' respectively, and are

r ¥ (ag x &)
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e. =[0 -1 0 h. ={0 0 1 (3-12)

Then (3-6) and (3-9) are combined, using the notation of

(3-11); the results are

o o Cow3e12kR o lwt B
Er(rl, (l)o; t) = m S S R2 El cos Qldt.l)ds
S —C0

(o)

L. \ €2 . F Cow3e12kR -iwt B
rIr\rl, Oor B T 77y ) ) ; C€OS ©,dwds
4rc®i R
o

(3-13)

With the transmitter and receiver located at {0, O, D)
in the (x, y, z) coordinate system and assuming D >> a, then

92 = (0. This assumption greatly simplifies the calculation
of El and Hl°

The substitution of (A-13) and (A-14) into (3-11) yields

'coselsinel | cosp sin(6-6_)sin®, |sing sin®; i
= V1 2 | !
E, = STno; sin®@, -coswnsin(e—en)cosell—sin@ncosel .
-gi | i -
»0 ! sing .coswn51n(9 On)—
o) 0] 0] 0] 0 1
-]10 -1 O cosQ sinpg O X3 (3-14)
0 0 -1 -sing cosQ 0
with Vl being
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1 . . . . .

v, = EIH@I [(s1nms1n¢ns1n91—cosmcos¢ns1n(9-9n)51n91)VPP(Ql),
(sinmsinmncosel—coswcosmnsin(9—9n)cosel)VPP(Ql%
(—cosmsinmn—sinwcos¢nsin(9=Gn))VNN(OI)] (3-15)

The matrix multiplication of (3-14) using (3-15) gives

— 1 - . : . 2
E, = ;;;75—{ax[—VPP(Ql)cosZGl(cos¢n51n(9—Gn)cosw-51n¢n51n¢)
1

_VNN(el)(sinmcosmnsin(e—en)+sin¢ncos¢)2]

+§yE{VPP(Ql)cosZGl—VNN(Gl))(sinwcosmcoszmnsinz(e-en)

+cosz¢sin¢ncos¢nsin(9-9n)—sin2¢sin¢ncosmnsin(9—9n)

-sinwcosmsinzmn)]} (3-16)
Also
Pcoselsinel |coscpnsin(9-9n)sin9l | sing_sin®; ]
I |
- 1 2
H, = EIE@I sin®@, :—cosmnsin(e-en)cosgll -sing cos®, .
|
' - . . -
L_O , —sing_ | cosg_sin(@ Qn)‘
0 0 0 0 0 1
{0 0 1 cosQ sing 33 (3-17)

0]
-sing cosQ 0

(@)
|
)
(@

which gives upon multiplication
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——y

H, = ;;;%—5— {gx[-(VPP(Gl)COSZQl-VNN(Gl))(sinmcosmcoszmn .
1

. 2 2__. . .2 .
. sin (Q-On)+COS ¢51nmncoson51n(9—en)—s1n ¢s1nmncoswn-
. . . 2 =
. 51n(9—9n)—51nmcos¢51n cpn)]+ay[VPP(91)cosZQl(coscpn
2
)

. sin(e-en)cos¢—sin¢nsin¢ +VﬁN(el)(sin¢cos¢nsin69—en)

+sin@ncos¢)2]} (3-18)

and E = Hp, (3-19)

Inspecting El' both the x and y components appear to
have poles at 91 = 0. These poles are shown in Appendix B to

be apparent poles. From (B-3) and (B-8), (3-16) becomes
El = gx{—VPP(Gl)COSZGl+V2(91)[sin¢cosmnsin(9—9n)
. 21 - . 2 .2
+sing cosg] -asz(Gl)[51n¢cos¢cos ¢, Sin (G—Qn)
2 . . L2 . .
+cos 981n@ncoswn51n(9—en)-S1n ¢s1n®ncosmn51n(9—9n)
2

-sing@cosg@sin

?,] (3-20)
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R~

where

2cosel[ur(n2—l)cos91+(n2—u§v%2—sinzel]

n®cose, u,/n -sin’e J[u,cos0, 4/n -sin’o, |

vz(el) =

Since the surface variation is given in terms of H(O,09)
and en, o, are related to the partial derivatives of H(e, m),
(3-20) will be converted to H(O, ¢) and its partial derivatives

by means of the following definitions:

_ H{e, _1 aHée,g) . __1 OoH(6,9)
1 a X3 =3 2) ’ X5 = 7 sin0 o

b
|

_ 1 OH(®',9')

]
N
]
o r]
ol@
]
o
Q/
Qi
(0]
o -
>
(0)

Xy

a sin@" op'
a a
Y, =X, ; Y. = — X, Y =—X
1 1 3 r, "3 5 r 5
Y, =X, ; Y, =2-x, : Yo = - X¢ (3-21)
o o

Also define
Vrc(Ol) = coselvz(el)

vrd(el) = c0s50,c0520,V,,(6;)

cos@ E, = —coselH1y = -Vrd(91)+vrc(91)Ea

coselEly = coseH, = Vrc(el)Eb (3-22)
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Now convert E_ and Eg to Y's by use of (A-18)

2 2 2

©sin ¢-2stin9cosesin m—ZYSsinGsin@cosm

_ 1 .
E, = 37[51n
+Y§coszQsin2¢+2Y3Y5cosQsinwcos¢+ygcoszw] (3-23)
E, = ;ﬁzfsin29sin2¢-2Y3sinecosesin2¢-ZYSsin9c082¢
2

+Y%cos Gsin2m+2Y3Y5cosec052¢-Y§sin2¢] (3-24)

3.3 Determination of Direct- and Cross-Polarized Power

In this section, the instantaneous power is calculated
in integral form and separated into the direct- and cross-
polarized components. From Poynting's Theorem the instantaneous

power §(t) across an interface per unit area is given as
S(t) = Re[E_(t)] X RelH _(t)] (3-25)

With the receiving antenna located on the z axis, the only
component of power that will be seen by the receiver is the z
component. Expanding (3-25) and considering only the z com-

ponent gives

Sz(t) = Re[ErX(t)]Re[Hry(t)]—Re[Ery(t)]Re[HrX(t)] (3-26)

The direct-polarized component of power (Sd) is that component
whose Er field has the same polarization as the transmitted
E field (i.e., the x component of ﬁr). The cross-polarized

component of power (SC) is that component having an Er field
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orthogonal to the transmitted polarization (i.e., the y com-
ponent of Er). The identification of these components in

(3-26) yields

Sd(t) = Re[ErX(t)]Re[Hry(t)]

Sc(t) = -Re[Ery(t)]Re[HrX(t)] (3-27)
Using

RelE_ (t] = 3[E_ (t) + E¥ (t)] (3-28)

and the Fourier transforms

52, (t)] = 2, (0)

FleX (t)] = B}, (-w)

[+-]

FE () ()] = 35 § B (o)n (0 - o)as,  (3-29)

then (3-27) becomes

sg(t) = 2=\ e Mg gw[Erx(wl)Hry(a) - o) + E_ (o)) -

1 8

€0
’ H;:ey(wl - w) * E;x(”bl)Hry(w - ) +EL () -

H;:ey(ml - w)]dwl}dw
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o]

se(6) =77 ), 7 ) By (0 e (0 - 0)) + E ()

- HE (w0, - ) + Eiy( w JH {0 - o) + E;y(ﬂbl) .

Y (0] - ©)ldo, fao (3-30)

Now consider the pulsed case where co(w) is defined in
(2-60) and substitute into (3-13) after taking the Fourier
transform. The results are

C1 C /l\zaiZkR —

E(Y,, o, o) = é == E, cos 6,f(w, w_, T)ds
r‘-1 o 2vc31 R2 1 1 o

Hr(rl, Wy . w) 21 H

cos Glf(w, W, T)as (3-31)
2Tc

1
S

The substitution of (3-22) into (3-31) yields for the x and y

components
i2w.R/c
&; 2l T e v (o)
E r,, w_, ® = S L=V (2] + Vv o E ]
rx‘\1 o 1 2W03 J iR2 rd‘'-1 rc'"1l'"a
o
hd f((Dl, CDO, T)ds
i2w,R/c
. Cl wi e 1
Ery(rl, w, . wl) = 3 S — f(a)l, Wy T)vrc(gl)nbds
S
o

52



i2 (w-w, )R"'/c
2WC2 b iR'

2

S’
o]

- flw - Wy, O, T)V (e )E ds"

o]

2 iZ(m—wl)R'/c

H y(rl' Wy, © - wy) = z;:% ) (0 - @) jR,Z .
o
 E(w - o, o, T)-V_4(6;)
+ v _.(e;)E las’ (3-32)
. Substituting (3-32) into (3-30) and changing the order of

integration gives, under the assumption that the Fresnel re-
flection coefficients are not functions of frequency (i.e.,

zero conductivity),

s4(t) = 5 § K T
S

1
o]

0

. [-vpa(0g) + v, (61)E] S o-iwt

R2 Vi J
iy i2w,R/c i2 (w-wR'/c
2 191 1
. é; S —wi(wﬂwl) e f(wl,wo,T)e
2 2 iZwlR/c
f(w—ml,w ,T)+w1(w-wl) e f(wl,mo,T)
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i2 (w-a)l JR'/c

. e fv*(wl—w,mo,'r)-!wi(w-wl)z

i2w.R/c i2 (w—ml JR' /e

1
. e f*(-a)l.wo,T) e f(w-wl,wo,'r)

)2 i2w,R/c iZ(a)—ml)R'/c

2
-wl(cn—ml e f*(-u)1 W, T) e .

- £%(0, -0,0_,T) dw,]dm}deS'

1€2 V(O Ve (O)BLEL (1 ¢ _ia
S rc rc {ﬁg e .

Y

-

2 )2 i2w,R/c

. [é?r'g -y (0w, )" e 1 £(w, @ ,T) -

i2 (a)-wl )JR'/c

2 2 iZwlR/c
. e £(0-w, ;o ,T)+w) (0o e

L)

i2(w-w, )R'/c 2 2
. f(wl,@o,T) e f*(wl-w,wo,'r)-!wl(w-—m <.

1

iZwlR/c i2.(a)—a>l )JR'/c
- e f*(-wl,wo,T) e f(w—wl.wo.T)

12w,R/c 12(w-w, )R"/c

2
~o) (w-—wl

. £*(o,~0,@ ,T) do, Ja}dsas’ (3-33)
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Let

£,(t) = 3-l{e12wR/b £(w, "y T)}

fz(t) - g-l{eiZwR'/b £(w, @, T)} (3-34)
Using (3-29) and

Al 25 (5(e)

Imlg(t)] = 37lg(t) - g*(t)] (3-35)

a’s (e)]| [a%e,(¢) S i
Im[ di2 m—S—| =5 § e g § [l (o)) -
£ (wmp Jf (-0 )2£3 (o, )£, (wwy )

ﬁni(w-wl)zfl(wl)f%(wl—w)—wi(w-wl)z .

