

COMPUTER PROGRAMS FOR THE GEOMAGNETIC FIELD

$$
\begin{aligned}
& \text { GPO PRICE } S \text { S } \\
& \text { CFSTI PRICE } S \text { S } S \text { S_ }
\end{aligned}
$$

Francis J. Wall

Final Report

Microfiche (MF) \qquad
Contract No. NAS 5-3944 H653 July 05
N66 30298

Prepared for

National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland

August 13, 1965

Francis J. Wall

Final Report
Contract No. NAS 5-3944

Prepared for

National Aeronautics and Space Administration
Goddard Space Flight Center Greenbelt, Maryland

August 13, 1965

ACKNOWLEDGEMENTS

The author wishes to express thanks for the assistance and suggestions received from Dr. Sam Stearns, Kenneth Granzow, and Duane Jensen, all of The Dikewood Corporation. Mr. Jensen supplied much needed background information on geomagnetics in general and on his Fit program. Mr. Granzow was instrumental in formalizing the external magnetic field. Dr. Stearns reviewed the understanding of the author and the progress of his work many times during the past eight months. Their contribution to the contractual effort was significant.

The author also wishes to thank Dr. Joseph Cain of the Goddard Space Flight Center for patience and understanding of our efforts to complete these tasks satisfactorily.

TABLE OF CONTENTS

SECTION PAGE
1.0 Introduction 1
2.0 Basic Formulation 1
3. 0 Jensen's Fit 13
4.0 Wall's Error 21
5.0 Conclusions 28
Appendix A Program Listing for Jensen's Fit Program 31
Appendix B Jensen's Fit 49
Appendix C Flow Charts for Jensen's Fit Program 72
Appendix D Program Listing for Wall's Error Program 77
Appendix E Wall's Error 86
Appendix F Flow Chart for Wall's Error Program 101
Bibliography 103

1.0

INTRODUCTION
The geomagnetic potential function is usually represented by a spherical-harmonic expansion. The Dikewood Corporation has prepared two computer programs related to this spherical-harmonic expansion for the Goddard Space Flight Center. The first program, Jensen's Fit, is a least squares program for improving the precision of the parameters in the spherical-harmonic expansion. The second program, Wall's Error, is a statistical program for mapping the field from the spherical-harmonic expansion produced by Jensen's Fit and then computing the random error in the mapping.

These two programs are similar in much of the basic formulation. Hence, Section 2.0 of this report on basic formulation applies to both programs. Section 3.0 discusses in some detail Jensen's Fit program while Section 4.0 discusses in a similar manner Wall's Error program.

Most if not all of the information presented in this report can be found in the documents and books listed in the bibliography.

This document is a final report on work performed at The Dikewood Corporation and does not cover any program modifications later made at Goddard Space Flight Center for the accommodation of the Goddard computer system.

2.0 BASIC FORMULATION

We begin with the "terms of internal origin" in the Chapman and Bartels (1940, p. 639) formulation of the geomagnetic potential function to
write the following equation for the magnetic potential V :

$$
\begin{equation*}
V=a \sum_{n=1}^{\infty} \sum_{m=0}^{n}\left|\frac{a}{r}\right|^{n+1}\left|g^{n, m} \cos m \phi+h^{n, m} \sin m \phi\right| P^{n, m}(\theta) \tag{1}
\end{equation*}
$$

where

$$
a=\text { radius of the earth }
$$

$$
r=\text { geocentric distance }
$$

$$
\mathrm{g}, \mathrm{~h}=\text { Gauss coefficients }
$$

$$
\phi=\text { longitude }
$$

$$
\theta=\text { colatitude }
$$

$$
P^{\mathrm{n}, \mathrm{~m}}(\theta)=\text { associated Legendre functions, Gauss normalized }
$$

The three orthogonal components are derived by taking the gradient $\overrightarrow{\mathrm{B}}=+\nabla \mathrm{V}$ to give
$B_{\theta}=\frac{1}{r} \frac{\partial V}{\partial \theta}=\sum_{n=1}^{\infty} \sum_{m=0}^{n}\left(\frac{a}{r}\right)^{n+2}\left(g^{n, m} \cos m \phi+h^{n, m} \sin m \phi\right) \frac{\partial P^{n, m}(\theta)}{\partial \theta}$
$B_{\phi}=\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi}=\sum_{n=1}^{\infty} \sum_{m=0}^{n}\left(\left.\frac{a}{r}\right|^{n+2} \frac{m}{\sin \theta}\left(-g^{n, m} \sin m \phi+h^{n, m} \cos m \phi\right) P^{n, m}(\theta)\right.$
$B_{r}=\frac{\partial V}{\partial r}=-\sum_{n=1}^{\infty} \sum_{m=0}^{n}\left|\frac{a}{r}\right|^{n+2}(n+1)\left(g^{n, m} \cos m \phi+h^{n, m} \sin m \phi\right) p^{n, m}(\theta)$
and, of course,

$$
\bullet
$$

$\because \quad B=\left(B_{\theta}^{2}+B_{\phi}^{2}+B_{r}^{2}\right)^{1 / 2}$

There have been several versions of Jensen's Fit. Basic formulation for the original versions ended with the above equations. However, the most recent version included provision for a field of external origin. The field specified was a simple magnetic field of intensity B at infinity (denoted by B_{∞}) and parallel to an arbitrary axis z^{\prime} in the $\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}\right.$) coordinate system, and positive in the increasing z^{\prime} direction.

To develop the formulation for this field, we begin with

$$
\begin{align*}
\stackrel{\rightharpoonup}{B}_{\infty}=+\nabla V & =+\nabla\left(+\mathrm{B}_{\infty} z^{\prime}\right) \\
V & =+\mathrm{B}_{\infty} z^{\prime} \\
& =+\mathrm{B}_{\infty} r(\cos \gamma) P^{1,0}(\theta) \\
& =+\mathrm{B}_{\infty} r \mathrm{P}^{1,0}(\alpha) \mathrm{P}^{1,0}(\theta)+\mathrm{B}_{\infty} r \mathrm{P}^{1,1}(\alpha) \mathrm{P}^{1,1}(\theta)(\cos (\bar{\beta}-\phi)) \tag{6}
\end{align*}
$$

Fig. 1

Let $\quad B_{\infty} \cos \alpha=E_{1}$

$$
\begin{aligned}
& \mathrm{B}_{\infty} \sin \alpha \cos \beta=\mathrm{E}_{2} \\
& \mathrm{~B}_{\infty} \sin \alpha \sin \beta=\mathrm{E}_{3}
\end{aligned}
$$

Then

$$
\begin{equation*}
V=r E_{1} P^{1,0}(\theta)+r E_{2} \cos \phi P^{1,1}(\theta)+r E_{3} \sin \phi P^{1,1}(\theta) \tag{8}
\end{equation*}
$$

The three orthogonal components are derived by taking the gradient $\vec{B}=+\nabla V$ to give

$$
\begin{align*}
& \mathrm{B}_{\theta}=\frac{1}{\mathrm{r}} \frac{\partial \mathrm{~V}}{\partial \theta}=\mathrm{E}_{1} \frac{\partial \mathrm{P}^{1,0}(\theta)}{\partial \theta}+\mathrm{E}_{2} \cos \phi \frac{\partial \mathrm{P}^{1,1}(\theta)}{\partial \theta}+\mathrm{E}_{3} \sin \phi \frac{\partial \mathrm{P}^{1,1}(\theta)}{\partial \theta} \tag{9}\\
& \mathrm{B}_{\phi}=\frac{1}{\mathrm{r} \sin \theta} \frac{\partial \mathrm{~V}}{\partial \phi}=-\frac{\mathrm{E}_{2} \sin \phi}{\sin \theta} \mathrm{P}^{1,1}(\theta)+\frac{\mathrm{E}_{3} \cos \phi}{\sin \theta} \mathrm{P}^{1,1}(\theta) \tag{10}\\
& \mathrm{B}_{\mathrm{r}}=\frac{\partial \mathrm{V}}{\partial \mathrm{r}}=\mathrm{E}_{1} \mathrm{P}^{1,0}(\theta)+\mathrm{E}_{2} \cos \phi \mathrm{P}^{1,1}(\theta)+\mathrm{E}_{3} \sin \phi \mathrm{P}^{1,1}(\theta) \tag{11}
\end{align*}
$$

Substituting for the Legendre polynomials,

$$
\mathrm{P}^{1,0}(\theta)=\cos \theta
$$

and

$$
P^{1,1}(\theta)=\sin \theta \text {, }
$$

we have

$$
\begin{equation*}
B_{\theta}=-E_{1} \sin \theta+E_{2} \cos \phi \cos \theta+E_{3} \sin \phi \cos \theta \tag{12}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{B}_{\phi}=-\mathrm{E}_{2} \sin \phi+\mathrm{E}_{3} \cos \phi \tag{13}\\
& \mathrm{~B}_{\mathrm{r}}=\mathrm{E}_{1} \cos \theta+\mathrm{E}_{2} \cos \phi \sin \theta+\mathrm{E}_{3} \sin \phi \sin \theta \tag{14}
\end{align*}
$$

Hence, the complete basic formulation including the simple external field is given by

$$
\begin{align*}
V=a & \sum_{n=1}^{\infty} \sum_{m=0}^{n}\left(\frac{a}{r}\right)^{n+1}\left(g^{n, m} \cos m \phi+h^{n, m} \sin m \phi\right) P^{n, m}(\theta) \\
& +r E_{1} P^{1,0}(\theta)+r E_{2} \cos \phi P^{1,1}(\theta)+r E_{3} \sin \phi P^{1,1}(\theta) \tag{15}
\end{align*}
$$

The orthogonal components including the simple external field are

$$
\begin{align*}
B_{\theta}= & \sum_{n=1}^{\infty} \sum_{m=0}^{n}\left(\frac{a}{r}\right)^{n+2}\left(g^{n, m} \cos m \phi+h^{n, m} \sin m \phi\right) \frac{\partial P^{n, m}(\theta)}{\partial \theta} \\
& -E_{1} \sin \theta+E_{2} \cos \phi \cos \theta+E_{3} \sin \phi \cos \theta \tag{16}\\
B_{\phi}= & \sum_{n=1}^{\infty} \sum_{m=0}^{n}\left(\frac{a}{r}\right)^{n+2} \frac{m}{\sin \theta}\left(-g^{n, m} \sin m \phi+h^{n, m} \cos m \phi\right) P^{n, m}(\theta) \\
& -E_{2} \sin \phi+E_{3} \cos \phi \tag{17}\\
B_{r}= & -\sum_{n=1}^{\infty} \sum_{m=0}^{n}\left(\frac{a}{r}\right)^{n+2}(n+1)\left(g^{n, m} \cos m \phi+h^{n, m} \sin m \phi\right) P^{n, m}(\theta) \\
& +E_{1} \cos \theta+E_{2} \cos \phi \sin \theta+E_{3} \sin \phi \sin \theta \tag{18}
\end{align*}
$$

The external field is defined as positive if the direction of force is toward the positive z^{\prime} axis. Hence from Fig. 1, E_{1} is positive if the direction of force is out of the northern hemisphere. $\quad E_{2}$ is positive if the direction of force is out of the hemisphere bisected by the Greenwich meridian (i. e., the half-circle passing through Greenwich) and E_{3} is positive if the direction of force is out of the hemisphere to the right of the Greenwich meridian (i. e., east longitude).

In the above, $P^{n, m}(\theta)$ has been used to denote Gauss normalized associated Legendre polynomials. To simplify the computer program, the Legendre polynomials have been adjusted so that the coefficients of the highest order term in θ is one. Generating functions for these polynomials and their derivatives are given by

$$
\begin{array}{ll}
P^{0,0}(\theta) & =1.0 \\
\frac{\partial P^{0,0}(\theta)}{\partial \theta} & =0.0 \\
P^{n, n}(\theta) & =\sin \theta P^{n-1, n-1}(\theta) \\
\frac{\partial P^{n, n}(\theta)}{\partial \theta} & =\sin \theta \frac{\partial P^{n-1, n-1}(\theta)}{\partial \theta}+\cos \theta P^{n-1, n-1}(\theta) \\
P^{n, m}(\theta) & =\cos \theta P^{n-1, m}(\theta)-K_{n, m} P^{n-2, m}(\theta) \\
\frac{\partial P^{n, m}(\theta)}{\partial \theta}=\cos \theta \frac{\partial P^{n-1, m}(\theta)}{\partial \theta}-\sin \theta P^{n-1, m}(\theta)-K_{n, m} \frac{\partial P^{n-2, m}(\theta)}{\partial \theta} \tag{19}
\end{array}
$$

where $K_{n, m}=\frac{(n-1)^{2}-m^{2}}{(2 n-1)(2 n-3)} \quad$.

These Gauss normalized polynomials are then converted to the Schmidt quasi-normalized functions $P_{n}^{m}(\theta)$ via the relationship:

$$
P_{n}^{m}(\theta)=S^{n, m} P^{n, m}(\theta)
$$

where

$$
\begin{align*}
& s^{0,0}=-1.0 \\
& s^{n, 0}=s^{n-1,0}\left(\frac{2 n-1}{n}\right) \\
& s^{n, 1}=s^{n, 0}\left(\frac{2 n}{n+1}\right)^{1 / 2} \\
& s^{n, m}=s^{n, m-1}\left(\frac{n-m+1}{n+m}\right)^{1 / 2} \tag{20}
\end{align*}
$$

To introduce secular change coefficients into the equations for the potential function and its three orthogonal components, each coefficient in the terms of internal origin are expressed as follows:

$$
g^{n, m}=g^{n, m, 0}+g^{n, m, t} t+g^{n, m, t t} t^{2}
$$

and

$$
\begin{equation*}
h^{n, m}=h^{n, m, 0}+h^{n, m, t} t+h^{n, m, t t} t^{2} \tag{21}
\end{equation*}
$$

Hence, the complete basic formulation including the simple external field using the Schmidt quasi-normalized functions $P_{n}^{m}(\theta)$ is given by

$$
\begin{align*}
& v=a \sum_{n=1}^{\infty} \sum_{m=0}^{n}\left(\frac{a}{r}\right)^{n+1}\left(\left(g^{n, m, 0}+g^{n, m, t} t+g^{n, m, t t_{t}}\right) \cos m \phi\right. \\
&\left.+\left(h^{n, m, 0}+h^{n, m, t} t+h^{n, m, t t_{t} 2}\right) \sin m \phi\right) P_{n}^{m}(\theta) \\
& \quad-r E_{1} P_{1}^{0}(\theta)-r E_{2} \cos \phi P_{1}^{1}(\theta)-r E_{3} \sin \phi P_{1}^{1}(\theta) . \tag{22}
\end{align*}
$$

The orthogonal components are given by

$$
\begin{align*}
& B_{\theta}=\sum_{n=1}^{\infty} \sum_{m=0}^{n}\left(\frac{a}{r}\right)^{n+2}\left(\left(g^{n, m, 0}+g^{n, m, t} t+g^{n, m, t t_{t} 2}\right) \cos m \phi\right. \\
& \left.+\left(h^{n, m, 0}+h^{n, m, t} t+h^{n, m, t t} t^{2}\right) \sin m \phi\right) \frac{\partial P_{n}^{m}(\theta)}{\partial \theta} \\
& +\mathrm{E}_{1} \sin \theta-\mathrm{E}_{2} \cos \phi \cos \theta-\mathrm{E}_{3} \sin \phi \cos \theta \tag{23}\\
& B_{\phi}=\sum_{n=1}^{\infty} \sum_{m=0}^{n}\left(\frac{a}{r}\right)^{n+2} \frac{m}{\sin \theta}\left(\left(-g^{n, m, 0}-g^{n, m, t} t-g^{n, m, t t_{t} 2}\right) \sin m \phi\right. \\
& \left.+\left(h^{n, m, 0}+h^{n, m, t} t+h^{n, m, t t} t^{2}\right) \cos m \phi\right) P_{n}^{m}(\theta) \\
& +E_{2} \sin \phi-E_{3} \cos \phi \tag{24}\\
& B_{r}=\sum_{n=1}^{\infty} \sum_{m=0}^{n}\left(\frac{a}{r}\right)^{n+2}(n+1)\left(\left(g^{n, m, 0}+g^{n, m, t} t+g^{n, m, t t} t^{2}\right) \cos m \phi\right.
\end{align*}
$$

$$
\begin{align*}
& \left.+\left(h^{n, m, 0}+h^{n, m, t} t+h^{n, m, t t} t^{2}\right) \sin m \phi\right) P_{n}^{m}(\theta) \\
& -E_{1} \cos \theta-E_{2} \cos \phi \sin \theta-E_{3} \sin \phi \sin \theta \tag{25}
\end{align*}
$$

Secular change coefficients were not included for the external field.
The Dikewood Corporation has proposed to modify the formulation to include secular change coefficients for the external field in a future contractual effort.

To provide compatibility with the FORTRAN programming system, the spherical-harmonic expansion of the geomagnetic potential function (Eq. (22)) is redefined in terms of subscripts starting at one instead of zero, by letting $N=n+1$ and $M=m+1$. Thus,

$$
\begin{align*}
V=a & \sum_{N=2}^{\infty} \sum_{M=1}^{N}\left(\frac{a}{r}\right)^{N}\left(\left(g_{N, M, 0}+g_{N, M, t^{t}}+g_{N, M, t t^{t}}{ }^{2}\right) \cos (M-1) \phi\right. \\
& \left.+\left(h_{N, M, 0}+h_{N, M, t}{ }^{t}+h_{N, M, t t^{2}}\right) \sin (M-1) \phi\right) P_{N, M}(\theta) \\
& -r E_{1} P_{2,1}(\theta)-r E_{2} \cos \phi P_{2,2}(\theta)-r E_{3} \sin \phi P_{2,2}(\theta) \tag{26}
\end{align*}
$$

The orthogonal components of the magnetic field are given by

$$
\begin{aligned}
B_{\theta}= & \sum_{N=2}^{\infty} \sum_{M=1}^{N}\left(\frac{a}{r}\right)^{N+1}\left(\left(g_{N, M, 0}+g_{N, M, t} t^{N}+g_{N, M, t t^{2}}\right) \cos (M-1) \phi\right. \\
& \left.+\left(h_{N, M, 0}+h_{N, M, t^{t}}+h_{N, M, t t^{2}}{ }^{2}\right) \sin (M-1) \phi\right) \frac{\partial P_{N, M}(\theta)}{\partial \theta}
\end{aligned}
$$

$$
\begin{align*}
& +\mathrm{E}_{1} \sin \theta-\mathrm{E}_{2} \cos \phi \cos \theta-\mathrm{E}_{3} \sin \phi \cos \theta \quad, \tag{27}\\
& B_{\phi}=\sum_{N=2}^{\infty} \sum_{M=1}^{N}\left(\frac{a}{r}\right)^{N+1} \frac{M-1}{\sin \theta}\left(\left(-g_{N, M, 0}-g_{N, M, t^{t}}-g_{N, M, t t^{\prime}}{ }^{2}\right) \sin (M-1) \phi\right. \\
& +\left(h_{N, M, 0}+h_{N, M, t}+h_{\left.N, M, t t^{2}\right)} \cos (M-1) \phi \quad P_{N, M}(\theta)\right. \\
& +\mathrm{E}_{2} \sin \phi-\mathrm{E}_{3} \cos \phi \quad, \tag{28}\\
& B_{r}=-\sum_{N=2}^{\infty} \sum_{M=1}^{N}\left(\frac{a}{r}\right)^{N+1} N\left(\left(g_{N, M, 0}+g_{N, M, t} t+g_{N, M, t t} t^{2}\right) \cos (M-1) \phi\right. \\
& \left.+\left(h_{N, M, 0}+h_{N, M, t}+h_{N, M, t t^{t}}{ }^{2}\right) \sin (M-1) \phi\right) P_{N, M}(\theta) \\
& -\mathrm{E}_{1} \cos \theta-\mathrm{E}_{2} \cos \phi \sin \theta-\mathrm{E}_{3} \sin \phi \sin \theta \quad . \tag{29}
\end{align*}
$$

The above formulation is rigorously correct only for a spherical earth. It is obvious that as the accuracy of evaluation of the geomagnetic field increases, it will eventually be necessary to take the earth's true shape into account. So long as the evaluation of the harmonic coefficients is done in spherical coordinates, r, θ, and ϕ, the resulting fields B_{r}, B_{θ}, and B_{ϕ} will be in strict geocentric directions. The only constant in the potential function pertaining to the earth is the radius a here chosen to be the mean radius or 6371.2 km . The only problem is that of converting positions in geodetic coordinates to geocentric coordinates. Both the Fit and

- Error programs perform coordinate conversion for the oblateness of the earth only. Referring to Fig. 2, we can write:

Fig. 2

$$
\begin{equation*}
\tan \psi=\frac{h \sqrt{A^{2} \cos ^{2} \lambda+B^{2} \sin ^{2} \lambda}+\mathrm{B}^{2}}{\mathrm{~h} \sqrt{\mathrm{~A}^{2} \cos ^{2} \lambda+\mathrm{A}^{2} \sin ^{2} \lambda}+\mathrm{A}^{2}} \tan \lambda \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
R^{2}=h^{2}+2 h \sqrt{A^{2} \cos ^{2} \lambda+B^{2} \sin ^{2} \lambda}+\frac{A^{4} \cos ^{2} \lambda+B^{4} \sin ^{2} \lambda}{A^{2} \cos ^{2} \lambda+B^{2} \sin ^{2} \lambda} \tag{31}
\end{equation*}
$$

where:
$h=$ height above the geoid
$\psi=$ geocentric latitude $\left(90^{\circ}-\theta\right)$
$\boldsymbol{\lambda}=$ geodetic latitude
$R=$ geocentric distance
$A=$ mean equatorial radius of 6378.165 km
$B=$ polar radius of 6356.783

Using λ and h, the geocentric quantities $\theta=90-\psi$ and R can then be calculated. The conversion from B_{r} and B_{θ} to X and Z can then be done by the rotation:

$$
\begin{align*}
& \mathrm{X}=-\mathrm{B}_{\theta} \cos (\lambda-\psi)-\mathrm{B}_{\mathrm{r}} \sin (\lambda-\psi) \tag{32}\\
& \mathrm{Z}=\mathrm{B}_{\theta} \sin (\lambda-\psi)-\mathrm{B}_{\mathrm{r}} \cos (\lambda-\psi) \tag{33}
\end{align*}
$$

To complete the coordinate systems, note that

$$
Y=B_{\phi}
$$

Geomagnetic data have been assembled from many sources. Hence the reliability of the information varies. Since instrument accuracy and some other factors are known for the different data sources, quantitative estimates of reliability can be made. These reliability estimates are the basis for a system of geomagnetic data weights. Table 1 below lists the standard error associated with the different data sources.

