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ABSTRACT /%E}£7£;éi€;

The structure of some convective, laminar boundary layers in a
high density shock-heated 1 eV argon plasma is investigated theoretically.
A general three-fluid continuum formulation of the problem is presented,
and the equations solved for the case of thermo-chemical equilibrium with
no applied electromagnetic fields. Solutions for boundary layer profiles
and other quantities are presented for plasma boundary layers forming
over a cold, infinite flat plate with an impulsively started motion in
its own plane (Rayleigh's boundary layer), and the boundary layer behind
a plane, ionizing shock wave moving over an infinite plane wall (shock
tube side-wall boundary layer). Accurate transport data for partially
ionized argon are calculated and used in the analysis. The induced elec-
tric field is shown to be of fundamental importance to these properties.
Associated with the ambipolar diffusion is an electric potential difference
of the order 10 Volts, which is much larger than the potential differené;
across the sheath. The assumptions of chemical and temperature equilibrium
are checked in a rigorous way. It is found that equilibrium ionization
will not exist close to the wall below typically 10,000°K, and that the
electron temperature, which was calculated in a linearized model, is

larger than the ion-atom temperature in the same region.
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1. INTRODUCTION

With the advent of high speed flight through planetary atmospheres
laminar boundary layers in lonized gases have become increasingly
important. More generally, the interaction between a moving plasma and
a cold wall is of basic physical interest. The associated phenomena are
considerably different in nature from those involving non-ionized gases
and are presently far from being completely understood. The presence of
free electrons and lons, for example, gives rise to induced electro-
magnetic fields partly due to the vast difference in relative diffusional
behavior of the electrons and the heavy gas components. Such fields may
couple the motion of the charged particles to the extent that the plasma
transport properties are affected. 1In addition, finite gas phase reaction
rates and energy transfer rates, in particular those between the electrons
and the heavy particles, raise the question of deviation from thermo-
chemical equilibrium. The local composition of the gas may deviate
substantially from its equilibrium value, and the electron temperature
may assume a different value from that of the ions and atoms. The present
report is part of a combined theoretical and experimental program aimed
at studying transport phenomena like the above mentiocned in moving
high density plasmas.

Available information on the structure of laminar ionized boundary
layers and interactions between high density plasmas and solid walls is
scarce. Most of the reported work is theoretical. Since the full
problem is so extensive, it is natural that early investigators treated

these problems only in some simple limits. Thus, Fay and Kemp [1]



studied the stagnation point boundary layer in air, assuming frozen or
equilibrium flov in a simple "binary diffusion” model. Rose and
Stankevics [2] measured heat transfer rates from such a boundary layer
using a shock tube. Their results agreed well with the theory. Camac,
Fay, Feinberg, and Kemp [3] studied the shock tube end wall boundary
layer in argon theoretically and experimentally. For atomic argon they
found good agreement between measured and predicted wall heat transfer
rates. In strongly ionized argon the agreement was fair.

A great number of investigators have treated weakly ionized boundary
layers with emphasis on the electrical characteristics. Principally,
these papers have been aimed toward a better understanding of Langmuir
probes. Confining ourselves to the case of collision-dominated inter-
actions, with the possible exception of the charge separation sheath
close to the solid surface, a few relevant papers can be mentioned.
Pollin [4] made a theoretical and experimental investigation of a
stagnation point Langmuir probe in a shock tube with weakly ionized
air. In the experiment he applied a very strong negative voltage on the
probe in order to repel all electrons and collect only an ion current.
The measured current-voltage profiles were in part predicted by the theory,
which neglected ion-electron recombinations in the boundary layer and
the sheath. In the sheath the motion of the ions was considered to be
collision-dominated. Turcotte and Gillespie [5] made a preliminary
study with a shock tube side-wall probe, also in weakly ionized air.
They measured the total resistance and the potential difference across
the shock tube side-wall boundary layer. This potential difference was

all attributed to the collision-dominated thin sheath of charge separaticn

o




over the cold wall. They were not able to explain why the measured
total potentigl difference was 5-10 times larger than the theoretically
calculated potential difference across the sheath. An explanation is
clearly given by the present investigation. We will find that typically
under collision-dominated conditions the potential difference across the
ambipolar region outside of the sheath is not negligible, but often as
large as one order of magnitude larger than the sheath voltage. Su and
Lam [6] have given theoretical solutions for spherical electrostatic
probes in a weakly ionized gas and a collision-dominated sheath. Lam
[7] has since presented a general theory for the incompressible flow of
a weakly ionized gas over blased absorbing surfaces. Mathematically,
the sheath and ambipolar regions were treated separately. The concept
of an electrical Reynolds number was introduced,and the extent of the
electric boundary layer in general discussed in terms thereof. In
particular, he points out the possibility of an electrical boundary
layer extending further out than the viscous boundary layer, when the
wall does not have a “floating potential”, i.e., the current at the wall
is not zerc. Su [8] later studied a few theoretical aspects of the
electrical characteristics of compressible gas flows.

In the limit of weak ionization and a collision-dominated motion
of the charged particles in the sheath, Chung [9] solved the Couette
flow problem. He used ideal gas thermodynamic and transport data;and also
assumed no ion-electron recombinations, but a wall catalytic to such
reactions. Later, Chung [10] included a few non-equilibrium effects in
viscous air shock layers and calculated some electrostatic probe

characteristics.



Regarding tempersture non-equilibrium effects, or the question of
energy non-equipartition in general, theoretical and some experimental
work has been done mainly in the field of gas discharges. Here the
average energy of the electrons is in general far higher than that of interest
to us. Landau [11] first obtained expressions for the energy transfer
rate between electrons and ions for Maxwellian distributions and inverse
square law interaction. In an application of thermal and flow excitation
of a gas by a shock wave, Petschek and Byron [12] used Landau's results
and extended them to calculate electron-atom energy transfer rates in
shock-heated argon. Morse [13] has given an extensive theoretical treat-
ment of both energy and mémentum exchange processes among species in
non-equipartition gases, using various interaction laws. In general,
for our purposes, the momentum exchange rate between electrons and the
heavy particles is very rapid. Dix [14] made a theoretical study of
energy transfer between parallel plates in partially ionized, non-
radiating, non-reacting hydrogen. He included magnetic fields and also
different electron and heavy particle temperatures. Among interesting
results, he found that the associated electric field, even in the
ambipolar region, was coupled to the electron motion. Camac and Kemp
[15] have reported an attempt to determine the heat transfer to a shock-
tube end-wall from a multi-temperature boundary layer. Assuming no
electron-ion recombinations, they presented briefly a solution in which
the electron temperature was much larger than the temperature of the
atoms and ions outside the sheath. They did not mention the fact

specifically, but their results show the possibility that the electron




temperature close to the unperturbed plasma is slightly less than the
heavy particle temperature. In a later section of the present analysis
similar features are shown to be also present for the present type of
argon boundary layers.

Jaffrin [16] recently theoretically studied the structure of shock
waves in partially ionized argon. He used a three-fluid continuum model
and assumed frozen ionization. The results indicate a broad thermal
layer of elevated electron temperature ahead of the shock and a precursor.

The scope of the present paper is to determine theoretically the
structure of some simple boundary layers in partially ionized argon in
thermochemical equilibrium. Hence, we assume the electron-ion recombination
rate to be fast, at least in the region where the electrons and ions much
determine the boundary layer structure.

For simplicity, we choose to study the simplest boundary layers
such as the ionized convective Rayleigh boundary layer, the shock tube
end-wall boundary layer (which is a special case of the Rayleigh boundary
layer), and the shock-tube side-wall boundary layer. The latter boundary
layer is a boundary layer forming over an infinite, flat wall behind a
plane shock wave, which moves with uniform velocity along the wall. In
the case of the Rayleigh boundary layer, we will determine the structure
of the interaction,when the directed kinetic energy of the gas is at
most of the same order of magnitude or smaller than the enthalpy of
the gas. For the side-wall boundary layer we are only interested in
experimentally obtainable cases in which, for a shock wave penetrating

into gas at rest over the wall, the kinetic energy of the shock-heated



plasma is of the same order of magnitude as the gas enthalpy. These
treatments will be restricted to the case of no applied electric or
magnetic fields. The magnetic Reynolds number will be assumed to be

small as well. Therefore, only the induced electric field is taken

into account. In fact, this field is of extreme importance to the
boundary layer problem, primarily because it couples the diffusive motion
of the electrons and the ions and thereby affects strongly the transport
properties of the gas.

Somewhat superficially, we will neglect radiation in the present
treatment of the plasma boundary layer. However, it is clear that energy
will be transferred in the radiative mode, at least when the temperatures
are above l0,000°K. There may then be present a more or less strong
coupling between the radiation field and the plasma flow. We shall,
implicitly, assume this coupling to be weak and neglect radiative losses
of energy. The radiation problem can then be tréated separately from
the convective problem, and could be added to the treatment in a future
study-.

Next, it is assumed that the mean free paths of the species are
small everywhere in the interaction region compared to the size of this
region. We are then justified in using a continuum approach in the
mathematical description of the laminar boundarf layer. In particular,
we may use equations of the Navier-Stokes type for the electron, ion and
atom fluids. Simple kinetic theory will, in part, be used for the
calculations of the transport properties.

The considerations Jjust discussed, together with some others, are




summarized in the following assumptions, which provide the framework of

the physical model:

l‘

20

The boundary layer flow is laminar and steady.

The gas is an argon plasma in thermochemical equilibrium,
i.e., the composition is given by a Saha type equation.
This condition does not have to be satisfied in the weakly
ionized region and in particular in the sheath, where the
gas is essentially frozen, i.e., slow electron-ion
reactions.

In any part of the boundary layer, the electron temperature
mey deviate only slightly from the temperature of the
ions and atoms.

The Reynolds number is large. The mean free paths of the
gas componenté are small compared to the boundary layer
thickness.

The wall temperature is so low, that the gas is weakly
ionized at the interface.

The wall has a "floating" potential with respect to the
plasma. Hence there is no current to the wall.

There are no applied electromagnetic fields. The induced
magnetic field is neglected (the magnetic Reynolds number
is smail). .

The Debye length of the unperturbed plasma is small
compared to the boundary layer thickness. The boundary
layer is then mostly quasi-neutral, i.e., ni/ne = 1.

The thermal speed of the electrons is large compared



to the mean mass velocities (small "electron Mach number").
10. The thermal diffusion is neglected.
11. Radiation is neglected. There is no radiation cooling

of the free stream plasma.

The sequence of the treatment is as follows. The mathematical
formulation of the boundary layer flows is given in Section 2. The
governing equations are derived as moments of the Boltzmann equations
for the electron, ion, and atom fluids. The electrical characteristics
of the plasma boundary layer flow are discussed in the following section.
Most attention is here given to the ambipolar diffusion region. The
sheath is discussed briefly and the governing flow equations for the
charged particles presented. In Section I the thermogasdynamic properties
of shock heated, partially ionized argon are reviewed. Selected results
of computer calculations of the shock heated plasma properties are pre-
sented. In the following section, the transport properties of such a
plasma are calculated. For that purpose a simple, but powerful, mean
free path approach is used. The results are presented in some detail,
since they are very interesting in nature and evidently not widely
reported in the literature. The boundary layer equations are solved
numerically in Section 6. The results are presented and discussed. In
Section 7, a two-temperature boundary layer is analyzed with a linearized
analytical model. The governing equations are solved, and the results
discussed. The report is concluded with a summary and discussion of

results.




2. FORMULATION OF THE BOUNDARY LAYER EQUATICNS

a. Moments of the Boltzmann Equation

The present plasma boundary layer problem is complex in nature
due to the different, but coupled, behavior of the electron, ion, and
atom fluids. For purposes of clarity and well defined mathematical
formulation, we shall start from first principles. The formulation
presented herein is well suited only for collision-dominated plasma
boundary layers, where each fluid has a velocity distribution function
which is close to Maxwellian. In parallel to simpler cases, the continuum,
three-fluid conservation equations will be derived as moments of the
Boltzmann equation. The overall conservation equations are then the
usual Navier-Stokes equations. In part, this section will therefore
be a review of known material [17].

We begin by presenting the Boltzmann equation for the distribution

function fs(ws,r,t) for any component "s" in the plasma

afs 5 q 2 afs
Y—i— Ws ° V_}fs + ;ﬁ- ° V_) fS =[—F_€] (2;1)
r s W coll

]

Here E; is the particle velocity, E? the space vector, A the
electric charge of the particle, m, the mass, i? the electric field

strength, and [af/at]co the collisional rate of change of the

11
distribution function in phase space and time (neglecting radiation).
Moments of this equation can be found by multiplying it by a

function @ = @s(ﬁ;,ls), which may depend only upon-the particle



velocity x?s and the excited energy Is of the particle. After inte-
gration over the entire velocity-space, we obtain the following well

known Boltzmann moment equation (Chapman and Cowling [18]).

$ (0,000 + 7+ (2,0, -

q

s = _ 0 -

m_ nsE Wy q)s> - gf[fqpsfsdws]coll (2'2)
s

n

Here ns is the particle number density, the bracket ( ) indicates a
value average in velocity space. The equations describing conservation

of mass, momentum, and energy for the plasma components are obtained by

. _ o _ 1 2 .
letting CPS = ms, CPS = msws, and CPS =5 msws + IS respectively.
After some rearrangements of terms they yield:
aps — apS
(mass) +v -+ (p V)= (2.3)
ot ? s's ot coll
d - - - - -
(momentum) 5 (sts) + V_I_? (Ds vovo) + V_I_‘) [DS(VOVS + sto)] +
+V P -mﬁ=a[p?] (2.4)
75 ] 3t Fs s coll
-
(energy) a(pe)+v - (Ypoe)=-7 'avo—
ot s's ? 0s s s s t
- - -
- v—+ 4 [Ps * Ps sto] V__) Yo *
r —_ T
7 B+ e ] (2.5)
S St Ps®s’coll
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Here (__) indicates a tensor quantity, and (__) : (__) a temsor

mltiplication. The mass density of specie "s" is Py = nm, the

mean value of the particle velocity of specie "s" V; = (ﬁ;), the mean
-
v

mass velocity 5;, the diffusion velocity V; = vy

- V;, and the

: . g o . . :
peculiar velocity ﬁ; =Wy o= Ve The kinetic stress tensor is

ps(UsUs), the charge density of the component ms = q_sns (note

0; Wy = =q4Ng; @5 = qini), and the component current density
-—>

ot 938 ‘m*d
N

nsqsvé. The convective energy flux vector a;, the kinetie

temperature Ts’ and the internal energy per unit mass e, for the

"nan

component "s" are defined as follows:

T, = n [} n (T05) + T (1)] (2.6)
m
=32 ) (2.7)
kT (1.)
®s T ‘Z‘ ';n's' * ‘Z— (2.8)
S S

In obtaining these expressionsfor the energy flux,we have made the
reasonable assumption that the particle velocity is not statistically
correlated with the excitation energy of the particle.

The momentum and energy equations for the electron fluid may be
simplified by the fact that the electron inertia and shear stresses are
small compared to corresponding quantities in the ion and atom fluids.

If the assumption is made, that everywhere the average mass velocity 52
is much smaller than the average thermal speed of the electrons, the
convective terms can be neglected in the momentum equation. The equation

then becomes

11



V. p -o E= g% [pe;;]coll (2.9)

Pe e

Here, P is the pressure of the electron gas. In the subsequent
analysis we shall not be much concerned with this equation. For an equi-
librium plasma flow, i.e., when the composition follows a Saha relation,
the electron momentum equation is superfluous. However, it may be used
to dgtermine the flux of momentum to the electrons due to collisions with
atoms and ions. The electron energy equation does not change as drasti-
cally in this limit of small "electron Mach number”. It can be written

-
. q -

%(oeee)ﬂ“v?'(oe?)é .

-V
eeo -
r

- pev_;- ?O + j’e - E+ % lpeeeleo1n (2.10)
The convective terms in the electron energy equation cannot in

general be neglected. In some situations, e.g., for steady viscous flow
adjacent to the a plane wall, the flow in the direction perpendicular to
the wall is diffusive in character, and the convective terms small. The
electron energy equation then degenerates into a form similar to Equation
(2.9), and describes the balance between the heat transfer in the electron
fluid itself, the Joule heating, and the collisional energy transfer to
the fluid. For the case of a plasma in thermochemical equilibrium, the
energy equation is superfluous. However, when the assumption of thermochemical

equilibrium is in doubt, the electron energy equation should be considered.

If kinetic theory data are available for the collisional energy transfer

12




rate between the fluids, the species energy equations, and in particular
the electron energy equation, provide us with knowledge of the magnitude
of the temperature difference between the electron fluid and the atom
and ion fluids. In Section 7, a calculation of this kind is presented.
By summing the individual species equations and making use of the
usual collisional invariants, we obtain the conservation equations for

the whole plasma as follows:

)
(mass) 5% + VE?' (QV;) =0 (2.11)
(momentum) % (V) + v? (o V¥.) = -v?g + oF (2.12)
(enerey)  a¢ (0e) + 7+ (pe 7)) = =T
gy 3¢ \PE > pe v ) = -V_-q -
r
-P: v??0+3’- oo (2.13)

Here p 1is the total mass density, P the kinetic stress tensor,

the total charge density, and 3’ the total current density. The

kinetic stress tensor P includes the viscous stress tensor T. By
making use of Poisson's equation, the momentum equation (2.12) could be

written more conveniently as

€O
(_13-5-

<l

E) (2.12)

=)

IGARRICEAARES

Here € is the permittivity of wvacuum. In the present analysis, the

€
electromagnetic stress tensor = EF will be attributed to the induced

15



electric field. It is easy to show, that if the Debye length is

much smaller than a plasma boundary layer thickness, the electromagnetic
stress stensor could be neglected in comparison to the kinetic stress
tensor. For the high density plasmas considered here, the Debye length

is in general smaller than 10_6 meters. We therefore, with confidence,
neglect the electromagnetic stress in the description of the overall
plasma flow. In the energy equation (2.13) the Joule heating term can

be neglected for similar reasons. Also in our particular plasma boundary
layer we will consider mainly the case when the current 3) is zero at the
wall.

Thus far, we have included no expressions for the diffusion vélocities,
the kinetic stress tensors, and the energy fluxes in the above equations.
In Section 5, we will relate these to properties of the thermogasdynamic
flow field, as is usually done when the velocity distributions are close
to Maxwellian. As mentioned earlier, we will primarily be treating the
case where the composition of the plasma is close to that for equilibrium,
i.e., the electron-ion reactions are considered to be fast. Initially, the
temperatures of the fluids are assumed to be equal. Therefore, it is
sufficient to solve only the conservation equations (2.11-2.15) for the
whole plasma, together with the equations of state and equilibrium
composition, i.e., a Saha equation. In addition, Poisson's equation has
to be considered. The electron continuity equation will be used only
in order to determine where in the plasma boundary layer the assumptions
of quasi-equilibrium are valid. Similarly, the electron energy equation
will be used to determine the region of the boundary layer in which the

electron temperature and heavy particle temperatures are almost equal.

14




In practice, we will not have to study in detail the species momentum
equations since in our collision-dominated, high Reynolds number boundary
layer, the momentum exchange rate among the species is rapid enough to
cause small "slip".

At first sight, it might appear as if the electric field has been
eliminated in the hydrodynamic description. This is not correct. The
induced electric field will strongly determine the plasma boundary layer
structure. The mechanism is through the transport properties. 1In
particular the thermal conductivity of the plasma is strongly dependent
upon the electric field strength. Also the diffusional properties are
affected. In addition, the question of thermochemical equilibrium is
intimately coupled to the appearance of. an induced €lectric field. The
field provides, e.g., an additional mechanism besides the collisional,
by which thermal energy can be transferred between the electron and the

heavy particle fluids.

b. The Rayleigh Boundary Layer Problem

The boundary layer equations for the Rayleigh boundary layer problem
are given next. Classically, this boundary layer problem is the incom-
pressible, viscous flow over an infinite flat plate, initially at rest,
but given an impulsively started motion in its own plane. It was first
discussed by Rayleigh [18]. The problem was studied subsequently by
several authors for the case of compressible, heat conducting flow.
Various degrees of approximations were employed. Howarth [19] calculated
the pressure on the wall due to the viscous dissipation, which in turn

induced velocities perpendicular to the wall, and also a shock wave.
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Van Dyke [20] improved the compressible solution by iterating upon the
boundary layer solution and the acoustic solution in the outer flow
field. He considered a thermally insulated plate and simple gas
properties. In the present analysis we shall study the boundary layer
solution in the first approximation only, but allow for a realistic
variation in the properties of the plasma.

Suppose that an infinite plate, as in Figure 1, is initially at
rest in the plane y = 0, but insulated from a uniform plasma at rest
which occupies the upper half plane y > O. At time t = 0, the plate
is given an impulsive motion with the velocity Uw in its own plane.
Simultaneously the plasma is allowed to come into thermal contact
with the plate. The plate is kept at a constant temperature Tw’ which
we assume is much lower than the temperature of the undisturbed plasma.
In addition, we assume no exchange of mass or electric charge between
the wall and the gas. As mentioned previously, the unperturbed plasma
is assumed not to change its properties with time, i.e., radiation cooling
is neglected. In this case, Equations (2.11-2.13) simplify to the
following well known boundary layer equations, which are valid at times

t, when |v/u| K1 (dee, tU p/u>>1)

3 3

6% + g—y (QV) = Q (2'1)4')
ou ou 1 9

5 T VSy T 5oy Txy (2.15)
dh oh 1 09 1 du

T T wY T w (2:26)
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Here, u and v are the velocity components in the x- and y-directions,
h the gas enthalpy per unit mass, qy the total energy flux in the y-
direction, and Txy the shear stress. The pressure of the plasma is
constant. Notice that conditions are independent of the x-coordinate.

The appropriate boundary conditions are

t L0 t > 0:
u(y,0) =0 u(0,t) =U_
v(y,0) =0 v(0,t) =0 (2.17)
h(y,0) = h_ h(0,t) = h

By making a restricted Howarth's transformation (see e.g., [21])

y
Y=f Loay; T=t (2.18)
o Po

the equation for conservation of mass is automatically satisfied. The

transformed momentum and energy equations become

d 10 du
(-5‘,%)Y ot (u g: 57 (2.19)
. 2 -
(%—) =§—5%<>»g—§%) +§-§-(a§) (2.20)
Y ) © o Moo

. . du _,,OT
Here we have introduced the relations Txy = “(3§)x and q _-x(3§)x,
where p is the viscosity and A the total thermal conductivity.

Since the plasma flow is considered to be in equilibrium and the
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boundary conditions sufficiently clean, the boundary layer can be shown
to be of a self-similar nature. An appropriate nondimensional similarity

parameter is

q = b (2.21)

c_ P,

where cp is the equilibrium specific heat of the unperturbed plasma.

It shouldwbe noted that we normalize with the total thermal conductivity

A,» end not with the viscosity. The reason therefore is, in part, that

the case of zero or small wall velocity is to be treated by these

equations as well, and that the viscosity of the gas 1s then really not
important. Also, it is not convenient to normalize the similarity parameter
with viscosity because of the irregular behavior of the viscosity with

temperature in the region of partial ionization. With the above trans-

*
formation (2.21), the momentum and energy equations reduce to

1 du 4 ( pp duy _

on Pr_ o + D (Om“m dn) =0 (2.22)
: Pr 2

an 4 (pu __=dh pr_ (duy 2

Na G B ) Peotoo &) =° (2.23)
Note that
9y _ _1n4d4 _,9 S oy _n d

(grf)y—-§,[gﬁ-(3g)y+\f(5§)t; (&:)T-Ygﬁ
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For convenience, we have introduced the local Prandtl number Pr = -

and the "free stream" Prandtl number Pr_. It is important to note that these
guantities are based upon the eguilibrium value of the specific heat.

In addition, we have made use of the relation (valid at constant pressure
only) dh/dn = cp dT/dn. Equations (2.22, 2.23) are non-dimensionalized
further by introducing the following quantities for the velocity and

the enthalpy

v =B A (2.24)
w ©

To summarize, the boundary layer equations and the boundary conditions

are then
1l 4a ¥ d d *
u K au
op =0, & ek _Gu,y_, (2.25)
TPr_ @ T an ‘p i, 41
2
* * U * 2
1 dh d ot 1 dh W pu  ,du _
on — &, = = + =0 (2.26)
n Pr_ dn dn (pmuw Pr dn ) hw P Heo (dn )
h(1- )
o«

t > 0:
u*(o,t) =1 h%(o,t) =0
W (=,t) = 0 B (m,t) = 1 (2.27)

In order to solve the above coupled system of ordinary non-linear parabolic
differential equations, we must have at our disposal detailed information
about the Prandtl number Pr(h,p) and the density-viscosity factor
pp(h,p) in the enthalpy region of interest. The constant parameters of

the problem are the Prandtl number at undisturbed conditions, Pr , and
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Us/(hm(l—hw/hm)), which appears as a factor in the viscous dissipation
term. The last parameter, in order to be more familiar, could be
expressed in terms of a Mach number, which can be formed by the velocity
of the wall Uw and a speed of sound in the unperturbed plasma.
Finally, the equation governing the end-wall boundary layer will
be given. .This is obtained from the equations for the Rayleigh problem
by simply putting u* =0 and Uw = 0. The momentum equation (2.25)
is therefore superfluous. There is, on our approximation level, no
viscous dissipation present. After some rearrangement, the energy
equation (2.26) takes the simpler, parabolic form

an’ . a ( A cpw dH*
— — i—_— =
21 an + an X o an ) 0 (2.28)

Y

As in the general Rayleigh problem, the boundary conditions for the non-

dimensional enthalpy are

t > O: h*(O,t) =0 ; h*(oo,t) =1 (2.29)

The energy equation (2.28) for the end-wall boundary layer has
been extensively studied in the literature, e.g., in connection with
ordinary diffusion problems.