£ (~wy )£5 (w0, ) Jao; baw (3-36)

Realizing that (3-34) substituted into (3-36) is identical to
the terms inside the brace of both equations of (3-33), it is

necessary to evaluate

o dzfl(t) o a’s (t) E{d £, a? £ _[%Zfl][azféf
at? 2 at?  lat? [lat? ]
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a2e7 Ta2e 2e7 Ta2e7
] [dtzl} [dtzz_-ll * [ 21] { 22]} (3-37)

dt dt

| Taking the inverse Fourier transform of (3-34) yields

-iw n
£(¢)=e ° 1 u(n)
-iw 7
£,(t) = °2 y(n,) (3-38)
where
n =t - 2R/c
i 172 =t - 2R'/c
w) = dat] - o]
w2 V2 v2
then
d2f1 2 Tiogmy
5;2—'= W, € L{n,) (3-39)
where

>
nflw
Il
—2
€|£
N [
| E—
!
on
’—l
N 1
a3

SEREH RO
V2 w2 w2
6(x) is the Dirac delta function

51 (x) = 28(x)
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2 2 4 .
a°f a°f w -iw_(n,+n,)
1 21 _ o [ o'l 12
Im Im = - e L L
[dtz ] [dtZJ I (nl) (nz)
-iw_{n,-n,) —iw_(n,-1;)
- e ©0OV71 72 L(nl)L*(le) -e ©o'2 07
iw_(n,+n,)
L )e(ny) v e O 20
y L*(nl)L*(nz)] (3-40)
which can be expressed as
2. ] 2 4 4
Im[d§l Im[d f = jﬁQ z: e--la
Ldt J Ldt j=1
—1b w51
- € LJ(TI]_)LJ(TIZ) (3-41)
where
a; = +1 a, = +1 a3 = -1 ay = -1
bl = +1 b2 = -1 b3 = +]1 b4 = -1
28(n, ) . Ar(ny)
L.(n) = u(n,) +
j L 1 (- la w 7 (- 1aon)?
28(n, ) A'(m,)

. = +
LJ(ﬂz) U(nz) (= 1b o ) (-ibjwb)z

In order to integrate (3-33), it is necessary to express

dS and dS'. These are
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ds = Jrg sin ©dede

. ds' = 3'(r2)? sin 0'de’'ap’ (3-42)

where

ry, = a(l + X;) and rl = afl + X2)

then Ea and Eb can be expressed as

2

_a .
Eads = 3 E. sin 6dedy

%E-Ed sin ©6dedg

E, ds

a7

Using (3-21) gives
— 2.2, .2 . .2
E, = (l+xl) sin“@sin ¢-2(1+x1)x351n9cos951n P

—2(1+Xl)X5sinGsinwcos¢+X§cos29sin2¢+2X3X5cosesinmcosw

+x§coszm

Eq = [(l+x1)251nzesin2¢-2(l+x1)x351n9cosesin2¢-2(1+X1)x5

. , 24 e : 44
s1n9cos2m+xgcos es1n2m+2X3x5cos9c032¢ X5s1n2¢] (3-44)

Considering an ideal conical source of vertex angle 29a pointed

at the center of the moon, the illuminated surface So is de-

fined by

58



OSGSQa OSQ'sGa

T < Q9 <7 -T<@' s T (3-45)

Then the substitution of (3-42) through (3-45) into (3-33)

yields

a

L
sq(t) = -4, Z ajb; [-J(1+X )2v_4(0,)

(¢] (/a‘q)
oD

+-X£E§3£l EC][—J'(1+X2)2Vrd(Qi) + Vrciei) Eé] _

‘ e—lmo\aj 171+DJ- "72)
i : 77 L,{n,)L,;(n,)sin6d0sin6'd6 dede"
= i= J - J < -

; Clagy () ¥e(0)
Sclt) = -8, Z anJS S g S T EBgBg -
j=l T =T O fo)
-iw (a.nl+bjn2)

= 2R 2 Lj(nl)Lj(nz)singdgsine'de'd¢d¢' (3-46)

where
Ciezauwg
B =
1 64#205
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3.4 Discussion of the Direct- and Cross-Polarized Power

Integrals

The integral equations (3-46) for the direct- and cross-

polarized power are valid under the following assumptions:

1)

2)
3)
4)
5)

(o)}
S

7)

The radius of curvature is much larger than the

wavelength of incident radiation.
Shadowing effects are neglected.
Multiple scattering is neglected.
Only the far field is calculated (k2Ro >> 2|n2[)

The transmitted pulse contains an integral number
of cycles.

The transmitting antenna behaves as a short
dipole at all fregquencies.

These assumptions are just those needed for the validity of

the concept of differential reflectivity; however assumption

6 needs some further discussion. Since both the direct- and

Cross-polarized components are very dependent upon the fre-

quency description of the pulsed source, it is necessary to

have a complete frequency description of the radiated signal

before attempting to match experimentally obtained data with

the solution of these integrals. This frequency description

is lacking in most experimental situations.

If H(e, ®) is known explicitly the two components of

power could be obtained by solution of the integrals in (3-46)

Also, the effect of shadowing could be taken into account by

Suitable modification of the limits of the integrals such that

only the illuminated regions were integrated.

60



An examination of E_ and E4 given in (3-44) indicates
that, if H(O, @) does not vary with ®. the cross-polarized
power vanishes due to ¢ and ' integrations. 1In the event
that H(O, ¢) is identically zero, the ¢ and ¢' integrations
become very simple and the © and @' integrations can be sep-
arated into identical integrals. Thus these integrals con-
tain also the results for pulsed source reflections from a
smooth sphere. However, as with all electromégnetic reflec-
tion problems, the integrations can be accomplished only by
infinite series or by some approximate method.

Further, these integrals contain the solution for all
time with the unit steps and delta functions in the integrand
limiting the integration to the proper range. If a trans-
mitted pulse had been assumed which contained continuous
derivatives, then the amplitude of the terms multiplying the

delta functions would be zero.
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CHAPTER 4

EVALUATION OF EXPECTED POWER FOR A GAUSSIAN SURFACE

4,1 Determination of Expected Values

In this chapter, the deviation of surface heights,
H(S,Q): from the average sphere of radius a is considered
to be a random variable. It is assumed that H(©,9) is a
gaussian separable random process, real and continuous in
the mean over the surface of the sphere, with zero mean,
variance 02 and normalized covariance function p(6',0,¢',9).
Since it is desired that H(©,9) represent a continuous sur-
face, it is required that H(©,p) be three times mean square
differentiable. This is assured if p has continous partial
derivatives up to and including the fourth order. [Hoffman,
1955; Moyal, 1949, p. 167]. Also, since it is desired that
H(o,p) be a stationary random process, the covariance func-
tion p will depend only on the distance d between the two
points (0,9) and (e',9'). An exponential covariance
function will be assumed, but exp(-a|d|) is not satisfactory
since it does not possess the required continuous derivat-
ives. Consequently rather than modify exp(—a!dl) at d=0,
the form exp(—adz) will be assumed for p. On the surface
of the sphere, the distance d is given by ay, where y is the

smaller spherical angle between the two points. Therefore

2.2
p(0.6.9.0') = exp(j-é-%—) (4-1)
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where 6 is the correlation distance.

If 6§ << a, and approximating 72 by
2 ~
y® =2(1 - cos y) (4-2)
where cos ¥ = cos @ cos ©' + sin © sin ©' cos ¥

b =9' -9
then

P

exp[}BfB(e,e',w)] (4-3)
where g = 2a2 /52

f3(e,e',¢) =1 -cos © cos ©' - sin © sin ©' cos ¥.
The P defined in (4-3) differs from the original p of (4-1)
only for very small values of p.

Under the akove conditions, the joint probability

density of H(®©,9) and H{®',9') is

1 °
2?02 Jl-p2
> )
'{' [[_H(e'q’)] + [m(e'.9") ] 'ZPH(e,cp)H(e:,cp')_]/ZoZ(l-pz)} (4-1)

Letting

plH(e9). H(0'9")] =

£, = H(e.,9)/0
€2

H(e',9')/o

then
expf - [£2 + & - 206 £,]/2(1 - 02

2T 1/1 - 92

Under the assumption that the distarce to the sphere is much

p(§,.6,) = (4-5)

greater than the radius of the sphere (i.e., D >> a), then, as

far as the phase term goes,

Rx D-[a+u(6,9)] g (4-6)
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| - "~ Let

C C
_ 290 _2gq'c
oy - 22 oy - 20
then
mo=&y Yok m =L + 08, (4-7)

Now consider the following expected values

-iw n +b n —in Co4b.C K, 2)

(kaz e 1 o(a j 2)LJ(T]1)LJ(1)2)§ - e 1 O(aJ 1705 Z)N(
(4-8)

where

“iag (259,81 40;9282)

n(kid) = xx, e L; (0181481 )25(0562%8,))

where the notation ¢ ) indicates the ensemble averages.
Realizing that

ou(o &, + &)

3T, = Aoyé; )
NCHAERD (4-9)
o
- §Cl = - A“(Olgl *t)
then
J(olgl + C )L (0262 + Cz) =
3 an—l am-l
T et S % ST [V 0(05R,) | (-10)
n=1 2 m=] 1
2 2
h =1 = - ; =1; I
where €, e, (—Lwobj) 91 99 (-iwoaj)
e = L gz = —i
3 (-iwgb;)? > (-iwga,)?

which upon interchanging expectation and summations yields
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3 3 _ »
N(k! ) = Z Zg __él_n_l_ <X e lwo(ajol€1+bj02€2) .
n ac m ch—l i

n=1 m=1

- Tloy &) + &,)uloyé, + 8,)) (4-11)

For the XO = 1 case, consider n=1, m=1

-iw (a.olg +b, o'262)
N§i ,0)_ o' U(o €.+, )U(0y6,+C,))
) j,(T-Cl)/cle_iwoajolgl r(T-CZ)/bz e-lwob 0252
_cl/bl _CZ/GZ
v p(§, ) 4, ag, (4-12)

If 0 < 100 meters, the error functions which appear in

each integration can be reasonably approximated as
1 . . o
i [Q(xl +1y) - B(x, + 1y)}'— afxy) - ulx,) (4-13)

Then (4-12) becomes

-Q. 4 ¢
w{e0) = e T3y y( 2__ )
o) 42 o, J2(1- %)
~1i .0.£. + b.o
= {e LDO(aJ 1°1 J 2€2) ) <U(01€l +cl){
+u(0,€, +L,)) (4-14)

where

J Z

P = 2k2a
2k202

g = 5
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£
With this justification, N(k' ) will be approximated by

(k'z) -iw (a.cli.l. + bjaziz)

xx, e ° J ) <Lj(ol€l +£)

. Lj(02€2 + )

2)

L) <Lj©i€l + Cl)Lj(02€2 + C2)> (4-15)

“The Mk,ﬂ terms are calculated in Appendix C. It should be
noted that the coefficient of the Mk, terms for k =1, 2 is

a factor g larger than that of the k = 0 term and for k = 3, 4,
5, and 6 is a factor Bg larger than that of the k = O term.
Therefore, for an infinite series expansion of the reflection
coefficients in the integrand of the power integrals of Chapter
3 to be a convergent, a sufficient condition would be gBf < 1.
This assumption will be made for the remainder of this paper.

Now the ensemble average of the direct- and cross-polarized

powers from (3-46) can be written as

\ ¢ a (%a 2
<sd(t)> = -4B, jél ajbs v SW So So ([&J(l + X,) .

© Vg (0)) + Yre 21! E.] [\ (1+x, d(el)+ E' ]
e-iwo(ajol€1 + bj02€2)
. Y < Lj(nl)Lj(n2)> e

R2R'2

—iwo(ajcl+bjC2)

+ sin 6d6 sin ©'de' dode’

oy .
(sc(t)> = -B; ;;lajbj SW Sv Sea Sga ( [Vrcéel) erl)]
-T -7 o (o]
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—1wo(aj01£l+bjc

y €
yo.

-iwo(a
- e

262)
R2R'2 ]> <LJ'(771)LJ'(772)> .

sin 64O sin ©'de’

dode'

(4-16)

Since D >> a, then, as far as the amplitude is concerned,

R =D for all o.

efficients and use the relations
q = cos © ‘Jl - q2 = sin ©
qg = cos ©' ,/l - q'2 = sin Q'
o = cos Ga

Ve (8;)
(Pt + 220 1 Tho e g00p)
6 k
v_ (e;) iw (a o.& +b 0,€,)
Tl ] ) 5 g,
k=0 i=o0
N CRI L L O T
v..(8;) v {91) - e—iwo(ajcl€l+bj02£2)>
J J' d d
6 k
= E: Z: (k *)(q) F( Nar) g(k *) (9.9") Moy (4-17)
k=0 £=o
then (4-16) becomes
k = 7 11
(84(t)) = - Z z z S S SSFS‘ “Na.9) -
j=1 k=0 i=0 -T ~T & o
-iw (a,L,+b.L.)
- (qr e Mg Ti(nns(my) Y e © 3T 372 %aq4q " dgde!
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-iw (a.l +b.L.)

