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1.0 INTRODUCTION

The geomagnetic potential function is usually represented by a
spherical-harmonic expansion. The Dikewood Corporation has prepared two
computer programs related to this spherical-harmonic expansion for the
Goddard Space Flight Center. The first program, Jensen's Fit, is a least
squares program for improving the precision of the parameters in the
spherical-harmonic expansion. The second program, Wall's Error, is a
statistical program for mapping the field from the spherical-harmonic expan-
sion produced by Jensen's Fit and then computing the random error in the
mapping.

These two programs are similar in much of the basic formulation.
Hence, Section 2.0 of this report on basic formulation applies to both pro-
grams. Section 3.0 discusses in some detail Jensen's Fit program while
Section 4. 0 discusses in a similar manner Wall's Error program.

Most if not all of the information presented in this report can be
found in the documents and books listed in the bibliography.

This document is a final report on work performed at The Dikewood
Corporation and does not cover any program modifications later made at
Goddard Space Flight Center for the accommodation of the Goddard compu-

ter system.

2.0 BASIC FORMULATION
We begin with the "terms of internal origin'" in the Chapman and

Bartels (1940, p. 639) formulation of the geomagnetic potential function to




write the following equation for the magnetic potential V:
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The three orthogonal components are derived by taking the gradient B=+vvV
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B-(B9+B¢+Br) (5)

There have been several versions of Jensen's Fit, Basic formula-
tion for the original versions ended with the above equations. However, the
most recent version included provision for a field of external origin. The

field specified was a simple magnetic field of intensity B at infinity

! !

1 1
(denoted by B ) and parallel to an arbitrary axis z inthe (x , y, z)
o0

!
coordinate system, and positive in the increasing z direction.

To develop the formulation for this field, we begin with
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Let B cosa = E
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Then

V = rElP (6) + rEz cos ¢P (9) +rE3 sin¢P1’1(9) (8)

The three orthogonal components are derived by taking the gradient B= +vV

to give
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Substituting for the Legendre polynomials,

1
P ’0(9) = cos@
and
1
P Ye) = sing
we have
BO = -E1 sin9+Ezcos¢cos6+E3sin¢ cos @ (12)
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Hence, the complete basic formulation including the simple external
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field is given by
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The external field is defined as positive if the direction of force is

!

toward the positive z axis. Hence from Fig. 1, E1 is positive if the direc-

tion of force is out of the northern hemisphere. E2 is positive if the direc-
tion of force is out of the hemisphere bisected by the Greenwich meridian

(i. e., the half-circle passing through Greenwich) and E_ is positive if the

3
direction of force is out of the hemisphere to the right of the Greenwich merid-
ian (i. e., east longitude).

In the above, Pn’m( 0) has been used to denote Gauss normalized
associated Legendre polynomials. To simplify the computer program, the
Legendre polynomials have been adjusted so that the coefficients of the high-

est order term in @ is one. Generating functions for these polynomials and

their derivatives are given by

P%% - 1.0
2% _
Y
n,n . n-1,n-1
P’ () = sing P (6) n> 2
n,n n-1,n-1
3P "’ (0) . ! (6) n-1,n-1
oF 160 _ 52
20 sin @ Y +cosf P (6) n>
_ _ _2,

P>™(g) = coso P" o) -K__ PN (p) n>2, m#n
n,m n-1, m n-2, m
3P " (6) _ S () R n-,m, . 3P (6)

%8 - cose—-———-—ao sing P (6) Kn,m ) (19)



(n 1)2 m2
whe K = ~ —.
re n,m (2n-1)(2n-3)

These Gauss normalized polynomials are then converted to the

Schmidt quasi-normalized functions an(e) via the relationship:
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To introduce secular change coefficients into the eguations for the
potential function and its three orthogonal components, each coefficient in

the terms of internal origin are expressed as follows:

n,m n,m,0 n,m,t n,m,tt 2
g =g + g t+g t

and

+ hn,m,tttz

Hence, the complete basic formulation including the simple external

field using the Schmidt quasi-normalized functions Prrln(e) is given by
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The orthogonal components are given by
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Secular change coefficients were not included for the external field.
The Dikewood Corporation has proposed to modify the formulation to include
secular change coefficients for the external field in a future contractual
effort,

To provide compatibility with the FORTRAN programming system,
the spherical-harmonic expansion of the geomagnetic potential function
(Eq. (22)) is redefined in terms of subscripts starting at one instead of

zero, by letting N = n+l and M = m+l . Thus,
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The orthogonal components of the magnetic field are given by
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The above formulation is rigorously correct only for a spherical
earth. It is obvious that as the accuracy of evaluation of the geomagnetic
field increases, it will eventually be necessary to take the earth's true shape
into account. So long as the evaluation of the harmonic coefficients is done
in spherical coordinates, r, 6§, and ¢, the resulting fields Bi" BG’ and
B é will be in strict geocentric directions. The only constant in the poten-
tial function pertaining to the earth is the radius a here chosen to be the
mean radius or 6371.2 km . The only problem is that of converting posi-

tions in geodetic coordinates to geocentric coordinates. Both the Fit and

-10-



Error programs perform coordinate conversion for the oblateness of the

earth only. Referring to Fig. 2, we can write:

Fig. 2

-
h VAz coszx + B2 sinz)t + B2
tany = tan A

h -\/Az coszh + A2 sinz)« + A2

and
R2 = h2 + 2h VAz coszx + B2 sinz)‘t + A; cosz)\ e B: sinzl
A cos A+ B sin a
where:
h = height above the geoid
Y = geocentric latitude (90° - 6)
A = geodetic latitude

-11-
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R = geocentric distance
A = mean equatorial radius of 6378.165 km
B = polar radius of 6356. 783

Using A and h, the geocentric quantities § = 30 -y and R can then be cal-
culated. The conversion from Br and B 0 to X and Z can then be done by

the rotation:

X
"

—Be cos(A-y) - B_ sin(A-y)

Z

Be sin(A-y) - Br cos (A-y)

To complete the coordinate systems, note that

Geomagnetic data have been assembled from many sources. Hence
the reliability of the information varies. Since instrument accuracy and some
other factors are known for the different data sources, quantitative estimates
of reliability can be made. These reliability estimates are the basis for a
system of geomagnetic data weights. Table 1 below lists the standard error
associated with the different data sources.

The quantities measured in Gamma were weighted inversely as the
standard error listed. Thus values of H measured at an observatory would
have a weighting factor of 1/5 and values of H measured in Canada would
have a weighting factor of 1/60, so that the observatory data would count

12 times as much as the Canadian data., For those quantities measured in

-12-
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in degrees, the effect of the error is greater for points where the field is

stronger. Thus, these data were weighted by the factor 5 DI. H for D and
5 Il. F for I.
Table 1
Estimated Standard Errors
5D° s1°  sHY s52Y sFY
Observatory 0.0033 0. 006 5 15 15
Land Survey 0.1 0.1 30 50 -
Air Survey 0.3 0.1 - - 30
Shipboard 0.083 0. 083 25 - -
Satellite | - - - - 10
Towed magnetometer - - - - 10
(proton)
Towed magnetometer - N - - 40
(fluxgate)
Repeat observations 0.033 0.083 5 - 2
Canadian data 0.3 - 60 60 -

3.0 JENSEN'S FIT PROGRAM

Jensen's Fit Program is simply a computer program for determin-
ing small corrections to an already good set of parameters for the spherical-
harmonic expansion of the geomagnetic function.

The general scheme for the program is a common least squares
approach. The best available estimate of the coefficients of the potential

function are used to estimate the magnetic field for observation locations.

-13-



Then the actual observations are compared with these estimates and correc-
tions for the potential function coefficients are computed from all available
data, both old and new, via the method of least squares. Since the correc-
tions are not optimum, the procedure must be repeated until the corrections
are no longer significant. Hence much computer time is consumed each
time the coefficients are up-dated with new data.

The procedure is to express the geomagnetic measurements in terms
of the field components X, Y, and Z developed in Section 2. 0 of this report.
As functions of the g's and h's, these expressions are expanded into Taylor
series that include only linear terms. Then, via the method of least squares,
corrections for the improvement of the g's and h's are estimated. These
corrections are applied and the procedure repeated until the g and h param-
eters converge.

As an example of a Taylor's expansion, consider the measurement
declination,

1 B
-Be cos(i-y) - Br sin(A-y)

D = tan = tan !

o1l

As a function of X and Y, we can write an algebraic expression for declina-
tion first in terms of Br, Be, and B¢ as is done above and then in terms
of the g's and h's of the potential function. The Taylor's expansion for D

as a function of a single g and h is as follows:

-14-




D(g+ Ag, h+ Ah) = D(g.h) + Ag a_13;§,_h_) + Ah 9%:}313—‘1 (35)

Now the term on the left is the observation while D(g,h) is a computed or
expected measurement based on the best available set of g and h param-

eters. On rearranging this equation, we see that the error (or residue),

D(g + Ag,h+ Ah) - D(g,h) = Ag iQég;L) + Ah B—D;ﬁﬂ (36)

is linear in the correction terms Ag and Ah. Hence, a standard least-
squares procedure can be used to find values for these corrections. These
corrections are then applied to each of the coefficients, and the procedure
repeated until the desired accuracy is obtained. It should be recognized at
this point that g and h as here used can and do represent a large group of
parameters. The number of parameters is determined by the limits on the
summations in the potential function.

Since this linear expression resulted from a Taylor series that was
truncated after the linear terms, it is accurate only as long as the summa-
tion term is small compared with the expected value. This requirement is
not difficult to meet since there are several sets of coefficients available
that represent the geomagnetic potential with very small error.

Similar expressions for dip,

dip = tan-1

TN

; (37)

horizontal field,
1/2
2
(X2 +Y) ) (38)

as
It

-15-



total field,
1/2
2
T = X2 +Y2 429 , (39)

and the X, Y, and Z field components can be used to estimate the correc-
tions for the g's and h's. It is also possible to mix the use of geomagnetic
measurements so long as the corresponding expression is used for the g
and h corrections.

The coefficients of the set of simultaneous equations form a symmet-
tic matrix. To conserve computer storage, and hence to permit the esti-
mation of a larger number of g's and h's, only half of these coefficients
are stored in the computer program. If one thinks of the complete array
required for the normal equations as consisting of the square matrix of the
coefficients of the unknowns plus two additional columns, one for the obser-
vation terms and the other for the computation check sums, then the program
stores the upper half of the square matrix including the diagonal terms and
the two additional columns. This array, which is illustrated in Fig. 3 for a
system of five unknowns, is stored by rows in a one dimensional array
named D in the computer program. In the illustration, the usual two dimen-
sional Fortran subscript is equated with the corresponding position in the
one dimensional D array. Given the subscript (I,J) for any element in the

complete rectangular array, its position in the D array is determined by

K = I*(NOR +2) - Ix(I-1) / 2+J - NOR-2 (41)

-16 -



where NOR is the number of rows in the complete matrix. To illustrate

how this formula determines the position in the D array, it is rewritten as

follows:

K = I« (NOR+2) - Ix(I-1)/2+J -

(1,1)=D(1) (1,2)=D(2) (1,3)=D(3)  (1,4)=D(4)
(2,2)=(8) (2,3)=D(9) (2,4)=D(10)
(3,3)=D(14)  (3,4)=D(15)

(4,4)=D(19)

Fig. 3

NOR - 2

(1,5)=D(5)

(2,5)=D(11)
(3,5)=D(16)
(4,5)=D(20)
(5,5)=D(23)

Upper Triangular Matrix Storage
(illustrated with a 5 x 5 matrix)

or

K =(I-1)% (NOR+2) - I*(I-1)/ 2+J

Obser-

vation Check

Column Sum

D(6)

D(12)
D(17)
D(21)
D(24)

D(7)

D(13)
D(18)
D(22)
D(25)

Now consider two positional notations. The first is the position in the com-

plete array from which the array in Fig. 3 was taken.

in this complete array from left to right by rows.

-17-
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Number the elements
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one used for the subscripts of D in Fig. 3. Then the interpretation of each of

the three terms in the K equation is as follows:

(I-1) x (NOR+2)

position preceding the first position in row I
of the complete rectangular array, i. e., each
row has NOR+2 elements and this is multi-
plied by the row number less one. For row 1,
this position is the position numbered zero or
one less than position one.

Ix(I-1)/2

the sum of the digits preceding the Ith digit.
In the D array, one notes that in row 2, one
position is not used; in row 3, two positions
are not used, and so forth. Hence, the num-
ber of elements not used by row I is the sum
of the positive digits less than I. Hence, the
first two terms of K compute the position
preceding the first position in a row of the D
array.

J = column position which is added to the position

preceding the first position in a row of the D
array.

Each entry in the computation check column is the sum of the coeffi-

cients of the parameters in the respective row. For example, in Fig. 3, the

third term in this column will be stored in D(18) and is the sum
D(3) + D(9) + D(14) + D(15) + D(16)

The computation check column is a pseudo-cbservation column in which all
of the unknowns are assumed to be 1.0. Hence on solution of the system
with this pseudo-observation column, estimates of the unknowns should
approximate 1.0. Their failure to do so indicates the precision of the true

estimates made from the observation terms themselves.

-18-



The procedure employed for the solution of the least squares equa-
tions is a modification of the common Gauss elimination method. The modi-
fication consists of computing the ''back solution' at the same time that the
"forward solution' is computed, i.e., the matrix of coefficients (here
assumed to be the complete square array) is diagonalized at the same time
as it is made into a triangle.

In the modified Gauss elimination procedure, the following sequence
of operations is performed for each row:

(1) Each element in the row (beginning with the diagonal
element) is divided by the diagonal element. Let the
diagonal row and diagonal column be defined as the
matrix row and column respectively that contain this

element.

(2) Then beginning with the first column to the right of
the diagonal column, each element in every row other
than the diagonal row has subtracted from it the
product of the corresponding element in the diagonal
row and the corresponding element in the diagonal
column.
From the procedure above, one can see that as each row is con-
sidered at step (1), the corresponding complete column is required for
step (2). This column is contained in the triangle array D.

The solution of the set of simultaneous least squares equations

yields adjustments or corrections for the parameters based on the average

-19-



L s ]

observation time. The parameters for starting the program are based on
the year 1960. Hence, the corrections must be computed for 1960 instead

of the average observation time. To do this, we note that gN,M, 0 for time t
is estimated by

2

En,m,0 T EN, Mttt BN, Mttt (43)
for time zero. Adding another subscript to indicate epoch, this relation may
be put into an equation as follows:
_ + t+ 2 (44)
En,M,0,t ~ 8N,M,0,0 T BN,M,t,0" T EN,M,tt,0
Similarly,
i} ' t+ £ (45)
EN,M,0,0 © EN,M,0,t T EN,M,t,tt T BN, M, tt,t '
Taking differences with respect to the g's ,
= + A t+ A 2 (46)
28N,M,0,0 = 28N, M0t T 28N, MLttt T OBN, MLttt
we obtain the correction for EN M.O at time zero from the corrections at
time t. In a similar manner the correction for BN M.t at time zero from
the corrections at time t can be shown to be
= t . (47)

28N M0 - LBttt 2ABN Mttt

Similar expressions apply to the h's

-20-



In Appendix A, Jensen's complete Fit program is listed. Appendix
B is a brief description and cross reference of the program. Appendix C is

a flow chart of Jensen's Fit program.

4.0 WALL'S ERROR

The following derivation establishes the relationship between errors
in the given data and errors in the coefficients determined by a least-squares
procedure. Assume that the values y, are measured at points having coor-

dinates X. = (x,., X.., X
i 1

., %,.) and that it is desired to fit a curve of the
i" 721 4i

3i
form y = z a fn (X) to the data. In this equation, a corresponds to
n
the g's and h's in the spherical-harmonic expansion of the geomagnetic
potential function and fn (x) corresponds to the known coefficients which are,
incidentally, all functions of the position X in time and space. The least
squares procedure involves the calculation of a vector v whose elements
are
v, o= Z £ (Xi) ¥;
i
and a matrix A whose elements are
A = Z £ (X)L (X)
mn m i n i
i
The coefficients a of the fitted curve are then found by solving the matrix

equations

-21-



1Y
1

>

|<

-1 . . i
where A * is the inverse of A, and the coefficients are

a = Z ANy - Z ZAHJ £.(X) y.
n i jooiYi
j j i

Now, since the yi are independent measurements, the standard error oa
n
of coefficient a can be found from the expression

2

2 (aan} 2
2 =Y 5 e
n L\ 9Yy Y.

