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ABSTRACT

With the recently available antenna arrays and

receivers that are capable of receiving both components

of power reflected from distant bodies, the possibility

of using radar to determine the surface characteristics

of inaccessible bodies becomes a matter for consideration.

However, to accomplish this, it is necessary to have

available a vector solution for the scattering of electro-

magnetic waves from distant rough surfaces. This paper

is concerned with the obtaining of such a solution.

This analysis is based on the concept of differential

reflectivity as published by Erteza, Doran, and Lenhert

[19653. The specific problem considered in this paper is,

first, the integral formulation of the direct- and cross-

polarized instantaneous back-scattered power from an

arbitrary homogeneous rough sphere. The second part of

the problem is the approximate solution of these integrals

for the case of a statistically rough sphere with a gaussian

roughness and with an exponential covariance function. The

source is considered to be an ideal conical source which

behaves as a short dipole at all frequencies. The trans-

mitted waveform is a_ pulse modulated sinusoid of frequency

_o and pulse width T. The effects of multiple scattering

and shadowing are assumed negligible.



The integral expressions for the direct- and cross-

polarized power obtained for the case of a pulsed source

shows that, if the surface roughness is not a function of

_, the cross-polarized power is identically zero. An

approximate solution is obtained for the time-averaged

expected values of direct- and cross-polarized received

power from a normally distributed surface (in height

from an average sphere) for the condition that the ratio

of standard deviation to correlation distance is much

less than one over the square root of the radius of the

sphere in wavelengths. Comparison of this solution with

experimental data indicates that the moon must have a

roughness characterized by a much larger value of this

ratio. The minimum value of dielectric constant obtained

from this analysis equals 1.82E o.

This analysis shows that the Re[E x H_] can be used

for the time averaged power from a pulsed source only in

a portion of the return pulse and then only if the stand-

ard deviation of heights is greater than one-tenth of a

wavelength. The analysis also shows that any statistical

matching with experimental data must take into considera-

tion the angular variation of the reflection coefficients.

This paper is concluded with recommendations for future

research.
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CHAPTER1

I NTRODUCT I ON

1.1 Motivation and General Aspects of the Scatterin_ of

Electroma@netic Radiation From a Rough Surface

The problems of scattering of waves from rough surfaces

have been studied continuously since the late 1890's. An

excellent reference and introduction to the scattering of

electromagnetic waves from rough surfaces is presented by

Beckmann and Spizzichino [1963] which covers both theoretical

work and applications. As indicated in this book, a general

and exact vector solution to the problem is as yet unavailable

due to the difficulties in satisfying Maxwell's equations and

the boundary conditions across an interface. In the case of

smooth bodies of revolution, exact vector solutions for the

reflection of an electromagnetic plane wave from the surface

are available in only a few cases. In these cases, the inci-

dent plane wave is expanded into an infinite set of waves

whose character is dependent upon the shape of the body and

which are centered on the body. Then the boundary conditions

are satisfied for each wave of the infinite set in one step

for the entire surface, and the reflected waves are summed up

to obtain the reflected fields. This method requires the

separability of the wave equation, which is possible in only

eleven coordinate systems. Also, excluding the plane surface,

the infinite series obtained are difficult to handle and,

1
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except in the simplest cases, require the use of high speed

digital computers to obtain numerical values.

This approach does not appear feasible for the obtaining

of a general solution to the problem of scattering from rough

surfaces. An additional complication in the solution of scat-

tering from rough surfaces by use of the boundary conditions

is the necessity to take into consideration not only the inci-

dent field in the absence of the surface but also the effects

due to shadowing and diffraction, as well as multiple scattering.

With the advent of radar, the problem of scattering of

electromagnetic waves from rough surfaces, particularly from

terrains, became of special interest. As more high powered

and sensitive radars became available, the scattered field

from the moon could be detected. With this development, the

possibility of using radar to determine the surface character-

istics of inaccessible bodies became a matter for consideration.

However, to accomplish this it is necessary to have available

a more general solution of scattering of electromagnetic waves

from distant rough surfaces. Also, with recently available

antenna arrays and receivers that receive both the transmitted

polarization (called the direct-polarized component) and the

polarization orthogonal to the transmitted polarization Ccalled

the cross-polarized component), it is necessary to obtain a

vector solution to the scattering problem. With such a solu-

tion, it is of interest to determine the effects of surface

characteristics (both roughness and electromagnetic) upon the

ratios of these two components.
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With the possibility of making a manned landing on the

lunar surface within the next few years, some information as

to the surface characteristics is needed to design such land-

ing vehicles. One source of such information is the data

taken from earth-based radars. The majority of this data has

been taken using highly directive pulsed radars receiving

both polarizations; therefore, to determine the possible sur-

face characteristics, it is desirable to have a vector solu-

tion to the problem of scattering of narrow beam pulsed elec-

tromagnetic radiation from a rough sphere. The remainder of

this paper is concerned with the obtaining of such a solution.

1.2 specific Problem Considered and Purpose of Investigation

The specific problem considered in this paper is, first,

the integral formulation of the direct- and cross-polarized

instantaneous back-scattered power from an arbitrary homogene-

ous rough sphere. The second part of the problem is the ap-

proximate solution of these integrals for the case of a sta-

tistically rough sphere with a gaussian roughness and with an

exponential correlation function. The source is considered to

be an ideal conical source whose radiated field within the

cone is constant and equal to the maximum of a short dipole,

and zero outside the cone. The transmitted waveform is a

sinusoid of frequency _o and amplitude modulated with an

ideal pulse containing an integral number of cycles of the

transmitted frequency. The phasing is such that the trans-

mitted waveform is a continuous function of time. The re-

flecting sphere is assumed to be at a long distance from the

3



source, and the radius of curvature at any point is large

compared to the wavelength. Also, the effects of multiple

scattering and shadowing are assumed negligible.

1.3 Discussion of the Idealized Problem

There are several gross simplifications and strong as-

sumptions implicit in the idealized problem described in Sec-

tion 1.2 which merit discussion. First, the transmitted wave-

form is amplitude modulated with an ideal pulse such that the

waveform is a continuous function of time, but contains a dis-

continuity in slope which is not physically realizable. For

analysis of problems where the propagation or reflection char-

acteristics are of primary importance, it is common practice

to use physically unrealizable sources. Another physically

unrealizable assumption is that the source is an ideal conical

one. This assumption is made to simplify the analysis and yet

show the effect of beam limiting. If a specified antenna pat-

tern were given, it could easily be included in the description

of the incident field.

The reflecting rough sphere is assumed to be homogeneous

and isotropic which, for the case of the moon, is not the

actual case. The more realistic case of an inhomogeneous

body would considerably complicate the reflection coefficients

of the surface; these are, even in the case of the Fresnel

reflection, very difficult to integrate. Another assumption

is that the sphere is nonconductive. The effect of conduc-

tivities of naturally occurring terrains on the reflection

coefficients at radar frequencies is negligible. Consequently,

4



it is felt that this assumption has a reasonable justifica-

tion o

In the analysis presented in this paper, multiple scat-

tering and shadowing are neglected. The effect of multiple

scattering could be included by properly modifying the inci-

dent field; however, this would require the evaluation of sev-

eral additional integrals, and was considered too complicated

for a first analysis. The effect of shadowing was neglected

to avoid the introduction of additional complication to an

already complicated problem. This effect may be taken into

account in the case of a statistically rough surface by sta-

tistically modifying the amplitude of the received power

[Beckmann, 19653°

In considering a statistically rough surface and averag-

ing over an ensemble of such surfaces, the random process is

assumed stationary, thus implying that an ensemble average

is equivalent to a time average. However, when attempting to

relate the results of this analysis to experimentally obtained

data from the moon, it should be realized that, while time-

averaged data are available, they are not equivalent to the

ensemble average obtained in this analysis. The assumption

of equivalence is generally made in the literature.

The effect of the earth's atmosphere and ionosphere is

neglected in the formulation of this problem. The Faraday

rotation of the transmitted and reflected signals which oc-

curs in the ionosphere causes an interchange of power between

the observed direct- and cross-polarized components.

5



Experimentally obtained data must be analyzed carefully to

eliminate the effect of the Faraday rotation before attempting

to obtain the surface characteristics.

1.4 Previous Invest i@at ions

A large number of papers has been published on the sub-

ject of the scattering of electromagnetic waves from rough

surfaces, especially in the last ten years. Many experimental

data have been accumulated and many theories have been devel-

oped to explain and predict measured data. However, none of

the theories is general and rigorous at the same time. Most

of the methods make one or more of the following assumptions

[Beckmann and Spizzichino, 1963].

i) The dimensions of scattering elements are much

larger or much smaller than the wavelength of

the incident radiation.

2) The radius of curvature is much larger than the

wavelength of the incident radiation.

3) Shadowing effects are neglected.

4) Only the far field is calculated.

5) Multiple scattering is neglected.

6) The density of the scatterers is not considered.

7) The treatment is restricted to a particular model

of surface roughness.

8) The surface is perfectly conducting.

The results of the various treatments are limited to the

conditions under which their initial assumptions are considered

valid. The reader is referred to Beckmann and Spizzichino

[1963], Evans [1961], Janza [1963] or Fung [1965], each of

6



which gives excellent summaries of the previous work and

extensive bibliographies°

By far the largest number of rough surface scattering

theories is based on the Kirchhoff approximation of the bound-

ary conditions required for the evaluation of the Helmholtz

integral in the scalar case, or the Stratton-Chu integral in

the vector case. The most recent of such theories, using a

statistical description of the surface, was made by Fung [1965].

The basic assumptions of Fung are discussed so that the differ-

ences between his analysis and the one presented in this work

may be observed.

Fung made the basic assumption of the Kirchhoff approxi-

mation; namely, the radius of curvature is much greater than

the wavelength of the incident radiation. In addition the

following assumptions were made :

l) The surface is perfectly conducting, i.e., the

reflection coefficient is independent of angle

of incidence.

2) There is no shadowing of one part of the sur-

face by another o

3) There is no multiple reflection.

4) The random surface is continuous in the mean

and differentiable over a finite region.

5) The variation of the angle of incidence over

the domain of integration in the case of pulse

radar is negligible°

6) The radius of correlation is much smaller than

the dimensions of the illuminated area°

71 The illuminated area is pulse limited°
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8) The average surface is that of a plane.

9) The time-averaged expected power, in the pulsed

radar case, can be obtained by using

1/2 Re [_x_].

i0) Only the direct-polarized component of power

is of interest.

The results of this analysis were applied to experimentally

obtained pulse radar return from the moon.

In the analysis of the present paper, assumptions i, 5,

7, 8, 9, and i0 are removed or modified° The method used here

does not use the Kirchhoff approximation, but rather the con-

cept of differential reflectivity to obtain the integral equa-

tions. Both methods make the assumption of the general form

of the tangent plane approximation.

1. 5 Summary of Chapter Development

This introductory chapter contains statement of the prob-

lem and basic assumptions of the model used. Chapter 2 con-

tains a development and delineation of restrictions of the

concept of differential reflectivity. This concept is the

basis of the analysis made here°

In Chapter 3 the integral equations are developed for

the direct- and cross-polarized instantaneous powers reflected

from an arbitrary rough sphere. This development requires

the inverse Fourier transform to obtain the instantaneous

powers. In conjunction with this chapter, Appendix A presents

the coordinate system transforms necessary to convert the

power reflected from an incremental area of the surface into

a receiver-based coordinate system, allowing the separation

8



of the two components of power o Also, Appendix B discusses

the false poles of the reflection coefficients and the de-

velopment of a power series expansion valid for small slopes.

In Chapter 4, the sphere is taken to be statistically

rough with a gaussian distribution of heights and with an ex-

ponential correlation function. Ensemble averages of the in-

tegrals developed in Chapter 3 are taken and the integrals

are solved approximately and time averaged. In conjunction

with this chapter, Appendix C presents the derivation of the

expected values of the various statistical terms encountered.

Appendix D presents the generalized integration by parts neces-

sary for the q - q' integrations. In Appendix E, the gener-

alized _ integration is accomplished by an infinite series

expansion and then by exact integration. Also several special

integrals are considered in this Appendix. Appendix F pre-

sents the partial derivatives of the correlation function

needed in the final result°

In Chapter 5, the results are discussed with a view toward

a physical interpretation of the mathematical analysis. Par-

ticular emphasis is placed on the possible separation of the

electromagnetic and statistical properties of the surface with

a view to explain the radar backscatter obtained from the lunar

surface° A discussion of the more important results of this

analysis, and some suggestions for future research, conclude

Chapter 5 o
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CHAPTER 2

CONCEPT OF DIFFERENTIAL REFLECTIVITY

2 .i Development of the Concept of Differential Reflectivity

The concept of differential reflectivity as published by

Erteza, Doran, and Lenhert [ 1965] 1 will be reviewed and some

of the restrictions imposed in that paper will be removed.

Differential reflectivity, _(_i' _o' _)' is a dyadic quantity

which, when multiplied by a differential surface area and the

steady-state vector field incident on that area, yields an

expression for the contribution of that surface element to the

scattered field at an arbitrary observation point. Consequently

the differential reflectivity is a function of the following

variables :

i) Location and orientation of the surface with

respect to the observation point.

2) Properties of the two media separated by the

surface.

3) Frequency of the incident radiation, _.

For the case of steady-state incident radiation, the re-

flected Hertzian potential field, %, may be described by

! _(_l _i(_o%(_i' _' t) : ' _o' _) " ,_, t)dSo (2-1)

iThe Concept of Differential Reflectivity was conceived

and formulated by Dr. A. Erteza.

i0



where

= radius vector from the origin to the observationr I

point

= radius vector from the origin to the surface point
o

_i(_o, _, t) = incident vector field at surface element

dS
o

_(_l' _o' _) = dyadic differential reflectivity

S = illuminated surface
o

The case of a pulsed sinusoidal source will be considered in

Section 2.3.

It should be noted that Weyl's method of expansion of

the spherical waves into plane waves [Stratton, 1941, pp.

577-582] cannot be used unless the source is spherically

symmetric; however, in this paper an ideal conical source is

assumed. An ideal conical source is defined as one whose

electric and magnetic fields are uniform over any spherical

surface centered on the source within the cone and identically

zero outside of the cone. This method can also be used for

any arbitrary source or antenna pattern by including an

antenna factor in the integration of (2-1).

Considering only one member of the family of steady-state

waves, a derivation of the theory involving the concept of

differential reflectivity will now be shown. Let the Hertz

vector due to the component steady-state incident waves be

described by

_i(_o, _, t) = av C O

ikR o
e -i_t

e (2-2)
R
o

ll



for all points 5O on the surface S O , where

_ = unit vector in the _i direction (determined by

polar izat ion )

C O = Co(C0 ) and relates to the amplitude of the source

k = Co/c = propagation constant in the incident medium

R° = 15° - 5sl

5 = radius vector from the origin to the source point
s

It should be noted that by the complex notation of (2-2) we

imply that the real time function _i is the real part of the

right-hand side of the equation; however, for the sake of

brevity this notation will be omitted except when it is neces-

sary for clarity•

For the case of reflection from a plane, if the origin

is taken in the infinite plane surface (x-y plane) of which

S is a region, and the source has rectangular coordinates
o

(O, O, z s ) as shown in figure 2-i, so that

2+z2

then (2-2) can be written as

ikR o

Co SS  CXo-Xo -
So

t I I

• 6(y o - Yo)dXodYo
(2-3)

where

'2 '2 z 2, = + +
Ro o Yo s

12



Z Q

r I

O

R
O

r

an

X

P

_i ap

irection

Figure 2-1

Reflection Geometry

13



Using the Fourier integral expansion one may write

iu (Xo-Xo) +iv (yo-Yo) dudv
6(x° - x°)6(Y° - Y°) 4--_ e

so that the incident field at each point,
o'

is given by

of the surface

eikR° [!! iu (Xo-Xo) +iv (Yo-Yo)
, _vCoe

ni(_o _,t): _ So

dx'd '

• dudvj o Yo (2-5)

If now

r = Jx 2 + yo2 + z 2
O '

the following integral is obtained by analytic continuation.

w Ini(_ _, t)- e-i_t _ e _Co e idudv dXodY °' 4/- -e--
So o _

(2-6)

where

wi : u(x° -X')o+ V(yo- Yo)- _oJ_ - (u2+ v_)

Expression (2-6) can be interpreted as the field due to

an infinite collection of plane waves, symmetrically distributed

about the local normal to the incident wave front, which com-

bine at a point on the reflecting surface to yield the net

14



incident field due to the original source. The propagation

constant associated with each of the plane waves is determined

so that the entire collection adds to a two-dimensional delta

function at the point in question.

