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OPTIMAL STATIONARY CONTROL OF A LINEAR SYSTEM

WITH STATE-DEPENDENT NOISE

W. M, Wonham

1l. Introduction.

Consider the linear control system described by the formal

stochastic differential equation
x = Ax - Bu + c—v}l + G(x)w, (1.1)

In (1.1), u is the control and W, w, are independent Gaussian
white noise disturbances% The elements of the matrix G are assumed
to be linear in x ; and so the term G(x)wg represents a disturb-
ance of which the intensity is roughly proportimnal to the deviation
of x from the origin x = 0 . Equivalently, the disturbance can
be regarded as a wideband random perturbation of the system matrix
A .

Now consider the problem of choosing a feedback control

u = ¢(x) such that, in the steady state, the expected quadratic

cost

e{x'Mx + u'Nu} (1.2)

*A precise interpretation of (1.1) is given in §2.



is a minimum. If G(x) = 0, the solution of this problem is well
known [1], [2]. The optimal control always exists, and is a linear
function of x which is independent of the intensity of the additive
disturbance Cwi . In the present note it is shown that an optimal
control exists for the more general system (1l.l), provided the state-
dependent noise G(X)Wk2 is sufficiently small. The optimal control
is again linear, but is now rather critically dependent on the co-
efficlents of G . Examples are provided to show that instability
may result if this dependence is ignored.

The problem is stated precisely in §2; the proof of ex-
istence is given in §3 and §4; and some examples studied in §§5,6.

We conclude with some remarks on the interpretation of (1,1) and

discuss alternative optimization problems which are closely related.

2. Statement of the problem.

To make (1,1) precise we assume that x is an n-vector

with stochastic differential
dx = Axdt - Budt + Cdw, + G(x)dw2 . (2.1)

In (2.1), A, B and C are real constant matrices of dimension

nXn,nxm and n xd, respectively; G(x) is an n x d,

1

matrix with (i, j)th element

g..(x) = ¥ g ..x (2.2)
k._




where the coefficients are constants. It is assumed that

&1k
(A, B) 1is controllable, and that CC' 1is positive definite: that
is

, 4, 2n and C is of rank n . The latter assumption obviates

fussy discussion about possible degeneracy of the ergodic measure

(see below); it would actually be enough to assume that (4, C) is

controllable. Finally, Wy and W, are independent Wiener processes

of dimensiocn 4 d respectively

“1r %2 v

In the following, E denotes Euclidean n-space; a
prime (') the transpose of a vector or matrix; and |°| the
Fuclidean norm.

In (2.1) let u= ¢(x) , where ¢ 1is defined on E and

satisfies a uniform Lipschitz condition

lo(x) - o(y)| = k[x - y] (x, y € E) (2.3)

With this choice of u (2.1) becomes a stochastic differential

b

equation of Ito's type [3]:

dx(t) = Ax(t)dt - Bo[x(t)]at + Cdw, (t) + G[x(t)Iaw,(t) (2.4)

If x(0) 1is a random variable independent of the w in-

1 v

2
crements then (2.4), defined for t z 0 , determines a diffusion

process

X, = (x,(t) : t20) .



Diffusion processes are discussed extensively in [4]; a brief
summary can be found in [5].

Of interest here is the case when X¢ is positive re-
current (for the definition of this term see [5]). Under this con-
dition it is known that there exists a unique ergodic probability
measure {, defined on the Borel sets of E : that is, if the
distribution of x(0) is b, then so is that of x(t) for all
t >0 . Let ® be the class of admissible control functions ¢ ,

with the properties
(i) ¢ satisfies (2.3) for some constant k
(ii) X, 1is ergodic

(iii) The corresponding ergodic measure u, 1is such that

e, (x| = fE|x|2u¢<dx> <o (2.5)

Now define

L(x, u) = x'Mx + u'Nu (2.6)

where M, N are constant symmetric positive definite matrices of

dimension n Xn , m Xm respectively.

-]

Our problem is the following: find a control ¢ ¢ @

which is optimal in the sense that

e, (L(x, ¢ )) = min [e,(L(x, ®)) : ¢ ¢ 0]

a o N
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3. Existence of an admissible control.