7 1
1

*
Assuming that all ¢ 's have the same value oy and using values

'
i
for the partial derivatives obtained from Eq. (48),

da 2 2
2 2 n| _ 2 nj
o, =9, ) (ayi) -0l ) |2 AV
i |

i

o ) L L ATATEx) &)
i j  k

The assumption that all Oy; are the same can easily be satisfied if weight-

ing factors are used when the a, are determined. The value of o,: should

y

be thought of as Wiay1

the value a constant for all i.

-22-
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Reordering this finite sum yields

2 _ 2 nj ,nk
o, = o, Y o) av¥ay (%) £, (X
ik i

o, Yy ) aMata :
y jk
i k
Note that
nj -
Z A Ajk = Sk
i

and therefore

2
o = 02, A™ (49)
a y
n
Eq. (49) is the relation allowing the accuracy of the coefficients to be deter-
mined when the accuracy of the given data is known
To calculate the accuracy of the field determined by the curve-fitting
process, assume again that a function of the form y = zFa, fn (X) is to be
fitted to the given data. The functional form itself gives
2y 2
ayi = -5-}-7:- fn (X) , (50)

n

and the fact that the values y; are independently measured allows the expres-

sion

-23-




Assuming all oy = Uy' as before, and using Eqg. (50),

2

oa
2 2 9y _ 2 n
7y T % Z(ay - %y ) [Z by, fn(X)]
i i
da 0da
2 n m
= Gy' ) Z Z g'y—l' 8yi fn(X) fm(X)
i n m

Evaluating the partial derivatives from Eq. (48),

b DL LD Ao [T a0 00000
i n m J k

\ l

Q
|

114

-2, Y )
yg_(_.
i n

8 ]

YOy aMa™r x) 1 (X) £ (X) £ (X)
[ S A J 4 o i 13
] k

Reordering terms yields

: : Z Z
= 0_,
y y
n m

Q
1

1

e M

nj ,mk
z [A AT () (X) z £ (%) 1, (Xi)]
" :

- g; y oy Z }ki [A“j A™ s 01X Ajk]
m j
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n m k

Summing the remaining terms over k yields

since ZAnjA = & .
nk

ik
J

2 2 mn
o = o, Y ) M @ . (51)
n m

Wall's Error program is a computer implementation of Eq. (51). To
provide data for the Error program, a minor change was made in Daniels'
Matrix subroutine. Daniels' Matrix inverts the least squares matrix that is
set up by Jensen's Fit program. However, Matrix records only the diagonal
elements of this inverse. To estimate the error of the geomagnetic field
computed from the parameters calculated by Jensen's Fit, the complete
inverse is needed. (Reference Eq. (51) above. A™" are the elements of
this inverse.) Hence, the Matrix subroutine was modified so that the com-
plete inverse plus the parameters of the potential function and certain other
miscellaneous constants are recorded on magnetic tape 1. Then, whenever
the Error program is used, the required data will be available from the last
run of Daniels' Matrix subroutine.

On comparing the listing of Jensen's Fit in Appendix A and Wall's
Error in Appendix D, one sees much similarity. The principal differences

include: (1) the initial input data are different; (2) the Fit program receives
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all data from the RDATA subroutine while the Error program generates its
own data to form a grid over the earth's surface; and (3) instead of comput-
ing the D matrix as in the Fit program, the Error program computes the
standard error of estimate according to Eq. (51) above.

The errors computed are all in gammas. For dip and declination,
points and errors expressed in degrees are more meaningful. Hence,
immediately before printout for a grid point, the generated declination and
dip and the respective standard errors of estimate are converted to degrees.
The formulae for converting these errors are developed below.

For declination, let

D = declination in gammas
Y
DO = declination in degrees
Note that H = horizontal component of field intensity.
Then
D = DH
Y o
Oy
Do - H
2
2 L2 Do
T2 4 'H
2
02 - L 02 + & 02
I 2 H
DO H DY H
-926-



For dip, let

Note that

Then

In Appendix D, Wall's complete Error program is listed. Appendix

E is a brief description and cross reference of the program. Appendix F is

[\V)

dip in gammas

dip in degrees

total field intensity.

F
Y
.2
1 2 o 2
— o, + —5 ¢
2 71 2 °F
F Y F
02 + Iz 02
I o F
Y
2

a flow chart of Wall's Error program.
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5.0 CONCLUSIONS

While Jensen's Fit program including the external field provisions
and Wall's Error program are in a sense complete, there are three minor
tasks related to these projects that should be done. The first of these tasks
concerns adding secular change coefficients for the external field. If an
estimate of the external field based on a large data sample is as significant
as Dikewood's initial estimate, then further calculations to determine if this
field is time-dependent seem necessary.

The second task concerns the addition of the external field variables
to Daniels' Matrix subroutine. This, of course, is absolutely essential if
one wishes to include the external field parameters when using Wall's Error.
The third task is the addition of the secular change coefficients for the exter-
nal field to the Error program.

Future programs in geomagnetism will require new analytical tech-
niques, The large volume of satellite data will necessitate a data reduction
procedure preceding any data analysis. At two points per second, each orbit
will produce about 10, 800 data points. Some means of reducing these data to
a more manageable quantity is imperative. One method recommended would
fit a Fourier series to each orbit and then select points from this equation
at equal distances along the orbit. Another recommendation is to try the
same approach with elliptic functions.

Since this type of data reduction scheme preserves information on

individual orbits, in a very short time the quantity of data will still become
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massive. A scheme to preserve orbital data in terms of secular variables
would provide for even more reduction of the data, and hence would have
some merit. If one views the potential function as a changing surface in
three dimensional space, then, at a specific time in a very small area, it
will appear as a simple plane. (For this discussion, the size of such a small
area is not delineated.)

Now assuming that a simple plane can be used to approximate the
potential function at a specific time in a small area, one might use all data
in that area without regard to orbit to determine this plane as a function of
time. Then in a manner similar to that which would be used for orbital data,
one or more points could be chosen on the plane to represent the small area.
One would hope that the plane would be simple enough in form to permit
direct as opposed to iterative estimation of the parameters required to des-
cribe it. If this is possible, the reduction of satellite data and the estimation
of the potential function parameters from the reduced data will be a manage-
able problem. In fact, such reduced data can be used with existing programs
to estimate the potential function parameters.

By generating pseudo-satellite data, any or all of these proposed
data reduction procedures can be studied. The utility of the results of these
studies will be limited only by our ability to generate the pseudo-data.

In an appendix to our December, 1964 report, a new technique for

handling geomagnetic data was outlined. Several questions exist concerning

-29-



1 e s maam s pammas o oaaan o o an  aamms  amma

the general use of this method. For example, how are areas where no data
exists handled? Most if not all of such questions do not apply where satellite
data is concerned. Hence, the method as outlined can be developed into a
system for processing satellite data only.

The problem of the westward drift of the geomagnetic field has been
brought to the attention of Dikewood personnel. A cursory examination of
the problem suggests that some form of correlation analysis may be useful
in establishing the significance and hence validity of the drift.

The above problems were recognized by The Dikewood Corporation
during previous work for the Goddard Space Flight Center. We look forward

to future contractual effort in the field of geomagnetism.
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APPENDIX A
PROGRAM LISTING FOR JENSEN'S FIT PROGRAM
* kx Kk Kk Kk Kk Kk Kk *k Kk Kk *x K * * * *k *k

JENSEN FIT PROGRAM HENDRICKS VERS|ON TRIANGULAR

* Kk *x Kk *x Kk K K * * *x % * * % * % *x

COMMON /DD/D(7500)

COMMON /DATAR/ISKIP,FLATT,ELONG,ALT,TIME,DECL,DECLWT,DIP,DIPWT,HOR
$, HORWT, B, BWT, X, XWT, Y, YWT, Z, ZWT

COMMON /COEFS/G(9 9) H(9 9) G7(9,9),HT(9,9),GTT(9,9),HTT(9,9),MAXD
DIMENSION ERR(18, 36). FN02(18 36), JERR(lBS F(127) STDE(126)

DIMENS|ON SHMIDT(9,9)
DIMENS|ON DXDH(9,9),DYDH(9,9),DZDH(9,9)
DIMENSION DXDG(9.9).DYDG(9.9).DZDG(9.9)
DIMENSION CP(9),SP(9),P(9,9),DP(9 9),CON5T( 9,9)
DIMENSION IERR(200),TYPE(8),S1G1(8),FNO1(8),SWT1(8),WD(7)
INTEGER EXTFLD
DATA RAD,A,FLAT,(TYPE(1),1=1,8),PI,PI2,LINE/57.2957795,6378.165,29
18.3, 1HD, 1HI, THH, 1HB, THZ, THX, THY 1H*, 3. 14159265, 6.28318530,0/

¥ K% kX 0k * K* K * * % % % * % % % *

FLAT=1.-1./FLAT
COMPUTATION WITH SPHERICAL EARTH

FNO2(
ERR(I,J
CONT | NUE

MAXD=7500

A2=A%*%2

Ab=A**L

B2=(A*FLAT)**2

A2B2=A2%(1,-FLAT**2)

ALBL=AL* (1, ~FLAT*%4)

READ (5,2) XiD1,XiD2

FORMAT (2A6 zux 12)

READ (5,3) NMAX NMAXT, NMAXTT,NSKIP, ITER

FORMAT (515)

READ (5,4) ERRLIM,AVETIM

FORMAT (2F10.0)

READ (5,5) EXTFLD

FORMAT (15)

WRITE (6,6) NMAX,NMAXT,NMAXTT,NSKIP,ITER,ERRLIM

FORMAT (6H1NMAX— 15, 3X, 6HNMAXT=, 15, 3x 7HNMAXTT- I5,3X,6HNSKIP=, 15,
$3X,5HITER=, |5, 3X, 7HERRLIM_ F10.0)

WRITE (6,7) XiD1,X1D2

FORMAT (1x 2A6)

et Lt —a N
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COMPUTE CONSTANTS REQUIRED FOR GENERATING
LEGENDRE POLYNOMIALS

DO 8 N=2,NMAX

FN=N

DO 8 M=1,N

FM=M

ggNST(N ,M)=((FN-2.0)**2—(FM-1.0)**2) /(FN+FN-3.0)/(FN+FN-5.0)

NT | NUE

COMPUTE CONSTANTS TO CONVERT FROM GAUSS TO
SCHMIDT NORMALIZATION

SHMIDT(1,1)=-1.0

DO 9 N=2,NMAX

FN=N

SHMIDT(N, 1)=SHMIDT(N=-1, 1)*(FN+FN-3.0) /(FN-1 0)

FACT=2.0

DO 9 M=2,N

FM=M

?EQID¥(N ,M)=SHMIDT(N,M-1)*SQRT( (FN~FM+1.0)*FACT/(FN+FM-2.0))

T=1.0

SET VALUE OF FIRST LEGENDRE POLYNOMIALS

SET VALUE OF SIN(M-1)PHI AND COS(M-1)PHI WHEN M=1

READ BEST SET OF PARAMETERS AS FIRST APPROXIMATION
N,M,GNM, HNM, GTNM, HTNM, GTTNM, HT TNM
6F11.4)
12

H(N M) =HNM
GT(N M)=GTNM
HT(N,M)=HTNM
GTT(N M)=GTTNM
HTT(N,M)=HTTNM

-32-

GO TO 10
READ BEST SET FOR EXTERNAL FIELD
READ (5,14) E1,E2,E3
FORMAT (6X,3F11.4)
RECORD STARTING PARAMETERS |
WRITE (6,11) ((N,M,G(N,M),H(N,M),GT(N,M),HT(N,M),GTT(N,M),HTT(N,M)
$,M=1,N), N=2, NMAX)
WRITE (6,15) E1,E2,E3
FORMAT (LHOE1=,F13.4/4H E2=,F13.4/4H E3=,F13.4)
x * * * * * *. % *
END INITIALIZATION BEGIN DATA PROCESS | NG
* * % * * * % %k K * % % * * * %
DO 120 |TNO-1,ITER
REWIND 2
DO 16 J=1,8



(@ X @]

o o o O

SIGI(J
FNOT(J
SWT1(J
CONTIN

e e O e e
hnminn
OOO

[ J=Y

CONT I NUE
LINE=0
SUMTM=0.0
ISK1P=NSKIP
READ ONE DATA LINE
CALL RDATA
WD(1)=DECL
WD(2)=DiIP
wn(i) =HOR

IP) 20,79,20
COMPUTE GEOCENTRIC THETA FROM
GEODETIC COORDINATES
FLATR=FLATT/RAD
SINLA=SIN(FLATR)
SINLA2=S | NLA**2
DEN2=A2-A2B2*SINLA2

DEN=SQRT(DEN2)

FAC=( (ALT*DEN)+B2)/((ALT*DEN)+A2)
THETA=ATAN(FAC*SINLA/(1.E-30+SQRT(1.-SINLA2)))
COMPUTE GEOCENTRIC R FROM GEODETIC COORDINATES
R=SQRT(ALT*(ALT+2.*DEN)+(AL-ALBL*S|NLA2)/DEN2)
COMPUTE SINE AND COSINE OF DIFFERENCE BETWEEN
GEODETIC AND GEOCENTRIC LATITUDINAL COORDINATES
SIND=SIN(FLATR-THETA)
COSD=SQRT(1.0-SIND*SIND)

AOR=6371.2/R

COS THETA MEASURED FROM POLAR AXiS
CT=SIN(THETA)

SIN THETA MEASURED FROM POLAR AXIS
ST=SQRT(1.0-CT*CT)

LONGITUDE INDEX
LON=AMIN(AMAX(ELONG/10.0+18.0,1.0),36.0)

LATITUDE INDEX
LAT=AMIN(AMAX(FLATT/10.0+9.0,1.0),18.0)
SP(2)=SIN(ELONG/RAD)
CP(2)=COS(ELONG/RAD)
DO 21 M=3,NMAX
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22

23

leNe]

25
26

SIN(M-1)PHI, EQ.(5)
SP(M)=SP(2)*CP(M=1)+CP(2)*SP(M=1)

COS(M-1)PHI, EQ.(6)
CP(M)=CP(2)*CP(M-1)-SP(2)*SP(M-1)
CONT | NUE

GENERATE ASSOCIATED LEGENDRE POLYNOMIALS

DO 24 N=2, NMAX

DO 24 M=1,N

IF (N-M) 23,22,23

P(N,N)=ST*P(N-1,N~1)

DP(N, N)=ST*DP(N=1,N=1)+CT*P(N-1,N-1)
GO TO 24

P(N,M)=CT*P(N-1,M)=CONST(N, M)*P(N 2,M)

DP(N,M)= CT*DP(N 1,M) ST*P(N ,M)- CONST(N,M)*DP(N—Z,M)

CONT I NUE

INITIALIZE TO COMPUTE X,VY,Z
CX=0.0
CY=0.0
€Z=0.0
AR=AOR*AOR
TM=TIME-60.0

COMPUTE X,Y,Z USING BEST AVAILABLE

PARAME TERS
DO 25 N=2, NMAX
FN=N
AR=AR*AOR
DO 25 M=1,N
FM=M-1

APPLY SCHMIDT NORMALIZATION CONSTANTS

AND MULTIiPLY BY (A/R)**{N+1)
P(N,M)=P(N,M)*AR*SHMIDT(N, M)
DP(N M)= DP(N M)*AR*SHMIDT(N M)
TEMP=FN*P(N, M)*S | ND— DP(N, M)*COSD
DXDG(N,M)=TEMP*CP(M)
DXDH(N,M)=TEMP*SP(M)

TEMP= FM*P(N M) /ST
DYDG(N,M)=—TEMP*SP (M)

DYDH(N M)=TEMP*CP(M)

TEMP= FN*P(N M)*COSD+DP(N,M)*SIND
DZDG(N,M)=TEMP*CP(M)
DZDH(N,M)=TEMP*SP(M)