Consider now a Hertzian plane wave having a propagation

vector with components [u, v, _2. (u2 + v2)] and a polariza-

tion in the direction av to be reflected from the surface.

The reflected plane wave will be described through the use of

a dyadic reflection coefficient V (u, v). At an observation

point Q(_l), the total reflected field due to an illumination

of the surface So by the infinite set of plane waves is given

by

- i_t
%(_1' _' t) : e _ V(u, v)e rdudv

S O -_

_odYo (2-7)

where

wr = u(xI xo)+ v(y_- Yo)+ z15_2 (u2+ V2)

which, when compared with (2-1), yields the differential re-

flectivity as

e(_z' 70' _) _ 1 _ )eiWrdudv Cuv

15



The form of the components of the reflection coefficient

will depend on the nature of the surface So in the general

case.

If the surface is spherical these components may be de-

rived from Mie's solution for a plane wave incident on a sphere

[Stratton, 1941, pp. 563-567]. For an infinite plane surface

such as is being considered here, they reduce to the ordinary

Fresnel reflection coefficients.

--D

2.2 Evaluation of

For the purposes of computation it is useful to evaluate

the vector quantity

iW

_ = _ _ V(u, v) • _vCoe r dudv = _- a_C O (2-9)

Referring to figure 2-1, the two coordinate systems having

their origin at the point P on the reflecting surface are de-

fined as follows: The Q system is defined by the surface

normal and the direction to the receiver at point Q with the

set of unit vectors an' _r and at; and the Korthogonal system

defined by the surface normal and the propagation vector k

with the orthogonal set of unit vectors ap, a N , a n . Here a n

is the positive unit normal to the reflecting surface, ar is

-q

the unit vector in the direction of the projection of R 1 on

the tangent plane through P, and at = ar x an (also in the

tangent plane). The unit vector ap is in the direction oppo-

site to that of the projection of k on the tangent plane and

aN = an x ap. In the general problem the surface normal

16



described in the primary reference system (x, y, z) changes

direction as one traverses the surface S under consideration;
o

therefore these two additional coordinate systems are needed.

For the case of _-plane waves reflected from an infinite

plane, the off-diagonal terms of V (i.e., Vij where i, j =

P, N, or n and i _ j) can be shown to be zero by converting

to E and H and the diagonal terms are

VppC_ ) = -Vnn(_ ) = _

(U2/_l)n 2 cos _ -_/n 2 - sin2_

(_2/_l)n 2 cos _ + _n 2 - sin2_

(Ul/_ 2) cos _ - Jn 2 - sin2_

: (2-i0)
(_i/_2) cos _ + _n 2 - sin2_

where

= angle of incidence = sin -I _u2 + v2
k

n = index of refraction = kl/k

_i = permeability of the reflecting medium

_2 = permeability of the incident medium (free space)

Thus Vpp and VNN are identical with the Fresnel reflection

coefficients in this case. The vector (2-9) may be resolved

as

• CO ,

1 1

_ = _--_ _ apVpp(_)Cp elwrdudv +--_ _ aNVNN(_)CN elWrdudv

i_ an iWr "
+ _ Vnn(G)Cn e dudv : _ + _ + _ (2-11)

__ P N n

17



where

a_C O : apCp + aNCN + anCn

In order to perform the integration of (2-11), u and v

are converted into cylindrical coordinates. Let

u = k cos _ = k sin _ cos

v = % sin _ = k sin _ sin

!

Xl - Xo = Pl cos _i

!

Yl - Yo = Pl sin _i

Pl = R1 sin 01

z I = R 1 cos 01

81 = angle between a R and a n

_R = _l/I_iI

Substitution (2-12) into 62-11)yields

(2-12)

C

- - n _ V n [a(A)]
_ = an _--"_ nn

o

[!_ [iAPlC°S(_l-_)+iZlkC°S_] i
e d_ Adk (2-13)

which by Stratton [1941, p. 412] becomes

[ iZlkCOS_ ]

= a Cn _ Vnn[_(k)]Jo(ADl) e kd%
n n_

o

(2-14)

18



Also by the same method one can obtain

_ + _ _atCt i ": : [fl(A)Jo(APl) + f2(A)J2(lP I) 3
T P N

iz lkCOs_
• e ld%

CO

_rCr

+ -_-_ [fl(_)_o(_pz)

iz ikc os_

- f2(A)J2(k_l)] e AdA (2-15)

where

fl(_)= vpp[_(_)] + v_N[=(_)]

f2(k) = Vpp[_(%)] - VNN[_(A )]

ct = (_t " _)Co = C_t " _)_ +

" _ )co "• = (a "Cr : (ar _ r

(_t" _N)CN
--0 "@

)_ + (_r " aN)CN

Approximate evaluation of _ and _, as given in (2--14)

n T

and (2-15_, may be made by use of the saddle-point method

[Brekhovskikh, 1960, pp. 245-255. "Io This method consists of

first converting the A integration to _ integration over a

contour F o, converting the Bessel functions to Hankel func-

tions, and then expanding the Hankel functions in their

asymptotic representation over the appropriate contour F I.

The location of the saddle point, _o' is found and the con-

tour F 1 is then deformed to the contour F which passes through

the saddle point along the path of steepest descent (i.e., a
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path of constant phase). This new contour F is represented

by new variables defined by

f(_) = f(_o) - s 2 (2-16)

and s varies over all real values from -_ to +_.

In deforming of the contour F 1 to F, the following items

must be taken into account:

i) Restriction of region of possible saddle-point

locations so that the asymptotic representation

of the Hankel function may be used.

2) The residues of any poles of Vpp and VNN crossed

in the deformation of the contour.

3) The effect of crossing a branch point of Vpp

and VNN in the deforming of the contour.

These effects are assumed to be negligible in this section

and the exact limitations are determined in Section 2.3. Now

the integrand, excluding the exponential, is rewritten in

terms of the new variable s, expanded in a power series in s,

and integrated. The only difficulty arising in these manipu-

lations is that a pole close to the saddle point will limit

the radius of convergence of the power series. This will

again be neglected in this section and the restriction de-

lineated in Section 2.3. If p is assumed to be sufficiently

large, only the first term of the integral of the power series

need be considered.

The saddle-point method will be used to evaluate _ and
n

_. First consider _ as given in (2-14): the conversion to
T n

integration requires a contour F ° as shown in figure 2-2
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to be used since k may be complex.

becomes

Using (2-12), then (2-i_)

_nCn
k 2

n 2_ _ Vnn (_)JO(kRl sin %

F o

sin _) -

ikRlCOSOlCOS_

e sin _ cos _d_ (2-17)

J

The expansion of the Bessel function into Hankel functions of

the same kind will be made avoiding the apparent pole of the

Hankel functions at the origin•

i _i) 1Jo(Z)= y [ (7) - _ )(-7.)]

(2-18)

Since the integrand of (2-17) is an odd function of _, sub-

stituting (2-18) into (2-17) and changing the contour to F
1

as shown by the solid line in figure 2-3 yields

n

anCnk2

4_ _ Vnn (_)HO_l)(kRl sin 01 sin _) •

F 1

ikRlCOSOlCOS_
• e sin _ cos _d_ (2-19)

Under the assumption that kR 1 sin 2 0 >> i, the large argument

expansion of the Hankel function can be used, keeping only the

first term.
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_nCn k2 2

_ = 2_ j_kR 1 Tin @ 1 _ Vnn (_) "
F
1

[ikRlCOS(eI_)-iv/4 ]
e cos _s4_ _ d_ (2-20)

The saddle point of (2-20) is s o = el; then, by the saddle-

point method of integration, the contour is changed to F as

shown by the dotted line in figure 2.3. The effects of de-

forming the contour through any poles and remaining on the

same sheet are assumed negligible (see Section 2.3). Under

the assumption that kR 1 >> i, saddle-point integration of

(2 -20 ) yie ids

-anCn k ikR 1

= R1 cos e I (2-21)n 2_i Vpp (e I ) e

By the same method (2-15) becomes

_tkC t ikRl

= -"2n- v (e I )
arkCr

cos eI +_vpp(el) •

ikR 1
e

R 1
cos e I (2-22)

Thus by (2-21) and (2-22), (2-9) becomes

_= . Co

ikR 1
_o cos eI e

2_ic R 1
[-anCnVpp (eI )

+ arCrVpp(el ) + atCtVNN(el ) ] (2-23)
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and substituting (.2-23) into (2-7)yields

-i_Dt ikR 1 ikRo

%(_i _' t) = _e _ e e
• 2_ci RIR

S o
o

[-anCnVpp (01 )

+ arCrVpp(0 l) + atCtVNN(01)] -

•co,% dXod ° (2-24)

This is the reflected steady-state H field from a plane sur-

face provided kR 1 sin 2 01 >> I, no poles or branch points are

crossed in the deformation of contour• and no pole is close

to the saddle point. These limitations will be removed in

the next section.

2.3 Removal and Delineation of Restrictions

This section will discuss each of the restrictions im-

posed in the previous sections to evaluate _ and _ and to ob-
n T

tain Hr" These restrictions were:

i) Saddle point is not close to origin

2) No poles are crossed in deforming the contour

3) No pole is sufficiently close to saddle point

4) No branch points are crossed

5) Reflecting surface is a plane

6) Steady-state reflection

Each of these restrictions will be considered individually

and the restrictions on the index of refraction n determined

such that (2-24) is a valid approximation for the general case.
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2.3.1 Saddle Point Near Origin

In Section 2.2 it was seen that the expansion of the

Bessel functions in terms of Hankel functions in the evalua-

tion of the components of _ was not valid unless kR 1 sin 2 01

>> i. In this section this restriction is examined more

closely and the conditions for its relaxation will be deter-

mined• First consider (2-17) for the n component of _ .

anCn k2

n 2_
F

o

Vnn(_)Jo(kRl sin 01 sin _) •

[ ikRlCOSOlCOS_ ]
• e cos _ sin _d_ (2-17)

If kR 1 sin 01 << i, then by using the first term in the ex-

pansion of the Bessel function, (2-17) becomes

k 2 [ikRlCOS01COS_

--_anCnn 27r Vnn(_) e

F
o

cos _ sin c_d_ (2-25)

Letting _ = _' - i_" and F(_) = F(_', _"), the integral of

F(_) over contour F ° can be represented as

i iF(_)_ = _(_', o)_ - i _(_/2, _)_

Fo o o

(2-26)

Conversion of (2-25) to the form of (2-26) and using the

trigonometric identities

25



sin _ = sin (_' - i_") = sin _' cosh _"

- i cos _' sinh _"

cos _ = cos (_' - i_") = cos _' cosh _"

+ i sin _' sinh 5" (2-27)

yields

anCnk2 [!/2
= 2_ Vnn(_', o) e

n

[ ikRlCOS01COS_ ']

• cos _' sin _'d_' + _ Vnn (7r/2' 59 -

o

[-kRlCOS8 is inh_ "] ]
• e sinh _" cosh _"d_" (2-28)

Let the first integral in (2-28) be called I I, the second 12

and w = cos _'; then

1 [ ikRlCOS01W ]

I 1 = _ Vnn(COS -1 w, o) e wdw (2-29)

o

Integrating (2-29) by parts and neglecting all but the first

term (assuming kR 1 cos 81 >> 1 and cos 81 _ 1),yields

Vnn(COS -I i, o) ikR 1

I 1 = ikRl e (2-30)

Since in 12, Vnn(_/2, _") is approximately constant for

very small 5", then setting the derivative with respect to 5"

of the remaining portion of the integrand of 12 equal to zero,
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the maximum is found to occur at _" = I/kR I.

value of the integrand is Vnn(V/2)e-i/kR I.

grand is approximately zero at 10/kR I, then

The maximum

Since the inte-

0/kRl Vnn (v/2)e- 1
12 < kR 1 d_" - 3-7

(kRl)2O

(2-31)

which is negligible with respect to I I. Thus, for 81 very

close to zero

anCn k eikRl

= --_ Vnn(0°) _ii
(2-32)

which is the same as the saddle-point solution for 01 - 0 as

given in (2-21).

By the same method, _ is
T

_ _tCt k eikRl

[vpp(o°)+

arCr k 0o 0 o e ikR1

+ _ [Vpp( ) + v_( )] el
(2-33)

which, since Vpp(O O) = VNN(0 O) is the same as (2-22) for

81 _ 0. Thus, since _ is an analytic function, the saddle-

point solution as given in (2-23) is valid for all 01 if

kR 1 >> i.
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2.3.2 Effect of Branch Point and Branch Cut

There exists a branch point in both Vpp and VNN at

n2' - sin2 _b = 0 (z-34)

where _b is the location of the branch point. The cut from

this branch point will be taken as Im_n 2 - sin 2 _ = O. The

sheet Im%/n 2 - sin 2 _ > 0 will be called the upper sheet and

Im_n2- - sin 2 _ < O, the lower sheet. This branch cut is

chosen since the contour F 1 must pass over the upper sheet so

that the retransmitted wave in the reflecting medium does not

have an infinite amplitude as z - -_.

Now the location of the branch point with respect to the

contour F will be determined. The contour F is defined by

cos (01 - ac) = 1 + is 2 (2-35)

Since the contour is deformed the most for 01 = _/2 (its max-

imum value) , (2-35) becomes

sin _c = 1 + is 2 for 01 = _/2 (2-36)

If it is assumed that an n exists where the branch point is

on the contour, then _c = _b" For (2-34) to be true then the

radicand must be zero. Squaring (2-36) and substituting into

(2-34) yields

n 2 - 1 + s 4 - 2is 2 = 0
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Re(n 2) - 1 + s4 : 0 and Im(n 2) - 2s 2 : 0

since for free space with a conductivity s2 = 0

n 2 = _rEr(l + iy) ( 2-38 )

where

_r = _i/_2

Cr = ci/{2

{1 = dielectric constant of reflectivity medium

{2 = dielectric constant of free space

-
e{ 1

_i = conductivity of reflecting medium

Then no solution can exist for Ur{ r > I. This condition will

be assumed for the solution obtained in this paper. Therefore

the branch point is always above the contour F. In view of

the fact that Vpp and VNN are analytic functions of _ in the

region bounded by F and F 1 and the branch cut if crossed will

be crossed twice, no correction need be made to the saddle-

point integration.

2.3.3 Location of Poles of Reflection Coefficients

The location of the poles of Vpp and VNN will be found

to determine if the contour has been deformed across a pole

and consequently the value of the residue of any such pole

will be added to (2-23). Consider first VNN whose poles _N

are determined by the solution of the equation
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r cos _N = -_n2 _ Sin 2 _N (2-39)

If it is assumed that In21 > i, no poles exist for _r = i.

However, for Ur > i, the poles are determined by squaring

(2-39) and obtaining

n :/2 2

+ 2 - 1 - _r= = ± 2cos _N and sin _N

_r - 1 r - 1

(2-40)

!

Hence assuming Er > _r' there are four values for _N = _N

!

+ i_ where _N is restricted to the area of interest, namely

from -_ to _.

PI:

P2 :

P3 :

P4:

l!

0 <_ < _/2, "N < 0

Symmetrical to P1 (with respect to the origin)

' " >0v/2 < _N < v, _N

Symmetrical to P3 (with respect to the origin)(2-41)

It should be noted that of these four poles, two are not true

poles but were obtained in the squaring process. Squaring

sin _q from (2-40) and substituting into (2-39), it is seen

that cos _q in (2-40) must have the negative sign. Thus, only

P3 and P4 are true poles. Again, using (2-39), it may be seen

that these poles lie on the lower sheet ; therefore they will

not modify (2-23) due to residues or affect its validity due

to being too close to the saddle point, so long as In21 > 1

and Er > _r"

Now consider Vpp whose poles _p are determined by the

solution to the equation

3O



n2
cos Up = -/n 2 - sin 2 Up4

(2-42)

The squaring of (2-42) yields

cos Up =

-Ur /n 2 - i

Jn2 - _r
n2 + _r

j_n2 /in2 _ 2and sin Up 2= _ 2 _r

+ Ur _r

(2-43)

where the minus sign on the cosine equation was determined by

using the sine term squared in (2-42) in order that only the

two correct solutions to (2-42) be obtained. Again assuming

_r > _r' the two true poles are

II

Pl: _/2 < u_ < _, Up < 0

P2: Symmetrical to P1 (with respect to the origin)

Using (2-42) it can be determined that these poles lie on the

upper sheet. Therefore it must be determined if these poles

lie between r and r I. By referring to figure 2-3, it is de-

termined that pole P2 will not lie between F and F 1 due to

its location; however, pole P1 might be crossed. Pole P1

corresponds to the positive sign on the sine term in (2-43).