The shock-tube end wall boundary layer is possibly the simplest
type of boundary layer which can be generated experimentally, and also
one of the simplest to study theoretically for ionized gases. The
boundary layer forms over the end wall of a shock tube in the reflected
region. Hence, in the experimental situation, the gas in the boundary

layer has been shock heated by passage through two shock waves. There
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will naturally be an induced flow field in the y-direction perpendicular
to the wall, due to the change in density of the gas in the boundary
layer. This is taken into account in what follows.

As for the Rayleigh case, in general we shall consider only the

boundary layer solution and neglect the outer, acoustic solution, which

here does not carry a shock wave.

€. The Shock Tube Side-Wall Problem

The equations governing the laminar boundary layer flow behind a
plane shock wave propagating into a stationary gas over an infinite wall
is studied next. We will refer to this boundary layer as the shock tube
side-wall boundary layer, since it can be generated in the shock tube
along its side-walls. The problem is theoretically more complicated to
solve than the Rayleigh boundary layer. The reason for this is extra
non=-linear terms appearing in the governing boundary layer equations.
Aspects of such flows have previously been studied by several authors,
mainly for the simpler case of ideal gases.

Hollyer [22] formulated the simple problem and gave a solution.
Further solutions have been given by, e.g., Mirels [23] and Bershader
and Allport [24], who also carried out some experiments. Becker [25]
has since given an extensive review of the shock tube boundary layer
problem for low temperature gases.

We conveniently study the side-wall boundary layer in a coordinate
system, which moves with the shock wave, as is shown in Fig. 2. The
shock wave is assumed to be not attenuating. Therefore, in this

reference system, the flow is time independent. Cold, non-ionized gas
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of homogeneous conditions enters the plane shock wave with a velocity
US, which equals the wall velocity Uw in our reference system. Behind
the shock wave the gas velocity is U2 in the undisturbed region. 1In
practice, for ionizing shock waves, there will be a finite region of
relaxation to equilibrium conditions behind the shock wave. We shall
neglect this, and assume the conditions of the plasma to be uniform
behind the shock wave. The only possible exception is a variation in
a small induced velocity perpendicular to the wall, due to the boundary
layer displacement thickness.

In the shock-fixed coordinate system the time-independent boundary

layer equations are (with symbols analagous to those used previously)

(mass) é% (pu) + g% (pv) =0 (2.30)
(momentum) u %% + v g% = % é% Ty (2.31)
o T
dh Sh 1 xy ou
(energy) u&+VFy=-EB;-‘Z+—EX5§ (2.52)

with the boundary conditions

Xx>0:
u(x,0) = Uw; v(x,0) = 0O u(x,o) = U,
n(x,0) = h h(x,*) = h_

A great number of similarities could be drawn to the classical
compressible semi-infinite "flat plate" problem. The only difference is
in fact the boundary condition at the wall, u(x,0) = Uw’ which for the

"flat plate" problem becomes u(x,0) = 0. Earlier, it was pointed out,
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e.g., in the work by Bershader and Allport [24], that the shock tube
side-wall boundary layer problem is more general than the "flat plate",
i.e., the Blasius problem. The reason is the additional degree of freedom
given by the possible variation in wall velocity Uw (in the shock-fixed
reference system).

The equation for conservation of mass (2.30) may be eliminated by

introducing, instead of y, a stream-function V¥, defined as

y
¥ =fo -‘;Lu dy (2.33)

The velocity components are then

pm a\l[ Doo aw
u=-5-g§; V=-F5; (2,314-)
The substantial derivative along a streamline becomes
D _. 0 3 . ,9

With the present boundary conditions, the equations for conservation of
momentum end energy (2.31, 2.32) can be brought into a self-similar form.

The similarity variable may be conveniently defined for this case as

q = v (2.36)

where the distance x is measured from the shock wave. It should be

noted, that we have normalized with the velocity Uy, and not with the
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velocity difference (UW-UQ)' The reason for this is not obvious at this
point, but the equations with this choice of reference velocity take a
more convenient form.

If, in addition, we introduce the following dimensionless quantities

* u-U2 % h-hw

u = U "U ; h = h _h (2’37)
w 2 © Ty
Us

C = T (2.38)
w 2

where C 1is a constant parameter, less than unity, the boundary layer

momentum and energy equations become

* * *
1 du 4 oM u +Cy du y _

* * *
1 dn ., d ,pH 1 ,u+Cydh
U=l e T (pwuw 7 () H

2
* (u.-u,) * 2
+ pH (uC+C) W 2h (EU) =0 (Q.LI-O)
P He - Yl
h (1- E;)
The boundary conditions are
x>0
* *
u (x,0) =1 h (x,0) =0
(2.41)
* *
u (x,9) =0 h (x,0) =1

These equations are quite general. In fact, they also govern the
Rayleigh (and end-wall) boundary layer flow, as well as the compressible

"flat plate” boundary luyer flow, as was pointed out previously. By
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giving the parameter C the value C = -1, 1i.e., Uw = 0, we obtain
the "flat plate'" boundary layer equations. The dimensionless velocity
parameter then degenerates to u = -(u-Uz)/UQ. Observe that the
boundary conditions (2.41) are unchanged.

If C —» o, the equations for the Rayleigh problem are obtained

with unchanged boundary conditions. This corresponds to the case when

UW/U2 -1, i.e., such as obtained by a weak shock. We then have

*

W= uf
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Fig. 1. Rayleigh's boundary layer. Definition of coordinate system
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Fig. 2. Shock tube side-wall boundary layer. Definition of shock wave
fixed coordinate system and significant variables.
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3. ELECTRICAL CHARACTERISTICS OF A PARTTALLY IONIZED BOUNDARY LAYER

a. The Induced Electric Field

In e partially ionized gas containing regions with gradients in
composition, temperature, etc. which cause diffusion, the electrons, due
to their larger thermal speed, tend to diffuse at a faster rate than the
heavier ions. In such a region, there will therefore, in general, be a
tendency toward an excess of ions if there are no applied electromagnetic
fields. An induced electric field will then be present. This field
will slow down the faster diffusing electrons and accelerate the diffusion
of the ions. For the case of a weakly ionized gas and simple, ideal
gas properties it is well known (e.g., Allis [26]), that in the limit of
strong coupling of the electron and ion motion, i.e., the ambipolar
diffusion limit, the effective common diffusion-coefficient is twice the
free diffusion-coefficient for the ions alone. 1In this limit the ratio
of number density electrons and ions is close to unity. Ambipolar
diffusion has been studied in simple limits of constant gas properties
by, for example, Allis and Rose [27], and Frost [28].

Strong coupling between the diffusive motion of the electrons and
the ions, ambipolar diffusion, is possible only when the Debye length
is much smaller than a characteristic length for the diffusion region.

The Debye length is defined in MKSA units: as

€ KT 1/2 T 1/2
by = [ 2] = 69.0 [E;] (meters) (3.1)

fele
Here, € is the permittivity of vacuum, k the Boltzmann constant, n,
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the electron number density, and e the charge of the electron. In
the present plasma boundary layer problem, the Debye length of the
unperturbed, shock heated plasma 1s considerably smaller than the
thickness of the thermal boundary layer, which is the characteristic
length for the associated diffusion problem in the boundary layer.
Therefore, the conditions will be close to ambipolar at least in the
outer part of the boundary layers. However, closer to the wall, which
we assume is "cold", the number density of free electrons n, will
decrease rapidly, if we assume a boundary layer in thermo-chemical equilib-
rium. Then the Debye length will increase. Specifically, at some
distance y from this wall, the value of the local Debye length will be
equal to y. Still closer to the wall, the Debye length will increase
further and be larger than the corresponding distance to the wall.
Ambipolar conditions presumably will not be present. Here the diffusive
motion of the electron and the ion fluids are weakly coupled. The total
number fluxes of electrons and ions, however, are largely determined by
the conditions in the ambipolar region, if the reaction rates are slow.

We may speak here of a sheath of considerable relative charge separation.
The diffusion is almost of the type "free'. The sheath contains an
excess of ions, for the case that the net current to the wall 1s zero.

In what follows we shall derive some diffusional properties,
including the strength of the induced electric field in the ambipolar,
transition, and sheath regions of the ionized boundary layer. The net
current to the wall is assumed to be zero which is a relevant condition,
e.g., in a shock tube experiment. The diffusive flow is steady, and
cu=gi-one dirensional, i.e., perpendicuiar te the wall, gud Tn: 2oren

et lelele.




From the continuity equation (2.3) for the electron and ion fluids,

we find, upon elimination of the collision-term, the following simple

relation
v, (a7 )=v,- (n7) (3.2)
T r

Here, VL and V; are the electron and ion diffusional velocities. This
relation holds for nonequilibrium situations as well. Assuming that

the total current density is zero, we find the following simple

expression:
T =T, (3.3)

Here, f; = V;ne is the electron diffusive flux vector and T& the ion
flux vector.

When the gas pressure p 1is constant, as in our plasma boundary
layer, and thermal diffusion can be neglected, the following expressions
can easily be obtained for the diffusion velocities of the components

in the partially ionized gas

2 3
n - . _ .

VL = E;_ %;nﬁDsj dj ; (s = a,e,i) (3.4)
- o) 0m

d& = g_) (na/n) + o ﬁ ql(nl ne) \

- 3 nima

di = -8'_? (ni/n) - iof qi(n-ni) > (3.5)
—->=_5_(n/n)+ eafq(n—n) y

e 3P e a
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Here the usual notation in kinetic theory (e.g., [17]) is used. Hence,
EL is a driving force for diffusion, Dsj the multicomponent diffusion
coefficient, n the total number density (n = n, +n + ni)’ m,  the
atom mass, and T the strength of the electric field.

The electric field strength can be calculated if we substitute the

expressions (3.5) for the driving forces into equations (3.3, 3.4). The

somewhat complicated result is

& )2 (2 4 (p Dy 2 D,) 2 ()
n q.F (DegPiaPei’ = (5 ea “ia m_ “ie’ > 'n
el - r a ar (3 6)
nkT n, n-ng m ’
— (D _-D. -D .) - (D __-D, + — )
n_ n-n, - ea da ‘el ea “ia m_ ie

If, in the ambipolar limit, which means ni/ne =1, we observe
the relations between multicomponent diffusion coefficients and the
binary diffusion coefficients applied to a three-component gas mixture,
our plasma, and also make use of the fact that the electron mass m,
is very small compared to the ion and atom mass ma, the expression

for the electric field strength becomes extremely simple:
i . e
— ———(——) (5'7)
e

With this expression we have an estimate of the electric field necessary
to maintain ambipolar diffusion. However, nothing can be concluded from
this about the extent of the ambipolar region.

The ambipolar diffusion velocities may next be evaluated. By
introducing the calculated ambipolar electric field streagth into

3V

. e \ .
equation (7.5} wa find




(3.8)

<l
e
<‘L

At this point it should be recalled that the milticomponent diffusion

s . 'b '= p s 3 - 1 -
coefficient is Dia S%a ) whe;e ﬁ%a is the binary ion-atom

diffusion coefficient. In accordance with simple kinetic theory, we have

13 o mytm 1/2 1
N,=33: a0 g (3.9)

Here, Qia is an effective hard-sphere ion-atom collision cross-section.

From the expression (3.8) can be recognized the familiar result,
that it is the ion-atom diffusion coefficient which determines the ambi-
polar diffusive flux of charged particles, and that the electron and ion
diffusion velocities are equal.

A very simple,but useful expression for the electric potential
difference between two arbitrary points (1) and (2) in the ambipolar
region of a partially ionized gas is derived next. Introducing the degree
of ionization @, which is still a useful concept for a gquasi-neutral

gas, the potential difference upon integration of equation (3.7) becomes

2 > Sxr 1
V2 - Vl = = L E? o dr = fl a:al—wj do (BelO)

This integral can be evaluated easily in practice, since there exists

for an equilibrium ionized gas at constant pressure, a unigue relation
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between the temperature and the degree of ionization «&. The results of
such integrations are shown in Fig. > for argon in thermal equilibrium.
We note that the potential differences across the ambipolar region of
the boundary layers can be of the order 10 volts, when the average plasma
kinetic energy is of the order of only 1 eV. The fact that there is

a large potential difference associated with the ambipolar diffusion
region has not been sufficiently anticipated in the literature. The
unexplained large potential difference across the boundary layer in (5],
could be attributed to the voltage difference across the ambipolar
region, which was not considered. In the plasma boundary layers con-
sidered here,the sheath potential may typically amount only to 0.5 volt,

and is hence small compared to the ambipolar potential difference.

b. Charge Separation and the Sheath

In the previous analysis of the ambipolar region we assumed quasi-
neutrality, i.e., the ratio of the ion and electron densities is close
to unity, ne/n:.L ~ 1, We shall study this assumption in some more detail
and determine the charge separation exactly. Furthermore, it will be
shown how the ambipolar conditions break down in a transition region to
the sheath, in which more or less free collision-dominated diffusion
prevails.

Consider now the space charge distribution. It may be determined

with the aid of the Poisson equation,

C B

(3.11)

o"|e

\Y%
-
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Inserting the results for the induced electric field, eguation (3.7),
we may describe the charge separation in the ambipolar region by the

relation
n
2.0 (kI nd ey (3.12)

Alternatively, introduction of a Debye-length, ﬂD, from equation (3.1)

yields the expression
. 213 .0
-l -l ES (T a—?(ln ne/n)) (3.13)

From this relation it can be seen, that the relative charge separation
(ni/ne - 1) is largely determined by the ratio of the Debye lengthand y,
zD/y, where y is the distance from the wall. Ambipolar conditions,
i.e., ni/ne - 1 << 1, then prevail approximately only where the Debye
length is larger than . y,. 1.e., where n, is very small. Adjacent to the
wall itself, the Debye length ZD is cbnsiderably larger than the

distance y to the wall,and the ambipolar conditions are no longer valid.

Figure L shows the Debye length for equilibrium ionized argon as a function

of temperature and pressure. At thermodynamic conditions corresponding
to the boundary layer free stream.plasma, the Debye length is typically
of the order 10_8 <'£D <1077 meter. Tt rapidly increases with

decreasing temperature. At 3000°K, for example, £

D is as large as 2 mm.

Presently, our interest is mainly with boundary layer thicknesses of the
order 1 mm. Therefore, we may conclude that for the equilibrium argon

plasma, the ambipolar region will roughly exist above LOOO®°K. At lower
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temperatures a transition to the sheath with nearly "free" diffusion
takes place rapidly. If the gas was not in chemical equilibrium, the
number density of charged particles should be higher near the wall.
Therefore, the sheath becomes considerably thinner than for the equilibrium
case. As will be shown later for the argon plasma boundary layer, the
equilibrium assumption is not at all valid at the temperatures and number
densities typical for the sheath, i.e., T < 4OO0°K. Further analysis
of an equilibrium argon sheath i1s therefore not of practical interest.

In the sheath and the transition region the gas will be only
weakly ionized. If, instead of equilibrium, we consider a case with very
slow electron-ion reaction rates (frozen flow), and equal temperatures
of the electron, ion, and atom fluids, the following set of flux equations
govern the collision-dominated, steady, diffusive motion of the electron

and ion fluids:

ry = Pe = constant = I (3.1k4)
Eq, .

r 1l d i
e w kA -22)

Eq,

L. 1 4 —
W T ™. (5.16)

Here, Dea and Dia are the electron-atom and ion-atom multicomponent
diffusion coefficients, y the coordinate perpendicular to the (plane)
wall, and E the electric field strength in the y-direction. The
electron and ion fluxes in the y-direction are equal since there is
neither any net current nor electron-ion reactions. Before proceeding,

it should be mentioned that the assumption of equal temperatures is
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unrealistic, at least for an argon high density plasma. At typical

shock tube conditions the elastic collisional energy transfer rate between
the electrons and the heavy particles is too small to maintain thermal
equilibrium. In part,this is due to the Ramsauer effect, which makes

the elastic electron-atom collision cross-section very small. The
Ramsauer minimum occurs at an energy of about 0.3 eV.

For reference,we shall develop the general diffusion equations
(3.15, 3.16) one step further. It is found convenient to normalize them
with appropriate parameters somewhere in the ambipolar region,at a
distance Vg from the wall, where is valid lni/ne - ll <K 1. With new

non-dimensionalized variables defined as

(3.17)

the equations (3.15, 3.16) governing the diffusive flow outside and

inside the sheath, take the dimensionless form

2 y
Iy Ys 1 Eseo Sy~
electrons: 9—; (&n ne/n)z- = ls) - —% - [—-—y—-ﬁ—— -/ (ni—ne)dy
dy e ea £ n 945
D e
(3.18)
2 ¥
Iy y ke s
. a ~ a s ’s 1 s o Ny
Lons: — (nny/n) = - 05— +== @yn [~ (1 ne)dy]
dy i ia ZD ng i“s’e y
(3.19)

The electric field strength E has been eliminated with the help of
the Poisson equation (5.11). The parameter Es is the electric field

strength at the reference point in the ambipolar region. It cannot
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be neglected, but is essential to the sheath solution. In fact, for

the partially ionized boundary layers considered here, ES will be quite
large and possibly even larger than the electric field strength inside
the sheath.

The boundary conditions for equations (3.18, 3.19) are the

following:
ne(y =1) =1 ne(y =0) =0
- . ! (3.20)
n(y=1) =1 n, (¥ =0) =0

It is clearly seen from the diffusion equations again how strong
coupling in the diffusive motion of the electron and ion fluids comes
about when the Debye length lD becomes small in comparison to Vs
conversely, there is weak coupling and "free" diffusion when ED is
larger than g

It should be pointed out, that although the gas is weakly ionized
the electron-ion collisions are still important for the sheath structure,
e.g., for ionized noble gases with low Ramsauer minima in the elastic
electron-atom cross-section. The multicomponent diffusion-coefficient,
D,, in equation (3.18), should in this case, not be replaced by the

binary electron-atom diffusion-coefficient, ﬁ%a’ but rather by the

expression
ni i “a
L o .21
Dea Q . Qea (5 )
el
gt
ea

or, in the weakly ionized limit, by
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1/2

1 . 15 ,n kT 1
z . - = 2= — .22
Dea Q . n. mea ’ @ea n 8 (2 m ) Q (5 )
1+ &L 1 e ea
Qea n
ei Ui
Here, the gquantity (Qf_'ﬁf is not small compared to unity even though

ea
ni/n << 1. At this point, we shall not go further and solve these

faily complex diffusive flux equations. Such a calculation and further
discussion of the sheath structure is left to a forthcoming report. It
should then be interesting to allow for different temperatures of the

electron and ion-atom fluids.
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Fig. 3. Electric potential in ambipolar diffusion region for
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L. THERMOGASDYNAMIC PROPERTIES OF SHOCK-HEATED, PARTTALLY IONIZED ARGON

a. Equilibrium Thermodynamics

The boundary layer equations are to be solved for an equilibrium
argon plasma. Therefore we review briefly the appropriate thermo-
gasdynamic properties in this section. Firstly, the simple thermodynamic
properties will be discussed, and thereafter the thermogasdynamic
properties behind a normal, ionizing shock wave will be displayed.

The partition functions and related thermodynamic properties of
argon plasmas have been analyzed by several authors, e.g., Drellishak,
Knopp, and Cambel [29], and reviewed by Cambel, Duclos, and Anderson
[30]. The previous authors calculated the partition functions for an
argon plasma including the first four ions, using both observed and
predicted energy levels of the atoms and ions. The usually divergent
set of partition functions was terminated by use of a Debye cut-off. The
lowering of the ionization potential due to energy perturbations arising
from electrostatic interactions with other charged particles was con-
sidered as well.

For present purposes we are interested mainly in plasma temperatures
below 15,000-20,000°K at pressures of the order of magnitude of
0.1 < p < 10 atm. The argon plasma is then essentially only singly
ionized. If we also neglect the lowering of the ionization potential,
which typically will amount only to a fraction of one electron volt for
argon, the equilibrium composition and thermodynamic properties are

particularly simple to evaluate. The equilibrium composition neglecting

Lo




the induced electric field, is given by the relation

3/2 o gelec.

n g x mekT i Il
n 2 elec. exp( - ET) (4.1)
a h Z
a
elec. . R ey . .
Here Zi is the electronic partition function for the singly-charged
ion, Zzlecn the electronic partition function for the atom, Il the

first ionization potential, and h the Planck's constant. The factor
2 1n front of the ion electronic partition function stands for the two
possible orientations of spin of the free electron, and represents its
statistical weight. For argon the ratio of the ion-atom electronic
partition functions is approximately

elec.

2y . 4+ 2 exp(-2062/T) (4.2)
T .

elec.

Z
a

Assuming that the gas is quasi-neutral, which is true, e.g., in the
ambipolar region of the plasma boundary layer, it is meaningful to use

the degree of ionization @, defined as

e
o= (4.5)
a e
With the aid of the perfect gas law for each component, i.e., p_ =n

e €

for the electrons,etc., the equilibrium relation (4,1) reduces to the

familiar Saha type equation

5 -
e p

3/2
P _Cn%> (mﬁﬁs+n§mh%&ﬂ)ﬂm4wmww(mm
1-C
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The first ionization potential for argon , = 15.7 eV, has been

h
inserted, i.e., I,/k = 182,900°K.
The thermodynamic properties are determined easily from the

partition functions. If we neglect the contribution of electronic excited

states to the enthalpy h of the plasma, we have

h £ mi{; [g (1+)T + a I, /k] (L.5)

The electronic excited states would affect this value at most 1-2% when
the temperature is below 15,000°K. For our purposes, expression (4.5)
could possibly be used even up to temperatures of 20,000°K. The
equilibrium specific heat cp, which, e.g., is of interest in the

evaluation of the Prandtl number in a subsequent section, then becomes

I
_,%hy . k 5 5 1,,0x
¢, = (55) =—=1[5 (1+a) + (5T + +)55) ] (L4.6)
b a Y
The derivative (BOMBT)p could becalculated with the help of equation

(h.4).

b. Thermogasdynamic Properties

The equilibrium conditions behind a strong, ionizing, plane shock
wave could be calculated from the usual shock relations neglecting
radiation. Thermodynamic data for shock heated plasmas have not been
reported extensively in the literature, although the calculations are
quite simple to perform with the help of a digital computer. Limited

data for the noble gases have however been reported by, for example,
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Niblett and Kenny [31]. Therefore, for reference we shall briefly give
here calculated thermogasdynamic properties of a shock heated argon
plasma as a function of shock speed. The primary interest is for initial
pressures of 1 < Py < 20 mm Hg, and shock velocities of 3000 < Us < TO00
m/sec, since these conditions partly are within a possible experimental
range.

The shock relations relate the conditions in front of and behind

the shock wave. They are

P10 = PoUs
2 )
pl + plUS - P2 + pEUQ (J‘"°7)
1.2 1.2
by + 30, =h, +35U;

where subscript "1" refers to the conditions in front of the shock wave,
and subscript "2" to conditions behind the shock wave in a coordinate
system moving with the shock wave. These equations were solved simul-
taneously with the help of a digital computer. The plasma considered

was an equilibrium argon plasma. Initially, the gas was non-ionized with
a temperature of Tl = 298°K. The numerical method of solution used was
an iterative technigue in the density behind the shock wave, Pss which
is the least sensitive to a variation in shock velocity of the thermo-
dynamic variables behind the shock wave. Typically,a relative accuracy
of ].O”br in the density p, Vas obtained after only four iterations
from a roughly guessed value.

The results of the numerical calculations are shown in Figures

5-8. Typically, number density of free electrons behind the shock wave

43



Lo -3

is in the range lO22 < n, < lO2 m ~. The ranges of other variables
are the degree of ionization 0.1 < & < 0.3, the temperature
12,000 < T < 14,000°K, the density ratio 6 < pg/ol < 10.

Similar results can be easily obtained for the properties behind
the reflected shock wave at the end-wall of a shock tube. Such data are
of interest to the end-wall boundary layer problem. We shall, however,

not report the results of such calculations here.
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5. ARGON TRANSPORT PROPERTIES
a. General

In order to solve the plasma boundary layer equations, we require
the transport properties for argon in the complete range from an unionized
to a strongly or completely ionized state. In particular, we are interested
in ambipolar diffusion coefficients, the viscosity, and the total thermal
conductivity. It would, in principle, be desirable to know the transport
properties for a reacting gas, including cases where the electron tempera-
ture is different from the temperature of the ions and ato;ns° Such
information is not available at the present state of the art. However,
here it is quite feasible to neglect the contribution from inelastic
and reacting collisions on the overall transport properties: This is possible
because elastic collisions are much more frequent than inelastic ones.
Indeed, the possibility of energy nonequipartition, i.e., different
species temperatures, does not seem to pose an insoluble problem.