ADD TIME TERMS
GNM=(TM*GTT(N,M)+GT(N,M) )*TM+G (N
HNM—(TM*HTT(N M)+HT(N,M) ) *TM+H(N
CX= CX+GNM*DXDG(N M)+HNM*DXDH(N, M
CY=CY+GNM*DYDG(N,M)+HNM*DYDH(N,M
CZ=CZ+GNM*DZDG(N,M)+HNM*DZDH(N,M
CONT I NUE
IF (EXTFLD) 26,27,26
T1=E2%CP(2)+E3%SP({2)

M)
M)
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36

37

38

39
L1

T2=E1*ST-T1*CT
TI=E1*CT4+T1%ST
CX=CX-T2*COSD+T1*S|ND
CY=CY+E2*SP(2)-E3*CP(2)
CZ=CZ+T2*SIND+T 1*COSD

COMPUTE HORIZONTAL, TOTAL FIELD, DIP, AND

DECLINATION

CH=SQRT(CX*CX+CY*CY)

CF=SQRT(CH*CH+CZ*CZ)

Ci=2.0*ATAN(CZ/(CF+CH))

CD=2.0*ATAN(CY/(CH+CX))
COMPUTE COEFFICIENTS OF G(N,M) AND
H(N,M) FOR THE NEXT APPROX|MAT | ON

ECL) 35,29,3
IP) 4230, Lz

(D

(D

(H 45
(B) 48,32 48
(z

(X

(Y

—t

MMM T M T |

COMPUTE COEFFICIENTS WHEN DECLINATION
(DECL) 1S GIVEN
DECL=ARCTAN(Y/X)
T1=DDECL /DY
T2=DDECL /DX
T1=CX/CH
T2=CY/CH
ITYPE=1
DO 37 N=2,NMAX

DO 37 M=1,N

DDECL/DG(N,M)
F(1)=(T1*DYDG(N, M)—TZ*DXDG(N M))
IF (M-1) 36,37, 36

l=|+1
DDECL/DH(N M)
(T1*DYDH(N, M)-TZ*DXDH(N M))

RAD-CD

LAY

/

Pl1) 39,39,38
12

1

0
FI+P1) 40,41,41
|

| *CH
RAD /DECLWT /CH
DECL=0.0
GO TO 57

ﬂ——ﬂOFﬂ“HA
MAAN—ATANOD 4+

EMNMM—0OTM—"N—"T

COMPUTE COEFFICIENTS WHEN DIP IS GIVEN

DiP=ARCTAN(Z/H)
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T1=DDIP/DZ

T2=DDIP/DX

T3=DDIP/DY
T1=CH/CF

T2=CZ*CX/CH/CF
T3=CZ*CY/CH/CF
ITYPE=2
DO 44 N=2,NMAX
DO 44 M=1,N
F(1)=DDIP/DG(N,M)
F(1)=(T1*DZDG(N,M)-T2*DXDG(N,M)-T3*DYDG(N,M))
IF (T—1) 43,44 L3
=1+
F(1)=DDIP/DH(N,M)
F(l)T(Tl*DZDH(N,M)—TZ*DXDH(N,M)—TB*DYDH(N,M))
=1+
FI=(DIP/RAD-CI| )*CF
WT=RAD/D | PWT/CF

DIP=0.0

GO TO 57
COMPUTE COEFFICIENTS WHEN THE HORIZONTAL
COMPONENT (HOR) IS GIVEN
HOR=SQRT ( X*X+Y*Y)
T1=DHOR/DX
T2=DHOR/DY

T1=CX/HOR

T2=CY/HOR

ITYPE=3

DO 47 N=2,NMAX

DO 47 M=1.N

F(1)=DHOR/DG(N,M)
F(1)=(T1*DXDG(N,M)+T2*DYDG(N,M))
:FI(T-1) 46,47,kL6
=]+

F(1)=DHOR/DH(N,M)
F(1)=(T1*DXDH(N,M)+T2*DYDH(N,M))

I=1+1

F1=HOR-CH

WT=1.0/HORWT

HOR=0.0

GO TO 57
COMPUTE COEFFICIENTS WHEN TOTAL
FIELD B IS GI!VEN
B=SQRT(X*X+Y*Y+Z*Z)
T1=DB/DX
T2=DB/DY
T3=DB/DZ

T1=CX/B

T2=CY/B

T3=CZ/B
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252
253
254
255
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258
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260
261
262
263
264
265
266
267
268
269
270
271
272
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50

51

52

54

56

I TYPE=4
DO 50 N=2, NMAX
DO 50 M=1,N

F(1)=DB/DG(N,M
F(1)=(T1*DXDG(N,M)+T2*DYDG(
:FI(T‘I) 49,50, 49
=+

)
N,M)+T3*DZDG(N,M))

F(1)=DB/DH(N,M)
F(:)7(T1*DXDH(N,M)+T2*DYDH(N,M)+T3*DZDH(N,M))
=+
F1=B~CF
WT=1.0/BWT
B=0.0
GO TO §7
COMPUTE COEFFICIENTS WHEN THE Z COMPONENT IS GIVEN
DO 52 N=2,NMAX
F(1)=DZDG(N, 1)
I=1+1
DO 52 M=2,N
F(1)=DZDG(N,6M)
F(1+1)=DZDH(N,M)
=142
ITYPE=5
Fi=Z-CZ
WT=1.0/ZWT
Z=0.0
GO TO 57
COMPUTE COEFFICIENTS WHEN THE X COMPONENT IS GIVEN

O Il <——— " ——
—~X U+ + N4+~

OXEN——"NNMOU—10
O Ol A==l m~,—~0Oll ~O

~l

COMPUTE COEFFICIENTS WHEN THE Y COMPONENT IS GIVEN

o
<ON ON
| e e )
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-~ O (w
I <X <Z WUn
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~~
Ir=z= ZzZ

X

zX -
- N ~ DX
X
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58

59
60
61

62

6L

WT=1,0/YWT
Y=0.0

ADD TIME**1 TERMS
NO=|-1
TFACT=TIME-AVETIM
IF1(NMAXT) 58,60,58
J=
DO 59 N=2,NMAXT
F(l)-F(J)*TFACT
f=l+1
J=J+1
DO 59 M=2,N
F(1)=F(J)*TFACT
FCl+1)=F(J+1)*TFACT

I=1+2
J=J+2
CONT | NUE
ADD TIME**2 TERMS
NONOT=1| -1
5F1(NMAXTT) 61,63,61

TFACT=TFACT*TFACT
DO 62 N=2,NMAXTT
F(1)= F(J)*TFACT
I=1+1

J=J+1

DO 62 M=2,N
F(I1)=F(J)*TFACT
F(I+1)=F(J+1)*TFACT
=142

J=J+2

CONT INUE

IF (EXTFLD) 64,72,64

ADD EXTERNAL FIELD TERMS

DXDE 1=CT*S|ND-ST*COSD
DZDE 1=ST*S|ND+CT*COSD
DXDE2=CP(2)*DZDE1
DXDE3=SP(2)*DZDE1
DZDE2=-CP(2)*DXDE1
DZDE3=-SP(2)*DXDE1

GO TO (65,66,67,68,69,70,71), I TYPE
COEFFICTENTS WHEN DECLINATION (D) 1S GIVEN

F(1)=DD/DE1
F(1)=-T2*DXDE 1

I=1+1
F(1)=DD/DE2
F(I)=T1*SP(2)-T2*DXDE2

l=1+1
F(1)=DD/DE3
F(1)=-T1*CP(2)-T2*DXDE3
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I=1+1

GO TO 72
COEFFICIENTS WHEN DIP (1) IS GIVEN
F(1)=DI1/DE1
F(I)TT1*DZDE1—T2*DXDE1
=1+
F(1)=D1|/DE2
F(1)=T1*DZDE2-T2*DXDE2-T3*SP(2)
l=1+1
F(1)=DI/DE3
F(I)=T1*DZDE3~T2*DXDE3+T3*CP(2)
I=1+1
GO TO 72

COEFFICIENTS WHEN THE HORIZONTAL
COMPONENT (HOR) IS GIVEN
F(1)=DHOR/DE1
F(!)=T1*DXDE1 »
l=1+1
F(1)=DHOR/DE2
F(l)TTl*DXDE2+T2*SP(2)
=1+
F(1)=DHOR/DE3
F(1)=T1*DXDE3-T2*CP(2)
=141
GO TO 72
COEFFICIENTS WHEN TOTAL FIELD IS GIVEN
F(1)=DF/DE1
T(I)TTl*DXDE1+T3*DZDE1
=4
F(1)=DF/DE2
F(1)=T1*DXDE2+T2*SP(2)+T3*DZDE2

I=1+1

F(I)=DF/DE3
7(:)7T1*DXDE3—T2*CP(2)+T3*DZDE3
=]+
GO TO 72

F(1)=DZDE1
l=1+1
F(1)=DZDE2
l=1+1
F(1)=DZDE3
l=1+1

GO TO 72

COEFFICIENTS WHEN THE Z COMPONENT IS GIVEN

COEFFICIENTS WHEN THE X COMPONENT IS GI|VEN
F(1)=DXDE1
l=|+1
F(1)=DXDE2
{=]+1
F{i{)=DXDE3
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75
76

I=1+1
GO TO 72

F(1)=0.0
I=1+1
F(1)=SP(2)
I=1+1
F(1)=-CP(2)
f=1+1

GO TO 72

F(1)=FI

NOR=1-1

NOP=|

NOPP=1+1

CIDEG=C| *RAD

CDDEG=CD*RAD

IF (MOD(LINE,57)) 75,73,75

COEFFICIENTS WHEN THE Y COMPONENT 1S GIVEN

ADD OBSERVATION TERM

WRITE (6,74)
FORMAT (é5H1 LAT LONG ALT TIME DECL DipP H B
$ Z X Y F(NOP) /1HO)

WRITE (6,76) FLATT,ELONG,ALT,TIME, (WD(KK),KK=1,7),TYPE(ITYPE),CDDE

$G,CIDEG,CH, CF,CZ,CX,CY,F(NOP)

FORMAT (1X2F6.1,F5.0,F5.1,2F7.2,5F7.0,5XA2/23X2F7.2,5F7.0,F7.0)

LINE=LINE+1
SUM DEVIATIONS FROM COMPUTED VALUES, WEIGHTS, DATE
TYPE COUNTS, ETC. FOR STANDARD ERROR ESTIMATES

K=AMAX(AMIN(F(1)/10.0+101.0,200.0),1.0)

|ERR(K)=1ERR(K)+1

SIGT(ITYPE)=S1G1(ITYPE)+F {NOP)*F { NOP)*WT

FNOT( ITYPE)=FNO1(ITYPE )+1.

SWT1(ITYPE )=SWT1(1TYPE )+WT

S1G1(8)=SIG1(8)+F(NOP)**2*yT

FNO1(8)=FNO1(8)+1.

SWT1(8)=SWT1(8)+WT

SUMTM=SUMTM+TM

\F (ITNO-ITER) 78,77,78

FNO2(LAT,LON)=FNO2(LAT,LON)+WT

ERR(LAT, LON)=ERR(LAT, LON)+F (NOP)*WT
COMPUTE SQUARES AND CROSS—PRODUCTS AND
SUM INTO TRIANGULAR MATRIX D

K=1
CALL DLOOP (NOR,NOP,F,WT)
GO TO 28
* * k% * Kk * Kk * K * K * K * % * * %
END DATA PROCESSING, BEGIN SOLUTION
OF THE LEAST SQUARES EQUATIONS
* k% k% % % Xk *k *x % ¥ % *k K % * * * %
DO 80 1J=1,8
SIGI(1J)=SQRT(SIGT{1J)/SWT1(1J))
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CONT INUE

RECORD DATA FOR MATR!IX SUBROUTINE
WRITE (2) NMAX NMAXT, NMAXTT,SWT1(8),FNO1(8),SIG1(8)

WRITE (2) (D(19,1=1,MAXD)

DO 82 1=1,NOR
SUMD=0.0

DO 81 J=1,NOR
NROW=MINO( !, J)
NCOL=1+J-NROW
K=(NROW*( NOR+NOR+5-NROW) ) /2+NCOL ~NOR-2
SUMD=SUMD+D (K)
CONT I NUE
K=(1*(NOR+NOR+5-1))/2
D(K)=SUMD

CONT I NUE

COMPUTE SUMS FOR CHECK COLUMN

INVERT TRIANGULAR MATRIX
DO 88 L=1,NOR

SET UP ONE COMPLETE COLUMN
DO 83 I=1,NOR
NROW=MINO(1,L)
NCOL=I+L-NROW
K=(NROW* (NOR+NOR+5-NROW) ) /2+NCOL-NOR-2
SIDE(1)=D(K)
CONT I NUE ,
K=(L*(NOR+NOR+7-L))/2-NOR-2
RDKK=1.0/D(K)
DO 84 J=L,NOP
D{K+1)=D{K+1)*RDKK
K=K+1
CONT I NUE
DO 88 1=1,NOR
IF (I-L) 85,88,85
DO 87 J=L,NOP
IF (J+1-1) 87,86,86
K=( | *(NOR+NOR+5~1))/2+J-NOR-1
KJ=(L*(NOR+NOR+5-L))/2+J-NOR-1
D(K)=D(K)=SIDE(1)*D(KJ)
CONT i NUE
CONTINUE

¥ %k ¥ kX X X X * %

END SOLUTION OF THE LEAST SQUARES EQUATIONS,
BEGIN ESTIMATION OF THE PARAMETER CORREC
* *

* % *x k% % %

WRITE (6,89) (TYPE(1J),SIG1(1J),FNOT(1J),1J=1,8)
FORMAT (6H1SIGMA,5X,6HPOINTS/1X/(1X,A2,F5.0,5X,F6.0))

WRITE (6,90)

FORMAT (5X, THN, 2X, 1HM, 15X, 1HP, 14X, 2HDP, 13X, 3H1.0)

TFﬁCT=60.0—AVETIM
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100
101

102

DO 100 N=2,NMAX
DO 100 M=1,N
COMPUTE TIME ADJUSTMENT FOR THE G(N,M) CORRECTIONS
K=(1*(NOR+NOR+5-1))/2-1
KP=1+NO
KP=(KP*{NOR+NOR+5-KP) )/2-1
KPP=1+NONOT
KPP=(KPP*(NOR+NOR+5-KPP))/2~-1
IF (N-NMAXT) 91,91,93
D(K)=D(K)+D(KP)*TFACT
IF (N-NMAXTT) 92,92,93
D(K)=D(K)+D(KPP)*TFACT*TFACT
D(KP)=D(KP)+2.0*D(KPP)*TFACT
CORRECT G(N,M)
G(N,M)=G(N,M)+D(K)
RECORD NEW G(N,M), CORRECTION, AND THE
CORRESPONDING ITEM IN THE CHECK COLUMN
WRITE (6,94) N,M,G(N,M),D(K),D(K+1)
FORMAT (3H G 213,4E20.8,F20.2)
=|+
COMPUTE TIME ADJUSTMENT FOR THE H(N,M) CORRECT!ONS
K=(1*(NOR+NOR+5-1))/2~1
KP=1+NO
KP=(KP*(NOR+NOR+5-KP)) /2-1
KPP=1|+NONOT
KPP=(KPP*(NOR+NOR+5-KPP))/2-1
N-NMAXT) 96,96,98
D(K)+D(KP)*TFACT
-NMAXTT) 97,97,98
D(K)+D(KPP)*TFACT*TFACT
=D(KP)+2.0*D(KPP)*TFACT
CORRECT H(N,M)
Y=H(N,M)+D(K)
RECORD NEW H(N,M), CORRECTION, AND THE
CORRESPONDING ITEM IN THE CHECK COLUMN
WRITE (6,99) N,M,H(N,M),D(K),D(K+1)
FORMAT (3H H 213,4E20.8,F20.2)
i=i+1
IF (NMAXT) 101,111,101
DO 105 N=2,NMAXT
DO 105 M=1,N
CORRECT GT(N,M)
K=( I *(NOR+NOR+5-1))/2-1
GT(N,M)=GT(N,M)+D(K)
RECORD NEW GT(N,M), CORRECTION, AND THE
CORRESPONDING ITEM IN THE CHECK COLUMN
WRITE (6,102) N,M,GT(N,M),D(K),D(K+1)
FORMAT (3H GT213,4E20.8,F20.2)
IF (M-1) 103,105,103

