

# **PROPERTIES OF LARGE** 7079 ALUMINUM ALLOY FORGINGS IN A CRYOGENIC ENVIRONMENT

# by F. T. Inouye

Prepared by

AEROJET-GENERAL CORPORATION Sacramento, Calif. for Lewis Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - WASHINGTON, D. C. • JULY 1966

# **PROPERTIES OF LARGE 7079 ALUMINUM ALLOY FORGINGS**

# IN A CRYOGENIC ENVIRONMENT

By F. T. Inouye

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

# Prepared under Contract No. NAS 3-2555 by AEROJET-GENERAL CORPORATION Sacramento, Calif.

for Lewis Research Center

# NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - Price \$3.00

### FOREWORD

The research described herein, which was conducted by Aerojet-General Corporation, Liquid Rocket Operations, was performed under NASA Contract NAS 3-2555 with Mr. J. M. Kazaroff, Chemical Rocket Division, NASA Lewis Research Center, as Technical Manager. The report was originally issued as Aerojet-General Report No. 8800-20, November 1965.

# ABSTRACT



Large 7079-T652 hand forgings were evaluated for pump impeller and inducer applications in liquid oxygen/liquid hydrogen rocket engines.

The results of mechanical property tests, reheattreatment experiments, and microstructural studies are presented. The application of 7079 alloy in a cryogenic environment is discussed based upon the test results, and recommendations are made for metallurgical analysis of the more promising alloys.

# PRECEDING PAGE BLANK NOT FILMED.

# TABLE OF CONTENTS

|      |      |        |                                                                                    | Page |
|------|------|--------|------------------------------------------------------------------------------------|------|
| I.   | SUMM | ARY    |                                                                                    | 1    |
| II.  | INTR | DDUCT: | ION                                                                                | 1    |
| III. | TECH | NICAL  | DISCUSSION                                                                         | 21   |
|      | A.   | MATE   | RIAL                                                                               | 21   |
|      | В.   | TEST   | ING PROCEDURE                                                                      | 21   |
|      | C.   | TEST   | RESULTS                                                                            | 21   |
|      |      | 1.     | Mechanical Properties of Hand Forging "A"                                          | 21   |
|      |      | 2.     | Mechanical Properties of Hand Forging "B"                                          | 43   |
|      |      | 3.     | Mechanical Properties of Hand Forging "C"                                          | 43   |
|      |      | 4.     | Mechanical Properties of Hand Forging "D"                                          | 63   |
|      |      | 5.     | Effects of -T6 Temper Reheat Treatment<br>(After Rough Machining) on Properties of | 6.0  |
|      |      |        | Hand Forging "E"                                                                   | 63   |
|      |      | 6.     | Microstructure                                                                     | 72   |
|      |      | 7.     | Fatigue Properties                                                                 | 74   |
|      |      | 8.     | Inducer and Impeller Blanks and Finish-<br>Machined Parts                          | 82   |
| IV.  | CONC | LUSIO  | NS                                                                                 | 82   |
| V.   | RECO | MEND   | ATIONS                                                                             | 82   |

BIBLIOGRAPHY

•

# PRECEDING PAGE BLANK NOT FILMED.

# I. SUMMARY

Several large 7079-T652 aluminum alloy forgings, which were candidate materials for use as pump impellers and inducers in liquid oxygen-liquid hydrogen rocket engines, were evaluated.

A number of factors were determined, including the influence of cryogenic temperatures upon smooth- and notched-bar tensile properties, the effect of -T6 temper reheat treatment (after rough machining) upon tensile properties, mechanical fatigue strengths under completely reversed bending and tension/ compression axial stressing, and microstructure.

The 7079 forgings were characterized by good notch toughness at ambient temperature. These forgings were slightly notch sensitive at  $-320^{\circ}$ F and extremely notch sensitive at  $-423^{\circ}$ F. Notch sensitivity varied with specimen orientation as well as material strength and ductility. The poor notch toughness of 7079 forgings also appears to be influenced by impurities (inclusions), a cored microstructure, and high alloy content. The -T6 reheat treatment significantly increased tensile strength but decreased smooth-bar ductility as well as notch toughness. In reversed bending, fatigue strengths closely approximated those for commercial-size products and were higher than the fatigue strengths obtained in tension/compression stressing.

These studies show that the 7079-T652 forgings appear to have satisfactory properties for impeller service in liquid engines at temperatures down to  $-320^{\circ}$ F; however, application in inducers at  $-423^{\circ}$ F is not recommended for the sizes being considered because of poor notch toughness and low fatigue strength. Nickel-base alloys, alpha A-110-AT-ELI titanium alloy, and aluminum alloys developed specifically for cryogenic service are considered more promising for inducer service. However, the nickel and titanium alloys are only applicable if their higher densities can be tolerated. All of these alloys must be metallurgically analyzed to determine their suitability for large  $-423^{\circ}$ F inducers.

### II. INTRODUCTION

Aluminum alloys offer unique advantages as a material of a construction because of their low density, good strength, and ductility. They also have excellent corrosion resistance. Certain aluminum alloys possess good toughness and they are used in liquid rocket engine hardware as well as ground equipment exposed to liquid oxygen (-297°F) and liquid hydrogen (-423°F). Several of the typical grades commonly used are 2014 (Thor and Titan structural tankage), 5456 (first-stage Saturn C-1 kerosene and liquid oxygen tanks), 2219 (Saturn S-1C launch vehicle), 5083 (liquid hydrogen storage tanks), and 6061 (used extensively in systems and controls hardware, such as valve bodies, seals, and conduits, at temperatures down to  $-423^{\circ}F$ ).

The 7000-series alloys are the highest strength aluminum alloys. These alloys have been used at temperatures as low as  $-320^{\circ}F$ , but not generally below that point because of their relatively poorer toughness. Grade 7075 is used in Titan I pump impellers, which operate in kerosene and liquid oxygen (-297°F). The major factors for selecting Grade 7075 over other alloys and steels were

material availability, its high strength-to-density ratio, its propellant compatibility, and its excellent machinability. Because of earlier success-ful experience with 7075 in Titan I, 7075 was again used in Titan II pump impellers which operate in noncryogenic propellant combinations of AeroZINE 50<sup>(1)</sup> and nitrogen tetroxide.

A major problem in large 7075 impeller forgings is the low strength found near the center. This is caused partly by the low depth-of-hardening at the reduced cooling rates that result from the hot water quench (see Table 1). Low center properties have limited design allowables.

In 1957, a study<sup>(2)</sup> was made to determine the minimum properties obtainable in a "special product" forging (13-in. diameter x 9-in.) of 7079 aluminum alloy. The 7079 aluminum has higher magnesium and lower zinc, chromium, and copper contents than 7075, which results in greater depth of hardening. The 7079 properties presented in Table 2 and Figures 1 through 8 show conclusively that the 7079 depth of hardening is superior to that of 7075. The trend of decreasing properties with forging size and the superiority of 7079 over 7075 is further shown in Tables 3 and 4, which are the results from recent George C. Marshall Space Center tests.<sup>(3)</sup>

Experience has demonstrated that 7079 aluminum alloy has the highest mechanical properties of the 7000 series alloys. When a strength-to-density basis is considered, the 7079 alloy appeared promising for pump impellers and inducers of the newer liquid oxygen-liquid hydrogen engines because the lower strength 7079 alloy operated successfully in liquid rocket engines at temperatures down to  $-320^{\circ}$ F. However, impeller and inducer sizes have increased, and mechanical properties of large 7079 forgings were nonexistent for design analysis.

An investigation was undertaken to obtain design mechanical property data for five large 7079-T652 forgings of interest for pump applications in a liquid rocket engine operating in liquid oxygen and liquid hydrogen environments. It is this data that is delineated in this report. Conclusions and recommendations regarding the usage of 7079-T652 forgings exposed to a cryogenic environment are also included.

2

State States and

<sup>(1)</sup> AeroZINE 50 is a 50/50 fuel blend of unsymmetrical dimethyl hydrazine (UDMH) and hydrazine  $(N_2H_4)$ .

<sup>(2) &</sup>lt;u>Mechanical Properties of 7075-T6 and 7079-T6 Aluminum Alloy Forgings</u>, Report MM-58, Aerojet-General Corp., 1957.

<sup>(3) &</sup>lt;u>Aluminum Alloy Forgings, 7075-T652 and 7079-T652</u>, Summary Report R-RE-MMP, George C. Marshall Space Center, 1964.

| Elongation                             | ω        | ささ               | 4     | 11.5<br>12              | 00<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 | 10.5<br>7.8<br>14.0<br>10.9  | 0.0<br>7.0<br>7.0 | NGFFFN<br>NNN00                        |
|----------------------------------------|----------|------------------|-------|-------------------------|---------------------------------------------------------------------------------|------------------------------|-------------------|----------------------------------------|
| 0.2% Offset<br>Yield Strength<br>(ksi) | 42       | 55<br>52         | 62    | 49<br>50                | 50<br>57<br>57                                                                  | 558<br>675<br>868<br>77      | £ 874             | ጚ<br>ት ይ <u></u> ሸባ ጚያ                 |
| Ultimate<br>Strength<br>(ksi)          | 62       | 66<br>65         | 8     | 67<br>67                | 57<br>66<br>67                                                                  | 88<br>88<br>7<br>7<br>7<br>7 | 68<br>68<br>73    | 45<br>71<br>75<br>75<br>75<br>75<br>75 |
| Temperature<br>(OF)                    | RT       | RT               | RT    | RT<br>RT                | RT<br>- 320<br>RT<br>- 320                                                      | RT<br>RT<br>RT               | RT<br>RT          | RT<br>RT<br>RT<br>RT<br>RT<br>RT       |
| Orientation*                           | A        | A<br>450 to axis | A     | A<br>A                  | ላ ላ ዊ ዊ                                                                         | 4 H 4 H                      | 4 H H             | 4 4 K K H H                            |
| Size (in.)                             | 13 D x 9 | ł                |       | 8 D x 4<br>11.3 D x 8.5 | 12 D x 6.7                                                                      | 11.3 D x 8.5                 | 5 D x 4           | 5-1/4 D × 4-1/2                        |
| Condition                              | л6       | 1652             | '1652 | T652<br>T652            | Ţ6                                                                              | т652                         | т65               | 9H                                     |

TABLE 1

•

•

4

MINIMUM TENSILE PROPERTIES OF 7075 ALUMINUM ALLOY IMPELLER FORGINGS

\*A = axial, R = radial, T = tangential

TABLE 2

# MECHANICAL PROPERTIES OF STANDARD 7075-T6 AND SPECIAL PRODUCT 7079-T6 ALUMINUM ALLOY FORGINGS\*

A. Room Temperature

| Specimens | Tensile<br>ks | Strength<br>i  | Yield S<br>0.2% Off | trength<br>set, ksi | Elongat<br>1 inch | ion In<br>(4D) % | Hardnes        | s, BHN     |
|-----------|---------------|----------------|---------------------|---------------------|-------------------|------------------|----------------|------------|
|           | 7075-тб       | <u>7079-T6</u> | 7075-T6             | 7079-T6             | 7075-T6           | 7079-T6          | <u>7075-16</u> | 7079-T6    |
| l-A       | 53.2          | 69.3           | 42.6                | 59.0                | 2.5               | 6.0              | 122            | 143        |
| щ         | 57.5          | 62.6           | 43.6                | 53.5                | **                | N.<br>1          | 113            | 137        |
| U         | 51.0          | 70.5           | 41.5                | 59.6                | о.<br>С           | 6.5              | 113            | 140        |
| 2-A       | 54.8          | 69.6           | 42.8                | 59.5                |                   | 6.5              | 115            | 140        |
| д         | 57.8          | 67.8           | 144.2               | 53.6                | 5.0               | 7.0              | 115            | 140        |
| υ         | 52.8          | 69.5           | 41.3                | 59.7                | с.<br>•           | 6.0              | 113            | 143        |
| 4-A       | 59.5          | 69.4           | 46.7                | 58.7                | 4.0               | 5<br>•<br>•      | 113            | 148        |
| ф         | 57.8          | 68.7           | 43.2                | 55.6                | 5.0               | 6.5              | 104            | 138        |
| Ð         | 57.3          | 69.1           | 42.7                | 58.8                | t. 5              | 5.0              | 104            | 146        |
| 6-A       | 61.9          | 70.0           | 51.6                | 57.7                | М                 | 5.0              | 140            | 145        |
| щ         | 58.1          | 70.0           | 42.5                | 57.2                | 5.0               | 7.0              | 118            | 137        |
| U         | 58.8          | 6.69           | 43.8                | 57.1                | *                 | <b>6</b> •5      | 111            | 145        |
| 8-A       | 62.5          | 71.9           | 53.2                | 60.6                | 2.5               | .+<br>.5         | 137            | 143        |
| щ         | 59.2          | 70.0           | 45.4                | 58.1                | 5.0               | <b>6.</b> 2      | 124            | 140        |
| U         | 58.5          | 71.4           | 47.1                | 60.3                | د.<br>م           | 4.5              | 127            | 140        |
| 10-A      | 58.5          | 71.3           | 44.5                | 60.3                | 4.0               | 11.0             | 115            | 142        |
| ф         | 64.5          | 71.7           | 54.6                | 57.4                | Э. 5<br>С         | 9.5              | 129            | 140        |
| U         | 65.1          | 72.7           | 57.4                | 58.2                | 2.5               | 7.0              | 140            | 140        |
| 11-A      | . 1           | 73.4           | I<br>I              | 60.2                | ı                 | 8.5<br>.5        | I              | 140<br>140 |
| Ē         | !             | 73.9           | :                   | 6.09                | I                 | 8.5              | 1              | 145<br>,   |
| 12-A      | 59.2          | 74.4           | 43.2                | 65.8                | 5.0               | 7.0              | 118            | 145        |
| f         | 58.5          | 72.9           | 40.9                | 64.2                | 5.0               | 0.7              | 115            | 140        |
| 10        | 58.7          | 68.9           | 41.8                | 57.9                | 0°5               | 0.0              | 109            | 140        |
| Q         | 58.8          | 70.6           | 42.5                | 58.4                | 4.5               | 0.0              | 111            | 13/        |
|           |               |                |                     |                     |                   |                  |                |            |

\*Dimensions of 13-in. diameter by 9-in.

and in the

٠

٩,

3

| Tensil<br>Specimens | 7075-T6          | 12-E 59.5 | F 60.1 | G 60.1 | Н 60.5 | T 60.1 | J 59.3 | K 58.6 | г 59.0 | M 61.4 | N 60.5 | 13-A 59.5 | B 59.7 | c 59.1 | D 60.7 | E 59.7      | Fi 60.5 | G 60.1 | н 59.6 | I 61.5   | J 59.9     | K 59.4 | L 60.1 | M 62.8 | N 60.1 | 15-A 63.2 | B 62.2 | c 60.8 | D 60.0 |   |
|---------------------|------------------|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----------|--------|--------|--------|-------------|---------|--------|--------|----------|------------|--------|--------|--------|--------|-----------|--------|--------|--------|---|
| e Strength<br>ƙsi   | 7079-T6          | 70.8      | 69.1   | 68.5   | 69.I   | 70.5   | 73.0   | 71.5   | 66.5   | 72.5   | 73.0   | 76.0      | 73.0   | 70.0   | 72.0   | 70.0        | 70.0    | 69.0   | 69.5   | 70.5     | 71.6       | 71.2   | 71.2   | 72.1   | 74.8   | 75.1      | 71.3   | 72.0   | 71.7   |   |
| Yield S<br>0.2% Off | 7075 <b>-</b> T6 | 42.6      | 43.0   | 43.4   | 43.6   | 43.8   | 43.5   | 43.6   | 144.3  | 48.1   | 144.2  | 43.9      | 42.2   | 42.5   | 43.8   | 48.8        | 43.8    | 43.6   | 42.7   | 44.5     | 144.0      | 0.444  | 45.0   | 48.3   | 41.5   | 47.5      | 46.1   | 144.5  | 43.5   |   |
| trength<br>set, ksi | 7079 <b>-</b> T6 | 57.2      | 55.6   | 55.1   | 55.7   | 56.5   | 57.5   | 57.5   | 58.0   | 62.5   | 64.0   | 66.8      | 62.5   | 57.5   | 59.0   | 56.0        | 56.5    | 56.0   | 57.0   | 57.1     | 57.3       | 59.2   | 60.5   | 61.5   | 65.4   | 65.3      | 58.8   | 59.5   | 59.4   |   |
| Elongat:<br>1 inch  | 7075-T6          | 5.0       | 7.5    | 7.5    | 7.0    | 6.5    | 5.0    | 5.0    | *      | 5.0    | 5.5    | 4.0       | 6.0    | 5.0    | 7.5    | 5<br>1<br>1 | 7.0     | 7.0    | 7.0    | 7.5      | 7.0        | 5.0    | 5.0    | 6.J    | 8.5    | 7.5       | 7.0    | 6.5    | 0.7    | 1 |
| ion In<br>(4D) %    | 7079-T6          | 0.6       | 10.5   | 12.5   | 12.0   | 12.0   | 0.11   | 10.0   | *      | 6.5    | 6.5    | 7.0       | 7.5    | 8°0    | 7.5    | 11.0        | 12.5    | 11.5   | 12.5   | 13.0     | 13.0       | 7.0    | 6.0    | 6.0    | 6.5    | 7.5       | 10.0   | 0.0    | 8.5    | • |
| Hardnes             | 7075-T6          | JIZ       | 115    | 115    | 111    | 115    | 118    | 118    | 118    | 124    | 118    | 118       | 113    | 113    | 116    | 113         | 107     | 113    | 113    | 112      | 115        | 118    | 120    | 122    | 113    | 122       | 120    | 120    | 118    | 3 |
| s, BHN              | 7079-T(          | 137       | 136    | 130    | 130    | 130    | 130    | 136    | 137    | 140    | 140    | 742       | 137    | 136    | 136    | 136         | 135     | 134    | 134    | 136<br>1 | 135<br>135 | 134    | 136    | 138    | 140    | 143       | 138    | 137    | 137    | 1 |