For our range of thermogasdynamic conditions, energy nonequipartition
seems to occur mainly in regions close to the wall, where the degree of
ionization is low. Atom transport properties could then be used, e.g.,
for the thermal conductivity and viscosity, to calculate the boundary
layer, overall structure. Only the diffusion coefficients are affected
significantly by such a nonequilibrium effect, and the electrical
characteristics of the boundary layer hereby changed.

The transport properties for a quasi-equilibrium plasma with
particle velocity distribution functions close to Maxwellian, could in

principle be calculated with the usual Chapman-Enskog procedure [32].

49



Such calculations have recently been made for partially ionized gases,
e.g., by Sherman [33] and De Voto [34] in various degrees of approximations.
The limited amount of information carried in these and other references
renders application to the present boundary layer problem somewhat
difficult. We shall, therefore, estimate the necessary transport pro-
perties of partially ionized argon by use of simple kinetic theory. By
doing so we will obtain simplicity and perhaps a clearer understanding
of the relative importance of the various type of collisions in the

gas. In this approach the transport coefficients are calculated from
effective hard-sphere collision cross-sections Qij for collisions
between type i particles and type J particles. The total transport
coefficients are constructed as the sum of individual contributions from
the electrons; ions and atoms, e.g., with mean free paths estimated by

considering all type of collisions.

b. Diffusion

The diffusion properties were briefly discussed in Section % in
connection with the electrical properties of the plasma boundary layer.
Tt was then found that, neglecting the current and the thermal diffusion,
thé common ambipolar diffusion velocity of the electron and ion fluids

was given by

?e V. = -2 N ﬁ ai (£n ne/n) (5.1)

Here B%a is the ion-atom binary diffusion coefficient. The effect of

electron-ion collisions is negligible due to the small electron mass
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and inertia. The binary ion-atom diffusion coefficient can therefore,

from simple kinetic theory, be expressed as

1/2

_13 kP 1
'&ia_ng(ﬂma o (5.2)

where Qia is an effective, average hard-sphere collision cross-section
for ion-atom collisions. It will depend upon the temperature of the ion
and atom fluids. The contribution to Qia from elastic collisions is
quite small compared to that from charge transfer collisions. Typically,
the elastic contribution only amounts to 30 &2, and is quite insensitive
to temperature (relative speed). For simplicity we shall here use a
constant value, Qia = 30 Kz, for this average elastic hard-sphere
collision cross-section.

The contribution to the effective hard-sphere cross-section Qia
from the symmetric resonant charge transfer collisions is the dominant
contribution. It amounts to about 100 Ag at 15,000°K, and becomes
even larger at lover temperatures. Much theoretical work has been
published, e.g., Dalgarno {35],on symmetric resonant charge transfer
processes. However, for low relative velocities, which are of interest
for our 1 eV plasma, the avallable amount of information is very limited.
In this energy regime the problem of charge exchange is theoretically
more difficult to treat, since only a rigorous wave-mechanical treatment
may be used. Few experiments have been performed at low energies. Here
we will employ a charge exchange cross-section having the form

1/2
tot)

(@ =-k) Mgtk (5.3)
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where g 1is the relative speed and kl and k2 constants. For argon
we assign values to these constants as in [34]. Integration over
Maxwellian atom and ion velocity distribution functions yields the
appropriate contribution from the symmetric resonant charge transfer to
Qia' The results are shown in Fig. 9. For reference this figure also
shows other important effective hard sphere cross-sections used in the
present analysis.

In terms of the degree of ionization «Q, equation (5.1) for the

ambipolar diffusion velocity reduces to the simple form

7 :- 21313%(% a) (5.4)

It is therefore convenient to define the ambipolar diffusion coefficient
as Dy =2 A%a' This coefficient has been calculated at various
pressures and temperatures for the equilibrium argon plasma, using the

previously described collisional cross-section data. FigurelO shows the

results of the calculation.

c. Viscosity

The viscosity of partially ionized argon,in analogy with the

results from simple kinetic theory for a pure gas, is here calculated as

|\)‘l

IJ_:

N

02
5 205430, (5.5)
J
where Py is the density of component "j,' U‘j the mean thermal speed
1/2
Uj = (8 kT/(It mj) / , and lj an appropriate mean free path. Specifically,

by the mean free path we mean here the average distance travelled between
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m, n ° >
Js» in which the momentum

successive collisions by a particle of kind
vector is changed by a considerable amount. Due to the small mass and
momentum of the electrons, we will make the assumption that electrons
make no contribution to the viscosity, although the collision frequency

with heavy particles is large. The mean free paths for the atoms and

the ions, neglecting collisions with the electrons, become

1l
£y = (5.6)
: \/E\(naQaa * niQai)

L, = = (5.7)

1 T
2 (nQ;; +1,Q,5)

Here Qai is an effective hard-sphere collision momentum exchange
cross-section for the atom-ion collisions, and Qii an effective hard-
sphere cross-section for the ion-ion (Coulomb-) collisions. The

viscosity of the ionized gas is then

O
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1 a
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aa,
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aa

Note that in deriving this expression we have assumed that the temperatures
of the atoms and ions are equal, i.e., their mean thermal speeds are

equal. It should be pointed out, that the pure atom viscosity is

- gx Dala | (5.9)
Hatoms ~ %2 Q. -9
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Amdur and Mason [36] have made a theoretical study of the viscosity of
pure argon, neglecting excitation, with force laws calculated from beam
experiments. Using their data, the appropriate hard-sphere. collision

cross-section for the atom-atom collisions Qaa can be calculated. The

result is'
-0.26
. T 2
Q, = 17(;(;;;) (£7) (5.10)

Hence, the value of cross-section is about 15 Kg for temperatures of
interest here. Note, with the help of equation (5.9), that the pure
atom viscosity depends upon temperature as Metoms ™ TO’76.

The effective hard-sphere ion-ion collision cross-section Qii
to be used for calculation of the viscosity in equation (5.8) is a
Coulomb scattering cross-section. We apply a cut-off in the force-law
at the Debye length from the nucleus (Rose and Clark [37]). The result
is

2
Q.. = T ML L BIma (22) (5.11)
P ei (BKT)2 ZE7ZSE3§

2

where, if A > 1

127 (e, kT/q§)5/2 7 r.1?3/2
A = <75 ~ 1.24 X 10 nwg (5312)
e e

[p]
This cross=-section is quite large, of the order lOB—lOu A= as is
shown in Fig. 9.

With the above cross-section data, the viscosity of partially ionized
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argon was calculated from equation (5.8). The results are shown in
Fig. 11. It is very interesting that the viscosity shows a maximum at
temperatures around T = 10,000°K for constant pressure. The degree
of ionization is then quite small, in fact, of the order « = 10-2.
The maximum is attributed to the large charge exchange cross-section
which becomes increasingly important to the viscosity when the ion number
density increases. The viscosity decreases rapidly with temperature
above 10,000°K and approaches above 15,000°K the small ion viscosity,
as calculated, e.g., by Braginskii [38].

We demonstrate in part the above statements in the limit of small de-
gree of ionization, & << 1, by linearizing equation (5.8). One then

finds the following viscosity formula

<< 1: Bo= Mgy o (1-c 2, ... ) (5.13)

Hence, the charge exchange collision cross-section cduses the viscosity
max imum.

Of particular interest to the plasma boundary layer problem is the
variation of the density-viscosity factor pp at constant pressure.
This parameter appeared in boundary layer equations (2.39, 2.40). 1In
classical treatments of boundary layers [21], the parameter pp is
often assumed to be constant across the boundary layer, i.e., the viscosity
is proportional to temperature u ~ T, which makes the boundary layer
equations particularly simple to solve. For the present boundary layer
analysis, this assumption is not possible. . Typically the variation .

in the density-viscosity product pp will for the argon plasms span one
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or two orders of magnitude.. Partly, the reason for this is the small
plasma viscosity. As an example, Fig. 12 shows the variation in the
density-viscosity factor pu with temperature and pressure for our

ionized gas.

d. Thermal Conductivity

The total convective energy flux vector a? consists of species
flux vectors a;, which are defined by equation (2.6). 1In the case of
thermal equilibrium among the fluids, the energy flux a? can be written

=L, v, - v E (5.14)
Jd J ar

Here A is the usual thermal conductivity, hj the species enthalpy
per unit mass, and i@ the diffusion velocity of fluid "j". We make
the assumptions of ambipolar diffusion and negligible thermal diffusion,

which in fact is quite a good assumption here ([34]). The total con-

vective heat flux vector then becomes

- OT 5 Dia 3
- = - (£ + .
Tt ! —37; > B/ (5.15)
We have, as in Section 4, neglected a small contribution to the enthalpy
from electronically excited states of the atoms and ions.

When the pressure is constant,as for the boundary layers, and the

flow is in thermo-chemical equilibrium, there exists a unigue relation

between the gradient é%;jf, appearing in equation (5.15) and the
r
temperature gradient §¥i‘ If we neglect the slow variation with
or ‘
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temperature of the ratio of the electronic partition functions (L4.2) is

found
I
d e al-axl 5 1, OT
(5 T loconst  ZTT 2T ED (5.16)
equilibrium

With the help of this relation, the total convective heat flux vector

could be written

- oT

q == A = (5.17)
r
where
. I 2
: = o 1-ct 5,1
Mot =M T T Doy 7 15 5 (5.18)

Hence, the total energy flux vector is related to a temperature gradient,
thermodynamic variables and transport properties. The second term in
equation (3.18) will be referred to as the "reactive conductivity". The
terminology is somewhat misleading,but 1s commonly used for non-ionized
gases. The reactive conductivity is of extreme importance when the gas
is partially ionized.

Next, the thermal conductivity A will be calculated. Here we
will use a simple mixture rule first suggested by Fay [39] for a partially

ionized gas. The thermal conductivity then reads

3 X A,
M=) gt (5.19)
+ zi:le,jl
where
em, 1/2 Q..
_ 14/ Ji
G = ji (mj+m.) ij (5.20)
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Here Xj is the thermal conductivity of the component "j", x‘j the
number density fraction, m, the particle mass, and jS an effective
hard-sphere cross-section for collisional energy transfer. The tensor
G has been introduced to modify the collisional mean free paths of the
pure components, and to allow for different persistence ratios in the
collisions between particles with different masses. When the equations
(5.19, 5.20) are applied to the mixture of electrons, atoms and singly
ionized ions, the expressions can be somewhat simplified by the fact
that the electron mass is small compared to the atom and ion masses. In
terms of «, the degree of ionization, and self-explanatory cross-

sections, the conductivity then becomes

A A, A
Az 2 T+ = T+ < 5 (5.21)
Q  ail 1-0 “ai NS 1-0 “ea
l+ﬁQ— l+—a-Q— 1 +Vye2 + g—a—'r
aa 11l ee

Following Fay [39], we adjust the values of the ion thermal conductivity
and the electron thermal conductivity to agree with the values calculated

by Spitzer [40] and others for a fully ionized plasma. These are

o= 1: M= 1.84 x 1079 T5/2/zn A (I-n—_-é-ilzl_-z,?) (5.22)
Xi m, 1/2
T = (ET) (5.23)
e 1

The thermal conductivity of the ions can be neglected. The final

result is therefore
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A A
A o= a +

S
(5.24)
Qai 1+ 1-a V 2 Qea

aa o 1 +'\/-2\Q‘ii

|

o
1+ 15

O

The pure argon atom thermal conductivity Xa is for our case

U

_ 757 . a . -k 5/14- Nm
)\,a = 158 k ————VE\Q =2.43x 10 7T (m) (5.25)
aa

To calculate the total thermal conductivity, one requires the elastic
electron-atom effective hard-sphere cross-section Qea’ which appears

in equation (5.24). This cross-section will exhibit unusual features

due to the previously mentioned Ramsauer effect, which is of purely
guantum-mechanical nature and appears only at low relative velocities of
the colliding electron and atom. In nature, it is a resonance between the
electron cloud in the atom and the incident electronic wave, i.e., the
electron. The electron-atom cross-section then becomes very small, less
than 1 Kz for most noble gases, for energies in the neighborhood of one
electronvolt. We shall here assume Maxwellian distribution for the fast-
moving glectrons and use an effective hard-sphere cross-section Qea’ which
is calculated from recent experimental data for argon by Frost and Phelps
[41]. The results are shown in Fig. 13.

The total convective thermal conductivity for partially ionized
argon was finally calculated from equation (5.18). The numerical results
are presented in Fig. 1bk. We see, that for the thermal conductivity,
the effects of ionization seem to play in at temperatures above 6000°K.

However, the total thermal conductivity is quite insensitive to pressure
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up to 12,000°K. Thereafter, a higher pressure level gives a larger
total thermal conductivity. Figure 15 shows the relative importance of
the electron thermal conductivity and the reactive conductivity term.
It is worth noting that the electron contribution starts at about 6000°K,
when the degree of ionization is still very small, and rapidly becomes
most important at temperatures above 10,000°K. The reactive conductivity
contributes to the total thermal conductivity at temperatures above
8000°K. Its maximum importance occurs at temperatures about 13,000 -
14,000°K for pressures of the order magnitude 1 atm. Typically it here
amounts to 30% of the total thermal conductivity. The reactive
conductivity makesthe total conductivity rise with temperature, level
off, and even causes a weak maximum around 14,000°K for low pressures.
This is demonstrated in Fig. 14. The contribution from pure atoms is
very small above 13,000°K, and can definitely be neglected above 15,000°K.
Finally, we will calculate and discuss the Prandtl number. As
the boundary layer equations indicated, this dimensionless parameter is
very important to the problem. The Prandtl number is essentially a
dimensionless measure of the ratio of the diffusivity of energy and the
diffusivity of momentum or vorticity. It has been pointed out, e.g.,
by Fay [42], that for a fully ioﬁized gas, the Prandtl number will be
very small. The reason for this is that the plasma thermal conductivity
will then be caused by fast moving, light electrons and the viscosity by
the heavier ions. From simple kinetic theory it is seen that the Prandtl
number is then approximately Pr = (me/mi)l/g, and hence much smaller
than unity. Thermal boundary layers will therefore develop in plasmas

considerably faster than viscous boundary layers.
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Partially ionized gases behave similarly. The Prandtl number will
be smaller than unity, but not as small as for the fully ionized gas.
The appropriate Prandtl number to use here (thermo-chemical equilibrium)

is the fo'lowing

eq.
C " H
Pr = 1; (5.26)
tot
where cgq' is the equilibrium specific heat, p the viscosity, and
;\'tot the total thermal conductivity. The equilibrium specific heat
cgq’ may take very large values in the regime of partial ionization.

In fact; when the pressure is of the order one atmosphere, the equilibrium
specific heat is one order of magnitude larger than the frozen specific
heat at T = 14,000°K (Fig. 16). Therefore,the Prandtl number for an
equilibrium partially ionized gas will be much larger than if the
composition were frozen and cP were depending only upon translational
modes. The calculated values for equilibrium argon Pr are shown in

Fig. 17. The Prandtl number is approximately Pr = 0.65 at low
temperatures, but starts to decrease at temperatures above 6000°K due

to the increasingly important electron thermal conductivity. The decrease
is also attributed to the charge exchange collision between the ions and
atoms, giving a low viscosity. Above 9000°K the gas is no longer weakly
ionized, and the equilibrium specific heat cp takes large values. The
Prandtl number therefore exhibits first a weak minimum at 8500°K, and
thereafter a pronounced maximum at 11,000°K. The Prandtl number maximum
could be larger than unity, if the pressure level is low. At temperatures

above 12,000°K the viscosity of the plasma decreases and the total thermal
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conductivity is large. Hence, the Prandtl number then again decreases
to very low values with increasing temperature. At temperatures above
T = 15,000°K the Prandtl number may be as low as Pr ~ lO-2 as was

earlier pointed out to be the case for a strongly ionized gas.
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6. METHOD OF SOLUTION AND RESULTS

a. Integration of the Boundary Layer Equations

The mathematical problem to be solved is a two-point boundary
value problem. The two governing ordinary differential equations are,
for the case of a plasma, strongly coupled and of non-linear, parabolic
type. In the present analysis the equations will be solved numerically
with a predictor-corrector finite difference technique, (see e.g., Fox
(431).

The differential equations will first be transferred into a more
convenient form for numerical integration. In the case of the Rayleigh
boundary layer problem, we note that for large values of the similarily
variable 7, i.e., in the outer region of the boundary layer, the

solution is the following

*

du 2
n - " exp(-1"/Pr_)

(6.1)

*
gll— e (_ 2)
dn ~ €Xp\-m

Guided hereby, we introduce two new functions F(n) and G(n), defined

by the relations

Rayleigh's b.1l. roaiale A F(n) exp(-ng/Prw)
(6.2)

an B G(n) exp(-n°)

For convenience we require that F(0) =1 and G(0) = 1. The constants

* *
A and B, which are to be determined from the boundary conditions
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* *

u () =0 and h (w) =1, then simple are the magnitudes of the velocity
and enthalpy derivatives at the wall. At infinity, F(n) and G(n)
should be constant according to equation (6.1). In terms of the new

functions the values of the dimensionless velocity and enthalpy are

o
1}

e
1-4 fo F(n) exp(-n"/Pr_)an
(6.3)

g
]

x [0
B j; G(n) exp(-n°)an

We claim, that if the density-viscosity product pu and the Prandtl
number Pr do not vary too drastically across the boundary layer, the
functions F(n) and G(n) should be of the order magnitude unity and
well behaved functions of 7. They are determined from the boundary
layer overall momentum and energy relations (2.26, 2.27). Integrated

once, these equations become

(om), [(pu)w o N 5 ]
F(n) = — exp(n /Pr.) (e N F(n) exp(-n"(Pr )dn
(6.4)
(o), by o, [(en), Pr, n N
G(n) = —; pr 2 ) [mﬁ‘- - 2]; n G(n) exp(-n")dn -
*2 U
) A_IF ‘hw-%w P fon TonTe ¥ (n) exp(-2n"/ Proo>d”] (6.5)

These equations are here written in a convenient form for numerical

integration.
For reference, we shall mention that F = 1 1is the solution to the

momentum equation when the density-viscosity product pu is constant.
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* *

From the boundary condition u (=) = O, the parameter A is found to
*

be A =2 Vﬂ Pr_. 1If, in addition, the Prandtl number is constant, the

energy equation becomes

u
G(n) = exp(n°) [l - 2] n G(n) exp(-n°)an -
0

2T m 2
- H—gﬁ— Pr Jf exp( -2 /Prm)dn] (6.6)
0 W 0

B

The integration of G(n) could easily be performed numerically. The
parameter B* is given by the boundary condition at infinity, h*(x) = 1.
We note that if the factor Us/(hw-hw) in the viscous dissipation term is
sufficiently large, there will be a local enthalpy maximum in the boundary
layer, provided that the wall enthalpy gradient is positive, i.e., if
B' > 0. This is also true for the full problem (equations (6.4, 6.5)).

In the shock tube side-wall plasma boundary layer problem it is
not convenient to use the transformations (6.2). The reason for this
lies in the additional terms (u*+C)/C in the boundary layer momentum
and energy equations which add to the non-linearity of the problem.
Even for constant density-viscosity product pp and Prandtly number Pr
the functions F(n) and G(n) would be irregular. We simply choose to
solve the side-wall boundary layer equétions directly in terms of normalized
velocity and enthalpy gradients. For this purpose, we introduce the two

functions H(n) and K(n) defined as

*
du

o 'A*K(ﬂ)

(6.7)
dh* X
o = B )

Th




We require that X(0) =1 and H(O) = 1. Both functions must vanish
at infinity. In terms of X(n) and H(n) the dimensionless velocity

* *
u and enthalpy h  become
* * M
u =1-A K(n)dn
0]

.. (6.8)
h =B fc H(n)an

The governing equations for K(n) and H(n), namely the momentum and

energy equations are

(on) (ou) 1
o C w 14+C 2
K = - X(n)d 6.9)
(T]) ok u._)(_+c ((DH)°° C Prwfo il (T]) T]) ( 9/
o lewdy o ope [lem), Pr_ ..
H(n) = on Fac Fr, \lew) Pr °C -
2 \2 )
M *< (U_-U,) 1 *
A w2 ou u +C
- 2] n H(n)an - Pr f (CE Kz(n)dTD
0 5 iy »Jo lowl C
(6.10)

In the shock tube side-wall problem, the four equations (6.8-6.10)
* *, .
uniquely determine x(n) and H(n) as well as u () and h (1),
* *
provided that the constants of the integration A and B are known.
* *
In the present method, the values of A and B had to be guessed
initfally. These values were improved successively by iteration. A
finite difference technique was applied in performing calculations from
the wall to 1 =5 (in some examples ), which is well outside the

essential boundary layer. The calculated values for velocity and enthalpy

at “infinity"”, i.e., n = 5, were compared with the reguired boundary
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conditions, namely u* =1 and h* = 1l. New values of A* and B*
were then estimated on the basis of this comparison. Since the boundary
layer equations (6.8, 6.9) are highly non-linear in nature, the conver-
gence to the correct values of A* and B* presented difficulties.
Several convergence techniques were tried, but not many of them were both
stable and rapid. In fact, stable convergence was obtained only if the
initial guesses for A* and B* was sufficiently close to the correct
values. Typically 8-15 iterations had to be performed for a certain

set of free stream conditions layer until the boundary conditions were
satisfied. The required accuracy was normally u*(S) =0 & 1o'u and
h(5) =1% 10"". The Rayleigh boundary layer equations were integrated
in a similar fashion.

The finite difference technique used was in principle a predictor-
corrector method, and the same for both the Rayleigh and the side-wall
boundary layers. We shall not go into much detail, but illustrate the
method used only by showing how, e.g., the boundary layer momentum
equation (6.8) for the side-wall problem was treated. Assume therefore
that the solution to boundary layer equations is known in the region
0<n< N0 where i denotes the i-th step. In the integration the
constant step-size is An, and by assumption much smaller than unity.
The predictor formuls used to calculate the function K at the point

ng * om, Ki+l’ was the following
Predictor:

(pm), c) (ov), ¢ ;
Ki+l - [2 ( o u*+C . '< oK u*+C)' ]X (6.11)

i+l

(ou) 1
w 1+C 2 I - .
“|Ton), © " Fr. <fo 1 K(n)ane 73 (230K, -16n, 1Ky h¥ong oK o ]
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This formula predicts a value for Ki+ which in fact may be fairly

l’
inaccurate. A similar predictor formula was derived from the energy
equation and used to determine H, .. With the aid of equation (6.8)

*
the associated values of velocity wu,

*
141 and enthalpy hi+

1 could also
be predicted. Hence, the thermodynamic state of the gas at the point

*
ni+l was then known approximately from hi+l’ and the related transport

properties could be calculated. The following deferred correction formula

was used thereafter to improve the accuracy of the predicted value Ki+l

Corrector:
) _((ou)m . ) K(pmw ”
° - * _—~-
i+l o Fio/s Zpl»l;w C

.
2 i
T P, ( fo n K(n)an + % (5“i+1Ki+1+8”iKi'”i-1Ki-1)>)]
(6.12)

This corrector and corresponding corrector formulas for Hi+l’

* * .

Us470 and hi+l were used repeatedly until the iteration error became
acceptably small. In general, the corrector formulas were used only once
or twice to obtain desired accuracy when the step size was smaller than
O = 0.01.

The numerical calculations were performed on a digital computer

(Burrough's BSSOO)O* Typically, the necessary computing time for one

The author gratefully will be willing to supply any interested person
with copies of the computer programs developed. These are written

in a Stanford University version of the computer language ALGOL.
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boundary layer was 1-2 minutes if the boundary conditions, u* and h%

at n =5, were to be within lO_u of the desired values. The mentioned
computing time also includes calculations of the thermodynamic and
transport properties of the argon plasma at the particular pressure.

After that integration of the plasma boundary layer equations was performed,
certain optical properties, such as fringe shifts and deflection angles of
monochromatic light through the plasma boundary layer,were calculated on

the basis of the boundary layer density solutions.

b. Solutions to the Rayleigh Boundary Layer

In this section we will present a few of the significant results
of the numerical ca}culations of the equilibrium Rayleigh argon plasma
boundary layer. We include the results for the shock tube end-wall
boundary layer calculations as a special case of the Rayleigh boundary
layer, namely for Uw = 0. The range of plasma free stream conditions
considered are such as can be obtained experimentally behind normal
shock waves in argon. These properties were reported in Section L.
Hence, we shall consider cases when the plasma temperature is of the
order T = 14,000°K, the number density free electrons n_ ~ 102 n~°
and the pressure p = 1 atm (lO5 Newtons/mg)o The wall temperature is
in all cases assumed to be Tw = 300°K. The temperature jump for a
metallic wall will be calculated subsequently and is shown to be small. The
above assumption for the wall temperature is therefore quite realistic.