In this section it will be shown that ¢ is nonempty
provided the coefficients gijk of (2.2) are sufficiently small.
This result will follow from the stability theorem stated below.

Let V = V(x) Dbe of class 0(2) on E and let o
denote the elliptic operator

£V(x) = 3 tr([C + GGV, ()[C + GE)T) + (Ax - Bu)'V, (x)  (5.1)

In (3.1), tr denotes trace, V. the vector [BV/axi] and V__

the matrix [BEV/axiaxj] . The operator £ obtained by setting

¢ 7
u= ¢(x) in (3.1), is the differential generator of X, [4].

The following theorem is an immediate consequence of (2.6)

and the results of [6].

Theorem 3.1

2
If there exist a function V(x) of class C( ) on E

)

and a positive number A , such that

V(x) - (|x] - ) (3.2)

8

and

£¢V(x) N - L[x, ¢(x)] (x € E) (3.3)

A

then ¢ ¢ ¢ .
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To apply the theorem set

*(x) = Kx (53.%a)

V(x) = x'Px (3.4p)
where K, P are constant m X n (resp. n X n) matrices, to be
determined so that

£,V(x) = A - L[x, ¢(x)] (x ¢ E) . (3.5)
Let G, denote the n X d, matrix with (i, j)th element €3 5k ;
and let II(P) be the symmetric n X n matrix with elements

= 1

[n(P)]M = tr(GkPGﬁ) (3.6)
Then a brief calculation shows that (3.4) determines a solution of
(3.5) if and only if

A = tr(C'PC) (3.7)
and

I(P) + (A - BK)'P+ P(A -BK) + M+ K'NK = 0 (3.8)

By our assumption of controllability, K can be chosen so that all

.~ M .
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eigenvalues of the matrix A-BK have negative real parts. With K

so chosen, the following lemma shows that (3.8) has a unique positive

definite solution P provided 7, IGk|2 is sufficiently small. This
k

together with Theorem 3.1 implies that ¢ ¢ @

Lemma 3.1
If @>0C and A 1is stable, the equation
I(P) + AP+ PA+ Q=0 (3.9)

has a unique solution P > 0 provided

n -]
(2 1e %) | [ M eMat] < (3.10)
k=1 0

Here and below P > 0 (2 0) means P is positive (semi)

definite; P, > P

1 > means P, - P2 >0, ete.

1

Proof.
Eq. (3.9) is equivalent to the equation
P =R+ T(P) (3.11)
where
o0
t
R=[ A QetAdt
o



and

[+.]
t
T(P) = [ e'm(p)ethat (5.12)
o
We observe that II(P) is a linear function of P and I(P) 2 O
if P2z 0; it follows that T(P) has the same properties. Define

P, =R ; PV+1=R+T(R’) v=1,2

The sequence PV is monotone nondecreasing ; it is bounded if,

for some 6 € (0, 1) ,
17(9)] = ol (5.13)

If (3.13) holds, it follows by a result on positive operators

(e.g. [7], p. 189, Theorem 1) that
P =1lim P (v » )

exists; and Pz R >0 . Since T 1is a contraction, P 1is

unique. It is easily checked that (%.13) is a consequence of (3.10).

L, Existence of an optimal control.

It will be shown that an optimal control ¢° exists whenever
(3.10) holds, and that ¢° is linear. We use dynamic programming and

the well known method of approximation in policy space [8]. This
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approach was suggested by the work of Howard, who studied a similar

problem for Markov chains [9]. The result depends on the following

optimality theorem.

Theorem 4.1

Suppose there exists ¢ e @ , a function v(x) of

C on , and a positive number A, with the properties:
(1) For every ¢ € @
6¢{|v(x)] + |x||vx(x)| + |x|2|vxx(x)|} < (k.1)
(ii) £¢ov(x) + L{x, ¢ (x)] = N (x € E) (4.2)

(iii) For every m-vector u ,

iuv(x) + L(x, u) 2z N (xeE) (4.3)