The quantities measured in Gamma were weighted inversely as the standard error listed. Thus values of H measured at an observatory would have a weighting factor of $1 / 5$ and values of H measured in Canada would have a weighting factor of $1 / 60$, so that the observatory data would count 12 times as much as the Canadian data. For those quantities measured in
in degrees, the effect of the error is greater for points where the field is stronger. Thus, these data were weighted by the factor $\frac{1}{\delta D \cdot H}$ for D and $\frac{1}{\delta I \cdot F}$ for I.

Table 1
Estimated Standard Errors

	$\delta \mathrm{D}^{\circ}$	δI^{0}	$\underline{\delta H^{Y}}$	$\underline{\delta} Z^{Y}$	$\delta \mathrm{F}^{\gamma}$
Observatory	0.0033	0.006	5	15	15
Land Survey	0.1	0.1	30	50	-
Air Survey	0.3	0.1	-	-	30
Shipboard	0.083	0.083	25	-	-
Satellite	-	-	-	-	10
Towed magnetometer (proton)	-	-	-	-	10
Towed magnetometer (fluxgate)	-	-	-	-	40
Repeat observations	0.033	0.083	5	-	2
Canadian data	0.3	-	60	60	-

3. 0 JENSEN'S FIT PROGRAM

Jensen's Fit Program is simply a computer program for determining small corrections to an already good set of parameters for the sphericalharmonic expansion of the geomagnetic function.

The general scheme for the program is a common least squares approach. The best available estimate of the coefficients of the potential function are used to estimate the magnetic field for observation locations.

Then the actual observations are compared with these estimates and corrections for the potential function coefficients are computed from all available data, both old and new, via the method of least squares. Since the corrections are not optimum, the procedure must be repeated until the corrections are no longer significant. Hence much computer time is consumed each time the coefficients are up-dated with new data.

The procedure is to express the geomagnetic measurements in terms of the field components X, Y, and Z developed in Section 2.0 of this report. As functions of the g's and h's, these expressions are expanded into Taylor series that include only linear terms. Then, via the method of least squares, corrections for the improvement of the g's and h's are estimated. These corrections are applied and the procedure repeated until the g and h parameters converge.

As an example of a Taylor's expansion, consider the measurement declination,

$$
\begin{equation*}
D=\tan ^{-1} \frac{Y}{X}=\tan ^{-1} \frac{B_{\phi}}{-B_{\theta} \cos (\lambda-\psi)-B_{r} \sin (\lambda-\psi)} \tag{34}
\end{equation*}
$$

As a function of X and Y, we can write an algebraic expression for declination first in terms of B_{r}, B_{θ}, and B_{ϕ} as is done above and then in terms of the $g^{\prime} s$ and h 's of the potential function. The Taylor's expansion for D as a function of a single g and h is as follows:

$$
\begin{equation*}
\mathrm{D}(\mathrm{~g}+\Delta \mathrm{g}, \mathrm{~h}+\Delta \mathrm{h}) \approx \mathrm{D}(\mathrm{~g}, \mathrm{~h})+\Delta \mathrm{g} \frac{\partial \mathrm{D}(\mathrm{~g}, \mathrm{~h})}{\partial \mathrm{g}}+\Delta \mathrm{h} \frac{\partial \mathrm{D}(\mathrm{~g}, \mathrm{~h})}{\partial \mathrm{h}} \tag{35}
\end{equation*}
$$

Now the term on the left is the observation while $D(g, h)$ is a computed or expected measurement based on the best available set of g and h parameters. On rearranging this equation, we see that the error (or residue),

$$
\begin{equation*}
\mathrm{D}(\mathrm{~g}+\Delta \mathrm{g}, \mathrm{~h}+\Delta \mathrm{h})-\mathrm{D}(\mathrm{~g}, \mathrm{~h})=\Delta \mathrm{g} \frac{\partial \mathrm{D}(\mathrm{~g}, \mathrm{~h})}{\partial \mathrm{g}}+\Delta \mathrm{h} \frac{\partial \mathrm{D}(\mathrm{~g}, \mathrm{~h})}{\partial \mathrm{h}} \tag{36}
\end{equation*}
$$

is linear in the correction terms $\Delta \mathrm{g}$ and $\Delta \mathrm{h}$. Hence, a standard leastsquares procedure can be used to find values for these corrections. These corrections are then applied to each of the coefficients, and the procedure repeated until the desired accuracy is obtained. It should be recognized at this point that g and h as here used can and do represent a large group of parameters. The number of parameters is determined by the limits on the summations in the potential function.

Since this linear expression resulted from a Taylor series that was truncated after the linear terms, it is accurate only as long as the summation term is small compared with the expected value. This requirement is not difficult to meet since there are several sets of coefficients available that represent the geomagnetic potential with very small error.

Similar expressions for dip,

$$
\begin{equation*}
\operatorname{dip}=\tan ^{-1} \frac{Z}{H} \tag{37}
\end{equation*}
$$

horizontal field,

$$
\begin{equation*}
\mathrm{H}=\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right)^{1 / 2} \tag{38}
\end{equation*}
$$

total field,

$$
\begin{equation*}
T=\left(X^{2}+Y^{2}+Z^{2}\right)^{1 / 2} \tag{39}
\end{equation*}
$$

and the X, Y, and Z field components can be used to estimate the corrections for the g's and h's. It is also possible to mix the use of geomagnetic measurements so long as the corresponding expression is used for the g and h corrections.

The coefficients of the set of simultaneous equations form a symmettic matrix. To conserve computer storage, and hence to permit the estimation of a larger number of g's and h's, only half of these coefficients are stored in the computer program. If one thinks of the complete array required for the normal equations as consisting of the square matrix of the coefficients of the unknowns plus two additional columns, one for the observation terms and the other for the computation check sums, then the program stores the upper half of the square matrix including the diagonal terms and the two additional columns. This array, which is illustrated in Fig. 3 for a system of five unknowns, is stored by rows in a one dimensional array named D in the computer program. In the illustration, the usual two dimensional Fortran subscript is equated with the corresponding position in the one dimensional D array. Given the subscript (I, J) for any element in the complete rectangular array, its position in the D array is determined by

$$
\begin{equation*}
K=I *(N O R+2)-I *(I-1) / 2+J-N O R-2 \tag{41}
\end{equation*}
$$

where NOR is the number of rows in the complete matrix. To illustrate how this formula determines the position in the D array, it is rewritten as follows:

$$
\begin{equation*}
\mathrm{K}=\mathrm{I} *(\mathrm{NOR}+2)-\mathrm{I} *(\mathrm{I}-1) / 2+\mathrm{J}-\mathrm{NOR}-2 \tag{41}
\end{equation*}
$$

Abstract

Obser- vation Check Column Sum $(1,1)=D(1) \quad(1,2)=D(2) \quad(1,3)=D(3) \quad(1,4)=D(4) \quad(1,5)=D(5) \quad D(6) \quad D(7)$ $(2,2)=D(8)$ $(2,3)=D(9)$ $(2,4)=D(10)$ $(2,5)=D(11) \quad D(12) \quad D(13)$ $(3,3)=D(14)$ $(3,4)=D(15)$ $(3,5)=D(16) \quad D(17) \quad D(18)$ $(4,4)=D(19) \quad(4,5)=D(20) \quad D(21) \quad D(22)$ $(5,5)=D(23) \quad D(24) \quad D(25)$

Fig. 3
Upper Triangular Matrix Storage (illustrated with a 5×5 matrix)
or

$$
\begin{equation*}
K=(I-1) *(N O R+2)-I *(I-1) / 2+J . \tag{42}
\end{equation*}
$$

Now consider two positional notations. The first is the position in the complete array from which the array in Fig. 3 was taken. Number the elements in this complete array from left to right by rows. The second notation is the
one used for the subscripts of D in Fig. 3. Then the interpretation of each of the three terms in the K equation is as follows:

$$
\left.\begin{array}{rl}
(\mathrm{I}-1) *(\text { NOR }+2)= & \begin{array}{l}
\text { position preceding the first position in row } \mathrm{I} \\
\\
\text { of the complete rectangular array, i. e., each } \\
\\
\\
\text { row has NOR+2 elements and this is multi- } \\
\text { plied by the row number less one. For row } 1,
\end{array} \\
\text { this position is the position numbered zero or } \\
& \text { one less than position one. }
\end{array}\right\}
$$

Each entry in the computation check column is the sum of the coefficients of the parameters in the respective row. For example, in Fig. 3, the third term in this column will be stored in $D(18)$ and is the sum

$$
D(3)+D(9)+D(14)+D(15)+D(16)
$$

The computation check column is a pseudo-observation column in which all of the unknowns are assumed to be 1.0. Hence on solution of the system with this pseudo-observation column, estimates of the unknowns should approximate 1.0. Their failure to do so indicates the precision of the true estimates made from the observation terms themselves.

The procedure employed for the solution of the least squares equations is a modification of the common Gauss elimination method. The modification consists of computing the "back solution" at the same time that the "forward solution" is computed, i. e., the matrix of coefficients (here assumed to be the complete square array) is diagonalized at the same time as it is made into a triangle.

In the modified Gauss elimination procedure, the following sequence of operations is performed for each row:
(1) Each element in the row (beginning with the diagonal element) is divided by the diagonal element. Let the diagonal row and diagonal column be defined as the matrix row and column respectively that contain this element.
(2) Then beginning with the first column to the right of the diagonal column, each element in every row other than the diagonal row has subtracted from it the product of the corresponding element in the diagonal row and the corresponding element in the diagonal column.

From the procedure above, one can see that as each row is considered at step (1), the corresponding complete column is required for step (2). This column is contained in the triangle array D.

The solution of the set of simultaneous least squares equations yields adjustments or corrections for the parameters based on the average
observation time. The parameters for starting the program are based on the year 1960. Hence, the corrections must be computed for 1960 instead of the average observation time. To do this, we note that $g_{N, M, 0}$ for time t is estimated by

$$
\begin{equation*}
\mathrm{g}_{\mathrm{N}, \mathrm{M}, 0}+\mathrm{g}_{\mathrm{N}, \mathrm{M}, \mathrm{t}} \mathrm{t}^{\mathrm{t}}+\mathrm{g}_{\mathrm{N}, \mathrm{M}, \mathrm{tt}^{t^{2}}} \tag{43}
\end{equation*}
$$

for time zero. Adding another subscript to indicate epoch, this relation may be put into an equation as follows:

$$
\begin{equation*}
g_{N, M, 0, t}=g_{N, M, 0,0}+g_{N, M, t, 0}+g_{N, M, t t, 0} t^{2} \tag{44}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\mathrm{g}_{\mathrm{N}, \mathrm{M}, 0,0}=\mathrm{g}_{\mathrm{N}, \mathrm{M}, 0, \mathrm{t}}+\mathrm{g}_{\mathrm{N}, \mathrm{M}, \mathrm{t}, \mathrm{t}^{\mathrm{t}}}+\mathrm{g}_{\mathrm{N}, \mathrm{M}, \mathrm{tt}, \mathrm{t}^{t^{2}}} \tag{45}
\end{equation*}
$$

Taking differences with respect to the g's,

$$
\begin{equation*}
\Delta g_{N, M, 0,0}=\Delta g_{N, M, 0, t}+\Delta g_{N, M, t, t^{t}}+\Delta g_{N, M, t t, t^{t}}{ }^{2} \tag{46}
\end{equation*}
$$

we obtain the correction for $g_{N, M, 0}$ at time zero from the corrections at time t. In a similar manner the correction for $g_{N, M, t}$ at time zero from the corrections at time t can be shown to be

$$
\begin{equation*}
\Delta \mathrm{g}_{\mathrm{N}, \mathrm{M}, \mathrm{t}, 0}=\Delta \mathrm{g}_{\mathrm{N}, \mathrm{M}, \mathrm{t}, \mathrm{t}}+2 \Delta \mathrm{~g}_{\mathrm{N}, \mathrm{M}, \mathrm{tt}, \mathrm{t}^{\mathrm{t}}} \tag{47}
\end{equation*}
$$

Similar expressions apply to the h's.

In Appendix A, Jensen's complete Fit program is listed. Appendix B is a brief description and cross reference of the program. Appendix C is a flow chart of Jensen's Fit program.

4. 0 WALL'S ERROR

The following derivation establishes the relationship between errors in the given data and errors in the coefficients determined by a least-squares procedure. Assume that the values y_{i} are measured at points having coordinates $X_{i}=\left(x_{1 i}, x_{2 i}, x_{3 i}, x_{4 i}\right)$ and that it is desired to fit a curve of the form $y=\sum_{n} a_{n} f_{n}(X)$ to the data. In this equation, a_{n} corresponds to the g's and h's in the spherical-harmonic expansion of the geomagnetic potential function and $f_{n}(x)$ corresponds to the known coefficients which are, incidentally, all functions of the position X in time and space. The least squares procedure involves the calculation of a vector \underline{v} whose elements are

$$
v_{n}=\sum_{i} f_{n}\left(X_{i}\right) y_{i}
$$

and a matrix \underline{A} whose elements are

$$
A_{m n}=\sum_{i} f_{m}\left(X_{i}\right) f_{n}\left(X_{i}\right)
$$

The coefficients a_{n} of the fitted curve are then found by solving the matrix equations

$$
\underline{A} \cdot \underline{a}=\underline{v}
$$

for the coefficients a_{n}, the elements of vector \mathfrak{a}. The solution is

$$
\underline{\mathrm{a}}=\underline{\underline{A}}^{-1} \cdot \underline{\mathrm{v}}
$$

where \underline{A}^{-1} is the inverse of $\underline{\underline{A}}$, and the coefficients are

$$
\begin{equation*}
a_{n}=\sum_{j} A^{n j} v_{j}=\sum_{j} \sum_{i} A^{n j} f_{j}\left(X_{i}\right) y_{i} \tag{48}
\end{equation*}
$$

Now, since the y_{i} are independent measurements, the standard error $\sigma_{a_{n}}$ of coefficient a_{n} can be found from the expression

$$
\sigma_{a_{n}}^{2}=\sum_{i}\left(\frac{\partial a_{n}}{\partial y_{i}}\right)^{2} \sigma_{y_{i}}^{2}
$$

Assuming that all $\sigma_{\mathrm{y}_{\mathrm{i}}}$'s have the same value $\sigma_{\mathrm{y}^{\prime}}{ }^{*}$ and using values for the partial derivatives obtained from Eq. (48),

$$
\begin{aligned}
\sigma_{a_{n}}^{2} & =\sigma_{y^{\prime}}^{2} \sum_{i}\left(\frac{\partial a_{n}}{\partial y_{i}}\right)^{2}=\sigma_{y^{\prime}}^{2} \sum_{i}\left[\sum_{j} A^{n j} f_{j}\left(X_{i}\right)\right]^{2} \\
& =\sigma_{y^{\prime}}^{2} \sum_{i} \sum_{j} \sum_{k} A^{n j} A^{n k} f_{j}\left(X_{i}\right) f_{k}\left(X_{i}\right)
\end{aligned}
$$

* The assumption that all $\sigma_{\mathrm{y}_{\mathrm{i}}}$ are the same can easily be satisfied if weighting factors are used when the a_{n} are determined. The value of $\sigma_{y^{\prime}}$ should be thought of as $W_{i} \sigma_{y_{i}}$ where W_{i} is the normalized weight chosen to make the value a constant for all i .

Reordering this finite sum yields

$$
\begin{aligned}
\sigma_{a_{n}}^{2} & =\sigma_{y^{\prime}}^{2} \sum_{j} \sum_{k} A^{n j} A^{n k} \sum_{i} f_{j}\left(X_{i}\right) f_{k}\left(X_{i}\right) \\
& =\sigma_{y^{\prime}}^{2} \sum_{j} \sum_{k} A^{n j} A^{n k} A_{j k} \quad .
\end{aligned}
$$

Note that

$$
\sum_{j} A^{n j} A_{j k}=\delta_{n k}
$$

and therefore

$$
\begin{equation*}
\sigma_{a_{n}}^{2}=\sigma_{y^{\prime}}^{2} A^{n n} \tag{49}
\end{equation*}
$$

Eq. (49) is the relation allowing the accuracy of the coefficients to be determined when the accuracy of the given data is known.

To calculate the accuracy of the field determined by the curve-fitting process, assume again that a function of the form $y=\sum_{\mathrm{n}} \mathrm{a}_{\mathrm{n}} \mathrm{f}_{\mathrm{n}}(\mathrm{X})$ is to be fitted to the given data. The functional form itself gives

$$
\begin{equation*}
\frac{\partial y}{\partial y_{i}}=\sum_{n}\left(\frac{\partial a_{n}}{\partial y_{i}}\right) f_{n}(X) \tag{50}
\end{equation*}
$$

and the fact that the values y_{i} are independently measured allows the expression

$$
\sigma_{y}^{2}=\sum_{i}\left(\frac{\partial y}{\partial y_{i}}\right)^{2} \sigma_{y_{i}}^{2}
$$

Assuming all $\sigma_{y_{i}}=\sigma_{y^{\prime}}$ as before, and using Eq. (50),

$$
\begin{aligned}
\sigma_{y}^{2} & =\sigma_{y^{\prime}}^{2} \sum_{i}\left(\frac{\partial y}{\partial y_{i}}\right)^{2}=\sigma_{y^{\prime}}^{2} \sum_{i}\left[\sum_{n}\left(\frac{\partial a_{n}}{\partial y_{i}}\right)_{n} f_{n}(X)\right]^{2} \\
& =\sigma_{y^{\prime}}^{2} \sum_{i} \sum_{n} \sum_{m} \frac{\partial a_{n}}{\partial y_{i}} \frac{\partial a}{\partial y_{i}} f_{n}(X) f_{m}(X)
\end{aligned}
$$

Evaluating the partial derivatives from Eq. (48),

$$
\begin{aligned}
\sigma_{y}^{2} & =\sigma_{y^{\prime}}^{2} \sum_{i} \sum_{n} \sum_{m}\left\{\left[\sum_{j} A^{n j} f_{j}\left(X_{i}\right)\right]\left[\sum_{k} A^{m k} f_{k}\left(X_{i}\right)\right] f_{n}(X) f_{m}(X)\right\} \\
& =\sigma_{y^{\prime}}^{2} \sum_{i} \sum_{n} \sum_{m} \sum_{j} \sum_{k} A^{n j} A^{m k} f_{j}\left(X_{i}\right) f_{k}\left(X_{i}\right) f_{n}(X) f_{m}(X)
\end{aligned}
$$

Reordering terms yields

$$
\begin{aligned}
\sigma_{y}^{2} & =\sigma_{y^{\prime}}^{2} \sum_{n} \sum_{m} \sum_{j} \sum_{k}\left[A^{n j} A^{m k} f_{n}(X) f_{m}(X) \sum_{i} f_{j}\left(X_{i}\right) f_{k}\left(X_{i}\right)\right] \\
& =\sigma_{y^{\prime}}^{2} \sum_{n} \sum_{m} \sum_{j} \sum_{k}\left[A^{n j} A^{m k} f_{n}(X) f_{m}(X) A_{j k}\right]
\end{aligned}
$$

$$
=\sigma_{y^{\prime}}^{2} \sum_{n} \sum_{m} \sum_{k} A^{m k} f_{n}(X) f_{m}(X) \delta_{n k}
$$

since $\sum A^{n j} A_{j k}=\delta_{n k}$. Summing the remaining terms over k yields j

$$
\begin{equation*}
\sigma_{y}^{2}=\sigma_{y^{\prime}}^{2} \sum_{n} \sum_{m} a^{m n} f_{n}(X) f_{m}(X) \tag{51}
\end{equation*}
$$

Wall's Error program is a computer implementation of Eq. (51). To provide data for the Error program, a minor change was made in Daniels' Matrix subroutine. Daniels' Matrix inverts the least squares matrix that is set up by Jensen's Fit program. However, Matrix records only the diagonal elements of this inverse. To estimate the error of the geomagnetic field computed from the parameters calculated by Jensen's Fit, the complete inverse is needed. (Reference Eq. (51) above. A^{mn} are the elements of this inverse.) Hence, the Matrix subroutine was modified so that the complete inverse plus the parameters of the potential function and certain other miscellaneous constants are recorded on magnetic tape 1. Then, whenever the Error program is used, the required data will be available from the last run of Daniels' Matrix subroutine.

On comparing the listing of Jensen's Fit in Appendix A and Wall's Error in Appendix D, one sees much similarity. The principal differences include: (1) the initial input data are different; (2) the Fit program receives
all data from the RDATA subroutine while the Error program generates its own data to form a grid over the earth's surface; and (3) instead of computing the D matrix as in the Fit program, the Error program computes the standard error of estimate according to Eq. (51) above.

The errors computed are all in gammas. For dip and declination, points and errors expressed in degrees are more meaningful. Hence, immediately before printout for a grid point, the generated declination and dip and the respective standard errors of estimate are converted to degrees. The formulae for converting these errors are developed below.

For declination, let

$$
\begin{aligned}
& D_{Y}=\text { declination in gammas } \\
& D_{O}=\text { declination in degrees }
\end{aligned}
$$

Note that $H=$ horizontal component of field intensity.

Then

$$
\begin{aligned}
D_{Y} & =D_{o}^{H} \\
D_{o} & =\frac{D_{Y}}{H} \\
\sigma_{D_{O}}^{2} & =\frac{1}{H^{2}} \sigma_{D_{Y}}^{2}+\frac{D_{Y}^{2}}{H^{4}} \sigma_{H}^{2} \\
\sigma_{D_{O}}^{2} & =\frac{1}{H^{2}} \sigma_{D_{Y}}^{2}+\frac{D_{o}^{2}}{H^{2}} \sigma_{H}^{2}
\end{aligned}
$$

$$
\begin{equation*}
\sigma_{D_{o}}^{2}=\frac{\sigma_{\gamma}^{2}+D_{o}^{2} \sigma_{h}^{2}}{H^{2}} \tag{52}
\end{equation*}
$$

For dip, let

$$
\begin{aligned}
& I_{Y}=\text { dip in gammas } \\
& I_{o}=\text { dip in degrees }
\end{aligned}
$$

Note that

$$
F=\text { total field intensity. }
$$

Then

$$
\begin{aligned}
I_{Y} & =I_{o} F \\
I_{o} & =\frac{I_{Y}}{F} \\
\sigma_{I_{o}}^{2} & =\frac{1}{F^{2}} \sigma_{I_{Y}}^{2}+\frac{I_{Y}^{2}}{F^{4}} \sigma_{F}^{2} \\
\sigma_{I_{o}}^{2} & =\frac{1}{F^{2}} \sigma_{I_{Y}}^{2}+\frac{I_{O}^{2}}{F^{2}} \sigma_{F}^{2} \\
\sigma_{I_{o}}^{2} & =\frac{\sigma_{Y}^{2}+I_{o}^{2} \sigma_{F}^{2}}{F^{2}}
\end{aligned}
$$

In Appendix D, Wall's complete Error program is listed. Appendix E is a brief description and cross reference of the program. Appendix F is a flow chart of Wall's Error program.