Results for the dimensionless velocity and enthalpy profiles are
shown in Figures 18-21. It is clear from these figures that these

profiles are quite different from the usual error function curves. The
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latter are solutions to the simple Rayleigh problem with no dissipation
and constant fluid transport properties. In all cases studied numerically,
the velocity boundary layer is thinner than the enthalpy boundary layer.
The transition to free stream conditions is smooth only for the enthalpy
profile. Typically h* is larger than 0.99 when 7 > 2.5. Approaching
the wall, the velocity increases rapidly from zeio to large values

Ptetween n =2 and 7n = 1l. The derivative dg; is very large at the

dn .
outer edge of the velocity boundary layer. The reason for this is the

small value of the plasma density-viscosity product pp din this region.
The velocity and enthalpy profiles are guite sensitive to change of
the pressure level. As is demonstrated in Fig. 18, a higher pressure
tends to make the boundary layer thinner along the n-coordinate. However,
in the true physical plane, this is not certainly a true statement.
Furthermore, the enthalpy profiles are quite different when the wall
velocity UW is varied. As may be seen from Fig. 19, the enthalpy for
a given value of 17 becomes larger with increasing wall velocity. The
reason herefore is the viscous dissipation. That the effect of changing
the wall velocity on the enthalpy profile is drastic, is also shown in
Fig. 20. For a wall velocity of 8000 m/sec and a free stream temperature
of T = 14,000°K and pressure p = lO5 N/m? (1 atm. ), there is still no
local temperature maximum in the boundary layer due to the viscous
dissipation. If the wall velocity were raised above 10,000 m/sec such
a maximum will, however occur. For small values of the similarity parameter
7, the dimensionless velocity profiles do not change much with a varying
wall velocity Uw° From Fig. 20 it is found that for n < C.5 there is
no noticeable difference in uﬁ when the wall velocity is varied from

U, = 4000 n/sec to U, = 8000 m/sec.
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D %
The enthalpy profiles presented exhibit a change of sign in é—hg
dn

at positions corresponding to temperatures at which the electron

thermal conductivity and the reactive conductivity start to become
important. It corresponds to the "hump" in the total thermal conductivity
at T ~ 7000°K (Fig. 14) and an increasing value of the specific heat °s
(Fig. 16). Any similar effect is not noticeable for the boundary layer
temperature profiles.

The integrations of the boundary layer equations is performed with
the similarity parameter n as independent variable. After the solution
n = h*(n) is known, a translation back to the physical plane (y,t) 1is
possible. From the original transformations we find immediately the

following relation

2o I (6.13)

Vi VERR

where, by definition

n e
y = f = an (6.14)
0 P

The relation between y* and 7 is highly non-linear due to the large
variation in density across the boundary layer. In Fig. 25 such a
relation between y* and 1 1is shown for the case T = 14,000°K and

T, = 300°K. In the following figure, the distance from the wall per unit
of y*, i.e., y/yt is given as a function of time t for a few
selected argon plasma free stream conditions. Naturally, this relation

is independent of wall velocity Uwe
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Various boundary layer thicknesses were obtained by use of the
above relations. In Fig. 25 is shown the enthalpy boundary layer thick-
ness defined as y(h* = 0.99). Its variation with wall velocity Uﬁ is
shown. It is interesting to note that the enthalpy boundary layer thick-~
ness slightly decreases with velocity in the velocity range considered.
The velocity boundary layer thickness, y(u* = 0.01), stays more constant
when the wall velocity is changed. The latter occupies 68% of the enthalpy
boundary layer thickness in this example (T = 14,000°K, p = 1 atm)
roughly. Classical boundary layer theory for constant properties says
that the velocity boundary layer should fill a fraction \[E;‘ of the
enthalpy layer. Using the calculated value Prco = 0.37T4 for the free
stream plasma, classical theory underestimates slightly the ratio of
these layers to 61%, as compared with the above-mentioned value of 68%.

The induced velocity v in the y-direction (Fig. 1) is calculated
easily from the continuity equation (2.15) if p = p(n) is known. The

result is

p By

© O I s
V=Tj_?t L Bzdy=(§)Y (6.15)

After some simple algebraic work one finds

VRN SRy - S (6.16)
o

-1/2.

Hence, the velocity v depends upon time as t If the density
in the boundary layer is everywhere decreasing with 7, as is the

typical case here, the induced motion is directed towards the wall. If

the density was increasing, i.e., a decreasing temperature profile, the
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induced motion is everywhere directed avay.from the wall (i.e., in the pos-
itive y-direction. This is the case for a thermally insulated wall.

The same effect could also be present when the wall velocity Uw is
sufficiently large. The viscous dissipation then leads to a very low
average gas density in the boundary layer. Here we shall only consider
moderate wall velocities and dissipation with the motion directed towards
the wall. The velocity v(n) is shown in Fig. 26 for a typical set of
free stream conditions. We note, that the magnitude of the velocity v
rapidly decreases to zero when 1 approaches n = 0. It should also

be noted that the induced velocity decreases in magnitude with increasing
wall velocity for large values of 1. The reason for this is that the
viscous dissipation causes a decrease in the average density in the

boundary layer, and hence reduces the magnitude of the induced velocity

V e
[ee]
. . displ.

The boundary layer displacement thickness 8 could be
calculated from the fundamental relation (e.g., [20])

displ K

Y =Jr v_at (6.17)

0

with the help of equation (6.16) for the perpendicular velocity, the
following useful expression for the Rayleigh boundary layer displacement

thickness could be derived

. b e
gdispl. | ov_t = -2 [ 2 - y*] (6.18)
'{]—»

Py © : %
. . . X ) 1/2
Hence, the displacement thickness varies with time as t , as do also the
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velocity and enthalpy boundary layer thicknesses. As shown in Fig. 25,
the displacement thickness typically amount to 50% of the enthalpy
boundary layer thickness. This is quite a large value from a classical
boundary layer stand-point. However, the effect is quite obvious, when
considering that in the particular example shown, the wall density is
very high, namely, P, = 65 P

The total convective energy transfer flux at the wall is calculated

from the relation

DW PP
%W = o 5" N \NEx &) (6.19)

The temperature gradient is here evaluated from the numerical boundary
layer solutions. Naturally q, changes with time t as t-l/2° When

the wall temperature is small, and the flow is in-equilibrium, as in the
present calculations, the total thermal conductivity in expression (6,19)
takes the pure atom value. The fact that the gas is in the ionized state
does therefore not introduce additional modes of convective energy trans-
fer over the non-ionized boundary layers. However, the temperature

gradient at the wall is strongly dependent upon the plasma outer conditions
with a resultant effect on the energy flux. The total energy transfer

rate at the wall, q_, may be written in the following appropriate

dimensionless form

1/2

t c

% 8 1 (M), (dh*) (6.20)
- SR O e eV

(h‘>° hW)VCPwpw/\.totw 2 ( totP e GN W

Heat transfer rates have been evaluated according to this formula for
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the plasma Rayleigh boundary layers. In Fig. 27 are shown a few results.

The heat transfer rate is seen to increase with wall velocity Uﬁ and

increasing pressure, for a given free stream equilibrium plasma temperature.
At this point it is appropriate to calculate the wall temperature

Jump Amw at time t = 0 for a homogeneous metallic wall. It is a well

known fact that the wall temperature will take a constant value for

times t > O, if the heat transfer rate to the wall is of the form

q, ~ t-l/2, as it is in present cases. If A, p and c are the

(constant) thermal conductivity, density, and specific heat for the wall

material, the temperature jump Amw becomes

1/2

le - _qw tl/e (ﬁ_(_:) (6.21)

Here Q, is the heat transfer rate in the gas at the wall, as calculated

e.g., from equation (6.19). For the case of aluminum material, the

theoretical results for wall temperature jump &Ew are shown in Fig. 28

as a function of pressure for a typical set of free stream conditions.

From this figure it is concluded that the wall temperature jump is only

between 2.5 and 15°K when the pressure is 0.1 < p < 100 atm, for a

free stream temperature of 14,000°K. Hence, in an experimental situation

the wall temperature may easily be kept at Tw ~ 300°K, which was one

of the initial assumptions in the present plasma boundary layer analysis.
Furthermore, the shear stress at the wall Tw’ could be determined

from the following expression

(pw). VPr ) *
3 duy W © T du
Ty " 3 y = Ton), e (DH)OO Uw(—dn )w (6.22)
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In terms of the non-dimensional skin friction coefficient, this could also

be written

-1, (em), N au (6.25)
c, = = Pr —_— (- — .2
f DQUi/Z (pn),, = R A

Here R 1is a Reynolds number defined as

t U2
W

R=p—°.7a; (6.24)

Naturally, in order for the boundary layer calculations to be valid, we
require that this Reynolds number is much larger than unity, R >> 1.
For times t larger than one microsecond and pressures larger than 0.01
atm, which has mainly been considered here, this condition is certainly
satisfied. If R dis larger than, e.g., 106, turbulence is likely to
occur. We leave the question of transition to turbulent plasma boundary
layer open.

Finally, it is of interest to mention, under which conditions
the convective net energy flux from the gas is positive or negative. The
motion of the wall naturally introduces energy to the gas through the
shear stress, in the present frame of reference. Part of this energy is
given to the gas directly as kinetic energy, and part as thermal energy
through the dissipation mechanism. The net energy flux from the gas
per unit time and unit wall surface area is (-qw - UwTw)° With the
help of equations (6.20, 6.22) it is easy to show that this quantity
is positive, i.e., the gas is losing energy, when the following non-

equality is satisfied
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*

du
2 - ——
Uﬁ ( dn W .
Pr Tt % <1 (6.25)
W dh
dn .

Most Rayleigh plasma boundary layers which are analysed here satisfy
this relation, i.e., the plasma boundary layer 1is giving away energy to
the wall.

Finally shall be given results for the ambipolar electrical
characteristics of the Rayleigh boundary layers. The strength of the
induced ambipolar electric field Ey in the y-direction is calculated
from equation (5.7). After some algebraic reduction the following result

is obtained

Cp poo
_.lq/ = ko 1
Eyv?—-2 )\.oo CH pooZl+Ots

Hence, the induced electric field is directed in the negative y-direction

(4n a) (6.26)

gl

since the degree of ionization @ increases with 7. Furthermore, the

clectric field varies with time as E ~ £~1/2,

The same dependence upon
time is true also for the diffusion velocity, the boundary layer thickness,
etc. In Fig. (29) is shown & numerical evaluation of the electric

field strength. We see that the value of Ey monotomically increases
with decreasing value of the wall distance parameter 7 and decreasing
temperature T. For example, after t = 10 microsec at a position in

the boundary layer corresponding to a temperature of 13,000°K, the

strength of the electric field is 2.1 Volts/mm. At the temperature

6000°K the corresponding field strength is as much as 110 Volts/mm.

86




The ambipolar electric field solution breaks down when the local
Debye length, lD is of the same order magnitude or larger than the
distance to the wall y. This occurs at temperatures of the order LOOO°K
or lower for times t ‘on the microsecond level. The results in Fig.

29 should then only be used at temperatures above 4OO0°K (n > 0.3).

With the electric field associated electric ambipolar potential
difference V can be calculated by integration of the electric field
strength Ey in the y-direction. Results of such an integration are
already given in Section 3, and grafically shown in Fig. 3 for the
equilibrium argon plasma. The potential difference across the ambipolar
region between two given temperatures was shown to be independent of
time.

The electron current density je is obtained from the expression
Jde T neVede (6.27)

Here Ve is the ambipolar electron diffusion velocity, which is given
by equation (3.8). Since the ambipolar diffusion velocity here is in
the negative y-direction, the electron current is positive and directed
in the positive y-direction. The ion current is in the negative y-
direction and equal to the electron current in magnitude, since by

3

assumption,the total current density is zero. Using the expression (3.8)

for the ambipolar diffusion velocity, the electron current density becomes

c_p

P ®

p_4_ D
4 Dy e oo @ (fn @) (6.28)
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Hence, the electron current density varies with time as je ~ t_l/2 (as
the electric field strength)- Due to the rapid decrease in number density
of free electrons n, with decreasing temperature for the equilibrium
argon plasma,the electron current becomes small at temperatures below
8000°K. As could be seen in Fig. 29, the electron current density je
has a maximum at a temperature 11,500°K in the particular example where
the free stream temperature is 14,000°K. At time 1t = 10 microsec,the
maximum electron current density is je = 24 Ampéres/cm?-

For reference is also given the ambipolar diffusion velocity and
the average mass velocity v in the y-direction in Fig. 29. In the
example shown, the ambipolar diffusion velocity is larger in magnitude
then the mass velocity when the temperature is lower than 12,000°K. At
the temperature TOO0°K, the diffusion velocity is two orders of magnitude

larger than the mass velocity v, and of the order 100 m/sec for

t = 10 microsec.

c. Solutions to the Shock Tube Side-Wall Boundary Layer

Solutions to the shock tube side-wall boundary layer problem were
obtained in a fashion similar to that for the Rayleigh boundary layer.
The results are qualitatively the same.

Due to the appearance of the term (u*+C)/C in the boundary
layer equations, the behavior of the solutions u*(n) and h*(ﬂ) are,
however, quite different from the Rayleigh sol;tions. Only when u*

* *
is small, u < C, i.e., the factor (u +C)/C 1is close to unity, the

solutions are similar in shape. The side-wall boundary layer solutions
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u*(q) and h*(n) approach the free stream values u*(w) = 0 and

h*(W) =1 at larger values of 1 than the Rayleigh solutions. Typically
the boundary layer edge n(h% = 0.99) now corresponds to 1 = 3.5,
instead of the previous 1 = 2.5 for the Rayleigh boundary layer. This
is shown in Fig. 30 for the case of a shock wave with speed US = 6000
m/sec in argon of initial temperature T = 298°K and pressure Py = 5

mm Hg. In the same figure is also shown the derivative functions K(n)
and H(n), defined by equation (6.7), and in terms of which the numerical
integration were carried out. It is interesting to note that both
functions K(n) and H(7n) have pronounced maxima at n = 2.6 and

n = 2.8 reépectively)close to the outer edge of the boundary layer. In
particular the maximum for the velocity derivative function K(n) is
sharp, Kmax ~ 6.5. The function K(n) very rapidly decrease to zero
behind the maximum. Hence, the velocity u*(n) very rapidly approach

*
the free stream value u (w) = O, and with a large value of the second
*
2u
dn2
at n = 0.7, corresponding to T = 5000°K in the particular example

derivative Furthermore, the function H(n) has a local maximum
shown. This feature is common with the Rayleigh boundary layer in
equilibrium argon plasmas. The reason for this local maximum in H(q)
is the rapidly increasing total thermal conductivity and a thereby associated
lowering of the Prandtl number in this temperature region of the argon
gas.

Figure 51 shows the temperature and velocity profiles for the same
side-wall boundary layer. For reference is also plotted the degree of
ionization @, the Prandtl number Pr, and the inverse density-viscosity

product (pp)_/(pu). The variation in-the density-viscosity product
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across the boundary layer is large, and here as much as one order of
megnitude. The variation in the Prandtl number is moderate, 0.65 < Pr < 0.4,
The gas is strongly ionized above 10,000°K, and the free stream value of

the ionization is & = 0.242. Further results are shown in the Appendix.

The transformation back to the physical plane (x,y) is done by

the relation

son/——2 ¥ (6.29)

S =
\/—X\ p Pw s

*
where the dimensionless quantity ¥ is defined as

* N P ¢
y =f o —=— a7 (6.30)
0o P u+c

These relations are analogous to the Rayleigh boundary layer relations
(6.13, 6.14). The results of a transformation of this kind are demon-
strated in Fig. 32 and also in the Appendix. We note that the enthalpy
boundary layer edge, n = 3.5 roughly corresponds to the value y* = 1.
The enthalpy boundary layer thickness in the particular example could
therefore approximately be written

)
*
y =1 gthely xp = X (6.31)
cp Poo U2

[0}

For a given value of X, the distance from the wall, y, is directly
proportional to the dimensionless quantity y*. From Fig. 32 we may
then conclude that the physical wall distance y is very much smaller
than the enthalpy boundary layer thickness when n < 0.5. For reference

we shall give the following table which relates the distance from the
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wall, y (millimeters),to the temperature, T, in the boundary layer

for the previously discussed side-wall boundary layer.

Distance from wall y(mm):

x meter | T=6000°K | T=B000°K | T=10,000°K | T=12,000°K | T=1L,070°K

0.01 0.0069 0.0132 0.0275 0.0618 0.343
0.05 0.0152 0.0294 0.0615 0.138 0.768
0.20 0.0308 0.0588 0.123 0.277 * 1.535

U, = 6000 m/sec

U, = 675 m/sec

p =3.kx lO5 N/m?; (pl = 5 mm Hg.)

T = 1L4,100°K

T, = 300°K

Notice: ZLast column corresponds to enthalpy boundary layer edge

since T(h* = 0.990) = 14,070°K.

Hence at a distance x = 0.05 meter behind the shock wave the enthalpy
boundary layer thickness is geTthalpy _ 0.768 mm. At a distance 0.0615
m from the wall the temperature is 10,000°K. This wall distance
corresponds only to 8% of the enthalpy boundary layer thickness.

The induced velocity v in the y-direction {perpendicular to the
wall, y = 0) is calculated from the continuity equation (2.30). We

find that
v = u(%%) (6.32)
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and therefore

AU P *
Wie o [ S 2 - ] (6.33)
p =]

<]

As was found for some of the Rayleigh boundary layers, the induced
velocity v 1is negative everywhere in the boundary layer and hence
directed towards the wall. A calculation of the induced velocity v 1is
demonstrated in Fig. 32. At a distance x = 0.01 from the shock wave
the magnitude of the induced velocity v is of the order v, = 5 m/sec

at the boundary layer edge. It rapidly decreases to zero when 7 < 1.
6displ.

The boundary layer displacement thickness becomes

displ. 1 x 2wi(x) Mo X *

5 =T VOO(X)dX =—-ﬁ-—-= -2 P T (n-y ]Tl"‘)°°
2 “o 2 p P= 2

o
(6.34)

The expression inside the bracket should be evaluated at free stream
conditions. Since v is negative, the displacement thickness also
becomes negative. The magnitude of the displacement thickness is quite
large in the particular example studied andamounts to hs% of the thermal
boundary layer thickness.

The total energy flux at the wall, the wall shear stress, etc.
can be calculated from the boundary layer solutions u*(n) and h*(n),
as was done for the Rayleigh boundary layers. We shall here not give

the results of such straightforward calculations..
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d. Criterion for Chemical Equilibrium in the Boundary Layer Flow

Most calculations presented herein assume chemical equilibrium in
the boundary layer. This is an ideal assumption and will not be correct
throughout the boundary layer for the argon plasma for example. We
shall determine where the equilibrium assumption is valid, and where it
breaks down. In this connection, we must examine the electron continuity
equation (2.3) which in the physical plane (y,t) reads, for the case

of the Rayleigh problem,

ane a ane
3t T3y (m (7)) = (577)con1 (6.35)

Here again, v 1is the mean mass velocity in the y-direction, and v,
the electron diffusion velocity in the same direction. In the original
treatment of the plasma boundary layer we did not have to solve this
equation when the gas was in local equilibrium. It was then replaced
by a relation of the Saha type for the composition. However, the
continuity equation is still very important in the equilibrium cagea It
provides information about the magnitude of the collision term (522)0011’
which now expresses the eguilibrium change.of number density electrons
per unit time due to reacting collisions (ionizing collisions and
recombinations).

We evaluate the collision-term from the eguilibrium solution and

1/2 1/2

make use of the facts that v ~ £ and Ve ~t . We shall here

only be concerned with the ambipolar region, i.e., Ve is the ambipolar

diffusion velocity. In terms of the-similarity parameter mn, the collision-

term then takes the form
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Rayleigh's b.1:

on dn
t e 1 1 e o] 1 v d
_ = e =) e —— o} e ——— V +
n (5 eonn 25 @ o 3 (VVt)
e e o A
2
€, Po

(6.36)
Here we find from equation (6.16)
A P
d [ d ©
—_— (vt = - —_— | —— 64:5
= Ve & ) (6.37)
Poo
The following expression is deduced from the ambipolar relations
VT - lp , L __da 6.38
nV,Vt=-D .5 o n, - an (6.38)
21\/3 Z
Pmp°°
Therefore, the collision-term for equilibrium flow becomes
g on conv diff
BTN e - . . .
equilibrium: n (BE_)coll (Q +Q ) (6.39)
where
dn n
convs 1 1 e p d o 1 _4d e
== ——t e (=)] =51 = (In — 6.40
Q Qn[nen Dwd”(p] 50 g (o) (6.40)
cp Pos n
< "L o, n_ dn Comp & O AN (6.41)
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conve.

Here Q is a dimensionless measure of the collisional loss of

electrons necessary for equilibrium and due to the change of density of

the gas with time (the convective cooling). The quantity leff° is

a measure of the required loss of electrons due to the diffusion. The

gquantity leff° will naturally be most important close to the wall in

the boundary layer, where the diffusion is large. This is clearly

demonstrated in Fig. 33. For the particular example shown here, the

convective term Qconve is less than two orders of magnitude smaller

than leff' when the temperature is below 6000°K. At T = 12,000°K

the diffusive term is zero. For temperatures higher than this, it is

interesting to note that leff' is negative. As we approach free

diff./Qconv.

stream conditions, the ratio Q is almost constant, and

-approaches the value -0.L44 in this example. Since there is no temperature

overshoot in the particular examples shown, it is not surprising that
the collision-term is everywhere negative. This means that for equilibrium,
the number of de-ionizing collisions uniformly must exceed the number
of ionizing collisions in the boundary layer.
Figure 34 shows the available number of de-ionizing collisions
for the argon plasma. The relevant argon recombination process in the

temperature range of interest is the usual three-body recombination
+ *
e+e+ A —e+ A + hy

*
where A+ is the argon ion, e the electron, and A an exited atom.
. . . avail
In order to calculate the available number of recombinations, . 5
per unit time per electron, results from classical electron impact theory

were used below T = LOO0O°K, and results from [12] for high
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temperatures. Hence, the data used are the following

on
avail. _ 1 e — 2
< T T n (BE_) = Krec e (6.42)
e rec
where
_ -20  =k.5 6 0
Koo = 2:3 X 10 x T (m”/sec) ('I‘e < LO00°K)
- (6.43)
k = 1.3 X 10 bl (2 + EQEQQQ) exp( 49000/T ) (mé/sec)
rec Te e
(Te > LO00°K)
avail. . . . R
Here Q is the available number of recombinations per electron

per unit time. Thus, this quantity has the dimension 7L,

Obviously the gas in the boundary layer will be in near chemical,
equilibrium when the number of recombinations per unit time exceeds the
necessary net number of recombinations for equilibrium, as calculated
from equation (6.39). We state, therefore, that the gas composition will
be locally in equilibrium in the Rayleigh boundary layer when the follow-
ing non-equality is satisfied locally:

Equilibrium avail. avail.

. - Q _ t Q
Criterion: > = > 1 (6.&4)

Qconv° + leff.

We conclude, e.g., from Figs. 33, 34 for the argon Rayleigh boundary
layers that for the pressure p = 10° N/m? (~ 1 atm), the gas will be

in near equilibrium only at temperatures above 13,000°K at times

£ > 1077 sec, above 10,500°K for t > 107 sec, and above 8500°K for

t > lO-l sec. At lower pressures corresponding times are longer. For
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time scales of experimental interest, and time scales smaller or of the
same order of magnitude as those characteristic of radiation cooling,
i.e., times of the order t > lO_l‘L sec, we conclude that the Rayleigh
boundary layers in argon will be in e@uilibrium only above, say 11,000°K,
and close to frozen in the region below 8000°K.

A similar analysis could be carried out for the shock tube side-
wall boundary layer. Here, we shall give only the formula for the
determination of the net collisional change of electron number density

necessary forthe flow to be in chemical equilibrium. The relation is

x/U, On A

2 e _ conv. diff.
T (G oy 77 (@ @) (6.45)

where
dn * n
conv. 1l _u+C 1 e e_9 (p_ _ 1 u+Cd _e
Q =317 n_ @ +p°°d1'|(p°°)] 2 17¢ dn('enp
(6.46)

aiff “p, e g 14 "o B aa

1 ° o u p____ a u _?_ 3___ 6.
Q “TX, C o.n,dn S oo an ) (6.47)

These expressions also degenerate to the expressions for the Rayleigh
boundary layer, if we let C — . As was the case for the Rayleigh boundary
layer, the diffusive term is most important close to the wall, and the
convective term most important close to free stream conditions. The
qualitative results for the extent of the equilibrium region, determined
from a similar criterion resemble the previous results for the Rayleigh

problem and will not be reported here.
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T. TWO-TEMPERATURE BOUNDARY LAYER: A LINEARIZED MODEL

a. General

In the previous analysis we have assumed that the temperature of
the electron, ion, and atom fluids are equal. This assumption will now
be studied in some detail. Due to the ineffective energy transfer rate
between electrons and heavy particles,the electron temperature may
deviate substantially from the heavy particle temperature. In particular,
this is true in the cold region of the boundary layer, close to the wall.