Since the contour F has had its maximum deformation when the

saddle point 01 = v/2, this case will be considered to deter-

mine if some values of _r' Or' and 7 will cause the pole to

lie on the contour. Setting u c in (2-36) equal to Up, it is

seen that
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Re sin _p = 1

Converting (2-43) into polar form

I/ n2sin _p =
n2 + _r

(2-45 )

'I n2 _r el_ (2-46)

where

0 < _ < _/2

However, when the magnitude of sin _p was determined, it was

found to be less than one so long as In21 > 1 and _r > Ur"

Consequently pole P1 does not lie between F and F l, but it

may be arbitrarily close to the saddle point. This effect

will be examined in the next section.

2.3.4 Pole Near the Saddle Point

In the saddle point integration, the variable _ was re-

placed by s and the entire integrand, excluding the exponen-

tial, was expanded in a power series in s. It is necessary

that this power series be convergent. The power series will

converge inside a circle of radius so , on whose boundary the

pole is located. For the saddle-point method, it is necessary

that the entire range of significant values of s, for which

the integrand is not yet very small, occupy a small portion

of the circle of convergence near its center. Using the

upper limit s I of significant values of s as the value for

-i
which the exponential decreases to a value of e , thus

s I --_ i/J_l (2-47)

32



Then the condition that ISl/So I2 << 1 becomes

kRllSo 12 >> 1 (2-48)

From the previous section it was seen that the only pole

that could approach the saddle point was pole P1 of Vpp which

approaches the saddle point only when 01 - _/2. The location

of the pole in the s plane is determined by

cos (81 - _p) = 1 + is 2 (2-49)

Letting w = 4_i s O, e I = _/2, and using (2-49) and (2-43) it

is found that [Brekhovskikh, 1960]

lwl 2 _ kR1 (2-501

21n i

Thus for (2-48) to be satisfied and consequently (2-24) be

correct it is necessary that kR 1 >> 21n21.

2-3.5 Effect of Nonplanar Reflectin _ Surface

In the derivation of the differential reflectivity it was

assumed that the reflecting surface was a plane. If the body

is not a plane, two effects must be either neglected or taken

into account. These are: (i) the modification of the inci-

dent field due to multiple reflections in the incident medium,

and (2) modification of the reflected field due to the retrans-

mitted wave in the reflecting medium intersecting the surface

at another point. These two effects are illustrated in fig-

ure 2-4 at points B and C, respectively. The effect at B can
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be negated, in the case of a smooth body, by requiring con-

vexity [Erteza, Doran, and Lenhert, 1965] or, in the case of

a rough surface, by assuming that multiple reflections are

negligible, as will be done in this work.

The case at C is more difficult. However, if the radius

of curvature is very large or the reflecting body is lossy,

then the contribution at C due to illumination at A can be

made negligibly small. For the case of a smooth spherical

surface the results obtained by Erteza, Doran, and Lenhert

[19651 for steady-state full illumination matched with those

obtained using Mie's reflection coefficients for the radius

of the spherical surface greater than i00 wavelengths. At

this point the approximations made in Section 2 can give errors

of the order of one percent ; thus it cannot be stated that the

concept of differential reflectivity gives an incorrect answer

for a smaller radius of curvature. Consequently it will be

assumed that the differential reflectivity is a good approxi-

mation for the rough surface case so long as the roughness is

not extreme.

2.3.6 Pulsed Source

If the source is considered to be an elementary dipole

whose current is a pulsed sinusoid of angular frequency _o

and pulse width T, it is necessary to replace the incident

time varying radiation with an infinite set of steady-state

waves obtained by means of the Fourier transform of the re-

sulting _ field. The resulting _ field at the reflecting

surface is [Van Bladel, 1963, p. 194]
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t
l

o V

, t - c

dr' (2-51)
R'
o

where _(_', t' - R_Ic) is the current density in the antenna

=

r' = vector from the center of the antenna (defined by

_s) to a point in the antenna

These vectors are shown in figure 2-5- Let the current den-

sity be defined by

_(_', t' - RolC ) = avj(_') sin 0_oCt' - Ro/C) -

• [uCt'- Ro/C) - uCt'- Ro/C - T)]

(2-52)

which can be expressed in complex form as

r -i0_oCt' - RolC)

(_', t' - RolC) = Im_-aTrJ(_') e

[uCt' - Ro/C) - uCt' - Ro/C - T)]}

(2-53)
ik_R'

The series expansion of e z O/R ° is [Stratton, 1941, P. 431]

ik2_o _ n(e R' - ik2 _i_ (2n + l)Pn(COS T)Jn(k2r') h l)(k2Ro)(2-54)

0 n=0

where 7 is as shown in figure 2-5

Pn (cos 7) are the Legendre polynomials
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Jn(k2 r') are the spherical Bessel functions

h_l)(k2Ro ) are the spherical Hankel functions of the

first kind

Under the conditions that k2r' << 1 and k2R ° >> I, (2-54) can

I

be approximated by the first term (n = 0) and the R ° in the

argument of the unit steps may be replaced by R
o

Subst it u-

tion of (2-53) and the first term of (2-54) into (2-5 1 ) gives

_i(_o ' _o' t) = Im_ O

ik2Ro- t -i_ t l

e $ o
e\R

O "'

o

Eu(t'- Ro/C)

u(t' Ro/C T)] _ j(r')dV' dt '_ (2-55)

-V -

The assumptions of a thin, straight-wire antenna of length Z

with uniform current density on any transverse cross section

and with current distribution I({) over its length yield

L/2

v L_/2

Z(_)d{ = 4_oC 1 (2-56)

The substitution of (2-56) into (2-55) gives

_i(_o, coO, t)= Im[a_C 1

ik2R ° - t _iCOot,

e -_ e u(t' - Ro/C)
R i ,)
o

- o

- u(t' - Ro/C - T)d_ i" (2-57)

Taking the Fourier and inverse Fourier transforms of (2-57)

and rearranging yields
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m ik2 Ro - icot m

_o 1 _ a_e e { _ icot 1
_i ( ' COo' t) = Im _ Ro e I e

[ _i -i_ t '

- [-o_ e o [u(t'- Ro/C )

-.o/C-
.&

(2-58)

Converting (2-58) tO the real part and taking the Fourier

transform of the t'-integral yields

ik2Ro -icot

i(ro {_ ate e I% _ icot I' coo' t) = Re Ro e

[u(t I - Ro/C) - u(t I Rolc- T)Idt1]_}

(2-59)

Since the development of the reflected fields of Section

2.1 used an amplitude of Co(C0 ) for the steady-state wave, it

is necessary to obtain Co(co ) for each of the steady-state

waves from (2-59) and then sum these waves to obtain the time

varying incident or reflected fields. Then

ik2Ro -i_t

{_ _ Co(co) e e_i(_o ' coo' t) = Re R
o

d_} (2-60)

where
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Clf(_,%. T)
co(_) :

f(_,%, T):_ [u(t I - Ro/C ) - u(t I - Ro/C - T)] -

iwt
1

• e dt
1

-i(w- %)T
e -i

i(w - %)

Thus the pulsed case shown in (2-60) is of the same form as

the steady-state case of (2-2) with only Co(W ) redefined.

Consequent ly,

iX(ao+aI)

RoR 1
S -m

o

[-anCnVpp(01 ) + arCrVpp(0 I)

+ _tCtVNN <0 I)] cos 01d_}dS (2-61)

where Cn, Cr, and Ct are related to Co(W ) as previously de-

fined but Co(W ) is now defined as shown in (2-60).

2.4 Conc lus ion

In summary, the concept of differential reflectivity

developed in this chapter was found to be valid for reflection

from a smooth convex surface of either large radius of curva-

ture or composed of a lossy material so long as kR O >> In21

and _r < Er" In the case of a rough surface where an' ar'
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_t vary with position, it is necessary to assume that multiple

reflections both in the incident and reflecting medium are

negligible. This can be forced by requiring a large radius

of curvature of the surface and possibly lossy material in

the reflecting surface. Again, in the rough surface case, it

is necessary to assume kR O >> In21 and _r < (r" With these

assumptions the concept yields the equation for the reflected

Hertzian potential as

ik(Ro+Rl)

, , NoR 1nr(rl t) So .

-i_t
e [-anCnVpp (01 )

+ _rCrVpp(01 ) + _tCtVNN(OI ) ] cos 01d_DdS (2-62)

where S is the illuminated surface.
o
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CHAPTER 3

APPLICATION OF THE CONCEPT OF DIFFERENTIAL

REFLECTIVITY TO A ROUGH SPHERE

3.1 Definition of Coordinate Systems

In this section the coordinate systems necessary for the

application of the concept of differential reflectivity are

developed for a rough sphere whose average radius is a. The

variation in the radius of the rough sphere at a point 0,

is denoted by H(8, _). From Chapter 2, using 5 o = roaro as

the vector from the origin to a point on the reflecting sur-

face, the equation of the surface is given by

T = ro - [a + H(0, _)I = 0

The unit outward surface normal vector an is found by normal-

izing the gradient of (3-1) in normal spherical coordinates

(_ro' as' a_)°

an = _ = ar° _-o _ + ro sin 0_ _ (3-2)

It should be noted at this point that if the sphere is per-

_n is identical with aro o Performing the in-fect ly smooth,

dicated operations of (3-2) on Y as defined in (3-1) yields

 H(0, 1  H(8, 2j-l (3-3)an aro r O o.... 88 - r sin 8 8_ a j
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where

J = _/1 + [L chH('_ _)]2 + [r O sinl 0 8H(_ _)]2

It is now necessary to define several orthogonal coordi-

nate systems so that %, and consequently the direct- and

cross-polarized power, may be calculated for the case where

the transmitter and receiver are coincident° These coordinate

systems are shown in figure 3-1. The coordinate system used

and defined in Chapter 2 with unit vectors (an' ar' _t ) has

its origin at the reflecting point P. The reference, or in-

ertial coordinate system x' ay, az), has its origin at the

center of the sphere with _ in the direction of the trans-
z

mitter and ax in the direction of a linearly polarized _i

(i.e., ax = a_)" Another coordinate system (aR' aq' a_)

has its origin at the reflection point P with a R in the direc-

tion of the receiver (in the case of the sphere with receiver

also on z axis it lies in the meridian plane), _ the stand-

ard spherical unit vector as used previously in this section,

and _q = a x aR (also in meridian plane defined by aro and

_@). Several additional quantities shown in figure 3-1 need

to be defined. These are: az is a unit vector in the direc-

tion of the projection of a n on the meridian plane, On is the

angle from aro to a_ in the meridian plane, and _n is the

angle from a n to az in the plane perpendicular to the meridian

plane containing an and _ .
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Matrix notation for the coordinate unit vectors is used

so that transformations between the various coordinate systems

may be more easily made° The coordinate column vectors are

defined as

[ila n

AI = r

La J

; A2 =

"aR" iax

aq ; =

a a
cp. z

; X4=

taro

I

I

The (3 x 3) coordinate transformation matrices Aij are de-

fined as

A. = A..A.
i z3 3

and are calculated in Appendix Ao

3.2 Determination of E and H
r r

The reflected power will be determined in Section 3-3

from the reflected electric and magnetic field intensities

(Er and %) by application of the Poynting theorem° Therefore

it is necessary to now determine Er and Hr from % as defined

in (2-62)° Assuming that (k2R1)-2 is negligible with respect

to (k2Rl)-I consider only the integrand [Stratton 1941I # I

Po 435]

2_ _ 6%(_1' _o 03)]6_'r(_l' _o' 03) = -k aR x [a R x

6Hr(_l' _o' _) = _kc2[aR x 6%(_ I, _o' _)]

where 6% is the integrand of (2-62)° Let
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=-(_n ° _x)Vpp(OI)_n + (_r _x)Vpp(OI)_r

+ (_t ° _x)V_(°1)_t

then (2-62) can be rewritten for the monostatic case (i.e.,

R o =R 1 = R)

i2kr

=
rl' _o' t) 4_2c i R2

S -_
o

V cos 01dkodS (3-8)

The vector V can be written in matrix form as

= VIA 1 (3-9)

where V 1 is the row matrix

V1 : [-(an " ax)Vpp(Ol)' (ar ° ax)Vpp(01)' (at " ax)VNN(OI)]

(3-I0)

Since the vector operations in (3-7) operate only on V, trans-

formation to (x, y, z) coordinates by use of (3-4) and (3-5)

yields the following terms. _

_'i = _R x (aR x V) = VIAI2elA23A3

HI = aR x _V = VIAI2hlA23A3 (3-11)

where e I and h I are (3 x 3) matrices determined by aR x (aR x A2)

--_ --D

and a R x A 2, respectively, and are
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1 i00 ]e I = -I h I = 0 0

0 - 0 -i

(3-12)

Then (3-6) and (3-9) are combined, using the notation of

(3-11); the results are

C _3ei2kR e -i_t

Er(_l ' _o' t) 4_2c3i -= R2

O

El cos 01d_dS

C _3ei2kR e -i_t
(2

Hr(_l, _o, t) = C C O
4_2c2i 3 3 R2

S -_
O

--+

n I uu_ _lU_U=

(313)

With the transmitter and receiver located at 40, 0, D)

in the (x, y, z) coordinate system and assuming D >> a, then

02 -_ 0. This assumption greatly simplifies the calculation

of El and HI o

The substitution of (A-13) and (A-14) into (3-ii) yields

E 1

V 1

sin01

"cos01sin01

sin201

0

cOS_nSin (0-0n)Sin01 Isin_nSin01

I

-cOS_nS in (0-0 n )COS 011 -sin_nCOS01

! -sin_n Ic°S_nSin(0-0n)

0

O-i COS_ sin_ A3

0 - L-sin_ cos_

(3-14)

with V 1 being
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_ 1

V1 sin_ [ (sin_sin_nSin01-c°s_c°S@nSin( 0-0 n )sin01 )Vpp( O1 )I

(S in_sin_nCOS 01-cos _cOS_nSin (0-0 n )cos01 )Vpp( 01 )I

(-cos _sin_n-S in,cos _nS in (0-0 n ) )VNN( 01 )]

The matrix multiplication of (3-14) using (3-15) gives

E 1 1 {_x [_Vpp (O1 )COS201 (cos _nSin (0_0n )cos__sin_nS in _ )2
sin2Ol

_VNN( 01 )(sin_cOS_nSin (0_0n )+sin_nCOS _ )2 ]

+_y[-(Vpp(eI)cos2el-VNN(eI))(sin_cos _cos 2_nSin2(e_en )

+cos2 _s in_nCOS_nSin (0-0 n )-s in 2_sin_nCOS_nSin (0-0 n )

-sin_cos_sin2_ n )]} (316)

Also

51
v 1

sin_ 1
sin201

0

"cos01sin01 1cOS_nSin(0-0n)Sin01 I sin_nSin01

I I

i _cOS_nSin(0_0n)COSOl I -sin_nCOS01

I I

I -sin_ n I cOS_nSin(0-0 n)

• 0 cos_ sin_

-i L-sin_ cos_

(3-1?)

which gives upon multiplication
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• os 2

1 _ax [ -(Vpp( O 1 )cos201-VNN(01 ) ) [sin_cos_c _n "

HI =

• sin2 (0_0n )+cos 2_sin_nCOS_nSin( 0-0 n )-sin 2 _sin_nCOS_ n"

- sin(0-0n)-Sin_c°s_sin2_n )]+ay[vPP(O 1)cos20 l(cOs_ n "

• s in (O-8n )cos_-s in_nS in_ )2 +VNN (01 ) (s in_cOS_nS in (,0-0n)

+sin_nCOS_) 2 ]}

Inspection of (3-16) and (3-18) shows that

E1 x = -Hly and Ely = Hlx

(3-19)

Inspecting El' both the x and y components appear to

have poles at 01 = 0. These poles are shown in Appendix B to

be apparent poles. From (B-3) and (B-B), (3-16) becomes

_'l = _x{-VPP (01 )cos20 I+v 2 (01 ) [s in,cos _nSin (O-O n )

2 - 2
+sin_nCOS _] }-ayV2(01)[sin_ cOs_cOs _n sin2 (0-0 n)

+cos 2 _sin_nCOS_nSin (0-en)-Sin 2_s in_nCOS_n sin (0-O n)

n 2
-sin_cos_si _n ]

(3-20)
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where

v2(eI)--
2cosOl!_r (n2-1)cosOl+ (n2 -_/n2-sin201]

En2cosG141a _n 2 -sin 2 01 _E_rCOSGl +%/n2"-'s'"in '2 01 ]