. g§§ ) (0.0 My, o Cy(m)Tg(ny)) e © 31 *aqaq" dedy’

(4-18)
Further, realizing that the ¢ and ¢' integrations are
around a circle, the limits could be (-w,7), (0,27) or (k -,
k + m) for any k. Therefore, let the limits on the ¢' integra-
tion be (9-m, ¢+r) and define ¥ = 9' - @. This substitution is
very helpful in the integrations since Mk,ﬂ is only a function

of Y. Then (4-18) becomes

- b 6 x
AR —_ —_ — T g | _ 1 P
- < L \, g e X " e " he LI E)
(s (t)) = - —Ei ) asb. 5 Fi ) (q,0) -
d D~ 3Jj=1 k=o Zéb J J_W é S o a

- Fék'z)(q'.m.w) My, g (Ty(n)Ts(my)0 e dedqg dq'd¥

Ly
4y 6 x
B s 1l 1l
(s_(t)) = - Djli Zl kZO ZZ ijﬁ S S STTF&'L)( )F(k A (q) -
mT

(a C g )
o 1 bj 2 dodq dq'dd

(4-19)

© b M (o L)L) e

where the functional relations for ng'z) (q.9) Fék'z) (qa,9.9)

£
(k “) (a), (k f) (q') and gég’ ) (9,¥) are given in Appen-
dix D. These terms were calculated using the following iden-

tities

X

v (1 +X)) = X 1) = Xg

3 Y5(l+-X

Y4(1 + x2) =X, Y6(l +x2) = Xg
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xo =1 Vrm(q)= (1-q2)Vrc(Q) (4-20)

and the substitution of (3-44), (B-16) and (B-18) into the

first expectation term of the integrands of (4-16).

4.2 Integration of Expected Powers

In order to use the expected values defined in (4-19) by
the integrals, it is necessary to integrate them by some method.
These equations are not very amenable to computer solution in
their present form due to the highly oscillatory terms in the
integrand, however, a reasonable approximate solution for a
specific range can be obtained by the following methods. For
the ¢ integration, in the <Sd(t)) integral only ng’z) and

. 2 £
| Fék’ ) and in (Sc(t)) only ggg' ) are functions of ¢ and, in all

cases, the ¢ variation is in simple trigonometric form. The o

integration of (4-19) yields the following results.

(s (£)) = AT y g‘ Y S’T gl Sl (k,2) oy plke®) (o
sq(t)) = ey é L oL, F (a) Foq" “(a')

a o

L6
-iwg (a C,+b, Z,) B, T
' Mk,z(Lj("l)Lj("2)> ° A 321 Lo

o § S S @ e @ e ey,

-Lwo(ajCl +b.C2)

. (Lj(nl)Lj(nz)) e ] dq dq' ay
P St k) gyt
(%, X,
(s (t)) = T 2oL L—oajbjir § SFC (@)F55 ' (a)




-iw_(a.C.+b.L.)
©' 737177372 dq dq' &

(4-21)

ol ) (0) m () (n) e

The values of F(k'z) (qa), Fgg'z) (q') F(k,ﬁ) (q), gi £)

(@), 75 (@, ) (@), o) (), ana ofS M) (@) are

listed in Appendix D, where

v__(a) = - 2v_g(q) + V__(q) (4-22)

rm

It is necessary to solve an integral of the form

p068) 08 Pl gy 00 (g w (o (m) (n)) -
o o

-iw (a.l. + b.L,)
A\ 7/
°' 7371 372" aq aq° (4-23)

e

This integral is solved in Appendix D. From (D-16)

-1 a.+b.
108 = T (1,10 e “otol*5™y) -{ ) (ay.1 0 -

-im b.t -ip_a.t
. o jo (k%) o“j o (x,2) .
e Gy (l,ql,w) e + G2 (qz,q2,¢)]Ua

T F [:Gékll)(ql'ql'lp) - nglﬂl)(qllqzr’*b) - nglfl)(qzlql:d’) -

S - a.+b,
o Gék'z) (ay.ay.$) Jo, + [ng'z)(a,a,¢) e ol ot ) (257Py)

-iw b.(t,-t
- ng'z)(qz,a,$) e o3 0 17 _ G&k'z)(a,q2,¢)

-iw a.(t -t,) P '
LI =] ©3J 0 1 + Gék' )(q2:q21$) ]UC (4-24) -
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Then (4-21) beeomes

b j=1 k=0 I=0 - D
‘g 6 S T £ £
DI T e w
j=1 k=0 4=0 -7
Brog ST Colk) gy (0 8)
o () 1 . k,
o) =—- } 0 ] apy; §als ) @) 1) ay
j=1 k=0 4=0 -T
(4-25)
where the subscript on I(k'z) identifies the ng'z)(q) and

Fé_k'z').(

qd) functions from Appendix D.

Since the time averaged (over one cycle) power is desired
and G(k'z) terms are slowly varying compared to a cycle of the
transmitted power, the time averaging may be done by just
eliminating those terms of I(k’ﬂ) which have a high frequency
term. Thus, for I(k’z) considering the terms separately.

Terms containing exp[-iwot(aj+ij will vanish for j = 1 and 4;

and terms containing exp L-iwobjt] will vanish for all j. Then

S 2B17r 6 ]V{' T % (k,4)
(84(t)) = o L L S {[L ajby 615" 7 (L.1.4) + -
=0 f=0 -7 j=2
4 . 4 ,
: Z a b, Gélg )(ql.ql.tb)]ua + Z asby [Gé]g’ ) (q;.qy:9)
J=1 i=1

T Gg‘g'z)(ql:qzrw) - Géglz)(qZ’ql'w)+ Ggld'{'z)(qzqu,zb):' Ub.
) 4
' *‘['Z agb; olh ) (@a,p) + ) asp, G(k“(qz'qzlﬂb)] }aw :

J 3] 373
2 j:l
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j=1

| " (ay.ay.¥) - Gér’ )(ql.q2,¢) + Gé:’ )(qzlqz,w)] U+

3 4
£
| * [Z ajbj G](.]rcl ) (alalw) + Z a]bj G(k q21q2ld)J }

j=2 j=1
| oSt (0) aw
| ) >
- P {[.‘Z;jbj o5 (1,10
| - +‘é (k,%) | v j ok, %) :
L L 24P5 G2c (ql'ql"b)J Yat L ajbj Gac' " (ayeay ¥)

J3

3 L
+ [$1a b. G(g'z)(a,a,w) + z:a.b. Gég’z)(q2q25$ﬂ U?} day
=1 (4-26)

If D2 >> 1 and the correlation distance is much smaller

than the dimensions of the illuminated area defined by the
unit steps then

-0 -0 -Q -0
e 2 = e 3 >> e 1 = e }-l- (4-27)

and
)
ng'z)(qzlql.w) + Gék'ﬂ)(ql'q2:$)’ << lGék' )(ql'q1'¢)

- o gy | (4-28)
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The use of (4-27) and (4-28) further reduces (4-26) to

G- L DT beaae .

j= k=0 4=0 -1

2 )
2a" “(9p.9p.¥) T, 4 [Gég' JCHENONE

e ey ] w o [ofi ey ot
6 k

3 Yia
B T v \_'
1 < \ (%, %)
- 7 ’ d - E iP5 L L [
(q5.9, ‘b)] UCE v jidzaJ ) k=0 t=0 - {Glr

" (L,1,9) + G(k ‘) (qllql’w)] Uy * [Gg;'z)(ql'ql'lp) * Géllf’z) )

1 | ~
. (qz'qz"b)_lu I.G\K' (0 ,9) + GU{' )(qz'qZ’w)_’ UC.f .

-y w
b 2 "
G == T ap, Sgéc HORSERIERIN LR
=2

° (ql’ql"w)JUa + [Gét’z)(ql'qllw) + Gég’z)(qzlqzlw)_' U.

+-{G§k' )(a a,Pp) + G(k )(ql,ql,¢)] U, @ (4-29)

yA .
Since the alk: ) terms in (4-29) contain large numbers of terms

containing derivatives of products of several terms, some method
of ordering the terms is necessary. Since (Sdlti) and (Sclt§>
are real quantities and the Mk 4 terms are real for k=0, £4=0

and k» £, 2#0, and imaginary for £=0 [see (D-16)] then it would
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be expected that the imaginary terms would cancel out for k=0,
£=0, and k34, 24#0 and the real terms would cancel out for £=0.
Inspection of (D-16) and noting the summation over j, this

£
conjecture proves correct. The G(k’ )

terms will be ordered
by investigating the coefficients of each in terms of the
factors B >> 1 and pg >> 1. The coefficient of the M term

!

is 1. The maximum coefficient of the Mk o terms is Bg and of

the M, , terms (k> £, £#0) is Bzgz. The second derivative

of M has a maximum coefficient of (/Spg)2 due to the deriva-

0,0
tive of the correlation function. Therefore in G1 the second
derivative of Mo,o' the first derivative of Mk,o and the Mk,E
(k>£, £#0) terms are of equivalent order in terms of the
coefficient gB/p. If a matrix were constructed with the jth
column determined by the jth partial terms of Gl' and the rows
determined by the number of X's in Mk,ﬂ then one would find
that the diagonals of the matrix proceeding upward from the
left are of the same order with the largest term being in the
upper left hand corner and these diagonals are alternately
zero and non-zero.

The use of this ordering technique, (E-20), and evalua-

tion the first two non-zero terms yields

6 k 2
< T x, 2 _ 2TV (1) )
o e T (]
k=0 4=0 - P
pir v (1) v, (1) + o(e?6%/p") (4-30)

where O(g2B2/p4) means of the order of gzﬁﬁz/p)'L
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This evaluation requires the use of tables of Appendix D,
Appendix C, and differentiation of the product of the terms
contained in these places. The terms containing l/(l-qlz)
cancel out and a limiting process must be done as indicated
in Appendix E.

The integrations of th’z) and Gét'z) are much more
complicated due to there being (l—qlz) and cos nd terms.
Considering the Mo,o term, an indication of the problem can
be seen. These terms contain a (l—q12)2 cos 2% coefficient.

i The derivatives of the correlation function are the only way
in which terms which will cancel this coefficient may be
| obtained. Reference to Appendix F, which contains the deriva-
tives of P, shows that to obtain a term of the form cos?2 ¥/
- (l—q12)2 requires the product of two or more partial deriva-
| tives of p and the sum of the orders of the partial must be
at least 4. Therefore, at least the fourth partial of Mo,
must be taken. By the same reasoning at least the 3rd
partial of M,  and 2nd partial of L) (£#0) must be taken.
Consequently, the determination of the nonvanishing terms of
the integrand requires long tedious, but elementary, differ-
entiation and algebraic manipulation. The integration of

these manipulations yields, keeping only the largest term,

6 k

T 2.2
E’ Z S Gﬂf'“(l,l.w) gélr"“(w) a = o (5—5-)
k=0 L=0 -7 p

k G 2
Z Z S Gg'z)(l,l,w)g(k E)(tb)dzb = 1247 9313— vZ (1) (4-31)
P

C rc
k=0 f=c -7 3
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For the G2 terms another ordering criteria can be added.
From (E-27) it can be seen that (l-cos ¥) terms reduces the
coefficient by at least l/BD2 and (1-p) terms reduces the
coefficient by at least l/D2° Thus the maximum coefficient
that each derivative will have after integration can be

obtained and is shown in Table 4-1. Then retaining only the

first term

6 k 2 2 2
Y’ V/“ STT k E,) q q lb) = g (ql) 2T .
é 25 - v pn qﬁ(pgq§+2)
3qll‘L
) 5.5/2
f(1l-qy)  ~

6 k 2.2.2
g°gve (a,)
E: E: SWGét'z)(ql.ql,¢) gt gy ap = e 17 .

