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NOMENCLATURE

cross sectional area of the column

cross sectional area of a tie in the jth

panel
as defined in equation (24)

as defined in equation (88)

as defined in equation (89)

column outside diameter

modulus of elasticity of the column

tangent modulus of elasticity of the column
modulus of elasticity of a tie in the jth panel
as defined in equation (146)

moment of inertia of the column

length of the column

change in length due to a load Po
change in length due to a load Pp

applied axial load on the column in x-direction

force in the column due to initial tension

lateral reaction at joint j

lateral reaction at joint j due to the ties in
the panel j

h panel when P is

tension in a tie in the jt
acting
initial tension in a tie in the ™ panel

(no external load)

viii



NOMENCLATURE

(cantinued)

Tja, ij if two ties lie between two struts
(see Fig. 14)

U strain energy

U1 spring strain energy

W weight of the whole system (column, wires
and strut assemblies)

wl work done by the external load P

Z as defined in equation (144)

a, factor for the kth term in the Fourier
series expressing the deflection of
the column

cj length of the tie between joints j-1 and j

hj length of typical strut in the jth panel

k2 local buckling factor chosen as 0.4

m number of tension ties

t wall thickness of the column

w specific weight of the column material

wj specific weight of the tie in the jth panel

X coordinate in axial direction

Yy coordinate in lateral direction

ix



~ NOMENCLATURE

(continued)

aj Bj - t/2

Bj angle between the plane of a tie i and the
deflection plane

K parameter as defined in equation (55)

K parameter defined as x/A

A difference between the length of the cord
and the deflection curve

e angle defined in Fig. 2

0 as defined in equation (101)

Oc compression stress in the column

— T defined as Ect/Ec
§ coordinate as defined in Fig. 5
n coordinate as defined in Fig. 5

e



ABSTRACT OF THE THESIS
Optimum Design of Columns Supported by

Tension Ties

by

Hagen Richard Mauch

~ Master of Science in Engineering
University of California, Los Angeles, 1966
Professor Lewis P. Felton, Chairman

When optimizing simple thin-walled columns on a
weight basis, the maximum obtainable stress is found to be
that at which local and general buckling failure occur
simultaneously. This stress can be expressed as a function
of load and distance, allowing the introduction of the

xi
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structural index P/L2 (P = buckling load, L = length of
the column), for equal values of which all dimensionally
similar columns develop the same stress at failure. At
low values of the structural index, the optimum stress 1is
low, indicating that the simple column is not an efficient
structure in such circumstances. It has been found that
expansion of the cross-section, for example, by using
tension ties which serve to provide intermediate elastic
support for the column, allows the column to operate at
higher stress levels, thereby increasing efficiency.

This thesis summarizes a method of analysis and
presents a procedure for optimizing tension-tie supported
thin-walled cylindrical columns. The optimized column
for a given structural index is defined by a particular
diameter, wall thickness, tie prestress, tie cross-sectional
area, tie angle, and strut dimensions. For the cases
considered it is found that, in the low range of the
structural index, the tie supported column offers a poten-
tial weight saving of up to 50% over the simple tubular

column.

xii



SECTION 1

INTRODUCTION

The primary function of a structure is to transmit
forces through space, where, from the designer's point of
view, the objective often is to do this with the minimum
possible weight. For any structure that fails as a result
of instability under compressive loading, the maximum
obtainable stress depends, in a complex manner, on the pro-
perties of the material and the geometric properties of the
structure. To apply the principle of dimensional similarity,
the structural index P/LZ is introduced (P = buckling load,
L = column length). This quantity can be considered as a
measure of the loading intensity. All dimensionally similar
columns having the same value of structural index will de-
velop the same stress at failure. Therefore, for a parti-
cular material and a particular type of cross-section, an
easily obtainable relationship between optimum stress and
structural index constitutes the information needed for the
design of the entire family of minimum weight simple columns.

At low values of the structural index, the optimum
stress is far below the elastic limit of most structural
materials and an expansion of the cross-section will allow
the column to operate at a higher stress level, thereby
possibly increasing efficiency, from a weight standpoint.

In the age of space technology the long column with small
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compression load becomes more and more interesting and,
considering the extremely high cost per pound of orbited
load, even the smallest weight savings is appreciated.