Since the surface variation is given in terms of H(O,_)

and e n, _n are related to the partial derivatives of H(e, _),

(3-20) will be converted to H(e, _) and its partial derivatives

by means of the following definitions:

Xl = H(e,_) ; X3 _ i _H(e,_) _ 1a a _e ; _ a sine

X 2 - a ; a - ; a s ine' _'

a a

= - X3 ; Y5 - r X 5Y1 Xl ; Y_ ro o

Y2 = X2 Yll - ra X4 ; Y6- ar X6
o o

(3-21)

Also define

Vrc (e I ) = COSe lv2 (e I )

Vrd(e l) = coselcos2elvpp(el)

coseiElx = -coselHly = -Vrd(e 1)+Vrc(e I)E a

coseiEly = coselHlx = Vrc(e 1)E b
(3-22)
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Now convert E a and E b to Y's by use of (A-18)

l[
Ea = V sin20sin2_-2Y3sin@c°s0sin2_-2Yssin0sin_c°s_

+_cos 2 es in2 _+2 Y3Y5 cos 0s in_cos_+_5 cos 2 _ ] (3-23)

E b - _[sin20sin2__2Yzsin0cos0sin2__2Yssin0cos2_
2j _

+Y_cos 20sin2 _+2Y3Yscos0cos2 _-y_ s in2 _ ] (3-24)

ii,

3-3 Determination of Direct- and Cross-Polarized Power

In this section, the instantaneous power is calculated

in integral form and separated into the direct- and cross-

polarized components. From Poynting's Theorem the instantaneous

power S(t) across an interface per unit area is given as

S(t) : ReE_.r(t)] X ReE%(t)] (3-25)

With the receiving antenna located on the z axis, the only

component of power that will be seen by the receiver is the z

component. Expanding (3-25) and considering only the z com-

ponent gives

Sz(t) = ReEErx(t)]ReEHry(t)]-Re[Ery(t)]Re[Hrx(t)] (3-26)

The direct-polarized component of power (Sd) is that component

whose E r field has the same polarization as the transmitted

field (i.e., the x component of Er). The cross-polarized

component of power (Sc) is that component having an Er field
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orthogonal to the transmitted polarization (i.e., the y com-

ponent of _.r). The identification of these components in

(3-26) yields

Sd(t) = Re[Erx(t)]Re[Hry(t)]

Sc(t) = -Re[Ery(t)]Re[Hrx (t)] (3-27)

Using

Re[Erx(t_ = ½[Erx(t) + E*x(t)] (3-28)

and the Fourier transforms

_[Erx(t) ] = Erx(0) )

* 4):_[E* (t)] = Erx (rx

-- i

_[Erx(t)Hry(t)] - _ _ Erx(0_l)Hry(0O 0)l)dZo I (3-29)

then (3-27) becomes

_ 1
Sd(t) 2= e-i_t{_ __ [Erx(_ l)Hry(00 - o_I) + Erx(_l)

• Hry(0O 1 - 0_) + E*rx (-001)Hry(_ - °°l ) + E*x(-_l ) "

-
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mm

-i
Sc(t)= _ e-i_t{_ __m[Ery(_l)Hrx(co - _i ) + Ery(_l)

• H* -co) + * -col + *rx(col Ery( )Hrx(co - col ) Ery(-col )

"rx - (3-30)

Now consider the pulsed case where Co(C0 ) is defined in

(2-60) and substitute into (3-13) after taking the Fourier

transform. The results are

_r(_l , %, Co)-
C I r ,.,2=i2kR

o

Hr(_l' Coo'Co)
-ClC 2 e2ei2kR

S
o

F'I cos 01f(CO, COO' T)dS

_1 cos Olf(Co,%, T)ds (3-31)

The substitution of (3-22) into (3-31) yields for the x and y

components

Erx(_l' Coo' Col ) -

i2ColR/C

Cl Co2 e

S
o

[-Vrd(@l) + Vrc(01)E a] -

" f(Col' COO' T)dS

_'ry( _l' %' col) -

i2colR/C

C I co21 e

S
o

f(Col'Coo'T)Vrc(91)_bds
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Hrx(_1' _o' _ - _i ) -

i2(_-_l)R'/c
-C1{2 (_ - _1)2 e

S'
0

• - v ')_dS'f(_ _i' %' T) re(01

ClC 2

Hry(_l' mo' m - m I) - 2_c _
S'
o

i2 (_-_i)R'/c

(co - _I )2 e

iR ,2

• f(_ - C°l' _o' T)[-Vrd (@{)

+ Vrc(_i)Eaids' (3-32)

Substituting (3-32) into (3-30) and changing the order of

integration gives, under the assumption that the Fresnel re-

flection coefficients are not functions of frequency (i.e.,

zero conductivity),

= C21E2 [ ) + (el)E a]

Sd(t) _ _ _ -Vrd(OI R2Vrc

S S'
o o

[-Vrd(0{) + Vrc(_i)Ea] _i
--CO

i2c01R/c i2 (_-_1_ '/c

• _ _ -_21(00-_i)2 e f(_l,_o,T)e

• f(60-_l,_00,T)+t021(_-_l )2 ei2°OlR/C f(_l,_o,T)
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±2(_-_l)"'/c
. e f*(___,%,T)+_(_ I)2 .

i2_iR/c
• e

12(_-_I)R'/c
f* ( -_bI ,C_O ,T ) e f (_'_i '_o' T)

12_iR/c i2(_-_i)a'/c
_<021(CU_CUl) 2 e f* (-tuI ,cuO ,T ) e .

V_c(o._)v_(o:__)Eb_"_

i2(_-_ 1 )R'/c f(___l,_o,T)+_21(___l) 2 i2_OlR/Ce e

i2(_-_I)R'/c
f(o_ 1,0_o,T ) e f*(o01_tu,COo,T)+(o21 (o)_o_1 )2 .

i2mlR/C i2 (o_-_ 1 )R '/C

e f*(-_l ,_o ,T) e f (u)-_Ul ,_o, T )

i2_iR/c i2 (u)-coI )R'/c
-_O21(cO-<O1)2 e fw(-O_l,_o,T ) e .

(_-_)
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Let

fl(t) = _-l{ei2_R/c f(0_, _o' T)}

f2 (t) : _-i{ ei2_R'/c f(_' _o' T)} (3-34)

Using (3-29) and

" dt- "- S

Im[g(t)] = _i[g(t) - g*(t)] (3-35)

gives

[d2fl(t )]im[d2 f2 (t)

Ira[ '-dt2 ] [ dt2
= ,.._ ,_ e-i°_t {_

• f2 (__(_I)+t 21(__c_ 1 )2f_(-OLd1 )f2 ((__0_i)

+_2 (__CUl)2 fl (el)f_(_l -_ )-C_2(_-_I)2 .

(3-36)

Realizing that (3-34) substituted into (3-36) is identical to

the terms inside the brace of both equations of (3-33), it is

necessary to evaluate

[d2 fl(t )]im[d2 f2 (t) 1 -d2fl

Im[ dt 2 j L dt2 1 d2f2
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+ (3-37)

Taking the inverse Fourier transform of (3-34) yields

0

-_%71
fl(t) = e U(71)

-i%72
f2(t)= e U(72) (3-38)

where

then

71 = t - 2R/c

772 = t - 2R'/c

_w_]:_w_]-U?w_

d2fl _ ..(o2 -_ o71

dt_ - o e L(WI)
(3-39)

where

L(71) = U(771) + _--i2A(71) _ "-'2"iA'(71)
O 6D

O

#w_]=_r_]__w_0Pw__-]

F_I ?_T],,,[_1 = _, - _' _'2LW2j

6(x) is the Dirac delta function

_'(x)= d6(x)
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-i%C.1-_2)
- e

L(_) L(.2)

-ic% (W 2 -_i )

L(_I)L_(_2)- e

i% (nl+_ 2 )

• Le(_I)L(_2 ) + e

L'(_)L'(.2)]

which can be expressed as

4
[d2fl i [d2f21 -_ -"

im1_Im|_ = _-- _ e laJm°_l "

hat _ L_ j j=l

• e-ibjm°W2 Lj(_ I)Lj (_2)

where

a I = +l

b I = +i

a2 = +i a3 = -i a 4 = -I

b2 = -i b 3 = +1 b$ = -i

2_(%) _(_i)
+ --

Lj(_I) = u(_ I) + ,_-iaj_ 0 ) (-iaj_o)f

2A(n 2 )

Lj(_12 ) = U(_ 2) + __'ib_jc%)

In order to integrate (_-_3), it is necessary to express

dS and dS'. These are
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dS = Jr_ sin @d@d_

dS' = J'(r') 2 sin @'d@'d_'
O (3-42)

where

rO = a(l + Xl) and r O a(l + X2)

then E
a and E b can be expressed as

2

EadS = a___jEc sin Od@d_

2
a

EbdS = _-_ E d sin OdOd_ (3-43)

Using (3-21) gives

Ec = (I+X l)2sin2osin2_-2 (I+X l)x3sinocososin2_

^ . +_2 2
-2 (l+Xl)x5sin_sln_cos_ X3COS Osin2_+2X3XsCOSOsin_cos _

+_cos2_

E d = E(l+Xi)2sin2@sin2_-2(l+Xi)X3sin@cos@sin2_-2(l+Xl)X5 -

s in@cos2 _+_3cos2 @sin2 _+2X3_cos @cos2 _-X_s in2 _
(3-44)

Considering an ideal conical source of vertex angle 2@ a pointed

at the center of the moon, the illuminated surface S is de-
O

fined by
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(3-45)

Then the substitution of (3-42) through (3-45) into (3-33)

yields

4 . ia [_j(l+Xl )2Vrd(81 )Sd(t) =-_BI _ ajbj i 'i _

j=l -_ -_ o o

+ j E -J'(l+X2 {) + j _-i "

-io% (aj Wl+bj W2 )
e

? .?
R-R'-

Lj (_! )Lj (772 )sin0dOsinO' dO' d_d_'

4 _- _ (_ _ (,)Sc(t) =-BI Z ajbj _ _ _a Vrc(8 I) Vrc 01j j' 'EdE -

j=l -_ -_ o o

-i_ ° (aj _l+bj 72 )
e

R2R ,2
Lj (_11 )Lj (772 )sinOd@sin@' dO' d(pdq) ' (3-46)

where

C2 4_4
i(2 a o

B 1 - 64_2c5
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3,4 Discussion of the Direct- and Cross-Polarized Power

Integrals

The integral equations (3-46) for the direct- and cross-

polarized power are valid under the following assumptions:

i) The radius of curvature is much larger than the

wavelength of incident radiation.

2) Shadowing effects are neglected.

3) Multiple scattering is neglected.

4) Only the far field is calculated (k2R ° >> 21n21)

5) The transmitted pulse contains an integral number

of cycles.

6) The transmitting antenna behaves as a short

dipole at all frequencies.

? ) _r < Cr

These assumptions are just those needed for the validity of

the concept of differential reflectivity; however assumption

6 needs some further discussion° Since both the direct- and

cross-polarized components are very dependent upon the fre-

quency description of the pulsed source, it is necessary to

have a complete frequency description of the radiated signal

before attempting to match experimentally obtained data with

the solution of these integrals. This frequency description

is lacking in most experimental situations.

If H(@, _) is known explicitly the two components of

power could be obtained by solution of the integrals in (3-46).

Also, the effect of shadowing could be taken into account by

suitable modification of the limits of the integrals such that

only the illuminated regions were integrated.
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An examination of E c and E d given in (3-44) indicates

that, if H(0, _) does not vary with _, the cross-polarized

power vanishes due to _ and _' integrations. In the event

that H(0, _) is identically zero, the _ and _' integrations

become very simple and the @ and @' integrations can be sep-

arated into identical integrals. Thus these integrals con-

tain also the results for pulsed source reflections from a

smooth sphere. However, as with all electromagnetic reflec-

tion problems, the integrations can be accomplished only by

infinite series or by some approximate method.

Further, these integrals contain the solution for all

time with the unit steps and delta functions in the integrand

limiting the integration to the proper range. If a trans-

mitted pulse had been assumed which contained continuous

derivatives, then the amplitude of the terms multiplying the

delta functions would be zero.
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CHAPTER/4-

EVALUATION OF EXPECTED POWER FOR A GAUSSIAN SURFACE

4ol Determination of Expected Values

In this chapter, the deviation of surface heights,

H(8,_), from the average sphere of radius a is considered

to be a random variable. It is assumed that H(O,_) is a

gaussian separable random process, real and continuous in

the mean over the surface of the sphere, with zero mean,

variance o,2 and normalized covariance function p(8' ,8,_' ,_).

Since it is desired that H(O,_) represent a continuous sur-

face, it is required that H(0,_) be three times mean square

differentiable. This is assured if p has continous partial

derivatives up to and including the fourth order. [Hoffman,

1955; Moyal, 1949, po 1671. Also, since it is desired that

H(8,_) be a stationary random process, the covariance func-

tion p will depend only on the distance d between the two

points (Q,_) and (8' ,_' ). An exponential covariance

function will be assumed, but exp(_Idl) is not satisfactory

since it does not possess the required continuous derivat-

ives. Consequently rather than modify exp(-_!dl) at d=0,

the form exp(-_d 2) will be assumed for p. On the Surface

of the sphere, the distance d is given by a 7, where 7 is the

smaller spherical angle between the two points. Therefore

2 2

p(e,e',q),q)') = exp(_) (4-1)
6"
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where 6 is the correlation distance°

If 6 << a, and approximating y2 by

7 2 % 2(i - cos 7)

where cos > = cos 8 cos @' + sin _ sin _' cos

then

where

= exp [-/_f3(iB,IB' ,I_)_

/3 = 2a2/6 2

f3(e,e',$) = 1 - cos 8 cos e' - sin O sin _' cos $.

The P defined in (4-3) differs from the original p of (4-1)

only for very small values of P,

Under the above conditions, the joint probability

density of H(8,_) and H(O',_') is

p[H(_), .(o'_')] =

(e,_)] 2• - + _(e',_')

Letting

1

2_o.2 #_p2

] 2 -2pH(e ,_ )H(e , ,_ ')] /2_2 ( I-p2 )}

then

p(_l,_;2) =
exp[_[_2 + _21. _ 2P_1_2"1/2 (1 _ @2)_2

2_ ffl - p2

Under the assumption that the distance to the sphere is much

greater than the radius of the sphere (ioeo, D >> a), then, as

far as the phase term goes,

D -[a + H(IB,q_)'_ .q (4-6)R
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Let

then

1 = t - 2(D -a_) _2 = t
c

c c

_ 2(D - aq')

C

_2 = _2 + _2_2

Now consider the following expected values

<XkX_ e-i0_o (aj _l+bj o 2 )Lj (W1)Lj (o 2 ) _ = e

where

-imo (aj _l+bj _2 ) (k,£)
N

N_('k,_) = <XkX _ -i_°(ajal_l+bjff2_2)Le j (_I$1+_I)Lj (a252+_ 2) )

where the notation < > indicates the ensemble averages.

Real_ing that

_(_l_l + _l)

az_(°'l$1+ _i)

= A(°'I_I+_i)

then

Lj(_I_ I + _I)Lj(_2_ 2 + E2 ) =

where e

3 _n-1 _ _m-i [U(el_I+_I)U(_+_2 )]
I en _-1 gm _m-l_l

n=l m=l

2 2

1 = 1 e2 = (-i_ b ) ; gl = 1 ; g2 =
o j f'-i_°oaj )

(4-io)

1 1

e 3 - (_i(.bobj)2 g3 = (_it%a j)2

which upon interchanging expectation and summations yields
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3 8n-i 3 8m-i

N(k' ) = I e _. gm m-i

n 8_-i 8_in=l m=l

-i_ (aj_l_l+bjs2_2) .
<X. e o

1

• u(_l_1 + _l)U(_2_2 + _2)> (4-ll)

For the X = 1 case, consider n=l, m=l
O

-i_ l+bj )
(o,o)= <e °(aj_l_ _2_2 U(_I_I+_I)U(_2_2+_2)>NIl

(T-_I)/Sl -i_oajSl_ 1 _ (T-_2)/_2 -i_obj_2_ 2
= J e J e °

-_i/Sl -_2/s2

•p({l,_2) d_2 d_1 (4-12)

If _ < I00 meters, the error functions which appear in

each integration can be reasonably approximated as

L (xl - (x2 U(X 1 ) U(X 2 )
I

(4-13)

Then (4-12) becomes

[i -QJ [N ,o) = e U(, 1 ) U( 2 )

j2 )

-_ + ) ).= <e °(aJ(_Z_Z bj(_2_2 > <U((_Z_l +[1

"U(°'2_2 +_'2 ) >

where

QJ = Tpg [q2 + q .2 +2aj bjqq'_]

p = 2k2a

2k2_2
g =

a

(4-14)
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With this justification, N (k'_) will be approximated by

N (k'Z) <XkX £ -i_o(aj al_-l + bj_2{ 2) (_i( +_i ) -
= e > <Lj 1

• Lj(_2_2 + _-2 )>

= Mk,Z <Lj_I_ 1 + _I)Lj(_2( 2 + _2 )>
(4-i5)

The Mk, Z terms are calculated in Appendix C. It should be

noted that the coefficient of the Mk, ° terms for k = i, 2 is

a factor g larger than that of the k = 0 term and for k = 5, 4,

5, and 6 is a factor _g larger than that of the k = 0 term.