5. 0 CONCLUSIONS

While Jensen's Fit program including the external field provisions and Wall's Error program are in a sense complete, there are three minor tasks related to these projects that should be done. The first of these tasks concerns adding secular change coefficients for the external field. If an estimate of the external field based on a large data sample is as significant as Dikewood's initial estimate, then further calculations to determine if this field is time-dependent seem necessary.

The second task concerns the addition of the external field variables to Daniels' Matrix subroutine. This, of course, is absolutely essential if one wishes to include the external field parameters when using Wall's Error. The third task is the addition of the secular change coefficients for the external field to the Error program.

Future programs in geomagnetism will require new analytical techniques. The large volume of satellite data will necessitate a data reduction procedure preceding any data analysis. At two points per second, each orbit will produce about 10,800 data points. Some means of reducing these data to a more manageable quantity is imperative. One method recommended would fit a Fourier series to each orbit and then select points from this equation at equal distances along the orbit. Another recommendation is to try the same approach with elliptic functions.

Since this type of data reduction scheme preserves information on individual orbits, in a very short time the quantity of data will still become
massive. A scheme to preserve orbital data in terms of secular variables would provide for even more reduction of the data, and hence would have some merit. If one views the potential function as a changing surface in three dimensional space, then, at a specific time in a very small area, it will appear as a simple plane. (For this discussion, the size of such a small area is not delineated.)

Now assuming that a simple plane can be used to approximate the potential function at a specific time in a small area, one might use all data in that area without regard to orbit to determine this plane as a function of time. Then in a manner similar to that which would be used for orbital data, one or more points could be chosen on the plane to represent the small area. One would hope that the plane would be simple enough in form to permit direct as opposed to iterative estimation of the parameters required to describe it. If this is possible, the reduction of satellite data and the estimation of the potential function parameters from the reduced data will be a manageable problem. In fact, such reduced data can be used with existing programs to estimate the potential function parameters.

By generating pseudo-satellite data, any or all of these proposed data reduction procedures can be studied. The utility of the results of these studies will be limited only by our ability to generate the pseudo-data.

In an appendix to our December, 1964 report, a new technique for handling geomagnetic data was outlined. Several questions exist concerning
the general use of this method. For example, how are areas where no data exists handled? Most if not all of such questions do not apply where satellite data is concerned. Hence, the method as outlined can be developed into a system for processing satellite data only.

The problem of the westward drift of the geomagnetic field has been brought to the attention of Dikewood personnel. A cursory examination of the problem suggests that some form of correlation analysis may be useful in establishing the significance and hence validity of the drift.

The above problems were recognized by The Dikewood Corporation during previous work for the Goddard Space Flight Center. We look forward to future contractual effort in the field of geomagnetism.

PROGRAM LISTING FOR JENSEN'S FIT PROGRAM

COMMON /DD/D(7500)
COMMON /DATAR/ISKIP,FLATT,ELONG,ALT,TIME,DECL,DECLWT,DIP,DIPWT,HOR \$, HORWT, B, BWT, X, XWT , Y, YWT, Z, ZWT
COMMON /COEFS/G(9,9), $\mathrm{H}(9,9), \operatorname{GT}(9,9), \operatorname{HT}(9,9), \operatorname{GTT}(9,9), \operatorname{HTT}(9,9)$, MAXD
DIMENSION ERR (18, 36), FNO2 (18, 36), JJERR(18), F(127), SIDE (126)
DIMENSION SHMIDT $(9,9)$
DIMENSION DXDH $(9,9)$, DYDH $(9,9), \operatorname{DZDH}(9,9)$
DIMENSION DXDG $(9,9), \operatorname{DYDG}(9,9), \operatorname{DZDG}(9,9)$
DIMENSION CP(9),SP(9), P(9,9),DP(9,9), CONST $(9,9)$
DIMENSION IERR(200),TYPE(8́), SIG1(8), FNO1(8), SWT1(8), WD(7)
I NTEGER EXTFLD
DATA RAD, A, FLAT, (TYPE (1) , $1=1,8$), PI, PI $2, \operatorname{LINE} / 57.2957795,6378.165,29$
$18.3,1 \mathrm{HD}, 1 \mathrm{HI}, 1 \mathrm{HH}, 1 \mathrm{HB}, 1 \mathrm{HZ}, 1 \mathrm{HX}, 1 \mathrm{HY}, 1 \mathrm{H}^{*}, 3.14159265,6.28318530,0 /$
FLAT=1.-1./FLAT
COMPUTATION WITH SPHERICAL EARTH
FLAT=1.
$A=6371.2$
DO $1 \quad \mathrm{I}=1,18$
00 i $j=1,36$
FNO2 ($1, J$) $=0$.
$\operatorname{ERR}(1, j)=0$.
CONTINUE
MAXD $=7500$
$\mathrm{A} 2=\mathrm{A} * * 2$
$\mathrm{A} 4=\mathrm{A} * * 4$
$B 2=(A * F L A T) \star * 2$
$A 2 B 2=A 2 *(1 .-F L A T * * 2)$
A4B4=A4* (1.-FLAT**4)
$\operatorname{READ}(5,2) \times 1 D 1, \times 1 D 2$
FORMAT (2A6, 24X, 12)
READ (5, 3) NMAX, NMAXT, NMAXTT, NSKIP, ITER
FORMAT (515)
READ $(5,4)$ ERRLIM, AVETIM
FORMAT (2F10.0)
READ $(5,5)$ EXTFLD
FORMAT (15)
WRITE (6,6) NMAX, NMAXT, NMAXTT, NSKIP, ITER,ERRLIM
FORMAT (6H1NMAX $=, 15,3 X, 6 H N M A X T=, 15,3 X, 7 H N M A X T T=, 15,3 X, 6 H N S K I P=, 15$, $\$ 3 \mathrm{X}, 5 \mathrm{HITER}=15,3 \mathrm{X}, 7 \mathrm{HERRL} I M=, F 10.0$)
WRITE $(6,7)$ XID1, XID2
FORMAT (1X,2A6)
COMPUTE CONSTANTS REQUIRED FOR GENERATINGLEGENDRE POLYNOMIALS
DO $8 \mathrm{~N}=2$, NMAX
$\mathrm{FN}=\mathrm{N}$
DO $8 M=1, N$
FM=M
$\operatorname{CONST}(N, M)=((F N-2.0) * * 2-(F M-1.0) * * 2) /(F N+F N-3.0) /(F N+F N-5.0)$
CONTINUE
COMPUTE CONSTANTS TO CONVERT FROM GAUSS TO SCHMIDT NORMALIZATION
$\operatorname{SHMIDT}(1,1)=-1.0$
DO $9 \mathrm{~N}=2$, NMAX
$\operatorname{SHMIDT}(N, 1)=\operatorname{SHMIDT}(N-1,1) *(F N+F N-3.0) /(F N-1.0)$
FACT=2.0
DO $9 M=2, N$
FM=M
$\operatorname{SHMIDT}(N, M)=\operatorname{SHMIDT}(N, M-1) * S Q R T((F N-F M+1.0)$ *FACT/(FN+FM-2.0))
FACT=1.0
SET VALUE OF FIRST LEGENDRE POLYNOMIALS
$P(1,1)=1.0$
$\operatorname{DP}(1,1)=0.0$
SET VALUE OF SIN(M-1)PHI AND $\operatorname{COS}(M-1)$ PHI WHEN $M=1$
$S P(1)=0.0$
$C P(1)=1.0$
READ BEST SET OF PARAMETERS AS FIRST APPROXIMATION
READ $(5,11)$ N,M, GNM, HNM, GTNM, HTNM, GTTNM, HTTNM
FORMAT (2|3,6F11.4)

if (N) $12,13,12$
$G(N, M)=G N M$
$H(N, M)=H N M$
FACT $=1.0$

$$
\text { GT }(N, M)=G T N M
$$

HT $(N, M)=$ HTNM
GTT $(N, M)=G T T N M$
$\operatorname{HTT}(N, M)=H T T N M$
GO TO 10
READ BEST SET FOR EXTERNAL FIELD
READ $(5,14)$ E1,E2,E3
FORMAT $(6 X, 3 F 11.4$)
WRITE $(6,11)$ RECORD STARTING PARAMETERS
WRITE $(6,11)((N, M, G(N, M), H(N, M), G T(N, M), H T(N, M), G T T(N, M), H T T(N, M)$ $\$, M=1, N), N=2, N M A X)$
WRITE (6, 15) E1, E2, E3

DO 120 ITNO=1, ITER
REWIND 2

$$
\text { DO } 16 \quad \mathrm{~J}=1,8
$$

DO $16 \mathrm{~J}=1,8$
SIG1 (J)=0. 101
FNO1 (J) $=0$. 102
SWT1 (J) $=0$. 103
CONTINUE 104
DO 17 I=1,200 105
| $\operatorname{ERR}(1)=0$ 106
CONTINUE 107
DO 18 I=1, MAXD 108
$D(1)=0.0$ 109
18 CONTINUE 110
LINE=0 111
SUMTM=0.0 112
|SK|P=NSKIP 113
READ ONE DATA LINE 114
CALL RDATA 115
WD (1)=DECL 116
$W D(2)=D I P$ 117
$W D(3)=H O R$ 118WD (4) $=\mathrm{B}$$W D(5)=Z119W D(6)=X$120
WD(7) $=\mathrm{Y}$ 122121
IF (ISKIP) 20,79, 20 123
COMPUTE GEOCENTRIC THETA FROM 124
GEODETIC COORDINATES 125
FLATR=FLATT/RAD 126
S|NLA=SIN(FLATR) 127
SINLA2=S I NLA**2 128
DEN2=A2-A2B2*SINLA2 129
DEN=SQRT (DEN2) 130
FAC=((ALT*DEN)+B2)/((ALT*DEN)+A2) 131
THETA=ATAN(FAC*SINLA/(1.E-30+SQRT(1.-SINLA2))) 132
COMPUTE GEOCENTRIC R FROM GEODETIC COORDINATES 133
$R=S Q R T(A L T *(A L T+2 . * D E N)+(A 4-A 4 B 4 * S I N L A 2) / D E N 2)$ 134
COMPUTE SINE AND COSINE OF DIFFERENCE BETWEEN 135
GEODETIC AND GEOCENTRIC LATITUDINAL COORDINATES
GEODETIC AND GEOCENTRIC LATITUDINAL COORDINATES 136
SIND=SIN(FLATR-THETA)137
COSD=SQRT(1.O-SIND*SIND) 138
AOR=6371.2/R 139COS THETA MEASURED FROM POLAR AXIS
$C T=S I N(T H E T A)$ 141SIN THETA MEASURED FROM POLAR AXIS140142
$S T=S Q R T(1.0-C T * C T)$ 143LONGITUDE INDEXLON=AMIN(AMAX (ELONG/10.0+18.0, 1.0), 36.0)LATITUDE INDEX144145146
LAT $=A M I N(A M A X(F L A T T / 10.0+9.0,1.0), 18.0)$ 147
$S P(2)=S I N(E L O N G / R A D)$DO $21 \mathrm{M}=3$, NMAX148
$C P(2)=C O S(E L O N G / R A D)$ 149150
SIN(M-1)PHI, EQ.(5) 151
$S P(M)=S P(2) * C P(M-1)+C P(2) * S P(M-1)$ 152
$\operatorname{COS}(M-1) \mathrm{PHI}, \mathrm{EQ} .(6)$ 153
$C P(M)=C P(2) * C P(M-1)-S P(2) * S P(M-1)$154CONTINUE155
GENERATE ASSOCIATED LEGENDRE POLYNOMIALS 156
DO $24 \mathrm{~N}=2$, NMAX 157
DO $24 \mathrm{M}=1, \mathrm{~N}$ 158
IF (N-M) 23,22,23 159
$P(N, N)=S T * P(N-1, N-1)$160
$\operatorname{DP}(N, N)=S T * D P(N-1, N-1)+C T * P(N-1, N-1)$ 161
GO TO 24 162
$P(N, M)=C T * P(N-1, M)-C O N S T(N, M) * P(N-2, M)$ 163
$D P(N, M)=C T * D P(N-1, M)-S T * P(N-1, M)-C O N S T(N, M) * D P(N-2, M)$ 164
CONTINUE 165INITIALIZE TO COMPUTE X, Y, Z166
$C X=0.0$ 167
$\mathrm{CY}=0.0$
$C Z=0.0$168
169
$A R=A O R * A O R$
$T M=T$ I ME-60.0 170 171
COMPUTE X,Y,Z USING BEST AVAILABLE 172
PARAMETERS 173
DO $25 \mathrm{~N}=2$, NMAX 174
$\mathrm{FN}=\mathrm{N}$ 175
$A R=A R * A O R$ 176
DO $25 \mathrm{M}=1, \mathrm{~N}$ 177
$F M=M-1$ 178
APPLY SCHMIDT NORMALIZATION CONSTANTS 179
AND MUULTiPLY BY (A/R) $+\ldots(N+1)$ 180
$P(N, M)=P(N, M) \star A R * S H M I D T(N, M)$ 181
$\operatorname{DP}(N, M)=D P(N, M) * A R * S H M I D T(N, M)$ 182
$T E M P=F N * P(N, M) * S!N D-D P(N, M) \star C O S D$ 183
$\operatorname{DXDG}(N, M)=T E M P * C P(M)$184
$\operatorname{DXDH}(N, M)=T E M P * S P(M)$ 185
TEMP $=F M * P(N, M) / S T$186
$\operatorname{DYDG}(N, M)=-T E M P * S P(M)$ 187
$\operatorname{DYDH}(N, M)=T E M P * C P(M)$ 188
TEMP $=F N * P(N, M) * C O S D+D P(N, M) * S I N D$ 189
DZDG(N,M)=TEMP*CP(M) 190
$\operatorname{DZDH}(N, M)=T E M P * S P(M)$ 191
ADD TIME TERMS192
$G N M=(T M * G T T(N, M)+G T(N, M)) * T M+G(N, M)$ 193
$H N M=(T M * H T T(N, M)+H T(N, M)) * T M+H(N, M)$ 194
$C X=C X+G N M * D X D G(N, M)+H N M * D X D H(N, M)$ 195
$C Y=C Y+G N M * D Y D G(N, M)+H N M * D Y D H(N, M)$ 196
$C Z=C Z+G N M * D Z D G(N, M)+H N M * D Z D H(N, M)$ 197
CONTINUE 198
IF (EXTFLD) 26, 27, 26 199 200$T 1=E 2 * C P(2)+E 3 * S P(2)$
T2=E1*ST-T1*CT 201
$T 1=E 1 * C T+T 1 * S T$ 202
$C X=C X-T 2 * C O S D+T 1 * S I N D$ 203
$C Y=C Y+E 2 * S P(2)-E 3 * C P(2)$ 204
$C Z=C Z+T 2 * S \mid N D+T 1 * C O S D$ 205

COMPUTE HORIZONTAL, TOTAL FIELD, DIP, AND

COMPUTE HORIZONTAL, TOTAL FIELD, DIP, AND 206 206
DECLINATION
DECLINATION 207 207 208 208
$C F=S Q R T(C H * C H+C Z * C Z)$ 209
$\mathrm{Cl}=2.0 * \operatorname{ATAN}(\mathrm{CZ} /(\mathrm{CF}+\mathrm{CH}))$ 210
$C D=2.0 * A T A N(C Y /(C H+C X))$ 211
COMPUTE COEFFICIENTS OF G(N,M) AND 212
H(N,M) FOR THE NEXT APPROXIMATION 213
$1=1$ 214
IF (DECL) 35,29,35 215
IF (DIP) 42,30,42 216
IF (HOR) 45,31,45 217
IF (B) $48,32,48$ 218
IF (Z) 51,33,51 219
IF (X) 53,34,53 220
IF (Y) 55,19,55 221
COMPUTE COEFFICIENTS WHEN DECLINATION 222
(DECL) IS GIVEN 223
DECL=ARCTAN(Y/X) 224
T1=DDECL/DY 225
T2=DDECL/DX 226
T1=CX/CH 227
T2 $=\mathrm{CY} / \mathrm{CH}$ 228
1 TYPE $=1$ 229
DO $37 \mathrm{~N}=2$, NMAX 230
DO $37 \mathrm{M}=1, \mathrm{~N}$ 231
DDECL/DG(N,M) 232
$F(1)=(T 1 \star D Y D G(N, M)-T 2 * D X D G(N, M))$ 233
IF (M-1) 36,37,36 234
$1=1+1$ 235 236
$F(1)=(T 1 * D Y D H(N, M)-T 2 * D X D H(N, M))$
$F(1)=(T 1 * D Y D H(N, M)-T 2 * D X D H(N, M))$
$1=1+1$ 237 237
$F 1=D E C L / R A D-C D$238
IF (FI-PI) 39,39,38 239 239 240
$F I=F|-P| 2$
GO TO 41 241 241
242
IF (FI+PI) 40,41,41 243$F|=F|+P \mid 2$
244FI=FI*CH
WT=RAD /DECLWT /CH 246245
DECL=0.0
GO TO 57247

C C C 42	$\begin{array}{ll} T 1=D D 1 P / D Z \\ & T 2=D D 1 P / D X \\ T 1=C H / C F & T 3=D D 1 P / D Y \end{array}$	$\begin{array}{r}251 \\ 252 \\ 253 \\ 254 \\ \hline\end{array}$
	T2 $=\mathrm{CZ} * \mathrm{CX} / \mathrm{CH} / \mathrm{CF}$	254
	T3 $=\mathrm{CZ} * \mathrm{CY} / \mathrm{CH} / \mathrm{CF}$	256
	1 TYPE=2	257
	DO $44 \mathrm{~N}=2$, NMAX	258
	DO $44 \mathrm{M}=1$, N	259
C	F(1) $F(1)=D D I P / D G(N, M)$	260
	$F(1)=(T 1 * D Z D G(N, M)-T 2 * D X D G(N, M)-T 3 * D Y D G(N, M))$	261
	IF (M-1) 43,44,43	262
43	$1=1+1$	26
C	$F(1)=D D / P / D H(N, M)$	26
	$F(1)=(T 1 * D Z D H(N, M)-T 2 * D X D H(N, M)-T 3 * D Y D H(N, M))$	265
44	$1=1+1$	266
	$F \mathrm{I}=(\mathrm{DIP} / \mathrm{RAD}-\mathrm{CI}) * C F$	26
	WT $=$ RAD /D \mid PWT/CF	268
	$D \mid P=0.0$	269
	GO TO 57	270
C	COMPUTE COEFFICIENTS WHEN THE HORIZONTAL	27
C	COMPONENT (HOR) IS GIVEN	27
C	HOR=SQRT ($X * X+Y * Y$)	27
C	T1=DHOR/DX	274
C	T2=DHOR/DY	27
45	T $1=$ CX/HOR	276
	T2 2 CY/HOR	27
	$1 \mathrm{TYPE}=3$	278
	DO $47 \mathrm{~N}=2, \mathrm{NMAX}$	279
	DO $47 \mathrm{M}=1, \mathrm{~N}$	28
C	F(1) $=$ DHOR/DG($N, M)$	28
	$F(1)=(T 1 * D X D G(N, M)+T 2 * \operatorname{CDG}(N, M))$	28
	IF (M-1) 46,47,46	28
46	$1=1+1$	28
C		285
	$F(1)=(T 1 * D X D H(N, M)+T 2 * D Y D H(N, M))$	286
47	$1=1+1$	287
	$\mathrm{FI}=\mathrm{HOR}-\mathrm{CH}$	288
	WT $=1.0 / \mathrm{HORWT}$	28
	HOR=0.0	290
	GO TO 57	29
	COMPUTE COEFFICIENTS WHEN TOTAL	29
C	FIELD B IS GIVEN	29
C	$B=S Q R T(X * X+Y * Y+Z * Z)$	29
C	$T 1=D B / D X$	295
C	T2=DB/DY	296
	T3=DB/DZ	29
48	$T 1=C X / B$	298
	T2 $2=C Y / B$	299
	T $3=C Z / B$	300

| TYPE=4
DO $50 \mathrm{~N}=2$, NMAX 302
DO $50 \mathrm{M}=1, \mathrm{~N}$
303
304
$F(1)=(T 1 * \operatorname{DDG}(N, M)+T 2 * D Y D G(N, M)+T 3 * D Z D G(N, M))$
IF $(M-1) 49,50,49306$
$I=I+1$
307
$F(1)=D B / D H(N, M)$
308
$F(I)=(T 1 * \operatorname{DXDH}(N, M)+T 2 * D Y D H(N, M)+T 3 * D Z D H(N, M))$
$\begin{array}{ll}I=I+1 & 310 \\ F I=B-C F & 311\end{array}$
$\mathrm{FI}=\mathrm{B}-\mathrm{CF} \quad 311$
WT=1.0/BWT 312
$\mathrm{B}=0.0$ 313
GO TO 57
C COMPUTE COEFFICIENTS WHEN THE Z COMPONENT IS GIVEN 314 315
DO $52 \mathrm{~N}=2$, NMAX
$F(1)=\operatorname{DZDG}(N, 1)$
317
$1=1+1$
318
DO $52 \mathrm{M}=2, \mathrm{~N}$
319
$F(1)=D Z D G(N, M)$
320
$F(1+1)=D Z D H(N, M) \quad 321$
$1=1+2$
1TYPE=5 323
$\mathrm{FI}=\mathrm{Z}-\mathrm{CZ}$ 324
$W T=1.0 / Z W T$
$Z=0.0$
326
GO TO 57 COMPUTE COEFFICIENTS WHEN THE X COMPONENT IS GIVEN 327
C COMPUTE COEFFICIENTS WHEN THE X COMPONENT IS GIVEN 328
DO $54 \mathrm{~N}=2$, NMAX 329
$F(1)=\operatorname{DXDG}(\hat{N}, \mathrm{i}) \quad 330$
$1=1+1$
DO $54 \mathrm{M}=2, N \quad 332$
$F(1)=D X D G(N, M)$
$F(1+1)=\operatorname{DXD}(N, M)$
$1=1+2$
ITYPE=6
335