The thin-walled circular tube, which is the most
efficient simple column, is chosen as a basis for the in-
vestigation. The weight of the simple column is a minimum
when the allowable stress ¢ is a maximum. To find the maxi-
mum values of o both primary buckling (Engesser formula)
and local buckling are considered and the optimum design is
obtained when both failures can occur simultaneously.

Using two equal columns and equipping one with ten-
sion ties always results in an increase of maximum stress,
hence a decrease in weight of the central tube is possible;
however, additional weight is added in conjunction with
ties and struts. Once the structural index P/LZ is speci-
fied, the problem is then to define the parameters asso-
ciated with the tie supported column like column diameter,
wall thickness, tie cross-sectional area and tie angle a
to obtain minimum weight. The column supported by tension
ties considered herein consists of three parts: a thin
walled tube with circular cross-section, tension ties, and
struts, as shown in Fig. 1. The theory of analyzing such
columns has been developed previously [1l] and the improved
efficiency is proved in tests. [1l] Nevertheless in none of
the solutions was optimization of the structure with re-

spect to weight attempted, as has been done for the simple
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column. [2]

For the actual calculations the following assump-
tions are made:

a. The effect of the deformation of the struts
is negligible.

b. The connection between the struts and the
column and the connection between the ties and struts are
ideal hinges.

c. There is no initial eccentricity or crookedness
in the column.

d. There is no lateral deflection before buckling.

e. The pretension in the wires is of such magni-
tude that at impending buckling the wires are stress free.

f. For small lateral deflection the axial deforma-
tion is negligible.

g. The angles between the planes of the ties are
equal.

h. The struts are distributed symmetrically with

respect to the midpoint of the column.

The optimum design can again be found by equating

the primary and local buckling stresses. The weight of the

~column is a function of the above mentioned parameters and

a minimization yields optimum values of these parameters.
Comparing the optimum weight of the simple column

with the optimum weight of the column supported by tension
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ties for identical values of the structural index will

show how much more efficient this supported column can be.



SECTION 2

GENERAL THEORY OF THE COLUMN SUPPORTED BY TENSION TIES

2.1 Force and deformation relationship up to the instant
of buckling

The following theory dealing with the mechanical be-
havior of the column supported by tension ties is based on
Ref. 1 and is repeated here in a slightly modified form for
completeness. The geometry of the supported column is
sketched in Fig. 1 and Fig. 2.

2.1.1 Pretension

Let the pretension in a tie in the jth panel

be denoted by T If there is no external load applied

oj*
in the x-direction, then the force in the column (Po)

induced by pretension is

P =mT sin ¢ (1)

o) ol 1
where m is the number of tension ties.
Due to this load, the column has shortened a distance ALO.

m Tolsine1

AL, = S L (2)
c "¢

From the equilibrium of forces in x-direction at any
joint, and by neglecting the effect of small angle changes

A8,
J

sin el
Toj =_T01 sin ej (3)



The elongation of the tie in the jth panel due to T05

is therefore

C
Acoj = TOj sz‘i— =

sin 61 cj

T . (4)
E 1 8., A.E.
ol sin 3 5E4

By neglecting again small angle changes and with the
assumption that there is no lateral deflection before
buckling starts, then the component of tie deflection in
the x-direction is

C

ALE.
33

(Acoj)x = Ac ., s8in 8. = Tol sin 61 (5)

o] J

and the total displacement in the x-direction is

n C.
= N\ i —d
(Aco)x 24 T,y Sin 8, 7% (6)
3=1 )

2.1.2 Relationship between external load and
internal forces

Let an external load P be applied to the strut
with tension ties that are tightened to a certain value of
initial tension. Then the force acting in the column will
be increased by the amount Pp (Fig. 2) and the increase in

axial deformation will be

AL, = P —Z

(7)

The force acting in a tie in the jth panel is decreas-
ing by the amount ij. Similar to equation (3) this force

is
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sin el
Toy = Tp1 sTn o, (8)

The decrease in stretch in the axial direction due to

T . is similar to that given by equation (6).