Therefore, for an infinite series expansion of the reflection

coefficients in the integrand of the power integrals of Chapter

5 to be a convergent, a sufficient condition would be g_ < i.

This assumption will be made for the remainder of this paper.

Now the ensemble average of the direct- and cross-polarized

powers from (5-46) can be written as

4
IT O O

<Sd(t)> = -4B 1 _ __$_ !IT _o a _oa < [-J(l + Xl)2
j=l ajbj

Vrc(O1)
" Vrd (01) + j Eel _-J'(I+X2)2 Vrd(@l)+ Vrc(Ol)j, Ec]

-iCOo(aj_l_ 1 + bja2_ 2)
e

R2R ,2

-i_o(aj_l+bj_ 2)

> < Lj(_I)Lj(_2)> e

• sin OdO sin O'dO' d_d_'

¥

_ _IT _Oa _Oa < [Vrc (O1) Vrc(O{)]
<Sc(t )> = -B 1 j____ajbj _i

-IT -IT o o
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e-i_°(aj_l_l+bja2_2_R2R ,2 ) ] ) <Lj (_71)Lj (_72) > •

-ieo (aj_l+bj_2 ) (4-16)sin @dO sin O'dO' d_d_'e

Since D >> a, then, as far as the amplitude is concerned,

R _ D for all 8. Neglect terms containing more than two X co-

efficients and use the relations

q = cos 8 _i - q2 = sin 8

q = cos 8' _i - q,2 = sin 8'

= cos 8 a

J('÷Y _2v 181) * _c J ) )" -"i' rd _ " J _a _2 Vrd_l

Vrj !8{) ] _i_o (aja i{ l+bj a 2{2 ) 6 k

k=o ,¢,.=o

• F '_) (q) g

< Vrc(81)j VrcfSi)j,EdE _ e-i_°(ajal_l+bj_2{2) >

6 k
(k,_)

k=o _=o

(q:,,_') %,% (4-17)

then (4-16) becomes

4 6 k _ _ i i

I I S<sa(t)>
D_- j=l k=o _=o -_ -_ _

-i°3o (aj _l+bj _2 )

• F(bk,_)(q,,_,) Mk,_ (Lj(_I)Lj(_2) > e
dqdq'd_d_'
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B1 V V 7ab__ 1 iF(k'_)(q)F (q')
(Sc(t)> = - V j_l k_o %%3 30 ic

-i_o(aj_l+bj_ 2)

(k, Z) (_,_,) Mk _ <Lj(WI)Lj(W2)) e dqdq' d_d_'• glc

(4-18)

Further, realizing that the _ and _' integrations are

around a circle, the limits could be (-_,_), (0,_) or (k -_,

k + _) for any k. Therefore, let the limits on the _' integra-

tion be (_-_, _+oT) and define @ = _' - _. This substitution is

is only a function
very helpful in the integrations since Mk, %

of _. Then (4-18) becomes

a_ 4 6 k __

'_ a .b. F a

(Sd (t)> : - _ j_=l k_o _eo ] ]_Tr _ _ -_

• F(k,Z)(q,,_,_) Mk,_ (Lo(nl)Lj(n2)> -i_°(aJ _l+bj_2)e d_dq dq' d_

4 6 k

• ic
(So(t)) = - V j_l k_=o _=o jb F (q)F (q)

-iXOo(aj_l+ b _ )

(k,_) (Lj(_II)Lj(_2)> e j 2 d_dq dq'd@

(_-19)

(_,z) (q,_) F(k' _) (q,_,_)where the functional relations for F a

(k,Ic (q)' F ' (q') and g2c (_' $ ) are given in Appen-

dix D. These terms were calculated using the following iden-

tities

Y3(I +XI) = X 3

Y/$(I + X 2) = El4

Y5 (I+ X I) = X 5

Y6 (1 +X 2) = X 6
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X O = 1 Vrm(q)= (l_q2)Vrc(q) (4-20)

and the substitution of (3-44), (B-16) and (B-18) into the

first expectation term of the integrands of (4-16).

4.2 Integration of EKpected Powers

In order to use the expected values defined in (4-19) by

the integrals, it is necessary to integrate them by some method•

These equations are not very amenable to computer solution in

their present form due to the highly oscillatory terms in the

integrand, however, a reasonable approximate solution for a

specific range can be obtained by the following methods. For

(k,_) and
the _ integration, in the (Sd(t) > integral only F a

b( are functions of _ and in allF k'_) and in <Sc(t ) ) only g2c

cases, the _ variation is in simple trigonometric form. The

integration of (4-19) yields the following results.

6 k

-2BIV _ _- _ _v _i

(Sd (t)> = D-q[- j_l k_=o _=o -_

-i0Oo(aj_ l+bj_ 2 )

• Mk,_, (Lj(_I)Lj(_2) > e

k

• I ajbj STr _i <,iF(k,2, ) ),,
2,_o -w" o_ ol

-i0_o(aj_ 1 +bj_ 2)

• (Lj(_I)Lj(_2) > e

0 -id (q) F ' (q') -

O_

6

dq dq' d_ - _ j=l =o

(q')=3r Mk, 

dq dq' d_

6 k

c I a _-BI_ I kZ=o _=o jbj(S (t)> - D_-- j=l
-Tr

 iF(k, ')
e,, o_
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-i_o(aj_l+bj_ 2)
" =3c_(k'£) (_) Mk, %<Lj(_I)Lj(W2)> e dq dq' d_

(4-2l)

The values of F ' (q), F ' (q') Flr

(q').F '_) (q),F '%) (q')'=3_

listed in Appendix D, where

(k,Z) (_) are
(_), and g3r

Vrs(q) =- 2Vrd(q) + Vrm(q) (4-22)

It is necessary to solve an integral of the form

__,,, (= C 1 + bjC 2)_o k-j
• e dq dq

j(WI)Lj(W 2)) -

(4-23)

This integral is solved in Appendix D. From (D-16)

__[ -ieoto(a'+b ) (k,_)(I,i._) e 3 J -G (qi ,i _) -

-i_ a .t

-i_°b't (4k'_)(l @) e + Gi (q2,q2,_)_Ua-e 3 o _ G 'ql' o 3 o k,%)

.+bj)-icD O (to-t I) ( a 3
• + Gi k'_) (q2,q2,$)_Ub + [G: k'%) (_,_,@) e

3 -i_obj (to-tl) (k,_) (_,• - G k'_)(q2,_,_ ) e - G_ q2,$)

e-i_oaj(to-tl )
+ Gik'_)(q2,q2,$ ) _ U c (4-24)
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Then (4-21) beeomes

- 2Bi _
<Sd(t)>- D_

6 k

v v
o

/ L L
j=l k=o _=o

4 6 k

S/_ /_ L a3 j

j=l k=o _=o -_

' g3r (_ ) r ' d_

-7r

4 6 k

-BIV F" _' V .b. _ a (k'
(Sc(t) > - D _- /' /' /' a3 ] =3 c

j=l k=o _=o -_

where the subscript on I (k'Z)

(k._)d__) (_)Ic

(4-25)

identifies the F(Ik'Z)(q) and

F_k'_'},(q')( functions from Appendix D.

Since the time averaged (over one cycle) power is desired

and G (k'_') terms are slowly varying compared to a cycle of the

transmitted power, the time averaging may be done by just

eliminating those terms of I (k'Z) which have a high frequency

term. Thus, for I (k'Z) considering the terms separately.

.÷b ] will vanish for j = 1 and 4;Terms containing exp[-i_ot(a 3 j

and terms containing exp t-icD b .t] will vanish for all j. Then
o 3

(Sd(t)> =

4

/, a.bJJ
j=l

6 k 3

D,'ri-- ,_ a.b.33 G (I,I,V_) + "

k=o Z=o -_ j=2
4

_k _), (ql,ql,_)]U +a Ta'b'_3 3 IG_ k'_) (ql'ql'_) "
G

j=l

Ik _,) , G(k,_,) , @)+ G!k,_.)(q2 q2,_)] Ub"• - G ' (qi'q2 _) - 2d (q2 ql' ;d '

4

• + ajb3 -ld 3 3 _2d

j=2 j =i
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The use of (4-27) and (4-28) further reduces (4-26) to

-2BI_

<Sd(t)> - D_-- / ajbj
j=2

6 k

k=o _=o -_

_ _) ,e) u +" G " (ql,ql a

+ G ' .@) Ub

BIV

• (q2,q2,_)I Uc_d_ D_--

.'_)._,_,e. + G '

6 k

V .b /, /, (k,_)
/' a3 J k=o _=o -v [_ir
j=2

• (Z,l,e) + G ' ] r_<_._> _>+_r.'>(ql'ql'_) Ua + L 2r (ql'ql '

" L(q2'q2 '_ Ub + ulr 2r (q2' q2 '_ Uc

(k, z )
" g3r (_ ) d_

_) _) _)
(Oc,t,> /. a.b ' (_) ' (i i,_) '

3 J
j=2 -Tr

• (ql,ql,._l U a

SSnce the G "(k Z)' terms in (4-29) contain large numbers of terms

containing derivatives of products of several terms, some method

of ordering the terms is necessary° Since <Sd-_> and (_)

are real quantities and the Mk, _ terms are real for k=0, _=0

and k_ Z, _0, and imaginary for Z=0 [See (D-16)] then it would
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be expected that the imaginary terms would cancel out for k=0,

L=0, and k)Z, Z_0 and the real terms would cancel out for _=0.

Inspection of (D-16) and noting the summation over j, this

conjecture proves correct. The G (k'Z) terms will be ordered

by investigating the coefficients of each in terms of the

factors /3 >> 1 and pg >> i. The coefficient of the Mo, ° term

is i. The maximum coefficient of the Mk, o terms is _g and of

the Mk, Z terms (k>_ _, _0) is _2g2. The second derivative

of M has a maximum coefficient of (_pg)2 due to the deriva-
o,o

tive of the correlation function. Therefore in G 1 the second

derivative of Mo, o, the first derivative of Mk, ° and the Mk, _

(k_Z. _O) terms are of equivalent order in terms of the

.th
coefficient g_/p. If a matrix were constructed with the 3

column determined by the jth partial terms of G I, and the rows

determined by the number of X's in Mk, _ then one would find

that the diagonals of the matrix proceeding upward from the

left are of the same order with the largest term being in the

upper left hand corner and these diagonals are alternately

zero and non-zero.

The use of this ordering technique, (E-20), and evalua-

tion the first two non-zero terms yields

6 k _ 2_Vr2s (i)[ I- g_ ]
Gld 2 p J

k=o _=o -Tr P

+ 4_ g_ V' (i) Vrs(1) + O(g2_2/p 4)
p rs

where O(g2_2/p 4) means of the order of g2_2/p4

(4-30)
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This evaluation requires the use of tables of Appendix D,

Appendix C, and differentiation of the product of the terms

contained in these places. The terms containing i/(l-q12 )

cancel out and a limiting process must be done as indicated

in Appendix E.

The integrations of G ' and G ' are much more

complicated due to there being (l-q12) and cos n_ terms.

Considering the Mo, ° term, an indication of the problem can

be seen. These terms contain a (i-q12)2 cos 2_ coefficient.

The derivatives of the correlation function are the only way

in which terms which will cancel this coefficient may be

obtained. Reference to Appendix F, which contains the deriva-

tives of p, shows that to obtain a term of the form cos 2 _/

2) 2
(1-ql requires the product of two or more partial deriva-

tives of p and the sum of the orders of the partial must be

at least 4. Therefore, at least the fourth partial of M
o,o

must be taken. By the same reasoning at least the 5rd

partial of Mk, O and 2nd partial of Mk, _ (_0) must be taken.

Consequently, the determination of the nonvanishing terms of

the integrand requires long tedious, but elementary, differ-

entiation and algebraic manipulation. The integration of

these manipulations yields, keeping only the largest term,

6 k
2 2

(k,Z)(¢) de = 0 (9__)

k=o Z=o -_ P

: c ' (¢)d¢ 124 v
k--o 4=0 -_

2 (1)
2 rc

P

(4-31)
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For the G 2 terms another ordering criteria can be added.

From (E-27) it can be seen that (1-cos _) terms reduces the

coefficient by at least I/_D 2 and (l-P) terms reduces the

coefficient by at least I/D2° Thus the maximum coefficient

that each derivative will have after integration can be

obtained and is shown in Table 4-1. Then retaining only the

first term

6 k

V v iv _(k,_)
/_ i_ _ G2d (ql'ql '#)

k=o Z=o -v

g2 2VZrs(ql)4
P _(Pgq21+2)

3ql 4 ]

_.5/21

6 k

O 2r (ql' ql '_) g3r

k=o _=o -_

° 1/2

_ (pgq2+2) (l-ql 2 )

g2_2V2 (ql)
re
4

P

6 k

T T

k=o _=o -T[

_VG(k,_ )(ql,ql _) (k,Z)(@) d@ -_2c ' g3c

(l=ql 2 )1/2

2 2 2
g _ Vrc(q I)

4
P

(4-32)

The substitution of (_-30), (_-31), and (4-32) into

(4-29) and the summation over j gives
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Table 4-1

Maximum Coefficient of
i BnMk,

n (n-i)P _qi_q,

(1,0) (2,0)

(3,0) (4,0)

(5,0) (6,0)

4 5 6

(0,0) I g2_21p2 _ g3_3/p3

g3jB3/p3

g3_B3/p3

(1,1) (2,1)
(2,2)

1) 4, 1)

,_ 2) (6,

3,3) (3,4)
4,4)

;5,3) (5,,6,3) (6,_/

(5,_, (6,5)5)

g3_2/p3 / g4_3/p4

g3_2/p3 g4_3/p4

g3_3/p3 g4_4/p4

g3_3/p3 g4_4/p4

g4_3/p2 gS_4/p3

g4_4/p2 g5_5/p3

8 ....g4_/p4

g_3/p4

g4_/p4

g3_3/p4

g5_4/p5

g5_5/p5

g5_5/p5

g6_5/p4

g6_6/p4

g5_/p5

Note: pg > 1 _ < p

7T



<sd(t)> __ 4BI_ [2_Vr2s i- (1)Vr_(1)

2 2

IVrs(ql) V(q I) )](i-q12)5/2 + re 2 i/22(i-q_ )

p 2_ [3ql4_ ( v 2(ql)rc 2 5/2 + v 2(ql)rc 2
%/pgq12+2 (l-q I ) 2(l-q I )

+

÷ Vrc (q2) l,l3924 ; v 2(g2) 2
l rs + _ ,.

' 5/2 "I

#pgq22+2 1(_-q22) 2(_-q22) ; ]
U.

D

+ [21r Vr2s(Ol ) (i- p'_) + _p V'rs((X)Vrs(_)

P _pgq 22+ 2 (i-q22) 5/2 +
Vrc2(q2) )]

2 (i-q22 ) 1/2 Uc

2Bl_g2;52

<Sc(t) > =- Dl4p 4 12_- v 2(L) + v 2(q I)rc rc

2_ _ql ;%

U +
a [_3ql _v 2 (ql)

rc

2
(1-g I ) (pgg12+ 2)

+
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+

4 2
3q2 Vrc (q2)

2) (pgq22+ 2) lub + [124_v 2(_)+# 'rc 2v
/3(i-q22)

3q2 4 Vrc 2 (q2)
Uc (_-33)

2
It is necessary to evaluate the C 1 term included in

B 1 in terms of normal radar parameters in order to obtain

the power received by the radar. The matching of the power

in the main lobe with that from a short dipole yields

[Erteza, Doran, and Lenhert, 1965]

el2 _ PT GT c3
2 (_-34)

2_- c2_ o

where PT =

G T

peak power radiated by the antenna

is the gain of the transmitting antenna over

an isotropic antenna

Then

B 1

PT GT a4k22

128 7F3
(4-35)

The received power, Pr' is given by

p _.

r

<S--T'_-->GR A2
(4-36)

where G R = gain of receiving antenna over that of an

isotropic antenna
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= wavelength at frequency o_O

Then, the substitution of (4-35) and (4-33) into (_-_6)

yields in terms of G, 6, and a

PTGTGRA2(Va2) { [Vr2s(1) (1 _ 2_2_+
Prd-- (_)3 D4 L 4 --_'

({)2v' (1)Vrs(1)rs

3ql 4

_/2_/3(4k22e2q12 + 2)

Vrs2(ql)
(l_ql2)5/2 +

Vrc2 (ql) 17

2 I/2_ Ua
2(_-qI )

4
1

2) 5/2 + ' 2 1/2
l-q I 2 (l-q I ) .