| Specimens     | Tensile<br>ks    | Strength<br>i | Yield S<br>0.2% Off | trength<br>set, ksi | Elongat:<br>1 inch | ion In $(l_{tD}) \not \ll$ | Hardnes    | s, BHN       |
|---------------|------------------|---------------|---------------------|---------------------|--------------------|----------------------------|------------|--------------|
| 4             | 7075 <b>-</b> T6 | 7079-T6       | 7075-тб             | 7079-T6             | <u>7075-T6</u>     | 7079-T6                    | 7075-T6    | 7079-T6      |
| 15 <b>-</b> G | 60.8             | 70.2          | 43.3                | 57.7                | 7.5                | 12.5                       | 118        | 135          |
| Н             | 61.2             | 70.5          | 144.1               | 58.1                | 0.7                | 12.5                       | 118        | 136          |
| н             | 60.7             | 70.0          | 44.5                | 58.0                | 6.5                | 0.11                       | 111        | 134          |
| Ŀ             | 61.2             | 71.5          | 46.0                | 57.5                | 5.0                | 12.5                       | 115        | 136          |
| К             | 62.0             | 71.5          | 47.3                | 58.0                | 5.0                | 10.5                       | 122        | 135          |
| Г             | 62.2             | 73.0          | 49.0                | 0.09                | 5.0                | 8.0                        | 115        | 138          |
| М             | 65.7             | 71.5          | 53.2                | 60.5                | 5.0                | 7.0                        | 118        | 138          |
| N             | 68.4             | 74.5          | 54.5                | 65 <b>.</b> 5       | 7.0                | 7 <b>.</b> 0               | 120        | 138          |
| 17-A          | 65.6             | 76.0          | 50.1                | 66.5                | 7.5                | С.<br>С                    | 104        | 140<br>140   |
| д             | 63.6             | 73.0          | 48.4                | 62.0                | 6.5                | 0°.0                       | 115        | 138          |
| U             | 63.2             | 73.0          | 46.5                | 60.5                | 0.000              | 8.5                        | 104        | 138          |
| A             | 62.3             | 72.0          | 45.2                | 57.5                | 0.0                | 12.5                       | 109        | 136          |
| ы             | 62.0             | 71.5          | 44.5                | 57.0                | 7.0                | 13.0                       | 100        | 138          |
| ſщ            | 61.7             | 71.5          | 44.5                | 58.5                | 0.0                | 10.5                       | TOT        | 136          |
| IJ            | 61.2             | 72.0          | 43.7                | 59.5                | 7.5                | 10.5                       | 101        | 138          |
| н             | 62.1             | 72.0          | 6.44                | 0.09                | 7.5                | 10.5                       | 107        | 138          |
| н             | 62.9             | 71.8          | 46.5                | 59.4                | 7.5                | 11.5                       | 115        | 140<br>1     |
| Ŀ             | 64.1             | 72.5          | 48.5                | 59.3                | 7.5                | 12.5                       | 109        | 130<br>130   |
| М             | 65.5             | 71.6          | 51.0                | 58.1                | 7.0                | 14.0                       | 104        | 7.5.1<br>7.0 |
| 1             | 67.2             | 72.8          | 53.4                | 60.1                | 7.5                | 12.0                       | 120        | 130          |
| W             | 69.0             | 70.0          | 56.1                | 57.0                | J.0                | 11.0                       | 113        | 137          |
| Z             | 69.0             | 75.0          | 57.5                | 65.4                | 6.5                | <u>7.5</u>                 | 02T        |              |
| 19 <b>-</b> A | 6.9              | 74.2          | 53.5                | 65.2                | **                 | 7.5                        | 725<br>725 | 143<br>150   |
| Ē             | 66.5             | 74.5          | 52.8                | 62.1                | 0                  | 11.0                       |            |              |
| U D           | 65.8             | 73.8          | 52.8                | 62.1                | 4<br>0             | 12.0                       | 124<br>124 | 0.1<br>0.1   |
| Ē             | 62.9             | 74.8          | 53.1                | 63.0                | -<br>-<br>-        | 10.5                       | 727        | 140<br>140   |
| 1 [E]         | 64.5             | 73.8          | 52.1                | 62.0                | 4                  | 11.5                       | 62T        | 0)11         |
| 1 म           | 62.6             | 74.2          | 52.0                | 62.1                | 4.5                | 10.0                       | 120        |              |
| , IJ          | 64.7             | 72.2          | 52 <b>.</b> 1       | 62.1                | ** -               | 10.0                       | 07.T       | 001 r        |
| Н             | 63.3             | 73.8          | 51.7                | 62.4                | t.5                | C.01                       | 17T        | 104          |

TABLE 2 (cont.)

| (cont.) |  |
|---------|--|
| 2       |  |
| TABLE   |  |

|    | nsile S<br>ksj | Strength<br>I | Yield S<br>0.2% Off | trength<br>set, ksi | Elongat<br>1 inch | ion In $(4D) %$ | Hardnes | s, BHN  |
|----|----------------|---------------|---------------------|---------------------|-------------------|-----------------|---------|---------|
|    | 5-T6           | 7079-T6       | <u>7075-T6</u>      | 7079-T6             | 7075-T6           | 7079-T6         | 7075-T6 | 7079-T6 |
| ō  | 6.3            | 72.5          | 53.1                | 61.2                | 4.5               | 10.5            | 129     | 138     |
| Õ  | 6.4            | 72.7          | 54.6                | 60.09               | **                | 11.0            | 129     | 138     |
| Ō  | 7.7            | 72.5          | 56.4                | 59.5                | **                | 11.0            | 124     | 138     |
| Ō  | 7.6            | 73.0          | 57.0                | 61.8                | **                | 10.0            | 129     | 140     |
| Õ  | 8.5            | 73.0          | 57.7                | 61.0                | **                | 11.0            | 127     | 142     |
| Ē. | 0.8            | 74.5          | 59.2                | 63.0                | 5.5               | 11.5            | 129     | 138     |
| 0  | 3.4            | 76.0          | 55.5                | 65.3                | 2.5               | 12.0            | 129     | 143     |
| Ō  | 7.5            | 75.5          | 55.6                | 65.0                | 3.5               | 12.5            | 144     | 148     |
| 9  | 6.5            | 78.5          | 56.9                | 66.5                | **                | 0.11            | 140     | 143     |
| Ó  | 4.6            | 79.0          | 55.2                | 70.0                | 3.5               | 7.5             | 120     | 140     |
| Ó  | 4.6            | 79.0          | 56.0                | 69.6                | Э•5               | **              | 111     | 143     |
| 9  | 5.4            | 79.0          | 56.5                | 69.3                | 3•5               | <b>6</b> .0     | 127     | 143     |
| Ó  | 4.7            | 76.2          | 56.2                | 66.2                | 3.5               | <b>6.</b> 0     | 127     | 143     |
| Ó  | 5.9            | 78.0          | 55.3                | 67.0                | 3.5               | 6.5             | 133     | 142     |
| Õ  | 8.1            | 78.1          | 57.8                | 67.4                | 4.5               | 7.0             | 124     | 137     |
| Ó  | 4.1            | 78.0          | 54.6                | 67.8                | 4.5               | 7.5             | 124     | 142     |
| Ō  | 6.8            | 77.0          | 57.0                | 65.6                | 4.5               | 0.6             | 113     | 143     |
| 9  | 5.9            | 76.4          | 56.9                | 65.0                | 4.5               | 11.0            | 133     | 142     |
| Ó  | 8<br>0         | 73.2          | 54.5                | 61.9                | 2.5               | 13.0            | 118     | 137     |
| 9  | 3.4            | 72.3          | 54.2                | 61.0                | 2.5               | 0.11            | 118     | 143     |

\*\*No value obtained - specimen failed outside the gage mark.

B. Minus 320°F

| Specimens    | Tensile<br>ks  | Strength<br>i | Yield S<br>0.2% Off | trength<br>set, ksi | Elongat<br>1 inch | ion In<br>(4D) % |
|--------------|----------------|---------------|---------------------|---------------------|-------------------|------------------|
|              | 7075-тб        | 7079-T6       | 7075-T6             | 7079-T6             | 7075-T6           | 7079-76          |
| 3 <b>-</b> A | 63.9           | 75.6          | 54.4                | 70.6                | 3.0               | 2.0              |
| д            | 63.9           | 77.4          | 52.5                | 63.1                | 2.0               | 2 <b>.</b> 8     |
| Ð            | 61.6           | 78.4          | 51.5                | 69.2                | 2.5               | **               |
| 5 <b>-</b> A | 66.4           | 78.2          | 58.5                | 70.4                | **                | 1 <b>.</b> 8     |
| Д            | 61.8           | 78.2          | 52.0                | 65.1                | 2.0               | 2.5              |
| Ð            | 65.0           | 77.6          | 53.4                | *                   | 2.5               | 2.0              |
| 7-A          | 68.8           | 78.8          | 62.2                | 62.4                | 1.0               | 2.0              |
| щ            | 64.1           | 79.8          | 52.0                | 54.3                | 2.5               | 5.<br>0          |
| U            | 65.0           | 77.4          | 53.7                | 64.1                | 2.5               | 2°0              |
| <b>9-</b> A  | 65.5           | 81.0          | 63.4                | 69.7                | 1.0               | **               |
| ,<br>М       | 67.4           | 77.0          | 63.8                | 67.0                | 1 <b>.</b> 5      | **               |
| U            | 6.9            | 81.0          | 61.2                | 70.6                | 2.0               | 2.0              |
| 14-A         | 67.4           | 82.0          | 55.1                | 72.6                | 3.5               | 1.0              |
| щ            | 68.4           | 80.5          | 53.6                | 73.4                | 4.5               | **               |
| Ð            | 67.2           | 79.5          | 53.5                | 61.9                | 3.5               | **               |
| D            | 68.0           | 81.2          | 53.3                | 59.6                | 4.0               | 2.5<br>.5        |
| ы            | 68 <b>.</b> 80 | 82.2          | 53.4                | *                   | 4.0               | 5.0              |
| Ę۲           | 69.2           | 81.7          | 53.4                | 66.1                | 5.0               | 6.0              |
| Ċ            | 68.2<br>68.2   | 80.5          | 53.2                | 65.2                | 5.0               | 5.3              |
| н            | 69.0           | 81.7          | 54.0                | 68.0                | <b>0.</b> 4       | 5.0              |
| н            | 69.3           | 81.2          | 54.2                | 66.4                | 4.0               | 4.0              |
| L P          | 67.2           | 83.1          | 54.5                | 6.89                | Э•5               | 5.0              |
| - X          | 66.9           | 81.1          | 56.4                | 67.4                | 2.5               | **               |
| 1            | 66 <b>.</b> 8  | 80.2          | 57.7                | 71.1                | 2.5               | **               |
| ıΣ           | 4.17           | 80.0          | 61.4                | 73.1                | **                | <b>Т.</b> 2      |
| N            | 70.0           | 81.5          | 58.3                | 75.4                | ЭЛ                | 1.0              |
| 16-A         | 71.1           | 82.6          | 58.9                | 68.1                | 3.5               | **               |
| щ            | 70.5           | 7.67          | 56.8                | 68.4                | **                | 2.J              |
| U            | 70.5           | 82.5          | 55.9                | 70.0                | **                | o<br>m           |
| D            | 68.1           | 83.0          | 53.5                | 70.5                | 3.5               |                  |

8

7079-T6 4.9 4.0 0 0 0 0 N N th N N 4.6 3.5 5.0 ы С 2.0 2.0 \* \*\* Elongation In 1 inch  $(hD) \frac{\pi}{6}$ 7075-T6 \* 2°0 00100 0044400 005000 0000 1000 1000 \*\* \* \* ł 7079-T6 71.9 74.2 74.7 71.9 77.9 73.0 68.5 66.05 66.05 66.05 66.05 66.05 66.05 66.05 67 .51 0.2% Offset, ksi Yield Strength 7075-T6 69.2 7079**-**T6 Tensile Strength ksi 7075-T6 69.0 68.6 68.9 68.9 69.5 71.5 74.05 76.0 775.5 772.4 772.5 773.5 775.5 775.5 775.5 77.5 77.5 80.6 80.6 77.0 773.5 772.8 70.5 Specimens 18-A 20-A щ υA Z  $\mathbb{Z}$ ЧU 16-E ᆔ ΣZ 되 E. ரு

7079-T6 Elongation In 1 inch  $(\mu D) \ %$ 7075-T6 2•0 00000 \* 2.0 \* 7079-T6 75.2 74.8 74.6 74.6 74.6 75.0 75.0 0.2% Offset, ksi Yield Strength 7075-T6 63.9 62.7 65.2 65.2 65.2 65.2 74.5 7079-T6 86.5 86.5 886.6 87.0 87.0 87.0 87.0 Tensile Strength ksi 7075-T6 Specimens 20-G жньхлхг

\*No value obtained - extensometer slipped. \*\*No value obtained - specimen failed outside the gage mark. ۰,

¥

•

t

addition and the second second

SECTIMENTS

C. Statistic Contactor



Figure 1 Specimen Locations of Standard 7075-T6 and Special Product 7079-T6 Hand Forgings

,



Figure 2 Mechanical Properties vs Specimen Locations of Standard 7075-T6 and Special Product 7079-T6 Hand Forgings





Figure 3 Mechanical Properties vs Specimen Locations of Standard 7075-T6 and Special Product 7079-T6 Hand Forgings



あるが

Min ....

Figure 4 Mechanical Properties vs Specimen Locations of Standard 7075-T6 and Special Product 7079-T6 Hand Forgings

![](_page_19_Figure_0.jpeg)

Figure 5 Mechanical Properties vs Specimen Locations of Standard 7075-T6 and Special Product 7079-T6 Hand Forgings

![](_page_20_Figure_0.jpeg)

Figure 6 Mechanical Properties vs Specimen Locations of Standard 7075-T6 and Special Product 7079-T6 Hand Forgings

![](_page_21_Figure_0.jpeg)

Figure 7 Mechanical Properties vs Specimen Locations of Standard 7075-T6 and Special Product 7079-T6 Hand Forgings

![](_page_22_Figure_0.jpeg)

Figure 8 Mechanical Properties vs Specimen Locations of Standard 7075-T6 and Special Product 7079-T6 Hand Forgings

TABLE 3

EFFECT OF FORGING THICKNESS ON THE ROOM TEMPERATURE MECHANICAL PROPERTIES OF 7075-T652 HAND FORGINGS(1)

| (in.) | Direction                                   | Ftu<br>(ksi)                  | Fty<br>(ksi)                  | Elongation<br>(% in 4D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------|---------------------------------------------|-------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Longitudinal<br>Long Trans.<br>Short Trans. | 78 - 88<br>74 - 80<br>68 - 81 | 65 - 77<br>63 - 68<br>55 - 63 | 10 - 12<br>6 - 10<br>3 - 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | Longitudinal<br>Long Trans.<br>Short Trans. | 74 - 83<br>69 - 81<br>65 - 77 | 60 - 73<br>59 - 70<br>52 - 63 | 603<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Q     | Longitudinal<br>Long Trans.<br>Short Trans. | 63 - 83<br>60 - 81<br>57 - 76 | 48 - 73<br>46 - 70<br>43 - 60 | 8<br>15<br>9<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Q     | Longitudinal<br>Long Trans.<br>Short Trans. | 61 - 87<br>57 - 79<br>53 - 76 | 46 - 73<br>45 - 71<br>43 - 64 | 9 - 14<br>9 - 14<br>9 - 18<br>9 - 19<br>9 - 14<br>9 - 14<br>10<br>10 - 14<br>10<br>10 - 14<br>1 |
| 12    | Longitudinal<br>Long Trans.<br>Short Trans. | 57 - 81<br>55 - 77<br>56 - 73 | 43 - 68<br>43 - 69<br>39 - 63 | 7 - 14<br>2 - 7<br>3 - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12    | Longitudinal<br>Long Trans.<br>Short Trans. | 53 - 81<br>53 - 76<br>52 - 77 | 36 - 71<br>37 - 68<br>33 - 66 | 0 4 0<br>1 1 1<br>1 2<br>0 0<br>0 0<br>0 0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 18    | Longitudinal<br>Long Trans.<br>Short Trans. | 55 - 82<br>52 - 82<br>52 - 82 | 36 - 73<br>34 - 66<br>35 - 71 | 4 - 15<br>5 - 12<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

(1) <u>Aluminum Alloy Forgings, 7075-T652 and 7079-T652</u>, Summary Report R-RE-MMP, George C. Marshall Space Center, 1964.