PJ
n
- . C.
(Acp)x = Zﬂ Tpl sin 8, KT%T (9)
j=1 33

Since ALp = (Acp)x, equations (7) and (9) give

sin s

1 ALE

n ¢

P L “pl Z _;i; (10
j=1

By taking the summation of the forces in a section at
the end of the strut (Fig. 3) and considering the fact that
the pretension forces in the column and tension ties are
in equilibrium regardless of the applied force P, it is
found that

P=mT

sin 91 + Pp (11)

pl

Substituting Pp from equation (10) in equation (l1l) yields

P
T = (12)
pl A_E, %l ci_
sin 91 m+ < /. KT

s 019
With the assumption that at the onset of buckling the ten-

sion ties are stress free, it follows that equations (12)



and (3) must be equal, or simply

T ., =T (13)

ol pl

2.2 Lateral reactions produced by tension ties at
buckling load

Change in length and slope of the tension ties due to
lateral deflection have to be considered next. Let the
displacement of joint j in the direction perpendicular to
the column and in the plane of column and tie be denoted by
(Ay)j. Then, as shown in Fig. 4 for small displacements,

changes in length of the ties may be expressed as
sey = [(ay)_y-(ey) 4] cos oyt [(ax)_y-(ex) ] sin 0y (1)

This is only valid if A ej + 0.

When the lateral deflection starts, the axial deflec-
tion (Ax)j_l--(Ax)j is negligible and may be ignored.
Furthermore, it is assumed that there is no lateral dis-
placement at the end of the column and that the warping of
the planes of the ties is negligible. Equation (14) can

therefore be simplified to

bey = [(Ay)j_l - (Ay)j] cos 8, (15)
and with
ALE
=33
AT <] Acy



AE.,
AT, = %—l [(8y)4_; - (8y) ] cos &5 (16)

>
Now consider the case in which the deflection of the
column occurs in the direction § (Fig. 4) in the x-§ plane.
Let (AS)j be the deflection of joint j in the § direction
and (Ay)ji be the components of (As)j in the plane of
column and tie i (i = 1,2,3..m). Let Bi be the angle be-
tween the plane of column and tie and the x-§ plane. Then

referring to Fig. 4
(Ay)ji = (A§)j cos By (L =1,2,3,4...m) (17)

Assuming that the angles between the planes of the

ties are equal, then if Bl = B, it follows that

2n
P2= Tt ?
(18)
4n
By=jmt+ 8

m-1
Bn = T "t B

Let the change in length of the tie i in the panel j

be (ch)i, then equation (15) may be written as follows

(ch)i = (Asj_l - Asj) cos ej cos By (19)



2.3 Lateral reactions when some ties are relaxed at the
instant of buckling

If the ties are stress free at the instant of buckling,
some ties are relaxed for an infinitesimal amount of buck-
ling deflection. This gives some constraint to the initial
tension which shall be considered later. With this assump-

tion it is clear that ties with an angle By defined by

/2 < Bi < 3n/2

will be relaxed and the ties with an angle By of

-n/2 < B; < +1/2

are going to be stretched.

For three or four tension ties only one or two ties,
but not more than two ties can possibly lgxgin the region
from -2/2 to + /2. Therefore in those caées only a maxi-
mum of two tension ties can be stretched. Assume now first
that tension tie i = 1 and i = m are stretched. The per-
pendicular directions to the column axis in each of the
planes containing these ties are called Y,y and Yo
(Fig. 5, Fig. 6, Fig. 7).

In the direction of §, the lateral components of the

respective tensile forces produced by the changes in length

of the ties are (Fig. 6)



. = . ] R
(Rjj)§l —%;l (ch)l cos B cos ej
A4E5 2 2
= - P [(As)j_l - (A§)j] cos ej cos” B (20)

A E.
- -g;J-BA§)j_1 -(A§)j] coszej cos® ("L 2q148) (21)

where the angle B is replaced by the expression calculated
in equation (18).
In order to maintain equilibrium of forces in the n

direction, the following condition must be satisfied (Fig.

6)

(Ryy) 1y = (Ryg) o (22)
with

(Rjj)nl = (Rjj)§1 tan 8

m-1

(Ryg)pm = (Ryy) gy tan (B2 20 4+ g)

or
sin B cos g = sin (M=% 2i+s)cos(m;1 2n48)  (23)

m
This equation can only be satisfied for

Balr/m

With this result the actual direction of deflection is

known and this particular § direction is denoted as y.(Fig.5)
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The reaction force Rjj in this y direction is given by

Ry = Ryjlyr + Ryylyn
A.E. . 2
= _ —%;l [(Ay)j_l—(Ay)jJ cos ej B (24)

where

B = 2 cos’8/m = 2 cos® (x/m)