+ 3q24 ( Vrs2 (q2)
_/4k2202q2 + 2 (1-q22)5/2 +

Vrc2(q2) 17'

2(l-q 2 )

Vrs 2(e) 2o2_ e 2.U b + _ (i -76 ! + (-_) Vrs(_) Vrs(_)

4 3q24 Vrc2(q2 )

2s2q22 + 2

Vrs2(q 2)

(i_q22)5/2

+

2 1/2

2(1-q 2 )

P
rc = PTGTGR A2 (_a 2) (_)4 { [52Vrc2 +

(4_)3 D4
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+ 1 3q14v 2(%)
rc +

2_ (l-q12)(4k22_2q12 + 2)

3q2_tVr c 2 (q2 ) ]

(i-q22) (4k22_2q22 +2)

[ 2(_) 3q22 Vrc2(q2 ) ] }
+ uc (4-37)

+ 32 Vrc _2v_(l-q22)(4k22_2ql 2 + 2)

where Prd = direct-polarized received power

Prc = cross-polarized received power

4.3 Discussion of Integral Solution

The approximate solution obtained to the integral equa-

tions (3-46) for the direct-and cross-polarized received

power is given in (4-37) and requires several additional

assumptions over those given in Section 3.4. These are:

i. The deviation in surface heights can be represented

by a separable qaussian random process, real and continuous

in the mean over the surface of the sphere with zero mean,

variance _2 and exponential normalized covariance function p.

2. The standard deviation of H(@,_) is less than i00

meters and greater than a wavelength.

3- g_ < i; [i.e., (_/6) 2 < i/4k2a]

4. The correlation distance _ is much smaller than the

dimensions of the illuminated area.
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• °

5- The conductivity has negligible effect on the reflec-

tion coefficients.

None of these additional assumptions may be relaxed without

some increase in complexity of the resulting solution , which

is already complicated. However, some of them may be relaxed

without exceeding complication. The first assumption was

necessary to be able to define the expected values of the

random variables and consequently could only be relaxed if

another suitable random description of the surface could be

found. The stationarity of the surface (_2 not a function

of g or _) appears most realistic, but could be modified.

The form of the correlation function could also be modified,

but would require a function which possessed finite deriva-

tives. Also, the requirement that _ < i00 meters could be

relaxed, but only with a great deal of complication. This

would require the integration of error functions of complex

arguments which are available only in the form of infinite

series or tabulated values. All of these changes would only

modify the expected value functions.

The assumption that _ was greater than a wavelength was

made to reduce the infinite series S(s,v) to a single term

and this single term can be numerically shown to be less than

5_ in error for any value of s or v. This infinite series

could be tabulated and its value used from a table without

a major increase in complication.
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The fourth assumption was again made to reduce the

complexity of the resulting equations and could be relaxed

by adding only the two G terms in the region U b. This

would not modify the results greatly, adding only hyperbolic

sines and cosines, but would increase the already tedious

calculations somewhat.

Assumption 3 is the most critical and is a sufficient

condition for the convergence of the two series obtained.

The first being the infinite series expansion of the reflec-

tion coefficients and the second being the infinite series

obtained by the repeated integration by parts of the q-q'

integrals. These series were investigated to determine if

a more relaxed condition for convergence could be obtained,

but none could be justified due to the extremely long and

tedious calculations. When the new computer language FORMAC

(For____mula M__anipulation Compiler) becomes generally available

on accessible machines, it is recommended that the G func-

tions be calculated by this means to determine if a more

realistic convergence criterion can be obtained. FORMAC

will differentiate and manipulate series of algebraic quanti-

ties without resorting to the requirement of using numerical

values.

A possible method for reducing the complexity of the

determination of the convergence criteria lies in an infinite

series expansion of the reflection coefficients. This expan-

sion appears to place the most serious limitation on the con-

vergence of the series of integrals. Since the Fresnel
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reflection coefficients are slowly varying functions of angle,

some transformation or expansion may exist which allows the

determination of a more rapidly convergencing series for

larger values of _/6. An investigation of the first few

terms indicates the convergence criterion of the present

series may be k 2 _2/6 < i.
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CHAPTER 5

RESULTS, INTERPRETATIONS, AND CONCLUSIONS

5.1 Results and Interpretations

The integral expressions for the direct-and cross-

polarized power are derived (3-_6), for the case of a

pulsed source. If the steady state values were desired

the L. terms would be replaced by unity. These integral
3

expressions are valid under the assumptions discussed in

Section 3.4 for an arbitrary rough sphere. These expres-

sions show that if H(g,_) is not a function of _, then

the cross-polarized power is identically zero.

The approximate solutions are obtained for the ex-

pected values of the direct-and cross-polarized received

powers from a normally distributed surface (in height from

a mean sphere), (4-_7), under the condition that the square

of the ratio of the standard deviation of height to the

correlation distance is less than one over the 8v times

the radius of the sphere in wavelengths (i.e., _2/62 < i/_k2a ) .

This solution shows different characteristics in the three

regions defined by the step functions U a, Ub, and U c. These

regions are illustrated in figure 5-1. The first or the

nose region (U a _ O) is defined by the conditions that the

leading edge of the pulse in space has intercepted the sphere

and the trailing edge has not yet reached the sphere. The

second region or mid-region (U b _ 0) is defined by the
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conditions that the leading edge of the pulse in space has

not yet reached the intersection of the sphere and beam

edge and the trailing edge has intercepted the sphere. This

region may be non-existent for a sufficiently long pulse or

a sufficiently narrow beam angle. The third region or tail

region (U c _ 0) is defined by the conditions that the lead-

ing edge has passed the intersection of the beam edge and

the sphere and the trailing edge has not yet reached it.

The characteristics of the return in each of the

above regions are discussed separately. The effect of these

results on the estimation of the statistical and electro-

magnetic properties of the surface are discussed. The

results are then compared to experimentally obtained data

from the lunar surface.

Source

Pulse

Beam

Nose Region Mid-Region

o 0

Figure 5-1

Tail Region

0

Diagram Showing Three Regions of Return



Figure 5-2 shows the theoretically derived expected powers

for an index of refraction of n=l.5, a relative permeability

_r=l.O, a=l.7 x 106m, _o=425 Mcs and T=2ms. Also shown in

figure 5-2 is the experimentally obtained data from the moon

[Mathis, 19633 for the same a, _o' and T.

In the nose region, the amplitude of the cross-polarized

received power is at least 150 db below the amplitude of the

direct-polarized power for the parameter values of figure 5-2.

The amplitude of the direct-polarized return is determined by

the reflection coefficient Vrs2(1) of the slowly varying

(with location) surfaces for which the approximate solution

is valid. Thus, the index of refraction may be determined

by using only this value. The rapid rise of the pulse will

not be observed in the receiver output. Consequently, the

pulse width must be considerably longer than the rise time

of the receiver in order for the pulse to reach its maximum

value. The amplitude of the cross-polarized return is

determined by both the reflection coefficient Vrc2(1) and

the surface roughness properties (i.e., _/6_). With

present day radars this signal could not be received for

the lunar situation. However, referring to figure 5-2,

the cross-polarized return of the experimental data is only

12 db below the direct-polarized return. Evans [1961] states

that in most experimental lunar data the cross-polarized

return is from 12 to 15 db below the direct-polarized return.

Since the amplitude of both the direct- and cross-polarized
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returns are essentially the steady-state values for full

illumination of the moon, a difference in the frequency

description between the theoretical and experimental anten-

nas cannot account for the discrepencies in the cross-

polarized return. Therefore, the surface of the moon

must have a standard deviation of heights to correlation

distance (i.e., _/6) much greater than 10 -4 .

In the mid-region, the amplitudes of the direct-

and cross-polarized differ by only 2 to 7 db except in

the early portion of the mid-region. The cross-polarized

amplitude in this range is down by over 30 db from the

nose region cross-polarized power. Thus this amplitude

is even harder to detect. The amplitude of the signals

in this range, particularly the direct-polarized power,

are very dependent upon the frequency description of the

source. Because of this dependence, it is extremely

important that the frequency description of the source

used in an experiment be known before attempting to

explain the experimental data using the results of this

work.

Also in this region, the description of the covariance

function will affect the amplitude variation of the signals.

Figure 5-2 shows a 30 to 40 db variation within this region.

When the index of refraction was varied from 1.5 to 6,

the shape of the curve for either polarization in the mid-

region did not change appreciably from that shown in figure 5-2,
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but the amplitude did. The shape of the curve is determined

by the change in the reflection coefficient across the region

and the assumed covariance function. The variation of the

reflection coefficients across the region was about 15 db.

If a solution had been obtained for a perfectly conducting

surface, this variation would have been non-existant and the

change in shape would have been due entirely to the covariance

function. Fung [1965] made this assumption and matched statis-

tics to the lunar return. However, from the above discussion,

it is evident that this procedure will give erroneous statis-

tics due to neglecting of the reflection coefficient variation.

In the tail region, both the direct- and cross-polarized

powers show a large step, except in the case of full illumina-

tion of the surface. This step is due to the use of the ideal

conical beam. If a more realistic source description were

used the lower limits of integration would be 0 and the reflec-

tion coefficients would vanish.

Considering the approximate solution in all ranges, some

of the terms seem to converge even for larger ratios of _/6

(i.e., 1/4 k2a < (_/6) 2 < 1). If this condition is assumed

valid for the problem, then additional terms must be taken

into account in the integration of the G 2 terms as indicated

in Table 4-1. These additional terms would change the shape

of the curve in the mid-region and possibly the separation

of the direct- and cross-polarized powers in this region.

With such a solution, just comparing the amplitudes of the
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steady-state solutions (i.e., the G1 terms since the G2

terms will not appear), it would be necessary to have a

_/6 of the order of i/i0 to be able to match the experi-

mental lunar returns in the nose region.

Using just the first term in the nose region of the

direct polarized return, a minimum value for the dielectric

constant of the moon using Mathis' data is (ave = 1.82 (0"

5-2 Conclusions and Su_@estions for Future Investigation

The most important results of this investigation are

as follows :

i. The integral expressions are obtained for the

direct- and cross-polarized reflected power from a rough

sphere.

2. If the deviation of surface heights from the

average sphere is not a function of _ then the cross-

polarized power is zero.

3- A rigorous field theory formulation of the pulsed

return from a slightly irregular sphere. This result

clearly shows the characteristic shape of the lunar back-

scatter.

4. If (_/6) 2 < 1/4 k2a, the value of the index of

refraction can be obtained from using the direct-polarized

received power in the nose region. An estimate of the

statistical properties may be obtained by using the amplitude
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of the cross-polarized received power in this region in

conjunction with the amplitude of the direct polarized

received power. The shape of the received power curves

in the mid-regions indicates the validity of the assumed

covariance function.

5- The Re[E x H*] can be used for the time averaged

power from a pulsed source in the mid-region only if

_k22_2 > 3- The Re[E x H*] is not valid for the time

averaged power in the nose region.

6. The amplitude of the cross-polarized return is

a function of both electromagnetic and surface roughness

properties. If the statistical model used in this investi-

gation is realistic for explaining lunar return data, then

must be much greater than i/_k2a for the lunar sur-

face, very likely of the order of i/i0.

The analysis of this problem, while interesting in

itself, does not give sufficient information for estimating

the electromagnetic and surface roughness properties of the

lunar surface. Therefore, this analysis may be more useful

as a first step toward solving other cases which could give

a better estimate of the lunar surface. For example, the

convergence criterion of the approximate solution to the

integral expressions of received power is possibly more

strict than necessary. This criterion could be investigated

to determine if it could be relaxed by carrying more terms

and using a FORMAC computer routine to do the tedious algebra
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as discussed in Section 4.3. Relaxation of the convergence

criterion might be obtained through an investigation of

other methods of obtaining the expected values of the reflec-

tion coefficients than that of the series expansion used in

Appendix B.

Another area of recommended study is another approximate

evaluation of the integral expressions for received power for

larger values of _/6 than those discussed in this work.

The direct- and cross-polarized received power in the

mid-region is critically dependent upon the frequency dis-

criptions of the antennas used to obtain experimental data

be investigated before attempting to draw definitive con-

clusions based on this work.

It is recommended that future work be applied to the

extension of this formulation to the solution of problems

involving bistatic configuration of the source and receiver.
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APPENDIX A

COORDINATE SYSTEM TRANSFORMATIONS

The derivation of the rough sphere coordinate system

(_n' _r' at ) will be made in this appendix. Also the trans-

formations between the several appropriate coordinate systems

will be derived (figure A-I).. The first of these coordinate

systems is the inertial coordinate system (ax' ay' az )" This

coordinate system has its origin at the center of the sphere.

The receiver is on the z-axis and the x-axis is in the direc-

tion of the linearly polarized N (i.e., ax = av)" The

(_ _o " '"standard ___^_4_._ a ) wx_ also
o_,,=_=_ coordinate system ro' ' D

be used. The last coordinate system (aR" aq' aD ) considered

--) --D

has its origin at the point of reflection as does the a n , a r,

at coordinate system. The aR unit vector is in the direction

of the receiver and lies in the meridian plane, aD is the

= _Dsame as the spherical unit vector, and _q x aR" These

vectors and the associated angles are shown in figures A-2

through A-5. Using matrix notationj define the coordinate

column vectors as follows

1laqL
Lat J LaDJ LazJ LaD J

(A-l)
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To Source and Observation Point

Z

/
I

I
!

\

Figure A.-I

_y

Reflection Geometry for a Sphere
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Figure A- 2
Vectors in Meridian Plane

Figure A-3
Vectors in Plane Normal

to Meridian Plane
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Figure A-_

Vectors in an -a R Plane

Figure A-5

Vectors in x - y Plane
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The 3 x 3 coordinate transformation matrices Aij are defined

as

Xi = AijXj CA-2)

with the elements being the dot product of the two appropri-

ate vectors and the property

A : F CA-3)
1O Ol

where the T indicates the transpose.