3¢
k=0 L=0 -1 \ p
. 2m 34,
2 2 1/2
B(pgq, +2) (1-q,°)
6 2,22
4 ' g°p“v % (q;)
z: E: S Géﬁ’ﬁ)(ql,ql,w) gég )(¢) ab = ic 1
k=0 L=0 - p
n
[ er >4y
B(pgaj*+2) " (1=q,°) (4-32)

The substitution of (4-30), (4-31), and (4-32) into

(4-29) and the summation over j gives
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Table 4-1

]
Maximum Coefficient of = Mk’z(n i)
p" agtag’
n b [ 5 6 7 8
(k,4)
|
|
; (0,0) g2p2/p2 B /p gtg/pt
(1,0) (2,0) o p/p° <34ﬁ33/1>LL
(3,0) (4,0) B /> gtst/p”
(5.0) (6,0) 93;83/p3 93133/94 \
(1,1) (2,1 g Bz/p 9453/p4 9554/95
(2.2)
53.1) $4.1) 93132/93 guﬂj/p4 95B4/95
3.2) (4.2)
55.1§ (6.1 B/ g*pt/pt gopo/p°
5.2) (6.2
ga.z; (3.%) | ¢2p2/p° g*pt/pt g°8°/p°
1'%
(5:3) (5.4 g*B>/p? gop*/p” g®po/p"
6.3) (6.4
(5.5) (6,5) | g*g*/p2 928 /p” ®eb/p"
(5.5)
Note: pg >1 B <p
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B 2 5/2 1/2
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b 2 2
N 2,2 2T 3q2 Vrs(qz) N vrc (qz) -
g—‘é‘pz —— 5 572 > 72| | e
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4 2
3q, V, c(a,)
2% V(% ]Ub+ Pﬂmx&i@)+ —2r___ .
J(l-qzz)(p9q22+ 2) B(l-qzz)
4 2
39, V..o () 5
. > c (4-33)
J59q2 + 2

It is necessary to evaluate the Cl2 term included in

B, in terms of normal radar parameters in order to obtain

1
the power received by the radar. The matching of the power
in the main lobe with that from a short dipole yields

(Erteza, Doran, and Lenhert, 1965]

3
02 - frCpc
1 (4-34)
2T €,0 2
270
where PT = peak power radiated by the antenna
GT is the gain of the transmitting antenna over

an isotropic antenna

Then L
2
P_G_ak
B, = L T _2 (4-35)

1 128 v3

The received power, P, is given by

st) ¢ xz
P_ = R (4-36)

* Yar

where GR = gain of receiving antenna over that of an

isotropic antenna
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X = wavelength at frequency W

Then, the substitution of (4-35) and (4-33) into (4-36)

yields in terms of o, 6§, and a

G )\2( 2) v 2(1) 2
R T { [——-— (1 - 2%+ ()2 v (v, (1)

rd =
(47)> p* 4
4 2 2
N O‘) 3ql Vrs (ql) Vrc (ql) \
& 77 7 N 2,172)] "a
V2rp (4, %0%q,2 + 2) \(1-q,2) 2(1-q,)
L" 7 2 ~ ) \7 2 ~

+ (2 1 [' 39 I Vs (dp) + __Xc (“1i )

V2TE Jx 202q12 (1_q12) 2(1-q,2)

3q24 ( vrsz(qz) . Vrcz(qzj?):] ,

5/2 1
Jiey %% + 2\ (1-q,2) 2(1-q,)
2

v, _“(a) 2 2

.- [_T_ (-2 + @ vy v, @
L 2 2
N (O’)u 3q2 Vrs (qz) . Vrc (qz) U
Juk 0°q,” + (1-q2 ) 2(1-q2 )
2 2
A i 3q,” v “(q,)
Pre = "R (Tr ) () {[BZVrCZ * L e (9
3 ph 2 252, %4
(4r) D 2/2mp(1- -q,“) (4k, +2)
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b Vrcz(ql) 3q24vrc2(q2) ]
+2)

+ +

1 [ 9
2are L (1a ?) (%070, 2 + 2) f(1-q,7) (e, 20%q,2

Yy

2 2
34, v . “(a,)
+ [32 Vrcz(a) + 2 2rc 2 - :IUc (1-37)
ZJZWB(l—qz )(Mkzzo q12 + 2)
where Prd = direct-polarized received power
Prc = cross-polarized received power

4.3 Discussion of Integral Solution

The approximate solution obtained to the integral equa-
tions (3-46) for the direct-and cross-polarized received
power is given in (4-37) and requires several additional

assumptions over those given in Section 3.4. These are:

1. The deviation in surface heights can be represented
by a separable gaussian random process, real and continuous
in the mean over the surface of the sphere with zero mean,

. 2 . . . .
variance 0~ and exponential normalized covariance function pP.

2. The standard deviation of H(O,9) is less than 100

meters and greater than a wavelength.
3. gB < 1; [i.e., (0/5)2 < 1/4k2a]

4. The correlation distance o is much smaller than the

dimensions of the illuminated area.
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5. The conductivity has negligible effect on the reflec-

tion coefficients.

None of these additional assumptions may be relaxed without
some increase in complexity of the resulting solution , which
is already complicated. However, some of them may be relaxed
without exceeding complication. The first assumption was
necessary to be able to define the expected values of the
random variables and consequently could only be relaxed if
another suitable random description of the surface could be
found. The stationarity of the surface (02 not a function
of © or ¢) appears most realistic, but could be modified.

The form of the correlation function could also be modified,
but would require a function which possessed finite deriva-
tives. Also, the requirement that ¢ < 100 meters could be
relaxed, but only with a great deal of complication. This
would require the integration of error functions of complex
arguments which are available only in the form of infinite
series or tabulated values. All of these changes would only
modify the expected value functions.

The assumption that ¢ was greater than a wavelength was
made to reduce the infinite series S(s,v) to a single term
and this single term can be numerically shown to be less than
5% in error for any value of s or v. This infinite series
could be tabulated and its value used from a table without

a major increase in complication.
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The fourth assumption was again made to reduce the
complexity of the resulting equations and could be relaxed
by adding only the two G terms in the region Uy - This
would not modify the results greatly, adding only hyperbolic
sines and cosines, but would increase the already tedious
calculations somewhat.

Assumption 3 is the most critical and is a sufficient
condition for the convergence of the two series obtained.

The first being the infinite series expansion of the reflec-
tion coefficients and the second being the infinite series
obtained by the repeated integration by parts of the a-q'
integrals. These series were investigated to determine if

a more relaxed condition for convergence could be obtained,
but none could be justified due to the extremely long and
tedious calculations. When the new computer language FORMAC
(Egzmula Manipulation Compiler) becomes generally available
on accessible machines, it is recommended that the G func-
tions be calculated by this means to determine if a more
realistic convergence criterion can be obtained. FORMAC
will differentiate and manipulate series of algebraic quanti-
ties without resorting to the requirement of using numerical
values.

A possible method for reducing the complexity of the
determination of the convergence criteria lies in an infinite
series expansion of the reflection coefficients. This expan-
sion appears to place the most serious limitation on the con-

vergence of the series of integrals. Since the Fresnel
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reflection coefficients are slowly varying functions of angle,
some transformation or expansion may exist which allows the
determination of a more rapidly convergencing series for
larger values of 0/8. Aan investigation of the first few
terms indicates the convergence criterion of the present

series may be k, 02/5 <1.
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CHAPTER 5

RESULTS, INTERPRETATIONS, AND CONCLUSIONS

5.1 Results and Interpretations

The integral expressions for the direct-and cross-
polarized power are derived (3-46), for the case of a
pulsed source. If the steady state values were desired
the Lj terms would be replaced by unity. These integral
expressions are valid under the assumptions discussed in
Section 3.4 for an arbitrary rough sphere. These expres-
sions show that if H(©,9) is not a function of ¢, then
the cross-polarized power is identically zero.

The approximate solutions are obtained for the ex-
pected values of the direct-and cross-polarized received
powers from a normally distributed surface (in height from
a mean sphere), (4-37), under the condition that the square
of the ratio of the standard deviation of height to the
correlation distance is less than one over the 8r times
the radius of the sphere in wavelengths (i.e., 02/52 < 1/uk2a).
This solution shows different characteristics in the three
regions defined by the step functions U, Uy, and Uc' These
regions are illustrated in figure 5-1. The first or the
nose region (U_ # 0) is defined by the conditions that the
leading edge of the pulse in space has intercepted the sphere
and the trailing edge has not yet reached the sphere. The

second region or mid-region (Ub # 0) is defined by the
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conditions that the leading edge of the pulse in space has
not yet reached the intersection of the sphere and beam
edge and the trailing edge has intercepted the sphere. This
region may be non-existent for a sufficiently long pulse or
a sufficiently narrow beam angle. The third region or tail
region (Uc # 0) is defined by the conditions that the lead-
! ing edge has passed the intersection of the beam edge and
| the sphere and the trailing edge has not yet reached it.

The characteristics of the return in each of the
above regions are discussed separately. The effect of these
results on the estimation of the statistical and electro-
! magnetic properties of the surface are discussed. The
| results are then compared to experimentally obtained data

from the lunar surface.

Source
“"‘I“:eam
Pulse

;Z%za;ﬁagi

Nose Region Mid-Region Tail Region
u_# 0 U, # 0 U # 0
Figure 5-1

Diagram Showing Three Regions of Return
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Figure 5-2 shows the theoretically derived expected powers
for an index of refraction of n=1.5, a relative permeability

ur=l.0, a=1l.7 x lO6

m, wo=425 Mcs and T=2ms. Also shown in
figure 5-2 is the experimentally obtained data from the moon
[(Mathis, 1963] for the same a, w_, and T.

In the nose region, the amplitude of the cross-polarized
received power is at least 150 db below the amplitude of the
direct-polarized power for the parameter values of figure 5-2.
The amplitude of the direct-polarized return is determined by
the reflection coefficient Vrsz(l) of the slowly varying
(with location) surfaces for which the approximate solution
is valid. Thus, the index of refraction may be determined
by using only this value. The rapid rise of the pulse will
not be observed in the receiver output. Consequently, the
pulse width must be considerably longer than the rise time
of the receiver in order for the pulse to reach its maximum
value. The amplitude of the cross-polarized return is
determined by both the reflection coefficient Vrcz(l) and
the surface roughness properties (i.e., 04/54). With
present day radars this signal could not be received for
the lunar situation. However, referring to figure 5-2,
the cross-polarized return of the experimental data is only
12 db below the direct-polarized return. Evans [1961] states
that in most experimental lunar data the cross-polarized
return is from 12 to 15 db below the direct-polarized return.

Since the amplitude of both the direct- and cross-polarized
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Theoretical and Experimental Data
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returns are essentially the steady-state values for full
illumination of the moon, a difference in the frequency
description between the theoretical and experimental anten-
nas cannot account for the discrepencies in the cross-
polarized return. Therefore, the surface of the moon

must have a standard deviation of heights to correlation
distance (i.e., 0/8) much greater than 10_4.

In the mid-region, the amplitudes of the direct-
and cross-polarized differ by only 2 to 7 db except in
the early portion of the mid-region. The cross-polarized
amplitude in this range is down by over 30 db from the
nose region cross-polarized power. Thus this amplitude
is even harder to detect. The amplitude of the signals
in this range, particularly the direct-polarized power,
are very dependent upon the frequency description of the
source. Because of this dependence, it is extremely
important that the frequency description of the source
used in an experiment be known before attempting to
explain the experimental data using the results of this
work.

Also in this region, the description of the covariance
function will affect the amplitude variation of the signals.
Figure 5-2 shows a 30 to 40 db variation within this region.

When the index of refraction was varied from 1.5 to 6,
the shape of the curve for either polarization in the mid-

region did not change appreciably from that shown in figure 5-2,
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but the amplitude did. The shape of the curve is determined
by the change in the reflection coefficient across the region
and the assumed covariance function. The variation of the
reflection coefficients across the region was about 15 db.
If a solution had been obtained for a perfectly conducting
surface, this variation would have been non-existant and the
change in shape would have been due entirely to the covariance
function. Fung [1965] made this assumption and matched statis-
tics to the lunar return. However, from the above discussion,
it is evident that this procedure will give erroneous statis-
tics due to neglecting of the reflection coefficient variation.