If only one tension tie is stretched, there is only one

case of equilibrium possible, namely when B = 0., 1In this

case
Ry3 = Ry3041
AE
- 33 [ - ] 2
- cj (Ay)j_l (Ay)j cos ej B (25)
where
B=1

The lateral reactions are due to the action of the ties in
the jth panel on strut plane j. The reaction on strut

plane j due to the ties in the (j+1)th panel is given by

R o4 B [y - tay) cos? o... B (26)
j (3+1) 31 YI37 Y 94 j+1

Therefore the resultant reaction at joint j is obtained
by combining equations (24) or (25) with equation (26), as

follows:



S

Rj = Rjj + Rj(j+1) (27)
or
Ry+1F441 2 5
5T e LWy T Waa o8t tyn
ALE

] - ] 2
- 75 (Y)j—l (y)j cos ej B (28)
where Ay is replaced by y, for convenience.

2.4 Buckling theory

A strut with tension ties may be considered as a con-
tinuous beam on elastic intermediate supports as shown in
Fig. 8. In the case of simply supported ends a representa-
tion of the deflection curve in the form of a trigonometric
series is advantageous.

The deflection curve can be represented as

LMX 21X 3nx
y = a; sin +~ + a, sin T— + a3 sin 7~ t .-
a, sin E%i (29)

Each term satisfies the boundary conditions, since
each term together with its second derivative becomes zero
at the end of the beam,

For the case of the column supported by tension ties,
the coefficients in the above series, and the buckling
load, are obtainable from an energy approach, The work done

by the longitudinal force P must be equal to the work done

13



by the reaction force Rj plus the strain energy. The strain

energy is defined as

E I
C

L
) 2
U= -S (d—§> ax (30)
2 dax
o]

Introducing equation (28) and integrating yields

4 k=
n E I
v —EC k! a2 (31)
4 L ,
k=1

Any change in the shape of the deflection curve results in
- some longitudinal displacement at the hinge B. This dis-

placement is equal to the difference between the length of

the deflection curve and the length of the chord AB

(Fig. 8). 1In terms of the chosen coefficients this dis-

tance is

’ 2 :
_. Px 2 2
W, = 1 k™ a) (33)

14



- The displacements at the struts are simply (y)j
the reaction forces Rj are linear functions of (y)j
(equation (28)). That means the spring characteristic is

linear and the spring strain energy is

n-1

:L knx
UI=ZI/2yR=1/z ) a sin —1
=1 j=1 k=1
(34)

For a conservative system

W, =U+ U

1 1

Therefore with equations (31), (33), and (34)

) i i) Z ) o
- k“a, = k'a +1/2 sin
4L k 4L k L

k=1 k=1 k=1
(35)

and

15



~ SECTION 3

OPTIMUM DESIGN OF THE SIMPLE COLUMN

The theory of optimum design of the simple column
is presented in [2] and the most important results are
repeated here for convenience.

The Engesser formula for column buckling is

sz

t
G W e (36)
cr (L/p)2

and may be expressed in terms of the structural index P/Lz,

using the proper value of p for a thin-walled circular tube

g 2

o

~ L m E L2
t t

For local buckling

YE E

t
Ser = K2 D/t (38)

where k2 = 0.4.

Solving equation (38) for D/t and substituting o

cr
(i.e., Occ = Ucr) from equation (37) yields an optimal
value for D/t:
2 1%
k E
D 2
(—t—)opt = 2 P (39)
m
?



Or, in terms of the structural index and the stress o,

these equations can be combined to yield

3
P 8 o
= (40)
L2 wkz E2 1‘3/7
E
where T = 1;

For any given value of ¢ from a particular stress-
strain curve, the value of P/L2 may be calculated. The
weight is obtainable from the relation

2

o

W
ol

where w is the specific weight.

17



SECTION 4

OPTIMUM DESIGN OF A COLUMN WITH ONE STRUT

4.1 Buckling theory for the column with one strut

From the geometry of the system (Fig. 9) it is seen

that

B, = /2 + a cos™ 8, = sin

1

- - = 2
62 = x/2 a cos 92 sin

Consider the first three terms of the sine series

X 2nx 3wx
y = a, sin 5 + a, sin 7 + a, sin T
and 4
T EBE_ I
c “cC 2 2 2
U —T— [al + 16 a2 + 81 33]

(42)

(43)

(44)

(45)

The reaction force is obtainable from equation (28).