$\mathrm{FI}=\mathrm{X}-\mathrm{CX}$	336

WT $=1.0 / X W T \quad 338$
$X=0.0$
GO TO 57
C COMPUTE COEFFICIENTS WHEN THE Y COMPONENT IS GIVEN
55 DO $56 \mathrm{~N}=2$, NMAX
$F(1)=\operatorname{DYDG}(N, 1)$
$1=1+1$
DO $56 \mathrm{M}=2, \mathrm{~N}$
$F(1)=D Y D G(N, M)$
$F(1+1)=\operatorname{CYD}(N, M)$
$1=1+2$
1 TYPE = 7
$F I=Y-C Y$
$W T=1.0 / Y W T$ 351
$Y=0.0$352
ADD TIME** 1 TERMS C 35357$\mathrm{NO}=1-1$
TFACT=TIME-AVETIM 354
355
IF (NMAXT) $58,60,58$ IF (NMAXT) 58,60,58 356$J=1$357
DO $59 \mathrm{~N}=2$, NMAXT 358
$F(1)=F(J) * T F A C T$ 359
$1=1+1$ 360
$J=J+1$ 361
DO $59 \mathrm{M}=2, \mathrm{~N}$ 362
$F(1)=F(J) * T F A C T$ 363
$F(1+1)=F(J+1) * T F A C T$ 364
$I=1+2$ 365
$J=J+2$ 366
CONT I NUE 367
ADD TIME**2 TERMS 368
NONOT=1-1 369
IF (NMAXTT) 61,63,61 370
$J=1$ 371
TFACT=TFACT*TFACT 372
DO $62 \mathrm{~N}=2$, NMAXTT 373
$F(I)=F(J) * T F A C T$ 374
$1=1+1$ 375
$J=J+1$ 376
DO $62 \mathrm{M}=2, \mathrm{~N}$ 377
$F(1)=F(J) * T F A C T$ 378
$F(1+1)=F(J+1)$ *TFACT 379
$1=1+2$ 380
$J=J+2$ 381
CONT INUE 382
IF (EXTFLD) 64,72,64 383
ADD EXTERNAL FIELD TERMS 384
DXDE $1=C T * S I N D-S T * C O S D$ 385
DZDE1=ST*SIND+CT*COSD 386
DXDE 2=CP (2)*DZDE 1 387
DXDE $3=S P(2) * D Z D E 1$ 388
DZDE $2=-C P(2) * D X D E 1$ 389
DZDE $3=-S P(2) * D X D E 1$ 390
GO TO (65,66,67,68,69,70,71), ITYPE 391
COEFFICIENTS WHEN DECLINATION (D) IS GIVEN 392
$F(I)=D D / D E 1$ 393
$F(1)=-T 2 * D \times D E 1$
$1=1+1$394
$F(1)=D D / D E 2$395$F(1)=T 1 * S P(2)-T 2 * D X D E 2$396
$1=1+1$397
398
$F(1)=-T 1 * C P(2)-T 2 * D \times D E 3$ 399
$1=1+1$
GO TO 72
401
COEFFICIENTS WHEN DIP (I) IS GIVEN
F (I) =DI/DE 1
$66 \quad F(1)=T 1 * D Z D E 1-T 2 * D X D E 1$
$1=1+1$

$$
F(1)=D I / D E 2
$$

$F(1)=T 1 * D Z D E 2-T 2 * D X D E 2-T 3 * S P(2)$
$1=1+1$
402
c
C
66
$F(1)=T 1 * D Z D E 2-T 2 * D X D E 2-T 3 * S P(2)$
$1=1+1$
$F(1)=D 1 / D E 3$
$F(1)=T 1 * D Z D E 3-T 2 * D X D E 3+T 3 * C P(2)$
$1=1+1$
GO TO 72
COEFFICIENTS WHEN THE HORIZONTAL COMPONENT (HOR) IS GIVEN $F(1)=D H O R / D E 1$

405
406
407
$1=1+1$
$F(1)=T 1 * D X D E 1$
$1=1+1$
$F(1)=D H O R / D E 2$
$F(1)=T 1 * D X D E 2+T 2 * S P(2)$
$1=1+1$
$F(1)=D H O R / D E 3$
421
$F(1)=T 1 * D X D E 3-T 2 * C P(2) \quad 422$
$1=1+1$
GO TO 72
COEFFICIENTS WHEN TOTAL FIELD IS GIVEN
$F(1)=D F / D E 1$
423
$F(1)=T 1 * D \times D E 1+T 3 * D Z D E 1$
427
$I=1+1$

$$
F(1)=D F / D E 2
$$

$F(1)=D F / D E 2$
428
$F(1)=T 1 * D X D E 2+T 2 * S P(2)+T 3 * D Z D E 2$
$1=1+1$
$F(1)=D F / D E 3$
$F(1)=T 1 * D X D E 3-T 2 * C P(2)+T 3 * D Z D E 3$
$1=1+1$
GO TO 72
COEFFICIENTS WHEN THE Z COMPONENT is GIVEN
F(1)
$F(1)=D Z D E 1$
$1=1+1$
$F(1)=D Z D E 2$
$1=1+1$
F(1)=DZDE3
$1=1+1$
GO TO 72
COEFFICIENTS WHEN THE X COMPONENT IS GIVEN
$F(1)=D X D E 1$
$1=1+1$
$F(1)=D X D E 2$
$I=1+1$
$F(i)=D \times D E 3$

DO $100 \mathrm{~N}=2$, NMAX 551
DO $100 \mathrm{M}=1, \mathrm{~N}$552COMPUTE TIME ADJUSTMENT FOR THE G(N,M) CORRECTIONS
$K=(1 *(N O R+N O R+5-1)) / 2-1$
$K P=1+N O$
$K P=(K P *(N O R+N O R+5-K P)) / 2-1$
$K P P=1+$ NONOT$K P P=(K P P *(N O R+N O R+5-K P P)) / 2-1$IF (N -NMAXT) 91,91,93553557558IF (N-NMAXTT) 92,92,93561
$D(K)=D(K)+D(K P P) * T F A C T * T F A C T$ 562
$D(K P)=D(K P)+2.0 * D(K P P) * T F A C T$CORRECT $G(N, M)$563564
$G(N, M)=G(N, M)+D(K)$RECORD NEW G(N,M), CORRECTION, AND THE565
566
CORRESPONDING ITEM IN THE CHECK COLUMN 567
WRITE (6,94) N,M,G(N,M), D(K), D(K+1) 568
FORMAT (3H G 213,4E20.8,F20.2
IF (M-1) 95,100,95569570$I=I+1$571
COMPUTE TIME ADJUSTMENT FOR THE H(N,M) CORRECTIONS 572
$K=(1 *(N O R+N O R+5-1)) / 2-1$ 573
$K P=1+N O$574
$K P=(K P *(N O R+N O R+5-K P)) / 2-1$ 575
$K P P=1+N O N O T$ 576
$K P P=(K P P *(N O R+N O R+5-K P P)) / 2-1$ 577IF (N-NMAXT) $96,96,98$578IF (N-NMAXTT) $97,97,98$579580$97 D(K)=D(K)+D(K P P) * T F A C T * T F A C T$$D(K P)=D(K P)+2.0 * D(K P P) * T F A C T$CORRECT H(N,M)$H(N, M)=H(N, M)+D(K)$RECORD NEW H(N,M), CORRECTION, AND THECORRESPONDING ITEM IN THE CHECK COLUMNWRITE $(6,99) N, M, H(N, M), D(K), D(K+1)$581
582583
584585
586
587
FORMAT ($3 \mathrm{H} \mathrm{H} \mathrm{213,4E20.8,F20.2)}$
588
$i=i+1$589
IF (NMAXT) 101,111,101590
DO $105 \mathrm{~N}=2$, NMAXT591
DO $105 \mathrm{M}=1, \mathrm{~N}$592
593
$K=(1 *(N O R+N O R+5-1)) / 2-1$
$G T(N, M)=G T(N, M)+D(K)$594595RECORD NEW GT(N,M), CORRECTION, AND THECORRESPONDING ITEM IN THE CHECK COLUMN596597
WRITE (6,102) N,M,GT(N,M),D(K),D(K+1)598FORMAT (3H GT213,4E20.8, F20.2)IF (M-1) $103,105,103$

```
103 I= I+1
C KORRECT HT (N,M)
    K=(1*(NOR+NOR+5-1))/2-1
    HT(N,M)=HT(N,M)+D(K)
                            RECORD NEW HT(N,M), CORRECTION, AND THE
                                    CORRESPONDING ITEM IN THE CHECK COLUMN
        WRITE (6,104) N,M,HT(N,M),D(K),D(K+1)
    FORMAT (3H HT213,4E20.8,F20.2)
105 I=I+1
        IF (NMAXTT) 106,111,106
        DO 110 N=2,NMAXTT
        DO 110 M=1,N
            CORRECT GTT (N,M)
        K=(1*(NOR+NOR+5-1))/2-1
        GTT(N,M)=GTT(N,M)+D(K)
            RECORD NEW GTT (N,M), CORRECTION, AND THE
                    CORRESPONDING ITEM IN THE CHECK COLUMN
    WRITE (6,107) N,M,GTT(N,M),D(K),D(K+1)
    FO7 FORMAT (4HGTT,12,13,3E20.8)
        IF (M-1) 108,110,108
    I=I+1
    CORRECT HTT(N,M)
    CORRECT HTT(N,M)
    HTT(N,M)=HTT (N,M)+D(K)
                            RECORD NEW HTT(N,M), CORRECTION, AND THE 
                            RECORD NEW HTT(N,M), CORRECTION, AND THE 
WRITE (6, 109) N,M,HTT(N,M),D(K),D(K+1)
    FORMAT (4H HTT,12,13,3E20.8)
    I= I +1
                    RECORD NEW E1,E2,E3 AND THE
                    CORRESPONDING ITEM IN THE CHECK COLUMN
111 IF (EXTFLD) 112,116,112
112 K=(1*(NOR+NOR+5-1))/2-1
    E 1=E 1+D(K)
    WRITE (6,113) E1,D(K),D(K+1)
    FORMAT (3H E1,6X,3E20.8)
    I=1+1
    K=(1*(NOR+NOR+5-1))/2-1
    E2=E2+D(K)
    WRITE ( 6,114) E2,D(K),D(K+1)
    FORMAT (3H E2,6X,3E20.8)
        I=1+1
        K=(1*(NOR+NOR+5-1))/2-1
    E3=E3+D(K)
    WRITE ( }6,115) E3,D(K),D(K+1
115 FORMAT (3H E3,6X,3E20.8)
    I=I+1
AVETIM=SUMTM/FNO1(8)+60.0
                            RECORD ENTIRE ARRAY OF G AND H PARAMETERS
    WRITE (6,117) ITNO
                                6 0 2
        6 0 4
C
104
105
106
C
109
110
C
108
C
C
107
605
6 0 6
6 0 7
6 0 8
6 0 9
6 1 0
6 1 1
6 1 2
6 1 3
614
6 1 5
6 1 6
6 1 7
6 1 8
6 1 9
6 2 0
6 2 1
6 2 2
6 2 3
6 2 4
625
\begin{tabular}{|c|c|c|}
\hline 117 & ```
    FORMAT (2OH1OUTPUT COEFFICIENTS, 39X,5HITNO=,14/1HO)
    WRITE (6,11) ((N,M,G(N,M),H(N,M),GT(N,M),HT(N,M),GTT(N,M),HTT(N,M)
$,M=1,N),N=2,NMAX)
    WRITE (6,15) E1, E2,E3
    WRITE (6,118) AVETIM
``` & 651
652
653
654
655 \\
\hline \[
\begin{aligned}
& 118 \\
& c
\end{aligned}
\] & \begin{tabular}{l}
FORMAT (1OHOAVETIM=, F10.2) \\
PUNCH CARDS FOR STARTING NEXT APPROXIMATION
\end{tabular} & 656 \\
\hline & PUNCH CARDS FOR STARTING NEXT APPROXIMATION & 657 \\
\hline & PUNCH 3,NMAX, NMAXT, NMAXTT, NSKIP, ITER & 659 \\
\hline & PUNCH 4, ERRLIM, AVETIM & 650 \\
\hline & PUNCH 5, EXTFLD & 661 \\
\hline & PUNCH 11, ((N,M,G(N,M),H(N,M),GT(N,M),HT(N,M),GTT(N,M),HTT(N,M),M=1. \(\$, N), N=2, N M A X)\) & 662 \\
\hline & \$,N \(N, N=2, N M A X)\)
PUNCH 14 & 663 \\
\hline & PUNCH 14, E1, E2,E3 & 664 \\
\hline 119 & FORMAT (2A6, 6 H NMAX , 11,7H NSKIP, \(13,5 \mathrm{HSIG}, F 6.0)\) & 666 \\
\hline 120 & CONT INUE & 667 \\
\hline C & RECORD ERROR DISTRIBUTIONS & 668 \\
\hline & WRITE (6, 121) TYPE(1J) & 669 \\
\hline 121 & FORMAT (23 H1ERROR DISTRIBUTION FOR, 3X, A2) & 670 \\
\hline & DO \(124 \mathrm{JK}=1,200,10\) & 671 \\
\hline & \(\mathrm{JL}=\mathrm{JK}+9\) & 672 \\
\hline & IF (JK-101) 122, 123,123 & 673 \\
\hline 122 & \(J M=J K-101\) & 674 \\
\hline & GO TO 124 & 675 \\
\hline 123 & \(J M=J K-100\) & 676 \\
\hline 124 & WRITE \((6,125) \mathrm{JM},(\operatorname{IERR}(1 \mathrm{~K}), \mathrm{I}\) K=JK, JL) & 677 \\
\hline 125 & FORMAT (\(15,3 \times 1016\)) & 677
678 \\
\hline C & 只ECORD MEAN DEVIATION FOR LAT-LONG BLOCKS & 679 \\
\hline & WRITE (6,126) (\(\mathrm{L}, \mathrm{L}=10,90,10\)) & 680 \\
\hline 126 & FORMAT (38H1MEAN DEVIATION FOR LAT-LONG BLOCK /1HO,58X,916) & 681 \\
\hline & DO \(128 \mathrm{~K}=1,36\) (\({ }^{\text {c }}\) & 682 \\
\hline & DO \(127 \mathrm{~J}=1,18\) & 683 \\
\hline 127 & JERR (J) = (ERR (J,K)/FNO2 (J,K)) & 684 \\
\hline 128 & WRITE (6,129) K, (JERR (M), M=1, 18) & 685 \\
\hline 129 & & 686 \\
\hline & CALL MATRIX & 687 \\
\hline & RETURN & 688 \\
\hline & END & \\
\hline
\end{tabular}
SUBROUTINE MATRIX
COMMON /DD/D(3400)
COMMON /COEFS/G(9,9), \(\operatorname{H}(9,9), \operatorname{GT}(9,9), \operatorname{HT}(9,9), \operatorname{GTT}(9,9), \operatorname{HTT}(9,9), \operatorname{MAXD}\)
DIMENSION FONE (150),DIAG(150)
DIMENSION ROW(150),SROW(150)
REWIND 2
REWIND 1
READ (2) NMAX, NMAXT, NMAXTT, FWNP, FNP, SIGMA
READ (2) (\(D(1), i=1\), MAXD)
NOR \(=\) NMAX*NMAX -1
IF (NMAXT) 1,2,1
NOR=NOR+NMAXT*NMAXT-1
IF (NMAXTT) 3,4,3
NOR=NOR+NMAXTT*NMAXTT-1
NOP \(=\) NOR +1
NOPP \(=\) NOR +2
DO 6 I=1,NOR
DO \(5 \mathrm{~J}=1\), NOR
II=MINO (i, J)\(J J=1+J-11\)\(K=((\) NOR + NOR \(+5-11) * 11) / 2+J J-N O R-2\)
KOW (J) =D (KWRITE (1) (ROW(J), J=1, NOP)
REWIND 2
REWIND 1
DO \(27 \mathrm{~K}=1\), NOR
IF (MOD (K,2)) 7,8,71
\(5 \quad \operatorname{ROW}(J)=D(K)\)
6 WRITE (1) (ROW (J), J=1,NOP)
READ (1) (SROW(L), L=1,NOP) 7 2823
GO TO 92425
READ (2) (SROW(L), L=i, NŪ)
IF (K-1) 12,10, 12
8 30262729RDKK=1.O/SROW(K)\(\operatorname{SROW}(K)=1.0\)
SROW (NOP) \(=0.0\)
DO 11 II=1,NOR
10 32 32DO \(13 \mathrm{~J}=1\), NOP33
SROW (NOP) =SROW (NOP) +SROW (11) 1134\(\operatorname{SROW}(\mathrm{J})=\operatorname{SROW}(\mathrm{J}) * R D K K\)DO \(231=2\), NOR3637
IF \((\operatorname{MOD}(K, 2)) 14,15,14\)38READ (1) (ROW(L), L=1,NOP)3941
GO TO 16 42
READ (2) (ROW(L), L=1, NOP) 15 43
IF (K-1) 19, 17,19 44\(\operatorname{ROW}(N O P)=0.0\)DO \(18 \quad \mid 1=1\), NOR\(\operatorname{ROW}(N O P)=R O W(N O P)+R O W(11)\)\(\mathrm{T}=\mathrm{ROW}(\mathrm{K})\)45
\(\operatorname{ROW}(K)=0.0\)4647
DO \(20 . \mathrm{J}=1\), NOP - 20 , i , NOP485012
20
\(\operatorname{ROW}(J)=\operatorname{ROW}(J)-T * S R O W(J)\)
21IF (MOD (K,2)) 21,22,21WRITE (2) (ROW(L), L=1,NOP)GO TO 23
WRITE (1) (ROW(L), L=1,NOP)CONTINUE
IF (MOD (K, 2)) 24, 25, 24
WRITE (2) (SROW(L), L=1, NOP)
GO TO 26
WRITE (1) (SROW(L), L=1,NOP)
REWIND 2
REWIND 1
DO \(31 \quad \mathrm{I}=1\), NOR
IF (MOD (NOR, 2)) 28, 29, 2851
5252
535455
READ (2) (ROW(L), L=1, NOP)
GO TO 3060
READ (1) (ROW(L) \(, L=1, N O P)\) 6661
WRITE (2) (ROW(L), L=1, NOP)) \(L\), \(L=1, N O P\)) 676263
DIAG(I)=ROW(I) 6864
FONE (1) =ROW (NOP) 69
7065
WRITE \((6,32)\) SIGMA, FWNP, FNP
FORMAT (19H1STATISTICS FOR FIT/IX,5HSIGMA,F5.0,3X15HWEIGHTED POINT 7271
\$S,F6.1, 3X, 6HPOINTS, F6.0) 73
WRITE \((6,33)\)FORMAT (\(5 \times 1 \mathrm{HN} 2 \times 1 \mathrm{HM} 8 \times 1 \mathrm{HP} 20 \times 4 \mathrm{HS}\) IGP \(16 \times 3 \mathrm{H} 1.019 \times 2 \mathrm{HTC}\))
\(1=0\)74
DO \(37 \mathrm{~N}=2\), NMAX 7675
DO \(37 \mathrm{M}=1, \mathrm{~N}\)
DO \(37 \mathrm{M}=1, \mathrm{~N}\)
\(1=1+1\) 78
SIGP=SQRT(ABS(DIAG(i))) \(\dot{\text { S }} \mathrm{IGMA}\) 79
TC=ABS (G (N,M)/SIGP)80
81
WRITE \((6,34) \mathrm{N}, \mathrm{M}, \mathrm{G}(\mathrm{N}, \mathrm{M}), \mathrm{SIGP}, \operatorname{FONE}(1), T C\) 82
FORMAT (4 H G 213,2E20.8, 2 F 20.2) 83
IF (M-1) 35,37,35\(1=1+1\)\(S I G P=S Q R T(A B S(D I A G(1))) * S I G M A\)
\(T C=A B S(H(N, M) / S I G P)\)
WRITE (6,36) N,M,H(N,M), SIGP, FONE (I) ,TC 8784

FORMAT (\(4 \mathrm{H} \mathrm{H} 213,2 \mathrm{E} 20.8,2 \mathrm{~F} 20.2\))

FORMAT (\(4 \mathrm{H} \mathrm{H} 213,2 \mathrm{E} 20.8,2 \mathrm{~F} 20.2\))
CONTINUE
CONTINUE 89 89 89
90 89
9085
IF (NMAXT) 38,43,38
DO \(42 \mathrm{~N}=2\), NMAXT
DO \(42 \mathrm{M}=1, \mathrm{~N}\)86
\(1=1+1\)
SIGP=SQRT(ABS(DIAG(I)))*SIGMA
\(T C=A B S(G T(N, M) / S I G P)\)9192
96WRITE (6,39) N,M,GT(N,M),SIGP,FONE (I) , TC94
97FORMAT (4 H GT \(213,2 \mathrm{E} 20.8,2 \mathrm{~F} 20.2\))IF (M-1) 40, 42, 40\(1=!+1\)9899
SIGP=SQRT(ABS (DIAG(I)))*SIGMA 101
\(T C=A B S(H T(N, M) / S I G P)\) 102
WRITE (6,41) N, M, HT (N,M), SIGP, FONE (I) ,TC 103
FORMAT (4 H HT 213,2E20.8, 2 F 20.2) 104
CONT I NUE
IF (NMAXTT) 44, 49,44 105
DO \(48 \mathrm{~N}=2\), NMAXTT106
DO \(48 \mathrm{M}=1, \mathrm{~N}\) 107 108
\(1=1+1\) 109
SIGP=SQRT(ABS (DIAG(I)))*SIGMA SIGP=SQRT(ABS(DIAG(1)))*SIGMA 110
TC=ABS (GTT(N,M)/SIGP) 111
WRITE (6, 45) N,M,GTT(N,M),SIGP,FONE (I), TC 112
FORMAT (4H GTT2I3,2E20.8, 2F20.2) 113
IF (M-1) 46, 48,46 114
\(1=1+1\)115
SIGP=SQRT(ABS (DIAG(I)))*SIGMA 116
\(T C=A B S(H T T(N, M) / S I G P)\) 117
WRITE (6,47) N,M,HTT(N,M),SIGP,FONE (I), TC 118
FORMAT (4H HTT2I3,2E20.8, 2F20.2) 119
CONTINUE 120
\(1=-1\) 121
DO \(53 \mathrm{~N}=2\), NMAX 122
DO \(53 \mathrm{M}=1, \mathrm{~N}\) 123
\(1=1+2\) 124
\(R=S Q R T(G(N, M) * * 2+H(N, M) * * 2)\) 125
\(S \mid G P=S Q R T(G(N, M) * * 2 * A B S(D \mid A G(1))+H(N, M) * * 2 * A B S(D \mid A G(1+1))) / R * S I G M A\) 126
IF (M-1) 51,50,51 127
\(1=1-1\) 128
TC=R/SIGP 129
WRITE (6,52) N,M,R,SIGP,TC 130FORMAT (4HR 213,2E20.8, 20X, F20.2)CONT I NUE131
132
IF (NMAXT) 54,59,54
O 133
DO 58 ME1, NMAT 134
DO \(58 \mathrm{M}=1, \mathrm{~N}\) 135
\(1=1+2\) 136
\(R=S Q R T(G T(N, M) * * 2+H T(N, M) * * 2)\) 137
SIGP=SQRT(GT(N,M)**2*ABS(D|AG(I))+HT(N,M)**2*ABS(D|AG(I+1)))/R*SIG 138
\$MA139
IF (M-1) \(56,55,56\)
\(1=1-1\)
TC=R/SIGP140141
142WRITE \((6,57) \mathrm{N}, \mathrm{M}, \mathrm{R}, \mathrm{SI}\) GP, TCPRINT \(57, N, M, R, S I G P, T C\)
57 FORMAT (4 H RT \(213,2 E 20.8,20 \mathrm{X}, \mathrm{F} 20.2\))
CONT INUE
143
IF (NMAXTT) \(60,65,60\)144DO \(64 \mathrm{~N}=2\), NMAXTTDO \(64 M=1, N\)\(1=1+2\)14555
56
\(\mathrm{R}=\mathrm{SQRT}(\mathrm{GTT}(\mathrm{N}, \mathrm{M}) \star \star 2+\mathrm{HTT}(\mathrm{N}, \mathrm{M}) * * 2)\) 151\(S \mid G P=S Q R T(G T T(N, M) * * 2 * A B S(D \mid A G(1))+H T T(N, M) * * 2 * A B S(D \mid A G(1+1))) / R * S\)
\$IGMA
IF (M-1) 62,61,62
\(I=1-1\)\(T C=R / S I G P\)WRITE \((6,63) \mathrm{N}, \mathrm{M}, \mathrm{R}, \mathrm{SIGP}, \mathrm{TC}\)152
153
61154
155
PRINT 63,N,M,R,SIGP,TC
PRINT 63,N,M,R,SIGP,TC