The collisional energy transfer rate between the heavy particles
and the electrons necessary to maintain temperature equilibrium between
the electron and heavy particle fluids may be calculated from the
electron energy equation (2.10). The approach is similar in nature to
the one used to determine the extent of chemical eguilibrium. We shall,
for simplicity, assume here that‘the flow is in chemical eguilibrium.
Restricting ourselves to the Rayleigh boundary layer, we note first that

the collision-term in the electron energy equation takes the form

ov

o} 3 ) o) .
ot (peee)coll = ot (peee) * 5§ (Deeev) * 55 qe-Je ﬂEy+pe 5; (771)
y

With the similarity parameter 1 as the independent variable, we find

for the equilibrium case

l'\)ll'—’
Q"p“
O
(D
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+
O

(0

('D

‘OI'O
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[ R
—
%
~
+

t'§- (oeee coll ~

+2—%"\/ ( ROERTR 'Ey+e§—%-‘\/ (V'\/_\)
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An alternative expression is obtained if we subtract herefrom the total

energy equation (2.13), which has no collision-term. The result is

c_p
3 1 d o P © g
tx (peee)coll_ "3 E; (Deee-oe) + (oeee-pe) o —x;—— n (vVt) +

(o] o

d N : o1
+ Ty [(qe-Q) tl- t JeyEy + (Pe~P) o, 2
s P o 2
1 poo e e du X

The last term here represents the viscous dissipation. As previously,
it has been assumed that the total current J 1s zero. The expression
on the right hand side of these equations is independent of time t in

the ambipolar region. In particular this is true for the Joule heating

term since je ~ t-l/2 and Ey ~ t-l/g. In the ambipolar region we
y
have
, =20 o2 (2 (7.4)
Je 7 ia 4 Tmn /mn Sy 'm ’
Yy e
kT n 3 e
v A (7-5)

One may arrive at the following expression for the electron Joule heating

associated with the ambipolar diffusion:

D P p Voo 1 2 2

s (NE (7.6)

y Mo a(1+oa)

Furthermore, the electron heat transfer term becomes
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a 1 Po® g p dT
an (qut ) = 5 T (A = ==) (7.7)
joe] 20
Here we have made the assumption that = A oT here M is the
P L=ty ¥ e °

electron thermal conductivity.

With the above calculated Joule heating and heat transfer terms,
the dimensionless collisional energy transfer rate necessary for main-

taining temperature equilibrium becomes

equil. _ t 9 _ ; a .,
g - R 3t (peee)coll R T fn( 7 ) *

[l

| CP Pe
ﬁ 1 ® p amb d In a2 1 ‘;E a_ p_ 4aT
T8 m ) [ dn ) nekT o dn (Xe o, n)] (7.8)

Here P, is the electron pressure. An alternative expression is the

following:

zequil. _ __ % ) (0e ) __1
pe, ot ‘e e’coll 213

c_p
p D p) 0
1 o 8_2 amb (4 fn Q\= 1 “w 4 _ p__gz
"B A (pw) [iﬁl ( an )% kT o dn ((re-H) 0 dn) *
2
(4
B (& ] (7.9)

We have here made use of the fact that the plasma pressure p is con-
stant throughout the boundary layer. The first term on the right hand

side of equation (7.8) represents the required collisional energy transfer
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rate due to convection. We note that when the electron pressure increases
with 1n, as is the case for the present boundary layers, the associated
contribution to the collision term is negative. The first term inside
the bracket in the same equation represents the effect of the induced
electric field and ambipolar diffusion in the direction thereof, i.e.,
the Joule heating term. Hence, there is obviously a loss of electron
energy when the electron fluid diffuses in the direction of the electric
field, i.e., in the negative y-direction. Finally, the last term in
equation (7.8) represents the effect of heat transfer in the electron
fluid itself. This effect is very important and may in fact be the
dominant when the gas is partially ionized. The contribution to gequil.
from the electron heat transfer term may take both positive and negative
values in the presently investigated boundary layers. Close to the
wall it is in general negative, i.e., the electron fluid has to transfer
energy to the ion-atom fluids if the temperatures should be equal. In
the ambipolar region, which is the only one considered here, the heat
transfer term is much larger than the term arising from the Joule heating.
We mention that a corresponding analysis of the energy balance in the
charge separation sheath should show that the Joule heating term is
important here. 1In fact, in the sheath region the electron energy
equation would express only the coupling between the Joule heating and
the electron thermal flux, since the convective terms are small and can
be neglected.

The main energy transfer mechanism between the electron fluid and
the ion and atom fluids is the elastic two-body collision between either

an electron and an ion,or between an electron and an atom. The
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contribution from inelastic collisions is assumed to be small since the
number density of particles, which have kinetic energies comparable to
the excitation energies in argon are small.

We assume that the electron fluid has a Maxwellian velocity
distribution function at temperature Te’ and that the ion and atom
fluids have similar distributions at their common temperature Ta = Tia
In a Lorentzian model, in which the ions and atoms are stationary and
only the electrons are moving, the elastic energy transfer rate € e to

the electrons from the atoms becomes (e.g., [12])

e (2 - 1] nn (o (5 5) (7.10)
€ae T m T; - N M Qae Ve /Mg [

and from the ions to the electrons

mi Ti 3
€ = m, [52 - 1] nyn_ Qg (v )wy) (7.11)

Here Qae(we) is an effective hard sphere elastic collision cross-section
for the electron-atom collisions, and Qie(we) the corresponding cross-
section for electron-ion collisions. The brackets indicate a mean value
taken over the Maxwellian electron distribution function. For simplicity
we shall give here a simplified treatment, and assume that the cross-
sections do not vary much with electron speed. We may then use the
following expressions for the mean values
3kT_ 3/2
m e) Qae(Te)

° (7.12)

kT 3/2
) e (r)

5y .
(@, (v W2) =

(

3
<Qie(we)we> m,

119



Here Qae(Te) and Qie(Te) are effective average cross-sections at the
electron temperature Te, e.g., those previously discussed in Section 5.
With this assumption the elastic energy transfer rate to the electron

fluid simply becomes

€ =€ +e = ma 5kT ) Te Q (T ) + Q (Te)]

(7.13)

We have assumed here that the gas is quasi-neutral, i.e., ni/ne = 1;
and hence introduced «, the degree of ionization. The energy trans-

fer rate Savall° per unit energy of the electron fluid and unit relative

temperature difference (Ta/Te - 1) is then

m kT 1/2

avail. _ € _ e l+a
= peee(Ta/Te-l) =2 ET'( ) ne[Qie(Te) Q ( )

m
a e

(7.14)

This quantity has the dimension t—l. The electron and the heavy
particle fluids obviously have temperatures which are close to equal when
this rate is much larger than the required rate to maintain temperature
equilibrium, as calculated, e.g., for the Rayleigh boundary lajer in
equation (7.9), The criterion for local temperature equilibrium in the

boundary layer is then

Temperature £ Savail,
Equilibrium = ceowil. >> 1 (7'15)
Criterion: geduLte

Notice that at large times +t, this inequality will be satisfied, since

avail. ~equil.
VB ana TN are time-independent.
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b. The Electron Temperature in a Linearized Model

The extent of the temperature equilibrium region in the Rayleigh
argon plasma boundary layer can be determined by help of the criterion
(7915)n A similar criterion can be developed and used for the shock-tube
side-wall boundary layer. We shall here go one step further and actually
calculate the difference in electron and ion-atom temperatures, when it
is small. Hence, the electron temperature distribution in the.boundary
layer calculated in the following is valid for large times, when the
entire boundary layer flow approaches both temperature and chemical
equilibrium.

It is convenient to introduce a dimensionless electron temperature

perturbation parameter ¢, defined as

T, = T,(1+9) (7.16)

where Ta is the heavy particle temperature. Assuming that ¢ << 1,

the following relation is found from equations (7.8, 7.1k)

Yequil.
Qo . 1 S ‘(Ta)

B (7-17)
1+ t Savallo(T )
a
By help of equations (7.9, 7.14) the temperature perturbation ¢ may

therefore by written

0 << 1
. o Cl + C2 + C3 + CH
t = (7.18)
1+ mé 23 1/2 14y )
2 E; (E;_ ne[Qie(T) = Qae(T‘]
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where

P
2~ T8 M 0 T+ dan
[0 e 0]
c p (7.19)

1 %" py 1 _d p_ dr
C} T8 A <pm) n kT dn [(Xe-xtot) P, Eﬁ]

cp e 2
x> ey _p (du
Cy =" 8 (o ) n KT (dn)
o T e
Here Cl is a dimensionless contribution to the temperature perturbation

due to the convective cooling of the plasma, at which the total pressure

is constant but not the electron fluid pressure Pe- The dimensionless

(in general negative) term C2 expresses the cooling of the electron

fluid when it diffuses in the direction of the electric field, i.e.,

towards the wall. The also dimensionless term 05’ which is the most
important, is a contribution from the fact that the electron fluid

itself and the plasma have different thermal conductivities. Finally,

the negative term 02 comes from the heating of the heavy fluids through the
viscous dissipation.

The temperature perturbation function ¢ has been calculated for some
Rayleigh boundary layers. The results are shown in Fig. 35. For the
pressure levels of interest, the perturbation function @t 1is less than
10-6 sec, at temperatures above 12,000°K. Therefore, at times t larger
than t = 1 microsec, the temperature perturbation is small, i.e., @ <1,
and we state with confidence that temperature equilibrium is present in

the boundary layer. At temperatures lower than 10,000°K the perturbation
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function ¢t becomes larger than :I.O"5 sec. . Hence, if t 1is of the

order microseconds, we here expect temperature non-equilibrium. In the
particular example shown, the electron temperature is larger than the
heavy particle temperature. At temperatures lower than 8000°K +the
perturbation function @t becomes larger than 10-2 (sec) and increases
very rapidly with decreasing temperature. The electron temperature is
here not in equilibrium with the heavy particle temperature. It is here
practically meaningless to calculate the actual deviation in electron
temperature by equation (7.18) without considering simultaneously the
effect of chemical non-equilibrium,which (in the previous section) was also
shown to exist in this temperature region.

It is very interesting to calculate the relative importance of the
four different terms Ci which compose the temperature perturbation .
The result of a numerical calculation is shown in Fig. 36. The individual
contributions are here normalized with the convective contribution Cl’
which is positive. The ratio between the electron heat transfer term
and the convective term, CB/Cl’ is the largest throughout the ambipolar
region. Even close to free stream conditions this ratio is large. The
effect of viscous dissipation in the atom and ion fluids (term Ch)
becomes increasingly important with decreasing value of the similarity
parameter n, i.e., with smaller distance to the wall. At 13,000°K in
the example given, Cu is of equal importance as the convective term Cl,
but it is still about 5 times smaller than 03, However at 11,000°K Ch
amounts to as much as 50% of the electron thermal conduction term 035
For still lower temperatures the electron thermal conduction is by far

the most important term. At TO0O0°K the absolute value. of the ratio CM/C5
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if of the order 20. The effect on the electron temperature from the
diffusion of the electron fluid in the direction of the electric field,

described by the term C is quite small everywhere in the ambipolar

2)
diffusion region. For temperatures below 11,000°K it is shown in Fig.

36 to be more important than the convection. At 8000°K we have C2/Cl=-lO,
but the absolute value of 02 is here still two orders of magnitude
smaller than 05.

For large values of the wall velocity U and Us/(hm-hw)’ the
effect of dissipation through the term Ch may become major. The
electron temperature will then be lower than the heavy particle tempera-
ture. In the outer region of the boundary layer the term C3 will still
be the most important since the viscous dissipation here is small. Then
the boundary layer may contain regions both where the electron temperature
is higher than the heavy particle temperature (close to the free stream)
and where the electron temperature is lower (close to the wall).

In the case of shock tube side-wall boundary layers a similar
analysis could be performed. The viscous dissipation is here only
moderate due to the coupling in shock velocity and enthalpy hw. An
electron conductive term, analogous to C5’ is then again the most
important to the electron temperature perturbation. The electron tempera-
ture for a quasi-equilibrium argon shock tube side-wall boundary layer
as before Dbecomes larger than the heavy particle temperature.

It is not clear at all that in any argon plasma flow situation
with shear and heat conduction thebeffect of thermal conduction in the

electron fluid itself {through a term such as 05 in the Rayleigh boundary

layer) gives an elevated electron temperature. In fact, there has been
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theoretically found situations where the effect of thermal conduction

in the electron fluid causes a low electron temperature. For temperatures
T < 8000°K this phenomenon is not likely to occur for equilibrium argon,
since its electron thermal conductivity rapidly increases with temperature,
as is shown in Fig. 37. Hence, terms similar to C5 for the Rayleigh
boundary layer becomes positive.

It is evident from an enalysis like the present, that the argon
plasma boundary layers will be in temperature equilibrium far away from
the wall, say for T > 10,000°K. This region may typically amount to
90% of the total boundary layer thickness. The non-equilibrium region
may still be of extreme importance to the wall energy flux, shear stress
and electrical characteristics. For present purposes, the effects of
temperature non-equilibrium as well as chemical non-equilibrium should
not be drastic for the equilibrium velocity and enthalpy profiles since
the degree of jonization is small in the non-equilibrium region. We
therefore believe that the calculated equilibrium velocity and enthalpy
profiles closely resemble the true profiles. For lower pressure levels
say, p < 0.1 atm., the temperature non-equilibrium region will extend
further out to higher temperature and a large degree of ionization Q,

may then cause non-negligible discrepancies.
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8. SUMMARY AND CONCLUDING REMARKS

The structure of convective laminar boundary layers in high density
plasma flows has been analyzed. The boundary layers studied are the
Rayleigh's boundary layer with both momentum and energy exchange between
the plasma and the cold wall, the shock tube end-wall, and the shock-tube
side~-wall boundary layer. The aqgiysis was intended to apply especially
to conditions in which the free stream plasma energy is typically 1 eV
and the number density of free electrons n, ~ 1025 m-s, e.g., as
obtained in argon behind a strong normal shock wave, for shock Mach numbers
larger than Mé = 15 and initial pressures of the order p, = 1 mm Hg.
The temperature of the wall over which the boundary layer develops is
assumed to be T = 300°K.

The governing boundary layer equations were derived in a multi-
fluid, continuum model for the electrons, ions and atoms. Chemical and
temperature equilibrium were assumed initially and radiation neglected.
No applied electromagnetic fields were considered, but it was shown that
the induced electric field is important. The diffusive motion of the
electron and ion fluids are strongly coupled by this electric field
throughout most of the boundary layer. These ambipolar conditions were
shown not to hold only in a thin sheath adjacent to the body, in the
temperature range typically below 3000°K.

The appropriate transport properties were calculated for an
equilibrium argon plasma under the assumption of ambipolar conditions.
For this purpose, simple kinetic theory was used, which proved to be

fruitful. Pertinent results for the viscosity, thermal conductivity,
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and Prandtl number were presented up to temperatures T = 20,000°K. The
viscosity was found to decrease strongly with increasing temperature in
the region corresponding to partial ionization. The reason for this is
the charge exchange and ion-ion Coulomb collisions, which then become
increasingly important over the atom-atom collisions, which has a small

Hre_

cross-section. Furthermore, it was demonstrated that the ambipolar
active" conductivity, i.e., the energy flux associated with the
diffusive motion of the species, plays an important role when the gas is

in a partially ionized state. Typically this conductivity amounts to
20-40% of the total thermal conductivity at temperatures around 12,000°K
for the argon plasma. The Prandtl number, for the same plasma, which

was calculated with the equilibrium value of the specific heat cp, had
alocal minimum at 9000°K, and then rapidly decreased to a low value of

the order of 10-2, when the temperature was larger than 14,000°K (strongly
ionized gas). Due to the low plasma viscosity, it was interesting to

note that the density-viscosity product at constant pressure typically

was two orders of magnitude larger at the wall temperature than at, e.g.,

T = 14,000°K. Hence, neither the Prandtl number and the density-viscosity
product could be assumed to be constant across the present type of boundary
layers.

The governing boundary layer equations were solved for the case of
equilibrium composition and équal temperatures of the electron, ion and
atom fluids. The correct variation with temperature of the transport
properties was included. The method of solution was a finite difference
predictor-corrector technique. Several interesting solutions were

obtained and discussed. Due to the small plasma viscosity and therefore
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also small Prandtl number, the velocity boundary layer was found to be
always embedded in the thermal boundary layer. However, once the velocity
boundary layer started to develop, the velocity gradient was steep. Wall
heat transfer rates were calculated as was the associated small wall
temperature jump of a metallic wall,when suddenly brought into contact
with the plasma at time t = O.

The assumption of equilibrium composition was checked in a rigorous
way. This was done with the help of the mass conservation equation for
the electron fluid together with argon recombination rate data. It was
found that the assumption of an equilibrium plasma composition breaks
down typically below temperatures of 10,000°K. Equilibrium was established
with large certainty above 11,000°K. Below 8000°K the recombinations are
so rare that they could almost be neglected, i.e., the flow is frozen
here. The fact that the gas is not in equilibrium below 10,000°K should
not drastically change the velocity and enthalpy profiles much‘from those
calculated for equilibrium. This statement should also hold, e.g., for the
wall heat transfer. The degree of ionization in the non-equilibrium region
will be small, and the boundary layer structure therefore mainly defermined
by the atom fluid. The electrical characteristics calculated for equilib-
rium composition, however, will change drastically by the lack of eguilibrium.

The assumption of equal‘temperatures of the electron, atom and ion
fluids was analysed similarly as the assumption of chemical eéuilibrium,
Since the collisional elastic energy transfer rate between the electron
fluid and the ion and atom fluids is very ineffective due to the
discrepancy in mass of the particles, the electron fluid was expected

possibly to have a different temperature than the ion-atom fluids. This effect
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was found true,and in fact very pronounced at low temperatures. The
electron temperature for an argon plasma was determined thereafter in a
linearized model, in which the deviation from the heavy fluid temperature
was assumed to be small. It was found that the deviation in temperature
was caused by the facts that the electron pressure is not constant across
the boundary layer (as is the case for the total pressure), that the
electron thermal conductivity has a different behavior with temperature
than the total thermal conductivity, that the electron current is oriented
in the opposite direction from the ion current and therefore the Joule
heating is different for the electron and ion fluids, and finally that
the viscous dissipation heats only the ion and atom fluids. When the
heavy particle temperature is lower than about 9000°K and the thermal
boundary layer thickness is of the order lmm, the argon boundary layer
will notbe in éemperature equilibrium. The electron temperature will

be higher than the atom-ion temperature, at least when the viscous
dissipation is small and the diffusion ambipolar. At temperatures above
11,000°K the temperature difference between the fluids is small for the
same boundary layer thickness, but the tendency is that the

electron temperature is the higher. It is concluded that a more rigorous
analysis of the present plasma boundary layers should certainly include
the possibility of simultaneous non-equilibrium in temperature and
composition. It would be quite unrealistic to treat the non-equilibrium

effects separately, since they are strongly coupled.
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APPENDIX I

THERMODYNAMIC AND TRANSPORT PROPERTIES OF EQUILIBRIUM ARGON

Numerical results for equilibrium argon thermodynamic and trans-

port properties are presented for the pressures p = 10&, P = 105, and
p =107 N/u.

The symbols used are the following

T Temperature T
H Enthalpy h
ALFA Degree of ionization «
NE Number density of free electrons ng
RO Density op
CP Specific heat c¢
QMINUS - gvail (defifled in equation (6.42))
TEMP Temperature T
VISCOSITY Viscosity
AMBIDIFF Ambipolar diffusion coefficient Damb
TOTCOND Total conductivity Xtot
REACT Reactive conductivity fraction in Xtot
ELECTR Electron thermal conductivity fraction in Xtot
Ceg.p
PRANDTL Prandtl number Pr = ——
tot
QAA Atom-atom elastic cross-section
QAT Total atom-ion cross-section
QII Ion-ion cross-section

MKSA - units are used throughout the calculation.
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0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,.,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0.00001
0,0000%
0,00002
0,00004
0,00008
0,00013
0,00022
0,0003%
0.,00054
0,00082
0,00123
0,00179
0,002%6
0,00361
0,00500
0.00682
0,00917
0,01218
0.01597
0,02070
0,0265%
0.,03372
0.0424%
0,05286
0,06533
0,08008
0,09739
0,11754
0,.1408%
. 18744
0,19762
0.231%0
0,26909
0.31028
0.35476
0,40204
0.,45142
0,50200
0.5%277
0,6026)
0,6503%
0.69%61
0.,7371a
0,77468
0.80804
0,8372%
0.8625%1
0,88414
0,90249
0,91708
0,93099
0.,94189
0,95099
0.95860
0.96496
0.97027
0,97a72
097848
0,9819%7
0,98420
0.98642
0,98830
0,98989
0,99124
0,9923¢

DATA FOR EQUILIBRIUM ARGON

NE
1/v3

2.48408407
8,16330.08
1,57070410
1.98410411
1,78970412
1,22788413
6,72220+13
3,04088414
1,1810001%
3,99700448
1.20528416
3,28930416
8,23080416
1,90908417
A, 18120417
8,46740417
1,68260448
3,08020418
5,39480418
9,21660418
1,52150419
2,43480419
3,78768419
5, 74178419
8,50060419
1.,23150420
1.74868+20
2,43748420
3,33970420
4,50358420
5.98298420
7.,83779+20
1,01330421
1,20390421
1,63260424
2,03690421
2.51380+24
3,07018+21
3,71148421
4,88280024
5,26570421
6,18180421
7.18820421
8,27920421
9.44530424
1,06730422
1.19460422
1,32828422
1,45380422
1.,58080422
1,70278422
1.81700422
1,92160422
2.01478422
2,09580422
2.16310422
2.21780422
2.26030422
2.29150422
2.3126022
2.32480422
2.32978422
2.32848422
2.,32200422
2,31150422
2.29780422
2,28160422
2,26360422
2,20400422
2.,22350422
2,20210422
2.18030422
2,15820422
2,13600422
2,11370422
2.09190+22
2.06940622
2,04760422
2,02600422
2,00460422

137

LOG(PRESSURE)= &

RO
KG/NY

4,80330=0y
2.,80160-01
1.60116=01
1.20088=03
9,60660=02
8,00558=02
6,861080a02
6,00818°02
%5,33700«02
4,80330=02
4,0027002
3,43008.02
3,00218=02
2.66858-02
2.,40168=02
2,18330=02
2.00148-02
1.84748202
1,71580~02
1,60118=02
1,50108=02
1.,41270=02
1,33428<02
1,26408-02
1.,20080=02
1,18368-02
1.,09178=02
1,004208-02
1,00070=02
9,60658-03
9.,23708=01
8,89400=03
8,57718=03
8,28120~03
8,00408=03
?7.,74620=03
7.5035€-03
7,27520-03
7.05988~03
6,85620-0y
6,66318-03
6,47938=03
6.30400=03
6,13500-03
5,97428«03
5.81808-0%
§,866208=03
5,51808=03
$.37258%03
5,22878=03
5,08598=-03
4,94328=03
8,79998=03
8,65520-0)
50870=03
4,36000=03
4,20870<03
4,05480-03
3,89058-0)3
2.74028=03
3,581008-03
3.42140=03
3,26288<03
3,10678=03
2.95268-03
2,80818=03
2.66890=03
2,53808-0%
2.41670°03
2.30550=03
2,20480=03
241120803
2,03318=0)
1,96138=013
1.89766-03
1,84118203
1,7909#=03
1.74610-03
1,7059€0=03
1.,66960=03
1.63656=03
1,60620=03
1.57828=03
1.55220-03
1,52788-0)
1.,50490-03
1.483200)
1,4625€=03
1,84200-03
1.,82400~0)
1.,40588°03
1.388400)
1,37158=03
1.35520=0)
1.33930+03

ce
NM/(KG OFG)

5,20488402
5,20080402
5.,20488402
5,20480402
4,20480402
5,20480402
5,2048002
$.,20400402
5,20480402
5,20480402
8,20480402
$,20480402
5,20488402
$.20486402
5,20480402
5,20488402
$.20400402
5,20480402
5,20480+02
5,20480402
$,20480402
5.,20480402
5,20488402
5.20480402
5,20400402
5,20490402
5,20520402
5,20570402
5,20698402
9$,2001002
5,21340+02
5,22090402
8,23370402
5,25460402
5,26738402
5,33710402
5,41060402
5.51658¢02
5,66518402
5,86040402
6,14850402
6,50850402
6.,58180+02
7.58800402
8,35350402
9.30736402
1,04820403
1,19128403
1,30340403
1,56870403
1.81138+09
2.09530401
2.22290403
2,8040040%
3,236198403
3,7241840)
4,26048403
4,87198403
5.,52840403
6,2322840)3
6,9716840)
7.72888403
B,4789840)
9,180604+03
9,8224840)
1,03350408
1,06860¢02
1,08400402
1,07770408
1.04950400
1,00110408
9,36190+03
8.,55440403
T.T6120+03
6.91090403
6,0838040)
5,30900403
4,60a70403
3,979%0403
3,83460403
2.,9665040)
2,56880+01
2,2336840)
1,95270403
1,71830403
1,5232040)3
1,3610040)3
1,2263040)
1,11430403
1,02120603
9.43700+02
8,79050402
8,25040402
T.79828402
7.41088402

{NEWTON/¥M2)