With the assumptions that Al = Az, El = E2, and ¢, = ¢y =

L
T cos & ' then

4 A.E
R = 11 (a1 - a3) sinzacosaB

L

18

(46)



Introducing equation (46) in (45)

2 A.E
) S . 2 2
1" ;. sin®a cos a B [él -2 aja; + a, ] (47)

If any coefficient a in series (39) is given an in-
crease dak, the term (ak + dak) sin knx/L replaces the term
a, sin kwx/L. This increase dak in the coefficient ay
represents an additional small deflection of the beam given
by dak sin knx/L superposed upon the original deflection
curve.

The change in strain energy of the column, due to the

increase dak is

4

2U ga oo Fele k¥ a aa (48)
3, ay 13 k %3k

The change in work done by the compression load is

awl w2 k2
53;'dak = p 1 % dak (49)
and the change in strain energy of the springs is
aUl 2 sinza cos a AlEl B 3 > 5
izz'dak = - aak (al —2a1a3+a3 ) (50)

For a conservative system

W al

1l 2 U )
— da = —— da + —= da
aak k aak k Bak k



o

For K= 1,2,3 this results in three equations

4 2
Pr _ | EcIc 4 Bin“a cos a AlE1 B
T4 -3t (a; - aj)
2 L L
(51)
4
2 m EI
Prn _ c c
4 ST 8 = -———-———2 3 16 a, (52)
L
Pr n4 ECIc 4 sinzu cOoSs « AlEl B
9 ——a, = ~——— 81 a, + (a,-a,)
2L 3 2 L3 3 L 371
(53)

Equation (52) states that the second buckling mode of
the simple column is a solution of this column supported
by tension ties. It can be seen that equations (51) and

(53) can only be satisfied if the following determinant is

Zexro.
4 _
r E_I
__..g_s-pﬂ%.: - %
L
= {
4
- n E I
- K 81-—-—§—°-9pn2+.<
L
(54)
where

x = 8 AE, B sina cos a

20
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To extend the theory in the plastic region, the
modulus of elasticity of the column is replaced by the tan-
gent modulus. Considering, furthermore, local buckling,
it can be shown that the moment of inertia I, must be re-

placed by the expression [2]

I =62 Amk, A= =k EEtpzr\ (56)
c l o 8r T2 2

where, as for the simple column, k, = 0.4.
Introducing equation (56) in the above determinant,

and replacing E, with the tangent modulus Et yields

—1r3 k i
22 r3/2 E2<-%-) - owz + K - K
8¢ L
=0
3
Tk
2 _3/2_2/P 2
- K 81 — 1 E( )-901 +x
80 ;7
(57)
- AE
where 1t = Et/E and k = %% = g —%rl B sinzu coSs a
Expanding equation (57) yields
2
P Bg 2
= - (4501 - 41«k)
<I—,-2-> 81 ﬂ3 k2 13/21‘3—2_
, (58)

t.\[lﬁ - 811362 - 90 - 32¢on? + 41°%¢°
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This equation should reduce to the solution for the
simple column in the limit. For the simple column the
cross section of the tension ties is zero, so that « takes

the value zero. Substituting «x = 0 in equation (58) yields

P _ 8o (5 + 4) (59)
2 9 k213/2 E°

Considering the positive sign in the bracket, the buckling
formula for the first mode of the simple column (equation
(40)) is obtained. The negative sign yields the buckling
load for the third mode shape which is not critical. The
tension ties increase the buckling force in all modes, so
that the positive sign in equation (58) has to be chosen
to obtain the critical load.

For cylindrical tubes the factor k2 is chosen as
0.4. « has the same dimensions as the structural index and
can be considered as something like a structural index of
the elastic support of the column and serves as a para-
meter in further calculations.

Equations (51) and (53) indicate that the buckling
shape resulting from the nfluence of the tension ties is a
combination of the natural first and third buckling mode
shape. This buckling mode shall be called "constrained
first buckling mode."

Equation (58) can be written in simplied form as



N

2 - —
_1;_ = 0,3265 ;70—2—;[(10.8325 c-z)+/75.0981 02-16.9097 to+x2}

L

(60)

To observe the influence of the tension ties, the
"constrained first buckling mode"” is calculated for an
actual case for some typical values of « assuming a column
constructed of 2024-T4 aluminum alloy with material proper-
ties as shown in Fig. 10. The result is sketched in Fig.
1l and indicates that for various values of P/L2 different
values of «x result in curves which intersect the curve
plotted for the second buckling mode shape. Since at all
of these points two modes of failure occur simultaneously,
the optimum design is reached when « as a function of P/L2
is chosen such that the graphs for the constrained first
buckling mode shape and the second buckling mode shape are
identical. This relationship can be found, when the struc-
tural index for the second mode is introduced in the left
hand side of equation (60). The second buckling mode shape
is given in equation (52) for the following structural

index

P 2q
a (61)
L§ 2 T377
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Combining equations (60) and (6l) yields