Then ¢° 1is optimal. Futhermore

M= €0 (Lx, ) (4.4

Combining (4.2) and (4.3) we obtain the appropriate

version of Bellman's equation

min [iuv(x) + Lix, m)}) =X (k.5)
u

To prove Theorem 4.1 we need
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Lemma 4.1
Let X be a diffusion process determined by (2.4), with differential
generator £ and ergodic measure p . If v(x) is a function of

class C(g) such that

e (Ve + [xllv Gl + [x]]v (9]) < =

then

e {£v(x)} =0
1
A proof is given in the Appendix.
To prove Theorem 4.1 observe that if ¢ ¢ & then, by
(4.2) and (L.3),

A= Zv(x) + Lix, ©(x)] (x € E)

Taking expectations with respect to ke, on both sides, and applying

Lemma 4.1, we obtain
Az g {L(x, ©))
Again by Lemma 4.1, (4.2) implies

A = e¢o {L(X) ° )}

and the result follows.
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To compute an optimal control we seek a solution of
Bellman's equation, in the form
v(x) = x'Px (4.6)
Substitution shows that (4.5) holds if and only if P satisfies
(3.8), with
-1
K=N"B'P (4.7)
The control determined by (L4.5) is
¢° (x) = Kx (+.8)
We show next that (3.8) and (4.7) can be solved for a
unique positive definite matrix P . For v =1, 2,... let P,
be a solution of (3.8) with K = K, and define
K - xiprp (k.9)
w1 v :

By Lemma 3.1, we can choose K, so that P, exists. It will be
shown that if K, 1is defined by (4.9) then P, exists and

0< P2
It can be verified directly that (4.9) is equivalent to the condition

3 - 1 —_ =
s P . Write vv(x) =x'Px, ¢ =Kx and £ = i¢(v) .

£ (x) + L[x, ¢v+l(x)] S iuvv(x) + L(x, u) (x ¢ E) (4.10)

v
v+l v

for all m-vectors u . That is, ¢v+l is determined by the
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minimizing operation (4.5) applied to v, . Setting v =1 and

u = ¢ (x) in (4.10), and vsing (3.8), we see that

= —- 1 - ]
- Q= H(Pl) + (A BKE) P, + Pl(A BK2) + M+ KLNK,
<0 . (k.11)
Write A2 = A - BK2 . Since Pl > 0 satisfies (L4.11) it follows
(by a standard Liapunov theorem) that A2 is stable. Hence
o tA'2 tA2
P, = J e T[M+ KLNK, + I(P,) + Qle ~dt (k.12)

0]

Now P, is to be determined by (3.8) with XK = K or

2 )

® tAé tA.2
P, = fo e T[M+ KLNK, + I(P,)Je “at . (4.13)

As in the proof of Lemma 3.1, we solve (4.13) by successive
approximations. Setting P2<l) = O we have
o tA! t

2 1
foe (M + K NK,)e ~dt

@)

A

Pl ;

(k =2, 3,...). Since the P () are

and similarly P20<) £ P o

1
nondecreasing. and bounded,

P, = lim PE(K) (K - ) (ho1k)
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exists and satisfies (4.13). Thus P, =P , and M>0 implies

P, >0.

2
It is not asserted that the solution of (4.13) is unique;

however, we may now proceed by induction and define

K
PV=lim P\()) (K - ) v=1, 2,...

. . . <
In this way we obtain a sequence [Pv} with 0 < Pv+l < PV

Then

lav)
[}

lim P, (v —» )

N1Bp (4.15)

=
il

exist and satisfy (3.8) and (k.7).

Define
o° (X) = Kx
v(x) = x'Px (4.16)
A = tr(C'PC)

Theorem 4,1 will be applied to show that ¢° is optimal. By con-
struction ¢° satisfies (4.2) and (4.3). Furthermore, if ¢ € ®

then (2.5) and (4.16) imply the truth of (4.1). The existence of ¢°

is now established.



1k

We observe that ¢° is unique in the class of linear
controls; for if ¢ 1is another optimal linear control and A , P

are the corresponding quantities dete mined as before, then by (4.k4)

R =N, and by (4.16)

tr(C'PC) = tr(C'PC) . (4.17)

A
Since P , P are independent of C (4.17) holds for all C , and

) 2

from this it easily follows that P = P . Uniqueness of ¢ 1is a

consequence of (L.7).