74
[AY

IF (
D{K)=
tF (N
D(K)=
D(KP)
H(N, M

’
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103

104
105

106

107
108

I=1+1
CORRECT HT(N,M)
K=(1*(NOR+NOR+5-1))/2-1
HT(N,M)=HT(N,M)+D(K)
RECORD NEW HT(N,M), CORRECTION, AND THE
CORRESPONDING ITEM IN THE CHECK COLUMN
WRITE (6,104) N,M,HT(N,M),D(K),D(K+1)
FORM?T (3H HT213,0E20.8,F20.2)
=1+
IF (NMAXTT) 106,111,106
DO 110 N=2,NMAXTT
DO 110 M=1,N
CORRECT GTT (N,M)
K=( 1 *(NOR+NOR+5-1))/2-1
GTT(N,M)=GTT(N,M)+D(K)
RECORD NEW GTT (N,M), CORRECTION, AND THE
CORRESPONDING ITEM IN THE CHECK COLUMN
WRITE (6,107) N,M,GTT(N,M),D(K),D(K+1)
FORMAT (LH GTT,12.13,3E20.8)
IF (M-1) 108,110, 108
l=1+1
CORRECT HTT(N,M)
K=( 1 *(NOR+NOR+5~1))/2-1
HTT(N,M)=HTT(N,M)+D(K)
RECORD NEW HTT(N,M), CORRECTION, AND THE
CORRESPONDING ITEM IN THE CHECK COLUMN
WRITE (6,109) N,M,HTT(N,M),D(K),D(K+1)
FORMAT (LH ATT,12.13,3E20.8)
=141
RECORD NEW E1,E2,E3 AND THE
CORRESPONDING ITEM IN THE CHECK COLUMN
IF (EXTFLD) 112,116,112
K=(1*(NOR+NOR+5-1))/2-1
E1=E14D(K)
WRITE (6,113) E1,D(K),D(K+1)
TORM?T (3H E1,6X,3E20.8)
=|+
K=( I *(NOR+NOR+5-1))/2-1
E2=E2+D(K)
WRITE (6,114) E2,D(K),D(K+1)
FORM?T (34 E2,6X%X,3E20.8)
=1+
K=(1*(NOR+NOR+5-1))/2-1
E3=E3+D(K)
WRITE (6,115) E3,D(K),D(K+1)
TOTM?T (3H E3,6X,3E20.8)
=+
AVET IM=SUMTM/FNO1(8)+60.0
RECORD ENTIRE ARRAY OF G AND H PARAMETERS
WRITE (6,117) ITNO
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117

FORMAT (20H1OUTPUT COEFFICIENTS,39X,5HITNO=, 14/1HO)

WRITE (6,11) ((N,M,G(N,M),H(N,M),GT(N,M),HT(N,M),GTT(N,M),HTT(N,M)
$9M=]’N)3N=2 NMAXS

WRITE (6,15) E1,E2,E3

WRITE (6,118) AVETIM

FORMAT (10HOAVETIM= ,F10.2)

PUNCH CARDS FOR STARTING NEXT APPROXIMAT!ON
PUNCH 119,X1D1,XID2, NMAX,NSKIP,SIG1(8)
PUNCH 3, NMAX, NMAXT,NMAXTT,NSKIP, I TER
PUNCH 4, ERRLIM,AVETIM
PUNCH 5,EXTFLD
PUNCH 11, ((N,M,G(N,M),H(N,M),GT(N,M),HT(N,M),GTT(N,M),HTT(N,M),M=1

$,N),N=2, NMAX)

PUNCH 14
PUNCH 14 E1,E2,E3
FORMAT (2A6,6H NMAX ,11,7H NSKIP ,13,5HSIG ,F6.0)
CONT INUE
RECORD ERROR DISTRIBUTIONS
WRITE (6,121) TYPE(1J)
FORMAT (23HTERROR DISTRIBUTION FOR,3X,A2)
DO 124 JUK=1,200, 10
JL=JK+9
IF (JK=-101) 122,123,123
JM=JK-101
GO TO 124
JM=JK-100
WRITE (6,125) UM, (1ERR(IK), IK=JK,JL)
FORMAT (15,3X1016)
RECORD MEAN DEVIATION FOR LAT-LONG BLOCKS
WRITE (6,126) (L,L=10,90,10)
FORMAT (38HIMEAN DEVIATION FOR LAT-LONG BLOCK /1HO,58X%,916)
DO 128 K=1,36
DO 127 J=1,18
JERR(J)=(ERR(J,K)/FNO2(
WRITE (6,129) K, (JERR(M
FORMAT (1x12,3X,1816)
CALL MATRIX
RETURN
END

J,K))
),M=1,18)
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SUBROUTINE MATRIX
COMMON /DD/D(3400)
COMMON /COEFS/G(9,9),H(9,9),
DIMENS | ON FONE(]SO) DIAG(150
DIMENS|ON ROW(150), SROW(150)

REWIND 2
REWIND 1

READ (2) NMAX,NMAXT,NMAXTT,FWNP,FNP,S|GMA
READ (2) (D(1),1=1,MAXD)

NOR=NMA X*NMAX ~1

IF (NMAXT) 1,2,1
NOR=NOR+NMAXT*NMAXT -1

IF (NMAXTT) 3,4,3
NOR=NOR+NMAXT T*NMAXTT~1
NOP=NOR+1

NOPP=NOR+2

DO 6 I=1,NOR

DO 5 J=1,NOR

I 1=MINO(1,J)

JI=1+J-11{

K=( (NOR+NOR+5-11)*11)/2+JJ-NOR-2
ROW(J)=D(K)

WRITE (1) (ROW(J),J=1,NOP)
REWIND 2

REWIND 1

DO 27 K=1,NOR

IF (MOD(K 2)) 7,8,7

READ (1) (SROW(L ) L=1,NOP)
GO TO 9 .
READ (2) (SROW{L),L=1,NOP)
IF (K-1) 12,10,12
SROW(NOP)=0.0

DO 11 [1=1,NOR

SROW(NOP)= SROW(NOP)+SROW(II)
RDKK=1.0/SROW(K)
SROW(K)=1.0

DO 13 J=1,NOP

SROW(J) =SROW( J ) *RDKK

DO 23 [=2,NOR

|F (MOD(K 2)) 14,15,14
READ (1) (ROW(L) L=1 ,NOP)
GO TO

READ (2) (ROW(L),L=1,NOP)
IF (K~1) 19,17,19
ROW(NOP)=0.0

DO 18 ||=1,NOR

ROW(NOP)= ROW(NOP)+ROW(II)
T=ROW(K)

ROW(K)=0.0

DO 20 J=1,NOP
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20

21

22
23

24
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30
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32

33

34
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38

39
40

ROW(J)=ROW(J)-T*SROW(J)

IF (MOD(K,2)) 21,22,21
WRITE (2) "(ROW(L),L=1,NOP)
GO TO 2

WRITE (1) (ROW(L),L=1,NOP)
CONTIN

IF (MOD(K 2)) 24,25,24
WRITE (2) (SROW(L),L=1,NOP)
GO TO 2

WRITE (1) (SROW(L),L=1,NOP)
REW| ND

REWIND 1

DO 31 I=1,NOR

IF (MOD(NOR,2)) 28,29, 28
READ (2) (ROW(L),L=1,NOP)
GO TO 30

READ (1) (ROW(L),L=1,NOP)
WRITE (2) (ROW(L),L=1,NOP)
DIAG(!I)=ROW(!)

FONE( | )=ROW(NOP)

WRITE (6,32) SIGMA,FWNP,FNP

FORMAT (19H1STATISTICS FOR FIT/1X,5HSIGMA,F5.0,3X15HWE IGHTED POINT

$S,F6.1,3X,6HPOINTS,F6.0)

WRITE (6 33)

FORMAT (5X1HN2X1HM8X1HP20X#HSIGP16X3H1 .019X2HTC)
=0

DO 37 N=2,NMAX

DO 37 M=1,N

l=14+1

SIGP=SQRT(ABS(DIAG(1)))*SiGMA

TC=ABS(G(N,M)/SIGP)

WRITE (6 3&) N,M,G(N,M),SIGP,FONE(!),TC
,2E20.8,2F20.2)

SI1GP=SQ RT(ABS( DIAG(1)))*S|GMA
TC=ABS(H(N,M)/SIGP)

WRITE (6,36) N,M,H(N,M),SIGP,FONE(1),TC
FORMAT (LH H 213,2E20.8,2F20.2)
CONT I NUE

IF (NMAXT) 38,43, 38

DO L2 N=2, NMAXT

DO 42 M=1.N

I=1+1
SIGP=SQRT(ABS(DIAG(1)))*SIGMA
TC=ABS(GT(N,M)/S1G

WRITE (6 39) N,M,G
FORMAT (LAH7GT 213,

lF (M=-1) 4o, 42,40

=41

(1
P)
T(N M),SIGP,FONE(I),TC
2E20.8,2F20.2)
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SIGP=SQRT(ABS(DIAG(1)))*S|GMA
TC=ABS(HT(N,M)/SIGP)

WRITE (6,41) N,M,HT(N,M),SIGP,FONE(1),TC
FORMAT (LH HT 213,2E20.8 2F202)
CONT | NUE

|F (NMAXTT) 4b4 49 Li

DO 48 N=2,NMAXTT

DO 48 M=1,N
=141
SI1GP=SQRT(ABS(
TC=ABS(GTT(N,M
WRITE (6,45) N
FORMAT (LH GTT
IF (M-1) 46,48,
I=l+1
SIGP=SQRT(ABS(DIAG(1)))*S|GMA
TC=ABS(HTT(N,M)/SIGP)

WRITE (6,47) N,M,HTT(N,M),SIGP,FONE(I),TC
FORMAT (LH HTT213,2E20.8,2F20.2)

CONT | NUE

| =—1

DO 53 N=2,NMAX

DO 53 M=1.N

=142

R=SQRT(G(N,M)**24H(N,M)**2)

AG(1))
1GP)
GTT(N,M),SIGP,FONE(1),TC
,2E20.8,2F20.2)

DI )*S | GMA
)/S

M,

213

L6

SIGP= SQRT(G(N M)**Z*ABS(DlAG(I))+H(N M)**2*ABS(DIAG(1+1)))/R*S|GMA

IF (M=1) 51, 50 51
I=1-1
TC=R/S1GP

I w=y

WRITE (6 52) N,M,R,SIGP,TC

FORMAT (LH R 2|3 2E20. 8 20X,F20.2)
CONT | NUE

IF (NMAXT) 54,59, 54

DO 58 N=2, NMAXT

DO 58 M=1,N

l=|+2

R=SQRT(GT(N,M)**24+HT(N,M)**2)

‘SIGP SQRT(GT(N M)**Z*ABS(D!AG(l))+HT(N M)**2*ABS(DIAG(1+1)))/R*SIG
M
IF (T-l) 56955356

TC=R/SIGP

WRITE (6,57) N,M,R,SIGP,TC

PRINT 57.N,M,R.SIGP,TC

FORMAT (LH'RT 213,2£20.8,20X,F20.2)
CONT I NUE

IF (NMAXTT) 60,65,60

DO 64 N= 2 ,NMAXTT
DO 64 M=1 N
=142
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R=SQRT(GTT(N,M)**2+HTT(N,M)**2)
$S|GP=SQRT(GTT(N,M)**Z*ABS(DIAG(I))+HTT(N,M)**2*ABS(DIAG(I+1)))/R*S
| GMA

IF (T-1) 62,61,62

=1~
TC=R/SIGP
WRITE (6,63)
PRINT 63,N,M
FORMAT (4H R
CONT | NUE

I'F (FNP-100.
TCT95=0.0
TCT50=0.0

GO TO 68
TCT95=1.96
TCT50=.674
WRITE (6,69) TCT95,TCT50

FORMAT (29H TC ABOVE SHOULD BE GREATER F10.3,26H FOR 95 PERCENT C
$ONF IDENCE /29X,F10.3,27H FOR 50 PERCENT CONFIDENCE )

REWIND 1

,R,SIGP,TC
IGP, TC
3,2E20.8,20X,F20.2)

6,66,67

N, M
,R,S
TT21
) 6

HEN,M),M=1,N) . N=2. NMAX)
HT(N,M),M=1,N),N=2, NMAX)
MY HTTEN, M) ,M=1,N),N=2, NMAX)

1,NOP)
=1,NOP)
CONT | NUE

END FILE 1

REWIND 1

REWIND 2

RE TURN

END
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APPENDIX B

JENSEN'S FIT

Introduction

The purpose of this appendix is to document the sequence of opera-
tions and to discuss various programming aspects of Jensen's Fit program.
This program has been written to find time-dependent coefficients for a
spherical-harmonic expansion of the geomagnetic potential function.

The mathematical formulas which form the basis of the computer
program are not restated in this appendix. Each time that a formula is
required to explain a Fortran variable, a reference is made to an equation
in Sections 2. 0 or 3. 0 of this report or to one of the reports listed in the
bibliography. When referencing this report, it should be noted that the For-
tran variable N is egual to n+l . Similarly, M = m+l.

The computer program is relatively linear, i.e., there are few alter-
nate calculation sequences, as can be seen from the flow-charts in Appendix
C. Hence, the calculation sequence will be described in a linear manner.

The program may be roughly divided into five phases as follows:

(1) initializing; (2) data processing for the coefficients in the least squares
equations; (3) solution of the least squares equations; (4) estimation of the
corrections for the coefficients of the spherical-harmonic expansion of the

geomagnetic potential function; and (5) recording. This appendix will
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likewise be divided into five principal sections to describe respectively these
five phases. Within each section, the Fortran name for variables will be
used whenever possible. A glossary identifying these variables is included

at the end of this appendix.

Initialization

As with all computer programs, initialization consists of doing the
things that must be done once at the beginning of the execution of the program.
(Similarly, parts of a program, i.e., subprograms, may require initializa-
tion. While such initialization may subsequently be discussed, it is not the
subject of this section of the appendix.) Initialization for this program includes
setting or computing the value of certain constants that will be used through-
out the other phases of the program. Among these are FLAT, A2, A4, B2,
A2B2, A4B4, CONST(N, M), SHMIDT(N,M), P(1,1), DP(1,1), SP(l) and
CP(1) all of which are identified in the glossary.

The equation for computing CONST(N, M) is found in Eq. (19) of
Section 2. 0. Note that N = n+l and M = m+l. The equations for computing
SHMIDT(N, M) are found in Egs. (20) of Section 2.0. Again note that
N = n+l and M = m+1.

The value of the first associated Legendre polynomial, P(1,1), and
its derivative, DP(1,1), are constants and may be found in Egs. (19) of Sec-
tion 2. 0. Similarly the value of sin(M-1)¢ and cos(M-1)¢, i.e., SP(M) and

CP(M) respectively, are constants for M=1, i.e., SP(1)=0.0 and CP(1)=1.0.
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Another common function of initialization is the clearing of tables.
This program requires that the tables FNO2(I, J) and ERR(I, J) be cleared,
i. e., all entries be made equal to zero. A third function of initialization is
the input of variable control and starting data. Among the variables that
must be input for this program are XID1, XID2, NMAX, NMAXT, NMAXTT,
NSKIP, ITER, ERRLIM, AVETIM, EXTFLD, G(N,M), H(N,M), GT(N,M),
HT(N, M), GTT(N, M), HTT(N, M), E1, E2, and E3. These variables are
all identified in the glossary.

A final function of initialization is often the recording of initial values
of pertinent variables. This program records NMAX, NMAXT, NMAXTT,
NSKIP, ITER, ERRLIM, XID1, XID2, G(N,M), H(N,M), GT(N,M),
HT(N,M), GTT(N,M), HTT(N, M), E1, E2, and E3 as a permanent record
of the starting data used by the program. These variables are all identified
in the glossary.

Except for setting or computing the values of certain other variables
required by the initialization functions enumerated above, this completes the

initialization phase of the program.