TABLE 4

# EFFECT OF FORGING THICKNESS ON THE ROOM TEMPERATURE MECHANICAL PROPERTIES OF 7079-T652 HAND FORGINGS(1)

|              |                                             | н,<br>, , ,                     |                                 |                                                                |
|--------------|---------------------------------------------|---------------------------------|---------------------------------|----------------------------------------------------------------|
| Size (in.)   | Direction                                   | (ksi)                           | (ksi)                           | (% in 4D)                                                      |
| 2 x 32 x 12  | Longitudinal                                | 80 - 83                         | 71 - 74                         | 10 - 12                                                        |
|              | Long Trans.                                 | 81.5 - 84                       | 71 - 75                         | 8 - 13                                                         |
|              | Short Trans.                                | 80 - 82                         | 66 - 68                         | 6 - 10                                                         |
| 4 x 32 x 12  | Longitudinal<br>Long Trans.<br>Short Trans. | 77 - 84<br>77 - 80<br>72 - 78   | 67 - 76<br>65.5 - 70<br>60 - 65 | <br>9                                                          |
| 6 x 32 x 12  | Longitudinal                                | 74 - 84                         | 64 - 75                         | 9 - 13                                                         |
|              | Long Trans.                                 | 73 - 78                         | 61 - 70                         | 7 - 11                                                         |
|              | Short Trans.                                | 70 - 77                         | 57 - 63                         | 6 - 10                                                         |
| 8 x 32 x 12  | Longitudinal                                | 73 - 81                         | 61 - 73                         | 9 - 14                                                         |
|              | Long Trans.                                 | 70 - 79                         | 60 - 71                         | 6 - 10                                                         |
|              | Short Trans.                                | 77 - 77                         | 57 - 65                         | 11 - 7                                                         |
| 10 x 32 x 12 | Longitudinal                                | 69 - 78                         | 56.5 - 70                       | 10 - 14                                                        |
|              | Long Trans.                                 | 69 - 79                         | 57 - 70                         | 5 - 11                                                         |
|              | Short Trans.                                | 68 - 79                         | 54.5 - 68                       | 7 - 2                                                          |
| 12 x 32 x 12 | Longitudinal<br>Long Trans.<br>Short Trans. | 69 - 80<br>67 - 79<br>66.5 - 78 | 57 - 72<br>55 - 69<br>52 - 67   | 9 - 12<br>- 12<br>- 12<br>- 12<br>- 12<br>- 12<br>- 12<br>- 12 |
| 18 x 32 x 18 | Longitudinal                                | 59 - 78                         | 44 - 70                         | 01 - 1                                                         |
|              | Long Trans.                                 | 55 - 75                         | 44 - 70                         | 71 - 1                                                         |
|              | Short Trans.                                | 57 - 77                         | 44                              | 71 - 1                                                         |

(1) <u>Aluminum Alloy Forgings, 7075-T652 and 7079-T652</u>, Summary Report R-RE-MMP, George C. Marshall Space Center, 1964.

۲,

### III. TECHNICAL DISCUSSION

# A. MATERIAL

The forging material condition and chemistry are listed in Table 5 along with the forgings dimensions and test section dimensions. The test sections are shown in Figures 9 through 11.

# B. TESTING PROCEDURE

The general test procedure consists of cutting test rings from the peripheral area of the forgings, as shown in Figures 9 and 10. These test rings were machined into tensile specimens which were subsequently tested; the test results were then compared with those of like tensile specimens, which had been taken from the interior areas of the sectioned forging.

Control specimens in the -T652 temper were tested for base-line properties; the test results were compared with those of specimens that were taken from test rings parted from the forging and given the -T6 heat-treatment (per MIL-H-6088) after rough machining. The samples used in the reheattreatment studies were taken from the areas shown in Figure 11.

The configuration and dimensions of tensile specimens are shown in Figure 12. They are standard designs and the stress concentration of the notched specimen is approximately 6.3. Specimen orientations were axial, radial, and tangential.

Tension tests were conducted using standard test equipment at 0.005 in./in./min strain rate at ambient temperature, at  $-320^{\circ}$ F by immersion in liquid nitrogen, and at  $-423^{\circ}$ F by immersion in liquid hydrogen.

Fatigue tests were conducted under tension/compression and bending stress at ambient temperature using standard test equipment. The fatigue specimens were taken from the interior areas of the sectioned forging; their configuration and dimensions are shown in Figures 13 and 14.

C. TEST RESULTS

# 1. Mechanical Properties of Hand Forging "A"

The tension data for the test ring and center section are listed in Tables 6 and 7 and shown graphically in Figures 15 through 20. The relative location of these sections is seen in Figure 9.

The test results substantiated the following conclusions regarding the large 7079-T652 impeller forging.

a. The increase of the 0.2% offset yield strength with decreasing temperature was gradual over the entire temperature range from ambient to  $-423^{0}$ F.

|                    |                                     | 10.<br>03                                                             |                      | .05                                       | •05                            |                             |                                |                                | .05                            | 0.02                                                           |
|--------------------|-------------------------------------|-----------------------------------------------------------------------|----------------------|-------------------------------------------|--------------------------------|-----------------------------|--------------------------------|--------------------------------|--------------------------------|----------------------------------------------------------------|
|                    |                                     | -1<br>.03<br>0                                                        |                      | 0 <b>10</b> .0                            | •056 c                         |                             |                                |                                | 0.046 (                        | 0.05                                                           |
|                    |                                     | <br>                                                                  |                      | 0.15 0                                    | 0.17 0                         |                             |                                |                                | 0.18 (                         | 0.16 0                                                         |
|                    | VI STRY                             | 4 Zr<br>4.8                                                           |                      | t. 45                                     | 8°¶                            |                             |                                |                                | h.6                            | h.8                                                            |
|                    | цн.<br>Тче                          | 3.05<br>3.05                                                          |                      | 3.51                                      | 2.85                           |                             |                                |                                | 3.25                           | 3 <b>.</b> 4                                                   |
|                    | Tast M                              | MN<br>12.0                                                            |                      | 0.195                                     | 0.21                           |                             |                                |                                | 0.20                           | 0.23                                                           |
| 'sNO               | ្ច                                  | 0.1                                                                   |                      | 0.11                                      | 0.18                           |                             |                                |                                | 0.18                           | 0.21                                                           |
| IMENSI             | ORGING                              | <u>s.</u>                                                             |                      | 0.10                                      | 60•0                           |                             |                                |                                | 0.08                           | 60.0                                                           |
| CTION D            | HAND F                              | 0.65<br>0.65                                                          |                      | 0.54                                      | 0.73                           |                             |                                |                                | 0.80                           | 0.68                                                           |
| CONDITION, TEST SE | L CHEMISTRY OF 7079<br>TEET SECTION | DIMENSIONS<br>DIMENSIONS<br>IN INCHES<br>TEST RING<br>31D x 211D x 7L | CENTER<br>31D x 4.8L | Test Ring<br>31D × 251D × <sup>1</sup> 4L | Test Ring<br>20D x 181D x 1.5L | TOP SECTION A<br>20D × 4.3L | CENTER SECTION B<br>20D x 4.3L | BOTTOM SECTION C<br>20D × 4.3L | TEST RING<br>20D x 181D x 1.5L | CENTER AND<br>Periphery                                        |
| FORGING SIZE,      | AND MATERIA                         | <u>Condition</u><br>-T652                                             |                      | -1652                                     | <b>-T</b> 652                  |                             |                                |                                | -1652                          | -7652, тнем<br>гоибн маснімер<br>амр генеат-<br>треатер то -76 |
|                    |                                     | SIZE IN INCHES<br>DIA X LENGTH<br>31 X 21.5                           |                      | 31 × 21.5                                 | 20 × 13                        |                             |                                |                                | 20 × 13                        | 20 × 13                                                        |
|                    |                                     | Hand Forging<br>Oxidizer<br>Impeller                                  |                      | OX I D I ZER<br>IMPELLER                  | Fuel<br>Inducer                |                             |                                |                                | F uel<br>I noucer              | FUEL<br>Inducer                                                |
| 22                 |                                     | PART                                                                  |                      | ß                                         | U                              |                             |                                |                                | ۵                              | ធ                                                              |

TABLE 5

![](_page_27_Figure_0.jpeg)

Specimen location, Impeller Blank, Oxidizer Pump, Forgings "A" and "B" specimens from Test Ring and Center Section were of axial, radial, and tangential orientations. Specimens were smooth and notched types per Figure 12.

Figure 9 Specimen Location, Impeller Blank, Oxidizer Pump, Forgings "A" and "B"

![](_page_28_Figure_0.jpeg)

Specimen location, Inducer Blank, Fuel Pump, Forgings "C" and "D" specimens from Test Rings were of tangential orientation. Those from test sections were of axial, radial, and tangential orientations. Specimens were smooth and notched types per Figure 12. Specimens from Inducer, Fuel Pump, Forging "D" were of like tangential orientation as Test Ring specimens and were taken from similar locations.

Figure 10 Specimen Location, Inducer Blank, Fuel Pump, Forgings "C" and "D"

![](_page_29_Figure_0.jpeg)

.•

Figure 11 Specimen Location, Inducer Blank, Fuel Pump, Forging "E"

![](_page_30_Figure_0.jpeg)

•

۰.

Figure 12 Tensile Specimen Configurations

![](_page_31_Figure_0.jpeg)

NOT TO SCALE

Dimensions:  $D = 0.5000 \pm 0.0005$  im.  $A = 1.25 \pm 0.125$   $B = 4.00 \pm 0.125$   $C = 1.50 \pm 0.005$   $R = 2.3125 \pm 0.002$ Notes: Diameter "D" and "D/2" shall be conce

es: Diameter "D" and "D/2" shall be concentric within 0.001 in. Adjust dimension "D/2" to identify through all specimens <u>+</u> 0.0002 in.

Specimen not to scale

"C" section shall have to max. finish. All other surfaces 32/

![](_page_31_Figure_6.jpeg)

![](_page_32_Figure_0.jpeg)

Figure 14 Tension/Compression Fatigue Specimen

| Notch<br>Yield<br>Ratio           |                         | 3)<br>1.47                                            |                                         | 3)<br>1.46                                            |                                        | 3)<br>1.30                                            |
|-----------------------------------|-------------------------|-------------------------------------------------------|-----------------------------------------|-------------------------------------------------------|----------------------------------------|-------------------------------------------------------|
| Notch<br>Tensile<br>Ratio         |                         | (Kt = 6.<br>1.13                                      |                                         | (Kt = 6.<br>1.13                                      |                                        | (Kt = 6.<br>1.08                                      |
| Reduction of Area $(\mathscr{A})$ | 25.8<br>26.4<br>23.9    | ;                                                     | 11.5<br>10.8<br>9.9<br>10.7             | ;                                                     | 13.7<br>13.0<br>13.0<br>13.2           | ;                                                     |
| Elongation<br>(% in 4D)           | 13.5<br>14.0<br>13.8    | ensile specimen<br>ensile specimen<br>ensile specimen | 10.0<br>9.5<br>0.5<br>0.0<br>0.0<br>0.0 | ensile specimen<br>ensile specimen<br>ensile specimen | 007-00<br>NNN0                         | ensile specimen<br>ensile specimen<br>ensile specimen |
| 0.2% Yield<br>Strength<br>(ksi)   | 49.7<br>53.7<br>60.1    | Notched t<br>Notched t<br>Notched t                   | 48.4<br>51.9<br>54.8<br>51.7            | Notched t<br>Notched t<br>Notched t                   | 59.9<br>56.6<br>57.0<br>57.8           | Notched t<br>Notched t<br>Notched t                   |
| Ultimate<br>Strength<br>(ksi)     | 67.3<br>70.5<br>71.1    | 78.4<br>78.9<br>84.4                                  | 63.8<br>67.5<br>66.7<br>66.7            | 72.3<br>74.5<br>80.4<br>75.7                          | 71.9<br>68.9<br>69.9<br>69.9           | 73.9<br>78.7<br>73.2<br>75.3                          |
| Test<br>Temp<br>(°F)              | RT<br>RT<br>RT<br>Avg.  | RT<br>RT<br>RT<br>Avg.                                | RT<br>RT<br>RT<br>Avg.                  | RT<br>RT<br>RT<br>Avg.                                | RT<br>RT<br>RT<br>Avg.                 | RT<br>RT<br>RT<br>Avg                                 |
| Orientation                       | Axial<br>Axial<br>Axial | Axial<br>Axial<br>Axial                               | Radial<br>Radial<br>Rad <b>ia</b> l     | Radi <b>al</b><br>Radial<br>Radial                    | Tangential<br>Tangential<br>Tangential | Tangential<br>Tangential<br>Tangential                |
| Specimen                          | н о м                   | 11                                                    | 19<br>20<br>21                          | 8 8 8 8<br>8 9 8                                      | 38<br>39<br>39                         | 9 1- 8<br>7 1- 1-<br>29                               |

MECHANICAL PROPERTIES OF 7079-T652 FORGING "A" TEST RING

TABLE 6

,

、**•** 

| Notch<br>Yield<br>Ratio                                 | (<br>1.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | 1.08                                                  |                                        | 1.14                                                  |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------|----------------------------------------|-------------------------------------------------------|
| Notch<br>Tensile<br>Ratio                               | (Kt = 6.3<br>1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | Kt = 6.3<br>0.91                                      |                                        | Kt = 6.3<br>0.97                                      |
| Reduction<br>of Area<br>(%)<br>15.2<br>9.3<br>5.5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | ;                                                     | 0 0 1- 0<br>0 0 1- 0                   | ;                                                     |
| Elongation<br>(% in 4D)<br>8.0<br>1.0                   | 6.3<br>ensile specimen<br>ensile specimen<br>ensile specimen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NOON<br>NOON                 | ensile specimen<br>ensile specimen<br>ensile specimen | 0.00<br>0.00<br>0.00<br>0.00           | ensile specimen<br>ensile specimen<br>ensile specimen |
| 0.2% Yield<br>Strength<br>(ksi)<br>50.1<br>63.8<br>69.6 | 61.2<br>Notched t<br>Notched t<br>Notched t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 57.6<br>65.0<br>63.1<br>63.6 | Notched t<br>Notched t<br>Notched t                   | 70.1<br>61.2<br>58.7<br>63.3           | Notched t<br>Notched t<br>Notched t<br>               |
| Ultimate<br>Strength<br>(ksi)<br>77.8<br>82.6<br>85.6   | 882<br>82.0<br>86.59<br>86.59<br>86.59<br>86.59<br>86.59<br>86.59<br>86.59<br>86.59<br>86.59<br>86.59<br>86.59<br>86.59<br>86.50<br>86.59<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86.50<br>86. | 73.5<br>76.8<br>75.7<br>75.3 | 75.7<br>67.4<br>62.0<br>68.4                          | 77.7<br>73.7<br>72.0<br>74.5           | 74.6<br>70.7<br>71.7<br>72.3                          |
| Test<br>Temp<br>(°F)<br>- 320<br>- 320                  | Avg.<br>- 320<br>- 320<br>Avg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -320<br>-320<br>-320<br>Avg. | -320<br>-320<br>-320<br>Avg.                          | -320<br>-320<br>-320<br>Avg.           | -320<br>-320<br>Avg.                                  |
| <u>Orientation</u><br>Axial<br>Axial<br>Axial           | Axial<br>Axial<br>Axial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Radial<br>Radial<br>Radial   | Radial<br>Radial<br>Radial                            | Tangential<br>Tangential<br>Tangential | Tangential<br>Tangential<br>Tangential                |
| Specimen<br>4                                           | Ч Ц Ц<br>С Ц Ц С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22<br>24<br>24               | 32 32<br>32 32<br>33 5                                | ひ<br>ト<br>ト<br>ト                       | 50<br>70<br>1                                         |

TABLE 6 (cont.)

.•

ļ

| Notch<br>Yield<br><u>Ratio</u>  |                              | 3<br>1.27                                                |                              | 1.02                                                  |                                        | 0.95                                                  |
|---------------------------------|------------------------------|----------------------------------------------------------|------------------------------|-------------------------------------------------------|----------------------------------------|-------------------------------------------------------|
| Notch<br>Tensile<br>Ratio       |                              | Kt = 6.3<br>0.98                                         |                              | Kt = 6.3<br>0.89                                      |                                        | Kt = 6.3<br>0.78                                      |
| Reduction<br>of Area<br>(%)     | 4.01.2<br>7.096              | ;                                                        | 10401<br>10401               | ;                                                     | 0.00<br>0.44 w                         | ;                                                     |
| Elongation<br>(% in 4D)         | ++77+<br>7.000<br>7.000      | censile specimen<br>censile specimen<br>censile specimen |                              | ensile specimen<br>ensile specimen<br>ensile specimen | 0 N N N<br>0 N N N                     | ensile specimen<br>ensile specimen<br>ensile specimen |
| 0.2% Yield<br>Strength<br>(ksi) | 6.9<br>6.9<br>6.9            | Notched t<br>Notched t<br>Notched t<br>                  | 63.1<br>65.6<br>64.4         | Notched t<br>Notched t<br>Notched t<br>               | <br>56.8<br>57.3<br>57.1               | Notched t<br>Notched t<br>Notched t<br>               |
| Ultimate<br>Strength<br>(ksi)   | 82.4<br>82.7<br>84.0<br>83.0 | 73.5<br>88.9<br>84.3<br>82.2                             | 75.2<br>76.4<br>71.6<br>74.4 | 73.9<br>54.5<br>66.0                                  | 73.3<br>69.8<br>69.9                   | 39.2<br>69.7<br>54.7<br>54.5                          |
| Test<br>Temp<br>(°F)            | -423<br>-423<br>-423<br>Avg. | -423<br>-423<br>-423<br>Avg.                             | -423<br>-423<br>-423<br>Avg. | -423<br>-423<br>-423<br>Avg.                          | -423<br>-423<br>-423<br>Avg.           | -423<br>-423<br>-423<br>Avg.                          |
| Orientation                     | Axial<br>Axial<br>Axial      | Axial<br>Axial<br>Axial                                  | Radial<br>Radial<br>Radial   | Radial<br>Radial<br>Radial                            | Tangential<br>Tangential<br>Tangential | Tangential<br>Tangential<br>Tangential                |
| Specimen                        | r-∞ 0                        | 16<br>17<br>18                                           | 25<br>26<br>27               | 365<br>355<br>26                                      | 44<br>44<br>45                         | 5<br>53<br>44                                         |
| <u>~</u> | ŀ |
|----------|---|
| TABLE    |   |

# MECHANICAL PROPERTIES OF 7079-T652 FORGING "A" CENTER-SECTION

| Notch<br>Yield<br>Ratio               |                                                  | 1.97                                                                         |                                                                                  | 1.59                                                                         |                                                      |
|---------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------|
| Notch<br>Tensile<br>Ratio             |                                                  | Kt = 6.3<br>1.27                                                             |                                                                                  | Kt = 6.3<br>1.07                                                             |                                                      |
| Reduction<br>of Area $(\beta)$        | 32.9<br>36.1<br>36.1<br>33.6                     | ;                                                                            | 18.9<br>20.1<br>19.5<br>19.5                                                     | ł                                                                            | 13.8<br>15.1<br>16.1<br>16.3                         |
| Elongation $(\phi \text{ in } \mu D)$ | 19.0<br>0.81<br>0.0<br>0.81<br>180<br>7.0<br>7.0 | tensile specimen<br>tensile specimen<br>tensile specimen<br>tensile specimen | 15.5<br>13.0<br>13.0<br>13.4                                                     | tensile specimen<br>tensile specimen<br>tensile specimen<br>tensile specimen |                                                      |
| 0.2% Yield<br>Strength<br>(ksi)       | <br>36.8<br>37.5<br>37.5                         | Notched<br>Notched<br>Notched<br>Notched<br>                                 | 39.0<br>89.2<br>9.6<br>9.7<br>9.7<br>7<br>9.7<br>7                               | Notched<br>Notched<br>Notched<br>Notched<br>                                 | 44777777777777777777777777777777777777               |
| Ultimate<br>Strength<br>(ksi)         | 58.1<br>57.8<br>57.2<br>57.9<br>57.8             | 80.5<br>72.3<br>70.8<br>73.4                                                 | 528<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>2 | 63.5<br>63.6<br>61.3<br>62.5<br>62.7                                         | 60.1<br>60.3<br>61.8<br>60.8<br>60.8                 |
| Test<br>Temp<br>(°F)                  | RT<br>RT<br>RT<br>RT<br>Avg.                     | RT<br>RT<br>RT<br>RT<br>AVG.                                                 | RT<br>RT<br>RT<br>RT<br>AVG.                                                     | RT<br>RT<br>RT<br>RT<br>Avg.                                                 | RT<br>RT<br>RT<br>AVG.                               |
| Orientation                           | Axial<br>Axial<br>Axial<br>Axial                 | Axial<br>Axial<br>Axial<br>Axial                                             | Radial<br>Radial<br>Radial<br>Radial                                             | Radial<br>Radial<br>Radial<br>Radial                                         | Tangential<br>Tangential<br>Tangential<br>Tangential |
| Specimen                              | 4 0 M 4                                          | 40<br>70<br>70<br>88<br>70<br>70<br>70                                       | 111<br>14<br>90                                                                  | 4 5 7 7 4<br>7 7 7 0<br>7 7 7 0                                              | 25<br>27<br>28                                       |

í

•

٠,

| cont.) |
|--------|
| $\sim$ |
| 2      |
| TABLE  |

.