In the tail region, both the direct- and cross-polarized
powers show a large step, except in the case of full illumina-
tion of the surface. This step is due to the use of the ideal
conical beam. If a more realistic source description were
used the lower limits of integration would be O and the reflec-
tion coefficients would vanish.

Considering the approximate solution in all ranges, some
of the terms seem to converge even for larger ratios of 0/
(i.e., 1/4 kya < (0/5)2 <1). If this condition is assumed
valid for the problem, then additional terms must be taken
into account in the integration of the G2 terms as indicated
in Table 4-1. These additional terms would change the shape
of the curve in the mid-region and possibly the separation
of the direct- and cross-polarized powers in this region.

With such a solution, just comparing the amplitudes of the
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steady-state solutions (i.e., the G, terms since the G2
terms will not appear), it would be necessary to have a
0/6 of the order of 1/10 to be able to match the experi-
mental lunar returns in the nose region.

Using just the first term in the nose region of the
direct polarized return, a minimum value for the dielectric

constant of the moon using Mathis' data is € = 1.82 EO'

ave

5.2 Conclusions and Suggestions for Future Investigation

The most important results of this investigation are

as follows:

1. The integral expressions are obtained for the
direct- and cross-polarized reflected power from a rough

sphere.

2. TIf the deviation of surface heights from the
average sphere is not a function of ¢ then the cross-

polarized power is zero.

3. A rigorous field theory formulation of the pulsed
return from a slightly irregular sphere. This result
clearly shows the characteristic shape of the lunar back-

scatter.

L, 1f (0/5)2 < 1/4 kza, the value of the index of
refraction can be obtained from using the direct-polarized
received power in the nose region. An estimate of the

statistical properties may be obtained by using the amplitude
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of the cross-polarized received power in this region in
conjunction with the amplitude of the direct polarized
received power. The shape of the received power curves
in the mid-regions indicates the validity of the assumed

covariance function.

5. The RelE x H*] can be used for the time averaged
power from a pulsed source in the mid-region only if
hkzzoz > 3, The RelE x B*] is not valid for the time

averaged power in the nose region.

6. The amplitude of the cross-polarized return is
a function of both electromagnetic and surface roughness
properties. If the statistical model used in this investi-
gation is realistic for explaining lunar return data, then
(0'/5)2 must be much greater than l/hkza for the lunar sur-
face, very likely of the order of 1/10.

The analysis of this problem, while interesting in
itself, does not give sufficient information for estimating
the electromagnetic and surface roughness properties of the
lunar surface. Therefore, this analysis may be more useful
as a first step toward solving other cases which could give
a better estimate of the lunar surface. For example, the
convergence criterion of the approximate solution to the
integral expressions of received power is possibly more
strict than necessary. This criterion could be investigated
to determine if it could be relaxed by carrying more terms

and using a FORMAC computer routine to do the tedious algebra
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as discussed in Section 4.3. Relaxation of the convergence

criterion might be obtained through an investigation of

other methods of obtaining the expected values of the reflec-

tion coefficients than that of the series expansion used in

Appendix B.

Another area of recommended study is another approximate

evaluation of the integral expressions for received power for

larger values of 0/6 than those discussed in this work.
The direct- and cross-polarized received power in the
mid-region is critically dependent upon the frequency dis-
criptions of the antennas used to obtain experimental data
be investigated before attempting to draw definitive con-
clusions based on this work.
It is recommended that future work be applied to the

extension of this formulation to the solution of problems

involving bistatic configuration of the source and receiver.
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APPENDIX A

COORDINATE SYSTEM TRANSFORMATIONS

The derivation of the rough sphere coordinate system
(Qn, gr' gt) will be made in this appendix. Also the trans-
formations between the several appropriate coordinate systems

will be derived (figure A-1). The first of these coordinate

—

systems is the inertial coordinate system (gx’ a, EZ). This

coordinate system has its origin at the center of the sphere.
The receiver is on the z-axis and the x-axis is in the direc-

tion of the linearly polarized N (i.e., Ex = SW). The

— — —
. s - ves 11 1
standard spherical coordinate system (aro’ ae, a_ ) will also

be used. The last coordinate system (;R' ;q’ 3¢) considered
has its origin at the point of reflection as does the ;n’ gr'

;t coordinate system. The ;R unit vector is in the direction

of the receiver and lies in the meridian plane, Qw is the
a,.

Same as the spherical unit vector, and gq =a_ x These

(1) R
vectors and the associated angles are shown in figures aA-2
through A-5. Using matrix notation, define the coordinate

column vectors as follows

AL = e A =[] Bz = lay |l By = [aro (a-1)
a, ag a, ag
a, a a, | 3



zZ

To Source and Observation Point

\

°,

Figure A-1

Reflection Geometry for a Sphere

A-2




Figure A-2
Vectors in Meridian Plane
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Vectors in Plane Normal
to Meridian Plane

a
)
a
> %y
cp e d
./ am
v %x
Figure A-5

Vectors in x - y Plane




The 3 x 3 coordinate transformation matrices Aij are defined

as
A, = A_ A, (a-2)

with the elements being the dot product of the two appropri-

ate vectors and the property
A.. = A, (a-3)

where the T indicates the transpose.

From figure A-2, the following relationships can be

obtained
a, = cos92aR+51n92aq = cosearo—51n9a9
3 = _aj = "’=.—'+ -
a. 51n92aR+cos92aq s:Lnearo coseae

a, = cosengro—sineng9
= cos(6+6,-0 )a +sin( 8+0,-6 )aq

= cos(e—en)§z+sin(9—9n)3m (a-4)

which yields the dot products

(3R';z) = cose, (32~aro) = cos@
(ER-EL) = cos(6+6,-6, ) (gz-gq = sin(9+92-9n)
(3R°5ro) = cos(9+62) (Ez.am) = sin(Q-Qn)
(ER-S ) = -sin@, (32-39) = -sin@

A-4



= -sin(6+6,)
(a,-3a,) = cos(6-6, )

(3.3

2 ro) = cos®

(az-aq) = sin@,

-sin®

—~
(VR
N
Wi
(0]
]

(gz-gn) = cosq,
(a¢-an) = sing

(aR-an) = cos@,

(aR-ar) = sin@,

By using

a_ = -singa spa

P PaxTCoseay
-t -3 + . -

a_ = cos s

m Pa, +singa,
- — +si —
a_ = cosg_a,+sin

n SPhs Pnly

(aR-ax) = -sin@,cos9
(aR~ay) = -sin@,sing
(aq-ax) = cos@,cose

the following dot products can

A-5

(aro'aq) = sin(9+92)
(gro'gm) = sin®

(aq-am) cos®,

(gq-ge) = cos(6+6,)

(3&-39) = cos®

(Sx.am) = cosg

(gy-gm) = sing

(ax-aw) = -sing
(§y°3¢) = cosgQ

be obtained
(ge-gx) = cosOcosy
(ae-ay) = cos®sing

-t -

(a,,-a,) = sinécosg

(a-5)

Figures A-3 through A-5 yield the following dot products

(a-6)

(a-7)



(gq';y) = cos6,sing (gro'ay) = sin@sing

(gn'gz) = cos(G-Qn)cosmn

(En-gx) = coscpcoscpnsin(G—Gn)--sin(psinq)n

(an'gy) = sinwcosmnsin(e-en)+cos¢sinmn

(Qnogro) = cosg_cos6

(gn-ge) = -cos sin@

(gn-aq = coswnsin(9+92-9n) (a-8)

The relationship

- 0.3
gr - siﬁel - c::néjn (2-9)

yields

(gr-ax) = [—sin92cosm-coswcoselcos¢nsin(G—Gn)
+sincpcoselsinq>n]/sin9l

(5r°gy) = [—sin92sinm—sinwcoselcosmnsin(Q—Gn)
—coscpcoselsincpn]/sinel

(;r°§z) = [c0592—coselcosqancos(e-en)J/'sine1

(grogro) = [cos(9+92)-cosencoscpncoselj/sinel

— -

(ar.ae) = [-sin(9+92)+sin9ncoscpncosel]/sin9l

A-6



(gr-gQ) = [—coselsinwn]/éinel

(Er-gq) = [-coselcos¢nsin(9+92-Qn)]/éinel (a-10)
Finally using gt = gr b Qn gives
(gt-gx) = [-cosezcoscpsimpn
-sinq:cosqansin(e-i-ez-en)]/sinel
(;t°3y) = [—sin¢cosezsin¢n
+coscpcoscpnsin(9+92-9n)]/sinQl
(S’t -32) = |:~-sincpnsin92:I/sinG:L

(at'aro) = [-sin(9+92)sinq>n]/sin9l

(Et-ge) = [-cos(9+92)sin¢n]/Sin91

(gt'gw) = [coscpnsin(e+62-9n)]/sin91

(gt°gq) = —sin@n/Sian : (a-11)
One additional useful relationship is obtained,

cose, = coswncos(9+92l9n) (a-12)

The dot products obtained above allow the determination

of all of the transformation matrices Ai The pertinent

j.
ones are given below.

A-T



rcoselsinel:coscpnsin(9+92-9n)-lsincpnsinel
_'-sine1 ;
sin29 ‘-cose coso_ - I-cos;sin
1 1 | 1°95%, 15409,
A = 51in0] '
12 sin 1l 1 -sin(9+92-9n) I
— . ‘  — —— l + ——— - — .
0 , -sin@_ | sin(9+92-6n).
-cosQ_ (a-13)
—sinGzcosw —sinezsin¢ cose2
A23 = cosezcosm cosezsin¢ sine2
| -sing cosQ 0 ] (a-14)
[sin6cosp  cos6cosp  -sing]
A34 = | sinBsing cosOsing cosQ
| cos@ -sin® 0 i (a-15)

From these three transformation matrices any other transfor-
mation matrix can be obtained.
Now to relate @ 6 and ¢_ to the Y's defined in (3-21),

the dot products defined above are used. Then

coscpncosen ='%
Y3
coswnSLnQn = 5=
-Y
sj_nq)n = _J._i (A-16)
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From (A-16) it is found that

i,\/ ].‘l‘Y3 Y3 1
cosp = ——= sin@ = cos® = (a-17)
ﬂﬁ+¥§ @/1+y§

where all three must have the same sign. To determine the
sign, consider the ccsq;n term, with ? restricted to the in-
terval [-m/2, m/2]. Then cosp_ must be positive, as must all
other terms. With the use of the trigonometric identities

for sum and difference angles, the following summary is

obtained
cosen = 1 cosel'1 = 1
\/l+?3 «/1+?4
Y Y
sin@_ = 2 sin@' = 4
n ——7 n —-7
Jl+g§ J&+Yu
'/1+Y3 'J1+Y4
oSPy T 5 cosey = 5T
-Y ~Y
sing, = —2 Sing) = '3'6r
sinG—Y3c059 sin@' —Yucose !
sin(6-6 ) = sin(e'—eg) =
N :l.'l"Y3 ,\/1+Y4

A-9



cos®, = cosp _cos(6-0,) cos@; = cosp’'cos(8’ -6, )
COSQ+YBSin9 coso' +Yusin9'
= 7 = 37

= Jl +;? +Y7 / 1+y2 y+¥e (a-18)
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APPENDIX B

REFLECTION COEFFICIENTS

The equations for E. and H, as given in (3-16) and (3-18)

1 1
show apparent poles at 91 = 0. This appendix will investigate
these poles, show that they are false poles and develop new

1 and ﬁl. Also included in this appendix
will be an expansion of newly derived reflection coefficients

. -d
expressions for E

in a power series of the height variation and its derivatives.

Consider first the reflection coefficient of Ely (denoted by

v,(6,)).