Data Processing

In Section 2. 0 of this report, it was noted that the procedure must be
repeated until the corrections estimated for the coefficients of the spherical-
harmonic expansion of the potential function are no longer significant. The

first Fortran statement in the data processing phase (card 98) is the DO
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statement that controls the number of repeats, or iterations, that will be
made for any particular run of the computer program.

Certain tables, SIG1(J), FNO1(J), SWT(J), IERR(I), and D(I) must
be cleared, i.e., all entries made equal to zero, at the beginning of each
iteration. In addition to these tables, the value of LINE and SUMTM must
be set equal to zero and ISKIP must be set equal to NSKIP which was input
during the initialization phase. With the setting of ISKIP, the initialization
of the data processing phase of the program is completed.

Beginning with the Fortran statement, CALL RDATA (card 115), the
remainder of the data processing phase of the program is repeated for each
observation that is to be used in the calculation. An observation input by
the subroutine RDATA may consist of any combination of the following field
measurements: DECL, DIP, HOR, B, Z, X, and Y. These are all iden-
tified in ihe glossary. In addition to these measurements, the location of
the observation in time and space is recorded. This location is specified by
the Fortran variables FLATT, ELONG, ALT, and TIME. All location
data as well as measurement data are transmitted to the main program via
the common field DATAR. RDATA signals the end of the data by setting
the value of ISKIP to zero. To recognize this signal, the main program,
following each CALL RDATA, examines ISKIP and terminates the data

processing phase of the program upon sensing this signal.
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Beginning with card 126, geocentric coordinates are computed from
the geodetic measurements made for each observation. The equation for
computing THETA is Eq. (30) of Section 2. 0. The equation for computing
geocentric R is Eq. (31) of Section 2.0.

The five variables SIND, COSD, AOR, CT, and ST which are all
identified in the glossary are computed next. SIND and COSD are required
for converting from geocentric to geodetic coordinates. CT and ST are
required for the generation of the associated Legendre polynomials and
AOR is a term that appears in the equations for estimating X, Y, Z, etc.
from the best available sef of parameters. One should note that the Fortran
statement for computing CT and ST redefines 6 to be measured from the
polar axis instead of from the equatorial plane, i.e., colatitude.

The variables LLON and LAT are computed next. These constants
are required later for weight and error tabulations. Next, SP(2) and CP(2)
are computed, followed by the computation of SP(M) and CP(M) for M> 2.

The equations

sin¢ -+ cos (M-2)¢ + cos¢ - sin(M-2)

n

sin(M-1)¢

cos(M-1)¢ = cos¢ - cos (M-2)¢ - sin¢ - sin(M-2)

used for computing SP(M) and CP(M) are available in standard texts on

trigonometry under the subject, 'functions of sums of angles. "
Next the program evaluates the necessary associated Legendre poly-

nomials, P(N, M), and their derivatives, DP(N, M), employing the
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recurrence relationships which are found in Section 2.0, Egs. (19). KN,M
corresponds to the Fortran variable CONST(N,M) and was discussed above
in the section on initialization.

Beginning with card 167, the Fortran variables CX, CY, and CZ
are set equal to zero in preparation for the estimation of X, Y, and Z. AR
and TM, two Fortran variables identified in the glossary, must also be
initialized in preparation for the estimation of X, Y, and Z.

The Fortran statements through card 198 are required to estimate
X, Y, and Z, i.e., the Fortran variables CX, CY, and CZ. The rota-
tion formulas required for computing X and Z are given in Section 2.0,
Egs. (32) and (33). Equations for BG’ Br‘ and B¢ are given in several
different forms in Section 2. 0 of this report.

Near the beginning of the group of Fortran statements required to
estimate X, Y, and Z (specifically cards 181 and 182), the Gauss norma-
lized polynomials are Schmidt normalized and multiplied by the appropriate
power of 9—3%2 , i.e., AR. B

Depending on when it is calculated, the Fortran variable TEMP is
the common factor in the coefficients of the two parameters gN,M, 0 and
hN,M,O in the formulas for computing X, Y, or Z. DXDG, DXDH, DYDG,
DYDH, DZDG and DZDH complete the calculation of the coefficients of

and h in the formulas for computing X, Y, and Z. Next, the

&N, M,0 N,M,0
Fortran variables GNM and HNM are computed using Egs. (21) of Section
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2. 0 and finally all terms are summed for the respective estimates of X, Y,
and Z.

The X, Y, and Z components of the external field are estimated
next and added to the respective estimates of X, Y, and Z (cards 200
through 205). This step is completely skipped if EXTFLD is zero.

From the estimates of X, Y, and Z, estimates of the horizontal
field, total field, dip, and declination (Fortran variables CH, CF, CI, and
CD respectively) are made using Egs. (34) and (37-39) of Section 3.0.

The program now calculates the coefficients of the unknowns in the
system of simultaneous least squares equations. Beginning with card 214,
the first non-zero measurement is processed and then its value set equal to
zero. The program returns to statement number 28 and since the value of
the previous measurement was set equal to zero, processes the second non-
zero measurement. This continues until all measurements have been proc-
essed and the value of the respective Fortran variables have all been set
equal to zero.

Formulas for the coefficients of the unknowns in the system of simul-
taneous least squares equations may be derived easily from simple theorems
in differential calculus and the various equations of Section 3.0. The calcu-
lus theorem results in the following:

If x = f(u) and u = g(w)

dx _ df  dg

then dw  du  dw
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Applying this theorem to Eq. (34) of Section 3. 0, the following formulas can

be derived for the declination of the total field strength:

d DECL - dDECL dX d DECL dyY (B4)
48N M,0 dx den,M,0 dy 48y, M,0
dDECL = _Y dX + X dY (B5)
dgN,M,O HOR dgN,M,O HOR dgN,M,O
dDECL.  dDECL dX + d DECL | dyY (B6)
th,M,O dx th,M,O dy th,M,O
dDECL _= _Y dX + X dY (B7)
th,M,O HOR th,M,O HOR th,M,O
Similarly, from Egs. (37-39) of Section 3. 0, the following can be derived
for field dip:
d DIP - . Z
d - EE T " EE e tE . (B8)
€N, M,0 €N, M,0 En, M0 - “8N,M,0
d DIP . Xz dX Y-z dY +§ dZ (B9)
th,M,O H-F th,M,O H-F th,M,O F th,M,O
for the horizontal component:
d HOR X dX Y dY
= + (Blo)
dgN,M,O HOR dgN,M,O HOR dgN,M,O
d HOR X dX Y dY
th,M,O HOR th,M,O HOR th,M,O

and for total field:
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dB dX dy dZ

(B12)

(B13)

_dB X _daX Y _dY _z _dZ
dexmo B d8ymo B dExmo B 9Enmo
dB X dX Y dY V4 dZ
dh B dn ¥ B dn * B dn
N,M,0 N,M,0 N,M,0 N,M,0
Similar expressions for derivatives with respect to gN,M,t’ hN,M,t’ gN,M,tt’

and hN,M, i can be derived from the equations cited.

Beginning at card 227, the program employs Egs. (B4-BT) to com-
pute the coefficients of the gN’ M., 0 and hN,M,O when declination is observed.
The observation term (Fortran variable FI) is then computed followed by the
weight assigned to the observation. Finally, the value of DECL is set equal
to zero so that when program control is returned to statement number 28,
the next data type will be processed.

In a similar manner the program processes field dip beginning with
card 254, the horizontal field stirengih beginning ‘with card 276, the total
field strength beginning with card 298, the Z component beginning with card
316, the X component beginning with card 329, and the Y component begin-
ning with card 342.

As each observation is processed, the program, beginning at card
354, adds the time terms. Then beginning at card 369, the squared time
terms are added.

If external field terms are to be used and corrected, the program,

beginning with card 385, computes the coefficients of the unknowns E,, E2,
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and E3 in the system of simultaneous least squares equations. The equa-

tions employed are similar to equations (B4) through (B13) with d
dg
N,M,0
d . , d d d .. .
or ah——— being replaced with -&—E—- , E_ , or iE Beginning with
N,M,0 1 2 3
dX dX dX dZ dZ dZ
card 385, dE ' dE_’ dE_’ dE ' dE_° and iE are computed. The
1 2 3 1 2 3
quantities dy =0, dY = sin¢, and AY = -cos¢ are not set up
clE1 dE2 dE3

explicitly. The program processes field declination beginning with card 394,
field dip beginning with card 405, the horizontal field strength beginning with
card 417, the total field strength beginning with card 428, the Z component
beginning with card 438, the X component beginning with card 446, and
finally the Y component beginning with card 454. Then at card 462, the
observation term is added to the Fortran vector F(I).

Beginning with card 463, the three Fortran constants NOR, NOP,
and NOPP (identified in the glossary) reguired to specify the matrix size,
etc. are computed.

Observations are recorded by cards 466 through 475. After the obser-
vation is recorded, various counts, weights, and errors (i.e., IERR, SIGl,
FNO1, SWT1, and SUMTM which are all identified in the glossary) are
computed and summed. On the last iteration, the Fortran variables FNO2
and ERR are summed.

Card 498 calls subroutine DLOOP. This subroutine computes the
sums of squares and cross-products required for the coefficients of the

unknown parameters in the system of simultaneous least squares equations.
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A description of D as well as a description of the intricate manipulations
required of D for the solution of the set of least squares equations is given

in some detail in Section 3. 0 of this report.

Solution of the Least Squares Equations

This phase of the program accomplishes four functions. First, cal-
culations for standard errors are completed and a record made of the
results. Second, the D array is recorded for the MATRIX subroutine cal-
culations. Third, the computation check column is computed and finally,
the least squares equations are solved.

Details of the D matrix storage and manipulation are presented in
Section 3. 0 of this report and will not be repeated here. However, note
that cards 506 through 516 compute the computation check column.

From the procedure described in Section 3.0, one can see that as
each row is considered at step (1), the corresponding complete column is
required for step (2). This column is contained in the triangle matrix. As
a column is needed, it is transferred to the vector SIDE by the following

Fortran statements:

DO 83 I=1, NOR
NROW=MIN(I, J)
NCOL=I+L-NROW
K=(NROWx%(NOR+NOR+5-NROW))/2+NCOL-NOR-2
SIDE(I) =D(K)

83 CONTINUE
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where NOR = number of rows in the complete matrix

NROW = row number

NCOL = column number
MIN = function subprogram to choose minimum of the arguments
D = the triangle matrix stored.

(These variables are identified in the glossary.) The cards beginning with
card 520 and ending with card 525 transfer the required column to the vector
SIDE. Then beginning with card 526 and ending with card 531, step (1) above
is accomplished. Step (2) follows ending with card 540. This completes the

third phase of the program.

Corrections and Qutput

The last two phases of the program, viz., the estimation of the cor-
rections for the parameters and the recording of all results, are intermingled
so that while the functions are distinct, the Fortran statements are not. As
is customary with Fortran programs, final results are not stored but are
written as soon as available.

The output begins with a record of the Fortran variables TYPE (1J),
SIG1 (1J), and FNOL1 (1J) which are all identified in the glossary.

The solution of the set of simultaneous least squares equations yields
adjustments or corrections for the parameters based on the average obser-
vation time (AVETIM). The G, H, GT, HT, GTT, HTT input during the
initialization phase are based on the year 1960. Hence, the corrections must

be computed for 1960 instead of the average observation time. This time
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adjustment in the corrections begins with card 549. Card 560 computes and
adds the time adjustment while card 562 adds the squared time adjustment to
the gN,M, 0 correction. Card 563 computes and adds the time adjustment to
the gN,M,t correction. Card 565 adds the correction to the gN,M,O and the
next two Fortran statements record the new gN,M, 0’ the total correction,
and the computer check column. In a similar manner, the cards from 573
through 589 compute, apply, and record the same information for the
in,m,0 279 Byt

If time terms were used and are to be corrected, the cards beginning
with 590 and going through 609 apply and record the corrections for gN,M,t
and hN,M,t . Finally, if squared time terms were used and are to be cor-
rected, the cards beginning with 610 and going through 629 apply and record
the corrections for gN,M,tt and hN,M,tt
If external field terms were used, and are to be corrected, the pro-

gram beginning with card 632 and continuing through card 647 records the

new values for El’ E2’ and E3 and the corrections applied.

Final Output

The final output consists of a permanent record of the results of the
calculation plus the inputs required for the next updating of the parameters
in the spherical-harmonic expansion of the geomagnetic potential function.
First, a printed record is made of all the G, H, GT, HT, GTT, and HTT

and the E1, E2, and E3. Next, a punched record is made of XID1, XID2,
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NMAX, NSKIP, SIG1(8), TYPE(I), NMAX, NMAXT, NMAXTT, NSKIP,
ITER, ERRLIM, AVETIM, all of the G, H, GT, HT, GTT and HTT, and
the E1, E2, and E3. All of these Fortran variables are identified in the
glossary.

With the punching of the new starting data, one iteration has been
completed. The program now transfers control to the beginning of the data
processing phase for the next iteration.

When all iterations have been completed, a printed record is made of
the Fortran variables IERR(IK) and ERR(J,K)/FNO2(J,K). ERR(J,K)/
FNO2(J, K) is the mean deviation for latitude-longitude blocks. This con-

cludes the program.
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A2

A4

A2RB2

A4B4

ALT

AOR

AR

AVETIM

B

B2

BWT

CD

CDDEG

CF

CH

CI

CIDEG

CONST

GLOSSARY

Jensen's Fit

a, the mean equatorial radius of the earth in kilometers

2
a

a4

(mean equatorial radius of the earth)z- (polar radius of the ear‘ch)2
(mean equatorial radius of the earth)4— (polar radius of the eza.rth)4
altitude of the observation

radius of the sphere having volume equal to the earth's volume/R
(radius of the sphere having volume equal to the earth's volume/R)N-*-1
average time for all observations

total observed field strength

{polar radius of the e:a.r’ch)2

standard error of total field strength

estimated declination in radians

estimated declination in degrees

estimated total field strength

estimated horizontal field strength

estimated field dip in radians

estimated field dip in degrees

a set of constants required for the generation of the associated
Legendre polynomials, P
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COSD

CP(M)
CT
CX
CY

Cz

DECL
DECLWT

DEN

DEN2
DIP
DIPWT
DP

DXDE1

(N-2)2 - (M-1)2
(2N-3)(2N-5)

(n-—l)2 - m2
(2n-1)(2n-3)

n and m are common formula notation while N and M are used in
the computer program

cosine of difference between geodetic coordinate A and geocentric
coordinate 6

cosine of the product of (M-1) and the longitudinal coordinate ¢
cosine of x/2 minus the geocentric coordinate 6§, i.e., coaltitude
estimated X component of the field strength

estimated Y component of the field strength

estimated Z component of the field strength

triangular matrix of sums of squares and cross-products of the

:Zceiffrlxment °f &yMm,0° "N,M,0° &N,Mt’ PNoMt’ EN,MLit

N,M,tt ~

angle of declination D

standard error of the angle of declination
9 9 1/2
(a cos A +Db sin A) where a = mean equatorial radius of
the earth
b = polar radius of the earth

= geodetic coordinate of
latitude

2
(DEN)
angle of dip, 1
standard error of the angle of dip

derivative of an associated Legendre polynomial

iR where X is the X component of the field strength
S |
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°  DXDE2 %— where X is the X component of the field strength
2
DXDE3 fEﬁ_ where X is the X component of the field strength
3
DXDG % where X is the X component of the field strength
DXDH % where X is the X component of the field strength
DYDG g—;{ where Y is the Y component of the field strength
dY . .
DYDH b where Y is the Y component of the field strength
dZ . .
DZDE1 FEoN where Z is the Z component of the field strength
1
dZ . .
DZDE2 IE_ where Z is the Z component of the field strength
2
dZ . .
DZDE3 EEoN where Z is the Z component of the field strength
3
DZDG %gé where Z is the Z component of the field strength
dZ . .
DZDH ah where Z is the Z component of the field strength
El external field term along the polar axis
E2 external field term in the equatorial and prime meridian planes
E3 external field term in the equatorial plane but perpendicular to the
plane of the prime meridian