:

ļ

Ĭ

| Notch<br>Yield<br>Ratio         | 1.45                                                                         |                                                                                                               | 1.78                                                                         |                                                                    | 1.32                                                                         |
|---------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|
| Notch<br>Tensile<br>Ratio       | Kt = 6.3<br>1.01                                                             |                                                                                                               | Kt = 6.3<br>1.09                                                             |                                                                    | Kt = 6.3<br>0.92                                                             |
| Reduction<br>of Area $(\phi)$   | 1                                                                            | 24.3<br>24.3<br>18.9<br>21.1<br>21.1                                                                          | ;                                                                            | 800<br>600<br>600<br>600<br>600<br>600<br>600<br>600<br>600<br>600 | :                                                                            |
| Elongation<br>(% in 4D)         | tensile specimen<br>tensile specimen<br>tensile specimen<br>tensile specimen | 19.0<br>21.0<br>16.0<br>17.0<br>28.3                                                                          | tensile specimen<br>tensile specimen<br>tensile specimen<br>tensile specimen | 0.0<br>1.0<br>1.0<br>2.0<br>2.0                                    | tensile specimen<br>tensile specimen<br>tensile specimen<br>tensile specimen |
| 0.2% Yield<br>Strength<br>(ksi) | Notched<br>Notched<br>Notched<br>Notched                                     | 50.00<br>50.00<br>50.00<br>50.00<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5 | Notched<br>Notched<br>Notched<br>Notched                                     | 48.3<br>50.1<br>49,9                                               | Notched<br>Notched<br>Notched<br>Notched                                     |
| Ultimate<br>Strength<br>(ksi)   | 60.7<br>60.3<br>61.0<br>61.3                                                 | 73.3<br>74.6<br>74.0<br>73.9                                                                                  | 81.0<br>80.6<br>82.3<br>82.3                                                 | 70.2<br>72.6<br>73.0<br>72.2<br>72.0                               | 64.0<br>66.2<br>60.5<br>66.1<br>66.1                                         |
| Test<br>Temp<br>(°F)            | RT<br>RT<br>RT<br>RT<br>Avg.                                                 | -320<br>-320<br>-320<br>-320<br>Avg.                                                                          | -320<br>-320<br>-320<br>-320<br>Avg.                                         | - 320<br>- 320<br>- 320<br>- 320<br>Avg.                           | - 320<br>- 320<br>- 320<br>Avg.                                              |
| Orientation                     | Tangential<br>Tangential<br>Tangential<br>Tangential                         | Axial<br>Axial<br>Axial<br>Axial                                                                              | Axial<br>Axial<br>Axial<br>Axial                                             | Radi <b>a</b> l<br>Radial<br>Radial<br>Radial                      | Radial<br>Radial<br>Radial<br>Radial                                         |
| Specimen                        | 61<br>64<br>64                                                               | w⊿ ⊳∞                                                                                                         | サとって                                                                         | 17<br>19<br>20                                                     | らうりう<br>のよう<br>のの                                                            |

| Notch<br>Yield<br>Ratio                        |                                                                                  | 1.26                                                                     |                                      | 1.48                                                                     |
|------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------|
| Notch<br>Tensile<br>Ratio                      |                                                                                  | Kt = 6.3<br>0.92                                                         |                                      | Kt = 6.3<br>0.915                                                        |
| Reduction of Area $(\phi)$                     |                                                                                  | 1                                                                        | 10.8<br>13.7<br>13.8<br>13.8<br>13.8 | ;                                                                        |
| Elongation<br>(\$\verthing\$ in \$\text{hD}\$) | N7 N N7<br>0 N 0 0 0                                                             | ensile specimen<br>ensile specimen<br>ensile specimen<br>ensile specimen | 10.0<br>10.0<br>10.0                 | ensile specimen<br>ensile specimen<br>ensile specimen<br>ensile specimen |
| 0.2% Yield<br>Strength<br>(ksi)                | 51.9<br>52.7<br>54.8<br>56.7                                                     | Notched t<br>Notched t<br>Notched t<br>Notched t                         | 700.64<br>70.00<br>70.00<br>70.00    | Notched t<br>Notched t<br>Notched t<br>Notched t<br>                     |
| Ultimate<br>Strength<br>(ksi)                  | 72.1<br>73.0<br>74.4<br>75.1<br>73.7                                             | 66.3<br>69.0<br>68.8<br>67.7                                             | 80.3<br>82.1<br>81.3<br>81.3         | 71.1<br>76.8<br>71.0<br>71.0                                             |
| Test<br>Temp<br>(°F)                           | - 320<br>- 320<br>- 320<br>- 320<br>- 320<br>- 320<br>- 320                      | - 320<br>- 320<br>- 320<br>Avg.                                          | -423<br>-423<br>-423<br>-423<br>Avg. | -423<br>-423<br>-423<br>Avg.                                             |
| Orientation                                    | Tangential<br>Tangential<br>Tangential<br>Tangential                             | Tangential<br>Tangential<br>Tangential<br>Tangential                     | Axial<br>Axial<br>Axial<br>Axial     | Axial<br>Axial<br>Axial<br>Axial                                         |
| Specimen                                       | 50<br>93<br>93<br>93<br>93<br>93<br>93<br>93<br>93<br>93<br>93<br>93<br>93<br>93 | 65<br>66<br>68                                                           | 6 0 H 8<br>H H H                     | 84 60<br>4 4 4 4 4                                                       |

TABLE 7 (cont.)

| Notch<br>Yield<br>Ratio                    |                                       | 3<br>0.94                                             |                                                      | 3<br>1.06                                                |
|--------------------------------------------|---------------------------------------|-------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|
| Notch<br>Tensile<br>Ratio                  |                                       | Kt = 6.<br>0.71                                       |                                                      | Kt = 6.<br>0.84                                          |
| Reduction<br>of Area<br>$(\mathscr{A})$    | 0.07.00<br>4.00.00<br>4.00            | ;                                                     | ೦.೦.೦.೦.೦<br>ಸಸಸಸಸ                                   | 1                                                        |
| Elongation $(\% \text{ in } ^{\text{l}}D)$ | + 7 N Y + 4<br>N 0 0 0 0              | ensile specimen<br>ensile specimen<br>ensile specimen | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               | censile specimen<br>censile specimen<br>censile specimen |
| 0.2% Yield<br>Strength<br>(ksi)            | 52.5<br>58.5<br>58.5<br>58.5          | Notched t<br>Notched t<br>Notched t                   | 59.6<br>55.2<br>57.4                                 | Notched t<br>Notched t<br>Notched t                      |
| Ultimate<br>Strength<br>(ksi)              | 75.5<br>77.1<br>76.0<br>79.2<br>76.95 | 63.0<br>16.4<br>54.9<br>54.8                          | 70.2<br>73.4<br>71.8<br>72.5                         | 59.1<br>70.0<br>60.8<br>60.8                             |
| Test<br>Temp<br>(°F)                       | -423<br>-423<br>-423<br>-423<br>Avg.  | -423<br>-423<br>-423<br>Avg.                          | -423<br>-423<br>-423<br>-423<br>AVB.                 | -423<br>-423<br>-423<br>Avg.                             |
| Orientation                                | Radial<br>Radial<br>Radial<br>Radial  | Radial<br>Radial<br>Radial                            | Tangential<br>Tangential<br>Tangential<br>Tangential | Tangential<br>Tangential<br>Tangential                   |
| Specimen                                   | 22<br>23<br>24<br>24                  | 0,0<br>0,0<br>0,0                                     | 30.55<br>30.55<br>30.55                              | 69<br>70<br>71                                           |

TABLE 7 (cont.)

.

Ķ

-

1

ļ



Figure 15 The Effect of Temperature on the Smooth-Bar Mechanical Properties of Forging "A" Test Ring



Figure 16 The Effect of Temperature on the Notched-Bar Mechanical Properties of Forging "A" Test Ring



The Effect of Temperature on the Smooth-Bar Mechanical Properties of Forging "A" Center Section



•



Comparison of Forging "A" Test Ring and Center Section Mechanical Properties

Axial Thomastine HAH Cadial Maria Canalita -320 Tangential. Corrigina. Poncinc ### Post Ping Podd ol A Page contration (RT 1.h <del>(+320)</del> 4 P(+420 1.2 **4** (-320) -420) (-420) 0.8 35 1:0 65 50 ៩៩ 60

•

UTURE CTURY DOMON

VIELD SUBBIORH (PST x 1000)

Figure 20 Forging "A" Notch-Yield Ratio vs Yield Strength

b. The ultimate strength increased as the testing temperature was decreased and at approximately the same gradual rate as the yield strength. The 7079 alloy experienced a low work hardening rate, as indicated by the gradual increase with a lowering of temperature.

c. Ductility, as measured by elongation and area reduction, exhibited a reverse trend -- a decrease with lowering of temperature. This is uncommon for a wrought, face-centered-cubic alloy where ductility does not change appreciably with a temperature decrease.

d. The notch-tensile strength and the notch-tensile (notched tensile strength/smooth bar tensile strength) and notch-yield (notched tensile strength/smooth bar yield strength) ratios decreased as the testing temperature was decreased. This is an indication of reduced toughness. The toughness, as measured by notch-yield ratio, is quite good at ambient temperature, is marginal at  $-320^{\circ}$ F, and is poor at  $-423^{\circ}$ F. There was considerable scatter of notch-tensile data at very low temperature, partly because of the relatively poor toughness of Grade 7079.

e. The forging exhibited an anisotropic condition, which is illustrated by the variance of the smooth-bar properties of specimens in the axial, radial, and tangential orientations. The properties were generally highest in the grain flow (axial) direction as is common in other alloys.

f. The mechanical properties were strongly influenced by the mass-quench effect. This is illustrated by the significant variation of the center-section and test ring properties at the corresponding testing temperatures, as shown in Figure 19. The test ring generally had higher strength and lower ductility than the center section. The variation was consistent in the axial, radial and tangential specimen orientations. In a subsequent section of this report it will be shown that the properties are influenced by grain size, which is controlled by hot-working.

g. The notch-yield ratio is an inverse function of yield strength, as shown in Figure 20. Yield strength and ductility are also inversely related. For cryogenic service, a material with a high notch-yield ratio (greater than unity) as well as high yield strength is desired. This condition is not satisfied with Grade 7079 in forgings of the size under consideration.

Recent data (4) related the notch-yield ratio and yield strength for 6061, 5456, 2014, 2019, 7039, and X7106 in a similar notch-yield ratio versus yield-strength plot. Highest notch-yield ratios were obtained with the lowest yield strengths in these aluminum alloys. Adequate combination of high notch-yield ratios and high yield strengths are not observed in these commercial aluminum alloys at very low temperatures.

<sup>(4)</sup> Campbell, J.E., <u>Properties and Applications of Aluminum Alloys at Low</u> <u>Temperatures</u>, Battelle Memorial Institute, 1964.

### 2. Mechanical Properties of Hand Forging "B"

Tensile data for the test ring are listed in Table 8 and shown graphically in Figure 21.

The strengths are slightly higher and the ductilities are lower than those of the Hand Forging "A" test ring. The relative position of the test rings with respect to the periphery of the forging is shown in Figure 9. Specimens of Hand Forging "B" were taken closer to the surface where greater hardening response and mechanical working resulted in higher strength.

In agreement with previous data, strength and ductility are influenced in a manner similar to that described previously upon exposure to low temperatures. At low temperatures, the YS/UTS ratios (yield strength to ultimate strength in a smooth-bar test specimen) were notably high, which is undesirable in a cryogenic alloy.

Based upon notch-yield criteria, the test ring is relatively notch tough at ambient temperature and when axially oriented at  $-320^{\circ}$ F. Notchsensitivity is apparent in the radial and tangential orientations at  $-320^{\circ}$ F, and in all orientations at  $-423^{\circ}$ F.

## 3. Mechanical Properties of Hand Forging "C"

The low temperature tests described earlier were performed using a slightly smaller forging (see Figure 10). Properties at the test ring, top, center, and bottom locations were studied. These data are listed in Tables 9 and 10 and illustrated graphically in Figures 22 through 24.

The test results indicate the following significant features:

a. The data are in agreement with previous findings regarding the effect of temperature upon mechanical properties. It confirmed that when the temperature is lowered, strengths and notch sensitivity are increased while ductility is decreased.

b. Highest strengths were obtained in the test ring. Lowest strength, superior toughness, and highest ductilities were obtained at the center section. The top and bottom section properties were essentially equivalent.

Generally, when comparing the center-section properties of the impeller and inducer forgings (viz., Forgings "A" and "C", respectively), Forging "A" has inferior strength but superior ductility (see Figures 25 and 26). Highest strengths are obtained near the quenched surface while ductility variations are smaller (see Figure 27).

All of the above observations are based upon experimental results and allow the following general conclusions to be drawn. The 7079-T652 forgings have relatively poor toughness at a temperature of -423°F. Also,

| Notch<br>Yield<br>Ratio                |                                  | 3<br>1.52                                                                |                                                                                      | 3<br>1.41                                                                |                                                                   |
|----------------------------------------|----------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|
| Notch<br>Tensile<br>Ratio              |                                  | K <sub>t</sub> = 6.<br>1.25                                              |                                                                                      | Kt = 6<br>1.25                                                           |                                                                   |
| Reduction<br>of Area $(\frac{d}{ ho})$ | 22.4<br>19.8<br>16.1<br>17.4     |                                                                          |                                                                                      |                                                                          | 9.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7 |
| Elongation<br>(% in 4D)                | 10.5<br>12.0<br>12.0<br>10.4     | ensile specimen<br>ensile specimen<br>ensile specimen<br>ensile specimen | NNN44<br>00000                                                                       | ensile specimen<br>ensile specimen<br>ensile specimen<br>ensile specimen | 00000<br>80000                                                    |
| 0.2% Yield<br>Strength<br>(ksi)        | 62.5<br>62.4<br>61.0<br>62.0     | Notched t<br>Notched t<br>Notched t<br>Notched t                         | 63.5<br>63.5<br>62.2<br>63.5<br>63.5<br>63.5<br>63.5<br>63.5<br>63.5<br>63.5<br>63.5 | Notched t<br>Notched t<br>Notched t<br>Notched t                         | 64.4<br>61.1<br>60.9<br>62.0<br>62.0                              |
| Ultimate<br>Strength<br>(ksi)          | 75.5<br>76.3<br>73.1<br>73.1     | 93:9<br>94:11<br>94:12<br>94:12                                          | 71.1<br>72.0<br>72.1<br>79.6<br>71.2                                                 | 83.4<br>85.8<br>87.3<br>887.3                                            | 74.4<br>71.2<br>71.3<br>70.9<br>72.0                              |
| Test<br>Temp<br>(°F)                   | RT<br>RT<br>RT<br>RT<br>Avg.     | RT<br>RT<br>RT<br>RT<br>AVG.                                             | RT<br>RT<br>RT<br>RT<br>Avg.                                                         | RT<br>RT<br>RT<br>RT<br>Avg.                                             | RT<br>RT<br>RT<br>RT<br>AVG.                                      |
| Orientation                            | Axial<br>Axial<br>Axial<br>Axial | Axial<br>Axial<br>Axial<br>Axial                                         | Radial<br>Radial<br>Radial<br>Radial                                                 | Radial<br>Radial<br>Radial<br>Radial                                     | Tangential<br>Tangential<br>Tangential<br>Tangential              |
| Specimen                               | よる ちょ                            | 4000<br>1000                                                             | 002 th<br>1 t t t                                                                    | 4 5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                | 25<br>26<br>28                                                    |

:

MECHANICAL PROPERTIES OF 7079-T652 FORGING "B" TEST RING

TABLE 8

| Notch<br>Yield<br>Ratio         | 1.23                                                     |                                          | 1.19                                                                                        |                                      | 0.87                                                         |
|---------------------------------|----------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------|
| Notch<br>Tensile<br>Ratio       | Kt = 6.3                                                 |                                          | Kt = 6.3<br>1.03                                                                            |                                      | K <sub>t</sub> = 6.3<br>0.86                                 |
| Reduction<br>of Area<br>(%)     | 1.10                                                     | 00000<br>00000                           |                                                                                             | 9.5.4.7.0<br>9.5.4.7.6               |                                                              |
| Elongation<br>(% in 4D)         | censile specimen<br>censile specimen<br>censile specimen | u u u u u u<br>n n n n n n               | ensile specimen<br>ensile specimen<br>ensile specimen                                       | 00000<br>00000<br>00000              | ensile specimen<br>ensile specimen<br>ensile specimen        |
| 0.2% Yield<br>Strength<br>(ksi) | Notched t<br>Notched t<br>Notched t                      | 72.5<br>71.1<br>75.2<br>72.9             | Notched t<br>Notched t<br>Notched t                                                         | <br>78.1<br>71.8<br>71.3<br>73.7     | Notched t<br>Notched t<br>Notched t                          |
| Ultimate<br>Strength<br>(ksi)   | 77.8<br>76.9<br>74.4<br>76.4                             | 83.3<br>80.9<br>87.4<br>86.7<br>86.7     | 88.5<br><br>83.4<br>86.8                                                                    | 74.7<br>78.1<br>75.4<br>73.5<br>73.5 | 64.1<br>67.9<br>61.6<br>64.5                                 |
| Test<br>Temp<br>(°F)            | RT<br>RT<br>RT<br>Avg.                                   | - 320<br>- 320<br>- 320<br>- 320<br>Avg. | - 320<br>- 320<br>- 320<br>Avg.                                                             | - 320<br>- 320<br>- 320<br>Avg.      |                                                              |
| Orientation                     | Tangential<br>Tangential<br>Tangential                   | Axial<br>Axial<br>Axial<br>Axial         | Axial<br>Axial<br>Axial<br>Axial                                                            | Radial<br>Radial<br>Radial<br>Radial | Radial<br>Radial<br>Radial<br>Radial                         |
| Specimen                        | 61<br>62<br>63                                           | 50 0 0 0                                 | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | 17<br>19<br>20<br>20                 | 2025<br>2025<br>2020<br>2020<br>2020<br>2020<br>2020<br>2020 |

TABLE 8 (cont.)