FORMAT (4H RTT213,2E20.8, 20X,F20.2)

FORMAT (4H RTT213,2E20.8, 20X,F20.2)

FORMAT (4H RTT213,2E20.8, 20X,F20.2)

CONTINUE

CONTINUE

CONTINUE 159 159 159 63 63 63 160 160 16015657IF (FNP-100.) 66,66,67
TCT95=0.0
TCT50=0.0 162161
163
GO TO 68 164
TCT95=1.96 165
TCT50 \(=.674\) 166
WRITE \((6,69)\) TCT95,TCT50 167
FORMAT (29H TC ABOVE SHOULD BE GREATER F10.3,26H FOR 95 PERCENT C 168
\$ONFIDENCE/29X,F10.3,27H FOR 50 PERCENT CONFIDENCE) 169
REWIND 170
REWIND 2 171
WRITE (1) NMAX, NMAXT, NMAXTT, FWNP, FNP, SIGMA, NOR, NOP, NOPP 172
WRITE (1) (\((G(N, M), H(N, M), M=1, N), N=2, N M A X)\) 173
WRITE (1) ((GT(N,M), HT (N,M), M=1,N),N=2,NMAX) 174
WRITE (1) ((GTT(N,M), HTT(N,M), M=1,N),N=2,NMAX) 175
DO 70 I=1,NOR 176
READ (2) (ROW(L) L=1,NOP) 177
WRITE (1) (ROW(L), L=1,NOP) 178
CONTINUE 179
END FILE 1 180
REWIND 181
REWIND 182
RETURN 183
END 184

\section*{APPENDIX B}

JENSEN'S FIT

\section*{Introduction}

The purpose of this appendix is to document the sequence of operations and to discuss various programming aspects of Jensen's Fit program. This program has been written to find time-dependent coefficients for a spherical-harmonic expansion of the geomagnetic potential function.

The mathematical formulas which form the basis of the computer program are not restated in this appendix. Each time that a formula is required to explain a Fortran variable, a reference is made to an equation in Sections 2.0 or 3.0 of this report or to one of the reports listed in the bibliography. When referencing this report, it should be noted that the Fortran variable \(N\) is equal to \(n+1\). Similarly, \(M=m+1\).

The computer program is relatively linear, i.e., there are few alternate calculation sequences, as can be seen from the flow-charts in Appendix C. Hence, the calculation sequence will be described in a linear manner.

The program may be roughly divided into five phases as follows:
(1) initializing; (2) data processing for the coefficients in the least squares equations; (3) solution of the least squares equations; (4) estimation of the corrections for the coefficients of the spherical-harmonic expansion of the geomagnetic potential function; and (5) recording. This appendix will
likewise be divided into five principal sections to describe respectively these five phases. Within each section, the Fortran name for variables will be used whenever possible. A glossary identifying these variables is included at the end of this appendix.

\section*{Initialization}

As with all computer programs, initialization consists of doing the things that must be done once at the beginning of the execution of the program. (Similarly, parts of a program, i.e., subprograms, may require initialization. While such initialization may subsequently be discussed, it is not the subject of this section of the appendix.) Initialization for this program includes setting or computing the value of certain constants that will be used throughout the other phases of the program. Among these are FLAT, A2, A4, B2, A2B2, A4B4, CONST(N, M), SHMIDT(N,M), \(P(1,1), D P(1,1), S P(1)\) and \(\mathrm{CP}(1)\) all of which are identified in the glossary.

The equation for computing \(\operatorname{CONST}(\mathrm{N}, \mathrm{M})\) is found in Eq. (19) of Section 2.0. Note that \(N=n+1\) and \(M=m+1\). The equations for computing SHMIDT(N, M) are found in Eqs. (20) of Section 2.0. Again note that \(\mathrm{N}=\mathrm{n}+1\) and \(\mathrm{M}=\mathrm{m}+1\).

The value of the first associated Legendre polynomial, \(P(1,1)\), and its derivative, \(\mathrm{DP}(1,1)\), are constants and may be found in Eqs. (19) of Section 2.0. Similarly the value of \(\sin (\mathrm{M}-1) \phi\) and \(\cos (\mathrm{M}-1) \phi\), i.e., \(\mathrm{SP}(\mathrm{M})\) and \(C P(M)\) respectively, are constants for \(M=1\), i. e., \(S P(1)=0.0\) and \(C P(1)=1.0\).

Another common function of initialization is the clearing of tables. This program requires that the tables \(\operatorname{FNO} 2(\mathrm{I}, \mathrm{J})\) and \(\operatorname{ERR}(\mathrm{I}, \mathrm{J})\) be cleared, i. e., all entries be made equal to zero. A third function of initialization is the input of variable control and starting data. Among the variables that must be input for this program are XID1, XID2, NMAX, NMAXT, NMAXTT, NSKIP, ITER, ERRLIM, AVETIM, EXTFLD, \(G(N, M), H(N, M), G T(N, M)\), HT(N, M), GTT(N, M), HTT(N, M), E1, E2, and E3. These variables are all identified in the glossary.

A final function of initialization is often the recording of initial values of pertinent variables. This program records NMAX, NMAXT, NMAXTT, NSKIP, ITER, ERRLIM, XID1, XID2, G(N, M), H(N, M), GT(N, M), \(\operatorname{HT}(\mathrm{N}, \mathrm{M}), \operatorname{GTT}(\mathrm{N}, \mathrm{M}), \operatorname{HTT}(\mathrm{N}, \mathrm{M}), \mathrm{E} 1, \mathrm{E} 2\), and E 3 as a permanent record of the starting data used by the program. These variables are all identified in the glossary.

Except for setting or computing the values of certain other variables required by the initialization functions enumerated above, this completes the initialization phase of the program.

\section*{Data Processing}

In Section 2.0 of this report, it was noted that the procedure must be repeated until the corrections estimated for the coefficients of the sphericalharmonic expansion of the potential function are no longer significant. The first Fortran statement in the data processing phase (card 98) is the DO
statement that controls the number of repeats, or iterations, that will be made for any particular run of the computer program.

Certain tables, SIG1(J), FNO1(J), SWT(J), IERR(I), and D(I) must be cleared, i. e., all entries made equal to zero, at the beginning of each iteration. In addition to these tables, the value of LINE and SUMTM must be set equal to zero and ISKIP must be set equal to NSKIP which was input during the initialization phase. With the setting of ISKIP, the initialization of the data processing phase of the program is completed.

Beginning with the Fortran statement, CALL RDATA (card 115), the remainder of the data processing phase of the program is repeated for each observation that is to be used in the calculation. An observation input by the subroutine RDATA may consist of any combination of the following field measurements: DECL, DIP, HOR, \(B, Z, X\), and \(Y\). These are all identified in ine glossary. In addition to these measurements, the location of the observation in time and space is recorded. This location is specified by the Fortran variables FLATT, ELONG, ALT, and TIME. All location data as well as measurement data are transmitted to the main program via the common field DATAR. RDATA signals the end of the data by setting the value of ISKIP to zero. To recognize this signal, the main program, following each CALL RDATA, examines ISKIP and terminates the data processing phase of the program upon sensing this signal.

Beginning with card 126, geocentric coordinates are computed from the geodetic measurements made for each observation. The equation for computing THETA is Eq. (30) of Section 2.0. The equation for computing geocentric \(R\) is Eq. (31) of Section 2. 0 .

The five variables SIND, COSD, AOR, CT, and ST which are all identified in the glossary are computed next. SIND and COSD are required for converting from geocentric to geodetic coordinates. CT and ST are required for the generation of the associated Legendre polynomials and AOR is a term that appears in the equations for estimating \(X, Y, Z\), etc. from the best available set of parameters. One should note that the Fortran statement for computing CT and ST redefines \(\theta\) to be measured from the polar axis instead of from the equatorial plane, i. e., colatitude.

The variables LON and LAT are computed next. These constants are required later for weight and error tabulations. Next, \(\operatorname{SP}(2)\) and \(C P(2)\) are computed, followed by the computation of \(S P(M)\) and \(C P(M)\) for \(M>2\). The equations
\[
\begin{equation*}
\sin (M-1) \phi=\sin \phi \cdot \cos (M-2) \phi+\cos \phi \cdot \sin (M-2) \tag{B1}
\end{equation*}
\]
and
\[
\begin{equation*}
\cos (M-1) \phi=\cos \phi \cdot \cos (M-2) \phi-\sin \phi \cdot \sin (M-2) \tag{B2}
\end{equation*}
\]
used for computing \(\mathrm{SP}(\mathrm{M})\) and \(\mathrm{CP}(\mathrm{M})\) are available in standard texts on trigonometry under the subject, "functions of sums of angles."

Next the program evaluates the necessary associated Legendre polynomials, \(P(N, M)\), and their derivatives, \(D P(N, M)\), employing the
recurrence relationships which are found in Section 2.0, Eqs. (19). K K \(\mathrm{N}_{\mathrm{M}}\) corresponds to the Fortran variable \(\operatorname{CONST}(\mathrm{N}, \mathrm{M})\) and was discussed above in the section on initialization.

Beginning with card 167, the Fortran variables CX, CY, and CZ are set equal to zero in preparation for the estimation of \(X, Y\), and \(Z\). \(A R\) and TM, two Fortran variables identified in the glossary, must also be initialized in preparation for the estimation of \(\mathrm{X}, \mathrm{Y}\), and Z .

The Fortran statements through card 198 are required to estimate \(X, Y\), and \(Z\), i. e., the Fortran variables \(C X, C Y\), and \(C Z\). The rotation formulas required for computing \(X\) and \(Z\) are given in Section 2. 0, Eqs. (32) and (33). Equations for \(B_{\theta}, B_{r}\), and \(B_{\phi}\) are given in several different forms in Section 2.0 of this report.

Near the beginning of the group of Fortran statements required to estimate \(X, Y\), and \(Z\) (specifically cards 181 and 182), the Gauss normalized polynomials are Schmidt normalized and multiplied by the appropriate power of \(\frac{6371.2}{r}\), i. e., AR.

Depending on when it is calculated, the Fortran variable TEMP is the common factor in the coefficients of the two parameters \(g_{N, M, 0}\) and \(h_{N, M, 0}\) in the formulas for computing \(X, Y\), or \(Z\). DXDG, DXDH, DYDG, DYDH, DZDG and DZDH complete the calculation of the coefficients of \(\mathrm{g}_{\mathrm{N}, \mathrm{M}, 0}\) and \(\mathrm{h}_{\mathrm{N}, \mathrm{M}, 0}\) in the formulas for computing \(\mathrm{X}, \mathrm{Y}\), and Z . Next, the Fortran variables GNM and HNM are computed using Eqs. (21) of Section
2.0 and finally all terms are summed for the respective estimates of \(X, Y\), and Z .

The \(\mathrm{X}, \mathrm{Y}\), and Z components of the external field are estimated next and added to the respective estimates of \(X, Y\), and \(Z\) (cards 200 through 205). This step is completely skipped if EXTFLD is zero.

From the estimates of \(\mathrm{X}, \mathrm{Y}\), and Z , estimates of the horizontal field, total field, dip, and declination (Fortran variables CH, CF, CI, and CD respectively) are made using Eqs. (34) and (37-39) of Section 3. 0.

The program now calculates the coefficients of the unknowns in the system of simultaneous least squares equations. Beginning with card 214 , the first non-zero measurement is processed and then its value set equal to zero. The program returns to statement number 28 and since the value of the previous measurement was set equal to zero, processes the second nonzero measurement. This continues until all measurements have been processed and the value of the respective Fortran variables have all been set equal to zero.

Formulas for the coefficients of the unknowns in the system of simultaneous least squares equations may be derived easily from simple theorems in differential calculus and the various equations of Section 3.0. The calculus theorem results in the following:
\[
\begin{array}{ll}
\text { If } & x=f(u) \quad \text { and } \quad u=g(w) \\
\text { then } & \frac{d x}{d w}=\frac{d f}{d u} \cdot \frac{d g}{d w} \tag{B3}
\end{array}
\]

Applying this theorem to Eq. (34) of Section 3.0, the following formulas can be derived for the declination of the total field strength:
\[
\begin{align*}
& \frac{d D E C L}{d g_{N, M, 0}}=\frac{d D E C L}{d X} \cdot \frac{d X}{d g_{N, M, 0}}+\frac{d D E C L}{d Y} \cdot \frac{d Y}{d g_{N, M, 0}} \tag{B4}\\
& \frac{d D E C L}{d g_{N, M, 0}}=-\frac{Y}{H O R} \frac{d X}{d g_{N, M, 0}}+\frac{X}{H O R} \frac{d Y}{d g_{N, M, 0}} \tag{B5}\\
& \frac{d D E C L}{d h_{N, M, 0}}=\frac{d D E C L}{d X} \cdot \frac{d X}{d h N, M, 0}+\frac{d D E C L}{d Y} \cdot \frac{d Y}{d h} N, M, 0 \tag{B6}\\
& \frac{d D E C L}{d h_{N, M, 0}}=-\frac{Y}{H O R} \cdot \frac{d X}{d h}+\frac{X}{H O R} \frac{d Y}{d h} N, M, 0 \tag{B7}
\end{align*}
\]

Similarly, from Eqs. (37-39) of Section 3.0, the following can be derived for field dip:
\[
\begin{align*}
& \frac{d \text { DIP }}{d^{d} N_{, M, 0}}=-\frac{X \cdot Z}{H \cdot F} \frac{d X}{d g_{N, M, 0}}-\frac{Y \cdot Z}{H \cdot F} \frac{d Y}{d g}+\frac{H}{F} \frac{d Z}{d g g_{N, M, 0}} \tag{B8}\\
& \frac{d D I P}{d h_{N, M, 0}}=-\frac{X \cdot Z}{H \cdot F} \frac{d X}{d h_{N, M, 0}}-\frac{Y \cdot Z}{H \cdot F} \frac{d Y}{d h_{N, M, 0}}+\frac{H}{F} \frac{d Z}{d h_{N, M, 0}} \tag{B9}
\end{align*}
\]
for the horizontal component:
\[
\begin{align*}
& \frac{d H O R}{d g_{N, M, 0}}=\frac{X}{H O R} \frac{d X}{d g_{N, M, 0}}+\frac{Y}{H O R} \frac{d Y}{d g_{N, M, 0}} \tag{B10}\\
& \frac{d H O R}{d^{h}{ }_{N, M, 0}}=\frac{X}{H O R} \frac{d X}{d h}+\frac{Y}{N, M, 0} \frac{d Y}{H O R} \frac{d h}{N, M, 0} \tag{B11}
\end{align*}
\]
and for total field:
\[
\begin{align*}
& \frac{d B}{d g_{N, M, 0}}=\frac{X}{B} \frac{d X}{d g_{N, M, 0}}+\frac{Y}{B} \frac{d Y}{d g_{N, M, 0}}+\frac{Z}{B} \frac{d Z}{d g_{N, M, 0}} \tag{B12}\\
& \frac{d B}{d h_{N, M, 0}}=\frac{X}{B} \frac{d X}{d h_{N, M, 0}}+\frac{Y}{B} \frac{d Y}{d h_{N, M, 0}}+\frac{Z}{B} \frac{d Z}{d h} N, M, 0 \tag{B13}
\end{align*}
\]

Similar expressions for derivatives with respect to \(g_{N, M, t}, h_{N, M, t}, g_{N, M, t t}\), and \(h_{N, M, t t}\) can be derived from the equations cited.

Beginning at card 227, the program employs Eqs. (B4-B7) to compute the coefficients of the \(g_{N, M, 0}\) and \(h_{N, M, 0}\) when declination is observed. The observation term (Fortran variable FI) is then computed followed by the weight assigned to the observation. Finally, the value of DECL is set equal to zero so that when program control is returned to statement number 28, the next data type will be processed.

In a similar manner the program processes field dip beginning with card 254 , the horizontal field strength beginning with card 276 , the total field strength beginning with card 298 , the \(Z\) component beginning with card 316 , the X component beginning with card 329 , and the Y component beginning with card 342.

As each observation is processed, the program, beginning at card 354, adds the time terms. Then beginning at card 369 , the squared time terms are added.

If external field terms are to be used and corrected, the program, beginning with card 385 , computes the coefficients of the unknowns \(\mathrm{E}_{1}, \mathrm{E}_{2}\),
and \(E_{3}\) in the system of simultaneous least squares equations. The equations employed are similar to equations (B4) through (B13) with \(\frac{d}{d g}\) or \(\frac{d}{d h}\), being replaced with \(\frac{d}{d E_{1}}, \frac{d}{d E_{2}}\), or \(\frac{d}{d E_{3}}\). Beginning with card \(385, \frac{d X}{d E_{1}}, \frac{d X}{d E_{2}}, \frac{d X}{d E_{3}}, \frac{d Z}{d E_{1}}, \frac{d Z}{d E_{2}}\), and \(\frac{d Z}{d E_{3}}\) are computed. The quantities \(\frac{d Y}{d E_{1}}=0, \frac{d Y}{d E_{2}}=\sin \phi\), and \(\frac{d Y}{d E_{3}}=-\cos \phi\) are not set up explicitly. The program processes field declination beginning with card 394, field dip beginning with card 405, the horizontal field strength beginning with card 417 , the total field strength beginning with card 428 , the \(Z\) component beginning with card 438 , the X component beginning with card 446 , and finally the \(Y\) component beginning with card 454 . Then at card 462 , the observation term is added to the Fortran vector \(F(I)\).

Beginning with card 463, the three Fortran constants NOR, NOP, and NOPP (identified in the glossary) required to specify the matrix size, etc. are computed.

Observations are recorded by cards 466 through 475. After the observation is recorded, various counts, weights, and errors (i.e., IERR, SIG1, FNOI, SWT1, and SUMTM which are all identified in the glossary) are computed and summed. On the last iteration, the Fortran variables FNO2 and \(E R R\) are summed.

Card 498 calls subroutine DLOOP. This subroutine computes the sums of squares and cross-products required for the coefficients of the unknown parameters in the system of simultaneous least squares equations.

A description of \(D\) as well as a description of the intricate manipulations required of \(D\) for the solution of the set of least squares equations is given in some detail in Section 3.0 of this report.

\section*{Solution of the Least Squares Equations}

This phase of the program accomplishes four functions. First, calculations for standard errors are completed and a record made of the results. Second, the D array is recorded for the MATRIX subroutine calculations. Third, the computation check column is computed and finally, the least squares equations are solved.

Details of the \(D\) matrix storage and manipulation are presented in Section 3.0 of this report and will not be repeated here. However, note that cards 506 through 516 compute the computation check column.