From figure A-2, the following relationships can be

obtained

_z = c°s02aR+sin02aq = c°S0aro-Sin_0

82_R + 82_ q 8a 8_ 8= -sin cos = sin +cos
a m ro

_ = cOS0naro-Sin0na0

_.C) {92 )aR+sin(e+e2-e n)_q= COS + -O n

= COS(8-8 n)az+sin(0-% }am

which yields the dot products

(aR'az) = cone 2

(_R._L): cos(e+e2-%)

CaR.aro ) = cos(8+O 2)

(_R-am) = -sin82

A-4

(_-Kro) = cos8 n

(_._q) : sin(e+e2-On)

Ca_.%) : sinCe-0n)

(_ "_0)= -simOn



(; .;e) -- _si,(e+e 2) (;ro'7_q) = sin(,e+e2)

(;_.;_) = cos(e-%) (;r°'_) = sine

(;z._ro)= cose (_q'_) = c°_ez

(a_-aq)- sine2 (_q'_e)= c°s(e÷e2)

(;.;e) = cose
(_.;e) = -sing

Figures A-3 through A-5 yield the following dot products

(Ex._m) = cos_

G _"_n)= °°S_n

(;._n) = sin_n
(_x._) = -sin_p

(_R'En) = c°S01 (A-6)

(_._r) = sin% (_Y'_) = cos_

By using

--O

-in_ +c°S_av

_m = c°s_x+sin_y

the following dot products

(ER._x) = -sin@2c°S_

_ -s in82S in_
(aR.ay)=

(_q.Ex) = cosO2cos_

can be obtained

(Ee.Ex) = cosecos_

(_e._) = cosesin_

(_ro.EX) = sinecos_
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(_q-ay) = cosO2sin _

(_n.az) = cos(O-Gn)COS_n

(an "ax )

(an-aro) = cOS_nCOSe n

(an.as) = -cOS_nSin8 n

(an-_q) = cOS_nSin(g+g2-On)

The relationship

_R
a =
r sin01

ro" ) = sinOsin_

= cos_cOS_nSin(O-On)-Sin_sin_n

= sin_cOS_nSin(O-%)+cos_sin_n

cosela n

sinO 1

yields

= [ -s inO2cos_-cos_cos01cOS_nSin (O-On)

+s in,cos OlS in_n ]/s inO 1

(_r._y) = [-sinO2sin_-sin_cos01cOS_nSin(0-O n)

-co s _co s O is i n_ n ]/s inO 1

(ar "az ) = [c°sO2 -c°selc°S_nC°S ( O-On )]/sinOl

(ar °aro ) = [cos( O+O 2 )-cOSOnCOS_neOSO l]/sinO 1

(ar "a0 ) = [-sin(0+e 2 )+sinOnCOS_nCOSO 1 ]/sing I
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(_r-a_) = [-cOSelSin_n]/SinO 1

(_r.aq) = [ -cos01cOS_nSin(O+G2-O n) ]/sinO 1

Finally using _t = ar x an gives

(_t ._x) = [-cosO2cos_sin_ n

-s in_cOS_nS in (@+02 -0 n )]/s in01

(at .ay) = [ -sin_cosO2sin_ n

+cos_cOS_nSin (0+02 -0 n ) ]/sinO I

(at "az ) = [ -sin_nSin02 ]/sin01

(_t "aro ) = I-sin(O+02 )sin_n]/Sin01

(at "a0 ) = [-cos(0+O 2 )sin_n]/Sing 1

(at "a_) = [c°S_nSin(G+O2-0n) ]/sin01

(at "aq) = -sin_n/Sin01

(A-10)

(A-If)

One additional useful relationship is obtained.

cos01 = cOS_nCOS (O+@2"_On) (A-12)

The dot products obtained above allow the determination

of all of the transformation matrices Aij. The pertinent

ones are given below.
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AI2 -
1

"cosOlsin011 cOS_nSin (0+82- %)-I sin_nSin01

-sin81

s in 2 @1 -cos@icOS_n •

.sin (e+@ 2 -O n )

0 i -sin_n j sin(0+02_0n )

I

J

-cos01sin_ n

-cos_ n (A-13)

A23 =

"-sin@2cos _

cos82cos_

L-sin_

-sinO2sin_ cos82]

cos 02sin _ sin02 [

I
cos_ 0 3 (A-14)

A34 =

-sin0cos_ cos0cos_ -sin_"

sin0sin_ cos0sin_ cos_

cos0 -sin0 0 (A-15)

From these three transformation matrices any other transfor-

mation matrix can be obtained.

Now to relate On and _n to the Y's defined in (3-21),

the dot products defined above are used. Then

1
cOS_nCOS % =

cOS_nSin@ n = _--

sin_ n j (A-16)
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From (A-16) it is found that

cOS_n - j sinO n - cOSO n

where all three must have the same sign. To determine the

sign, consider the cOS_n term, with _n restricted to the in-

terval [-_/2, _/2]. Then cOS_n must be positive, as must all

other terms. With the use of the trigonometric identities

for sum and difference angles, the following summary is

obtained

cos_ - i cosO n _ 1

n _/i+--_ _/i+--_

Y3 Y4

sin% = sinO n -

-Y6
S in_n = -Ysj s in_n = --_

sin (0-0 n ) =
sinO-Y3cosO

sin(O'-O' ) =
n

sinO'-Y4cosO'

A-9



cosO I = coSCPnCOS(O-On) cosO i = coSCPnCOS(O'-On)

= c°sO+Y3sine
J

cos0'+Y4sin0'

!

(A-Z8)
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APPENDIX B

REFLECTION COEFFICIENTS

The equations for _'i and 51 as given in (3-16) and (3-18)

show apparent poles at 01 = 0. This appendix will investigate

these poles, show that they are false poles and develop new

expressions for E 1 and H I. Also included in this appendix

will be an expansion of newly derived reflection coefficients

in a power series of the height variation and its derivatives.

Consider first the reflection coefficient of Ely (denoted by

v2(ol)).

vpp(eI)cos201-v_(eI)
v2(el) : (B-l)

sin281

Substituting _2-ii) for Vpp(Ol) and VNN(GI) yields

v2(el) - 1 [n2c°sOl-_n2-sin2 01

sin281[n2cos01+_n2 -sin2 O1

(2cos2el-i)

+ _rC°SOi-Jn2-sin2 01 I (B-2)
_rCOSgl+Jn 2-sin291

which on putting over a common denominator and simplifying

gives
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=
2)Jn2-si 2Ol 2cosOl E_r (n 2-i )cosOl+ (n2 -_r

En2cos01+I/ n2-sin2Ol EurCOSel+ n2-sin201 

Examination of _-3) shows that no poles exist for O 1 real

and In21 > i, therefore Ely and Hlx are regular at 81 = O.

Next consider Elx which from (3-16) is

E
ix -i [Vpp( 01 )cos2 81{ cOS_nSin (8-0 n )cos _-s in_nSin_ )2

sin 2 81

+VNN (sin,cos _nSin _ 8_8n )+s in_nCOS _ )2 ]

Upon squaring, converting cos_ to sin_ and sin_ to cos_ in

the Vpp coefficient, (B-t) becomes

Elx -
sin_81 {Vpp (81 )cos281 [cos 2 _nS in2 (_)-0n )+sin 2 _n ]

-[ Vpp( 01 )cos281-VNN (81 )][sin_cOS_nSin (8-8 n )

+sin_nCOS_]2 }

Since from (A-12)

cos81 = cOS_nCOS(8-%) (B-6)

then

sin281 = sin2_n+COS2_nSin2 (8-%)
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Substituting (B-T) and (B-l) into (B-5) yields

Elx = -Vpp(O I)cOs281

+V 2 (01 )[s in_cOS_nSin (8_0n )+s in_nCOS _ ]2 (B-8)

In order to express the terms containing G 1 variation in

terms of H(8, _) and its various partial derivatives

several new quantities are defined.

Vrc(81) = V 2(81)cOs81

Vrd (e I) = Vpp(e 1)cOs2elcOse I (B-9)

using the definition of (3-1 ) and

a _ 1 . H(e,_) (B-10)
ro i_- I- a

a

t hen

Y1 = Xl Y3 =a----Xro _ _ X3-XIX3 Y5 = a--'-Xro 5 -_ Xs-XIX5

Y2 = X2 y_ = a X _ X_-X2X 4 = a X
r-_ _ -- Y6 _ 6- X6-X2X6 (B-ll)o

Assuming that the reflection coefficients can be expressed as

a power series in cose I then

Vrc(e I) : _ bfcosfel (B-12)

f=0
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where

cone I =

q = cosO

Using the binomial theorem on (B-12) yields

Vrc(el)
J

. f cf (f_g)( g/2Z Z_ '_''_ " _-_)
jf+l

f=O g=0

(B-13)

where C f is the binomial coefficient.
g

Under _ assumption _h_ Y_ + __ < i then the denom-

inator of (B-l]) can be expanded by use of the binomial theorem

as

h

- Z 7,(-_)_c(_+_)'___(_-_)_h Ci Y5 (B-14)jf+l
h=O i=O

where C_ f+l)/2( is expressed in terms of the gamma function.

Then (B-13) becomes upon the substitution of (B-I_)

j _, f _ h
= g Ch -

f=O g=O h=O i=O

g/2
. ch g+2h-2i _q2

i Y3 _5 i q(f-q)(l ) (B-15)
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From the series (B-12)

f=O f=l

V''(q)=rc Z f(f-1)bf qf-2 Vr(n) q =Z _f" bfqf-n (B-16)

f=2 f=n

Expressing (B-15) in terms of increasing powers of Y gives

Vrc (81) _q2 1/2 _[
j - Vrc(q)+Y3( 1 ) Vrc (q)+ (l-q2)V''(q)-re

-qVrc (q)-Vrc (q)i- _LqVrclq)+Vrc (q)]+--- %m--I ;

By the same method as (B-15) was obtained

J Vrd(e l) =

,= f _ h

Z Z Z Z g h Ci "

f=0 g=O h=O i=O

. _ g+2h-2i ' g/2
Y3 _ q(f_)(1-q2) (B-18)

Expressing (B-18) in terms of increasing powers of Y gives

J Vrd(el) = Vrd(q)+Y3(l-q2 ) Vrd(q) + (l-q2)Vrd(q)

-qVrd([q)+Vrd(q) ] - _)_-[qVrd (q)-Vrd (q) ]+- • "
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APPENDIX C

CALCULATION OF ENSEMBLE AVERAGES

The ensemble averages are calculated by an orthogonal

expansion of the original random variable using the Karhunen-

Loeve representation theorem [Hoffman, 1955]. Under the

assumptions of Chapter K on H(O,_), there exists the bilinear

representation

o'2p({) ' , O, cp' , cp)

om

=m,_=l A-imn mn# (0',_')

where the _mn(O,_)..... and Amn

(c-l)

are the eigenfunctions and eigen-

values of the integral equation

S

(c-2)

According to the Karhunen-Loeve representation theorem, there

exists for every (0,_) element of the surface, the expansion

H(O,_) = l.i.m. ;C 1/2 (e, )hmn (c-3)
m,n mn mn

in terms of the orthogonal process lhmn) with

<hmn> = 0 <hmnhpg > = 6mp 6Pg (C-K)

where the notation < ) means ensemble average and 6 is the
mp

standard Dirac delta function. The use of (C-K) and (C-3)

C-I



gives the variance as

a2 = <H2(e,e) > = x-i { 2 (c-5)
mn

m,n m,n

The ensemble averages needed in Chapter _ will now be

calculated. First let the characteristic function of fmn(O,_)

with respect to the random variable hmn be denoted by

(c-6)

Let

C (j) = -a.2k,qH(Q,_)3_ - bj2k2q' H'(0',_') (c-7)

where q = cos Q, q' = cos O', a. = ±i and b. = ± 1
3 3

Using (C-3), (C-7) becomes

c(J) = !, C(j) h (C-B)

m,n mn mn

where

(J) - -1/2 [b
Cmn = -2k2Xmn jq'_mn(O',_') + ajq C}mn (0, _) ]

Since the h are orthogonal
mn

<e ic(j) <eiC_)hmn> = n M(Cm(J) ) (_-9)> = m,nn m,n

and

d

<hpqe iC(j)> = -i dC--_T {_ _'_'lc(J))}mn

Pq

C-2
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If H(0,_) is a gaussian process with zero mean and

variance 0.2 (not a function of 0 or _), then (C-9) becomes

[c£)3
<siC (J) -L 2 -Q j) = e =e

= M0, 0 (C-II)

where

Qj = _2 [q2 + q,2 + 2ajbjqq'p(q.q',_)]

p = 2k2a

9v .2

g - "-"2_
a

= _'-_

and

<hpqeiC(J)> = i C (j) e-Qj
Pq

(c-12)

Using the definitions of the X's (3-21), (C-8), (4-15)

_0 m,n mn 50 mn mn

and

_*mn(9'_) i

Be
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MI, 0 = - ig aj[q+ajbj q'@_ e -Q j

_QjM2, 0 = - ig bjEbjajqp + q' e

bp -Q.

_,0 = -igbjq' _-_ e 3

_p _"

M_, 0 = -igajq _, e 3

MS'O _ _--_

= -igaiq _p -Qj

_,o _ _,e
(c-15)

Considering the next series of terms

(J)
- d d <eiC (j)

<hst*'pqeiC_ > = dC (j) dC ( j )

st pq

) (c-16)

which for the gaussian case becomes

(hsthpq e iC(j) - C (j) c(J))e -Qj (C-17)> = (_ps 6qt st pq

Inspection of (C-17) using (C-t), (C-ll) and (C-12) yields an

alternate form

ic(J) ic(J)

<Xa_eiC (j) (siC ( j ) <X e >(Xbe >) = <Xa_ > > + a

<siC(J)>

c-# (c-18)



Bartlett [1956, p. 140] shows that

and

_--<x(t)>
_t

AY(e_SXt
<=_=_ x(s)> - bt(a2P),

<_)X(t) _X__> = B2((T2p)

_t 5s _t_s
(C-19)

Then (XaXb> is

<X12> = _2/a2
_2 B2p

<x32>
I

a-2 _o_o' [0'=o

c;2p
<xlx2> -

a2
= e2 B2p

_2

<xlx_ > =
_p

<x_6 > =
o.2

<XlX 6 > =
_2

a2_l-q ,2

_P o.2

<Xtl.2> = a-2" B2p I

<x4x5 > =

0.2 5p

<x2x3>= Vo <X52 > =
2 52p

a2(l-q 2) 5_B_' I
_'=_
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o.2 b2p
%2> =

a2(1-q '2) _q_bq_' t (C-20)
q_=q_,

All other terms are zero due to the assumption that o.2 is not

a function of 0 or _. The substitution of (C-15) and (C-20)

into (C-18) gives

o.2 g2 q2 2p2 P) ]e -Q jMl'l=<Xl2 eiC(J)> = [ V- ( + q' + 2ajbjqq'

ic(J)

M2, 1= <XlX2e > = [_ p_g2(ajbjq q, . p(q2+q.2) . ajbjqq.p2)]e-Qj
a

_,l:<XlX3eiC(J)) = _g2 _P [ajbjqq' + q'2p]e-QJ

_ _P o.2

P)]e-QJ

_P Eajbjq q' . q.2p]e-QJ

M 5, 1 = _ 5_

= 1 _p [ (;2__ _ g2(q2

M6,1 _ _q_' a2
+ ajbjqq' p) ]e -Qj

Fo.2
M2,2 = L--_ - g2(q202 + q,2

a
+ 2ajbjq q'P)]e -Qj
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_p [_a__ _ g2(q,2
+ ajbjq q'p)]e -Qj

_g2 _P
= -_, ajbjq q' + q2_] e-Qj

M5, 2

1 _p[.2 .g2(_,2 1_)-k-aJ

M6,2

2
_p [%b# q'+ q2p_-Qj
5_'

_g2q 2 #'_P 2-] -Qj, \#-_ j_

_2p q, ___eP
_Q_{), g2ajbjq _O

-Qj.,_ e

M5, 3

M6,3

_g2q, 2 Bp B._.ppe-Qj

_ 1 [aa_ _2p

= [__ b2p
a bO50' I 0=0'

- g2ajbjq q'

_ bP )2_e-Q j
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1 [.o.2 _2p

Ms'_ = ._ _ _o'_
-- g2ajbjq q' ____P

-Q.
_ _g2 q2 _p bP e 3_,4 - -- --

bO' _q_'

 5.5 _g2q, 2 _502]e-Q j

q_'=q_

M6, 5
1 b2p

- g2ajbjq q'
_'

_,6- (1_q,2)
_q_bq_' =q_, _q_'

c-8



APPENDIX D

q _ q' INTEGRATION

Consider an integral of the form

_ _- _k,_) C_,_)(q ,_Cq,q',_) "- F (q)F2 ')

-i_o(ajCl+bj_2)
• <Lj(.I)Lj(_2)> e dqdq'

(D-I)

which on using (4-10) and _-14) becomes

e-i_obj_2 _ _U( _2 -I "
i(k,_) : _1 F_k, _)(q,) em

Ot m:l _:_-1 \¢_2j2(l_p 2 )]

° F '

÷ \  slJ
(D-2)

Letting

(k,_)(q) Mk _(q,q',_)
F(3k,_) = F 1

(_-3)

D-1



and considering only the q integral inside the braces of (D-2)

which can be written as

(el11 F(k,_) e U dq
= _ crl4_'l

• -ito a._l1 F k'L)e o 3
[

+ 2
_ (-iaj60 O )

dq

1 F (k' _ ) e-i_°aJ _I

( _iaj_o )2

The integrations will be carried out by repeated integration

by parts using the same dv.

-i_0oaj _ 1
dv = e dq v =

udv = uv - vdu (D-5)

where

5_i 2a

_q c and p = 2k2a

D-2



Realizing that terms of the form x6(x) are identically zero

then

U = (D-6)

The intervals of (D-t) become

e 1

(-iajp) I_

1 5F_ k'£) U( _i i -i_°aj_idq

- (-iajp)_ 5q %_ijZ1 e

_f

14(k'_ )

%___

(_iaj00o) _ _ U

-i_oa j
e Idq

(-i_oa j )(-iaj P) (_ 1 )

I

-i_oa j
e idq

D-3



(-iaj_o)2

Integrating I_(k'L) four times more by parts

e -i_° aJ _ idq

(D-7)

[ _3(k,s) _2F_k,S) _3F(k,S)i_(k,L ) = _q + 5q2 5q3

_-iajp)2 (-_ajp)3 (-iajp)4

• U e

+ _4 -I •

i i _F3(k'_)
+ _-iaj_o)(-iajp) _e Bq

e-i_oaj_Idq

k.--

[52F(k ,% )

1 _i-i_oaj _i_ Bq2

(_iajp)3 _ e L[-iajp) 3 - (-iajp) 4

i_k,z)

1 e-i_oaj_l _SF3(k'Z)

_q5

D-4
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o.