•.

| Notch<br>Yield<br>Ratio         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3<br>0.67                                                                       |                                                                    | 3<br>0 <b>.</b> 86                                                           |                                               |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|
| Notch<br>Tensile<br>Ratio       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K <sub>t</sub> = 6.<br>0.65                                                     |                                                                    | K <sub>t</sub> = 6.<br>0.80                                                  |                                               |
| Reduction of Area $(\beta)$     | ๛๛๛๛๛<br>๛๛๛๛๛๛                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 | 10000<br>10000<br>10000                                            |                                                                              | 00000                                         |
| Elongation<br>(% in 4D)         | waaaa<br>orooro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | censile specimen<br>censile specimen<br>censile specimen<br>censile specimen    | (1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1) | censile specimen<br>censile specimen<br>censile specimen<br>censile specimen | 1-1-0<br>0-0<br>0.0<br>2.0                    |
| 0.2% Yield<br>Strength<br>(ksi) | 73.2<br>73.4<br>78.1<br>74.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Notched t<br>Notched t<br>Notched t<br>Notched t                                | 77.0<br>84.3<br>83.6<br>81.9<br>81.9                               | Notched t<br>Notched t<br>Notched t<br>Notched t                             | 77.8<br>(2)<br>(2)<br>(2)<br>(2)<br>77.8      |
| Ultimate<br>Strength<br>(ksi)   | 75.8<br>77.1<br>75.8<br>75.8<br>76.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50.2<br>50.7<br>50.7<br>50.7<br>50.7                                            | 86.9<br>89.9<br>88.1<br>0                                          | 49.2<br>68.5<br>87.1<br>70.0                                                 | 78.1<br>73.2(3)<br>76.4(3)<br>78.7(3)<br>78.1 |
| Test<br>Temp<br>(°F)            | - 320<br>- 320<br>- 320<br>- 320<br>Avg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 320<br>- 320<br>- 320<br>Ave.                                                 | -423<br>-423<br>-423<br>-423<br>Avg.                               | -423<br>-423<br>-423<br>-423<br>Avg.                                         | -423<br>-423<br>-423<br>-423<br>Avg.          |
| Orientation                     | Tangential<br>Tangential<br>Tangential<br>Tangential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tangential<br>Tangential<br>Tangential<br>Tangential                            | Axial<br>Axial<br>Axial<br>Axial                                   | Axial<br>Axial<br>Axial<br>Axial                                             | Radial<br>Radial<br>Radial<br>Radial          |
| Specimen                        | 8 N N 0<br>9 N 0<br>0 | 69<br>66<br>66<br>66<br>66<br>66<br>66<br>66<br>66<br>66<br>66<br>66<br>66<br>6 | 6 1 1 1<br>1 1 1<br>1 1                                            | 84 02<br>たたた                                                                 | 21<br>25<br>25<br>25<br>25                    |

.•

TABLE 8 (cont.)

| Notch<br>Yield<br>Ratio         | 3<br>0.695                                                                             |                                                      | 3<br>0.428                                                               |
|---------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|
| Notch<br>Tensile<br>Ratio       | Kt = 6.<br>0.69                                                                        |                                                      | K <sub>t</sub> = 6.<br>0.426                                             |
| Reduction<br>of Area<br>(%)     |                                                                                        | 000000                                               |                                                                          |
| Elongation<br>(% in 4D)         | censile specimen<br>censile specimen<br>censile specimen<br>ensile specimen            | 000000000000000000000000000000000000000              | ensile specimen<br>ensile specimen<br>ensile specimen<br>ensile specimen |
| 0.2% Yield<br>Strength<br>(ksi) | Notched t<br>Notched t<br>Notched t<br>Notched t                                       | (2)<br>(2)<br>(2)<br>81.7<br>81.7                    | Notched t<br>Notched t<br>Notched t<br>Notched t                         |
| Ultimate<br>Strength<br>(ksi)   | СС4<br>СС4<br>СС<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С | 75.8(3)<br>60.6(3)<br>78.1(3)<br>82.3<br>82.3        | 27.6<br>46.9<br>35.0<br>37.0                                             |
| Test<br>Temp<br>(°F)            | -423<br>-423<br>-423<br>-423<br>Avg.                                                   | -423<br>-423<br>-423<br>-423<br>Avg.                 | -423<br>-423<br>-423<br>-423<br>Avg.                                     |
| Orientation                     | Radial<br>Radial<br>Radial<br>Radial                                                   | Tangential<br>Tangential<br>Tangential<br>Tangential | Tangential<br>Tangential<br>Tangential<br>Tangential                     |
| Specimen                        | ううい<br>での<br>の<br>の                                                                    | 965544<br>30334                                      | 69<br>71<br>72                                                           |

TABLE 8 (cont.)

•

•

.

NOTES:

Specimen fractured outside of the gage mark. No yield obtained in specimen during stressing. Not included in average of results. H N M





|                                                                 | Notch<br>Yield<br>Ratio                |                                                                    | 1.29                                                  |                                                      |                                                      | 0.805                                                                |
|-----------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|
|                                                                 | NOTCH<br>TENSILE<br>Ratio              |                                                                    | 1.12                                                  |                                                      |                                                      | 0.75                                                                 |
|                                                                 | STRESS<br>CONCENTR.<br>(KT)            |                                                                    | יידי<br>מידי מ<br>מידי מי                             |                                                      |                                                      | 7.3<br>6.6<br>6.2                                                    |
|                                                                 | REDUCTION<br>OF AREA<br>(\$)           | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 | 2 7 7                                                 |                                                      |                                                      | z z z z                                                              |
|                                                                 | ELONGATION<br>(2 in <sup>4</sup> D)    | 0.9<br>0.7<br>7.7                                                  | ENSILE SPECIMEI<br>Ensile Specimei<br>Ensile Specimei |                                                      | 8.0<br>2.0<br>3.0<br>3.0                             | ENSILE SPECIME<br>Ensile Specime<br>Ensile Specime<br>Ensile Specime |
| 0.2% ҮІЕLD<br>Strength<br>(ksi)<br>66.6<br>63.9<br>67.9<br>66.1 | NOT CHED T<br>Not CHED T<br>Not CHED T |                                                                    | 87.9<br>82.5<br>83.2<br>87.7                          | NOT CHED T<br>NOT CHED T<br>NOT CHED T<br>NOT CHED T |                                                      |                                                                      |
|                                                                 | ULT IMATE<br>Strength<br>(KSI)         | 76.4<br>74.5<br>76.4<br>75.8                                       | 84.6<br>83.4<br>87.1<br>85.0                          |                                                      | 93.4<br>91.7<br>94.8<br>94.5                         | 61.8<br>62.7<br>77.9<br>79.0<br>70.6                                 |
|                                                                 | TEST<br>TEMP<br>( <sup>O</sup> F)      | RT<br>RT<br>RT<br>Avg.                                             | RT<br>RT<br>RT<br>Avg.                                |                                                      | -423<br>-423<br>-423<br>-423<br>Ave.                 | - 423<br>- 423<br>- 423<br>- 423<br>- 423                            |
|                                                                 | AREA                                   | РЕК І РНЕ КҮ<br>РЕК І РНЕ КҮ<br>РЕК І РНЕ КҮ                       | РЕ В І РНЕ В Ү<br>РЕ В І РНЕ В Ү<br>РЕ В І РНЕ В Ү    |                                                      | PERIPHERY<br>PERIPHERY<br>PERIPHERY<br>PERIPHERY     | РЕКІРНЕКҮ<br>РЕКІРНЕКҮ<br>РЕКІРНЕКҮ<br>РЕКІРНЕКҮ                     |
| ING NO. 1                                                       | ORIENTATION                            | Tangent i al<br>Tangent i al<br>Tangent i al                       | Tangent i al<br>Tangent i al<br>Tangent i al          | RING NO. 2                                           | Tangential<br>Tangential<br>Tangential<br>Tangential | Tangential<br>Tangential<br>Tangential<br>Tangential                 |
| A. TEST R                                                       | SPECIMEN                               | 24-C<br>26-C<br>28-C                                               | 23-C<br>25-C<br>27-C                                  | В. Тезт Р                                            | 10-4<br>12-4<br>14-5<br>16-8                         | 9-8<br>11-8<br>13-8                                                  |

MECHANICAL PROPERTIES OF 7079-T652 FORGING "C" TEST RING

TABLE 9

•

•

•

.

| 0  | l |
|----|---|
| -  | L |
| L. |   |
| ے  | Ł |
| ۵  | L |
| ٩  | Ł |
| ┢  |   |

## MECHANICAL PROPERTIES OF 7079-T652 FORGING "C" TOP, CENTER, AND BOTTOM SECTIONS

TOP SECTION

| A. TOP   | SECTION                      |                          | TEST                      | ULTIMATE             | 0.2% YIELD               |                                      | REDUCTION                           | STRESS            | NOTCH            | Not CH         |
|----------|------------------------------|--------------------------|---------------------------|----------------------|--------------------------|--------------------------------------|-------------------------------------|-------------------|------------------|----------------|
| SPECIMEN | ORIENTATION                  | AREA                     | TEMP<br>( <sup>o</sup> f) | STRENGTH<br>(KSI)    | STRENGTH<br>(KSI)        | ELONGATION<br>(% IN <sup>1</sup> 4D) | OF AREA<br>(%)                      | CONCENTR.<br>(KT) | TENSILE<br>RATIO | YIELD<br>Ratio |
| ~        | TANGENT I AL                 | 1/2 RADIUS               | RT                        | 63.4                 | 54.6                     | 0.6                                  | 13.0                                |                   |                  |                |
| 4        | TANGENTIAL                   | 1/2 RADIUS               | RT                        | 6•99                 | NOT CHED                 | FENSILE SPECIME                      | z                                   | ti • ti           | 96.0             | 1.22           |
| 2        | AXIAL                        | 1/2 RADIUS               | RT                        | 65.4                 | 51.1                     | 6.5                                  | 13.1                                |                   |                  |                |
| ŝ        | AXIAL                        | 1/2 RADIUS               | RT                        | 64.6                 | NOTCHED                  | ENSILE SPECIME                       | z                                   |                   | 66•0             | 1.26           |
| 16       | AXIAL                        | 3/4 RADIUS               | RT                        | 64.1                 | 1.9th                    | 11.0                                 | 14.6                                |                   |                  |                |
| m        | RADIAL                       | 1/2 RADIUS               | RT                        | 67.3                 | 53.1                     | 11.5                                 | 15.9                                |                   |                  |                |
| 9        | RADIAL                       | 1/2 RADIUS               | RT                        | 78.7                 | NOT CHED                 | ENSILE SPECIME                       | z                                   | 5•2               | 7.1.             | 1.48           |
| 18       | RADIAL                       | 3/4 RADIUS               | RT                        | 60.2                 | NOT CHED                 | ENSILE SPECIME                       | z                                   | h•2               |                  |                |
| 1A<br>2A | Tangent i al<br>Tangent i al | 1/2 RADIUS<br>1/4 RADIUS | -320<br>-320<br>Avg.      | 78.4<br>75.6<br>77.0 | <br>4.99<br>66.4         | 0 0 0<br>9 9 0<br>9 9 9              | 3.3<br>4.0<br>3.7                   |                   |                  |                |
| 7A<br>8A | Tangent ial<br>Tangent ial   | 1/4 RADIUS<br>1/4 RADIUS | -320<br>-320<br>Avg.      | 78.3<br>80.1<br>79.2 | NOT CHED 1<br>Not CHED 1 | ENSILE SPECIME.                      | zz                                  | 6•3<br>6•3        | 1.03             | 1.19           |
| 44       | AXIAL<br>Axial               | 1/4 RADIUS<br>1/4 RADIUS | -320<br>-320<br>Ave.      | 78.3<br>79.9<br>75.8 | 68.3<br>60.2<br>64.3     | 2.5<br>2.5<br>2.5                    | ა ა ა<br>ი<br>ი<br>ი<br>ი<br>ი<br>ი |                   |                  |                |

.\*

| SPECIMEN          | OR I ENTATION                | AREA                     | TEST<br>TEMP<br>( <sup>o</sup> F) | ULT IMATE<br>Strength<br>(KSI) | 0.2% YIELD<br>Strength<br>(KSI) | ELONGATION<br>(& IN 4D)            | REDUCTION<br>OF AREA<br>(%) | STRESS<br>CONCENTR.<br>(KT) | NOTCH<br>Tensile<br>Ratio | NOTCH<br>YIELD<br>RATIO |
|-------------------|------------------------------|--------------------------|-----------------------------------|--------------------------------|---------------------------------|------------------------------------|-----------------------------|-----------------------------|---------------------------|-------------------------|
| \$.\$             | AXIAL<br>AXIAL               | 1/4 RADIUS<br>1/4 RADIUS | -320<br>-320<br>Avg.              | 72.7<br>65.0<br>68.9           | NOT CHED<br>NOT CHED            | TENSILE 3PECIME<br>Tensile specime | ZZ                          | 6•3<br>6•3                  | 0.91                      | 1.07                    |
| 9 <b>8</b><br>104 | RADIAL<br>Radial             | 1/4 RADIUS<br>1/4 RADIUS | -320<br>-320<br>Avg.              | 78.7<br>78.5<br>78.6           | 68.5<br>66.7<br>67.6            | 0°04<br>0°04<br>0°1                | 4.7<br>4.8<br>4.75          |                             |                           |                         |
| 11A<br>12A        | RADIAL<br>Radial             | 1/4 RADIUS<br>1/4 RADIUS | -320<br>-320<br>Avg.              | 87.6<br>84.7<br>86.2           | NOT CHED<br>NOT CHED            | TENSILE SPECIMI<br>Tensile Specimi | Z Z<br>W W                  | 6.3<br>6.3                  | 1.10                      | 1.27                    |
| 13                | Tangent i al<br>Tangent i al | 1/2 RADIUS<br>1/2 RADIUS | -423<br>-423<br>Avg.              | 83.9<br>80.3<br>82.1           | 72.0<br>71.0<br>71.5            | 3.0<br>2.0<br>2.5                  | ביביב<br>מיטיט<br>מיטיט     |                             |                           |                         |
| 10                | TANGENTIAL                   | 1/2 RADIUS               | -423                              | 56.6                           | NOT CHED                        | TENSILE SPECIM                     | Z                           | ۲°8                         | 0.69                      | 0.791                   |
| 17                | TANGENTIAL                   | 3/4 RADIUS               | -423                              | 80.7                           | 64.4                            | 3•0                                | 2.4                         |                             |                           |                         |
| 8<br>14(1)        | Ax1aL<br>Ax1aL               | 1/2 RADIUS<br>1/2 RADIUS | -423<br>-423<br>Avg.              | 19.4<br>78.6<br>79.0           | 65.2<br><br>65.2                | 8.5<br>2.0<br>8.5                  |                             |                             |                           |                         |
| :1                | AXIAL                        | 1/2 RADIUS               | -423                              | 58.0                           | NOT CHED                        | TENSILE SPECIM                     | Z<br>W                      | 4°9                         | 0.73 <sup>4</sup>         | 0.89                    |
| 19                | AXIAL                        | 3/4 RADIUS               | -423                              | 74.1                           | NOTCHED                         | TENSILE SPECIM                     | NB                          |                             |                           |                         |
| 12                | RADIAL                       | 1/2 RADIUS               | -423                              | 6.07                           | NOF CHED                        | TENSILE SPECIM                     | EN                          | 7.T                         | 0.86                      | 1.01                    |

TABLE 10 (CONT.)