Voo (6, Jcos20, -v, (6, )
v,(6,) = 2L 1T e ) (B-1)
sin 91

Substituting (2-11) for Vp,(6;) and VﬁN(Gl) yields

-1 [ 2cosel-urth—sin29

> L (2cos
sin elln2c0s91+urJ£2-sin291

2

v,(8,) = 0,-1)

91 coselﬁ/nz-siniel
+ = (B-2)

urcosel+/n2-sin291

which on putting over a common denominator and simplifying

gives



2cos® n? l)cose +(n2- -sin 9
v (6, - l[u ( (n”-u )J (5-3)

n cosel+u Jn2—51n29 ][u cos©o th -sin”~© ]

Examination of (B-3) shows that no poles exist for 9 real

and |n2| > 1, therefore E, and H, are regular at e, = 0.

ly
Next consider E; which from (3-16) is

Ely ;:;75_{VPP(Q )cosZGl(cosmnsin(G-Gn)cos¢-sin¢nsin¢)2

(51nmcos¢ sin(6-6_)+sing cos¢)2] (B-4)

Upon squaring, converting cosg to sing and sing to cosg in

the Vg, coefficient, (B-4) becomes

Bix = .—l VPP(el)c°5291[0052¢n51n2(G-Qn)+sin2¢n]
sin 91

—[VPP(Ql)c05291—VNN(Gl)][sin@coswnsin(e-en)
+sin¢ncosm]2} (B-5)
Since from (A-12)
cos®, = cosp cos(6-6,) (B-6)
then

.2 .2 2 . 2
sin Gl = sin®g tcos®p sin (

0-9,) (B-7)

B-2



Substituting (B-7) and (B-1) into (B-5) yields

E

1x = -VPP(Ql)COSZGl

+V2(91)[sinwcos¢nsin(9-9n)+sin¢ncos¢]2

(B-8)

In order to express the terms containing el variation in

terms of H(O, 9) and its various partial derivatives

several new quantities are defined.

Vrc(Ol) V2(91)c0s9l

Vrd(el) VPP(QI)COSZQICOSGl

using the definition of (3-1 ) and

a_  _ 1 ~ 1. H(6,9)
. T T EOI T T3
lo} 1 :
a
then
Y, =X Y, =& x =~x -x.x Y, =2x =~x -x
1- 71 BT TG Y T X = XX

. = a e - =.§_... D -
2 7% Yy TNy T XX, Yo = fXg = XXX

(B-9)

(B-10)

(B-11)

Assuming that the reflection coefficients can be expressed as

a power series in cosel then

g

f
bfcos 91
0

Vrc(el) =

£

(B-12)



where

q+Y3/1-q2
COSQl = _“J—_
q = cos®

Using the binomial theorem on (B-12) yields

- g/2
v,o(8) & En_cf v¥q(f-9)1¢2)
rcl=zzfg3 (B-13)
f+1
£=0 g=0 J
where cg is the binomial coefficient.
Und

er the assumption that Y% + Y§ < 1, then the denom-

inator of (B-13) can be expanded by use of the binomial theorem

as
TS (£41)/2 o 2(n-1)
1 h £f+1)/2 _h h-i 2i
- z Z(—l) Ch ciyg Yo (B-14)
h=0 i=0
where C§f+1)/2 is expressed in terms of the gamma function.

Then (B-13) becomes upon the substitution of (B-14)

o ) ®© f ® h

=2 L ) L) cfofE)e.

£f=0 g=0 h=0 i=0

I'C(

o o _ g/2
. b Yg+2h 2i Ygl a(f-9) (142 (B-15)
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From the series (B-12)

-]

£ . AN f-1
Vo(a) = ) b vi(a) = ) foea
£=0 f=1
[N ] f" — f: f-
viia) = Zf(f-l)bfq 2 vl(,g) q —z )T be.q . (B-16)
£=2 f=n

Expressing (B-15) in terms of increasing powers of Y gives

v_ (e 1/2 Y2
et v (@) @ 2l

g g5 o,
-qVéc(q)-Vfc(q)J- Y‘tqvfc(q)+vrc(Q)]+-~- {B-17)
By the same method as (B-15) was obtained
) (£-1)/
- h £ £f-1)/2 _h
JVrd(Ql)—z z Z Z(-—l) dg Cg Cp c; -
£=0 g=0 h=0 i=0
P21 g/2
. Yg+2h-21 Ygl q(fqg)(l-qz) (5-18)

Expressing (B-18) in terms of increasing powers of Y gives

5 172 o 2
J Vrd(el) = Vid(q)+Y3(1’q ) V;d(Q)+ 2—{(1'q )Vfd(q)
Y2
~av; gfa) v q(a) |- 2lavpgla)-vpgla) Joonn  (2-19)

B-5



APPENDIX C

CALCULATION OF ENSEMBLE AVERAGES

The ensemble averages are calculated by an orthogonal
expansion of the original random variable using the Karhunen-
Loéve representation theorem [Hoffman, 1955]. Under the
assumptions of Chapter 4 on H(O,9), there exists the bilinear

representation

029(9':9:<P':¢) = z 7\-1 ¢ (9',¢') (C—-l)

n,h<l mn mn

where the an(9,¢) and xmn are the eigenfunctions and eigen-

values of the integral equation

t(e,0) = 2 | § o20(6',0,0.9) #(0*,9)a0" ap' (c-2)
S

According to the Karhunen-Loéve representation theorem, there

exists for every (0,9) element of the surface, the expansion

H(0,9) = l.i.m. }: A2 (6,9)h (c-3)
m,n mn mn

in terms of the orthogonal process {hmn} with

(h_) = 0 <hmnhpg) = S 85g (c-4)

where the notation ( ) means ensemble average and émp is the

standard Dirac delta function. The use of (C-4) and (c-3)

c-1



gives the variance as

o? = w?(0,9)) = Z At §mn2 (6.,9)
m,n m,n

The ensemble averages needed in Chapter 4 will now be

(c-5)

calculated. First let the characteristic function of fmn(G,m)

with respect to the random variable hmn be denoted by

x[fmn(e,m)] = <exp[i f&n(g'w)hmn]>

Let

c(3) = -a;2k,qH(0,0) - b.2k,q' H'(0',9")

where q = cos 9, q' = cos 9°', aj = x]1 and bj =+ ]
Using (C-3), (C-T) becomes
NI NI CI N

m,n mn mn

cmn = —2k2?\;lr];/2 [qu'imn(e',cp') + ajq @mn(g,q))]

Since the hmn are orthogonal

(e ) = ol (e""mn "mn) = mph x(cég))
and
.~(3) .
el = s — {n xcih}
Pq

(c-6)

(c-7)

(c-8)

(c-9)

(c-10)



If H(9,p) is a gaussian process with zero mean and

2

variance 0° (not a function of © or ¢), then (C-9) becomes

cy 12
ic(3) - -[—C-’E‘—‘;‘)—]— -Q.
(e* ) = e =e J=

where

= _@_ 2 |2 ' '
Q. 5 [q *q'" + 2ajbiaq’p(d.q .!b)]

p = 2k2a
2k292
g = a
b= 9'-9
and
.o(3) Q.
ic = i «(3) 3 -
(hpqe ) icyg e (c-12)

Using the definitions of the X's (3-21), (c-8), (4-15)

20(0,9) o §  571/2 2 ¢ (6,9) b ]
00 mn mn~’

30 m,n mn (c-13)
and
R} (9.¢) 1 3 2
——— 2,(0.0) = 3 5 [ (009)] (c-14)



-Q
= _ J
MZ,O ig bj[bja ap ] e
-Q.
= 3 op j
M3,0 = -igbjal 55 e
4
= - E j
My,0 19a.q 3+ ©

-1gaﬁq 3p -Q.

i _ o 3
M, 0 = — 3¢ © (c-15)
1-q* ?

Considering the next series of terms

(3) 4 1 o (3)
h_,h_ et = - . : c-1
BetPpqe P G R &) A (c-16)
st pq
which for the gaussian case becomes
ic(3) (J) (J) %
(hgehyg © = (8,4 B¢ - Cg Je (c-17)

Inspection of (C-17) using (Cc-4), (c-11) and (c-12) yields an

alternate form
io(3) ic(3)

1C(j) 1C ><x_belc >

* X Ty = ) (e

lC(J) x_e

(eic(J))

ol (c-18)



Bartlett (1956, p. 140] shows that

RX(t)y _

X4 S x(e)

and

<BX(t) ax(s)> azgong
ot ds dtds
Then <xaxb> is
;%) = 02/a? x,2) =
(X.X,) = o?p (XX, )
%2’ T T3 34
(X.X,) = o 20 (XX, )
1%y 2 o 36
2
(X,X;) = — 9 9P
176 2
a“,/1-q* o9
2
2. _ ©
<X2 b ;7

Cc-5

(t) x(s)y =

$:(0%0),

0'2 opr
aZ 0'=0

(x,2) = o 2%
b 3020' |0=0"
2 2
XX = —2 o P
ng-qz 00' 39
(x 2) . O 2 BZP
5

(c-19)



2 ) )
(XZXS) = o op <x5x6> - o d%p
S 2%f1-a° J1-a'?  ag2p’
2 2
g%y = 2 2P | (c-20)

2 2
a“(1-q* dpoQ' .
(1-9'“) 2939 =0
All other terms are zero due to the assumption that 02 is not
a function of © or 9. The substitution of (C-15) and (C-20)

into (C-18) gives

3 (j) 2 -Q-
ic(3) 2 2 . _ 20705
My, 1= X Xpe ) = [;7 P-g“(ajbyaq’ + p(g+q'”) + asbsqq’e )]e
.(3) -Q.
= 1c = 2 ap ] |2 J
M3'1—<X1X3e )= -9 36 ajquq + q P]e

_ op 2 -Q.
M = [ o 2, 2 \ j
4,1 o0 [—ia - g°(g° + ajquq p)]e

—q2 -Q.
l-q ?
2 -Q.
= 1 op 0% 2,2 : j
M6,l - [ 2 g (q + ajquq P)]e
J1-9} dp' a
2 -0.
= | 2, 2.2 .2 . 3
My,2 = Lz~ 9 (a°p% + q'% + 2a,biq q p)]e
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-92 ag. [a.b.q q' + qzﬁ]e_Qj

JJ

2
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o9 [ ;7
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]3]

-Q.
qaq'p)le 3
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g 3’ J 3]
2 52 24 -Q.
g~ o°p 2,2 (3p. j
-9°q'“ (3g5/ Je
aZ 3030 l, <
0=0"
o 3% 2, 3 L@ 2.9
22 T Y 0 e
a‘ 20230 30 20’
-g’q? e 2 O
Jl_q? 30 dg
2 2 -Q
. 3P
1 [gz P _ 92ajqu q P 3P ]e 3
Lot 2 a° 303g' 30 39
-q
roz 32p 2 2 (,EE )Z]e-oj
L_Z ,I q 4
a~ 00930 | 6=0° 00
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= gra.b.q q —le
[? 30 3p 33 30'  dp
l-q
2 2 -Q.
9 49 2P 23 7]
l_ql 59 BQJ
24 -Q.
ol 2| el
(1-g°) -a_z dpdg’ oimo d
2 32 2 20 30 .79
1 [EZ P _g a.b.q q' _']
2 a d3pdo" 33 3p 3o
1-q° \1-q 2
24 -Q.
1 [02 32p 3242 (_93) ]é j (c-21)
(l-q'i) a2 CLELE ’_ ' dp'
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APPENDIX D

g - @' INTEGRATION

Consider an integral of the form

1.1
10t 2§05 e @) 2 (@) m (et -

wo(ajcl+bj52)

- (Ty(ny)Ly(ny)) e dqdq" (p-1)

which on using (4-10) and {(4-14) becomes

1 iwg b 4 <
N SO zg o ) -

0,,2(1-p7)
1 -iw_a.g £
. (x.2) e ©371 1
{Sa Fp ' (a) Mk,z[U(clﬁ)
T S B
2 g\
+ 1 ) U( L dgt dq' (p-2)
(-ia0,)" ot 01J7ﬂ }
Letting
ng'l’) = F](_k'z)(q) Mk‘z(q.q':!b) (D-3)
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and considering only the g integral inside the braces of (D-2)

which can be written as

I(()k,!,) - I£k,£) + zlgk,z) + Iék,z)

= Sl Fék'z) o 0?3t U(“Cl ) dq
o

0,42
(x,2) ~105a;8,
1 F3 “le 3 { Cl
+2 (Ta.a.) 3¢, U ) 49
o io 1 talﬁ'
(x,8) 19,258
1 F3 ‘ e a2 Cl
+ S . 7 7 U ) dq
o (-1ajwo) 3] oy

(D-4)

The integrations will be carried out by repeated integration

by parts using the same dv.