From the procedure described in Section 3.0, one can see that as each row is considered at step (1), the corresponding complete column is required for step (2). This column is contained in the triangle matrix. As a column is needed, it is transferred to the vector SIDE by the following Fortran statements:
```

                                    DO }83\mathrm{ I=1,NOR
                                    NROW=MIN(I, J)
                                    NCOL=I+L-NROW
                                    K=(NROW*(NOR+NOR+5-NROW))/2+NCOL-NOR-2
                                    SIDE(I)=D(K)
                                    CONTINUE
    ```
83
where \(N O R=\) number of rows in the complete matrix
NROW = row number
NCOL = column number
MIN \(=\) function subprogram to choose minimum of the arguments \(D=\) the triangle matrix stored.
(These variables are identified in the glossary.) The cards beginning with card 520 and ending with card 525 transfer the required column to the vector SIDE. Then beginning with card 526 and ending with card 531 , step (1) above is accomplished. Step (2) follows ending with card 540 . This completes the third phase of the program.

\section*{Corrections and Output}

The last two phases of the program, viz., the estimation of the corrections for the parameters and the recording of all results, are intermingled so that while the functions are distinct, the Fortran statements are not. As is customary with Fortran programs, final results are not stored but are written as soon as available.

The output begins with a record of the Fortran variables TYPE (IJ), SIG1 (IJ), and FNO1 (IJ) which are all identified in the glossary.

The solution of the set of simultaneous least squares equations yields adjustments or corrections for the parameters based on the average observation time (AVETIM). The \(G, H, G T, H T, G T T\), HTT input during the initialization phase are based on the year 1960. Hence, the corrections must be computed for 1960 instead of the average observation time. This time
adjustment in the corrections begins with card 549 . Card 560 computes and adds the time adjustment while card 562 adds the squared time adjustment to the \(g_{N, M, 0}\) correction. Card 563 computes and adds the time adjustment to the \(g_{N, M, t}\) correction. Card 565 adds the correction to the \(g_{N, M, 0}\) and the next two Fortran statements record the new \(g_{N, M, 0}\), the total correction, and the computer check column. In a similar manner, the cards from 573 through 589 compute, apply, and record the same information for the \(h_{N, M, 0}\) and \(h_{N, M, t}\).

If time terms were used and are to be corrected, the cards beginning with 590 and going through 609 apply and record the corrections for \(g_{N, M, t}\) and \(h_{N, M, t}\). Finally, if squared time terms were used and are to be corrected, the cards beginning with 610 and going through 629 apply and record the corrections for \(g_{N, M, t t}\) and \(h_{N, M, t t}\).

If external field terms were used, and are to be corrected, the program beginning with card 632 and continuing through card 647 records the new values for \(E_{1}, E_{2}\), and \(E_{3}\) and the corrections applied.

\section*{Final Output}

The final output consists of a permanent record of the results of the calculation plus the inputs required for the next updating of the parameters in the spherical-harmonic expansion of the geomagnetic potential function. First, a printed record is made of all the \(G, H, G T, H T, G T T\), and HTT and the E1, E2, and E3. Next, a punched record is made of XID1, XID2,

NMAX, NSKIP, SIG1(8), TYPE(I), NMAX, NMAXT, NMAXTT, NSKIP, ITER, ERRLIM, AVETIM, all of the G, H, GT, HT, GTT and HTT, and the E1, E2, and E3. All of these Fortran variables are identified in the glossary.

With the punching of the new starting data, one iteration has been completed. The program now transfers control to the beginning of the data processing phase for the next iteration.

When all iterations have been completed, a printed record is made of the Fortran variables \(\operatorname{IERR}(\mathrm{IK})\) and \(\operatorname{ERR}(\mathrm{J}, \mathrm{K}) / \mathrm{FNO} 2(\mathrm{~J}, \mathrm{~K}) . \operatorname{ERR}(\mathrm{J}, \mathrm{K}) /\) FNO2 (\(\mathrm{J}, \mathrm{K}\)) is the mean deviation for latitude-longitude blocks. This concludes the program.

\section*{GLOSSARY}

\section*{Jensen's Fit}

A a, the mean equatorial radius of the earth in kilometers
A2 \(a^{2}\)

A4
\(a^{4}\)
A2 B2
(mean equatorial radius of the earth \()^{2}\) - (polar radius of the earth \()^{2}\)
A4B4
ALT
AOR radius of the sphere having volume equal to the earth's volume/R
AR (radius of the sphere having volume equal to the earth's volume/R) \({ }^{N+1}\)
AVETIM average time for all observations

B total observed field strength
B2 (polar radius of the earth) \({ }^{2}\)
BWT standard error of total field strength
\(C D \quad\) estimated declination in radians
CDDEG estimated declination in degrees
CF estimated total field strength
CH estimated horizontal field strength
CI estimated field dip in radians
CIDEG estimated field dip in degrees
CONST a set of constants required for the generation of the associated Legendre polynomials, \(\mathrm{P}_{\mathrm{n}}^{\mathrm{m}}\)
\(\frac{(n-1)^{2}-m^{2}}{(2 n-1)(2 n-3)}=\frac{(N-2)^{2}-(M-1)^{2}}{(2 N-3)(2 N-5)}\)
n and m are common formula notation while N and M are used in the computer program

COSD

CP(M)
CT
CX
CY
CZ

D

DECL

DECLWT
DEN
cosine of difference between geodetic coordinate \(\lambda\) and geocentric coordinate \(\theta\)
cosine of the product of (\(\mathrm{M}-1\)) and the longitudinal coordinate \(\phi\) cosine of \(\pi / 2\) minus the geocentric coordinate \(\theta\), i. e., coaltitude estimated X component of the field strength
estimated \(Y\) component of the field strength
estimated \(Z\) component of the field strength
triangular matrix of sums of squares and cross-products of the coefficient of \(g_{N, M, 0}, h_{N, M, 0}, g_{N, M, t}, h_{N, M, t}, g_{N, M, t t}\), and \(h_{N, M, t t}\).
angle of declination \(D\)
standard error of the angle of declination
\begin{tabular}{rl}
\(\left(a^{2} \cos ^{2} \lambda+b^{2} \sin ^{2} \lambda\right)^{1 / 2}\) where \(a\) & \(=\)\begin{tabular}{l}
mean equatorial radius of \\
the earth
\end{tabular} \\
\(b\) & \(=\) polar radius of the earth \\
\(\lambda\) & \(=\)\begin{tabular}{l}
geodetic coordinate of \\
latitude
\end{tabular}
\end{tabular}

DEN2 (DEN) \(^{2}\)
DIP angle of dip, I
DIPWT standard error of the angle of dip
DP derivative of an associated Legendre polynomial
DXDE1
\(\frac{d X}{d E_{1}}\) where \(X\) is the \(X\) component of the field strength

DXDE2 \(\frac{d X}{d E_{2}}\) where \(X\) is the \(X\) component of the field strength DXDE3 \(\frac{d X}{d E_{3}}\) where \(X\) is the \(X\) component of the field strength DXDG \(\quad \frac{d X}{d g}\) where \(X\) is the \(X\) component of the field strength \(\mathrm{DXDH} \quad \frac{\mathrm{dX}}{\mathrm{dh}}\) where X is the X component of the field strength DYDG \(\quad \frac{d Y}{d g}\) where \(Y\) is the \(Y\) component of the field strength DYDH \(\quad \frac{d Y}{d h}\) where \(Y\) is the \(Y\) component of the field strength DZDE1 \(\frac{d Z}{d E_{1}}\) where \(Z\) is the \(Z\) component of the field strength DZDE2 \(\frac{d Z}{d E_{2}}\) where \(Z\) is the \(Z\) component of the field strength DZDE3 \(\frac{d Z}{d E_{3}}\) where \(Z\) is the \(Z\) component of the field strength DZDG \(\quad \frac{d Z}{d g}\) where \(Z\) is the \(Z\) component of the field strength \(\mathrm{DZDH} \quad \frac{\mathrm{dZ}}{\mathrm{dh}}\) where Z is the \(Z\) component of the field strength E1 external field term along the polar axis

E2 external field term in the equatorial and prime meridian planes
E3 external field term in the equatorial plane but perpendicular to the plane of the prime meridian

DLONG longitudinal coordinate \(\phi\) in degrees
ERR observations times weights summed for global grid-points

ERRLIM

EXTFLD

F

FAC

FACT

FI

FLAT polar radius of the earth/mean equatorial radius of the earth
FLATR \(\quad \lambda\) in radians
FLATT latitudinal coordinate \(\boldsymbol{\lambda}\)

FM the index \(M\) or \(\mathrm{M}-1\) in floating point notation
FN the index N in floating point notation
FNO1 a set of eight storages to contain counts of the seven types of data and a count of the total number of data

FNO2 a set of \((18,36)\) storages to contain the sum of the data weights at points regularly spaced over the surface of the earth at \(10^{\circ}\) intervals

FWT standard error of the field strength
G the coefficient \(g_{N, M, 0}\) in the spherical-harmonic expansion of the geomagnetic potential function

GNM \(\quad G(N, M)\), i.e., a specific \(G\)
\begin{tabular}{|c|c|}
\hline GT & the coefficient \(g_{N, M, t}\) in the spherical-harmonic expansion of the geomagnetic potential function \\
\hline GTNM & \(\mathrm{GT}(\mathrm{N}, \mathrm{M})\), i. e., a specific GT \\
\hline GTT & the coefficient \(g_{N, M, t t}\) in the spherical harmonic-expansion of the geomagnetic potential function \\
\hline GTTNM & GTT(N, M), i. e., a specific GTT \\
\hline H & the coefficient \(h_{N, M, 0}\) in the spherical-harmonic expansion of the geomagnetic potential function \\
\hline HNM & \(\mathrm{H}(\mathrm{N}, \mathrm{M})\), i.e., a specific H \\
\hline HOR & observed horizontal component of field strength \\
\hline HORWT & standard error of the observed horizontal component of field strength \\
\hline HT & the coefficient \(h_{N, M, t}\) in the spherical-harmonic expansion of the geomagnetic potential function \\
\hline HTNM & \(\mathrm{HT}(\mathrm{N}, \mathrm{M})\), i. e., a specific HT \\
\hline HTT & the coefficient \(h_{N, M, t t}\) in the spherical-harmonic expansion of the geomagnetic potential function \\
\hline HTTNM & HTT(N, M), i. e., a specific HTT \\
\hline I & an index \\
\hline IERR & distribution of FI \\
\hline IJ & an index \\
\hline IK & an index \\
\hline ISKIP & determines frequency of the data selected for a test calculation, e. g., ISKIP \(=3\) selects every third observation, \(\operatorname{ISKIP}=10\) selects every tenth, etc. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ITER & iteration limit, i. e., maximum number of iterations to be performed \\
\hline ITNO & iteration counter \\
\hline ITYPE & identifies data type, e.g., DECL \(=1\) \\
\hline & DIP \(=2\) \\
\hline & HOR \(=3\) \\
\hline & \(\mathrm{B}=4\) \\
\hline & \(\mathrm{Z}=5\) \\
\hline & \(X=6\) \\
\hline & \(\mathrm{Y}=7\) \\
\hline J & an index \\
\hline JERR & average observation times weights for global grid-points \\
\hline JK & an index \\
\hline JL & an index \\
\hline JM & an index \\
\hline K & a computed subscript \\
\hline K.J & a subscript computed from \(J\) and \(L\) \\
\hline KK & an index \\
\hline KP & an index \\
\hline KPP & an index \\
\hline L & an index \\
\hline LINE & an index for counting the number of lines output for a page \\
\hline LON & a longitude code \\
\hline M & an index and subscript \\
\hline MAXD & maximum size of the triangular matrix \(C\) \\
\hline N & an index and subscript \\
\hline
\end{tabular}

NCOL column number in triangular matrix \(C\)
NMAX maximum \(N\) in the terms of the form \(g_{N, M, 0} \cos (M-1) \phi\) or \(h_{N, M, 0} \sin (M-1) \phi\) in the spherical-harmonic expansion of the geomagnetic potential function

NMAXT maximum \(N\) in the terms of the form \(g_{N, M, t} \cos (M-1) \phi\) or \(h_{N, M, t}{ }^{t} \sin (M-1) \phi\) in the spherical-harmonic expansion of the geomagnetic potential function

NMAXTT maximum \(N\) in the terms of the form \(\mathrm{g}_{\mathrm{N}, \mathrm{M}, \mathrm{tt}} \mathrm{t}^{2} \cos (\mathrm{M}-1) \phi\) or \(h_{N, M, t t} t^{2} \sin (M-1) \phi\) in the spherical-harmonic expansion of the geomagnetic potential function

NO first row or column in the least squares equations for terms of the form \(\mathrm{g}_{\mathrm{N}, \mathrm{M}, \mathrm{t}} \mathrm{t}^{\mathrm{t}} \cos (\mathrm{M}-1) \phi\) or \(\mathrm{h}_{\mathrm{N}, \mathrm{M}, \mathrm{t}^{\mathrm{t}} \sin (\mathrm{M}-1) \phi}\)

NONOT
first row or column in the least squares equations for terms of the form \(\mathrm{g}_{\mathrm{N}, \mathrm{M}, \mathrm{tt}} \mathrm{t}^{2} \cos (\mathrm{M}-1) \phi\) or \(\mathrm{h}_{\mathrm{N}, \mathrm{M}, \mathrm{tt}} \mathrm{t}^{2} \sin (\mathrm{M}-1) \phi\)

NOP

NOPP number of parameters plus one
NOR number of rows in the triangular matrix \(D\)
NROW row number in the triangular matrix \(D\)
NSKIP constant used to set the value of ISKIP
\(P \quad\) an associated Legendre polynomial
PI
\(\pi=3.14159265\)
PI2
\(2 \pi=6.28318530\)
\(R \quad\) geocentric coordinate of radius
\begin{tabular}{|c|c|}
\hline RAD & degrees in one radian \(=57.2957795\) \\
\hline RDATA & name of subroutine for reading data from magnetic tapes \\
\hline RDKK & reciprocal of the (\(\mathrm{K}, \mathrm{K}\)) element in the triangular matrix D \\
\hline SHMIDT & constants to convert from Gauss normalization to Schmidt normalization \\
\hline SIDE & a "complete" column in the matrix D required for inversion \\
\hline SIG1 & a set of eight storages to contain the sums of the squared observations times the assigned weight types and the total for all data \\
\hline SIND & sine of difference between geodetic coordinate \(\lambda\) and geocentric coordinate \(\theta\) \\
\hline SINLA & sine of the geodetic latitudinal coordinate \(\lambda\) \\
\hline SINLA2 & \(\left(\right.\) SINLA) \({ }^{2}\) \\
\hline SP(M) & sine of the product of (M-1) and the longitudinal coordinate \(\phi\) \\
\hline ST & sine of \(\pi / 2\) minus the geocentric coordinate \(\theta\), i. e., coaltitude \\
\hline SUMD & sum storage for forming check sum column of D matrix \\
\hline SUMTM & sum of (time - 60.0) \\
\hline SWT1 & a set of eight storages to contain the sum of the weights of the seven types of data and a sum of the total weights of all data \\
\hline T1 & a temporary storage \\
\hline T2 & a temporary storage \\
\hline T3 & a temporary storage \\
\hline TEMP & a temporary storage \\
\hline TFACT & time factor \\
\hline THETA & the geocentric coordinate of latitude \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline TIME & time of observation \\
\hline TM & time - 60.0 \\
\hline TYPE & alphabetic code to identify ITYPE's on output \\
\hline WD & seven storages for input data in the following order--DECL, DIP, \(H O R, B, Z, X\), and \(Y\) \\
\hline WT & an assigned data weight \\
\hline X & observed X component of the field strength \\
\hline XID1,XID2 & storages to identify computer run \\
\hline XWT & standard error of observed X component of the field strength \\
\hline Y & observed Y component of the field strength \\
\hline YWT & standard error of observed \(Y\) component of the field strength \\
\hline Z & observed Z component of the field strength \\
\hline ZWT & standard error of observed Z component of the field strength \\
\hline
\end{tabular}

\section*{APPENDIX C}

FLOW CHARTS FOR JENSEN'S FIT PROGRAM

coefficients of the
\[
\begin{gathered}
\mathrm{G}_{\mathrm{N}, \mathrm{M}} \& \mathrm{H}_{\mathrm{N}, \mathrm{M}^{\prime}} \\
\text { i.e. } \frac{\mathrm{dB}}{\mathrm{dG}_{\mathrm{N}, \mathrm{M}}} \& \frac{\mathrm{~dB}}{\mathrm{dH}_{\mathrm{N}, \mathrm{M}}}
\end{gathered}
\]
when \(B\)
is given

PROGRAM LISTING FOR WALL＇S ERROR PROGRAM

WALL＠S ERROR

D MUST EXCEED（NMAX＊＊ \(4+9 *\) NMAX＊＊ \(2+14\) ）／2
\(+(\) NMAXT \(* * 4+9 *\) NMAXT＊＊\(*+14) / 2\)
\(+(\) NMAXTT＊＊ \(4+9 *\) NMAXTT \(* * 2+14) / 2\)
F AND SIDE MUST EXCEED NMAX＊＊ \(2+\) NMAXT \(* * 2+\) NMAXTT＊＊ \(2+6\)
DIMENSION G（9，9）， \(\operatorname{H}(9,9), \operatorname{GT}(9,9), \operatorname{HT}(9,9), \operatorname{GTT}(9,9), \operatorname{HTT}(9,9)\)
DIMENS！ON F（30），DINV 30,30\()\) ，ERR（7）
DIMENSION SHMIDT \((9,9)\)
DIMENSION DXDH \((9,9), \operatorname{DYDH}(9,9), \operatorname{DZDH}(9,9)\)
DIMENSION DXDG \((9,9), \operatorname{DYDG}(9,9), \operatorname{DZDG}(9,9)\)
DIMENSION CP \((9), S P(9), P(9,9), \operatorname{DP}(9,9), \operatorname{CONST}(9,9)\)
INTEGER EXTFLD
DATA（RAD \(=57.2957795),(A=6378.165),(F L A T=298.3),(L \mid N E=0)\)
DATA \((\mathrm{PI}=3.14159265),(\mathrm{P} \mid 2=6.28318530)\)
DATA（EXTFLD＝0）

FLAT \(=1 .-1 . / F L A T\)
FLAT \(=1\) 。
\(A=6371.2\)
MAXD \(=3400\)
\(A 2=A * * 2\)
A \(4=A * * 4\)
\(B 2=(A * F L A T) * * 2\)
\(A 2 B 2=A 2 *(1 .-F L A T * * 2)\)
\(A 4 B 4=A 4 *(1,-F L A T * * 4)\)
REW IND 1
READ DATA FROM MATRIX SUBROUTINE

READ（1）NMAX，NMAXT，NMAXTT，FWNP，FNP，SIGMA，NOR，NOP，NOPP
READ（1）（ \((G(N, M), H(N, M), M=1, N), N=2, N M A X)\)
READ（1）（ \((G T(N, M), H T(N, M), M=1, N), N=2, N M A X)\)
READ（1）（ \((G T T(N, M), H T T(N, M), M=1, N), N=2, N M A X)\)
DO \(1 \quad 1=1\) ，NOR
READ（1）（ \(D \mid N V(1, J), J=1, N O P)\)
CONTINUE
READ DELTA LONGITUDE，DELTA LATITUDE，AND BASE TIME
READ 2，DLONG，DLATT，TIME
FORMAT（3F10．0）
VAR \(=\) SI GMA \(* S\) IGMA
TFACT \(=\) TIME－60．0
TFACT2＝TFACT＊TFACT
FIND STARTING PO！NT FOR GRID
\(S L O N G=0.0\)

7
SLATT=0.0
IF (SLONG-DLONG+180.0) 5,4,4
SLONG=SLONG-DLONG
GO TO 3IF (SLATT-DLATT+90.0) 7,6,6
SLATT=SLATT-DLATT
GO TO 5
SLATT=SLATT-DLATT
ELONG=SLONG
FLATT=SLATT
COMPUTE CONSTANTS REQUIRED FOR GENERATINGLEGENDRE POLYNOMIALS
DO \(8 \mathrm{~N}=2\), NMAX
\(\mathrm{FN}=\mathrm{N}\)
DO \(8 M=1, N\)
FM=M
\(\operatorname{CONST}(N, M)=((F N-2.0) * * 2-(F M-1.0) * * 2) /(F N+F N-3.0) /(F N+F N-5.0)\)
CONT I NUE
COMPUTE CONSTANTS TO CONVERT FROM GAUSS TOSCHMIDT NORMALIZATION
\(\operatorname{SHMIDT}(1,1)=-1.0\)
DO \(9 \mathrm{~N}=2\), NMAX