DLONG longitudinal coordinate ¢ in degrees

ERR observations times weights summed for global grid-points
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ERRLIM

EXTFLD

FAC

FACT

FI

FLAT

FLATR

FLATT

FM

FN

FNO1

FNO2

FWT

GNM

error limit for detecting measurement errors

a code to identify when external field terms are to be used
(EXTFLD # 0) and when they are not to be used (EXTFLD = 0)

one of the numbers used to form the sums of squares and cross-
products of the triangular matrix

tan §/tanX where 6 and X are the geocentric and geodetic
latitudinal coordinates

a factor used in generating the factors for converting from Gauss
normalization to Schmidt normalization. When M=2, FACT-=
2.0; when M> 2, FACT =1.0. Also used in forming squares
and cross products. Hence a temporary storage.

the "Y' or observation term used in forming the least squares
matrix

polar radius of the earth / mean equatorial radius of the earth
A in radians

latitudinal coordinate X

the index M or M-1 in floating point notation

the index N in floating point notation

a set of eight storages to contain counts of the seven types of data
and a count of the total number of data

a set of (18, 36) storages to contain the sum of the data weights at
points regularly spaced over the surface of the earth at 10°
intervals

standard error of the field strength

the coefficient gN M. O in the spherical-harmonic expansion of the

geomagnetic potential function

G(N, M), i.e., a specific G
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GT

GTNM

GTT

GTTNM

HNM

HOR

HORWT

HT

HTNM

HTT

HTTNM

—t

IK

ISKIP

the coefficient BN M.t in the spherical-harmonic expansion of the

geomagnetic potential function
GT(N, M), i.e., a specific GT

the coefficient BN M.t in the spherical harmonic-expansion of

the geomagnetic potential function
GTT(N, M), i.e., a specific GTT

the coefficient hN M. 0 in the spherical-harmonic expansion of the

geomagnetic potential function
H(N, M), i.e., a specific H
observed horizontal component of field strength

standard error of the observed horizontal component of field
strength

the coefficient hN M.t in the spherical-harmonic expansion of the

geomagnetic potential function
HT(N, M), i.e., a specific HT

the coefficient h.N M. tt in the spherical-harmonic expansion of

the geomagnetic potential function
HTT(N, M), i.e., a specific HTT

an index

an index
an index
determines frequency of the data selected for a test calculation,

e.g., ISKIP =3 selects every third observation, ISKIP =10
selects every tenth, etc.
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ITER

ITNO

ITYPE

e

2

LINE

LON

MAXD

2

iteration limit, i.e., maximum number of iterations to be per-
formed

iteration counter

identifies data type, e.g., DECL =1
DIP = 2
HOR = 3
B = 4
Z = 5
X = 6
Y = 7

an index

average observation times weights for global grid-points
an index

an index

an index

a computed subscript

a subscript computed from J and L

an index

an index

an index

an index

an index for counting the number of lines cutput for a page
a longitude code

an index and subscript

maximum size of the triangular matrix C

an index and subscript
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NCOL

NMAX

NMAXT

NMAXTT

NO

NONOT

NOP

NOPP

NOR

NROW

NSKIP

P

PI

PI2

column number in triangular matrix C
maximum N in the terms of the form gN.M.0 €O (M-1)¢ or

hN M.O sin(M-1)¢ in the spherical-harmonic expansion of the

geomagnetic potential function
maximum N in the terms of the form gN M tt cos (M-1)¢ or

hN M tt sin(M-1)¢ in the spherical-harmonic expansion of the

geomagnetic potential function

maximum N in the terms of the form gN M tttz cos (M-1)¢
2 . . . e . .
or hN,M,ttt sin(M-1)¢ in the spherical-harmonic expansion

of the geomagnetic potential function

first row or column in the least squares equations for terms of

the form gN M tt cos (M-1)¢ or h t sin(M-1)¢

N,M,t

first row or column in the least squares equations for terms of

the form N M tttz cos(M-1)¢ or h t2 sin(M-1)¢

N,M,tt

number of parameters in the spherical-harmonic expansion of the
geomagnetic potential function

number of parameters plus one

number of rows in the triangular matrix D
row number in the triangular matrix D
constant used to set the value of ISKIP

an associated Legendre polynomial

m = 3.14159265

27 = 6.28318530

geocentric coordinate of radius
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RAD
RDATA
RDKK

SHMIDT

SIDE

SIG1

SIND

SINLA
SINLA2
SP(M)
ST
SUMD
SUMTM

SWT1

T1

T3
TEMP
TFACT

THETA

degrees in one radian = 57.2957795
name of subroutine for reading data from magnetic tapes
reciprocal of the (K, K) element in the triangular matrix D

constants to convert from Gauss normalization to Schmidt
normalization

a '"complete" column in the matrix D required for inversion

a set of eight storages to contain the sums of the squared observa-
tions times the assigned weight types and the total for all data

sine of difference between geodetic coordinate A and geocentric
coordinate 6

sine of the geodetic latitudinal coordinate A

2
(SINLA)
sine of the product of (M-1) and the longitudinal coordinate ¢
sine of 7/2 minus the geocentric coordinate 6, i.e., coaltitude
sum storage for forming check sum column of D matrix
sum of (time - 60.0)

a set of eight storages to contain the sum of the weights of the
seven types of data and a sum of the total weights of all data

a temporary storage
a temporary storage
a temporary storage
a temporary storage
time factor

the geocentric coordinate of latitude
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TIME
™
TYPE

WD

WT

X
XID1,XID2
XWT

Y

YWT

ZWT

time of observation
time - 60.0
alphabetic code to identify ITYPE's on output

seven storages for input data in the following order--DECL, DIP,
HOR, B, Z, X, and Y

an assigned data weight

observed X component of the field strength

storages to identify computer run

standard error of observed X component of the field strength
observed Y component of the field strength

standard error of observed Y component of the field strength
observed Z component of the field strength

standard error of observed Z component of the field strength
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APPENDIX C

FLOW CHARTS FOR JENSEN'S FIT PROGRAM
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Stars
FINO2-0
ERR:0

A

2 2
a -b wherea=mean
equitorial radius
b-polar radius

” read XIDI,
XID2

read NMAN,NMAXT
NMAXTT, NSKIP, ITER
ERRLIM,AVETIM, EXTFLD

write NMAX, NMAXT
NMANTT,NSKIP, I1ER
ERRLIM, XID1, XID2

e
N,M  (2N-3)(2N -5

K

3auss to Schinidt
normalirzaton
constauts

P(1,1)=1.0
DP(1,1)=0.0
SP (1) -0.0
CP (1) =1.0 |

read first
approximations
for parameters

e

Kv rite r‘ecorh

\

——

ITNO-=1

v

rewind
tape 2

SIG1=0.0
FNO1=0.0
SWT1 =0, 9
IERR=0

D=0.0

LINE-0

SUMTM=0.0

|

ISKIP=NSKIP

- CALL

RDATA /

record data
in word array

#0

Geocentric co-

ordinates from

geodetic coordi-
nates

sin{x-6),cos (A -8} ]
N

6371. 2/R where
R is the geocen-
tric radius

of first

cos g, sin g,
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A48

ide and latitud
coucsforerrorand
dati welght prid

H PR
Loy

cos{M-1}0
sin{M-1)¢
for M>2

L.egendre poly-
uomials

loovert LLerendre polys.
Trom Gauss to Schmaidt

normalization and
N+1

. a
multiply b‘}' (}-)

1

XL, Y Z from best
aviadableparameters

1

add external
ficld terms

y
tHL FL.ILD from
ostimates of ad

X, v, Z

|
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declination

dip data

data

coefficients of the

Snom &y we
.o, dDECL  dDECL
dGyy Ay

when declination

is given

difference between
observed and com-
uted observations

coefficients of the

oM & By

\ o _dDIP . _dDIP
dGy M Yy m

when dip

is given

HOR data

difference between
observed and com-
puted observations

v

coefficients of the

GN,M & HN,M

i e dHOR & dHOR
dGN,M dHN,M

when HOR

is given

difference between
observed and com-
puted observations

v

DECL=0 DIP=0 HOR=0
N v v @
E
/\ //\
B data No " Z data O > X data No >(D)
yes yes yes
coefficients of the coefficients of the coefficients of the
GN,M & H'N,M’ G‘N,M & HN,M GN,M & HN,M
. dB dB ) dZ dZz ay - aY
i.e, & i.e. & i.e. &
dGN,M dHN,M dGN,M dHN,M dGN,M d‘HN,M
when B when Z when X
is given is given is given

difference between
observed & com-
puted observations

B=20
7

N

difference between
observed and com-
puted observations

y

difference between
observed and com-
puted observations

L

X=0




NONOT=I-1=number write
of parameters of the r—M observation
Y data No 4 > > ba d

yes

coefficients of the

Guom & By M

e dY & dY
dGN,M dHN,M

i

when Y

is given

®___>. parameters of the

difference between
observed and com-
puted observations

A

Y=0
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NO=1-1=number of

form GN,M & HN,M

TFACT=time
- average time
]

J{#o

add time terms
of the form

tx &tx
dGN, M dHN,M

N < NMAXT

form tGN,M & tHN,M

NMAXTT

#0

record

A

sum weights,
count data
types, etc.

J

add time2 terms
of the form

compute squaresand
cross-products for
least squares matrix

‘Lye S

pXD71,DXDE2]
DXDE3,DZDE1}

h’7T\’E‘2,D'7ﬁTI‘Q

| S L 187 i A T2 u

coefficients of the
E1l,E2,E3,
. d d d
i.e. .
'dEl’ dE2' dLI3
these differ depend-
ing on the type of
measurement being
processed

Ny
add observa-

vector F

tion term to |g W

set up constants for
number of rows |

in matrix and num-

ber of parameters
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compute variances

ie SIG1(1J)
T SWTI(LT)

L

record N's
total weights,
variauces,
etc.

record
triangular
matrix

form check sum
for
matrix inversion

assuming a
complete matrix,
invert D

L

record

observation
variances

A

compute corrections

for G(N,M), G(N; ]VIot)a
CUN M ‘H‘)

NAYAN AV, 00

apply corrections
to G(N,M)

/record G(N,M),
corrections,check

column results

s—Afor H(N,M),H(N, M,t),

compute corrections

h(N, M, tt)

apply corrections
to H(N, M)

record H(N,M),
corrections,chec
column result

N

apply G(N,M,t)
corrections

record G(N,M,t
corrections,chec
column results

apply II{(N, M,t)
corrections

ecord I1(N,M,t),
corrections,chec
column result

.

apply G(N,M,tt)
corrections

-
@'d G(N, M, tt))

&corrections, che Cl?
column results

AN

apply H(N,M,tt )
corrections

ecord H(N, M.tt))
corrections,checld

columnresults

external
field

apply E1, E2, ¥3
corrections

ecord E1,E2,F
orrections, chec
columnresults

“T [PPSR
puncrn caras
requiredto start

next approx-

AN mation

/ record
error

distributions

record mean
deviation for lat-

long blocks
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APPENDIX D

PROGRAM LISTING FOR WALL'S ERROR PROGRAM
* ok ok ok ok ok k ok Kk 0k k * K *x * * %

WALL@S ERROR

* 0k Kk kX K kA Kk K, X Kk K * % * * %

D MUST EXCEED (NMAX**L+Q*NMAX**241L4)/2
+(NMAXT** L+ 9*NMAXT**2414) /2
+(NMAXTT**L3Q*NMAXTT**2414) /2

F AND SIDE MUST EXCEED NMAX**24+NMAXT**24NMAXTT**2+6
DIMENSION G(9,9),H(9,9),6T(9,9),HT(9,9),6TT(9,9),HTT(9,9)
DIMENSION F(30),DINV({30.30),ERR{7)
DIMENSION SHMIDT(9,9)
DIMENS|ON DXDH(9,9),DYDH(9,9),DZDH(9,9)
DIMENSION DXDG(9,9),DYDG(9,9),DZDG(9,9)
DIMENSION. CP(9),SP(9),P(9,9),DP(9, 9),CONST(9,9)
INTEGER EXTFLD
DATA (RAD=57.2957795), (A=6378.165), (FLAT=298.3), (LINE=0)
DATA (P1=3.14159265), (P|2=6.28318530)

DATA (EXTFLD=0)

* 0k ko Kk kX kX x k x X X *x ¥ * * %

FLAT=1.-1./FLAT
COMPUTATION WITH SPHERICAL EARTH

FLAT=1.

A=6371.2

MAXD=3400

Az_A++0

ALi=pxxly

B2=( A*FLAT)**2

A2B2=A2*(1,-FLAT**2)

ALBL=AL* (1 —-FLAT**4)

REWIND 1

READ DATA FROM MATRIX SUBROUTINE

READ (1) NMAX,NMAXT,NMAXTT,FWNP,FNP,S|GMA, NOR, NOP, NOPP
READ (1) ((G(N,M),H(N,M),M=1,N) N=2 JNMAX)

READ (1) ((GT(N,M},HT(N,M),M=1,N),N=2, NMAX)

READ (1) ({GTT(N,M},HTTIN,M),M21,N),N=2, NMAX)

DO 1 1=1,NOR

READ (1) (DINV(1,J),J=1,NOP)

CONT I NUE
READ DELTA LONGITUDE, DELTA LATITUDE, AND BASE TIME
READ 2,DLONG,DLATT,TIME
FORMAT (3F10.0)
VAR=S | GMA*S | GMA
TFACT=T|ME-60.0
TFACT2=TFACT*TFACT
FIND STARTING POINT FOR GRID
SLONG=0.0
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SLATT=0.0

IF (SLONG-DLONG+180. 0) 5,4,4

SLONG=SLONG~DLONG

GO TO 3

|F (SLATT-DLATT+90.0) 7,6,6

SLATT=SLATT-DLATT

GO TO &

SLATT=SLATT-DLATT

ELONG=SLONG

FLATT=SLATT
COMPUTE CONSTANTS REQUIRED FOR GENERATING
LEGENDRE POLYNOMIALS

DO 8 N=2,NMAX

FN=N

DO 8 M=1,N

FM=M

CONST(N,M)=((FN-2.0)**2-(FM-1,0)**2) /(FN+FN-3.0)/(FN+FN=5.0)

CONT I NUE
COMPUTE CONSTANTS TO CONVERT FROM GAUSS TO
SCHMIDT NORMALIZATION

SHMIDT(1,1)=-1.0

DO 9 N=2,NMAX

FN=N

SHMIDT(N, 1)=SHMIDT(N-1,1)*(FN+FN-3.0)/(FN-1.0)

FACT=2.0

grp4DT(N M)=SHMIDT(N,M=1)*SQRT( (FN-FM+1.0)*FACT/(FN+FM~2.0))

SET VALUE OF FIRST LEGENDRE POLYNOMIALS
SET VALUE OF SIN(M-1)PHI AND COS(M-1)PHI WHEN M=1

RECORD PARAMETERS TO BE USED FOR THE GRID

(6,10) NMAX,NMAXT,NMAXTT,SIGMA, FNP,FWNP,NOR,NOP, NOPP
(6H1NMAX= 15, 3X, 6HNMAXT=, 15, 3X, THNMAXTT=, | 5, 3X,8HSIGMA *=,
gs.u,zx,7HP INTS=,F6.0,3X, | 1HWE | GHT SUM=,E16. 8/3X,LHNOR=, 15, 3X, 4HNO
P=, 15,3X, 5HNOPP=, 15/1X)

WRITE (6,11) DLONG,DLATT,TIME

$F0§gAT/(1§H DELTA LONG=,F8.2,3X, 10HDELTA LAT=,F8.2,3X, 10HBASE TIME
= 1X

WRITE (6,12) ((N,M,G(N,M),H(N,M),GT(N,M),HT(N,M),GTT(N,M),HTT(N,M)
$,M=1,N), N2, NMAX

FORMAT {213’ 6F11.4)

* k ok ok k ok K Kk Kk Kk k Kk K* Kk * *
END INITIALIZATION, BEGIN FIELD GENERATION
X Kk Kk Kk Kk Kk * k k k Kk *k *k Kk Kk K

IF (FLATT+DLATT-90.0) 18, 14,14
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14
15
16

17

20

21
22

IF (ELONG-180.0) 17,15,15
WRITE (6,16)
FORMAT (THT/1H1/1H1)
STOP END
ELONG=E LONG+DLONG
FLATT=SLATT
LINE=1
WRITE (6,64)
FLATT=FLATT+DLATT
COMPUTE GEOCENTRIC THETA FROM
GEODETIC COORDINATES
FLATR=FLATT/RAD
SINLA=SIN(FLATR)
SINLA2=S | NLA**2
DEN2=A2-A2B2*S | NLA2
DEN=SQRT(DEN2)
FAC=( (ALT*DEN)+B2)/( (ALT*DEN)+A2)
THETA=ATAN(FAC*SINLA/(1.E-30+SQRT(1.~SINLA2)))
COMPUTE GEOCENTRIC R FROM GEODETIC COORDINATES
R=SQRT(ALT*(ALT+2.*DEN)+(A4—ALBL*S |NLA2) /DEN2)
COMPUTE SINE AND COSINE OF DIFFERENCE BETWEEN
GEODETIC AND GEOCENTRIC LATITUDINAL COORDINATES
SIND=SIN(FLATR~-THETA)
COSD=SQRT(1.0-SIND*SIND)
AOR=6371.2/R
COS THETA MEASURED FROM POLAR AXIS
CT=SIN(THETA)
SIN THETA MEASURED FROM POLAR AXIS

ST=SQRT(1,0-CT*CT)
SP(2)=SIN (ELONG/RAD)
CP(2)=COS(ELONG/RAD)
DO 19 M=3,NMAX
SIN(M-1)PHI, EQ.(5)
SP(M)=SP(2)*CP(M-1)+CP(2)*SP(M=1)
COS(M-1)PHI, EQ.(6)
CP(M)=CP(2)*CP(M-1)-SP(2)*SP(M-1)
CONT I NUE

GENERATE ASSOCIATED LEGENDRE POLYNOMIALS
D0 22 N 2, NMAX

ST*P(N-] N-1)
2ST*DP(N 1,N=1)+CT*P(N=1,N=1)

—;.