. -iw_a.l
-iw_a.l o j~°1
dv = e °7j71 dg v = S
l—la.pf
J
1 1 1
S udv = uv - & vdu
o o o
where
14
1l _ 2a =
-s-q—' C and P 2k2a
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Realizing that terms of the form x8(x) are identically zero

then

2y

3q v )'ss“

olJf

1 =
olJf SZI

The intervals of (D-4) become

(p-6)

N
I(k'l') N 0‘1«/7
1 - Fiajp)
o
1 aF(k L) g, 03
- i) -
k, L
z{k )
(k 2) -iwgas Ly
_(Tfé—u-)_)'& RI v )
(k.2
-Ié )
ng,l,)A 1) %5 .
(k.2) _ 0,v2
¢ (-iwga;)(-ia;p) (WZoy) |,
1 aF(k L)
T iw a )( ia, p) S
- \I’ék,z)
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1 2 C -iw_a.l
1 (x.,2) 3 1 0o“j>1
i e— F U e dg
(_iajwo) Sa > aC;Z_ 0'1‘\/2-
A ~ (D_7)
~-I (k '!' )
>

Integrating Iﬁk'z) four times more by parts

(x,2) 2 (x,2) 3 (k.,2) 4 (x,2)
oF 3 3°F3 3°F3 dF3

aq 2 3 4
Iék’z) _ —+ 3q” 5 - oq Tt 3q -
(-iajp) (-iajp) (-iajp) (-iajp)
, 1
i Sy e_lwoajCl
Ul»\/—z_ o
(k.2) -i
. L S1 oF3 2 4, g, . lwoajcldq
L M

AN

)

" 2.(k,2)  3.(k.8) 4 (k.t)
3 F3 ) F3 2] F3

%1 ag? R o

. 3 : ! . 5
(-ia,p) (-ia;p) (-ia;p)

-iw_a
o)

1
1
- — e
("iajp)3 Sa

g
d 1
o =— U dgq
oq )
01
Iék,z)
L S1 ST N a5F§k") N .
-—= e 5 1] q
(—1ajp) o oq 0]_
AN 7/ (D-8)
Iék,z)



The evaluation of Iék'z) requires the following results

(Friedman, 1956]

<1
¢ ‘ Jf)
i 9—. 1 = [b - - 8{g- = 2a 01
| 55 U 01J7) [ (a-a;) - ¢(q-q,)] == I o |

1
S £(a)l8(a'q;) -6 (a-9,)]da = £(q)[u(1-q) - u(a—q)]'ZZ (D-9)
| a 1

where

_D _ct _D _ cft-T)
Y4 53" 7 9 a a

Since the derivatives of the reflection coefficients are
bounded, increasing only slightly with each differentiation,

and the derivatives of Mk P) have a maximum coefficient of P98,
7

then
3op{k.2) 32p(k.2)
3 << 3
(-iajp)5 3q” (-iajp)2 3q°
for g < 1 p>1 (D-10)

which allows us to neglect Iék'z) compared to Iék’z). Then

using

k,2) o (x,2) o%j
Ié o= F4 U

l— e

Cl -iw a.gy ll
|
'UlJf

o
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- ) 9,
Fék‘z)[u(l-q) - u{a-q)] e “0?3%2

92
a.g
k.4
pikit) 707 '[8(a-q;) - 8(q-q,)]
+ > (pD-11)
(—1woaj) .
where
i (x,2
o(k.2) (k 2) M0 %F1 )
ng,z) S 39 s M1, Fék,z)
(-ia;p) (-lajp)2 |
i 2 k.2 2_(k,2
o(k.2)° M, 28F§ ) M1, F£ )
olx2) 1 3q? 3q 3q g2 M2
> 3 (-iajp)3
¥ sar{k4) 32
(k0 2) M0, M s
_ 29° BZ 3q”
('iajp)
332 (k1) M, 33 (i £)
. an oq an Mk,z
(-iajp)q

4 k,2) .3 k.2
F(k'z)a M g 4BF£ ) 3 My g 63 F( ) 32 Mk
1 3q 3 2

- 5
( lajp)

29°
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1
+
(-ia.p)’
J -
Letting
4
Fék,z) - Fék,z) Fﬁk,z) ul—1 )
olﬁ

Fék,z) - ng,z) Fék,z)[u(l_q) _ u(aq)]

Fék") _ F%k'z) Fék'z)[é(q-ql) - 8(q-q,)]

. 2
(—1ajwo)

then the substitution of (D-11), (D-12) into (D-2) gives

* 2(1-p%)

o)

. U( CZ + 1 . 52 U( CZ
02'\/2(1—p2) (—ibjwo) L3 0'2’\/‘-2(1—2—

-iw_ a.f 1 1 -iw b.C
. e OJl|_SF(k,Z)e o_]2-

(21 o 7

: c( ©2 ) " sg—'U( .
T B R W )
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(D-12)
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9

+

. ) *
(-1bjwo) a5

. 2 g \ -iw a.l
0, 2(1-p%)/

1 -iw b.L g
k.2 2 2 2 3
+ Sa Fé ) e © {é( )) + (-ib;a,) 3L, -~

o, 2(1-p
-] . 1
. U( £2 ) dq' e lwoajcl (D-13)
02J2(1-p7) A

The integrals in (D-13) are of the same form as that of (D-4),
so using (D-7) and (D-8) on (D-13) yields upon neglecting the
(k,2)

7

integral similar to I

aFék,L) aZFék,L) aBFék,L) a“pék")

k,4) .
L(k.2) _ Fé. __%a L9t __8g? . _aqt
IR (ibp)®  (-ibp)  (-ibp)'  (-ibp)

2.(k,2)
3°F
4 -iw b.L i oa 4 1 —__éff—-
. U( 2 ) e o j*2 e o j*1l _ "_gg;_ff
02‘\/2(l-p ) o o (-ibjp)

BBFék,L) 34Fék,z)'

) ln
2q"2 + —2d [u(i-q') - u(e-q')] -

- S =
(-ibsp) (-ib,p)
. (x.2) aplket)
. q : ’
e-lwobjCZ le-hwoajcl i F7ib i ——%ETfié
a, o | PPV (-ipp)




2_(x,2) 3.(k.2) 4 (k,2)
Fy 3 F7 Fo \
. aq'? q'> _ aq'? U $2 L b;€2
N O A rwey o
| l'azF(k,z) 3p (k,z) AFS{k,z)
-w) C 2 .3 '
. e B l T 3 - il 39 5 (u(l-q') -
9 | (-ib;p) ( ibyp)”  (-ib;p)
-iw b.L 9 J.a)a 4 9 Fk’z)
- u(ae-g')Je ©°J 2 e 1 + ———— [8(a'-q,)
qz qz ('iwobj) 1
-io b0, |1 -imoa.l |1 rlke2)
- 8(q'-q,))le 172 e 0371 - —L—— rs(a'-q,)
k,2)
3F
-i a) b, );2 eS| -1cn a. Cl l—Fék’z) ég'
- é(q'—qz)]e e + (-ib,p) 2
q2 (44 J (—lbjp)
azFék,z) 335 ék,z) ahFék,ﬂ)
|2 13 III' l
+ —2d 3 T " 51 \ ©
(—lbjp) ( ib, P) ( ib, P) ! \0’ '\/2(1_9 )/I o
[’azFék,z) E’3Fék,/z) uFék,z)
e R0 Cl o _2af g g [u(1-q')
| (-ib.p)”  (-ib.p)*  (-ib.p)°
a L j b J
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k,2)
~ala-g')] e -iw b CZ . -iw a Cl é [8(a'—q )- s(q" -q,)] .
_l(l)objcz lCl) a. cl 1
" © (D-14)
o o
Define
Ua = [u(l-ql) - u(l—qz)] = [u(to) - u(to - 1)]

c
|

N = [u(l—qz) - u(a-ql)] [u(tO - T) - u(to - t;)]

U, = [u(a-q;) - u(a—qz)] = [u(ty - t;) - u(t, - t; - T)]
to=t—2]c)'a | tl=§—a(l-0!)

8, = [8(1-q)) - 8(1-q,)1 .

o, = [6(a-q;) - 8(a-q,)]

a? = b? =1

Uin = 0 unless i = j, where i,j = a, b, ¢

e—imoT _, (D-15)

- The A  and A, which appear in (D-15) are necessary for
the continuity of the equation and to make the values of the
integral vanish at the proper places. In the present work
these terms will be neglected by the simple expediency of not
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evaluating the integral at the four points of apparent trouble.

Therefore (D-14) becomes upon substitution of Fék'z) and

F§k,z)

((k.2) _ [G§k,z)(lll,¢)e'iwoto(aj+bj)

= Gék'Z)(qllll¢) *

-1wob.to

5 -1 a.to
- e

- G)‘(l’k'z)(l,ql,lb)e °J
+ Gék'z)(ql,ql,w]Ua + [ng'z)(ql,ql.w)

Gék,ﬂ)(qlqulw) = Géklz)(qZ'ql'¢) + Géklz) *

-1, (to-t; )(a +b;)

(ap.3,.8) Jop + [e{%*)(a,ap)e

-iw b.(t -t.)
Gék’z)(qz,a,w)e °©Jto "7 _ Gﬁk'z)(a:q2:¢) .

-iwoaj(to—tl)

. e + Gék’Z)(qZ'qZ’w)luc (p-16)

where

p(k.2) _ ng,l)(q)Fék,ﬁ)(q')Mk'z(q,q',w) ,

(x.,2) 7
.b.F . (kv'e) (klz)
(Ked) e v gy = _ 2524 i_ k-7 oK
G (g.9'.9) 2 + o P; =35 T3y T3 ]
+ 1 BZF(k'Z) + a.b fazF(k'E) + aZF(k,l)
;E 9q ' 3q 3730 aqr? aq? |



ng'll)(qlql l‘b) =

Gék'z)éq,q'.w) =

_ -]:_-[ 33 (k 1’) . aBF(k'l‘) + . a3F(klz)
P | 1 e 3q'3q J 3q'2aq
3op(k.2) 1 T bo(x.2) 4 (k,2)
4 (k,2) 4 (x,2) . 5.(k.,2)
+ F +a.b.-————n——aF + - a.aF
5.(k,2)
+ by o°F ] + Gék'z)(Q:Q':¢)
3q' "3q
4o (x, z) © 35p(k.2)
3q%aq'2 ;7 ~ 3 3g'cag
5.(k,2 k,2) 6.(x.,2)
+a,_a_g£_2) +3g |ab, L(; e v 5
vagp, DEEN] g [ aTeled)
S I p9 3 aq'Baq
‘s, a7 (x, z)} ajbj 38p(k.2)
B p aq'iaqi
ajbj aZF(k,z) iy a3F(k,z) . a a3F(k,z)
pt  aq’ PP | I 3 I aqraq?
1 Ta bo(k,2) 4o(x,2)]
;B'L 773 gt 3q'3q° |
3OF (k.2)

+—-—aJ————4—+G2(qq )

P

9q'dg
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a.bj a2F(k,£)

Gﬁk'z)(q.q',¢) =1d 3op(k. L) . aBF(k,L)]

- a, b,
aqz p5 [ j aq'3 j V2

8q' " 3g
[ ap(ki2) aup(k'”)}
a.b. T + 3
dq' 3q'“3gq

'Uo‘l r--

ib, 5.(k.4)
+ =L EE 46, (q.a.b)
p7 3q' 3gq 2

Table D-1 lists the functions Fék'z

)(@,9) ana #{**)(q",0,¥)
needed for the integrand of (4-19). Table D-2 lists the functions
(k’ )( ). F(k )(q'), and g(k'z)(m,w) needed for the integrand of
(4-19) and the function g( )(w) needed in (4-21). Table D-3
lists the functions F£d ?(q) (k' )(q ). F(k )(q), (k' )(q ")

and g(k )(w) needed for the 1ntegrand of (4-21).
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APPENDIX E

) INTEGRATION

Consider an integral of the following form

T
-Q.
I(q,q',m,s,ajbj) = S cosmbp® e J ab (E-1)
2
and let
- 2 |2 — ]
b, = B J&- Jl—q D, = pg9aqd

Using the definitions of p from (4-3) and Qj from (4-14),

then
-Q. (p=0)
I(qlq'lmlslajbj) = Ps(?b=71’/2)e ] .
T
sD.cos ¥ -a.b.D
S cos md e 1 e 33 2pd¢
-

(E-2)

The expansion of the second exponential term in the integrand

of (E-2) in a power series yields

-] n
Q5P = -a.b.D.p ($=1/2
I(q,q',m,s,ajbj) = Ps($=W/2)e Qj(p 0) [ anJsz( m )] .