\(\mathrm{FN}=\mathrm{N}\)
\(\operatorname{SHMIDT}(N, 1)=\operatorname{SHMIDT}(N-1,1) *(F N+F N-3.0) /(F N-1,0)\)
FACT=2.0

FM=M
\(\operatorname{SHMIDT}(N, M)=\operatorname{SHMIDT}(N, M-1) * S Q R T((F N-F M+1.0) * F A C T /(F N+F M-2.0))\)
FACT=1:0
SET VALUE OF FIRST LEGENDEE POLYNOMiALS
\(P(1,1)=1.0\)
\(\operatorname{DP}(1,1)=0.0\)
SET VALUE OF SIN(M-1)PHI AND \(\operatorname{COS}(M-1)\) PHI WHEN \(M=1\)
\(S P(1)=0.0\)
\(C P(1)=1.0\)
RECORD PARAMETERS TO BE USED FOR THE GRID
WRITE (6, 10) NMAX, NMAXT, NMAXTT, SIGMA, FNP, FWNP, NOR, NOP, NOPP
FORMAT (6 H 1 NMAX \(=15,3 X, 6 \mathrm{HNMAXT}=15,3 X, 7 H N M A X T T=15,3 X, 8 \mathrm{HS} \operatorname{IGMA} \quad *=, F\) \(\$ 5.0,3 X, 7 H P O I N T S=, F 6.0,3 X, 11 H W E I G H T \quad S U M=, E 16.8 / 3 X, 4 H N O R=, 15,3 X, 4 H N O\) \(\$ P=, 15,3 X, 5 H N O P P=, 15 / 1 X)\)
WRITE \((6,11)\) DLONG, DLATT, TIME
FORMAT (12 H DELTA LONG \(=\) F \(8.2,3 \mathrm{X}, 10 \mathrm{HDELTA}\) LAT \(=, \mathrm{F} 8.2,3 \mathrm{X}, 10 \mathrm{HBASE}\) TIME \(\$=, F 8.2 / 1 X)\)
WRITE \((6,12)((N, M, G(N, M), H(N, M), G T(N, M), \operatorname{HT}(N, M), G T T(N, M), H T T(N, M)\)

IF (FLATT+DLATT-90.0) 18,14,14
14 IF (ELONG-180.0) 17,15,15 101
WRITE \((6,16)\) 102
FORMAT (\(1 \mathrm{H} 1 / 1 \mathrm{H} 1 / 1 \mathrm{H} 1\)) 103
STOP END
104ELONG=ELONG+DLONG
FLATT=SLATT 106105
L|NE=1
WRITE \((6,64)\) 107
FLATT=FLATT+DLATT 108
COMPUTE GEOCENTRIC THETA FROM 109
110
110GEODETIC COORDINATES111
FLATR=FLATT/RAD112
SINLA=SIN(FLATR)
S I NLA2=S I NLA**2
DEN2=A2-A2B2*SINLA2
DEN=SQRT(DEN2)\(F A C=((A L T * D E N)+B 2) /((A L T * D E N)+A 2)\)THETA=ATAN(FAC*SINLA/(1.E-30+SQRT(1.-SINLA2)))
118113114115117
COMPUTE GEOCENTRIC R FROM GEODETIC COORDINATES
\(R=S Q R T(A L T *(A L T+2, * D E N)+(A 4-A 4 B 4 * S 1 N L A 2) / D E N 2)\) 119
COMPUTE SINE AND COSINE OF DIFFERENCE BETWEEN 120
GEODETIC AND GEOCENTRIC LATITUDINAL COORDINATES 121 122
SIND=SIN(FLATR-THETA) 123
COSD=SQRT(1.O-SIND*SIND) 124
AOR=6371.2/R 125
COS THETA MEASURED FROM POLAR AXIS 126
CT=SIN(THETA) 127
SIN THETA MEASURED FROM POLAR AXIS 128
ST=SQRT(1.0-CT*CT) 129
\(S P(2)=S I N(E L O N G / R A D)\) 130
\(C P(2)=C O S(E L O N G / R A D)\) 131
DO \(19 \mathrm{M}=3\), NMAX 132
SIN(M-1)PHI, EQ.(5) 133
\(S P(M)=S P(2) * C P(M-1)+C P(2) * S P(M-1)\) 134
\(\operatorname{COS}(M-1) \mathrm{PHI}, E Q .(6)\) 135
\(C P(M)=C P(2) * C P(M-1)-S P(2) \star S P(M-1)\) 136
CONT I NUE137
GENERATE ASSOCIATED LEGENDRE POLYNOMIALS
DO \(22 \mathrm{~N}=2\), NMAX 138
DO \(22 M=1, N\) 139
IF (\(N-M\)) \(21,20,21\)
\(P(N, N)=S T * P(N-1, N-1)\)\(D P(N, N)=S T * D P(N-1, N-1)+C T * P(N-1, N-1)\)140GO TO 22
\(P(N, M)=C T * P(N-1, M)-\operatorname{CONST}(N, M) * P(N-2, M)\)142
\(D P(N, M)=C T * D P(N-1, M)-S T * P(N-1, M)-\operatorname{CONST}(N, M) * D P(N-2, M)\)
CONT I NUEINITIALIZE TO COMPUTE \(X, Y, Z\)
\(C X=0.0\)\(C Y=0.0\)143
\(C Z=0.0\) 151
\(A R=A O R \star A O R\) 152
COMPUTE X,Y,Z USING BEST AVAILABLE 153
PARAMETERS 154
DO \(23 \mathrm{~N}=2\), NMAX 155
\(\mathrm{FN}=\mathrm{N}\)
\(\mathrm{FN}=\mathrm{N}\) 156
\(A R=A R * A O R\) 157
DO \(23 M=1, N\) 158
FM \(=M-1\) 159
APPLY SCHMIDT NORMALIZATION CONSTANTS 160
AND MULTIPLY BY (A/R)** \((N+1)\) 161
\(P(N, M)=P(N, M) * A R * S H M I D T(N, M)\) 162
\(D P(N, M)=D P(N, M) * A R * S H M I D T(N, M)\) 163
\(T E M P=F N * P(N, M) * S I N D-D P(N, M) * C O S D\) 164
\(\operatorname{DXDG}(N, M)=T E M P * C P(M)\) 165
\(\operatorname{DXDH}(N, M)=T E M P * S P(M)\) 166
\(T E M P=F M * P(N, M) / S T\) 167
\(\operatorname{DYDG}(N, M)=-T E M P * S P(M)\) 168
\(\operatorname{DYDH}(N, M)=T E M P * C P(M)\) 169
TEMP \(=F N * P(N, M) * C O S D+D P(N, M) * S I N D\) 170
\(D Z D G(N, M)=T E M P * C P(M)\) 171
\(D Z D H(N, M)=T E M P * S P(M)\) 172
ADD TIME TERMS 173
\(G N M=(T M * G T T(N, M)+G T(N, M)) * T M+G(N, M)\) 174
\(H N M=(T M * H T T(N, M)+H T(N, M)) * T M+H(N, M)\) 175
\(C X=C X+G N M * D X D G(N, M)+H N M * D X D H(N, M)\) 176
\(C Y=C Y+G N M * D Y D G(N, M)+H N M * D Y D H(N, M)\) 177
\(C Z=C Z+G N M * D Z D G(N, M)+H N M * D Z D H(N, M)\) 178
CONTINUE 179
IF (EXTFLD) 24, 25, 24 180
\(T 1=E 2 * C P(2)+E 3 * S P(2)\) 181
\(T 2=E 1 * S T-T 1 * C T\) 182
\(T 1=E 1 * C T+T 1 * S T\) 183
\(C X=C X-T 2 * C O S D+T 1 * S I N D\) 184
\(C Y=C Y+E 2 * S P(2)-E 3 * C P(2)\) 185
\(C Z=C Z+T 2 * S I N D+T 1 * C O S D\) 186
COMPUTE HORIZONTAL, TOTAL FIELD, DIP, AND 187
DECLINATION 188
\(\mathrm{CH}=\mathrm{SQRT}(\mathrm{CX}+\mathrm{CX}+\mathrm{CY} * \mathrm{CY})\) 189
\(C F=S Q R T(C H * C H+C Z * C Z)\) 190
\(C I=2.0 * A T A N(C Z /(C F+C H))\) 191
\(C D=2.0 * A T A N(C Y /(C H+C X))\) 192
END FIELD GENERATION, BEGIN STANDARD ERROR ESTIMATION 193
 194
COMPUTE COEFFICIENTS OF \(G(N, M)\) AND \(H(N, M)\) 195 196
ITYPE=1 1 AND \(H(N, M)\) 197
\(1=1\)198
GO TO (\(27,30,33,36,39,41,43,62)\), ITYPE 199
COMPUTE COEFFICIENTS FOR DECLINATION 200\(D E C L=\operatorname{ARCTAN}(Y / X)\)201
T1=DDECL/DY 202
T2=DDECL/DX 203
\(\mathrm{T}=\mathrm{CX} / \mathrm{CH}\) 204
\(\mathrm{T} 2=\mathrm{CY} / \mathrm{CH}\) 205
DO \(29 \mathrm{~N}=2\), NMAX 206
DO \(29 M=1, N\) 207
DDECL/DG(N,M) 208
\(F(1)=(T 1 * D Y D G(N, M)-T 2 * D X D G(N, M))\) 209
IF (M-1) 28,29,28 210
\(1=1+1\) 211
DDECL/DH(N,M) 212
\(F(I)=(T 1 * D Y D H(N, M)-T 2 * D X D H(N, M))\) 213
\(1=1+1\) 214GO TO 45215
COMPUTE COEFFICIENTS FOR DIP 216
DIP=ARCTAN(Z/H) 217
T1=DD|P/DZ 218
T2=DDIP/DX 219
T3=DDIP/DY 220
T1=CH/CF 221
T2 \(=\mathrm{CZ} * \mathrm{CX} / \mathrm{CH} / \mathrm{CF}\) 222
\(\mathrm{T} 3=\mathrm{CZ} * \mathrm{CY} / \mathrm{CH} / \mathrm{CF}\) 223
DO \(32 \mathrm{~N}=2\), NMAX 224
DO \(32 \mathrm{M}=1, \mathrm{~N}\) 225
\(F(I)=D D \mid P / D G(N, M)\) 226
\(F(1)=(T 1 * D Z D G(N, M)-T 2 * D \times D G(N, M)-T 3 * D Y D G(N, M))\) 227
IF (M-1) 31,32,31 228
\(1=1+1\) 229
\(F(I)=D D I P / D H(N, M)\) 230
\(F(1)=(T 1 * D Z D H(N, M)-T 2 * D X D H(N, M)-T 3 * D Y D H(N, M))\) 231 232
\(1=1+1\)
\(1=1+1\)
GO TO 45 233
COMPUTE COEFFICIENTS FOR HORIZONTAL 234
FIELD 235
HOR=SQRT (X*X+Y*Y) 236
T1=DHOR /DX 237
T2=DHOR/DY 238
\(\mathrm{Ti=CX} / \mathrm{CH}\) 239
T2=CY/CH 240
DO \(35 \mathrm{~N}=2\), NMAX 241
DO \(35 \mathrm{M}=1, \mathrm{~N}\) 242
\(F(I)=D H O R / D G(N, M)\) 243
\(F(1)=(T 1 * \operatorname{XDG}(N, M)+T 2 * D Y D G(N, M))\) 244
IF (M-1) 34, 35,34 245
\(=1+1\) 246
\(F(I)=\operatorname{DHOR} / D H(N, M)\) 247
\(F(1)=(T 1 * D X D H(N, M)+T 2 * D Y D H(N, M))\) 248\(1=1+1\)249GO TO 45250
COMPUTE COEFFICIENTS FOR TOTAL FIELD 251 252
\(B=S\) QRT \((X * X+Y * Y+Z * Z)\)
\(B=S\) QRT \((X * X+Y * Y+Z * Z)\)
T1=DB/DX
\[
T 2=D B / D Y
\]
T1=CX/CF
\[
T 3=D B / D Z
\]
T2=CY/CF
T3=CZ/CF
DO \(38 \mathrm{~N}=2\), NMAX
\[
258
\]
DO \(38 \mathrm{M}=1, \mathrm{~N}\)
\[
\begin{aligned}
& F(1)=D B / D G(N, M) 261 \\
& F(1)=(T 1 * D X D G(N, M)+T 2 * D Y D G(N, M)+T 3 * D Z D G(N, M))
\end{aligned}
\]
\[
\begin{aligned}
& F(1)=(T 1 * \operatorname{DXDG}(N, M)+T 2 * D Y D G(N, M)+T 3 * D Z D G(N, M)) \\
& 1 F_{(M-1)}^{28} 27
\end{aligned}
\]IF (M-1) 37,38,37263
\(I=1+1\)
\(F(1)=D B / D H(N, M)\)
\(F(1)=(T 1 * \operatorname{DXDH}(N, M)+T 2 * \operatorname{DYDH}(N, M)+T 3 * \operatorname{DZDH}(N, M))\)
\(1=1+1\)
GO TO 45 267 268
C 39 DO \(40 \quad \mathrm{~N}=2\), NMAX COMPUTE COEFFICIENTS WHEN THE Z COMPONENT IS GIVEN 269
\(F(1)=\operatorname{DZDG}(N, 1)\) 270 271
\(1=1+1\)
DO \(40 \mathrm{M}=2, \mathrm{~N}\) 272
\(F(1)=D Z D G(N, M)\) 273 273\(F(1+1)=\operatorname{DZDH}(N, M)\)\(1=1+2\)GO TO 45\(\mathrm{F}(1)=\mathrm{M}=2, \mathrm{~N}\)282
\(F(1+1)=D \times D H(N, M)\)283284
GO TO 45 285
42286
C COMPUTE COEFFICIENTS WHEN THE Y COMPONENT IS GIVEN 287
\(F(1)=D Y D G(N, 1)\) 288
\(1=1+\) 289 290
DO \(44 \mathrm{M}=2\), N
DO \(44 \mathrm{M}=2\), N \(F(1)=D Y D G(N\) 291
\(F(1+1)=D Y D H(N, M)\) 292 293
\(1=1+2\)ADD TIME** 1 TERMS294
\(\mathrm{NO}=1-1\)IF (\(\operatorname{maxT}\)) 46,48,46297
\(J=1\) 298DO \(47 \mathrm{~N}=2\), NMAXT299\(F(1)=F(J) * T F A C T\)309
\begin{tabular}{|c|c|c|}
\hline & \(1=1+1\) & 301 \\
\hline & \(J=\mathrm{J}+1\) & 302 \\
\hline & DO \(47 \mathrm{M}=2\), N & 303 \\
\hline & \(\mathrm{F}(1)=F(J) * T F A C T\) & 304 \\
\hline & \(F(1+1)=F(J+1)\) *TFACT & 305 \\
\hline & \(\mathrm{I}=1+2\) & 306 \\
\hline & \(J=J+2\) & 307 \\
\hline 47 & CONTINUE & 308 \\
\hline \({ }_{4}\) & ADD TIME**2 TERMS & 309 \\
\hline 48 & \begin{tabular}{l}
NONOT \(=1-1\) \\
IF (NMAXTT) 49,51,49
\end{tabular} & 310
311 \\
\hline & IF (NMAXTT) 49,51,49 & 311 \\
\hline 49 & \(J=1\) & 312 \\
\hline & DO \(50 \mathrm{~N}=2\), NMAXTT & 313 \\
\hline & \(F(1)=F(J) * T F A C T 2\) & 314 \\
\hline & \(1=1+1\) & 315 \\
\hline & \(J=\mathrm{J}+1\) & 316 \\
\hline & DO \(50 \mathrm{M}=2\), N & 317 \\
\hline & \(\mathrm{F}(1)=\mathrm{F}(\mathrm{J}) *\) TFACT2 & 318 \\
\hline & \(F(1+1)=F(J+1) *\) TFACT 2 & 319 \\
\hline & \(1=1+2\) & 320 \\
\hline & \(J=J+2\) & 321 \\
\hline 50 & CONTINUE & 322 \\
\hline 51 & IF (EXTFLD) 52,60,52 & 323 \\
\hline C & AdD EXTERNAL FIELD TERMS & 324 \\
\hline 52 & DXDE1=CT*SIND-ST*COSD & 325 \\
\hline & DZDE \(1=S T *\) S \(1 N D+C T * C O S D\) & 326 \\
\hline & DXDE \(2=C P(2) * D Z D E 1\) & 327 \\
\hline & DXDE \(3=S P(2) *\) DZDE 1 & 328 \\
\hline & DZDE \(2=-C P(2) * D \times D E 1\) & 329 \\
\hline & DZDE \(3=-\mathrm{SP}(2)\) *DXDE 1 & 330 \\
\hline & GO TO (\(53,54,55,56,57,58,59)\), ITYPE & 331 \\
\hline \({ }^{\text {c }}\) & COEFFICIENTS WHEN DECLINATION (D) IS GIVEN & 332 \\
\hline & \(F(1)=T 2 * \operatorname{F}(1)=D \mathrm{D} / \mathrm{DE} 1\) & 333 \\
\hline 53 & \(F(1)=-T 2 * D \times D E 1\) & 334 \\
\hline & \(1=1+1 \quad F(1)=\) PD \({ }^{\text {a }}\) & 335 \\
\hline C & \(F(1)=T 1 * S P(2)=\) (1) \(=\) D / DE2 & 336 \\
\hline & \(F(1)=T 1 * S P(2)-T 2 * D \times D E 2\) & 337 \\
\hline & \(1=1+1 \quad F(1)=0{ }^{\text {P }}\) & 338 \\
\hline C & \(F(1)=T 1 * C P(2) T(1)=D D / D E 3\) & 339 \\
\hline & \(F(1)=-T 1 * C P(2)-T 2 * D \times D E 3\) & 340 \\
\hline & GO TO 60 & 341
342 \\
\hline & COEFFICIENTS WHEN DIP (1) IS GIVEN & \\
\hline c & \(F(1)=D 1 / D E 1\) WHEN 1 IP (1) IS GIVEN & 343
344 \\
\hline 54 & \(F(1)=T 1 * D Z D E 1-T 2 * D X D E 1\) & 345 \\
\hline & \(1=1+1\) & 346 \\
\hline c & \[
\begin{gathered}
F(1)=D 1 / D E 2 \\
F(1)=T 1 * \operatorname{DDE} 2-T 2 * D \times D E 2-T 3 * S P(2)
\end{gathered}
\] & 347
348 \\
\hline & \(\underset{1=1+1}{ }(1)=1 \times\) DZDE \(2-12 * D X D E 2-13 * S P(2)\) & 348
349 \\
\hline C & \(F(1)=01 / D E 3\) & 350 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & \[
\begin{aligned}
& F(1)=T 1 * D Z D E 3-T 2 * D X D E 3+T 3 * C P(2) \\
& 1=1+1 \\
& G O T O 60
\end{aligned}
\] & 351
352
353 \\
\hline C & COEFFICIENTS WHEN THE HORIZONTAL & 354 \\
\hline \({ }^{\text {c }}\) & COMPONENT (HOR) IS GIVEN & 355
356 \\
\hline 55 & \(F(1)=T 1\) *DXDE 1 & 357 \\
\hline & \(1=1+1\) & 358 \\
\hline c & \(F(1)=T 1 *\) (1) \(=\) DHOR/DE2 & 359 \\
\hline & \(F(1)=T 1 * D X D E 2+T 2 * S P(2)\) & 360 \\
\hline & \(1=1+1 \quad F(1)=\) H 10 PDE & 361 \\
\hline C & \(F(1)=F(1)=\) DHOR/DE3 & 362 \\
\hline & \(F(1)=T 1 * D X D E 3-T 2 * C P(2)\) & 363 \\
\hline & \(1=1+1\) & 364 \\
\hline & GO TO 60 & 365 \\
\hline \({ }^{\text {c }}\) & COEFFICIENTS WHEN TOTAL FIELD is given & 366 \\
\hline C & \(F(1)=D F / D E 1\) & 367 \\
\hline 56 & \(F(1)=T 1 * D X D E 1+T 3 * D Z D E 1\) & 368 \\
\hline & \(1=1+1\) & 369 \\
\hline C & \(F(1)=D F / D E 2\) & 370 \\
\hline & \(F(1)=T 1 * D X D E 2+T 2 * S P(2)+T 3 * D Z D E 2\) & 371 \\
\hline & \(1=1+1\) & 372 \\
\hline C & \(F(1)=T 1 * D \times D E 3\) (\()=D F / D E 3\) & 373 \\
\hline & \(F(1)=T 1 * D \times D E 3-T 2 * C P(2)+T 3 * D Z D E 3\) & 374 \\
\hline & \(1=1+1\) & 375 \\
\hline & GO TO 60 & 376 \\
\hline \[
\begin{aligned}
& C \\
& 57
\end{aligned}
\] & \(\mathrm{F}(1)=\) dZde 1 COEFFICIENTS WHEN THE \(Z\) COMPONENT IS GIVEN & 377 \\
\hline & \(i=i+i\) & 378 \\
\hline & \(F(1)=D Z D E 2\) & 380 \\
\hline & \(1=1+1\) & 381 \\
\hline & \(F(1)=\) DZDE 3 & 382 \\
\hline & \(1=1+1\) & 383 \\
\hline & GO TO 60 COEFFICIENTS WHEN THE \(\times\) & 384 \\
\hline 58 & \(F(1)=\) DXDE 1 COEFFICIENTS WHEN THE \(X\) COMPONENT IS GIVEN & 385 \\
\hline & \(1=1+1\) & 386 \\
\hline & \(F(1)=\) DXDE 2 & 388 \\
\hline & \(1=1+1\) & 389 \\
\hline & \(F(1)=\) DXDE 3 & 390 \\
\hline & \(1=1+1\) & 391 \\
\hline & GO TO 60 & 392 \\
\hline 59 & \(F(1)=0.0\) COEFFICIENTS WHEN THE Y COMPONENT IS GIVEN & 393 \\
\hline & \(1=1+1\) & 394 \\
\hline & \(F(1)=S P(2)\) & 396 \\
\hline & \(1=1+1\) & 397 \\
\hline & \(F(1)=-C P(2)\) & 398 \\
\hline & \(1=1+1\) & 399 \\
\hline & GO TO 60 & 400 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& c \\
& 60
\end{aligned}
\] & SUMD \(=0.0\) COMPUTE STANDARD ERROR OF ESTIMATE & 401 \\
\hline & DO \(61 \quad i=1\), NOR & 402
403 \\
\hline & TEMP \(=\mathrm{F}(1)\) & 404 \\
\hline & DO \(61 \mathrm{~J}=1\), NOR & 405 \\
\hline & SUMD \(=\) SUMD + TEMP*F (J\()\) *DINV (\(1, \mathrm{~J}\)) & 406 \\
\hline 61 & CONTINUE & 407 \\
\hline & ERR (ITYPE) = SQRT (SUMD*VAR) & 408 \\
\hline & \(1 T Y P E=1 T Y P E+1\) & 409 \\
\hline & GO TO 26 & 410 \\
\hline C & * * * * * * * * * * * * & 411 \\
\hline C & & 412
413 \\
\hline 62 & \(C D=C D * R A D\) & 413
414 \\
\hline & \(C I=C l * R A D\) & 415 \\
\hline & \(\operatorname{ERR}(1)=\operatorname{SQRT}((\operatorname{ERR}(1) \star \operatorname{ERR}(1)+C D * C D * E R R(3) * E R R(3)) /(C H * C H)) * R A D\) & 416 \\
\hline & \(\operatorname{ERR}(2)=\operatorname{SQRT}((\operatorname{ERR}(2) * \operatorname{ERR}(2)+C 1 * C 1 * \operatorname{RRR}(4) * \operatorname{ERR}(4)) /(\mathrm{CF*CF})) * R A D\) & 417 \\
\hline & IF (MOD (LINE,51)) 65,63,65 & 418 \\
\hline \[
63
\] & WRITE \((6,64)\) & 419 \\
\hline 64 & FORMAT (118 HI LAT LONG DECLINATION FIELD DIP HORIZON & 420 \\
\hline & \$TAL TOTAL FIELD Z COMPONENT X COMPONENT Y COMPONENT) & 421 \\
\hline 65 & WRITE \((6,66)\) FLATT, ELONG, CD, ERR (1) , CI, ERR (2) , CH, ERR (3) , CFF, ERR (4) , C & 422 \\
\hline & \$Z, ERR (5) , CX, ERR (6), CY, ERR (7) & 423 \\
\hline 66 & FORMAT (\(1 \mathrm{X}, \mathrm{F} 6.1, \mathrm{~F} 7.1,2(\mathrm{~F} 8.2, \mathrm{~F} 7.3), 5(\mathrm{~F} 8.0, \mathrm{~F} 7.2)\)) & 424 \\
\hline & \(L I N E=L \mid N E+1\) & 425 \\
\hline & GO TO 13 & 426 \\
\hline & END & 427 \\
\hline
\end{tabular}

\section*{APPENDIX E}

\section*{WALL'S ERROR}

\section*{Introduction}

The purpose of this appendix is to document the sequence of operations and to discuss various programming aspects of Wall's Error program. This program has been written to find standard errors of estimation for a grid of the geomagnetic potential over the earth's surface. The grid is based on the time-dependent coefficients estimated by Jensen's Fit program for the spherical-harmonic expansion of the geomagnetic potential function.

The mathematical formulas which form the basis of the computer program are not restated in this appendix. Each time that a formula is required to explain a Fortran variable, a reference is made to an equation in Sections 2.0, 3.0, or 4.0 of this report or to one of the reports listed in the bibliography. When referencing this report, it should be noted that the Fortran variable \(N\) is equal to \(n+1\). Similarly, \(M=m+1\).

The computer program is relatively linear, i.e., there are few alternate calculation sequences. Hence, the calculation sequence will be described in a linear manner.

The program can be roughly divided into four phases as follows:
(1) initializing; (2) field generation; (3) standard error estimation; and (4) one point output or recording. This appendix will likewise be divided into
four principal sections to describe respectively these four phases. Within each section, the Fortran name for variables will be used whenever possible. A glossary identifying these variables is included at the end of this appendix.

\section*{Initialization}

Initialization consists of doing the things that must be done once at the start of the execution of the program. For this program, these things include setting or computing the value of certain constants that will be used throughout the other phases of the program. Among these are FLAT, A2, A4, B2, A2B2, A4B4, VAR, TFACT, TFACT2, ELONG, FLATT, \(\operatorname{CONST}(\mathrm{N}, \mathrm{M}), \operatorname{SHMIDT}(\mathrm{N}, \mathrm{M}), \mathrm{P}(1,1) \operatorname{DP}(1,1), \mathrm{SP}(1)\), and \(\mathrm{CP}(1)\) all of which are identified in the glossary at the end of this appendix.

The equation for computing CONST(N, M) is found in Eqs. (19) of Section 2.0. Note that \(N=n+1\) and \(M=m+1\). The equations for computing SHMIDT(N, M) are found in Eqs. (20) of Section 2. 0.

The value of the first associated Legendre polynomial, \(P(1,1)\), and its derivative, \(\mathrm{DP}(1,1)\), are constants and may be found in Eqs. (19) of Section 2.0. Similarly, the value of \(S P(M)\) and \(C P(M)\) are constants for \(M=1\), i. e., \(S P(1)=0.0\) and \(C P(1)=1.0\).

Another common function of initialization is the reading of variable control and starting data. Among the variables that must be read for this program are NMAX, NMAXT, NMAXTT, FWNP, FNP, SIGMA, NOR, NOP, NOPP, \(G(N, M), H(N, M), G T(N, M), H T(N, M), \operatorname{GTT}(N, M)\),
\(\operatorname{HTT}(\mathrm{N}, \mathrm{M})\), and \(\operatorname{DINV}(\mathrm{I}, \mathrm{J})\). These variables, which are all identified in the glossary, are recorded by the modification of Daniels' Matrix subroutine specifically for this program. In addition to these, DLONG, DLATT, and TIME must also be supplied, these are identified in the glossary.

A final function of initialization is often the recording of initial values of pertinent variables. This program records all input data listed above except DINV.