The evaluation of I_ k'£)f requires the following results

[Friedman, 1956]

1 iq2_ f(q)[_(q'ql)-8 (q-q2)]dq= f(q)[u(1-q)- u(_-q)]ql

where

D ct D c(t-T)
ql - a _ q2 - a 2a

Since the derivatives of the reflection coefficients are

bounded, increasing only slightly with each differentiation,

and the derivatives of _,_ have a maximum coefficient of pg_,

then

(-iajp)5 aq5 <<

for g_ < I

which allows us to neglect I_ k'_)

using

( _iajp)2 5q2 I

p >> 1

compared to I_ k'L)

(D-10)

Then

-i_oaj_ 1
e i

D-5



( -i_oaj _2 IqlF k'_)[u.l-q._) - u(_-q)] e

q2

+
F3(k,L) e-in3oaj_l[6(q_ql) - 8 (q-q2)]

1

(D-n)

where

F_-iajp) '_

5q 5q Mk,

(-iajp) 2 i
,.#

_2p_k,_)+ 2_F k,L) _,L +
_q 8q 8q2

(-iajp) 3

3_F(k, z)
F_k,£)53Mk,_ + 1

_q3 3q

(-iajp) 4

8q 2

+

3_2F1 (k ,_' )

8q2

83F _k, _ )
8Mk,_ +

8q 8q3

(-iajp) 4

Mk,L

+
8q3 +

(-iajp) 5

(k,_)
652F 1 52M k

+

_q2 _q2

D-6



+
_q3 Bq - _¢ ' .

(-iajp) 5

Lett in g

_,._ __,.) _,')_u(_-_- uc_-_)_

then the substitution of (D-If), (D-I2) into (D-2) gives

1 e-i_obj _21U( _2 )I

2

+ (_ibj_ O) _ "

- i03ob j _ 2

° e - F e

D-7



+ e-i_oaj _l Iql
q2

+ i obj 2[ lI 2e LI°/_c_-_+C_#o_

_2 ) ] -i_oaj _ 1 1

• U dq' e (D-13)

e242 (1_.2) e

The integrals in (D-13) are of the same form as that of (D-t),

so using (D-7) and (D-8) on (D-13) yields upon neglecting the

integral similar to I_ k'L)

_,_) , 2 _,3 _q,4 ....../
_(_'_) L__%_, _ ....._q' )3 (__h_)sj= (-ibjp) 2" + (-ibjp (-ibjp) 4 + "

[_2F_k,_)

-U( _2 ) e-i_obj_211e-i_oaj_lll _ I _ '2' "

_ 5q,3

(-ibjp) 4

- 5q,4 1 Eu(1-q') - u(_-q')] •

-iu3objt 2 ql -in3oajtll L(-ib_p)- ._q' ......e e - (_ibjp)2q2 (_

D-8



+
5q, 2

(-ibjp) 3

5q,3

(-_bjp) 4

+ _q,4 I

(-ibjp)5J

: _2 _ -ic%bj _2 11

U_ _p2i} e I "
i._2%/2(i

e-i°%aj _llql
q2

+ Eu(1-q' )

I Iql- ic_obj _ 2 ql -iC_oaj _ 1
' e

u(_-q )Is q2 q2

I_ "ic_°aJ _ 1 11
6 (q' -q2 )]e-id)°bJ _2 e

+ )2- E 6(q'-q 1)(-:i.:Oobj

[5(q'-q 1 )

6(q-q2)]e-i_°bj_21ql -i_°aj_lll
' e +

q2 (-ibjp) (_ibjp)2

+
8q, _ 8q, 3 _ _ ....

(-ibjp)3 (-ibjp)_ + (-ibjp)5

• 1

u/ :; ie-' °bJ"I "
\o.2_2 (l-p2) /

tl

-i0%aj _ 1
e

(x

Eu(1-q')

m-9



- u(_-q')3 e-i_°bj_2} ql

q2

ii

-iCDoaj _ 1
e +

_k,_ )[8(q,_ql)_ 6(q'-q2)]

(_ibj _o )2

• e-i_°bJ _2

I

- J'_oaj _ 1
e (D-14)

Define

U a = [u(l-ql) - u(l-q2)] : [U(to) - u(t O - T)]

ub = [u(l-q2) - u(_-%)] = [u(t° - T) - u(to - tl)]

U c : [u(G-ql) - u(_-q2)] : [u(t O - tl) - u(t O - t I - T)]

t O : t - 2(D-a)c tl - c2a (i-_)

A a = [6(l-ql ) - 5(i-q2)] ,

_c = [61_-ql)- 6(_-q2)3

a 2. = b 2. = 1
J J

UiUj = O unless i = j, where i,j = a, b, c

-i_oT
e = 1 (D-I 5 )

The &a and &c which appear in (D-15) are necessary for

the continuity of the equation and to make the values of the

integral vanish at the proper places. In the present work

these terms will be neglected by the simple expediency of not

D-10



evaluating the integral at the four points of apparent trouble.

Therefore (D-14) becomes upon substitution of F£ k'_) and

FT(k,_)

i(k,_) = _G_k,_)(l,l,_)e-i_oto(aj+bj ) _k,_)(q I 1,_) •

-i_oajt o

-i%bjto 4(k_)(l,ql,_)e• e - G '

,.

_i_o (to-t 1 )(aj +bj )

. Cq2,q2,_)'],., _-_o_'_)(_,_,O)e

-i_objCto-tl) _ G(4k'_)(_,q2,_)
. G_'_)Cq2,_,_)e

-i_oaj(to-t I) + G_k,_}¢q2,q2,#}_U c (D-16)
• e

where

(k,_)Cq)F_k'_)(q')_,_(q,q' ,_) ,

_bjFCk'L) I (_,_) _(k',_)1
_k i bj _F - + aj -- 5qG '_)(q,q',l_) = - p2 + V - _q

D-II



_q_ + aj

_q, 2_q

+_

_q, aq-5""

"4-

+ _SFCk,_7

+

8q' 8q -_ J

D-12



4(k _ [ _3_(k,_)s .L)(q.q,,_)= _2F(k'_) i a] ,3 + bj
P _q2 _ 5q

1 [ 8_F (k'L) _F(,k'L)J-V ajbj _q,4 + _q-3_q "]

ib _5F(k,_)
+ _ + G2(q,q' ,$)

_q, 4_qp"

Table D-I lists the functions F(k'_)(q,_) and Fb(k'_)(q',_,$)
a

needed for the integrand of (4-19). Table D-2 lists the functions

_c_ _c_ _ ._F ' _ ) (q), F " _ ) (q'), and g2c (_' $ ) needed for the integrand of

(4-19) and the function _(k,£)($)" needed in (4-21). Table D- 3

_ o_c _ _r_ _r_lists the functions F '_ (q) F ,Z)(q,), F ' (q), F ' (q')

(k._)
and g3r (@) needed for the integrand of (4-21).
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APPENDIX E

INTEGRATION

Consider an integral of the following form

I(q,q' ,m,s,ajbj)

s -Qj
= _ cosmlb D e

-_r

d_ (E-l)

and let

D 2 = pgqq'

Using the definitions of D from (4-3) and Qj from (4-14),

then

I(q,q' ,m,s, ajbj)

-Q j (P =0)
= p s (¢=_/2)e

V SDlC°S @e-ajbjD_ d@cos m_ e

The expansion of the second exponential term in the integrand

of (E-2) in a power series yields

I(q,q' ,m,s,ajbj)

-Qj (@ =0) = E-ajbjD_ (_=_/2)__n.

P s(_=_/2)e Z n"
n=o

(s+n)D 1 cos
• _ cos m@ e d_

3

Recognizing the symmetry of the integrand of (E-_) and using

Abramowitz [ 1965]

E-I



COS m@ e _ cos _d$ = _Im(_ )
(E-4)

where Im(_ ) is the modified Bessel function of order m,

then

nn

I(q,q',m,s,ajbj) = 21rpS(I_=TF/2)e -Qj(p=O) Z
n=o

E-ajbjD2P (_=_/2) _n

n'

•ImE(S+n)Dl_

Since Im(O ) = 0 for m _ 0, and D 1 = 0 for q or q' equal 1

O for m _ 0I(1, 1,m, s, ajbj) =
2_ for m = 0

(E-6)

If D 1 >> m and the first term of the large argument expansion

of the modified Bessel function is used, then (E-5) becomes

I(q,q',m,s,ajbj) = B2(q, q')s(s,_=I/2)+M(s,m)

where

B2(q,q,,s ) = /_-9 pS(@=0)e
_D 1

S(s,_) = e +ajbjD2p(_=O)

n=n I

-Qj (_=0)

[-ajbjD2P (_=0) _n

n.r' (n+s) _

nl- _0 if s _ 01 if s = 0

E-2



2 _e -Q J (P:0 )

M(s,m) : 10

if s = 0 and m = 0

otherwise

If D2P(@=0 ) >> 1, (E-7) further reduces to

I(q,q',m,s,ajbj) k

k/D2P (_=0) + s

which is the first term of the saddle point solution of (E-l).

N'ow consider another somewhat more general form of a

integral for the case of q = q' = ql"

7r -QJd@
la(ql,k,_,r,s,t,ajbj) = _ (cos k _)(l-cos_)_(l-0)roSet

( 1-ql2 )

For this case

D 1 = _(l-q12 ) D 2 = pgql 2

P(_ = 0) = 1 e-Qj (@=0) = e -D2(l+a b3 J )

-DI -Qj (_) -D 2 ( l+a .b e -DI)
P(_ = _) = e e = e 3 3

Two separate cases will be considered. First for ql approach-

ing one so that D 1 is small and secondly for ql such that D 1

is very large.

For D 1 small, using the power series expansion of p then

t (__)U(l_ql2)U(l_cos _)u

(ip) = -uL "=i u:
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The r th power of (l-p) can be expressed in the following form

u___ r [_ (l_ql 2) (1-cos @)3 r+u(l-p) r = du (E-12)

1 1where dro - i, d = -

Then

la(ql_l,k L,r s,t ajbj) =u=_ dr _r+u
' ' ' u (l_q21)t_r_u -_C°s k_(l-cos_) _+r+u

@se-QJ d@ (E- 13)

Using the binomial expansion on the (1-cos #) term and the

Fourier expansion on the powers of cos _, one obtains

L+r+u

(_+r+u)A '(1-cos _) L+r+u = am cos m# (E- 1;4-)

and

cos k_ (1-cos #)L+r+u

L+r+u (_+r+u)

=m_O am= 2
[cos (k+m)@+cos(k-m)$ ]

The substitution of (E-15) into (E-13) gives

Ia(ql-l,k,L,r,s,t, ajbj) :
u =O

L+r+u d r _r+Uam(_+r+u )

Z (l_q2)t-r-u 2m=o

-Q j d_ -Q j
• ( _cos(k+m)_ pSe + _ cos(k_m) pSe d_)

-Tr -Tr

(E-16)
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From the results of (E-5) realizing that as ql_l, @(_/2)_i and

using the small argument expansion of the modified Bessel

function, (E-16) becomes

_+r+u

Ia(ql_,k,_,r,s,t, ajbj) =2__ O=

d r _r+Uam(_+r+u)u

t-r-u

(1-ql2) 2

. i_k+m( l-ql2)k+m vZO

2k+m =

_2V(l-q12)2v

22Vv:(v+k+m):

n

"[eajbjD2 m_O= _-a_)b_)D2]n" (n+s) k+m+2v]

+
_ik-mi (l_q12)Ik-ml _2V(l-q12)2v

22Vv:(v+Ik-ml)!

n

eajbjD2 n____ [-a.b.D.][ _ _ z (n+s)
- |n.

(_-17)

Using the expansion

m

iZ (m,s) n'(n+s)m = = bi (n-i) .

where b (m,s) = sTM
o

(E-18)
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The substitution of (E-18) into (E-17) yields

Ia(ql-l,k,_,r,s,t, ajbj) = 2_

dr ^r+u (L+r+u)
u _

2(l-ql2)t-r-u

k+m 2 )k+m

" {_. (l-ql v_ 0

2k+m =

_2v (l_q2 )2v

22v v" (v+k+m) '.

k+m+2v

•[ _, b.(k+m+2v, s) (-ajbjD2)i ]
i_=O 1

2 2v
_ Ik-ml (l_q12) Ik-m I _ _2v (l_q I )+ A

2 Ik-ml = 22v v' (v+l-mI)"

Ik-ml+2v ( Ik-ml+2v, s)

.[ v )i
_0 bi (-ajbjD2 ] } (E-I9)

Realizing that as ql_l any terms containing (l-q12) in the

numerator will vanish then

0 for r > t or k - _ > t

(Z+r) _r r=t k > 0
Ia(l,k,_,r,s,t, ajbj) = v ak

(_+r)_r
2v ao r=t k _ 0 (E-20)
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For the remaining cases all terms containing (l-q12) terms in

the denominator are expected to cancel out in the integral of

Chapter 4. For D 1 large, the binomial expansion will be used

in the (l-P) term and the large argument expansion will be

used for the modified Bessel function. It can be numerically

shown that the a (_) terms have the property
m

• m 2w

m---O
a - 0 for 0 < w <
m

(E-21)

This property is probably due to a property of the binomial

coefficients, i.e.,

n 0 for v < n-i

(-i) j C n .v <
j=-O j 3 = (-I) r r' for v=n (E-22)

Then using (E-21)

_ --am [(m+_)2w + (m-_) 2w] : _ m 2_
m_ 0 2 m=O; am

for w _ £

Then I becomes
a

r

Ia(ql,k,Z,r,s,t, ajbj) = Jo(-l)U=

CrB2 (ql, ql, s+U)m__O m 2_

_,. 2 _ _(l_q12 )

a
m

"s[<s+u), + ½)]

If D 2 >> 1

E-7



1
l

= _ C-z)j r(_ _+j)

I

" ,cs+u)Juz _fT"Z

binomial e_mmsiun.

(-i): c=_

Since the last summation is 0 for j < r by (E-22) and if

D 2 >> 1 using only the first term of the j series

_:,z_Cz_z 2) nz z r(_ _3

(:_-z7)

If r=0, them

ia(ql,k,Z,o,s,t, ajbj) _-

_: 2_ _(z-_. z) (nz_) _
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APPENDIX F

PARTIAL DERIVATIVES OF COVARIANCE FUNCTION

This appendix contains the partial derivatives needed

to evaluate the G functions of Appendix D. From (4-3)

p = e-_[l-qq' -Jl-q 2 Jl-q '2 cos _3 (F-l)

The following list contains the partials of p after setting

q = q' = ql"

= _-£I = _ql(1-c°s_)P
_q' I

q=q" =ql q=q '=ql

_2P I - _!e [ = p[_2ql2(l_cos@)2 _ _c°s% _
5q2 q=q,=ql _q, 2 q=q,=ql (l-q12)

= p{_2ql2(l-cos_)2

q=q'=ql

ql2cos#

__339_=_ =ql = p[_3ql 3(I_cos_)3_ 3_2qi c°s_ (l-c°s_)_q' _, (l-q12)

3_qlcos@

(1-q12)
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_3p |' =

_q2

5q '_=q '=ql
83p 21 =_q_q'

=q' =ql

p_3ql3(1-cos_)3- _2qI(I-co,_).

•[2- cos _ + ql2c°s¢ _ +

(z-qz2)

5q4

'=ql _'_i

= p{_;%ql;% (l_cos¢ )_
61S3q12 (l-cos_) 2cos_

(i-q12)3

qz2=os_(z-=os_)+ 3 =os2_-__.3_(z+_qz2)oos_}

(i_q12)2 3(z_%2)

=ql

5q_q'

=q '=ql

P{/3/CqlJ¢ ( 1- cos ¢ ) 1¢

+ 3/33q12 (1-cos$) 3

3_2 cos$

(1-q12 )

i + ql2c°s_ ]

2
l-q I

+
3jSql2cos_

(l_q12) 3

}
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b4p
= p{_gqlg(l-cos_) g

2

_q _q,2 _=-q'=ql

+ 2_3q12(l-cos@) 2.

ql cos
•[2 - cos_ + 2

l-q I

+j82[+ ;4ql2(l-cos_)cos_ + cos2_ <i ql2c°s_ 2
2 + +

(l-q12) l-q12

F-3