5. Example 1.
The following artificial example is of interest because
it illustrates the qualitative dependence of the control law on the

intensity of the state-dependent noise. Let

dx; = ax,dt - bu.dt + cdw,, + g|x|c1w2i ,i=1,..., n. (5.1)

1i
and

2
|

L(x, u) = |x|7 + |y|
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In (5.1) the matrix G(x) = g|x|I is not linear in x (cf.(2.2));
nevertheless the methods used above apply equally well here, and

(3.8), (4.7) become

2
g (tr P)T + (aI-bK)'P + P(al-bK) + I + K'K = 0O

K = bP
. . 2
This gives P=pI , K=Dbpl, and A= nc p, where

1
D= (2b2)'l{2a + ng2 + [(2a + nge)2 + hbg]z}

2

-2
~nb g , g-ow, (5.2)

For large g, ¢°(x) ~ nb-lggx , and the optimal control depends

rather critically on noise intensity.

Now suppose that for some k u= ¢(x) = kx in (5.1).

J

Solution of (3.5) and application of (4.7) yield

>
!

2 2
~ e, (1x% + [u%)

)

ncg(l + kg)[2(bk -a) - ngg]-l

provided
2
bk - a>ng /2 . (5.3)

If this inequality fails (i.e. control is not sufficiently vigorous)

then instability results, in the sense that either Ay =+ o or

A is not defined: that is, X, 1is no longer ergodic. Using

¢ ¢
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the methods of [5] one can show that X, 1s ergodic (i.e. K,

2
exists) if and only if bk - a > (n-2)g /2 .

6. Example 2.

Our next example illustrates the fact that an admissible linear
control can fail to exist if the intensity of state-dependent noise !

is large. Let

Jy [ *1 *e (6.1)

—X2 Xl

b=(@) 0 2 () o0

where Y >0 is a constant. Then I(P) = v tr(P)I and (cf.(3.12))

o]

T(P) = v tr(P) [ e

t(A-BK)' t(A-BK) ¢ (6.2)

Let X = (kl, k2) and denote the integral in (6.2) by S . S exists

(i.e. A - BK is stable) if and only if k, >0, k, >0 . A brief

1 2

calculation shows that inf{tr S : k k2 >0} = 1. Iterating the

l’
the operator T we then find

™ @) = ¥ (r P)(tr 5)V s

> yV(tr P)S ,

v
and so ZT( ) converges only if Yy <1 . This shows that the con-

struction used in the proof of existence fails if y =z 1 . For the

present example it is easy to verify directly that (3.8) has for some

K a solution P > 0 , if and only if v <1 .
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7. An alternative interpretation of (1.1).

It is worth emphasizing that the choice of It6's equation
(2.1) as a precise version of (1.1) is somewhat arbitrary. We shall
discuss briefly an alternative version of (1.1) which may be more
appropriate in engineering applications. Eq. (1.1) is a purely
formal equation since the "derivativesg" Wl, Wg do not exist. In
writing (l.l), we usually have in mind a physical system perturbed by
noise with a power spectral density which is essentially constant with-
in the frequency passband of the system. However, total noise power is
presumably finite, and this fact is overlooked in adopting the precise
model (2.1). Thus the question arises whether the diffusion process
determined by (2.1) adequately reflects the properties of the physical
random process of which (1.1) is a rough description. This question
has been discussed in a precise fashion by Stratonovich [10], [11]
and by Wong and Zakai [12]. It turns out that the proper It8 equation
to associate with (1.1) will depend on what definition is adopted of

the formal stochastic integral

b
J = [ G[x(t)w(t) . (6.1)
a
Let {tv} be a partition of the interval [a, b] . On the basis
of results of [10]-[12] it is natural to adopt for (6.1) the
definition

x(t )+ x(t.)
J=1l.i.m. % ¢ [ —25 Y (b, )-w(t)] (6.2)
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as max(t
v

It8 stochastic differential

pil" tv) - 0 . Let us now suppose that x(t) has the

ax(t) = f£(x)dt + G(x)dw (6.3)

where G(x) = [gij(x)] . Then it can be shown [10] that

b b
J G [x(£)] » G{x(t)1dt + [ G[x(t)]aw(t) (6.4)

a

N

J =

where the second integral in (6.4) is an It® stochastic integral,

th

and GX + G 1s the vector with 1 component

Jz.k(agij/axk)gkj (6.5)

This result means that an alternative natural inter-
pretation of (1.1) is that the process x(t) has the It8 stochastic

differential

dx = [Ax - Bu + % Gx(x) - G(x)]at + Cdw, + G(x)dw2 (6.6)
Eq. (6.6) differs from (2.1) by the presence of an additional drift
term contributed by the coefficient of the state-dependent noise.