Except for setting or computing the values of certain other minor variables required by the initialization functions enumerated above, this completes the initialization phase of the program.

\section*{Field Generation}

Output page control and the incrementing of longitude and latitude is accomplished by cards 100 through 109.

Beginning with card 112, geocentric coordinates are computed from the geodetic grid point assignments made for each observation. The equation for computing THETA is Eq. (30) of Section 2.0. The equation for computing geocentric \(R\) is Eq. (31) of Section 2.0.

The five variables SIND, COSD, AOR, CT and ST which are all identified in the glossary are computed next. SIND and COSD are required for converting from geocentric to geodetic coordinates. CT and ST are required for the generation of the associated Legendre polynomials and AOR is a term that appears in the equations for estimating \(X, Y, Z\), etc. from
the best available set of parameters. One should note that the Fortran statement for computing CT and ST redefines \(\theta\) to be measured from the polar axis instead of from the equatorial plane, i. e., colatitude.
\(\mathrm{SP}(2)\) and \(\mathrm{CP}(2)\) are computed, followed by the computation of \(\mathrm{SP}(\mathrm{M})\) and \(C P(M)\) for \(M>2\). The equations
\[
\begin{equation*}
\sin (M-1) \phi=\sin \phi \cdot \cos (M-2) \phi+\cos \phi \cdot \sin (M-2) \phi \tag{E1}
\end{equation*}
\]
and
\[
\begin{equation*}
\cos (M-1) \phi=\cos \phi \cdot \cos (M-2) \phi-\sin \phi \cdot \sin (M-2) \phi \tag{E2}
\end{equation*}
\]
used for computing \(\mathrm{SP}(\mathrm{M})\) and \(\mathrm{CP}(\mathrm{M})\) are available in standard texts on trigonometry under the subject, "functions of sums of angles."

Next the program evaluates the necessary associated Legendre polynomials, \(P(N, M)\), and their derivatives, \(\operatorname{DP}(N, M)\), employing the recurrence relationships which are found in Section 2.0, Eqs. (19). K \(\mathrm{K}_{\mathrm{N}, \mathrm{M}}\) corresponds to the Fortran variable \(\operatorname{CONST}(\mathrm{N}, \mathrm{M})\) and was discussed above in the section on initialization.

Beginning with card 149, the Fortran variables CX, CY, and CZ are set equal to zero in preparation for the estimation of \(\mathrm{X}, \mathrm{Y}\), and Z . AR and TM , two Fortran variables identified in the glossary, must also be initialized in preparation for the estimation of \(\mathrm{X}, \mathrm{Y}\), and Z .

The Fortran statements through card 179 are required to estimate \(X, Y\), and \(Z\), i. e., the Fortran variables \(C X, C Y\), and \(C Z\). The rotation formulas required for computing \(X\) and \(Z\) are found in Section 2.0, Eqs. (32)
and (33). Equations for \(B_{\theta}, B_{r}\), and \(B_{\phi}\) are given in several different forms in Section 2.0 of this report.

Near the beginning of the group of Fortran statements required to estimate \(\mathrm{X}, \mathrm{Y}\), and Z (specifically cards 162 and 163), the Gauss normalized polynomials are Schmidt normalized and multiplied by the appropriate power of \(\frac{6371.2}{r}\), i. e., AR.

Depending on when it is calculated, the Fortran variable TEMP is the common factor in the coefficients of the two parameters \(g_{N, M, 0}\) and \(h_{N, M, 0}\) in the formulas for computing \(X, Y\), or \(Z\). DXDG, DXDH, DYDG, DYDH, DZDG and DZDH complete the calculation of the coefficients of \(g_{N, M, 0}\) and \(h_{N, M, 0}\) in the formulas for computing \(X, Y\), and \(Z\). Next, the Fortran variables GNM and HNM are computed using Eqs. (21) of Section 2.0 and finally all terms are summed for the respective estimates of \(X, Y\), and Z .

The \(X, Y\), and \(Z\) components of the external field are next estimated and added to the respective estimates of \(\mathrm{X}, \mathrm{Y}\), and Z (cards 180 through 186). This step is completely skipped if EXTFLD is zero.

From the estimates of \(X, Y\), and \(Z\), estimates of the horizontal field, total field, dip, and declination (Fortran variables \(\mathrm{CH}, \mathrm{CF}, \mathrm{CI}\), and CD respectively) are made using Eqs. (34) and (37-39) of Section 3.0.

This concludes the field generation phase of the Error program.

\section*{Standard Error Estimation}

The program now computes the coefficients of the \(g\) 's and \(h\) 's in the spherical-harmonic expansion of the geomagnetic potential function. These coefficients are the \(f(x)\) in Eq. (51) of Section 4. 0.

Formulas for the coefficients of the \(g\) 's and \(h\) 's in the system of simultaneous least squares equations may be derived easily from simple theorems in differential calculus and the various equations of Section 3.0. The calculus theorem results in the following:
\[
\begin{array}{ll}
\text { If } & x=f(u) \quad \text { and } u=g(w) \\
\text { then } & \frac{d x}{d w}=\frac{d f}{d u} \cdot \frac{d g}{d w} \tag{E3}
\end{array}
\]

Applying this theorem to Eq. (34) of Section 3.0, the following formulas can be derived for the declination of the total field strength:
\[
\begin{align*}
& \frac{d D E C L}{d g_{N, M, 0}}=\frac{d D E C L}{d X} \cdot \frac{d X}{d g_{N, M, 0}}+\frac{d D E C L}{d Y} \cdot \frac{d Y}{d g_{N, M, 0}} \tag{E4}\\
& \frac{d D E C L}{d g_{N, M, 0}}=-\frac{Y}{H O R} \frac{d X}{d g_{N, M, 0}}+\frac{X}{H O R} \frac{d Y}{d g_{N, M, 0}} \tag{E5}\\
& \frac{d D E C L}{d h N, M, 0}=\frac{d D E C L}{d X} \cdot \frac{d X}{d h N, M, 0}+\frac{d D E C L}{d Y} \cdot \frac{d Y}{d h} N, M, 0 \tag{E6}\\
& \frac{d D E C L}{d h}=-\frac{Y}{H O R} \cdot \frac{d X}{d h}+\frac{X}{H O R} \frac{d Y}{d h} N, M, 0 \tag{E7}
\end{align*}
\]

Similarly, from Eqs. (37-39) of Section 3. 0, the following can be derived for field dip:
\[
\begin{align*}
& \frac{d D I P}{d^{g_{N, M, 0}}}=-\frac{X \cdot Z}{H \cdot F} \frac{d X}{d g_{N, M, 0}}-\frac{Y \cdot Z}{H \cdot F} \frac{d Y}{d g_{N, M, 0}}+\frac{H}{F} \frac{d Z}{d g_{N, M, 0}} \tag{E8}\\
& \frac{d D_{N I P}}{d h_{N, M, 0}}=-\frac{X \cdot Z}{H \cdot F} \frac{d X}{d h_{N, M, 0}}-\frac{Y \cdot Z}{H \cdot F} \frac{d Y}{d h_{N, M, 0}}+\frac{H}{F} \frac{d Z}{d h_{N, M, 0}} \tag{E9}
\end{align*}
\]
for the horizontal component:
\[
\begin{align*}
& \frac{d H O R}{d^{g}{ }_{N, M, 0}}=\frac{X}{H O R} \frac{d X}{\operatorname{dg}_{N, M, 0}}+\frac{Y}{H O R} \frac{d Y}{d^{g}{ }_{N, M, 0}} \tag{E10}\\
& \frac{d H O R}{d^{d} h_{N, M, 0}}=\frac{X}{H O R} \frac{d X}{d h_{N, M, 0}}+\frac{Y}{H O R} \frac{d Y}{d h_{N, M, 0}} \tag{E11}
\end{align*}
\]
and for total field:
\[
\begin{align*}
& \frac{d B}{d^{g_{N, M, 0}}}=\frac{X}{B} \frac{d X}{d^{g}{ }_{N, M, 0}}+\frac{Y}{B} \frac{d Y}{d^{\prime}{ }_{N, M, 0}}+\frac{Z}{B} \frac{d Z}{d g_{N, M, 0}} \tag{E12}\\
& \frac{d B}{d h_{N, M, 0}}=\frac{X}{B} \frac{d X}{d h_{N, M, 0}}+\frac{Y}{B} \frac{d Y}{d h_{N, M, 0}}+\frac{Z}{B} \frac{d Z}{d h} N, M, 0 \tag{E13}
\end{align*}
\]

Similar expressions for derivatives with respect to \(g_{N, M, t}, h_{N, M, t}\), \(g_{N, M, t t}\), and \(h_{N, M, t t}\) can be derived from the equations cited.

Beginning with card 204, the Error program employs Eqs. (E4-E7) to compute the coefficients of the \(g_{N, M, 0}\) and \(h_{N, M, 0}\) in the equation for estimating declination. At card 221, the same coefficients in the equation
for dip are computed. Then at cards 239 and 256 , these coefficients are computed for horizontal and total field respectively. Finally, at cards 270, 279, and 288, the coefficients for \(Z, X\), and \(Y\) respectively are processed. Finally, coefficients for \(g_{N, M, t}\) and \(h_{N, M, t}\) are computed at 296 while coefficients for \(\mathrm{g}_{\mathrm{N}, \mathrm{M}, \mathrm{tt}}\) and \(\mathrm{h}_{\mathrm{N}, \mathrm{M}, \mathrm{tt}}\) are computed at card 310 .

If external field terms are to be used and corrected, the program, beginning with card 325 , computes the coefficients of the unknowns \(E_{1}, E_{2}\), and \(E_{3}\) in the system of simultaneous least squares equations. The equations employed are similar to Eqs. (E4) through (E1 3) with \(\frac{d}{d_{\mathrm{N}}^{\mathrm{N}, \mathrm{M}, 0}}\) or \(\frac{d}{d h_{N, M, 0}}\) being replaced with \(\frac{d}{d E_{1}}, \frac{d}{d E_{2}}\), or \(\frac{d}{d E_{3}}\). Beginning with card 325, \(\frac{d X}{d E_{1}}, \frac{d X}{d E_{2}}, \frac{d X}{d E_{3}}, \frac{d Z}{d E_{1}}, \frac{d Z}{d E_{2}}\), and \(\frac{d Z}{d E_{3}}\) are computed. The quantities \(\frac{d Y}{d E_{1}}=0, \frac{d Y}{d E_{2}}=\sin \phi\), and \(\frac{d Y}{d E_{3}}=-\cos \phi\) are not set up explicitly. Then beginning at cards \(334,345,357\), and 368 these derivatives are used to compute the coefficients of \(E_{1}, E_{2}\), and \(E_{3}\) for declination, dip, horizontal field and total field, respectively. At cards 378, 386, and 394, the \(E\) coefficients for \(Z, X\), and \(Y\) respectively are processed.

Cards 402 through 408 compute the sum specified in Eq. (5i) of Section 4.0. This concludes the Standard Error Estimation phase of the Error program.

One Point Output
This last phase of Wall's Error is very short, consisting only of cards 414 through 425. The first four of these cards convert declination and dip and their estimated errors from gammas to degrees. This convertion is discussed in Section 4.0 and specific equations for the conversion are (52) and (53). The remaining eight cards control paging and produce the output of one line.

This concludes Wall's Error program.

\section*{GLOSSARY}

Wall's Error

A a, the mean equatorial radius of the earth in kilometers
A2
A. 4 \(a^{2}\)
a
A2B2
A4B4

ALT
AOR radius of the sphere having volume equal to the earth's volume/R
AR
(radius of the sphere having volume equal to the earth's volume/R) \({ }^{N+1}\)
B2 (polar radius of the earth) \({ }^{2}\)
\(C D \quad\) estimated declination in radians
CF estimated total field strength
\(\mathrm{CH} \quad\) estimated horizontal field strength
CI estimated field dip in radians
CONST a set of constants required for the generation of the associated Legendre polynomials, \(P_{n}^{m}\)
\(\frac{(n-1)^{2}-m^{2}}{(2 n-1)(2 n-3)}=\frac{(N-2)^{2}-(M-1)^{2}}{(2 N-3)(2 N-5)}\)
\(n\) and \(m\) are common formula notation while \(N\) and \(M\) are used in the computer program

COSD cosine of difference between geodetic coordinate \(\lambda\) and geocentric coordinate \(\theta\)
\(C P(M) \quad\) cosine of the product of (M-1) and the longitudinal coordinate \(\phi\) CT cosine of \(\pi / 2\) minus the geocentric coordinate \(\theta\) i. e., colatitude

CY estimated \(Y\) component of the field strength
CZ
DEN
estimated \(Z\) component of the field strength
\(\left(a^{2} \cos ^{2} \lambda+b^{2} \sin ^{2} \lambda\right)\) \(1 / 2\)
 estimated \(X\) component of the field strength
\(\left(a^{2} \cos ^{2} \lambda+b^{2} \sin ^{2} \lambda\right) \quad\) where \(a=\) mean equatorial radius of the earth
\(b=\) polar radius of the earth
\(\lambda=\) geodetic coordinate of latitude

DEN2 (DEN) \({ }^{2}\)
DINV inverse of the D matrix of Jensen's Fit program
DLATT latitude interval for the potential function grid
DLONG longitude interval for the potential function grid
DP derivative of an associated Legendre polynomial
DXDE1 \(\quad \frac{d X}{d E_{1}}\) where \(X\) is the \(X\) component of the field strength
DXDE2 \(\frac{d X}{d E_{2}}\) where \(X\) is the \(X\) component of the field strength
DXDE3 \(\quad \frac{d X}{d E_{3}}\) where \(X\) is the \(X\) component of the field strength
DXDG \(\quad \frac{d X}{d g}\) where \(X\) is the \(X\) component of the field strength
\(D X D H \quad \frac{d X}{d h}\) where \(X\) is the \(X\) component of the field strength
DYDG \(\quad \frac{d Y}{d g}\) where \(Y\) is the \(Y\) component of the field strength
DYDH \(\quad \frac{d Y}{d h}\) where \(Y\) is the \(Y\) component of the field strength

DZDE1 \(\frac{d Z}{d E_{1}}\) where \(Z\) is the \(Z\) component of the field strength
DZDE2 \(\frac{d Z}{d E_{2}}\) where \(Z\) is the \(Z\) component of the field strength
DZDE3 \(\frac{d Z}{d E_{3}}\) where \(Z\) is the \(Z\) component of the field strength
\(D Z D G \quad \frac{d Z}{d g}\) where \(Z\) is the \(Z\) component of the field strength
DZDH \(\quad \frac{d Z}{d h}\) where \(Z\) is the \(Z\) component of the field strength
E1 external field term along the polar axis
E2 external field term in the equatorial and prime meridian planes
E3 external field term in the equatorial plane but perpendicular to the plane of the prime meridian

ELONG longitudinal coordinate \(\phi\) in degrees
ERR observations times weights summed for global grid-points
EXTFLD a code to identify when external field terms are to be used
(EXTFLD \(\neq 0\)) and when they are not to be used (EXTFLD \(=0\))

F
one of the numbers used to form the sums of squares and crossproducts of the triangular matrix

FAC \(\quad \tan \theta / \tan \lambda\) where \(\theta\) and \(\lambda\) are the geocentric and geodetic latitudinal coordinates

FACT a factor used in generating the factors for converting from Gauss normalization to Schmidt normalization. When \(M=2\), FACT \(=2\). 0 ; when \(\mathrm{M}>2\), \(\mathrm{FACT}=1.0\). Also used in forming squares and cross products. Hence a temporary storage.

FLAT polar radius of the earth/mean equatorial radius of the earth
FLATR \(\quad \lambda\) in radians
FLATT latitudinal coordinate \(\lambda\)
FM the index \(M\) or \(\mathbf{M}-1\) in floating point notation

FN the index \(N\) in floating point notation
FNP FNO1(8) in Jensen's Fit program
FWNP SWT1(8) in Jensen's Fit program
G

GNM
\(G(N, M)\), i. e., a specific \(G\)
GT the coefficient \(g_{N, M, t}\) in the spherical-harmonic expansion of the geomagnetic potential function

GTT

H

HNM
HT

HTT

I
ITYPE

J
LINE the coefficient \(g_{N, M, t t}\) in the spherical-harmonic expansion of the geomagnetic potential function
the coefficient \(h_{N, M, 0}\) in the spherical-harmonic expansion of the geomagnetical potential function
\(H(N, M)\), i. e., a specific \(H\)
the coefficient \(h_{N, M, t}\) in the spherical-harmonic expansion of the geomagnetical potential function
the coefficient \(h_{N, M, t t}\) in the spherical-harmonic expansion of the geomagnetical potential function
an index
identifies data type, e. g. , DECL \(=1\)
DIP \(=2\)
HOR \(=3\)
\(B=4\)
\(Z=5\)
\(X=6\)
\(\mathrm{Y}=7\)
an index
an index for counting the number of lines output for a page

M an index and subscript
MAXD maximum size of the triangular matrix \(D\)
\(\mathrm{N} \quad\) an index and subscript
NMAX maximum \(N\) in the terms of the form \(g_{N, M, 0} \cos (\mathrm{M}-1) \phi\) or \(h_{N, M, 0} \sin (\mathrm{M}-1) \phi\) in the spherical harmonic expansion of the geomagnetic potential function

NMAXT

NMAXTT
maximum \(N\) in the terms of the form \(g_{N, M, t} t \cos (M-1) \phi\) or \(h_{N, M, t} t^{\sin (M-1) \phi}\) in the spherical-harmonic expansion of the geomagnetic potential function

NMAXTT maximum \(N\) in the terms of the form \(g_{N, M, t t} t^{2} \cos (M-1) \phi\) or \(h_{N, M, t t} t^{2} \sin (\mathrm{M}-1) \phi\) in the spherical-harmonic expansion of the geomagnetic potential function

NO

NONOT

NOP

NOR

PI \(\quad \pi=3.14159265\)
PI2

R

NOPP number of parameters plus one

P an associated Legendre polynomial
\(2 \pi=6.28318530\)
first row or column in the least squares equations for terms of the form \(g_{N, M, t}{ }^{t} \cos (M-1) \phi\) or \(h_{N, M, t}{ }^{t} \sin (M-1) \phi\)
first row or column in the least squares equations for terms of the form \(g_{N, M, t t} t^{2} \cos (M-1) \phi\) or \(h_{N, M, t t} t^{2} \sin (M-1) \phi\)
number of parameters in the spherical-harmonic expansion of the geomagnetic potential function
number of rows in the triangular matrix \(D\)
geocentric coordinate of radius
\begin{tabular}{|c|c|}
\hline RAD & degrees in one radian \(=57.2957795\) \\
\hline SHMIDT & constants to convert from Gauss normalization to Schmidt normalization \\
\hline SIGMA & SIG1(8) of Jensen's Fit program \\
\hline SIND & sine of difference between geodetic coordinate \(\lambda\) and geocentric coordinate \(\theta\) \\
\hline SINLA & sine of the geodetic latitudinal coordinate \(\lambda\) \\
\hline SINLA2 & \((\text { SINLA })^{2}\) \\
\hline SLATT & starting latitude for grid \\
\hline SLONG & starting longitude for grid \\
\hline SP(M) & sine of the product of (M-1) and the longitudinal coordinate \(\phi\) \\
\hline ST & sine of \(\pi / 2\) minus the geocentric coordinate \(\theta\), i.e., colatitude \\
\hline SUMD & sum storage for forming check sum column of D matrix \\
\hline T1 & a temporary storage \\
\hline T2 & a temporary storage \\
\hline T3 & a temporary storage \\
\hline TEMP & a temporary storage \\
\hline TFACT & time factor \\
\hline TFACT2 & TFACT * TFACT \\
\hline THETA & the geocentric coordinate of latitude \\
\hline TIME & time of computed grid \\
\hline TM & time - 60.0 \\
\hline
\end{tabular}

\section*{APPENDIX F}

FLOW CHART FOR WALL'S ERROR PROGRAM

\section*{BIBLIOGRAPHY}

Cain, Joseph C.; Daniels, Walter E.; Hendricks, Shirley; Jensen, Duane C.;
"An Evaluation of the Main Geomagnetic Field, 1940-1962, " Goddard Space Flight Center, X-612-65-72, December, 1964.

Cain, Joseph C.; Hendricks, Shirley; Daniels, Walter E.; Jensen, Duane C.; "Computation of the Main Geomagnetic Field from Spherical-Harmonic Expansions, " Goddard Space Flight Center, X-611-64-316, October, 1964.

Jensen, Duane C., "An Interim Geomagnetic Field," The Dikewood Corporation, DC-FR-1022, March, 1962.

Wood, Walter, "A Mathematical Representation of the Geomagnetic Potential, " The Dikewood Corporation, DC-FR-1033, September, 1963.```