QUINY
REC/SEC-ELECTRON

-1,29160=20
-9,43000-38
*2,43520=15
“2,78380=13
-1,66050=11
=3, 841 10
-8,41610=09
«3,86380=08
2,600A007
1, 38080%06
7 4667006
=3,13250=05
*1,19938=04
“3.84490=04
=1,15798=03
*3,2019€=03
-8,20748203
-1,96618=02
-4,83280~02
-9 ,46290<02
-1,92290=01
-3,73660-01
$,9716001
1,25346408
-2,17808400
=3,66868400
«6,00400400
“9,56790400
-1,48758¢01
~2,26008401
*3,36020401
~8,89500401
0077408
©9,82110401
«1,35800402
-1,83720602
=2,451080402
»3,22008402
-a,16556402
»5,30580+402
-6,65620402
«8,22450402
-1,00088403
.19938403
~1,01880+0)
“f,64280403
-1,.87720403
-2,110304+03
»2,33370402
«2,53840403
«2,71%598403
=2.8592€40)
*2,96320403
-3,02510403
=3,04520403
=3,02608403
=2.97220403
-2,88970403
2,78480403
»2,664108+03
=2,53310403
=2,39690403
=2,2%5930403
©2,12340403
~1,99150403
"1,86408+02
-1,744T€403
1,63130403
~1,52500403
-1,8257€403
.1,33320403
*1.24720+03
-1,167408403
*1,0934040)
-1,02490408
~9,61400402
-9,02580402
8 ,48060402
“7.97510402
~7.50630402




THERMODYNAMIC DATA FOR EQUILIBRIUM ARGON

v

H

KELVIN NM/KG

100
200
300
400
500
600
700
800
900
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3500
3600
3800
4000
4200
4300
4600
4800
5000
5200
5300
5600
5800
6000
6200
6300
8600
6800
7000
7200
7400
7400
7800
8000
8200
8400
8600
8800
9000
9200
300
9600
9800
10000
10200
10a00
10600
10800
11000
11200
11400
11600
11800
12000
12200
12400
12600
12800
13000
13200
13400
13600
13800
18000
14200
18400
14600
18800
15000
15200
15400
15600
15800
16000
16200
16400
16600
16400
17000
17200
17400
17600
17R00
18000

5,20a778404
1,080958405
14561438405
2,081918405
2.60239°+05
3,122868405
3,643340405
4,1638284+05
4,68429€405
5.,204778405
6.245720405
7.,286688405
8,327638405
9.36859#405
1.08095®+06
1.185059+06
1,249130406
1,353248406
1,857340406
1.561438,06
1,6655384+06
1,769628406
1.873728406
1.977818406
2.,081918406
2.,18600P406
2,2901004006
2.398208406
2.498318406
2,602428+008
2.706568406
2.810738406
2.914980404
3,019330+06
3,1238684+06
3,22R4660 406
3,333878406
3,839680404
3,546340406
3.6541984+06
3,76364R406
3. A75268406
3.989708406
4,107810406
4,230588+06
2,359228406
4,2951304006
4,630060406
4,79%638405
2,964308+06
5,188a78406
5,350918406
5,574730406
5,823386406
6,100678406
6,41075R406
6,758138406
T:187678+406
7.584570406
8,0783504n6
8,6228484086
9,236058.06
9.920198+406
1,068150,07
1,152620407
1.,28601R407
1,33886%407
1,4616428,07
1.584698407
1.71822%+07
1.862228+407
2.01646%407
2.1804820.07
24353260407
2.533828407
2.7205904+07
2,91178%:07
3,105338407
3,299078407
3,4907u0407
3.,678208+07
3,859476407
4,032898407
4,197140407
4,3%1308.07
8,494840407
4,627%9%.07
4,729680407
4,861290407
4,963599+07
5.,056658407
$,1014728407
5,218678,07
$,289150407
5.353418407

ALFA

0,00000
0,00000
0.00000
0,00000
0,00000
0.00000
0,00000
0,00000
0,00000
0,00000
0.00000
0,00000
0.00000
0,00000
0,09000
0,00000
0,00000
0,00000
0,00000
0.00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0.,00000
0,00000
0,00000
0,00001
0,00001
0.,00002
0,00004
0,00007
0,00011
0,00017
0.00026
0,00039
0,00057
0,00081
0,00114
0.,00158
0,00216
0,00290
0,00385
0,.00505
0.004S5
0,00840
0,01067
0.01342
0,01678
0.02070
0,02540
0,03093
0,03740
0,04493
0,05383
0,06362
0,07504
0.08801
0,10267
0,11913
0,13753
0,15797
0,180%3
0.20%29
0,23227
0,261485
0,29277
0,32610
0,36124
0,39792
0.43580
0.,47047
0,51348
0,55238
0,59061
0.62777
N,66342
0,69721
0,72R87
C.75821
0.78514
0,80963
0,83173
0.85158
0,86019
0,A88484
0,R0R86
0,91083
0,92152
0.930R9

NE
1/M3

7.85500+407
2,58158409
4,9670€+10
6,274830411
5,65950412
3,88258413
2.1258P4 120
9,88820414
3.73460415
1,26400416
3,81130416
1,04026417
2,60280417
6,036780417
1,309684+18
2.67770418
5,19448418
9.61420841R
1,70610419
2.91478419
4,81188,19
7,70060419
1,19808,20
1.8164842C
2.68948420
3,89750,20
5.5364042C
7.72138420
1,05878.21
1,82900421
1.90088,2¢
2,69018,21
3,23120421
4,13640,52)
5.236a0421
6,55930421
8,13490421
9.99428421
1,21608422
1,46910422
1,75918422
2,08988,27
2.46418422
2.,RBU20422
3,35200422
3,86908422
8,83560422
5,05178+22
5,71610422
6,82648422
7.,17928422
7.96988,22
8,79240422
9.63978422
1,05008,423
1,13756423
1.224308,2)3
1,30900423
1,39310+2)
1,87290423
1,58R8404+2)
1,618860.23
1,68340423
1,74178423
1,79320423
1.83810423
1,87610423
1,90770423
1.,93300422
1,952%842)
1,96686042)
1.,97630423
1,98160423
1,96320423
1,9816042)
1,977204+23
1,9706042)
1,96208423
1.95180423
1.94030423

138

LOG(PRESSURE)= 5

RO
KG/M3

4,80339400
2.40160400
1.60118400
1,20088400
9,6066%=01
8,00550=ny
6,86188=01
6,00810=01
5.33700<04
4,80338=0y
4,00278=01
3,43090=0
3.,0021#-01
2,66858=n
2,40160=01
241833%=ny
2,00148-04
1.84748=ny
1,715508=04
1,50118«01
1,50109=04
1,81278=0)
1,33420=04
1.26400=01
1,200808=0)
1.14368=0
1,09178=01
1,0842R0=01
1,00070=01
9.60668=02
9,2371M=02
8,89498-00
8,5772m=02
A,28140-02
8,0053P=n2
7.74698-02
7.5086002
7.27698=0)
7.,06258=02
6.86018=02
6,66868-02
6,8873802
6,31500=07
6,15108=02
5.99468°02
5.8451P=02
5,70178=02
5,56388=07
5.,43098-07
5.30238=02
5.17758=02
5,05590an2
4,93728=02

4,59258=02
4,480080-02
2,36808=np
4,25630=02
4,14820<02
4,03218=02
31,91938=02
3,805A8=0>
3.69168=02
3,5766Rwn2
3,86118=07
3,34520-02
3,22920-02
J.113a8=np
2.998a%-072
2.88478=02
2,77288=07
2,66330-02
2,55700=07
L .45430-07
2,35508=n2
2,2623#%02
2.17378=07
2,0907@=072
2,01320-02
1.98138=02
1.87518=07
1.,81420=02
1,75648-02
1,7074802
1.,66098=02
1,61850=02
1,57978=02
1,54428=02
1,51160-02
1,48188°02
1,85398=02
1,42620-02
1,80438=02
1.38208-02

ce
NM/(KG DFG)

5,20a80402
5,20488402
5.,20480+02
5.20480402
5,200804+02
5,20a80407
5,20480402
5,20488+02
5,20488402
$.20480402
5420088407
5,20489402
5.20480407
$,20480402
5.20488402
5,20480402
5,200868402
5,20488402
5.,20080402
%,20480402
$.,20088402
5,206480402
5,20488402
5,204R8402
5,2064808402
5.20488402
5.,20490402
5.20510402
5,20548402
5.20420402
5,20758402
5,20998407
5,21400407
5.22068402
5.23100+02
5,246R8402
5,27020402
5.,3039R4+02
5,35128402
S5.41638+02
5,50400402
5.620084+02
5,77008402
5,984484+02
6,20R8M+02
6,51350402
6,8BR984+07
7.34628+02
7.,897a84072
B,55568¢02
9,33448402
1,02480403
1.13128403
1,75400403
1,39508+03
1,55%68403
1,73740403
1,98218+03
2.1709040%
2.02%28403
2,70618403
3.014504+013
3.350684073
3.71450403
4,10520403
4,521004013
2,9%8R8401
5,01838403
5.881604+03
6,35260401
6,81760+03
7.,26488403
7.68060403
A,050480+013
&,35918401
8,59250+03
8,73R68403
8,788504+01
8,738204013
8,58R784+013
B8.34A478403
8,023408403
7.63390401
7.195560403
6,7259P4013
6,282084013
S.75898401%
5.,2888040)3
4,88100402
4,42200402
4,03568403
3,66419040)
3,36720401
3,08390403
2.832384+0)

(NEWTON/M2)

ONINUS
REC/SEC=ELECTRON

~1.29168=19
=9,83008=17
=2.43520-14
-2,78388=12
*1,66058=10
~3,80178=09
-4,81610=08
-3,M6580=07
=2.69048=06
=1,%4088-05
-7.86670e05
-3,132%0~04
“1,15930=03
~3,R4898=03
“1,15790=02
~3,2019m=02
“R,20750=02
-1,96620-01
=4,43308-01
~9,86398=01
-1,92320400
=3,73778,00
-6,07390400
«1,25438401
=2.18058+01
=3,67488401
~6,01878401
-9,60150401
1,4989%402
=2.27558402
-3,30170402
=4,95768402
=7.115204+02
=1,00380+03
©1.39358+03
~1,905284+03
=2,%675%+03
~3,41308+03
-3,47800403
5, A0220+03
=7,42798,03
=9,39938403
"1,17608+04
“1,4%548404
=1,78198404
=2,15878404
=2,58828.04
~3,07148404
~3,40780404
-8,19898,04
=4 ,82028408
-5 ,50090,04
-6 ,20378404
~6.02518+08
“7.,45160408
«8,36790+04
-9 ,08778404
-0,70850404
*1.02938405
=1,08078405
=1,12370405
“1,1573%405
~1,18108405
“1,10478405
“1.1986808403
=1,19338+405
-1,17968.05
“1,15878405
*1,13150405
-1,09940405
“1,06340405
=1,0247840%
-9,80110408
0 ,42%588404
=9,00760+04
~8,59220400
~8,10010404
~7,78650404
7,80208408
=7.03228404




THERMODYNAMIC DATA FOR EGUILIBRIUM ARGON

T
KELVIN

100

200

300

ap0

500

600

700

ROO

o0
1000
1200
1400
160n
1800
2000
2200
2400
2500
2800
3000
3200
3400
3800
3800
4000
4200
4809
a6n0
4800
5000
5200
5400
5600
5800
6000
8200
6400
6600
6800
7000
7200
7400
7400
7800
8000
3200
8400
8600
88n0
9000
9200
9400
9600
9800
100n0
10200
10400
10600
1080¢C
11000
11200
11400
116C0
11800
12000
122¢0
12ac0
12600
12800
13000
13200
13400
13600
13800 °
14000
14200
14400
14600
18800
15000
15200
15400
15600
15800
16000
16200
16400
16600
16800
17000
17200
17400
17¢00
17800
18000

H
NM/KG

5.204770ens
1.060958405
1.561438405
2.,08101%+05
2.,602390+05
3,1228684n5
3,643346405
4,163828405
4,68a29P+05
5.204778405
6,245728405
7.286688405
8,32763840%5
9.368598405
1.,080958406
1.185058406
14289128406
1.353248496
1,857348406
1.5614384n6
1.665538406
1.769628408
1.,B73728406
1.97781%+06
2,081918406
2.18/008406
2.290179+08
24394208408
2,498208.408
2,602408406
2.70651%4+06
2.810638406
2.91877040¢
3.018%94R 406
3,1231B8+0r6
3,22750%+06
3,3319uP4006
3,436588+406
3.53149%8406
3646778406
3,752568406
3,85903R406
3,966408406
4,074930406
4,1B4938+n64
8,29679R405
4,810948406
8,527929+06
4,68R320406
8,7728aRens
4,90226%+06
5,037458406
5.179828406
5.329249406
5.,48813%406
S657410406
5,83852%+06
6,0330368406
6,242608406
6,4869068406
6,7143uP408
6,98087R84n6
7.2606404n6
7.,584128406
7.926318405
8,29R710406
€.7038RA4N6
9.18450R406
9,623308+406
1.014308407
1,070648+07
1.131638407
1.1975a8407
1,26R62€+07
1.345128407
1.427258407
1.515220+07
1,609178+407
1.709208407
1.815368407
1.927639407
2.045918407
2.170018407
2.2006484n7
2.83081807
2.573828407
2.717328407
2.863170.07
3,0135808407
31,1647 18407
3,316668407
3,86R87R4N7
3.619278+07
3,767998407
3.913936+07

ALFA

0.00000
2.,50000
0.0000¢
€.00000
0.00000
¢,00000
0,00000
©,00000
0.90000
0.00000
0.00000
0.00000
0.00000
0,00000
0.00000
0.00000
0.00000
0,00000
0,00000
0,00000
0,00000
0.00000
0,00000
9,00000
£.,00000
0.,00n00
0.000C0
0,00n00
0,00000
0.00000
6,00000
0,00000
0.00000
0,00000
0.00001
0.00001
0n,00002
0.000013
0,0000%
0,00008
n,00042
0,00018
0,00026
0,00036
£.70n50
n,00n68
0,00092
0,00122
0,00160
3.00207
0,00266
0,00337
c,00422a
n,00529
0.0065%%
0,00303
2.00079
N,01184
0.0t422
0,01498
0,02n16
0.0237¢9
©0,02793
0,03262
0,03792
0,04387
0.0505%2
0,05795
c,06619
7.07530
0,08535
0.09638
0.10Ba4
G.12160
n,13589
n,15135
0. 16802
n,18593
0,20508
0,22549
0,24732
0.26997
0,29397
0.31906
0,.345148
0,37211
0.39982
0,42814
0,45587
0,48585
0.51887
0,54373
0,57224
0,.60021
0,62746

NE
1/%3

2.48408,08
8,163304+09
1,57078411
1,98418417
1,78978412
1.22788+18
6.72228+12
3,045680415
1.18108416
3.99708+14
1.20528417
3.28938417
8,23088417
1.90900+18
4,14120418
8,867504+18
1.64260419
3.04D38419
5,39518419
9.21728e19
1,52178+20
2.6352P42C
3.78B878420
5,74458420
B,50606420
1.232808.24
1.75168,421
2,4431%421
3,35088421
4,523AP+21
6,0197842¢
7.90270421
1.02450422
1,31268422
1,66330422
2,08628422
2,59138422
3,18968422
3,89258422
4,71180422
5.66010422
6,74998422
7.95400422
9.,40530422
1.099608423
1,27790423
1,87640423
1,60688423
1,93948423
2,20538423
2,49538423
2.8n98842)3
3.14910423
3,51330423
3,90238,23
2,315560423
4,7522€423
5.2113821
5.569120423
6,1003€423
6,7063P423
7,23698423
T.77910,423
8,33008423
B,BR62842)
9,82408423
9,99990423
1.0550842a
1,10908.428
1,16170424
1,21278424
1,2617842a
1,3083@422a
1.3523P42a
1.39348429
1,43158424
1.46648424
1,89818422
1.52658424
1.55178424
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LOGIPRESSURE) = &

RO
KG/M3

5.80338+01
2.401684ny
1,60110401
1,20084401
9.6066P400
8.00558+00
6.86188400
6.00410400
5.33708400
2,80330400
4,00278400
3.43098400
3,00218+00
2.66858400
2.40168400
2.18338400
2.00148+400
1.8474%400
1.715%9400
1.60118400
1.50108400
1.81278400
1.338208400
1.26802400
1.20080+00
1.14368400
1.09178400
1.082284+00
1.00078+00
9.60668=01
9,23718-01
8.80508<0
8.57738=01
8,268158-01
8.00548=01
T.74718=0y
7.50508=01
7.27758=0y
7.06338=0%
6.86138=01
6,67048=01
6,48908-01
6,31858=0¢
6,15588=01
6.,00118=01
5.85378=01
5,.71308=0%
5,57848-01
5.84968=0
5.32608=01
5.20718=01
5,09270=01
2,98238=01
4,875%8-0
a,77208=0q
4,67168-0¢
4,57388-01
4,47848-04
4,38510=01
4.29378=01
a,20308-01
a,11550=91
4,02838=01
3.94208=01
3,85658=01
3,77178=01
3,468738=01
3,60338=04
3,51968=01
3,43618=01
3,35278=01
3,2694®=01
3.18638+01
3,10338-01
3,02058=01
2.93798=91
2.85589=01
2,774y
2.6931m=04
2,6130%-01
2.53398-0
2.45608=01
2,37958-01
2.30878401
2.23188-01
2.16098=04
2.09238-04
2,02618-04
1.96258=01
1.90168=01
1.84358=01
1.78828=01
1.73588=0
1,68638=01
1.63970=04

ce
NM/(KG DEG?

5.20488402
5,20480402
5,20480402
5,20488402
5.20480402
5,20480402
5.20488402
5,20580402
5,20486+07
5.20488402
5,20888402
S,20488402
5,204884+02
5.20480402
S,20488402
5,20488402
5.20480402
5.20489402
5,20888402
5,20488402
5.20088402
5,20080402
5.20488402
5.20488402
5,20408402
5.20480+407
5,20488402
5.20498402
5,20500402
5,20528402
5.,2056€402
5.20648407
5,20770402
5.20988407
5,21318402
5.21810+02
5,22550402
5,23618402
5.25118409
5.27178402
5.299484072
S.33618402
5,38386402
5,84500402
5.,52238+02
5,61868+02
5,73738+02
5.88190402
6,05638402
6,260858+407
6,51080402
6,79998402
7.13648402
7.52530402
7.97188407
8,48098402
9,05818402
9,70860402
1.08288403
1.12518403
1,21580401
1.31510+03
1,82a8840)
1,58498403
1.67596+03
1,81820402
1,97208403
2,13780403
2.31578403
2.50578403
2.70798403
2.922004013
3,14758401
3,3840040%
3,630408403
3,88568403
4.1480840)3
4,81568401
8,68518403
4,95668403
5.22390403
5.08420403
5.73358403
5,96720403
6,18100403
6.37008403
6.52998402
6.65668403
6.73658403
6.79710403
6.,80670403
6,77478401
6,70208403
6,59058403
6.25310402

(NEWTON/M2)

OMINUS
REC/SEC-ELECTRON

-1,29168=18
-9,43000=16
=2,83528=13
~2,78388-1y
-1,66058=09
-3,841708-08
-a,41618=07
=3,86588=06
«2,69048=05
~1.54088=048
-7,86678=04
=3,13258-03
=1.15938=02
-3,84498-02
=1,15798=p1
=3,20198=01
-8,20768-01
=1.56620400
-8,43310,00
~$, 86520408
=1,92330401
=3,73800401
-6,97600401
-1,25460.02
~2,18138402
=3,57678402
=86,02340402
“9,61220402
-1,49728403
=2.,28048403
=3,80170403
-4,97730403
*7.15278409
-1,01088404
~1,40600404
~1,92720404
2,60530408
~3,87630404
«4,58178408
~5.,96880+08
~7,69050408
~9.805584048
*1.23780.0%
-1,%a77040%
=1,91768408
-2,35520+08
=2.86840405
=3,46518405
-3,1532040%
=~3,08010405
=5,83280.08
=6.83720408
~7.95818408
=9,19908405
“1.05618406
-1,20450406
~1.,36460406
=1.%3600406
~1,71788406
=1.90890406
~2,10780406
=2.31280+06
=2,52208+06
=2.73290406
“2,94320406
=3,15020406
=3.35130+08
-3,52370406
-3,724T78406
~3,89198+08
04310408
17620406
-2,28970406
=8,38250406
“3,451390408
~4,50378408
-4,53218406
-2,513970406
52778408
«a9748406




PRESSURE (N/M2) IS

10000

LCGIPRESSLR

TEMP
KELVIN

4000
4200

5200
5400
5600
5800
6000
6200
6400
6600
6800
7000
7200
7800
7600
7800
8000
8200
8400
8600
8800
9000
9200
9400
9600
9800
10000
10200
10400
10600
10800
11000
11200
11400
11600
11800
12000
12200
12400
12600
12800
13000
13200
13400
13600
13800
14000
14200
12400
14600
146800
15000
15200
15400
15600
15800
16000
16200
16400
16800
16800
17000
17200
17400
17600
17800
18000

€)= 4

vISCoSITY
KG/M=SEC

9,3620-06
1,58500%
2,1588-0%
2,6850+05%
3,181#=05
3,6560-05
n 108005
0%
A 9738=0%
5.3870-03
6,10880-05
6,9570-05
7.700805
8,421040%
9,123 S
9,80980%
1,0888=04
1,1160408
1,1788-08
1,2820-08
1,3048=04
1,365¢-08
1.42680=04
1,88688=08
1,5450-04
1,6038-04
1,6818°08
1.7180~04
1,7758=08
1,8310+04
1,8860°04
1,9410=08
1,9958=-08
2,089#-03
2,1018-08
2,1560-08
2.2050-04
2,2558-04
2,3048408
2,3508-04
2,3948-08
2,3358=04

2,5240-04
2.5398-08
2,5830=04
2.5340-048
2,5118-04
2.4730-04
2,4180-04
2.3458=04
2,2580-04
2,1508=08
2,0308-03
1,89080=04
1,7586-04
1.,6138=08
1.466008
1,3218-08
1,1808~08
1,0470=08
9,216P=05
8,0658=05
7.0208408
6,0840-05
3,2560=05
4,5330°0%
3,9086-0%
3,374805%
2,9228-0%
2,5038%05
2,2290-03%
1,0710=05
1.,7400=05
1,5908+0%
1.,4530-0%
1,3440-05
1,2%98=0%
1,1938-05
1,1428=05
1.10 (3]
1,07 05
1,0598-05
1,0480=0%
1,0838-08
1,043P=0%
0%

03 03
1 065"05
1.077.‘05
1,0930=0%
1. 109"05

1.148 'OS

AMBIDIFF
k72114

1.,7388048
2,3200%04
2,961#-04
3,6590-04
4,8100=08
8,2118=04
6,9570=04
8,8840-00
1,0080=03
1,3248=0)
1,5650=0)
1,8200=03
2,0908=03
2.,3738+03
2,669020)
2.9780-0)
3,3000-03
3,6318-0)
3,9790-0)
4,3360-03
4,7080203
$,0838=03
5,8738~03
5,8748°03
6,20%8-03
6,7066=0)
7,13860-03
7,5790+03
8,0300e03
8,4910-03
8,9618%03
9,081003
9,9308-03
1,0838-02
1,0988402
1.,1458=02
1,1988-02
1.2510-02
1,3050=02
1,3600-02
1,8160-02
1,4738-02
1.5300-02
1,5898-02
1,6488<02
1.,7088=02
147690207
1,8300=02
1.8930-02
1,9568-02
2,0200=02
2.0850-02
2,1508-02
2,2160-02
2,20630=02
2,3518-02
198~02
2.4888-02
2,5580=02
2.,829#=02
2,7008~02
2.7720=02
2.,8450-02
2,9180-02
2.,9928-02
3,0678-02
3,1230=02
3,219#202
3,2960-02
3,3738-02
3,4520-02
3,5308-02
3,6408=02
3,6908-02
3,7710=02
3,8528-02
3,9358=02
a,017#=02
3,1018=02
4,1850-02
a,2708-02
4,3558-02