Suppose that G(x) has the form (2.2). Then (6.6) can

be written

dx = Axdt - Budt + Cdw, + G(x)dw2
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~

where A 1is a modified system matrix with elements

9357 B4 kzgikﬂgﬂkj

After this modification the discussion of §§2-6 remains unchanged.
In light of this discussion consider again Example 1 .

Here G(x) = g|x|I , and
2
Gx(x) - 6(x) = g x

-~ 2
Thus A = al + (g /2)1 and the previous results hold with this

replacement. With the new model,
o - 2
S ()~ (a+ DEx (8w ;

that is, the optimal control gain is somewhat higher than previously.
Suppose next that u = ¢(x) = kx . Then (cf.§5) Ay <@ if

and only if
2
bk - a> (n+ 1)g /2
Comparing this result with (5.3) we see that the choice of math-

ematical model may be critical in an assessment of the stability

properties of the physical system of interest.
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8. Alternative problems.

A variety of linear regulator problems with linearly state-
dependent noise can be discussed by methods similar to the foregoing.
If the index of performance is expectation of a quadratic functional,
and if no a priori bound is placed on magnitude of the control vector,
then in general the optimal control (when it exists) is linear in
x and depends on noise intensity.

To mention one interesting variant, let
dx = Axdt - Budt + G(x)dw (8.1)

and consider the problem of minimizing

0

ei{ [ [x(t)'Mx(t) + u(t)'Nu(t)]dat} (8.2)
o

If u= ¢(x) and ¢(0) = O then (8.1) admits the null solution

x(t) = 0 (see e.g. [13]). The functional (8.2) is finite provided

x =0 1is globally asymptotically stable in an appropriate sense.

By a slight extension of the methods of [13] one can show that X¢

is stable if and only if a continuous function V(x) exists such

that
(1) V(x) >0 (x#0); V()=0
(ii) V(x) >+ = as |X| —

(111)  2,v(x) s - |x|° , x40
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Call ¢ admissible if X® is stable. Just as in §3 we
find that ¢(x) = Kx is admissible if (3.8) has a positive solution

P and this is so whenever G(x) is restricted by the inequality

2
(3.10). Under these conditions the optimal linear control is deter-

mined exactly as before.
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Appendix: Proof of Lemma L.1

Let ex denote expectation on the paths of X when

x(0) =x eE . Let t>0 be fixed and write

w(x) = € (v[x(t)])
We show first that w exists a.e.[p] and
Su{w} = eu{v} .

If v is a simple function,(l) is obvious. If vz O and Vv

then

are simple functions with vnT v,

w (x) = e (v [x(£)]}

is measurable and wh T w . By monotone convergence
€ {w}=¢€ {(1lim w } = 1lim & {w
RUEEN ) L)
=1lim € {(v.}] =¢€¢ {v .
L) =€ 0

The general result follows by applying the argument to the positive

and negative parts of v .,

Now let v ©be of class C(Q) and of compact support.

By the It8-Dynkin formula [k4]

(1)
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t
eu{cx{ £ £v[x(s)]ds}}

e, (€, (V[x(t)] - v(x))

Since #£v[x(s)] is bounded and almost surely continuous (in s)

there follows, by dominated convergence,

. -1 t
SH{SX{ lim t £ zv[x(s)]ds)

e {(£v(x)}
K 40

t
lim € (e {t™ [ zv[x(s)]ds})
tho M X 0

In general, suppose v(x) satisfies the integrability condition of
the hypothesis. Then for any € > 0 there exists a smooth function

z(x) of compact support such that
e, (2v(x)) - e, )| <e;

that is, leu{iv(x)}l <e.
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