2

=CT*P(N-1 M)-CONST(N M)*P(N 2,M)

&=CT*DP(N- yM)- ST*P(N M)-CONST(N M)*DP(N-2,M)
E

INITIALIZE TO COMPUTE X,Y,Z
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CZ=0.0

AR=AOR*AOR
COMPUTE X,Y,Z USING BEST AVAILABLE
PARAME TERS

DO 23 N=2, NMAX

FN=N

AR=AR*AOR

DO 23 M=1,N

FM=M-1

APPLY SCHMIDT NORMALIZATION CONSTANTS

AND MULTIPLY BY (A/R)**(N+1)
P(N,M)=P(N,M)*AR*SHMIDT(N,M)
DP(N M)= DP(N M)*AR*SHMlDT(N M)
TEMP=FN*P(N, M)*SIND—DP(N M)*COSD
DXDG (N, M)=TEMP*CP(M)
DXDH(N M)=TEMP*SP(M)
TEMP-FM*P(N M) /ST
DYDG(N,M)=-TEMP*SP(M)
DYDH(N,M)=TEMP*CP(M)
TEMP= FN*P(N M)*COSD+DP(N,M)*S | ND
DZDG(N,M)=TEMP*CP(M)
DZDH(N,M)=TEMP*SP(M)

ADD TIME TERMS
GNM=( TM*GTT(N,M)+GT (N, M) ) *TM+G(N,M
HNM=( TM*HTT (N, M)+HT (N, M) ) *TM+H(N M
CX=CX+GNM*DXDG (N, M)+HNM*DXDH(N M)
CY=CY+GNM*DYDG (N, M)+HNM*DYDH(N, M)
CZ=CZ+GNM*DZDG (N, M)+HNM*DZDH(N, M)

CONT ! NUE

|F (EXTFLD) 24,25,24
Ti= E2*CP(2)+E3*SP(2)
T2=E1*ST-T1*CT
TI=E1*CT4+T1%ST
CX=CX-T2*COSD+T 1*S|ND
CY=CY+E2*SP(2)-E3*CP(2)
CZ=CZ+T2*S|IND+T 1*COSD
COMPUTE HORIZONTAL, TOTAL FIELD, DIP, AND
DECLINATION
CH=SQRT(CX*CX+CY*CY)
CF=SQRT (CH*CH+CZ*CZ)
Cl=2,0*ATAN(CZ/(CF+CH))
CD=2. 0*ATAN(CY/(CH+CX))
* k k k k k k Kk Kk *k * Kk Kk * *

END FIELD GENERATlON BEGIN STANDARD ERROR ESTIMATION
* k x Kk % * k Kk ok Kk Kk Kk Kk Kk Kk * %

COMPUTE COEFFICIENTS OF G(N,M) AND H(N,M)

)
M)

)

| TYPE=1
=1
GO TO (27,30,33,36,39,41,43,62),|TYPE
COMPUTE COEFFiCIENTS FOR DECLINATION
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DECL=ARCTAN(Y/X)
T1=DDECL/DY
T2=DDECL /DX
T1=CX/CH
T2=CY/CH
DO 29 N=2,NMAX
DO 29 M=1,N
DDECL/DG(N,M)
F(1)=(T1*DYDG(N,M)~T2*DXDG(N,M))
IF (M=1) 28,29, 28

|=|+1
DDECL /DH(N, M)
F(:)7(TI*DYDH(N,M)—TZ*DXDH(N,M))
=+
GO TO 45
COMPUTE COEFFICIENTS FOR DIP
DI P=ARCTAN(Z/H)
T1=DDIP/DZ
T2=DDIP/DX
T3=DDIP/DY
T1=CH/CF

T2=CZ*CX/CH/CF
T3=CZ*CY/CH/CF
DO 32 N=2,NMAX

DO 32 M=1,N

F(1)=DDIP/DG(N,M)
F(1)=(T1*DZDG(N,M)-T2*DXDG(N,M)-T3*DYDG(N,M))
IF (M-1) 31,32,31
i=1+

' F(1)=DD1P/DH(N,M)
F(l)=(T1*DZDH(N,M)-TZ*DXDH(N,M)-T3*DYDH(N,M))

—~X

I=1+1
GO TO 45
COMPUTE COEFFICIENTS FOR HORIZONTAL
FIELD
HOR=SQRT ( X*X+Y*Y)
T1=DHOR /DX
T2=DHOR/DY
T1=CX/CH
T2=CY/CH
DO 35 N=2, NMAX
DO 35 M=1,N

F(1)=DHOR/DG(N,M)
F(1)=(T1*DXDG(N,M)+T2*DYDG(N,M))
IF (M-1) 34,35,34

l=|+1

F(1)=DHOR/DH(N,M)
T(:)T(T1*DXDH(N,M)+T2*DYDH(N,M))
=1+
GO TO 45
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207
208
209
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211
212
213
214
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216
217
218
219
220
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232
233
234
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237
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37
38

39

Fike]

L2

L3

L
Ls
L6

COMPUTE COEFFICIENTS FOR TOTAL FIELD
B=SQRT( X*X+Y*Y+Z*Z)
T1=DB/DX
T2=DB/DY
T3=DB/DZ
T1=CX/CF
T2=CY/CF
T3=CZ/CF
DO 38 N=2,NMAX

DO 38 M=1,N

F(1)=DB/DG(N,M)
F(1)=(T1*DXDG(N,M)+T2*DYDG(N,M)+T3*DZDG(N,M))
IF (M-1) 37,38,37

l=1+1
F(1)=DB/DH(N,M)
F(I)T(T1*DXDH(N,M)+T2*DYDH(N,M)+T3*DZDH(N,M))
=14
GO TO 45
COMPUTE COEFFICIENTS WHEN THE Z COMPONENT IS GIVEN
DO 40O N=2, NMAX
F(1)=DZDG(N, 1)
I=1+1
DO 40 M=2,N
F(|)=DZDG(N,M)
F(|+1)=DZDH(N,M)
I=1+2
GO TO 45
. COMPUTE COEFFICIENTS WHEN THE X COMPONENT IS GIVEN
DG(N, 1)
2, N
G
X

N

o

4+ Fd s 4t b
N—=ll F=Il & ONZI D=1 r

(N,M)
DH{N, M)

O—"TMMTTMO—T0Q
~ O
HxX X
(w N w N

(%))

COMPUTE COEFFICIENTS WHEN THE Y COMPONENT IS GIVEN

- Z +-

i

<
I <X
OOi

ON

N —~~oll—~0o ol ~—~0oll~0
~ O

—TMMoO—"0

' ADD TIME**1 TERMS
(NMAXT) 46,48,46

L7 N=2,NMAXT

)=F(J)*TFACT
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L7
L8
L9

I=1+1
J=J+1
DO 47 M=2,N
FCOI)=F(J)*TFACT
FOI+1)=F(J+1)*TFACT
I=1+2
J=J+2
CONT | NUE

ADD TIME**2 TERMS
NONOT=1 -1
IF1(NMAXTT) L9,51,49
J=

DO 50 N=2,NMAXTT
FC(1)=F(J)*TFACT2
I=1+1
J=J+1

ACT2
)*TFACT2

-
—~~
S

]

-
H—~X
o i
~ e N
— %
+ 4=Z
—~— T

J=J+2
CONT | NUE
IF (EXTFLD) 52,60,52

ADD EXTERNAL FIELD TERMS

DXDE1=CT*SIND-ST*COSD
DZDE1=ST*S|ND+CT*COSD
DXDE2=CP(2)*DZDE1
DXDE3=SP(2)*DZDE1
DZDE2=-CP(2)*DXDE 1
DZDE3=-SP(2)*DXDE 1

GO T0 (53,54,55,56,57,58,59), ITYPE

COEFFICIENTS WHEN DECLINATION (D) 1S GIVEN

F(1)=DD/DE1
F(1)=-T2*DXDE 1
f=1+1

F(1)=DD/DE2
F(1)=T1*SP(2)-T2*DXDE2

i=1+1

F(1)=DD/DE3
T(:)T—TI*CP(Z)—TZ*DXDEB
=|+
GO TO 60

COEFFICIENTS WHEN DIP (1) IS GIVEN

F(1)=DI/DE1
F(!)=T1*DZDE1-T2*DXDE 1

l=1+1
F(1)=DI/DE2
T(:)7T1*DZDEZ—TZ*DXDEZ»TB*SP(2)
=|+

m
~~

)=D

/DE3
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F(I)TT1*DZDE3—T2*DXDE3+T3*CP(2)

=1+

GO TO 60
COEFFICIENTS WHEN THE HORIZONTAL
COMPONENT (HOR) IS GIVEN
F(1)=DHOR/DE1

F(I)=T1*DXDE1

I=1+1
F(1)=DHOR/DE2

F(1)=T1*DXDE2+T2*SP(2)

I=1+1
F(1)=DHOR/DE3
F(1)=T1*DXDE3-T2*CP(2)
l=1+1
GO TO 60
COEFFICIENTS WHEN TOTAL FIELD IS GIVEN
F(1)=DF/DE1
F(1)=T1*DXDE1+T3*DZDE 1
l=]+1
F(1)=DF/DE2
F(I)TT1*DXDE2+T2*SP(2)+T3*DZDE2
=1+
F(1)=DF/DE3
F(I)TTI*DXDE3-T2*CP(2)+T3*DZDE3
=1+
GO TO 60
COEFFICIENTS WHEN THE Z COMPONENT 1S G!VEN
F(1)=DZDE1
=i+l
F(1)=DZDE2
l=1+1
F(1)=DZDE3
l=l+1
GO TO 60
COEFFICIENTS WHEN THE X COMPONENT IS GIVEN
F(1)=DXDE1
l=|+1
F(1)=DXDE2
l=i+1
F(1)=DXDE3
l=1+1
GO TO 60

F(1)=0.0
I=1+1
F(1)=SP(2)
[=1+1
F(1)=-CP(2)
l=1+1

GO TO 60

COEFFICIENTS WHEN THE Y COMPONENT IS GIVEN
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63
64

65
66

COMPUTE STANDARD ERROR OF ESTIMATE
SUMD=0.0

DO 61 |=1,NOR

TEMP=F (1)

DO 61 J=1,NOR
SUMD=SUMD+TEMP*F (J)*DINV(1,J)
CONT | NUE

ERR( I TYPE )=SQRT(SUMD*VAR)
ITYPE=|TYPE+1

GO TO 26
* Kk Kk Kk Xk K% K Kk Kk K Kk * * * * *x % *
END ERROR ESTIMATION, BEGIN ONE POINT OUTPUT
******************

CD=CD*RAD

C1=C|*RAD

ERR(1)=SQRT( (ERR(1)*ERR(1)+CD*CD*ERR(3)*ERR(3))/(CH*CH) )*RAD

ERR(2)=SQRT((ERR(2)*ERR(2)+CI*C|*ERR(L4)*ERR(L))/(CF*CF) )*RAD

IF (MOD(LINE,51)) 65,63,65

WRITE (6,64)

FORMAT (118H1 LAT LONG DECLINATION FIELD DIP HOR 1 ZON

STAL TOTAL FIELD Z COMPONENT X COMPONENT Y COMPONENT)

WRITE (6,66) FLATT,ELONG,CD,ERR(1),Cl,ERR(2),CH,ERR(3),CF,ERR(4),C
$Z,ERR(5).CX,ERR(6).CY,ERR(7)
FORMAT (1X,F6.1,F7.1,2(F8.2,F7.3),5(F8.0,F7.2))

LINE=LINE+1
GO TO 13
END
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APPENDIX E

WALL'S ERROR

Introduction

The purpose of this appendix is to document the sequence of opera-
tions and to discuss various programming aspects of Wall's Error program.
This program has been written to find standard errors of estimation for a
grid of the geomagnetic potential over the earth's surface. The grid is
based on the time-dependent coefficients estimated by Jensen's Fit program
for the spherical-harmonic expansion of the geomagnetic potential function.

The mathematical formulas which form the basis of the computer
program are not restated in this appendix. Each time that a formula is
required to explain a Fortran variable, a reference is made to an equation
in Sections 2.0, 3.0, or 4.0 of this repcrt or to one of the reports listed in
the bibliography. When referencing this report, it should be noted that the
Fortran variable N is equal to n+l. Similarly, M = m+l.

The computer program is relatively linear, i. e., there are few alter-
1ate calculation sequences. Hence, the calculation sequence will be des-
cribed in a linear manner.

The program can be roughly divided into four phases as follows:

(1) initializing; (2) field generation; (3) standard error estimation; and

(4) one point output or recording. This appendix will likewise be divided into
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four principal sections to describe respectively these four phases. Within
each section, the Fortran name for variables will be used whenever possible.

A glossary identifying these variables is included at the end of this appendix.

Initialization

Initialization consists of doing the things that must be done once at
the start of the execution of the program. For this program, these things
include setting or computing the value of certain constants that will be used
throughout the other phases of the program. Among these are FLAT, A2,
A4, B2, A2B2, A4B4, VAR, TFACT, TFACT2, ELONG, FLATT,
CONST(N, M), SHMIDT(N, M), P(1,1) DP(1,1), SP(1), and CP(1) all of
which are identified in the glossary at the end of this appendix.

The equation for computing CONST(N, M) is found in Egs. (19) of
Section 2. 0. Note that N = n+l and M = m+1. The equations for computing
SHMIDT(N, M) are found in Eqgs. (20) of Section 2.0.

The value of the first associated Legendre polynomial, P(1,1), and
its derivative, DP(1,1), are constants and may be found in Egs. (19) of Sec-
tion 2, 0. Similarly, the value of SP(M) and CP(M) are constants for M-=1,
i.e., SP(1)=0.0 and CP(1)=1.0.

Another common function of initialization is the reading of variable
control and starting data. Among the variables that must be read for this
program are NMAX, NMAXT, NMAXTT, FWNP, FNP, SIGMA, NOR,

NOP, NOPP, G(N,M), H(N,M), GT(N,M), HT(N,M), GTT(N, M),
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HTT(N, M), and DINV(I,J). These variables, which are all identified in the
glossary, are recorded by the modification of Daniels' Matrix subroutine
specifically for this program. In addition to these, DLONG, DLATT, and
TIME must also be supplied, these are identified in the glossary.