•

•,

| SPECIMEN        | ORIENTATION                   | AREA                     | TEST<br>TEMP<br>( <sup>o</sup> f) | ULTIMATE<br>Strength<br>(ksi) | 0.2% YIELD<br>Strength<br>(#Si) | ELONGATION<br>(\$ IN 4D) | REDUCTION<br>OF AREA<br>(\$) | STRESS<br>Concentr.<br>(K <sub>T</sub> ) | NOTCH<br>TENSILE<br>RATIO | NOTCH<br>YIELD<br>RATIO |
|-----------------|-------------------------------|--------------------------|-----------------------------------|-------------------------------|---------------------------------|--------------------------|------------------------------|------------------------------------------|---------------------------|-------------------------|
| 6 <u>(</u>      | RADIAL<br>RADIAL              | 1/2 Radius<br>1/2 Radius | -423<br>-423<br><b>AVG.</b>       | 83.0<br>82.6<br>82.8          | 72.2<br>68.4<br>70.3            | 2.0<br>3.0<br>2.5        | 3.1<br>3.2<br>3.15           |                                          |                           |                         |
| B. CENI         | FER SECTION                   |                          |                                   |                               |                                 |                          |                              |                                          |                           |                         |
| 26              | TANGENTIAL                    | 1/4 RADIUS               | RT                                | 64.6                          | 48.7                            | 8.5                      | 13.8                         |                                          |                           |                         |
| 28              | TANGENTIAL                    | 1/2 RADIUS               | RT                                | 66.6                          | 50.9                            | 12.0                     | 16.7                         |                                          |                           |                         |
| 31              | TANGENTIAL                    | 1/2 RADIUS               | RT                                | 76.7                          | NOTCHED 1                       | LENSILE SPECIM           | E N                          | 6.1                                      | 1.15                      | 1.5                     |
| 27              | AXIAL                         | 1/4 RADIUS               | RT                                | 64.0                          | 48 <b>.</b> 5                   | 10.0                     | 11.5                         |                                          |                           |                         |
| 59              | AXIAL                         | 1/2 RADIUS               | RT                                | 62.0                          | 7.44                            | 0•6                      | 13.1                         |                                          |                           |                         |
| 32              | AXIAL                         | 1/2 RADIUS               | RT                                | 62.1                          | NOT CHED                        | LENSILE SPECIM           | U.S.                         | ₽ <b>+</b> 5                             | 1.0                       | 1.39                    |
| <del>1</del> 13 | AXIAL                         | 3/4 RADIUS               | RT                                | 62.3                          | 45.9                            | 8.5                      | 14.5                         |                                          |                           |                         |
| 30              | RADIAL                        | 1/2 RADIUS               | RT                                | 64.8                          | 4.84                            | 12.0                     | 16.7                         |                                          |                           |                         |
| 33              | RADIAL                        | 1/2 RADIUS               | RT                                | 61.9                          | NOTCHED                         | LENSILE SPECIM           | ĒN                           | 4 <b>.9</b> 5                            | 1.15                      | 1.39                    |
| <sup>145</sup>  | RADIAL                        | 3/4 RADIUS               | RT                                | 62.2                          | 1+6.7                           | 0-1                      | 13.7                         |                                          |                           |                         |
| 178<br>188      | Tangent I al.<br>Tangent I al | 1/4 RADIUS<br>1/4 RADIUS | -320<br>-320<br>Avg.              | 79.05<br>79.1                 | 66.1<br>66.0<br>66.05           | 0 0 0<br>6 0 0           | ₩<br>•<br>•<br>•<br>8        |                                          |                           |                         |

\_

•

.

TABLE 10 (CONT.)

| Not CH<br>Y I ELD<br>RAT I O      | 1.21                                 |                                   | 1.28                                   |                          | 1.25                               |            | 0.914           |                              | 1.01            |
|-----------------------------------|--------------------------------------|-----------------------------------|----------------------------------------|--------------------------|------------------------------------|------------|-----------------|------------------------------|-----------------|
| NOTCH<br>TENSILE<br>RATIO         | 1.01                                 |                                   | 1.02                                   |                          | 1.03                               |            | 47.0            |                              | 0.786           |
| STRESS<br>Concentr.<br>(KT)       | 6.3<br>6.3                           |                                   | 6•3<br>6                               |                          | <b>6.3</b><br>6.3                  |            | 4.6             |                              | <b>4</b> •9     |
| REDUCTION<br>OF AREA<br>(\$)      |                                      | ০ ব<br>ব<br>ব<br>ব<br>ব<br>ব<br>ব |                                        | 4.0<br>4.7<br>4.35       |                                    | h.o        |                 |                              |                 |
| ELONGATION<br>(\$ IN 4D)          | FENSILE SPECIMEN<br>Tensile Specimen | ۵۰5<br>۳۰5<br>۳۰5                 | rensille specimen<br>Fensille specimen | 4.0<br>3.5<br>3.75       | ENSILE SPECIMEN<br>Ensile specimen | 2.0        | ENSILE SPECIMEN | 2°0<br>5°0                   | ENSILE SPECIMEN |
| 0.2% YIELD<br>Strength<br>(KSI)   | NOT CHED 1<br>Not ched 1             | 56.0<br>57.4<br>56.7              | NOT CHED T<br>Not ched T               | 63.6<br>64.2<br>63.9     | NOTCHED T<br>Notched T             | 69•0       | NOT СНЕВ Т      | 65.8<br>65.2<br>65.5         | NOT CHED T      |
| ULT IMATE<br>Strength<br>(ksi)    | 82.0<br>77.7<br>79.9                 | 71.2<br>71.4<br>71.3              | 69.4<br>75.6                           | 77.3<br>77.2<br>77.25    | 4°0,4<br>4°08<br>79.9              | 84.9       | 63•0            | 84.7<br>84.18<br>4.48        | 66.4            |
| TEST<br>TEMP<br>( <sup>o</sup> F) | -320<br>-320<br><b>Avg.</b>          | -320<br>-320<br>Avg.              | -320<br>-320<br>Avg.                   | -320<br>-320<br>Avg.     | -320<br>-320<br>Avg.               | -423       | -423            | -423<br>-423<br>Avg.         | -423            |
| AREA                              | 1/4 RADIUS<br>1/4 RADIUS             | 1/4 RADIUS<br>1/4 RADIUS          | 1/4 RADIUS<br>1/4 RADIUS               | 1/4 RADIUS<br>1/4 RADIUS | 1/¼ RADIUS<br>1/¼ RADIUS           | 1/4 RADIUS | 1/4 RADIUS      | 1/2 RADIUS<br>1/2 RADIUS     | 1/2 RADIUS      |
| ORIENTATION                       | Tangent i al<br>Tangent i al         | AXIAL<br>Axial                    | AXIAL<br>AXIAL                         | RADIAL<br>Radial         | Radial<br>Radial                   | TANGENTIAL | TANGENTIAL      | Tangent i al<br>Tangent i al | TANGENTIAL      |
| SPECIMEN                          | 198<br>208                           | 138<br>146                        | 158<br>168                             | 218<br>228               | 238<br>248                         | 20         | 23              | 34<br>10                     | 37              |

TABLE 10 (CONT.)

•

•

|                 |                  |                          | TEST<br>TEMP         | ULTIMATE<br>Strength<br>//////////////////////////////////// | 0.2% YIELD<br>Strength | ELONGATION                 | REDUCTION<br>OF AREA    | STRESS<br>Concentr.<br>(K+) | NOT CH<br>TENSILE<br>RATIO | NOTCH<br>YIELD<br>Ratio |
|-----------------|------------------|--------------------------|----------------------|--------------------------------------------------------------|------------------------|----------------------------|-------------------------|-----------------------------|----------------------------|-------------------------|
|                 |                  | AREA                     | <u> </u>             | , us                                                         | TIEN                   | TOL NI ST                  | 727                     |                             |                            |                         |
| <del>1</del> 11 | TANGENTIAL       | 3/4 RADIUS               | -423                 | 88.6                                                         | 67.5                   | 3•0                        | 5.0                     |                             |                            |                         |
| 22(2)           | AXIAL            | 1/4 RADIUS               | -423                 | 74 <b>.</b> 0                                                | 59.4                   | 2•0                        | 2°7                     |                             |                            |                         |
| 25              | AXIAL            | 1/4 RADIUS               | -423                 | 54.1                                                         | Noт снер т             | ENSILE SPECIM              | EN                      | 4.5                         | 0.73                       | 0.91                    |
| 35(2)<br>41(3)  | AXIAL<br>Axial   | 1/2 RADIUS<br>1/2 RADIUS | -423<br>-423<br>AVG. | 74.0<br>73.2<br>73.6                                         | 59.0<br>60.7<br>59.9   | 0.0 v.<br>0.0 v.<br>0.0 v. | ב ב ב<br>מ מ מ<br>מ מ מ |                             |                            |                         |
| 38              | AXIAL            | 1/2 RADIUS               | -423                 | 60.6                                                         | NOT CHED T             | ENSILE SPECIM              | EN                      | 5.8                         | 0.823                      | 1.01                    |
| 91              | AXIAL            | 3/4 RADIUS               | -423                 | 87.2                                                         | 66.3                   | 3•0                        | 3•2                     |                             |                            |                         |
| 21              | RADIAL           | 1/4 RADIUS               | -423                 | 82.1                                                         | 71.3                   | 2.0                        | 2.4                     |                             |                            |                         |
| 24              | RADIAL           | 1/4 RADIUS               | -423                 | 65.6                                                         | NOT CHED T             | ENSILE SPECIM              | Z                       | 4.8                         | 0.80                       | 0,92                    |
| 36<br>42        | RADIAL<br>Radial | 1/2 RADIUS<br>1/2 RADIUS | -423<br>-423<br>Avg. | 80.9<br>81.7<br>81.3                                         | 64.4<br>65.0<br>64.7   | 3•0<br>2•5<br>2•5          | 4.0<br>3.2<br>3.6       |                             |                            |                         |
| 39              | RADIAL           | 1/2 RADIUS               | -423                 | 60 <b>.</b> 4                                                | NOT CHED T             | ENSILE SPECIM              | Z                       | 5.1                         | 447.0                      | ۰۰93 <del>۵</del>       |
| С. Вотт         | OM SECTION       |                          |                      |                                                              |                        |                            |                         |                             |                            |                         |
| Ļμ              | TANGENTIAL       | 1/2 RADIUS               | RT                   | 61.5                                                         | 2.92                   | 8.5                        | 11.5                    |                             |                            |                         |
| ጽ               | TANGENTIAL       | 1/2 RADIUS               | RT                   | 71.1                                                         | NOTCHED 1              | ENSILE SPECIM              | EN                      | <b>t</b> • <b>t</b>         | 1.05                       | 1.25                    |

÷

TABLE 10 (CONT.)

## TABLE 10 (CONT.)

|                |                              |                          | TEST<br>TEMP         | ULTIMATE<br>Strength | 0.2% YIELD<br>Strength   | ELONGATION                         | REDUCTION<br>OF AREA | STRESS<br>Concentr. | NOT CH<br>TENSILE | Νοτ сμ<br>Υιειρ |
|----------------|------------------------------|--------------------------|----------------------|----------------------|--------------------------|------------------------------------|----------------------|---------------------|-------------------|-----------------|
| SPECIMEN       | OR I ENTATION                | AREA                     | (°F)                 | (KSI)                | (KSI)                    | (CH NI %)                          | (%)                  | (K <sub>1</sub> )   | RATIO             | RATIO           |
| 81             | AXIAL                        | 1/2 RADIUS               | RT                   | 64.4                 | 6.94                     | 1.5                                | 13.7                 |                     |                   |                 |
| 51             | AXIAL                        | 1/2 RADIUS               | RT                   | 66.0                 | NOTCHED .                | LENSILE SPECIM                     | Z                    | 4.7                 | 1.03              | 1.32            |
| 62             | AXIAL                        | 3/4 RADIUS               | RT                   | 64 <b>.</b> 2        | 50.1                     | 8.5                                | 13.7                 |                     |                   |                 |
| 611            | RADIAL                       | 1/2 RADIUS               | RT                   | 68.4                 | 57.2                     | 8.0                                | 10.8                 |                     |                   |                 |
| 52             | RADIAL                       | 1/2 RADIUS               | RT                   | 70.2                 | NOT CHED                 | LENSILE SPECIM                     | Z                    | 4.2                 | 1.03              | 1.23            |
| 64             | RADIAL                       | 3/4 RADIUS               | RT                   | 65.1                 | 51•3                     | 10.0                               | 15.3                 |                     |                   |                 |
| 33<br>34       | Tangent i al<br>Tangent i al | 1/4 RADIUS<br>1/4 RADIUS | -320<br>-320<br>Avg. | 77.3<br>78.4<br>77.9 | 63.6<br>63.1<br>63.4     | ب<br>د.<br>م.<br>م.<br>م.          | 5.9<br>5.9           |                     |                   |                 |
| 35<br>36       | Tangent i al<br>Tangent i al | 1/4 RADIUS<br>1/4 RADIUS | -320<br>-320<br>Avg. | 80.7<br>83.8<br>82.3 | NOT CHED .<br>NOT CHED . | FENSILE SPECIMI                    | ζ Ζ                  | 6.3<br>6.3          | 1.06              | 1.30            |
| 30 53          | AXIAL<br>Axial               | 1/4 RADIUS<br>1/4 RADIUS | -320<br>-320<br>Avg. | 75.1<br>76.3<br>75.7 | 65.6<br>62.9<br>64.3     | 0.0 W.<br>W. 4. W.                 | 0 9 8<br>8 6 0 0     |                     |                   |                 |
| 31<br>32       | AXIAL<br>AXIAL               | 1/4 RADIUS<br>1/4 RADIUS | -320<br>-320<br>Avg. | 84.7<br>83.0<br>83.9 | NOT CHED                 | FENSILE SPECIMI<br>FENSILE SPECIMI | 5 Z                  | 6.3<br>6.3          | 1.11              | 1.31            |
| X)<br>55<br>55 | RADIAL<br>Radial             | 1/4 RADIUS<br>1/4 RADIUS | -320<br>-320<br>Avg. | 73.7<br>71.8<br>72.8 | 61.6<br>59.1<br>60.4     | 0 0 0<br>8 8 8                     | າ.<br>8<br>1. 0      |                     |                   |                 |

•

.

| ۲.<br>۲.                       | GAGE MAR | I FAILED AT                             | SPECIMEN                    | ۍ<br>ف                               |                                 | SUIC                          | I THE RAD            | AS UNDERCUT IN                   | 3. SPECIMEN W                 |                                                                                             |
|--------------------------------|----------|-----------------------------------------|-----------------------------|--------------------------------------|---------------------------------|-------------------------------|----------------------|----------------------------------|-------------------------------|---------------------------------------------------------------------------------------------|
|                                | ED       | .NI<br>IETER SLIPP                      | EXTENSON                    | 5.                                   | ED WITH LH2                     | ETELY COVERI<br>ISOR          | GUID SEN             | AY NOT HAVE BE<br>Hort in the Li | 2. SPECIMEN M.<br>DUE TO A SI |                                                                                             |
| EXTENSOMETER                   | POINT OF | I FAILED AT                             | SPECIMEN                    | • 17                                 |                                 |                               | -                    | ER FROZE                         | 1. EXTENSOMET                 | NOTES:                                                                                      |
|                                |          |                                         |                             |                                      |                                 |                               |                      | 1                                |                               |                                                                                             |
|                                |          |                                         | 0.8                         | ł                                    | 71.2                            | 78.7                          | -423                 | 1/2 RADIUS                       | RADIAL                        | (9)                                                                                         |
| ·6 0.745                       | 0.67     | 3.2                                     |                             | TENSILE SPECIMEN                     | NOTCHED                         | 58.0                          | -423                 | 1/2 RADIUS                       | RADIAL                        | 58                                                                                          |
|                                |          |                                         | 1.6                         | 2.0                                  | 6•11                            | 85.7                          | -1;23                | 1/2 RADIUS                       | RADIAL                        | 55                                                                                          |
|                                |          |                                         | 1.6                         | 1.0                                  | 68 <b>.</b> 4                   | 11.5                          | -423                 | 3/4 RADIUS                       | Axial                         | 65                                                                                          |
| 15 0.87                        | 17.0     | 3•5                                     |                             | TENSILE SPECIMEN                     | NOTCHED                         | 54.2                          | -423                 | 1/2 RADIUS                       | Axial                         | 57                                                                                          |
|                                |          |                                         | ьт<br>0 0 0                 | 1.0<br>2.0                           | 64.2<br>60.7<br>62.5            | 75.7<br>76.0<br>75.9          | -423<br>-423<br>Avg. | 1/2 Radius<br>1/2 Radius         | AXIAL<br>Axial                | 54(4)<br>60                                                                                 |
|                                |          |                                         | 1.6                         | 1.0                                  | 21.5                            | 81.7                          | -423                 | 3/4 RADIUS                       | TANGENTIAL                    | 63                                                                                          |
| 3 0 <b>.</b> 84                | 0.73     | 3.1                                     |                             | TENSILE SPECIMEN                     | <b>Not сн</b> ер                | 57.2                          | -423                 | 1/2 RADIUS                       | TANGENTIAL                    | 56                                                                                          |
|                                |          |                                         | トトト<br>の<br>ろろろ             | 3.0<br>2.0                           | 68 <b>.</b> 2<br>68 <b>.</b> 2  | 79.1<br>77.3<br>78.2          | -423<br>-423<br>Avg. | 1/2 RADIUS<br>1/2 RADIUS         | Tangential<br>Tangential      | 53<br>59(5)                                                                                 |
| 1.20                           | 6.0      | 6.3<br>6.3                              |                             | TENSILE SPECIMEN<br>Tensile specimen | NOT CHED<br>NOT CHED            | 72.5<br>72.7<br>72.6          | -320<br>-320<br>Avg. | 1/4 RADIUS<br>1/4 RADIUS         | Radial<br>Radial              | 27 <b>cx</b><br>28 <b>c</b> x                                                               |
| H NOTCH<br>LE YIELD<br>O RATIO | Nord     | STRESS<br>Concentr<br>(K <sub>T</sub> ) | REDUCTION<br>OF AREA<br>(%) | ELONGATION<br>(& IN <sup>14</sup> D) | 0.2% Y1ELD<br>Strength<br>(ksi) | ULTIMATE<br>Strength<br>(KSI) | TEST<br>TEMP<br>(°F) | AREA                             | ORI ENTATION                  | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N |
|                                |          |                                         |                             |                                      |                                 |                               |                      |                                  |                               |                                                                                             |

TABLE 10 (CONT.)