2,6150-02
4,7038-02
4,7918-02
4,8800-02
4,9700-02
5,080802
5,1518-02

TRARSPIRIT DT

[3eev) P EES &

TOTCOND REACT ELECTR
NM/MeSEC*DEG FRACTIONS
7,684803 0,0000 0,0000
1,2020-02 0,0000 0,0000
1,7520=02 0,0000 ©0,0000
2,173#-02 0,0000 ©0,0000
2,%690-02 0,0000 0,0000
2,9468=02 0,0000 0,0000
3,3078-02 0,0000 0,0000
3,65%0.02 0,0000 0,0000
3,9930=02 ©0,0000 0,0000
4,321#-02 0,0000 0,0000
A,9580<02 0,0000 0,0000
5,3620-02 0,0000 0.0000
6,1470202 0,0000 0,0000
6,7150<02 0,0000 0,0000
7.267#=02 0,0000 0,0000
7,8060+02 0,0000 0,0000
8,3320-02 0,0000 ©0,0000
8,8480-02 0,0000 0,0006
9,3%40#-02 0,0000 0,0008
9,8508=02 0,0000 0,0010
1,03a8-014 0,0000 0,0013
1,0820-01 0,0000 0,0016
t,129R=04 0,0000 0,0020
1,1760=01  0,0000 0,002a
1,2220-01 0,0000 ©0,0029
1,2680=04 0,0000 ©0,0035
1,3138=01  0,0000 0,0081
1,3576-01  0,0000 0,0048
1,8008-01 0,0001 0,00%3
1,4610-01 0,0002 0,0109
1.520#=01 06,0004  0,0209
1,591#=01  0,0007 0,0370
1,8778-04 06,0012 0,0807
1.7820-04  0,0021 0.0919
1,0080+01 0,0032 0,129%
2,0%30.01 0,0049 0,1693
2,2178-01 0,0073  0.2096
2,3920-01 0,0104 0,277
2,5778-01 0,0185 00,2822
2,7708<01  0,0199 0,312¢
2,979#-01 0,0266 0,3397
3,1800-01 0,035t 0,3630
3,3980=01  0,045% 0.3832
3,6280-01 00,0580 0,4008
3,8720-01 0,0728 0,a15&
A,1329%-01 0,0899  0,a279
4,4100-01 0,1096 0,a382
4,7098-01 0,1317  0.448%
5,0318=01 0,1560 0,4529
5,3780-01 0,182% 0,457S
5.7538=01  0,2106 0,606
6,1568-01  0,2601 0,4621
6,5898-01  0,2703  0.4822
7.0528-01 0,3006 0,a617
7,543%-01 00,3303 0,4802
8,0608=01 0,3587  0.4%83
8,50%8-01 0,3850 0,4%63
9,1408-01  0,0086  0.4%49
9,6800=01 0,4288  0,a%44
1,0200400 0,3849 0,855%
1,0670400 0,4566 0,a58R
1,1080400 0,2831 0,885
1,1800400 0,4680 0,8749
1,1610400 0,a589  0,a89%
1,1700400 0,a872  0,5083
1.1660400 0,2287  0.5332
1.1500400 0,a032 0,56a0
1,1250400 0,3710  0,6007
1,0940400 0,3329  0.6426
1,0610400 0,2904 0,6885
1,0300400 0,2456 0,7362
1,0030400 0,2012 0,7833
$,8340-01 0,1396 0,8272
9,7138-01 0,1228 0,8662
9,6708=01  0,0919  0,8989
9,6080-01 0,0672 0,9252
9,7888-01 0,0882 0,9a%5
9,9306-01 0,038 0,9608
1,0118400 0,0239 0,9719
1,0320400 0,0166 0,900
1.,0560400 0,0115 0,9857
1,0820400 0,007% 0,9898
1,1096400  0,005%  0,9926
1.137€,00 0,0038 0,99a7
1,1678,00 0,0028 0,9961
1.1970400 06,0018 0,997
1,228P400 0,001 00,9978
1,2990400 0,00090 0,998a
1,2918400 0,0006 0,9987
{.3248400 0,0005 0,9990
1,3570400  0,0003  0,9992
1,3910400 0,0002 0,999a
1,825,400 0,0002 0,999%
1,396400 0,0001 0.9996
1,4988,00 0,0003 0,9997

140

PRANDTL

0,5895
0,5392
0,088
0,4367
0.3848
0,3336
0,2840
0,2373
0,198
0,187S
0.12%8
0,0997
0,0788
0.0623
0,0495
0,0397
0,0321
0,0262
0,0217
0,0182
0,015
0,033
0,0116
0,0102
0,0091
0,0082
0,0075
0,0089
0,0064
0,0060
0,0057

QAA
w2

5,639
4,70819
.l .2 9

3i700-19
3530e19
3,398-19
3,280-19
3,180=1¢

9

2,830-19
2,748-19
2,660-19
2,580-19
2.520+19
2.46010
2,81019
2,378<10
2,328-19
2,290%19

20188a10
2.138-19
2,100019
2,080e19
2, oe--lo

2, 00.'\9
1, 198810
l.96!-19
1,920=19
1, 920-19

1,89 ]Q
1, B88=19
1, 570 19
1,850210
1,8aP=19
1,830=10
1, 818=19
1. !0’-1Q
1, 798=19
1, 70'-10
1.77!-\9
1,760=10
1,75819
1.740219
1,738=19
1,720=19
1,710=19
1,700=19
1.,690=16
1,680=19
1,670=49
1,670=10
1,668<10
1,658=19
1,658=49
1,608+19
1,630=10
1,628<19
1,610=19
1.618=190
1,600=19
1.900=19
1,590=19
1,580-19
1.588-19
1,570<19
1,%68=19
1,566=19
1,558+19
1,55019
1.,%a0=49
1,5a0=19
1,530=10
1,520~19
1, 52!-19
1,518=19
1,510249
1, 1508219
1.50!-19
1,890=3¢
1,898=10

1 nro-;o
1.470+19
1.880010
1,0860-19

Qal
w2

1.,000=18
1,808
1,770=18
1,73048
1,700=48
1.670=18
1.450-18
1,630=18
1,620=18
1,600~18
1.580%18
1,960=18
1,540-18
1,528-18
1.910-18
1,500-18
1,800~18
1,480°318
1,470-18
t.h60"18
1,080=18
1,4a0=18
1.430=48
f.030-18
1.420=18
1,410=18
1.010-18
1,400-18
1,400-38
1,308=18
1,3b8-18
1,380-18
1,388-18
1.370=18
1.,370-18
1,378-18
1.360-18
1,360-18
$,350-18
1,)58=18
1,358=18
1,348-18
1,340°18
1,%a0=18
1,330-18

1.320-18
1,318-18
1,318=18
1,310-18
1,310-18
1.30818
1,300=38
1,300=48
1,300-18
1,308-18
1.290=48
1,290=18
1,208=18

,zoo-ge

1 2

x.zll-lﬂ
1,280-18
1,280-48
1,200~18
1,200-18
1,27018

1,278°18
1.270-18
1.270-168
1,270-48
1,268=48
1.268=18
1.260-(8
1,260-18
1,260-48
1.260=10
1,250=48
1,250=186
1,2%0=18
1425018
1,2%0-18
1,250-18
1,25€6-18
1.2a0-18
1.260-48
1,200-18
1,240=18
1.20018
1,240-18

ett
M2

9,388=16
T.520-18
6.120=16
$,058~14
4,220-16
3. 578~16
3, 0a0=16
2.620«16
2.270=18
1,98m=16
1.788-16
1.54816
1,370=16
1.2208-18

9, 878=17
8.938=17
8,118=17
7T.408=17
b.T68=17
b6,210=17
5,718=1T
s.278~17
4,878-17
4,528°17
a4,208=17
3, 018=17
3,658=17
J.a18-17
3,2080-17
3.008-17
2.820-17
2,060-17
2.510=17
2.378=17
2,2%0-47
2.130=17
2.020-17
1.920=17
1.,838=37
1.750=47
1,670=17
1.608-47
1.530=17
{.A7817
te010-17
1.36017
1,318=47
1,26017
1,220~17
1,180=17
1.180=17
1.110°17

e,
8,08e-18
7.910~18
7.759']!
7.508-18
7T,400-18
7.308-18
T,16818
7,028-18
6.898=18
6,788-18
6,638=18
8,510=18
8,400=18




»
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PRESSURE (N/M2) TS

100000
LCH{PRESSURF Y= &

TEMP  VISCOSITY
KELVIN KG/u=SEL
100 9.36268=n6
200 1,5858=n5
300 2,1580-05
400  2,6858«n5
500  3,1R1#=r5
600  3,6548e05
700 4,1088=05%
800  4,5a7P=0S
900 4,0736=05
1000 S ,3870-05
1200 6,188€-05
1600  6,957@ens
1600 7.7008-0%
1500  8,4218°05
2000 9,1230«0%
2200 9,8006=05
2400 1,04R&~ny
2600 1.1148=04
2800 1,1788=04
3000 1,264208=n4
3200 1.30u6=ns
3400 1,3658-rs
3600 1, 4268=04
3800  1,4868-04
4000 1,5458=048
4200 1,6030~ns
4600  1,6618+04
4600 | ,71RE=04
4800 1.7758=04
5000 1,R318=04
5200 1,8860-04
5400  1,9418-04
%600 1,0050eC4
5800 2.0498=04
6000 2.,102P=04
6200 2.1558=n2
6400  2,2078-04
6600 2,2508=0a
6800  2,310€-04
7000 2,3608=n4
7200  ?,4088=04
7400 2,85%8«04
7600  2,5008-04
7800 2.5448=04
8000 2.5878=0a
8200  2,4258=04
8400 2,6598-n4
8600 2,6BR8=NU
8800 2.7118=04
9000  2,72BP-04
9200 2,7378=04
9400 2,737e-0a
9600  2,7278=nNs
9800  2,7068=~04
10000  2,673%-n4
10200 2.62R€"N4
10400 2,5710-04a
10600  2,500e-04
10800 2,818P<C4
11000 2,3258-04
11200 2,222e=-04
11400 2,1118=04
11600 1,993R«04
11800  1,R718=04
12000 1,7468=04
12200 1.6218«04
12400 1,4979-04
12600 1,37¢8=04
12800 1,2598~-04
13000 1,148Fng
13200 1,042R=08
13400  9,8370=nS
13600 8,523R~0%
13800 7.6838=05
14000  6,9160=0%
14200  6,222R-05
18400 5 _508P=nS
13600 5.,0428-05
14800 4,B54R0=05
15000 4,1138=05
15200 3,7320en5
15400 3,4020-05
15600 3,1168=0%
15800  2,R700-05
16000 2,6618=0%
16200 2.,4B39-05
16400 2.3338-05
16600  2,209R=n5
16800 2.1058=05%
17000  2.0208=05
17200 1,9518=n%
17400 1,R979~05
17600 1.8549+05
17800 1,8220=05%
18000 1,7988-05

AMBIDTFF
M2/8F

1,.3686=06
4,078R=06
7, 7488<08
1.2210=05
1,738R=05
2,3200=05
P.961P-05
3,6500=05
8,4100-05
5.211¢=05
£,0576=05
A,BR4P=05
1.0988=04
1,324¢=04
1,56%6=04
1.R206=04
2,0908=04
P2,3730=04
2.6490=04
2.,578f=D4
3.300€=08
1,6338-04
3,9790-04
a,336P~04
4, 7040=04
5,0R3R=04
%,473R=04
%, AT4f=04
*,285f=04
4, T06#=0a
7.13RB=N2
7,5708=-04
R, 0308=ny
R.4918=0a
R,9616=04
9,66 f=04
9,9308=N4
1.063R~03
1.,0948=03
1.1458=03
1.1988=03
1.,2518=M3
1,3056=03
1.3008=03
1.416€=03
1,4738=03
1,530P=0C3
1.,5898=03
1,608P=03
1,708f="3
1.7698=03
1,R308-03
1.R93IF=N3
1,9560-03
?2,0208-03
2.085f=n3
2.1506=03
?,2166=03
?2.2838-0)
2,3518=03
2,419¢=03
2,48R%=03
2,5588.03
2.6296-03
?2.7008-03
2,7728=03
?.Re56=03
?,91RE=N3
2,992R=N3
3,06768=03
3.1430=03
3,2198=03
3,206F«03
3,3738=03
3,852@«03
3.530%-03
3.6108%03
3,6908-03
.779P-03
3, A526=03
3,9358=03
Le0178=03
4,101R«03
4,185@=03
4,2706=03
4,355003
4841003
4,528&=03
4,6156=03
4,7038-03
4, 791603
4,8p00-03
4.970¢=03
5,060f=03
5,151€6=03

A TollLiR<lu
TATCOND REACT ELFCTR
NM/u=SEC~DES FRACTIONS

7.fR48«03 n.conce 0.0000
1,2928-02 00,0000  0,0000
1,752#=02 0,C60C  0.C00D

?.17230=02 0,000 0.000n

?2.56C0-02 o,c000 0,0000

2,9468202  0,0000 0,0000

3,3078-02 0.C000 0.0000

3,55%0«02 0,000 0,0000

3,993%.02 0,C000 0,0000

4,321#=02 0,0000 0,0000

4,9568a02 n,c000 0.0000

5,5620«02 06,0000 0.,0000

6.147P=02 o,co00 0.0000

6,7158-02 0,000 0,0000

7.2670.02 06,8000 0,C000

T7.R06%02 n,co00 0.0000

8,3328-02 o,cone o,0000

A, RLRR.O2 n,c000 0,0004

9,3540=02  0,0000  0,0N0R

9,R508.02 c,rno0 0,0011
1.032%=01 0.C000 0.0n1a
1,0828-01 o,c000 0,0017
1,1200-01 0,co00 0.Nn021
1,1760=01 0,r000 0,.0Nn26
1,222P=0) n,cooc 0,003y
1,2688=01 0,C000 0.0n37
1,3139=07 0,0000 0,004a
1,3579-01 0,0000 ©,n082
1,6801P=0y o,con0 0.0060
1,4658=01 00,0001 0.,0077
1,4008-01 0,000t 0.0071
1.5519-04 a,0002 0,013?
1,6118=01 o,c004 C,0230
1,4808=01 0.0007 0.0381
1,7¢38=0% 0,001 0.05%94
1,R64@=0y 0 _C017 0,087%
1.064f=01 0,0026 0.121%
?.127°-01 0,6037  0,1405
2.2918-01  0,C052  0,20%17
P,4T76E=01 60,0070 0.2832
2,A778=01 0,004 0,2R3>
2.R8930-01 n,0122 0.3204
3,121F=01 0,€187 C.3Sa3
3,3608=0)1 0,0199 C,384R
3.608P=0 0.C2a8 0.4121
3,P66P=01 n,0307 0,8363
4,134%<01 0,0374 D,4578
4,4130=01 0,Cas52 0,4760

&, 70728-01 0,C540 0,4038

5,M0u8-01 0,638 0,5087

5,3190=01 0.C7a8 0.5220

5, A4RED] 0,CR&B  0,5336

5.993P=01 0,0098 0.5439

6,3530=01 00,1138  0,552¢

6,731#=0t  0,12R7 00,5407

7.1268=01 0.9884  0.567&

7,540R-01  0,1607 00,5732

7.9738=01 06,1773 0,5780

£, 4750=0y n,y9482 0,5R21

B R95B=Ny 0,2111 0,585%

$,3Rup=01 0,2277 0.5884

9 RSPR=0]  N,2436  ©,550A
1,0418400 ©,2588 0,5930
1.0048400 0.2727 0.5952
1,164R8400 0,2853  0,5976
1.201P+00 0,2961 0.6004
1,2548400 0,20a¢ 0.6039
1.3050400 N, 3114 0,.6084
1,3548400 0,215% D.6141
1,3990400 0,319  D,.6215
1,4608400 0,3158 0.6306
1,475R400 09,3109 0,649
1,5058400 0,3033  0,6554
1,5200400  0,2925 ©,6713
1,%460,00 06,2786 0,6894
1,5578,00 0,2619 c.7103
1,56a8400 00,2826 0,7330
1,567,400  0,2213  0,7573
1.56R84+00 0,1985 0.7R2R
1.56R€400 0,1750 0,8087
1,5608400  0,1515 0,834?
1.572R+00 C.1279 0.RS587
1,5770400  0,1078  0,B81%5
1.5878+00 0.CRRE 049021
1.4000400 06,0717  0,9203
1,4170400 0,573  0,9350
1.,63RR400 N.Cu52 0.9a80
1,6638400  0,0353  0,9597
1,6918400 0,273 0.96B4
1,7228+400 c.C?10 0.9753
1,7568400  0,C1hy  0,9ROR
1,7920400 0,0122 0,989
1.°290400 60,0003 C.9PBa
1,86R%4,00 0,0070 -0,9910
1,90R@,00 0,6053  0,9929

1kl

PRANDTL

C.6341
0,6388
0.6411
00,6430
0,A444
n,8656
0.4866
0,6678
00,6482
0,6489
0,6501
0,6511
0,6519
0,4527
0,653
0,6540
0,65a8
0,6551
0,855¢
n,6560
0.6565
0,6546
0,6572
0,657¢
0,657¢
0,458
0,6586
0,6589
0.6592
0,859%
0,6552
0,4517
0,645k
0.6367
0,6237
00,6068
0,5862
00,5632
0,53%a
0,5162
0,8052
0,877y
0,a62¢
0,45%9
0,8451
0,8822
0,483¢0
0,a47s
0,4552
60,8664
0,2803
0,964
0.51a7
0.5341
0.5541
0,5737
0,592a
©,609%
0,6232
0,633%
0,6508
Q,c834
0,6416
0,6353
0,6247
0,410%
0,592¢C
0,570a
0,5470
n,5211
0.893%
0,4687
0,a350
0,a0a7
0,3740
0,3432
0,3128
0,2827
0,253
©,2253
00,1986
0.1736
0,150R
0.,1302
0,1116
N,0958
0.082¢
0,0702
0,0602
0.0510
0,0448
0,0290
0,0341
0,030y
n,n267

Qar
u2

5,638~19
4,708«40
4,230-19
3,938~10
3,708=19
3.530-1%
3,308-39
3,288-19
3.188-19

2,83%=0
?2.700=40
2,668-50
2,588.10
2.520=19
2.460=49

2.0n8=10
1.980=19
1,968=49
1.,948=49
1,928-30
1,918=10
1,890216
1,888a10
1,878=19
1.A58-10

1.618=19
1,608-49
1,596=19
1,598=19
1,58R=10
1,5R8=10
1,57%=10
1,548=909
1.560«19
1.55%=19
1.558=31%
1,540-19
1.5a8-19
1,538«19
1,578«19
1.528=10
1,518=39
1,518=19
1,508~10
1,508=1°
1,898=19
‘CQQOC‘Q
1,498«10
1,488=10
1,480<49
1,870=10
1.470=10
1,468=19
1,460=10

QAl
LF

1.088=1R
1.,83¢-18
1,778-18
1,738=18
1,708=18
1,A70=18
1.658=18
1,6230-18
1.,620=18
1,608=-18
1.5808«18
1,568=18
1.540¢18
1,520=48
1.,51%=18
1.508-18
1.,4908=18
1,6480=18
1,470=18
1.,468=18
1.458~18
1,048

1,430=18
1,428=18
1,410~18
1.418=18
1,800-18
1.408=18
1,398=18
1.3%8~18
1,388-18
1,388-18
1,378=48
1,376=18
1,378=18
1,368=18
1,368-18
1,350=-18
1,358=48
1,350=18
1,346-18
1,340=1R
1,340-18
1.330-4R
1,330=48
1,330-18
1.338+18
1,320=18
1.329-18
1.320=18
1,318=-18
1,318k
1.318=¢8
1.314=18
1.308=48
1,308=48
1.308=-18
1.308=4R
1,308-48
1,790~18
1.298-18
1,290=18
1.298=18
1,79€-18
t.288-18
1,288-18
1,288~18
1,280-48
1,288~18
1,278=18
1.270=18
1.,278=18
1.776=18
1.,276~18
1,278=18
1.,068<18
1,268~18
1.268=18
1,260~18
1,268=1R
1.268=18
1,250+~18
1,250=18
1,250+18
1.258-18
1.258=~18
1.250=18
1,250-18
1.248=18
1,240+ 8
1,240k
1,240°18
1,240=18
1,748-18

eIl
L}

9,050=16
7,230-16
5.870=16
4.880=14
4,038-38
3,398-16
2.898=16
2.,088a14
2.1a0=14
1.868-16
1.638=16
1.840~14
1.280-16
1.14P=16
1.020=16
9,160-17
8,270=17
7.508-17
6,828-17
6,220-17
5.699-17
5,23%=17
4,n18~17
4 ,4880~17
4o110=1?
3.B10~17
3,548.17
3.308=17
3,088=17
2,888.17
2,708=17
2.538=17
2,380-17
2,240-17
2.120-17
2.008=17
1.898=17
1.798=17
1.708=17
1.618=37
1,5a8=17
1,488-17
1,390=17
1.330=17
1.278=17
1.228-17
1.170=17
1,120=17
1.078+17
1,030=17
9,958=18
9,588=1R
9,250=18
8.938~1a
8,840=18
8,36R=18
8,109-18
7.869=18
7.630«1R
7,429~18
T.220=1R
7.038=18
6,850=18
6,.698=18
6.536°18
6,380=1R
6,240=1R
6,110=1R
5,9R8-18
5,860w1R
S,74R=1R
S,63R=18
5.528~18
S,420=18
5,320-18
5,228-18
5,138=18
5,04PaR



PRESSURE (N/M2) IS

100002

LOG(PRESSURE = 6

TEwWP
KELVIN

100
200
300
4no
3¢0
400
700

L ld
900
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000
4279
4400
4600
4800
5000
5200
5400
54080
5R00
4000
8200
8400
a600
6800
7060
7200
7400
7600
7800
8000
R200
8400
8600
8800
s000
gao0
0400
9800
9803
10000
10200
10200
10600
10800
11000
11260
11400
11600
11R00
12000
12200
12400
12600
12800
13000
13200
13400
13600
13800
14000
14200
14400
142600
14800
15000
15200
15400
15600
15800
18000
16200

17000
17200

17600
17000
18000

VISTOS{TY
KG/M=SEC

9,3628=06
1,5858=15
2,15R€-05
2,6858-05
3,181%+05
3,654P=N5
a,1088=0%
4,5678=05
4,9738~0%
5,3870=195
5,1888=05
6,957R=nS
7,700°=0¢
8,4216=0%
9,1238=n5%
9,8000=nS
1,06BR=N4
t,t160=n4
1.,1788=04
1.,2420=0L
1,1040=04
1.3659~04
1,424%=04
1,u868-04
1,545%=00
1,6038=04
1,6618~04
1.,7180=0y
1,7759=n4
1,8319-04
1,RB6®=1u
1,001R=04
1.995R=na
2.,0499~04
2,1029~04
’.155.-()ﬂ
2,2089=04

2.5608-04
2.4078-04
2,6538=04

2.7808=nu
2,819¢-04
2,853P-04
2,885
2.9128=14
2,9358-04
?,9530-94
2,9658=04
?2,9718-04
2.9690-04
2.9608=04
2,9430-00
2,9176=04
2,883Fan4
2.8898=08
2,788P=n1
2,7278=04
7.6588-04
2.%818=04
2,8980404

.
2,2188=04
2,1128=04
2,0088-08
1,0038-04
1,7998-04
1.,6988-04
1,.,%0%38=04
1,4948<04
1,3990=04
1,307P=04
1.2190~03
1.1358+04
1,096804
9,8200-0%
9,1334-05
8,4908=n5
7,8950-05
7.3a78-0%
6,80u8e0%
6,3850=0%
5,0670<0%
%,5898-05
$,2088-0%
2,9428-05
4,869%-05

AMRIDIFF
MP/SEC

1,36u8~07
4,0788=07
7. 7u4many
1.22 06
1,738m=06
2,3200%06
2.0¢10=06
1,6590=06
4.4100-06
5.2110%06
4,957P=08
RLRALS=06
1.,0900=05%
1.3200%05
1.5658=05
1,8200=0%
2,0908=05
2,3738=0%
2,6600-05
2,978805
3,3008=05
31,6338=0%
1,9798-05
4,3368~05
4,7048=0%
5,0838=05
§,4738=05
S HTuP=0%
A,2850=05
A,7068=085
7.1388-05%
7.,579808%
R,030R=05
2,49
R,0618-05
9,4419=0%
9,9300-05
1.0030-04
1.0948-04
1.1658=04
1.1988=04
1.2518=08
1.3058«04
1,3608=04
t.4160=08
1.4730=04
1.5308-04
1,5808-04
1,A680-04
1,7088=00
1.7698=04
1.8308-04a
1.R938~04
1,9568=04
7,0200=08
2.,0858=04
2.1500=04
2.2168=n4
2,2838=04
2,3510=04
P,8198-08
2,0880=04
?.55A8=08
2.,6298-04
2.7000=04
2.7720-04
2.Ra58=04
2.9188=04
2.9928=040
3,0670=04
I,1438=04
1,2108-04
3,296804

3.5308°04
3.,61N8=04
3,690802
I T718=04
3.6520-04
3,0358-04
4,0178=0a
4,1010-04
a,18%0048
4,2708.04
4,35%8-04
4,8a18-028
4.5288°04
4,615808
4,703#-04
44791808
4,8800-04
a,9708~028
$.060P=04
5.1310=04

TRANSPCRT DATA

Treone

NM/M=SEC=DEG

7.68408-03

T1,2970a02

1,752R02
2,1730-0p
2,5698.02
2,9468-02
1,3070-02
3,A568=np
3,09318=92
4,3218-02
4,9500.07
5,5620492
A taTRan2
6, 7158=02
7,2678.02
7,0068=02
8,332R.02
B, RGRE-02
9,3548=02
9,500 =02
1.N34R=y)
1.0820.01
1.129W=01
1.1768=0)
1,2200-01
1.26R8-01
1,313%=01
1,3576eny
1,401#-01
1,4450=01
1,8388-9]
1,5376401
1.5860«0)
1,5378-01
1,6940-01
1,759P=01
1,R348-01
1.9230=01
2,0300-01
2,156€-01
2,3048=01
2,475€201
2,870¢=01
2,RB88-01
3,1278-04
3,3A840=-01
3,8638=0
3,9578=01
4,2650=09
a,58m6-01
4,924m-01
5,273L=0y
5,8388=0)
6,0090=01
6.3970.01
6,7078=01
7.211F-C1
7.6398-01
8,080R-01
8,536M-01
9,0068e01
9,8920-01
9,9928-01%
1,0510400
1.0988.400
1,1500.00
1,2020400
1,257840C
1.3120400
1,3690.00
1,8270400
1.4858400
1,5458,00
1,60%%400
1,6668,00
1,7248¢00
1.7870400
1.,8a78400
1,9068400
1,9649400
2.0208400
2,0740400
2,1278400
2,1778400
2,2240.00
2.269%+00
2,3120400
2,3%939.00
2,1920,00
2,4298.00
2,06%0400
2,%5010400
2,5370400
2,5748400
2.6119,400