L)
n=o n.

T (s+n)Dl cos ¥

. S cos md e ay
-T

(E-3)

Recognizing the symmetry of the integrand of (E-3) and using

Abramowitz [1965]



T

f
g cos md e® €°8 Ud$
o]

= wIm(a) ) (E-}-I-)

where Im(a) is the modified Bessel function of order m,

then

-Qj(p:O).: [ ay b. sz(¢ F/Z)]

I(q,q',m,s,ajbj) = 2mp° (y=n/2)e

n=o n!t
.Im[(s+n)Dl] (E-5)
Since Im(O) =0 form # 0, and Dl = 0 for g or ' equal 1
O form#0
I1(1,1,m,s,a.b.) = (E-6)
33 2T for m = 0

If Dl >> m and the first term of the large argument expansion

of the modified Bessel function is used, then (E-5) becomes

I(2,9'sm s,a;b5) = By(q,a')s(s, v=1/2)+4(s,m) (E-7)
where
' N T -Q. (¥=0)
By(a.q9',s) = JBI p°(¥=0)e J
) & (v=0)T
+ b D,p(¥=0 -a, b D,p(¥=0
S(s,V) = e : 2 ( _ :
n=n1 n! (n+s)”

0 if s # 0
n, =
l if s =0

E-2



-Q, (p=0)
3 if s =0and m=0

Te
M(s,m) =
0 otherwise

If sz(¢=0) >> 1, (E-T7) further reduces to

Bz(q;q' )

JD,p(4=0) + s

(E-8)

I(q,9',m,s,a.b.) o=
(d.q 3 J)

which is the first term of the saddle point solution of (E-1).
Now consider another somewhat more general form of a ¥

integral for the case of q = q' = q-

T £ r.s 'de
I,(a,k 4,r,8,t,a.p;) = { (cos k ¥)(1-cosh) (1-0) pe -ab
' 373 O N
(l—ql )
(E-9)
For this case
Dl = ﬁ(l'qlz) D2 = qu12
p(y =0) =1 e—Qj ($=0) _ e_-132(1+ajbj)
-D
-D _m 1
(Y = g) =e 1 e-Qj(¢—2) ) e—D2(1+ajbje )
(E-10)

Two separate cases will be considered. First for 9, approach-

ing one so that D, is small and secondly for q, such that D

1 1

is very large.

For Dl small, using the power series expansion of p then

% (-B)*(1-q,%)%(1-cos ¥)
(1-p) = -dél Re (E-11)



The rtP power of (1-p) can be expressed in the following form

(1-p)F =uZO a,F [p(1-q;%) (1-cos $)] T (E-12)
where dg - 1, di = - %
Then
= v r grty g. Lt+r+u
Ia(ql~l,k,£,r,s,t,ajbj)—uzs du (1_q§)t-r—u _ﬁos k¥(1l-cosd)
0% 3 ap (E-13)

Using the binomial expansion on the (l-cos ¥) term and the

Fourier expansion on the powers of cos ¥, one obtains

L+r+u ( )
L+r+
(1-cos w)l+r+u = z: am* i cos my (E-14)
m=0
and
fppy (LHTHu)
L+r+u \' m
s k¥ (l-cos ¥ = [ cos (k+m)P+cos(k-m)d
cos ki (1-cos ¥) m};o——y— (k+m) ¥+cos (k-m) P ]
(E-15)

The substitution of (E-15) into (E-13) gives

©  L+r+u  r r+u_ (£L+r+u)

I_(qg,-1,k,4 t,a.b.) =V % P e
q_.l L4 lrlsl la' 2 =,
a‘'’l j 3 &0 o (l_qZ)f—r-u 2

-Q.. - -Q.
: { gcos(k+m)$ pSe @ B cos(km ) pP°e %3 d¢} (E-16)
- -

™ ™

E-4



From the results of (E-5) realizing that as q;-1, P(¥/2)-1 and

using the small argument expansion of the modified Bessel

function, (E-16) becomes

® f+r+u r pr+u_ (L+r+u)
a. B a
Ia(ql*:k;f',rls,t,a.b.) = 2'"' z Z u m
JJ u=0 m=0 2 t-r-u
(l'ql ) 2
] {-5k+m(l_q12)k+m i BZv(l_q12)2v
kHm VO 22V (yaktm)
n
a.b.D > [-a.b.D,] k+m+2v
[o55"2 P02 (00
o=0 n.
. ﬁlk—m| (l_q12)|k—m| °°v BZV(l_qu)ZV
- v=0 )
2 lk-m| 224t (v+|k-m| )

n
a.b.D, « L[-a.b.D,] | k-m|+2v
[e 37372 zg_ 37327 (pes) ] }
n=0 n:

Using the expansion

nm
) = _(m,s) n:
(n+e) iZO P1 (n-i) ¢

where bo(m,s) = sm

E-5

(E-17)

(E-18)



The substitution of (E-18) into (E-17) yields

® f+r+u r r+u_ (L+r+u)

du ﬁ am

Ia(ql-.llkl 'e’l r,S,t,ajbj) = 2‘"’

. {ﬁk+m(l—q12)k+m ‘i: ﬁZV(l_qZ)ZV
ktm VO o2V oy (y4kem)!
k+gﬁ2v ( )
. k+mt2v, s i
L Ly Pj (-a4p4D,) ]

i=0

o 2v
ﬁlk—ml(l_qu)lk-ml ﬁZV (l_qu)
+ —_— - .
2|k—m| V=0 ,2v vi(v+|-m|):
|k-m|+2v  (|k-m|+2v,s)
. A} i
E L b; (-a;bD,)" ] }

i=0

u=o m=0 2(1_q12)t-r-u

(E-19)

Realizing that as ql~1 any terms containing (1-q12) in the

numerator will vanish then

Oforr >t or k-4 >¢t

L+
Ia(l,k,z,r,s,t,ajbj) = T ak( r) Bt =t k >0
2T ao(l+r)ﬁr r=t k=0
E-6

(E-20)



For the remaining cases all terms containing (l-qlz) terms in
the denominator are expected to cancel out in the integral of
Chapter 4. For Dl large, the binomial expansion will be used
in the (1-p) term and the large argument expansion will be
used for the modified Bessel function. It can be numerically
shown that the am(z) terms have the property

L

Y m® a =0 for 0 <w < 4 (E-21)
Lo m
m:

This property is probably due to a property of the binomial

coefficients. i.e.,

n
. 0 for v < n-1
Ynderyv= {0
J=0 J (-1)" rt for v=n (E-22)
Then using (E-21)
J

4
a
) —% [(m+l)2w + (m—l)zw] = Y m?* o forw s 4 (E-23)
— = m

m=0 m=0

Then Ia becomes

4

r r 21‘
5 C,B (q 9 IS+u) 2 m a
I (ap.k bir,s,tiasby) = Y (- w2 rd 0 *
u=0 m 22 ﬁz(l-qlz)
stsw), (24 3] (E-24)
If D2 >> 1
E-T



-4

1 _ v (13 £+ 249)
(Dy*stu) 4+ .;-. = g T(er %)

sl (s+u), (z%)] =

- (=t thil,z (8-25)

Substituting (B-25) imto (B-24) and expanding (stu) in a
binomial expamsion

(qla s'*“u'—)ﬁéi m & -
2’8 (L -2y, nz“‘f

I(qlkllr‘.s,t,a,h)—ZIZD i} "2
L'

. (-1)3 e+ :—2L+j) ci gdt

uZQ(-l) Cru (B-26)

- 1 i
it T(2 +i) DZJ

Since the last summation is O for j < r by (E-22) and if
D2 >> 1 using only the first term of the j series

(34,9+,8) §O m? a I‘(I:-l-—-H:)
1 ; :
Ia(qllk, Llrlsltlajhj,) = 2 L (E*"'Z'T)

T e 2) D, 1"’”*" 7 T( 4+ 2)

I£f r=0, then

L

2L
B.; (q Fxe 8 53) % m a.
I‘a(ql'k L,o,s,t,ajbj) = 2:°1'71 m (B-28)

4
12 2 g1, %) (ppre)

E-8



APPENDIX F

PARTIAL DERIVATIVES OF COVARIANCE FUNCTION

This appendix contains the partial derivatives needed

to evaluate the G functions of Appendix D. From (4-3)

2

p = e‘ﬁtl-qQ' - A/l—q2 V1-q'“ cos Y] (F-1)

The following list contains the partials of P after setting

e - 22 = Ba, (1-cosy)p
% | g=q1=q, °9 g=q'=q,
2 2
9°p - o°p P[qulz(l cos¢)2 Bcosy ]
3q? g=q'=q; °9q'"|qg=q'=q, (1-q, 2)
2 | cos¢
2. ‘ = p{p%a,2(1-cosy)? + g1 + ]}
9qdq’
a=q'=q,
. 2
3 3 3B°q; cosy(1-cosy)
e = 2% = o[ %4, (1-cosp)>- L
3 : -q.2
9 lqmqr=q, =q'=q, (1-q,°)
3Ba,cosy
ot
(l"ql )



- [
2 - = P153q13(1-009¢)3- ﬁqu(l—cos¢)-
3q“3q" 3q3q" 2
=q'=q, q=q'=q,

2
. -[2 - cos ¥ +-El-99§£ ] + E_Sl_iggﬂ }
(l'ql ) (l-ql )

4 4 6874.2(1- 2
28 = 2P = P{ﬁuqlu(l—cos$)u - A7y C;S¢) cos¥
Bqu aq'4 (l-qlz)

=q'=q, 9=q'=q,
2 2 2
q, cosy(1- + .
. 332[-4 1 cos (1-cosd) 3 cos $] _ 3ﬂ(1+4q1 Ycosy }
2
2 3
(1-q,°) (1-q,2)
4 4
o)
; = 2P = p{p%a,*(1-cosu)¥
9q”oq’ dqdq"*
=q'=q, 9=q'=q,
3 2 3 332 cosy q 2costb
+ 387q;“(1-cosy)? - ———— [1 + _l;____.]
(1—q12) l—ql2

2
N 3Bay cosy }

(1-q,%)7 o2



%o

= p{ﬁuqlu(l-cosw)u + 2B3q12(1—cosw)2°

anBQ'Z L—
=q ! =ql

‘[2 - cosy +

q,cos )

1—q1

2

]

+ﬁ2[+ 4q12(1-cos¢)cos¢ + coszw+ Cﬁ . qlzcos
2,2 2
(1-q;%) 1-q,
+ B cosy }
2.0
(l"ql )

F-3

(F-2)