56

SPECIMEN WAS UNDERCUT IN THE RADIUS

ŕ

÷



The Effect of Temperature on the Smooth Bar Mechanical Properties of Forging "C" at the Top Section Area



The Effect of Temperature on the Smooth Bar Mechanical Properties of Forging "C" at the Center Section Area



The Effect of Temperature on the Smooth Bar Mechanical Properties of Forging "C" at the Bottom Section Area







Figure 26

Comparative Forging "C" Test Ring Mechanical Properties



Figure 27 Effect of Forging Thickness on the Room- and Low-Temperature Mechanical Properties of Forging "C"

the toughness does not vary greatly in forgings of the two different sizes; the impeller (30-in. diameter) and the inducer (20-in. diameter). Properties of extremely large 7079 forgings are influenced in part by orientation, specimen location, and mass-quench effect.

## 4. Mechanical Properties of Hand Forging "D"

•

The tensile data for Hand Forging "D" (Figure 10) are listed in Table 11. Pronounced variations in strength and ductility at ambient temperature and -423°F are evident. The effect of cryogenic temperatures upon the test ring mechanical properties is in agreement with previous results.

Although the 7079 test ring was notch tough (based on notchyield ratio) at ambient temperature, it was notch sensitive at  $-423^{\circ}F$ .

## 5. <u>Effects of -T6 Temper Reheat-Treatment (After</u> Rough Machining) on Properties of Hand Forging "E"

As previously stated, the tensile strength of the center sections was considerably lower than the tensile strength of the peripheral test rings. Therefore, tests were performed to determine whether improvements in strength and ductility would result when the -T6 temper reheat treatment was used after rough machining to remove extraneous material.

The properties of the control specimens and the -T6 reheattreatment specimens are listed in Table 12. The control specimen test results compared favorably with those of the Forging "C" center section, which is of equivalent "as forged" dimensions. Both strength and ductility are good.

As shown in Figure 28, reheat treatment produced the following effects upon axial properties:

a. At ambient temperature, ultimate and 0.2% offset yield strengths were increased approximately 12% and 28%, respectively.

b. A similar percentage increase in strength was noted at cryogenic temperatures.

c. Ductilities were lowered. Ambient temperature elongation and reduction of area were lowered approximately 33% and 20%, respectively. Axial reduction of area was lowered approximately 42% at  $-320^{\circ}$ F.

d. Notch-yield ratio was lowered from approximately 1.28 to 0.87 at  $320^{\circ}\mathrm{F}$ .

The increase of strength is ascribed to the mass-quench effect. The -T6 treatment of a smaller rough machined section resulted in faster cooling from solution treatment; therefore, higher properties were obtained after aging.

.

.

٠

FCHANICAL PROPERTIES OF 7079-T652 FORGING "D" TEST RING

TABLE 11

L

TABLE 12

ŀ

•

۰.

## MECHANICAL PROPERTIES OF 7079-T652 FORGING "E" HEAT-TREATED TO THE -T6 TEMPER CONDITION AFTER ROUGH MACHINING

A. Control Specimens (-T652 Temper Condition)

| rientation | Test<br>Temp<br>( <sup>OF</sup> ) | Ultimate<br>Strength<br>(ksi) | 0.2% Offset<br>Yield Strength<br>(ksi) | Elongation<br>(% in 4D) | Reduction<br>of Area<br>(%)                                  |
|------------|-----------------------------------|-------------------------------|----------------------------------------|-------------------------|--------------------------------------------------------------|
|            | RT<br>RT                          | 67.4<br>67.4                  | 51.0                                   |                         | 134.<br>134.<br>134.<br>134.<br>134.<br>134.<br>134.<br>134. |
|            | Avg.                              | e6.1                          | 50.9                                   | 7•4                     | 16.7                                                         |
| 러려         | - 320<br>- 320                    | 76.6<br>76.9                  | 63.4<br>63.4                           | 0<br>•<br>•<br>•        |                                                              |
|            | Avg.                              | 76.8                          | 63.4                                   | 2.4                     | 7.5                                                          |
|            | RT<br>RT                          | 63.5<br>62.4                  | 45.6<br>46.0                           | 6•3<br>7•0              | 7.4<br>11.9                                                  |
|            | Avg.                              | 65.9                          | 45.8                                   | 6.7                     | 7.6                                                          |
|            | - 320                             | 65.4<br>67.7                  | 56.0<br>52.7                           | 1.6<br>3.1              | .0<br>.0<br>.0                                               |
|            | Avg.                              | 66.6                          | 54 .4                                  | 2.4                     | ł, "8                                                        |

| B. HEAT                                                                   | TREATED SF             | CIMENS FROM TE                   | ST RINGS                          | (-Тб Темрек                   | CONDITION) (HEAT                                                 | TREATED AFTER                                                                               | Коисн Маснік                              | 1 I NC )                                                                                                                                   |                            |                          |
|---------------------------------------------------------------------------|------------------------|----------------------------------|-----------------------------------|-------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|
| SPECIMEN                                                                  | TEST<br>RING<br>NUMBER | SPECIMEN<br>ORIENTATION          | TEST<br>TEMP<br>( <sup>o</sup> F) | ULTIMATE<br>Strength<br>(ksi) | 0.2% OFFSET<br>Yield Strength<br>(ksi)                           | ELONGATION                                                                                  | REDUCTION<br>OF AREA<br>(%)               | STRESS<br>CONC.<br>(KT)                                                                                                                    | NOT CH<br>TENSILE<br>RATIO | NOT CH<br>YIELD<br>RATIO |
| - N M                                                                     | ~ ~ ~                  | AXIAL<br>AXIAL<br>AXIAL          | RT<br>RT<br>RT                    | 71.1<br>71.8<br>71.3          | 63.6<br>63.8<br>63.7                                             | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 9.9<br>4.9<br>7.8                         |                                                                                                                                            |                            |                          |
|                                                                           |                        |                                  | Avg.                              | 71 <b>.</b> 4                 | 63.7                                                             | 4.5                                                                                         | 7.8                                       |                                                                                                                                            |                            |                          |
| 5 7 N<br>5 | ₩ ₩ ₩                  | AXIAL<br>AXIAL<br>AXIAL          | RT<br>RT<br>RT                    | 81.5<br>78.4<br>84.7          | NOTCHED TENSI<br>Notched tensi<br>Notched tensi                  | LE SPECIMEN<br>LE SPECIMEN<br>LE SPECIMEN                                                   |                                           | 6.3<br>6.3<br>6.3                                                                                                                          |                            |                          |
|                                                                           |                        |                                  | A vg.                             | 81.5                          |                                                                  |                                                                                             |                                           |                                                                                                                                            | 1.14                       | 1.28                     |
| すらるて                                                                      |                        | AXIAL<br>AXIAL<br>AXIAL<br>AXIAL | -320<br>-320<br>-320              | 79.2<br>78.8<br>79.9          | 74.6<br>74.4<br>74.8                                             | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | ~~~~~<br>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                                                                                                                            |                            |                          |
|                                                                           |                        |                                  | Avg.                              | 79.3                          | 74.6                                                             | 2.5                                                                                         | 2.8                                       |                                                                                                                                            |                            |                          |
| 15<br>15<br>18                                                            |                        | AXIAL<br>AXIAL<br>AXIAL<br>AXIAL | -320<br>-320<br>-320              | 61.8<br>64.0<br>63.3<br>69.4  | NOTCHED TENSI<br>NOTCHED TENSI<br>NOTCHED TENSI<br>NOTCHED TENSI | LE SPECIMEN<br>LE SPECIMEN<br>LE SPECIMEN<br>LE SPECIMEN                                    |                                           | 6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>7<br>6.3<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 |                            |                          |
|                                                                           |                        |                                  | Avg.                              | 64.6                          |                                                                  |                                                                                             |                                           |                                                                                                                                            | 0.81                       | 0.866                    |

.

•

TABLE 12 (CONT.)

HEAT TREATED SPECIMENS FROM TEST RINGS (-T6 TEMPER CONDITION) (HEAT TREATED AFTER ROUGH MACHINING)

|                    | TEST |                         | Test         | ULTIMATE          | 0.2% OFFSET             |             | REDUCT I ON     | Stress       | Notch   | Notch          |
|--------------------|------|-------------------------|--------------|-------------------|-------------------------|-------------|-----------------|--------------|---------|----------------|
| SPECIMEN<br>NUMBER | RING | SPECIMEN<br>ORIENTATION | TEMP<br>(°F) | STRENGTH<br>(KSI) | YIELD STRENGTH<br>(KSI) | ELONGATION  | OF AREA<br>(\$) | CONC.        | TENSILE | YIELD<br>RATIO |
| 8                  | -    | AXIAL                   | -423         | 83.5              | 80.1                    | 1.0         | 0.8             |              |         |                |
| 6                  | ~    | AXIAL                   | -423         | 82.9              | 82.5                    | 1.0         | 1.6             |              |         |                |
| 01                 | -    | AXIAL                   | -423         | 83.7              | 80.1                    | 1.0         | 1.6             |              |         |                |
| 11                 | -    | AXIAL                   | -42 <u>3</u> | 83.5              | 80.9                    | 1.0         | 1.6             |              |         |                |
|                    |      |                         | Avg.         | 83.4              | 80.9                    | 1.0         | t, . r          |              |         |                |
| 19                 | -    | AXIAL                   | - 423        | 55.2              | NOTCHED TENSI           | LE SPECIMEN |                 | 6.3          |         |                |
| 20                 | -    | AXIAL                   | -423         | 53.2              | NOTCHED TENSI           | LE SPECIMEN |                 | 6 <b>.</b> 3 |         |                |
| 21                 | -    | AXIAL                   | -423         | 63.4              | NOTCHED TENSI           | LE SPECIMEN |                 | 6.3          |         |                |
| 22                 | -    | AXIAL                   | -423         | 56.6              | NOTCHED TENSI           | LE SPECIMEN |                 | 6.3          |         |                |
|                    |      |                         | A VG.        | 57.1              |                         |             |                 |              | 0.684   | 0.706          |
| 23                 | cu   | RADIAL                  | RT           | 72.8              | 70.4                    | 6.3         | 13.1            |              |         |                |
| 54                 | 2    | RADIAL                  | RT           | 72.8              | 67.2                    | 2.0         | 13.2            |              |         |                |
| 25                 | N    | RADIAL                  | RT           | 73.1              | 68.4                    | 6.3         | 1,4             |              |         |                |
| 26                 | 0    | RADIAL                  | RT           | 72.1              | 66.2                    | 6.3         | 13.4            |              |         |                |
| 27                 | Q    | RADIAL                  | RT           | 73.9              | 67.4                    | 5.5         | 13.4            |              |         |                |
| 28                 | N    | RADIAL                  | RT           | 72.3              | 68.1                    | 5.5         | 12.3            |              |         |                |
|                    |      |                         | Avg.         | 72.8              | 61.9                    | 6.2         | 13.3            |              |         |                |
| 59                 | Q    | RADIAL                  | -320         | 82.7              | 76.4                    | 1.6         | 2•5             |              |         |                |
| õ                  | ง    | RADIAL                  | -320         | 80.3              | 73.9                    | 1.6         | 5.0             |              |         |                |
| 5                  | ง    | RADIAL                  | -320         | 81.3              | 73.6                    | 1.6         | 6.0             |              |         |                |
| 32                 | 5    | RADIAL                  | -320         | 79.6              | 74.9                    | 1.6         | 5.0             |              |         |                |
| 33                 | 5    | RADIAL                  | -320         | 78.1              | 74.6                    | 1.6         | 5.0             |              |         |                |
| 34                 | 0    | RADIAL                  | -320         | 81.1              | 76.1                    | 1.6         | 6.0             |              |         |                |
|                    |      |                         | A VG.        | 80.5              | 74.9                    | 1.6         | 4.9             |              |         |                |

TABLE 12 (CONT.)

ł,
| NOTCH<br>Yield<br>Ratio                |                                                                                             |      |            | 1.37                 |                              |       |                                | 1.05 |                              |       |                                | 0.72    |
|----------------------------------------|---------------------------------------------------------------------------------------------|------|------------|----------------------|------------------------------|-------|--------------------------------|------|------------------------------|-------|--------------------------------|---------|
| NOTCH<br>TENSILE<br>RATIO              |                                                                                             |      |            | 1.2                  |                              |       |                                | 16.0 |                              |       |                                | 0.67    |
| STRESS<br>Conc.<br>(KT)                |                                                                                             |      |            | 6.3                  |                              |       | 6.3<br>6.3                     |      |                              |       | 6.3<br>6.3                     |         |
| REDUCTION<br>OF AREA<br>(%)            | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 2•35 | 12.3       |                      | 2.4<br>3.2                   | 2.8   |                                |      | 0.8<br>1.6                   | 1.2   |                                |         |
| ELONGATION                             | 2.0                                                                                         | 1.5  | 0.7        | LE SPECIMEN          | 2.0<br>2.0                   | 2•0   | LE SPECIMEN<br>Le Specimen     |      | 1.0                          | 1.0   | ILE SPECIMEN                   |         |
| 0.2% OFFSET<br>Yield Strength<br>(ksi) | 82.1<br>79.7                                                                                | 80.9 | 66.6       | NOTCHED TENSI        | 80.2<br>78.2                 | 79.2  | NOTCHED TENSI<br>Notched tensi |      | 86.1<br>82.8                 | 84.5  | NOTCHED TENSI<br>Notched tensi |         |
| ULTIMATE<br>Strength<br>(ksi)          | 89 <b>.9</b><br>89.5                                                                        | 89.7 | 75.6       | 1.1                  | 86.2<br>83.8                 | 85.0  | 78.6<br>86.9                   | 82.8 | 92.4<br>88.9                 | 7.06  | 66 <b>.</b> 4<br>55 <b>.</b> 5 | 6.09    |
| TEST<br>TEMP<br>( <sup>O</sup> F)      | -423<br>-423                                                                                | Avg. | RT         | RT                   | -320<br>-320                 | A VG. | -320<br>-320                   | AVG. | -423<br>-423                 | A VG. | -423<br>-423                   | . A vg. |
| SPECIMEN                               | Tangent i al<br>Tangent i al                                                                |      | TANGENTIAL | <b>TA</b> NGENT I AL | Tangent i al<br>Tangent i al |       | Tangent i al<br>Tangent i al   |      | Tangent i al<br>Tangent i al |       | Tangent i al<br>Tangent i al   |         |
| TEST<br>Ring<br>Number                 | ო <b>ო</b>                                                                                  |      | 4          | ħ                    | ন ন                          |       | ন ক                            |      | <b>7</b> 7                   |       | オオ                             |         |
| SPECIMEN<br>Number                     | 45<br>46                                                                                    |      | ۲ţ         | 52                   | 48<br>149                    |       | 53<br>54                       |      | 5 20                         |       | 55<br>56                       |         |

.\*

TABLE 12 (CONT.)