REACT ELFCTR
FRACTIONS
0,0000 040000
60,0000 0,0000
0,0000 0,0000
0,0000 0,0000
0,000  0,0000
0,0000 0,0000
0,0000  0.0000
0,6000  0.,0000
0,0000 0,0000
0,0000 0.0000
0,0000 0,0000
0,0000 0.0000
0.0000  0,0000
54,0000  0,0000
0,0000 0,0000
0,0000  0,0000
0,0000  0,0000
0,0000 0.0004
0,0000 0,0000
0,0000  0.0011
0,0000 0,001a
0,0000 0.001R
0,0000 0.0022
0,0000 0.0027
0,0000 0,0033
0,0000 0,0039
0,0000  0,0047
0,0000 0+005%
0,0000 0,006%
0,0000 0.0075
0,0000  0,0087
0,0001 0,0043
0,0001 0.007R
0,0002 0.0133
0,0004 0,021R
0,0006 0,031
0,00009 0.,0%12
0,0013 0.0738
0,0018  0,1019
0,0026  0,1353
0,003  0.1728
0,00a5 0.213>
0,00%8  0,2%5a8
0,0073 0,2961
n,000% 0,33%¢
0.0111  0.,3738
0,013a  0,208%
0,0160 0,440%
60,0189 0,a694
0,0222 0.a959
0,02%8  0.,5198
n,0208 ©,5413
0,0342 0.%607
0,0390 0,578a
0,0481  0.5943
0,0496 0,6080
0,05%5 0,6221
0,0617 0.6342
0,0683  0,8a%3
0,0752  0,6%%a
0,0823  D,86a7
€,0896 0,6733
0.0972  0.6812
0,109  0,6884
0,1132 0,693
0.1213  0,6989
0,1293 047040
0,1372 0,7086
0,1469 0.7129
0,1%24  0,7170C
0,1598  0,7208
0,1660 0,7244
0,1720 0,7282
0,1773  0,7310
0,1M19 0.7357
0,1857  0.7397
0,188% O.7a40
0,1908  0,7a487
0,1912  0,7%39
0,1910 0.7%94
D,1896 0.7660
0,187C 0,773y
0,1832 0.7809
0,1783  0,780%
0,1723  0,798A
0,1652  0.8080
0,1872  0,8194
0,1083 0.8309
0,1387  0,8427
0,1286  0,884R
0,1181  0,8870
0,1074 0,8792
0,0068  0,8913
0,0865 0.9029
0,076% 0,9140

142

UVILIBRIUY ARGUN

PRANOTL

0,5309
0,%065
0,4827
0,860a
0,4402
0,a22a
0,a073
0,398
0,3848
0,3772
0,3720
0,3648
0,3676
0,3680
0,3699
9,373y
60,3774
0,382a
0,3879
0,397
0,399
0.4049
0,4098
0,8162
60,8204
0,4233
0,4249
0.42a9
0,823
06,8203
0,01%%
0,8091
0,60123
0,3921
0,381%

0,3573
0.3439

QAA
n2

5,638=10
4,708=19
4,230e19
3,938=40
3,708-19
3,530=39
3,398-10
3,288=10
3,1A0=90
3,000-10
2,958=19
2,838-499
2,740-19
2,660<10
2,580.10
2,528-19
2,460e19
2,810-19
2,378=40
2,328-19
2,29R=10
2.,2%019
2,220=19
2,190=19
2,160=19
2,138=19
2,100-19
2,088~10
2,06R=19
2,040=10
2,028-40
2,008=19
1.988=19
1,968«19
1.928=19
1,928~-10
1.918=10¢
1.8968=199
1,888=10
1.,878=19
1,858=19
1,840=19
1,830419
1.818=19
1,808<19
1.798=10
1,788-19
1,778-10
1,768-10
1,750=19
1.7a8=9¢
1,730=39
1,720-19
1,710=39
1.708+19
1.698-10
1,688-19
1,678=19
1,678=19
1,668-10
1,658=19
1,6a0-19
1,628=19
1,638-10
1,620-19
1,618=19
1.618«19
1,608-19
1.590=19
1,598=10¢
1.580=19
1,580=19
1,570390
1,560~10
1,960-19
1,550=1¢
1.5%0=19
1,588419
1,540=190
1.,%30=19
1.528-19
1,520=19
1.516=19
1,510+39
1,500<19
1.500=19
1,490-19
1,890=19
1,890«19
1,48P=19
1,880
1,470"10
1,478=30
1.860-19
1.460-19

QA1
M2

1.98818
1,830-18
§,778+18
1,73018

1,510=18
1,560-¢8
1,499-18
1,080=18
1,870=18
1,46018
1,458°18
1,44Pe18

1,490-8
1,420-18
1.818=12
1,418=18
1,200"18
1,400-18
1,3908=18
1,390=18
1,380=-18
1.380~48
1,370=18
1,378=¢8
1,378=-18
1,360=-18
1.368~14
1,35€6-18
1,350=18
1,350=18
1,348=18
1.340-18
1,340-18
1.338-18
1.330-18
1,330-18
1,330-18
1.320-18
t,320-18
1.320+18
1,318-18
t.310-48
1,318-38
1,318~-18
1,308=-18
1.,308-18
1.300-18
1,308=18
1,300-18
1,290-18
1,298-18
1.29€=18
1,290=48
1,2900-18
1,280=18
1,288~18
1,280-18
1.280=12
1,2080-18
1,270=48
1,270=,8
1,270-18
1,2708=18
t,270-18
1,27e=18
1,200=18
1,260-18
1,260<48
1,200-18
14260+18
1,200-18
1,250-18
1,28
1,25
1.200-18
1,200-18
1,290-18
1,2%0~18
1.2 18
1,2a8-48
1,240-38
1,240+18
1,240=18
1,2808=48

ert
N2

8.720-14
6,950-14
95,6306
a,620=16
3,880=18
3,220~16
2.738=16
2,340a16
2,018°16
1.,758=16
1.538~16
1.348=46
1,198=1¢
1,060=16
9,830=17
8,a58=17
7.618=17
6,88017
6,260=17
5,88p=17
5.186=17
4,758=17
4,368=17
4,018=17
3,708=17
3,a30.17
3,180~17
2.950=17
2.758-17
2.568-17
2,408-17
2.258~17
2.110=17
1.980-17
1.868-17
1.750~=47
1.668=17
1,570=17
1.088=17
1.408=17
1.338-17
1,278=17
1.200=17
1,158=17
1,090=17
1.040=17
$.97m=18
9,618~-18
9,240-18
8,880=18
8,550=18
8.,240-38
7.9 18
7.060~18
7,408=18
7,188e18
6,918=18
8,608<18
s.600~18
6,200-18
6,000-18
s,910=18
s, 74818
S.58018
5,820°18
S.208=18

4.880-18
a4,768-18
4,650=18
4,540~18
a,430-18
4,330-18
K,240-10
4,150~18
A4.060-18
3,980-18

P

Y



APPENDIX II

SHOCK TUBE SIDE-WALL BOUNDARY LAYER SOLUTIONS FOR

Uw = 6000 m/sec, Pl = 5 mm Hg

Numerical results for an equilibrium argon shock tube side-wall

boundary layer is presented for the case

U, = 6000 m/sec
U, = 675 m/sec
T = 14,100°K

[s0}
T = 300°K

W

These conditions are approximately obtained behind an argon shock wave

with U_ = 6000 m/sec and T, = 298°K, P, = 5 mm Hg

The symbols used are the following

Z Similarity parameter 7

F K(n)

G H(n)

U* Dimensionless velocity u*

H# Dimensionless enthalpy h*

TEMP Temperature T

VEL Velocity u

ATFA Degree of ionization «

NE Number density of free electrons

PR Prandtl number Pr

ROMY Inverse density viscosity product (pu)_/(on)
YSTAR Dimensionless wall distance y* defined by equation

(6.30)

MKSA -~ units are used throughout the calculation.
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INPUT DATA AS FOLLOWS

PRESSURE(N/M2)  UWALL vz
340000 6000,0000000000 67%,0000000000
‘ T H ALFA NE RO cp QMINUS
‘ KELVIN NM/KG 1/M3 KG/M3 NN/(KG OEG) REC/SEC=ELECTRON
14100 1,829670407 0,24129 3,29550423  0,33100-02  5.75910403 =3,56900405
TEMP  VISCOSITY  AMBIDIFF TOYCOND REACT ELECTR  PRANDTL 0AA QAl eIt
KELVIN  KG/M=SEC N2/8EC NM/M=SEC-0EG FRACTIONS I'F "2 "2
18100  1.1780=04  1,0270=03  1,6920400 0,2433  0,7049  0,4081 1,550=19 1,27¢=18  7.00€-18
1 VISCRATIO DENSRATIO RU PR
300 0,1831 58,340 0,0936 0.6411
500 0,2700 35,004 0,1058 0,68a8
700 0.3487 2%,003 0,1147 0,64668
i 900 0,8220 19,087 0,1218 0.6a82
1100 0.4916 15,911 0,1279 0,6495
. 1300 0,5581 13,463 0.1331 0,6508
| 1500 0.6222 11,668 0,1377 0,6515
1700 0,6843 10,295 0,1419 0,6523
1900 0.7447 9.212 0,1458 0,6530
2100 0,08036 8,33 0.1493 0,6537
2300 0,8611 7,610 0,1526 0,6543
2500 0,917a 7,001 0,1557 0,6588
2700 0,9727 6,482 0,1586 0,6553
2900 1,0270 6,035 0,1613 0,0858
3100 1.080a 5,646 0,1639 0,6563
3300 1.1329 5,304 0,1664 0.6567
3500 1.1847 5,001 0.1688 0,6570
i 3700 1,2359 4,730 0,1711 0,6574
3900 1.2863 4,408 0,1732 0,6578
4100 1.3361 4,269 0,1753 0.6%81
4300 1,385 4,070 0,1773 0,6584
4500 104344 3,889 0.1793 0,63587
4700 1.482) 3,728 0,1812 0,6390
4900 1.8300 3.572 0,1830 0.,6%93
5100 1,5772 3,432 0,1648 0,6596
$300 1,6240 3,302 0,186% 0,6%68
5500 146703 3,102 0,1881 0,6539
) 5700 1.7163 3,071 0,1898 0,6496
i 5900 1.7618 2,966 0.1913 0,6829
6100 1.8069 2,869 0,1929 0,6332
6300 1.8516 2,778 0,1948 0,6198
6500 1.89%9 2,692 0,19%9 0,6028
8700 1.9397 2.612 0,1974 0,582a
6900 1.9820 2,%36 0,1988 0,5598
7100 2,0256 2,465 0,2003 0,5354
7300 2.,0676 2,397 0,2018 0,5113
7500 2.1088 2,30 0,2033 0,8882
7700 2,149 2.272 0,2048 0,4077
7900 241879 2,218 0,206% 0,8897
8100 2.2254 2.1%9 0.2082 0,4347
8300 2.2612 2,106 0,2100 0,4229
8500 2.2947 2,058 0,2120 0,4182
8700 2.3256 2,007 0,2143 0,4086
8900 2.3833 1,960 0,2167 0,4058
9100 243776 1,916 0.,2196 0,4057
9300 2,397a 1,872 0,2228 0,4082
9500 2,812 1.830 0,226% 0,8129
9700 2.4215 1.790 0,2307 0,4196
9900 2.0244 1,750 0,2357 0,4280
10100 2.4202 1.712 0.2014 0,4378
10300 2,408a 1,674 0,2481 0,448%
10300 2.3000 1,637 0,25%8 0.4598
10700 2,3598 1,600 0,2648 0,4713
10900 2,322 1.564 0.2753 0,482%
11100 2,27%9 1,928 0,2078% 0,4928
11300 2.2208 1,493 0,3016 0,5020
11500 2.1872 1,457 0,3181 0,599
11700 2.0859 1,822 0.3371 0,5151
11900 2.0076 1,387 0,359t 0,5184
12100 149232 1,352 0,3646 0,5191
12300 1.8381 1,317 0,4141 0.5173
12500 1.7811 1,282 0,8482 0,5129
12700 1.,6456 1,246 0,4876 0,5058
12900 1,5489 1.211 0,5332 0,4963
13100 1.4521 1,175 0,38%9 0,88a3
13300 1,3563 1.140 0,6868 0.4706
13500 1.2624 1.108 0.7171 0,4529
13700 141713 1,069 0,7983 0,4378
13900 1,0837 1,033 0,8919 0,101
14100 1.0000 1,000 1.0000 0.4011

14k




SHICX TURE 30UADARY LAYRR FR EQUILIBRILM ARGON

AR R R R R T RPN .
‘ PRESSURE (N/H2) terttusssnes

AITH TRUE VARIATION IN VISCXDENS AND PRANDTL NUMRER
340000 SIMILARITY BPUNPARY LAYER
AMBIPOLAR DIFFUSICN aSSUMEY SHEATH “EGLECTER

A+39,6856-02
B+=1,25180}
Z F G Uw Hw TENP VEL ALFA NE PR ROMY YSTAR
0.0¢0 1,000 1,000 1,0000 0,0000 300 €000 10,0000 0,641 0,098 0,00000
0,050 1,154 1,156 0,9948 0,0068 $35 5972 0,0000 0,645 0,108 0,0001%
0,100 1,278 1,279 0,9889 0,014a 801 5941 0,0000 0,647 0,118 0,0003%
| 0,150 1,384 1,383 0,0824 0,0227 1092 5906 0,0000 0,649 0,128 0,00073
04200 1,478 1,873  0,9755 0,0317 1403 5869 06,0000 0.651 0,136 0400116
0,250 4,564 1,554 0,9681 0,0411 1733 5830 0,0000 0,655 0,143 0,00171
0,300 3,628 1,627 0,9603 0,051% 2080 S789 0,0000 . 0,654 0,149 0,00238
04350  1.719 1,693  0.9522 0.0615 2442 5745 0,0000 0,655 0,155 0,00317
0,400 1,790 1,755 0,9437 0,0722 2818 5700 ©0,0000 0,654 0,160 0,00409

0,450 1,859 1,812 0.9349 0.,083a 3207 5653 0.0000 2.8278+{3 0,656 0,145 0.0051%
0,500 1,924 1,866 0,9257 0,0949 3608 5604 0,0000 1,4910415 0,657 0,170 0,00636
0,550 1,987 1,916 0,9162 0,1067 4020 5554 0,0000 2,3918+16 0,658 0,174 0,00772
0,600 2,048 1,963 0,906%5 0,1189 aaa2 5502 0,0000 2,2738+17 0,659 0,179 0,00024
, 0,650 2,108 2,008 0,8964 0,1313 4875 5448 0,0000 1,290P+18 0,650 0,183 0,01093
! 0.7¢0  2.166 2,038 0,B8860 0.1439 5317 5393 0.0000 7.2678418 0,656 C.187 0.01279
0.750 2,223 2,049  0,8754 0.1%67 5762 5337 0.0000 2.R008439 0,648 0,190 0,01483
0,800 2,277 2,015 0,8645 0,1695 6205 5279 00,0000 B8,9388+419 0,627 0,31%a 0,01706
0,850 2,329 1,926 0,8534 0,188 6632 5219 0,0001 2,3598420 0,590 0,107 0,01946
0,90 2,378 1,798 0,8420 0,1935 7033 5359 0,0001 5,2528420 0,54 0,200 0,02205
0,950 2,425 1,674 0,8303 0,2043 7397 5097 0,0003 1,014€42;7 0,500 0,2€3 0,02481
1,000 2,470 1,574 0,8185 0,2185 7730 5033 0,0005 1,7518421 0,465 ©,20S 0,02774
1,050 2,515 1,504 0.806a 0,224] 8036 4969 0,0009 2,7778421 0,339 G, 208 0,03082
1,100 2,561 1,462 0,79a83 0,2333 8319 4904 0,0016 4,1288,431 0,422 0,210 0,03a06
1,150 2,608 1,843 00,7816 0,2424 8582 4837 10,0020 $,83284217 0,312 0,233 0,03745
1,200 2,658 1,843  0,76B9 0,2514 8829 4769 0,0028 7,919P¢21 0,406 0.21¢ 0,04100
1,250 2.712 1,860 0,7559 0,2605 9063 4700 0,0038 1.04218+22 0,406 0.219 0,04469
: 1,300 2,769 1,890 0,7826 0,2697 9284 4629 0,0050 1,3328.22 0,408 0,223 0,04858
| 1,350 2,831 1,532 0,7290 0,2792 9495 4557 0,0065 1,8660422 0,413 0,226 0,05254
! 1,4C0 2,898 1,585 0,7152 0,2889 9697 8483 0,0081 2,0a40e22 0,419 0,23t 0,05671
1,450 2,971 1,648 0,7010 08,2990 9890 8408 00,0100 2,4668422 0,42n 0,235 0,06104
1.500 3,051 1,715 00,6864 0,3095 10076 4330 0,0121 2,933ee22 0,437 0,243 0,06553
1,550 3,137 1,793 0,671a4 0,3205 10255 4250 0,0146 3,3458¢22 0,448 0,246 0,07021
1,600 3,231 1,874 0,6560 0,3319 10428 4168 0,0172 4,0018e22 0,856 0,253 ©,07507
1,650 3,333 3,962 0,6401 0,3439 10595 4083 0,0202 a.6018e22 0,465 G,260 0,08012
1.700 3,424 2,054  0.6237 0.3565 30756 3996 0,0238 S.2248422 0.87S 0,268 0,08538
1.750 3,563 2,151 0.6067 0.3696 10913 3906 0.0270 S.9298+22 0,483 0,276 0.09085
1,800 3,692 2,252 0,589 0,3834 11066 3812 0,0308 4,6550422 0,401 0,285 0,09656
1,850 3,830 2,356 0,5709 0,3%78 11214 3715 0,0350 7,a388.22 0,49A 0,295 0,10251
1,900 3,977 2.a63 0,5520 0,81286 11358 3615 0,03%4 B,2200422 0,504 0,306 0,1087)
1950 8.135 2,572 0.9324 0,4286 11499 3510 0.06482 9.0600+32 0,509 0,318 0.1152%
2,000 4,302 2,683 0,5120 0,8850 13636 3403 0,0492 9.9310+22 0,518 0,33t 0.12208
2,050 4,879 2,797  0,4907 0,4621 11769 3288 ©0,0546 1,0830+23 0,517 C,344 0,12926
2.100 4,665 2,912 0,8686 0,4800 11900 3170 0.0603 1.1778+23 0,518 0,359 0,13682
2,150 4,858 3,028 0,4455 0,4986 12028 3047 0,0663 1,2738+23 0,519 0,375 0,14881
2,200 5,059 3,186 0,8215 0,5179 12153 2920 0,0726 1,3720+23 0,519 0,392 0,15328
2.250 5,265 3,267 0,3965 0.5379 12276 27A6 0,0793 1,474Pe23 0,518 0,41C 0.16229
2+3C0 5.472 3,388 0.3705 0,5587 12396 2648 00,0862 1.5770+23 0.515 0,430 0.17191
2,350 5,878 3,513  0,3435 0,5803 12515 2504 0,0935 1,683842) 0,512 0,851 0,18224
2,400 5.875 3,641  0,3155 0,6027 12631 2355 0.1011 1.791€+23 0,500 0,473 0.19338
2.450 6,056 13,772 0,2866 0,6258 12745 2201 0,1090 1,900€+23 0,50&8 0,497 0,20547
2,500 6.211 23,908 0,2569 0.,6899 12858 2043 0.1173 2,0118+23 0,498 (,523 0.21867
2.550 6,323 4,049 0,2266 0,6747 12949 188y 0,1259 2,1220+23 0,492 0,550 0,23322
2,600 6,372 4,195 0,1956 0,7005 13079 1718 0,134% 2,2390+23 0,386 0,580 0,24938
2,650 6,325 4,340 0,1650 0,7272 13188 1554 0,1483 2,355€+23 0,479 0,811 0,267a9
2,700 6,149 4,479 0,1347 0,7548 13206 1392 0,1540 2,8720423 0,871 0,645 0,28797
2.750 5,795 4,592 0,3057 0,7832 13402 1238 0,1640 2,.589p+23 0,463 0,61 0,3313%
2,800 5,226 4,648 0,0790 0,8121 13506 109% 0,1742 2,7068423 0,&Sa 0,719 0,33818
2,850 4,428 4,597 0,0555 0,8411 13606 970 0,1885 2.8208423 0,aas 0,758 0,36898
2,90 3,456 4,388 0,0364 0,8693 13700 869 0,1945 2,928842)3 0,a3m 0,798 0,40407
2,950 2,443 3,987 0,0221 0,8955 13785 793 0,2039 3,0260423 0,430 0,838 0,84331
3,000 1,558 3,437 0,0125 0,9188 13858 Tay 0,2122 3.1110+23 0,423 0,87 0,48610
3,050 0,908 2,820 0,0066 0,9304 13938 740 0,2192 3,1820423 0,418 0,901 0,5315%
3,100 0,486 2,222 ©0,0033 0,951 13965 693 0,2248 3,2370423 0,413 0,92% 0,57878
3.150 0.246 1,700 0,0036 0.9663 14002 6Ba 0.2292 3.2808423 0,830 0.985 0.62710
3,200 0,120 1,274 0,0008 0,9756 14029 679 0,2325 3,3128+23 0,808 0,960 0,67608
3,250 0,056 0,941 0,000a 0,9825 14049 677 0,2350 3,3368423 0,808 0,971 0,72543
3,300 0,026 0,687 0,0002 0,9875 14064 676 0,2368 3,3538423 0,405 0,979 0,77501
3,350 0,011 0,497 0,0001 0,9912 14075 675 0,2381 3,3868+23 0,808 0,98% 0,82a73
3,400 0,005 0,357 0,0001 0,9938 14082 675 0,2391 3,3750+23 0,803 0,990 0,87454
3.450 0,002 0,255 0,0000 0.9957 14088 675 0,2397 3.3810+23 0,402 0,993 0.92441
3,500 0,001 0,183 0,0000 0,997f 14092 675 0,2202 3,3868423 0,402 0,995 0,97432
3,550 0,000 0,127 0,0000 0,9980 14098 675 0,2406 3,389€,23 0,402 0,997 1,02426
3.600 0,000 0,089 0,0000 0.9987 14096 675 0,2408 3.3918¢23 0,80y 0,998 1.07423
3,650 0,000 0,062 ©0,0000 0,9992 14098 675 0,2a210 3,3930+23 0,401 0,999 1.12418
3,700 0,000 0,043 0,0000 0,9995 14099 675 0,241%1 3,3948423 0,999 1.17816
3,750  0.000 0,030 0,0000 0.9997 14009 675 0.2412 3,3958423 1,000 1,22014
3,800 0,000 0,020 0,0000 0,9999 14100 675 0,2412 3,3950+23 1.000 1.27412
3,850 0,000 0,014 0,0000 1,0000 14100 675 0,2413 3,39050423 1,000 1.32411
3,900 0,000 0,009 0,0000 1,0001 14100 675 0,2413 3,306¢23 1,000 1.37411
3,950 0,000 0,006 0,0000 1,0001 14100 675 0,2413 3,3968423 1.00¢ 1,42410
4,000 0,000 0,008 0,0000 1,000 18100 675 0,2413 3,3968423 1,000 1,47409
4,050 0,000 0,003 0,0000 1,0002 14100 675 0,2413 3,3960+23 1,000 1.52409
4,100 0,000 0,002 ©0,0000 1,0002 14101 675 0,2813 3,3960423 1,000 1,57408
4,150 0.000 0,003 0,0000 1.0002 14101 675 0.2a413 3.396P¢23 1.00¢ 1,62408
4,200 0,000 0,003 ©0,0000 34,0002 14101 675 0,2413 3,3960.23 1,000 1,67407
4,250 0,000 0,001 0,0000 1,0002 14101 675 0,213 3,3968423 1,000 1,72407
4,300 0,000 0,000 0,0000 1,0002 14101 675 0,2413 3,3960423 1,000 1,77406
4,350 0,000 0,000 0,0000 1,0002 14101 675 0,2413 3,3960+23 1,000 1,82408
4,800 0,000 0.000 0,0000 1.0002 14101 675 0,2a14 3.3968¢23 1,000 1.87405
4,450 0,000 0,000 0,0000 1,0002 14101 67% 0,2a18 3,3960423 1,000 1,9240%

DELTAY AS A FUNCTION OF X (DISTANCE FROM $HOCK)
FOR CASE YSTAR=1;NOTICE Y PROP, YSTAR

Y MM X(METER)
0.,43191 0,030
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