A final function of initialization is often the recording of initial values
of pertinent variables. This program records all input data listed above
except DINV.

Except for setting or computing the values of certain other minor
variables required by the initialization functions enumerated above, this com-

pletes the initialization phase of the program.

Field Generation

Output page control and the incrementing of longitude and latitude is
accomplished by cafds 100 through 109.

Beginning with card 112, geocentric coordinates are computed from
the geodetic grid point assignments made for each observation. The equation
for computing THETA is Eq. (30) of Section 2. 0. The equation for computing
geocentric R is Eq. (31) of Section 2. 0.

The five variables SIND, COSD, AOR, CT and ST which are all
identified in the glossary are computed next. SIND and COSD are required
for converting from geocentric to geodetic coordinates. CT and ST are
required for the generation of the associated Legendre polynomials and AOR

is a term that appears in the equations for estimating X, Y, Z, etc. from
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the best available set of parameters. One should note that the Fortran state-
ment for computing CT and ST redefines 6§ to be measured from the polar
axis instead of from the equatorial plane, i.e., colatitude.

SP(2) and CP(2) are computed, followed by the computation of SP(M)

and CP(M) for M> 2. The equations

sin(M-1) ¢ sin¢ - cos(M-2)¢ + cos¢ - sin(M-2) ¢ (E1)

and

cos (M-1) ¢ cos¢ - cos(M-2)¢ - sin¢d - sin(M-2) ¢ (E2)

used for computing SP(M) and CP(M) are available in standard texts on
trigonometry under the subject, ''functions of sums of angles. "

Next the program evaluates the necessary associated Legendre poly-
nomials, P(N, M), and their derivatives, DP(N, M), employing the recur-
rence relationships which are found in Section 2.0, Egs. (19). KN,M cor-
responds to the Fortran variable CONST(N, M) and was discussed above in
the section on initialization.

Beginning with card 149, the Fortran variables CX, CY, and CZ
are set equal to zero in preparation for the estimation of X, Y, and Z.

AR and TM, two Fortran variables identified in the glossary, must also be
initialized in preparation for the estimation of X, Y, and Z.

The Fortran statements through card 179 are required to estimate

X, Y, and Z, i.e., the Fortran variables CX, CY, and CZ. The rotation

formulas required for computing X and Z are found in Section 2.0, Egs. (32)
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and (33). Equations for B Br’ and B, are given in several different

6’ ¢

forms in Section 2. 0 of this report.

Near the beginning of the group of Fortran statements required to
estimate X, Y, and Z (specifically cards 162 and 163), the Gauss normal-
ized polynomials are Schmidt normalized and multiplied by the appropriate
power of §-§r—71-:1-—2 , i.e., AR.

Depending on when it is calculated, the Fortran variable TEMP is
the common factor in the coefficients of the two parameters gN,M,O and
hN,M,O in the formulas for computing X, Y, or Z. DXDG, DXDH, DYDG,
DYDH, DZDG and DZDH complete the calculation of the coefficients of
gN,M,O and hN,M,O in the formulas for compt;ting X, Y, and Z. Next, the
Fortran variables GNM and HNM are computed using Egs. (21) of Section
2. 0 and finally all terms are summed for the respective estimates of X, Y,
and Z.

The X, Y, and Z components of the external field are next estimated
and added to the respective estimates of X, Y, and Z (cards 180 through
186). This step is completely skipped if EXTFLD is zero.

From the estimates of X, Y, and Z, estimates of the horizontal
field, total field, dip, and declination (Fortran variables CH, CF, CI, and
CD respectively) are made using Egs. (34) and (37-39) of Section 3.0.

This concludes the field generation phase of the Error program.
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Standard Error Estimation

The program now computes the coefficients of the g's and h's in the
spherical-harmonic expansion of the geomagnetic potential function. These
coefficients are the f(x) in Eq. (51) of Section 4. 0.

Formulas for the coefficients of the g's and h's in the system of
simultaneous least squares equations may be derived easily from simple
theorems in differential calculus and the various equations of Section 3.0.

The calculus theorem results in the following:

If x = f(u) and u = g(w)
dx _ df | dg
then iw " o S (E3)
Applying this theorem to Eq. (34) of Section 3. 0, the following formulas can
be derived for the declination of the total field strength:
d DECL d DECL dX d DECL dY
d =T & d Ay 3 (E4)
EN,M,0 EN,M,0 EN,M,0
dDECL _ _ _Y x . X dy (E5)
dgN,M,O HOR dgN,M,O HOR dgN,M,O
dDECL _ dDECL dX + dDECL dY (E6)
th,M,O dX th,M,O dy th,M,O
dDECL, _ _Y dX + X dy (ET)
th,M,O HOR th,M,O HOR th,M,O
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Similarly, from Egs. (37-39) of Section 3. 0, the following can be derived for

field dip:
d DIP - _X-Z dX _X-Z dY +_Ii dZ
d€N,M,0 H'Fdgnymo B F deymo F 98ynmo
d DIP . X Z dX _ Y-z dY + H dZ
th,M,O H-F th,M,O H-F th,M,O F th,M,O
for the horizontal component:
d HOR X dX + Y dY
dgN,M,O HOR dgN,M,O HOR dgN,M,O
d HOR . X dX + Y dY
th,M,O HOR th,M,O HOR th,M,O
and for total field:
dB _ X dX + Y dy + V4 dZ
dexnmo B dexmo B 98nmo B 48nmo
dB _ X dX + Y dY + Z dZ
dhemo B dPywmo B Pymo B %Pwmo
Simil i i i i
Simil ar expressions for derivatives with respect to gN,M,t s hN,M,t ,
gN,M,tt’ and hN,M,tt can be derived from the equations cited.

Beginning with card 204, the Error program employs Egs. (E4-E7)
to compute the coefficients of the gN M.O and hN M.0 in the equation for

estimating declination. At card 221, the same coefficients in the equation
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for dip are computed. Then at cards 239 and 256, these coefficients are
computed for horizontal and total field respectively. Finally, at cards 270,
279, and 288, the coefficients for Z, X, and Y respectively are processed.
Finally, coefficients for gN,M,t and hN,M,t are computed at 296 while
coefficients for gN,M,tt and hN,M,tt are computed at card 310.

If external field terms are to be used and corrected, the program,
beginning with card 325, computes the coefficients of the unknowns E1 s E2 s

and E_ in the system of simultaneous least squares equations. The equa-

3
tions employed are similar to Egs. (E4) through (E13) with —a or
dg
N,M,0
—d being replaced with -4 4 or Beginning with card
th,M,O dE1 dE2 dE3
dX dX dX dZ dZ dZ
325, , s , , , and are computed. The
dEl dE2 dE3 dE1 dE2 dE3
I dY . dy
guantities dEl =0, dEz = sin¢, and dE% = -cos¢ are not setup

explicitly. Then beginning at cards 334, 345, 357, and 368 these derivatives
are used to compute the coefficients of E1 s E2 , and E3 for declination, dip,
horizontal field and total field, respectively. At cards 378, 386, and 394,
the E coefficients for Z, X, and Y respectively are processed.

Cards 402 through 408 compute the sum specified in Eq. (51) of Sec-

tion 4. 0. This concludes the Standard Error Estimation phase of the Error

program.
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One Point Output

This last phase of Wall's Error is very short, consisting only of
cards 414 through 425. The first four of these cards convert declination
and dip and their estimated errors from gammas to degrees. This conver-
tion is discussed in Section 4. 0 and specific equations for the conversion
are (52) and (53). The remaining eight cards control paging and produce
the output of one line.

This concludes Wall's Error program.
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GLOSSARY
Wall's Error

A a, the mean equatorial radius of the earth in kilometers
A2 az
A4 a4
A2B2 (mean equatorial radius of the ear’ch)2 - (polar radius of the earth)2
A4B4 (mean equatorial radius of the earth)4 - (polar radius of the earth)4
ALT altitude of the observation
AOR radius of the sphere having volume equal to the earth's volume/R
AR (radius of the sphere having volume equal to the earth's volume/ R)N+1
B2 (polar radius of the earth)2
CD estimated declination in radians
CF estimated total field strength
CH estimated horizontal field strength
Cl estimated field dip in radians
CONST a set of constants required for the generation of the associated
Legendre polynomials, P3*
{n-l)z - rn2 i} (N—Z)2 - (M-l)2
(2n-1)(2n-3) (2N-3)(2N-5)

n and m are common formula notation while N and M are used
in the computer program

COSD cosine of difference between geodetic coordinate X and geocen-
tric coordinate 6
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CP(M)

CT

i Cy
Cz

’ DEN

DEN2
DINV
DLATT

DLONG

»)
g

DXDE1

DXDE?2

DXDE3

DXDG

DXDH

DYDG

DYDH

cosine of the product of (M-1) and the longitudinal coordinate ¢
cosine of 7/2 minus the geocentric coordinate 6 i.e., colatitude
estimated X component of the field strength

estimated Y component of the field strength

estimated Z component of the field strength

1/2

(a2 cosz)\ +b sin " A) where a

mean equatorial radius of
the earth

= polar radius of the earth

= geodetic coordinate of
latitude

(DEN)2

inverse of the D matrix of Jensen's Fit program
latitude interval for the potential function grid
longitude interval for the potential function grid

derivative of an associated Legendre polynomial

% where X is the X component of the field strength
1

dX . .

1E. where X is the X component of the field strength
2

aﬁ%(— where X is the X component of the field strength
3

dX

d—g— where X is the X component of the field strength

%Xh_ where X is the X component of the field strength

dY . .

a—g— where Y is the Y component of the field strength

%—hY- where Y is the Y component of the field strength
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—— Wwhere Z is the Z component of the field strength

d E1

dZ . .

FEoN where Z is the Z component of the field strength
2

dZ . .

FEoN where Z is the Z component of the field strength
3

dZ X .

a; where Z is the Z component of the field strength

-&% where Z is the Z component of the field strength

external field term along the polar axis
external field term in the equatorial and prime meridian planes

external field term in the equatorial plane but perpendicular to
the plane of the prime meridian

longitudinal coordinate ¢ in degrees
observations times weights summed for global grid-points

a code to identify when external field terms are to be used
(EXTFLD # 0) and when they are not to be used (EXTFLD =0)

one of the numbers used to form the sums of squares and cross-
products of the triangular matrix

tan @/ tanx where 6 and X are the geocentric and geodetic
latitudinal coordinates

a factor used in generating the factors for converting from Gauss
normalization to Schmidt normalization. When M=2, FACT
=2.0; when M>2, FACT=1.0. Also used in forming squares
and cross products. Hence a temporary storage.

polar radius of the earth/mean equatorial radius of the earth

A in radians

latitudinal coordinate A

the index M or M-1 in floating point notation
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W T ——

EFN

FNP

FWNP

GNM

GT

GTT

HNM

HT

HTT

ITYPE

LINE

the index N in floating point notation
FNO1(8) in Jensen's Fit program
SWT1(8) in Jensen's Fit program

the coefficient &N M. 0 in the spherical-harmonic expansion

of the geomagnetic potential function
G(N, M), i.e., a specific G

the coefficient EN M.t in the spherical-harmonic expansion of

the geomagnetic potential function

the coefficient BN M tt in the spherical-harmonic expansion of

the geomagnetic potential function

the coefficient hN M.O in the spherical-harmonic expansion of

the geomagnetical potential function

H(N, M), i.e., a specific H

the coefficient hN M.t in the spherical-harmonic expansion of
the geomagnetical potential function
the coefficient hN M.t in the spherical-harmonic expansion of
the geomagnetical potential function
an index
identifies data type, e. g., DECL = 1
DIP = 2
HOR = 3
B = 4
Z = 5
X = 6
Y = 1
an index

an index for counting the number of lines output for a page
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T T TN -~ —————

T T we s T

MAXD

NMAX

NMAXT

NMAXTT

NO

NONOT

NOP

NOPP

NOR

PI

PI2

an index and subscript
maximum size of the triangular matrix D
an index and subscript

maximum N in the terms of the form 8x M 0 SO8 (M-1)¢ or
hy M oSiD (M-1) ¢ in the spherical harmonic expansion of

the geomagnetic potential function

maximum N in the terms of the form gx M tt cos (M-1) ¢ or
h‘\I M tt sin(M-1) ¢ in the spherical-harmonic expansion of
1 2 2

the geomagnetic potential function
maximum N in the terms of the form 8N M.t t2 cos (M-1) ¢

2 . . . .
or hN,M,ttt sin(M-1) ¢ in the spherical-harmonic expan-

sion of the geomagnetic potential function

first row or column in the leas_t squares equations for terms of
the form gN,M,tt cos (M-1) ¢ or hN,M,tt sin(M-1) ¢

first row or column in the least squares equations for terms of

2 2 |
~ + < - . _
SN,M,tt - cos (M 1) ¢ or h}‘]—,l\v{,tt t sin (M 1) ¢

[ S Y
Lilt: 1011

number of parameters in the spherical-harmonic expansion of
the geomagnetic potential function

number of parameters plus one

number of rows in the triangular matrix D
an associated Legendre polynomial

m = 3.14159265

27 = 6.28318530

geocentric coordinate of radius
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RAD

SHMIDT

SIGMA

SIND

SINLA
SINLA2
SLATT
SLONG
SP(M)
ST
SUMD
T1

T2

T3
TEMP
TFACT
TFACT2
THETA
TIME

™

degrees in one radian = 57, 2957795

constants to convert from Gauss normalization to Schmidt
normalization

SIG1(8) of Jensen's Fit program

sine of difference between geodetic coordinate A and geocentric
coordinate 6

sine of the geodetic latitudinal coordinate A

(SINLA)Z

starting latitude for grid

starting longitude for grid

sine of the product of (M-1) and the longitudinal coordinate ¢
sine of #/2 minus the geocentric coordinate @ , i.e., colatitude
sum storage for forming check sum column of D matrix
a temporary storage

a temporary storage

a temporary storage

a temporary storage

time factor

TFACT * TFACT

the geocentric coordinate of latitude

time of computed grid

time - 60.0
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APPENDIX F

FLOW CHART FOR WALL'S ERROR PROGRAM
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T o )

|

'Start ' compute grid point
! r—@—j location in
compute i time and space

miscellaneous
constants

/  read NMAX NMAXT,

external
field

ceocentric coor-
dinates from |
geodetic coordi- _J

add external
P field terms

NMAXTT, FWNP, FNP, SIGMA, | nates o .
NOR, NOP, NOPP | ! | H,F,1,D from
T | T [ x o o) oncts -y || estimates of &
7 ,sm( ) 6) Vcos>(>t.76)J | X,Y,Z
read G, H, GT, \ . ! |l
HT, GTT, ? o
HTT / 6371. 2/R where : | coefficients of the
4 R is the geocen- | G d
l | | tric radius N.M,0
/ | Hemo
) [ read DINV 5 ”1
i\ (inverse of | cos @, sing, L
\ |

D matrix) /

AN - | | coefficients of the

T
i
Y

; . G and
‘ /—*L——\ ! longitude and latx-w | N,M,t
/ read DLONG, \ tude codes for error, i Hy M.t
! : and data weight dg ‘
) \ DLATT, TIME | | ¥
K / : Pt
-4 lcos (M-1) ¢ ' coefficients of the
A ———— H‘“—T | sin(M-1) ¢ : ‘ GN,M,tt and
_(N- -2)%-(m-1? | | for M> 2 3 H
KN M (2N-3)(2N-5) | | N, M, tt
I |
S
v - ! ’ Legendre
! ] | lynomials
~ Gauss to Schmidt ! __ bpolynomials | ext.er nal
| normalization | l field
| _constants . ,l CX =0
CY=0 _ y I8
i P(1,1)=1.0 CzZz=0 rcoefficients of
' DP(1,1)=0.0 L El, E2, E3
| SP(1)=0.0
| [c_ nvert Legendre polys
[_CP( 1)=1.0 from Gauss to Schmidt |
, compute j
normalization and dard i
a. N+1 stan ar. error
/w rite recor d multiply by (,.) of estimate

of parameters .,r . ,___l__ﬂ
/ /

used ’ / record \
compute X, Y, Z - one

L grid point
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