## TABLE 12 (CONT.)

•

ł

| Z z | TEST<br>Ring<br>Number  | SPECIMEN<br>ORIENTATION      | TEST<br>TEMP<br>( <sup>o</sup> f) | ULTIMATE<br>Strength<br>(KSI) | 0.2% OFFSET<br>Yield Strength<br>(ksi) | ELONGATION               | REDUCTION<br>OF AREA<br>(%) | STRESS<br>CONC.<br>(KT) | NOTCH<br>TENSILE<br>Ratio | NOTCH<br>YIELD<br>RATIO |
|-----|-------------------------|------------------------------|-----------------------------------|-------------------------------|----------------------------------------|--------------------------|-----------------------------|-------------------------|---------------------------|-------------------------|
|     | ß                       | TANGENTIAL                   | RT                                | ٥٠ ۴۲                         | 65.2                                   | 7.5                      | 14.6                        |                         |                           |                         |
|     | 5                       | TANGENT I AL                 | RT                                | 4.98                          | NOTCHED TENSI                          | LE SPECIMEN              |                             | 6.3                     | 1.2                       | 1.37                    |
|     | in in                   | Tangent i al<br>Tangent i al | -320<br>-320                      | 81.6<br>82.1                  | 75.6<br>80.1                           | 5°0<br>5                 | 1.6<br>2.3                  |                         |                           |                         |
|     |                         |                              | AVG.                              | 81.9                          | 6-11                                   | 2•0                      | 1.95                        |                         |                           |                         |
|     | 5                       | Tangent i al                 | -320                              | 73.7                          | NOTCHED TENSII                         | E SPECIMEN               |                             | 6.3                     | 6.0                       | 0.946                   |
|     | ഗന                      | Tangent i al<br>Tangent i al | -423<br>-423                      | 88 <b>.</b> 1<br>38.5         | 84.3<br>83.8                           | 1.0                      | 1.6<br>1.6                  |                         |                           |                         |
|     |                         |                              | A VG.                             | 88.3                          | 84.05                                  | 1.0                      | 1.6                         |                         |                           |                         |
|     | n n                     | Tangent i al<br>Tangent i al | -423<br>-423                      | 53.8<br>63.9                  | NOTCHED TENSIL<br>Notched tensil       | E SPECIMEN<br>E SPECIMEN |                             | 6.3<br>6.3              |                           |                         |
|     |                         |                              | Avg.                              | 58.9                          | -                                      |                          |                             |                         | ٥.67                      | 0.702                   |
|     | VANES<br>Vanes<br>Vanes | RADIAL<br>RADIAL<br>RADIAL   | RT<br>RT<br>RT                    | 76.0<br>76.1<br>73.8          | 69.8<br>69.7<br>69.6                   | 7.0<br>7.8<br>7.9        | 16.7<br>13.4<br>11.3        |                         |                           |                         |
|     |                         |                              | AVG.                              | 75.3                          | 69.7                                   | 7.5                      | 13.8                        |                         |                           |                         |

| ০° ন<br>१° ন<br>१          | 4.9                                                                                                                                                               | 15.7<br>19.1<br>16.9                                                                                                                                                                                                                                                                         | 17.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9. 4<br>. 4<br>. 4<br>. 4<br>. 4<br>. 4<br>. 4<br>. 4<br>. 4<br>. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.6<br>1.6                 | 1.6                                                                                                                                                               | 7.0<br>4.7                                                                                                                                                                                                                                                                                   | 8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.6<br>1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7.77<br>7.77<br>7.67       | 78.4                                                                                                                                                              | <br>66.4<br>68.4                                                                                                                                                                                                                                                                             | 67 <b>.</b> lt                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 77.9<br><br>76.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 77.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 81.4<br>81.6<br>82.1       | 81.7                                                                                                                                                              | 75.0<br>73.3<br>72.1                                                                                                                                                                                                                                                                         | 73.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 81.6<br>72.6<br>77.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -320<br>-320<br>-320       | A VG.                                                                                                                                                             | RT<br>RT<br>RT                                                                                                                                                                                                                                                                               | Avg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -320<br>-320<br>-320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AVG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RADIAL<br>Radial<br>Radial |                                                                                                                                                                   | Tangent i al<br>Tangent i al<br>Tangent i al                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tangential<br>Tangential<br>Tangential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| VANES<br>VANES<br>VANES    |                                                                                                                                                                   | VANES<br>VANES<br>VANES                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VANES<br>VANES<br>VANES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 69<br>71                   |                                                                                                                                                                   | 75<br>76<br>77                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 78<br>79<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                            | 69 Vanes Radial -320 81.4 77.7 1.6 4.9   70 Vanes Radial -320 81.6 77.7 1.6 4.9   71 Vanes Radial -320 82.1 79.7 1.6 4.9   71 Vanes Radial -320 82.1 79.7 1.6 4.9 | 69 Vanes Radial -320 81.4 77.7 1.6 4.9   70 Vanes Radial -320 81.6 77.7 1.6 4.9   71 Vanes Radial -320 81.6 77.7 1.6 4.9   71 Vanes Radial -320 82.1 79.7 1.6 4.9 | 69   Vanes   Radial   -320   81.4   77.7   1.6   4.9     70   Vanes   Radial   -320   81.6   77.7   1.6   4.9     71   Vanes   Radial   -320   81.6   77.7   1.6   4.9     71   Vanes   Radial   -320   82.1   79.7   1.6   4.9     71   Vanes   Radial   -320   82.1   79.7   1.6   4.9     75   Vanes   Tangential   RT   78.4   1.6   4.9     75   Vanes   Tangential   RT   73.3   66.4   9.4   19.1     77   Vanes   Tangential   RT   72.1   68.4   7.8   16.9 | 69   Vanes   Radial   -320   81.4   77.7   1.6   4.9     70   Vanes   Radial   -320   81.6   77.7   1.6   4.9     71   Vanes   Radial   -320   81.6   77.7   1.6   4.9     71   Vanes   Radial   -320   82.1   79.7   1.6   4.9     7   Vanes   Radial   RT   75.0   81.7   78.4   1.6   4.9     75   Vanes   Tangential   RT   75.0    7.0   15.7     76   Vanes   Tangential   RT   73.3   66.4   9.4   19.1     77   Vanes   Tangential   RT   72.1   68.4   7.8   16.9     77   Vanes   Tangential   RT   72.1   68.4   7.8   16.9     77   Vanes   Tangential   RT   72.1   68.4   7.8   16.9     70   Yab   Yab   7.6   7.6   17.2   19.1     70   Yab   7.6 | 69     Vanes     Radial     -320     81.4     77.7     1.6     4.9       70     Vanes     Radial     -320     81.6     77.7     1.6     4.9       71     Vanes     Radial     -320     81.6     77.7     1.6     4.9       71     Vanes     Radial     -320     82.1     79.7     1.6     4.9       75     Vanes     Tangential     RT     75.0      7.0     15.7       76     Vanes     Tangential     RT     75.0      7.0     15.7       77     Vanes     Tangential     RT     73.3     66.4     7.8     16.9       77     Vanes     Tangential     RT     73.3     66.4     7.8     16.9       77     Vanes     Tangential     RT     73.1     68.4     7.8     16.9       77     Vanes     Tangential     RT     72.1     68.4     7.8     16.9       78     Vanes     Tangential <t< td=""></t<> |

•

;

.

TABLE 12 (CONT.)



•

The Effect of -T6 Reheat-Treatment After Rough Machining on Room- and Low-Temperature Mechanical Properties of Forging "E"

The data shows that toughness was impaired by -T6 reheattreatment temper. Formerly notch tough at room temperature and  $-320^{\circ}$ F, notchtoughness is apparent only at room temperature in the -T6 reheat-treatment temper. Both conditions display notch sensitivity at  $-423^{\circ}$ F.

In considering the above described influence of -T6 reheat-treatment temper on alloy properties, the 7079 forging, in the section size and physical condition as tested, was superior in toughness when -T652 tempered.

### 6. <u>Microstructure</u>

The microstructure of Forging "C" at three locations is shown in Figures 29 through 31. The important features illustrated in these micrographs are a finer grain structure at the peripheral area, a slightly cored center section, and inclusions in the matrix.

The coarse, cored-grain structure apparently contributed to the lower strength of the forging center section. Although an investigation was not performed to study the effect of hot working, it appears that -T6 reheat treatment would have been more beneficial if the center-section grain had been refined by hot working prior to the -T6 reheat treatment. This is evident when the test ring properties of Forging "C" are compared with the reheat treated center section properties of Forging "E". The only apparent difference is the grain size because the two sections are at their maximum heat-treatment strength level; however, the test ring had superior properties.

It is concluded that grain size is equally as important as heat-treatment in controlling the properties of large 7079 forgings. Because grain size is primarily controlled by hot working, it is essential that billet stock be grain refined extensively at all areas to obtain a forging with higher properties.

Inclusions were found in the 7079 forgings. The poor toughness of 7079 forgings are ascribed to these inclusions as well as the cored structure and the high alloy content. Work of other investigators<sup>(5)</sup> with 7000 series aluminum alloys also related the poor toughness of these microstructural conditions. These investigations also observed that 7079-T6 sheet (0.080-in. thick) possessed higher toughness, as measured by notch-tensile ratio, than a 7079-T6 forging (5.0-in. billct). This is probably because of the greater dispersal, orientation, and refinement of inclusions in the sheet (by the rolling operation) which minimized their notch effect in the high-strength matrix. The inclusions in the large 7079 forgings were generally segregated at grain boundaries and they appear to be less effective as stress-risers in a low strength matrix as compared with a high strength matrix. The superior

 <sup>(5)</sup> Christian, J. L., and Watson, J. F., "Properties of 7000 Series Aluminum Alloys at Cryogenic Temperatures," <u>Advances in Cryogenic Engineering</u>, vol. 6, pp. 604-621, 1960.



•

Figure 29 Microstructure of Forging C (Peripheral Location) Magnification: 100X Etchant: Flick's



Figure 30 Microstructure of Forging C (One-Half Radius Location) Magnification: 100S Etchant: Flick's



Figure 31 Microstructure of Forging C (Three-Quarter Radius Location) Magnification: 100X Etchant: Flick's

toughness found at the center section of these large forgings appears to be partly caused by these factors of low matrix strength and inclusion distribution.

### 7. Fatigue Properties

The results of rotating beam and tension/compression fatigue tests are listed in Tables 13 through 15 and plotted in Figure 32. The S-log N curve for 7079 conventional size wrought product, as reported in the literature<sup>(6)</sup>, is included in Figure 32. Analysis of the data revealed the following:

a. The fatigue strengths in reversed bending closely approximated those reported in the literature<sup>(7)</sup> for commercial-size wrought products. There was good data agreement in the  $10^6$  and  $10^8$  cycle range; the widest disparity occurred at  $10^5$  cycle.

b. The fatigue strengths in tension/compression were lower than those obtained in reversed bending. For example, at  $10^8$  cycles, the difference is approximately 40%; this is not unusual. One investigator(8) found that for round specimens of 2014-T4, bending stress gave approximately 41% higher results than axial stress.

c. The agreement of fatigue test data with literature data indicates that although the latter might not be directly applicable to final design of hardware, they serve as good first-approximation design values.

The results of the tension-tension fatigue tests are listed in Table 16. These results permitted construction of the S-Log N curve shown in Figure 33 and the Stress Range Diagram shown in Figure 34. The diagram is based upon the assumption that the ability of a material to withstand combined alternating  $(F_a)$  and steady  $(F_m)$  stresses can be defined by a straight-line function of the tensile ultimate  $(F_u)$  strength and the fatigue  $(F_e)$  strength; it is assumed that the following relationship is applicable.

$$F_a = F_e (1 - F_m/F_u)$$

The diagram in Figure 34 is for axial tests. The plotted points for  $10^6$  and  $10^7$  cycles are well below the Goodman line, while those for the  $10^5$  cycle are above the Goodman line (see Figure 32).

<sup>(6) &</sup>lt;u>Reynolds Aluminum Data Book</u>, p. 37, 1961.

<sup>(7)</sup> ibid.

<sup>(8)</sup> Saver, J. A., and Lemon, D. C., "Effect of Steady Stress of Fatigue Behavior of Aluminum," <u>Trans ASM</u>, vol. 42, p. 559, 1950.

٠

ŧ.

### CYCLES TO FAILURE FOR 7079-T652 FORGING "C" AT VARIOUS STRESS LEVELS UNDER CONDITIONS OF COMPLETE BENDING STRESS REVERSAL AT ROOM TEMPERATURE

| Stress<br>(ksi) | Cycles to Failure |
|-----------------|-------------------|
| 65              | 1,300             |
| 60              | 2,450             |
| 50              | 8,900             |
| 45              | 16,300            |
| 40<br>40        | 23,900            |
| 37.5            | 49,100            |
| 35              | 46,100            |
| 30              | 314,100           |
| 30              | 484,000           |
| 30              | 1,871,600         |
| 30              | 131,700           |
| 27.5            | 1,129,000         |
| 25              | 5,742,000         |
| 22.5            | 100,000,000       |

### CYCLES TO FAILURE FOR 7079-T652 FORGING "A" AT VARIOUS STRESS LEVELS UNDER CONDITIONS OF COMPLETE ALTERNATING TENSION/COMPRESSION STRESS REVERSAL AT ROOM TEMPERATURE

| Stress | (ksi) | Cycles         | to Failure |
|--------|-------|----------------|------------|
| 55     |       |                | 2,400      |
| 45     |       | 1              | 6,000      |
| 38     |       | 1              | 8,500      |
| 35     |       | 3              | 7,700      |
| 30     |       | 7              | 3,000      |
| 30     |       | 5              | 8,000      |
| 25     |       | 9              | 8,000      |
| 25     |       | 4              | 9,000      |
| 20     |       | 30             | 7,000      |
| 20     |       | 25             | 3,000      |
| 15     |       | 59             | 7,000      |
| 15     |       | 10 <b>,</b> 76 | 3,000      |

### GRADE 7079-T652 FATIGUE STRENGTHS AND FATIGUE STRENGTH - ULTIMATE TENSILE AND YIELD STRENGTH RATIOS AT ROOM TEMPERATURE

### A. Forging "C" in completely reversed stress

.

| Cycles          | Fatigue Strength<br>(ksi) | Fatigue Strength - Ultimate<br>Tensile Strength Ratio | Fatigue Strength<br>0.2% Offset Yield<br>Strength Ratio |
|-----------------|---------------------------|-------------------------------------------------------|---------------------------------------------------------|
| 104             | 48                        | 0.726                                                 | 0.927                                                   |
| 10 <sup>5</sup> | 31                        | 0.470                                                 | 0.600                                                   |
| 106             | 28                        | 0.424                                                 | 0.540                                                   |
| 107             | 25                        | 0.379                                                 | 0.484                                                   |
| 108             | 22                        | 0.334                                                 | 0.425                                                   |

### B. Forging "A" in tension/compression

| Cycles          | Fatigue Strength<br>(ksi) | Fatigue Strength - Ultimate<br>Tensile Strength Ratio | Fatigue Strength<br>0.2% Offset Yield<br>Strength Ratio |
|-----------------|---------------------------|-------------------------------------------------------|---------------------------------------------------------|
| 104             | 38                        | 0.535                                                 | 0.696                                                   |
| 10 <sup>5</sup> | 21                        | 0.296                                                 | 0.386                                                   |
| 10 <sup>6</sup> | 15                        | 0.211                                                 | 0.275                                                   |
| 107             | 15                        | 0.211                                                 | 0.275                                                   |



Stress vs Log-Cycle Curve for 7079-T652 Forging

.

٤

### TENSION-TENSION FATIGUE TEST RESULTS OF GRADE 7079-T652 FORGING AT ROOM TEMPERATURE

| Steady Stress | Alternating Stress |                   |
|---------------|--------------------|-------------------|
| (KS1)         | <u>(ksi)</u>       | Cycles to Failure |
| 30            | 15                 | 34,000            |
| 30            | 12.5               | 67.000            |
| 30            | 10                 | 119.000           |
| 30            | 10                 | 183,000           |
| 30            | 7.5                | 8,086,000         |
| 30            | 6.25               | 787,000           |
| 30            | 5                  | 10,725,000        |
| 20            | 15                 | 71.300            |
| 20            | 12.5               | 95,700            |
| 20            | 10                 | 2,173,000         |
| 20            | 10                 | 256,000           |
| 20            | 7.5                | 799,000           |
| 20            | 7.5                | 6,958, <b>000</b> |
| 20            | 5                  | 15,490,000        |
| 10            | 20                 | 37,000            |
| 10            | 17.5               | 53,000            |
| 10            | 15                 | 3,224,000         |
| 10            | 12.5               | 1,140,000         |
| 10            | 12.5               | 187,000           |
| 10            | 12.5               | 250,000           |
| TO            | 10                 | 2,893,000         |





Figure 34 Stress Range Diagram for 7079-T652 Forging

The data points for fatigue properties showed considerable scatter; these properties were apparently influenced by flow lines and grain size. The results of the fatigue tests emphasized the importance of determining individual forging fatigue strength. ÷

These tests serve to demonstrate that large 7079 forgings have low fatigue strength. This property factor, together with its low toughness, make 7079 a poor candidate for inducer application in liquid hydrogen.

### 8. Inducer and Impeller Blanks and Finish-Machined Parts

The impeller and inducer forging blanks are shown in Figures 35 and 37, respectively. The partially machined impeller and finished machined subscale inducer are shown in Figures 36 and 38. A comparison between the photographs of the forgings and the machined parts indicates the amount of metal removed during machining.

### IV. CONCLUSIONS

The results were analyzed and the conclusions as regards the large 7079-T652 hand forgings are as follows:

A. The forgings were notch tough at ambient temperature. They were notch sensitive at  $-423^{\circ}$ F, and slightly notch sensitive at  $-320^{\circ}$ F. The notch sensitivity appeared to be partially dependent upon matrix strength and ductility levels, as well as grain size and orientation.

B. The forgings appeared satisfactory for service at temperatures down to  $-320^{\circ}$ F for the M-1 impellers. However, Grade 7079 is not considered satisfactory for liquid hydrogen (-423°F) service in this size and application because of poor notch toughness; if used, conservative design values must be applied.

C. Ambient temperature fatigue properties closely approximated those of commercial size wrought products, but additional fatigue testing is required to obtain data at liquid hydrogen temperature.

### V. RECOMMENDATIONS

The following recommendations are based upon the investigation described herein:

A. Continue evaluation of 7079-T652 to obtain fatigue data to -423°F.

B. Consider higher toughness titanium (Ti-5A1-2.5Sn) and nickel-base (Inconel 718) alloys for impeller service at -423°F. Several of the new aluminum alloys developed specifically for cryogenic service are of interest, including X7106, X7005, and X7039. The mechanical properties of these alloys should be assessed in large forgings.



# Fuel Pump Inducer Blank

### Figure 35





### Figure 37

# Oxidizer Impeller Blank



Figure 38

Partially Machined Oxidizer Impeller

### BIBLIOGRAPHY

- 1. Campbell, J. E., <u>Properties and Applications of Aluminum</u> <u>Alloys at Low Temperatures</u>, Battelle Memorial Institute, 1964.
- Christian, J. L., and Watson, J. F., "Properties of 7000 Series Aluminum Alloys at Cryogenic Temperatures," <u>Advances</u> <u>in Cryogenic Engineering</u>, vol. 6, pp. 604-621, 1960.
- Saver, J. A., and Lemon, D.C., "Effect of Steady Stress on on Fatigue Behavior of Aluminum," <u>Trans ASM</u>, vol. 42, p. 559, 1950.
- 4. <u>Aluminum Alloy Forgings, 7075-T652 and 7079-T652</u>, Summary Report R-RE-MMP, George C. Marshall Space Center, 1964.
- 5. <u>Mechanical Properties of 7075-T6 and 7079-T6 Aluminum Alloy</u> Forgings, Report MM-58, Aerojet-General Corp., 1957.
- 6. Reynolds Aluminum Data Book, p. 37, 1961.

"The aeronantical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL ABRONAUTICS AND SPACE ACT OF 1958

### NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in connection with a NASA contract or grant and released under NASA suspices.

TECHNICAL TRANSLATIONS: Information published in a foreign Inngange considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities but not necessarily reporting the results of individual NASA-programmed scientific efforts. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

Details on the availability of these publications may be obtained from:

### SCIENTIFIC AND TECHNICAL INFORMATION DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546