‘\/7

« = g% o’ = 7.93091 o (62)
This result is independent of the properties of the chosen
material.
4.2 Weight assumptions
From Fig. 12 it can be seen that the weight of the
column with one strut and m tension ties is the summation
of
Wy, - the weight of the column
W, - the weight of the supporting
wires
o w3 - the weight of the strut
~r

assembly (struts and connecting

ring)

4.2.1 Weight of the column

As given in equation (41) the weight of the

simple column is

P
w
W 2
< = = (63)
L [+
4,2.2 Weight of the wires
w mw, T
- 2 _ 1 "1 (64)
W2 m Wy Al L/ cos o °F ;5

cl cos a L
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T, must be taken as the highest possible tie force. From
previous calculations the tie forces are given in the form
of equation (16)

ALE
AT, = Tj = -i}ﬁi {(Ay)j*l - (Ay)j] cos ej (65)

) j
For the case of only one strut, there is only one

possible tensile stress, because Ayo and Ay, are zero.

For x = L/2 the sine series for the deflection gives
y; = (8 = a3)

Again Ay 1is replaced by y and the angle 6 by a. The length
of tie 1 is expressed in terms of L. Introducing now the

value of Yy in equation (65) yields

2El cos a 8in «
o, = . (al - a3) (66)

This equation gives a constraint for the maximum
value of o in the tension ties. For convenience the weight
function for the tension ties is written in the form

W mw E.A
2 1 <'1 %>
= (67)
L3 El cos o L2

4.2.3 VWeight of the strut assembly

The struts are assumed to be simple columns,
welded on a ring with a weight Wy which for simplification
is chosen to be the same as the weight of one of the

struts. The m struts at the midpoint of the column are

. -
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assumed to fail as simply supported columns. Assuming

furthermore that buckling occurs elastically

2
R _ _8°> . 3_TKE R (68)
he . k, E° 8 hl

with tan o = %? it follows that -%-= 4
h L® tan“a
Therefore
3 w k2 E2 R
g” = > 3 (69)
2 tan“a L

The weight of the strut assembly is now

W, = (m+l) w A h = (m+l) w

R L tan a
3 o

2

and

W3y m+l  tan a R
il — (7)

Introducing equation (69) for the optimum stress yields

W 2/3 1/3
3 _ mtl 5/3f R 2

—3 = B wtana) ;€> E;iz—:;% (70)
2

where R is the reaction force given in equation (46). The
specific weight of the strut assembly is assumed to be the
same as for the column.

Equations (63), (67), and (69) combined give the

total weight as
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- P
w
2 mw A.E . o’/ 3 1/3
W (L) 1 (M1 1) m+1 /3 R3 2 }
= + + ~w (tan ? —
L3 o ElCOSa\ L2 2 ana <L2 "szi

(71)

°
Rewriting the equation for the reaction force R yields

171

J% = 3 (al - a3) sinza cos a B
L L

At the onset of buckling, the theory gives only
the buckling shape, but does not specify a fixed magnitude
of deflection. It is assumed that the struts buckle when
y/L reaches a value given by

_LY_ - ]%G (72)

After completing the calculation it must be
ascertained whether or not the tension ties are stressed
to a value which is below the yield stress. To do so,
equation (66) must be used.

With the above assumptions for y/L the reaction

force is

A.E
—I;- = 725- sina cos a B<—-——12 l> (73)
L L

Equation (66) takes the form
El cos a sin a

= (74)
75

91
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With the definition of ¥, and equation (62), the

following is obtained:

A.E
g%-cnz = 8 sinzu cOos a ]hl B
or
A.E 45 1% P (75)
171 448 sinza cos a B

Introducing equation (75) in (73)

2
R 3v P
2" 5728 2 (76)

With equations (75) and (76) the total weight is expressible

in terms of P/L2, s, and a:

P
w( 2) mw, 45 ﬂ2 P
L + "3

W
L3 R E)COSa 448 sin®a cos a B \L
2 2/3 1/3 5/3
+ L35 B |—25|  (tan o) (77)
L nsz

4.3 Optimization

The minimum weight can be obtained by setting the

derivative of equation (77) with respect to a equal to zero.

(78)



For simplification, it is assumed that in the follow-
ing calculations the only cases considered are those for
which Wy and w are the same. Differentiating equation (77)
with respect to a and simplifying the result in such a way
that the left hand side of the equation contains terms in

a only, yvyields

2 1/3
1l -2 gin"a 1 o (m+l1) E 56 B (79)
sin3ucos a tan02/3 Iwm 1 75 kZEZP/L2

The term on the left hand side of equation (79) is
independent of material properties and the number of ten-
sion ties, To find the optimum angle a the function

2
l -2 sin“a 1l (80)

£(a) = 373

sin“a cos & tana

must be calculated for different angles. The result is
plotted in Fig. 13. With the help of this figure the opti-

mum angle a can be obtained for all values of P/Lz.

4.4 Method of solution

For any values of the stress o the tangent-modulus
ratio v can be found from any tangent-modulus curve for
typical materials. From equation (61) the structural index
for this particular stress value is obtainable. Choosing
now the number of tension ties as 3 or 4, makes it possible

to calculate the right hand side of equation (79). The
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optimum value of a can be found now from Fig. 13,and equa-
tion (77) can be solved to obtain the optimum weight of the

column supported by tension ties in the form W/L3.



SECTION 5

OPTIMUM DESIGN OF THE COLUMN WITH THREE STRUTS

In using the theory for more than one strut it can
be seen that the second buckling mode is always an inde-
pendent solution of the "boom problem." This coincides
with the solution in Ref. 1, where it was found that, if
the intermediate supports are spaced symmetrically with
respect to the midpoint, then no matter how many intermed-
iate supporting points are used, the column will always
buckle in the second mode.

Nevertheless, it seems to be possible to arrange
the tension ties in such a way that the ties influence the
load for the second buckling mode also, so that this col-
umn could be designed to have buckling occur in the first,
second, third, or fourth mode. A geometry as sketched in
Fig. 14 results in a constrained second buckling mode,
thereby increasing buckling stresses over the previous
case.

In this new problem the following additional
assumptions are made:

a. The tension ties E-1-C-3-A and 1-2-3 have

the same cross-section and material pro-
perties.

b. The ties 1-C and 3-C are hinged at point C,

but cannot move in the x-direction.
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s Again it is assumed that the tension ties have a
pretension of such a magnitude that at the instant of
buckling all ties are stress free, but not relaxed.

Instead of two variables, as in the case of one
strut, four variables, @yr By Al, and Az, must now be

determined. (Fig. 14)

5.1 Buckling theory for the column with three struts

The deflection curve must be introduced with four

terms and reads

X 2nX Jnx
y = ay sin It 2 sin 7~ + a, sin T 4 sin T,

(81)

For x = L/4, L/2, and 3L/4 this series yields

! a3 =
Y . =Y, = 5 2 + a, + = %)
X = T
Y L = y2 = al - 33 (82)
X = —2—
a a
1l /5 3 =
Yy 3L - Y3 = —T /2 -32 + T 7/2
X = T

The changes in length of the tension ties,
neglecting displacements in the x-direction and assuming

Yo = Y4 = 0 are (Fig. 14)
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, a

bc, =y, sina; bcy” = (y3-y2) sinal

ac.® = (y,- ) sina Ac b (y,-y.) sina
2 Y17Y, 1 3 Y27Y3 2
b

bc,” = (yz-yl) sina2 bc, = ¥, sinal

Expressing Yyr Yoo and Y3 in terms of the series

as indicated in equation (82) and using

the following tension stresses in the ties are obtained:

4 AE) Tay aj _J
ATl = —-‘;———- 5 /2 + 32 + 3 V2 sinal COSQl
4 A E
a
ATZ = ______[ <TT -i)+ a, + aB(TT + 1)] sinul cosay
4 A_E = 5
b 272 Y2 V2
ATZ = - .t < [a <7T -%) + a, + a3<1r + iﬂ sina2 cosa,
(83)
4 A E 5
a Y2 V2
AT, = [ ( —i} a, + a3(1r + iﬂ sinal cosa,
4 ALE 5
AT3b = - i 2 [ —i) a + a3(é§ + iﬂ sinu2 c08u2
4 A E, [al _ a, _] '
AT, = ———;—— - Y2 - a, + 5 V2 sina, cosa,

It can be seen, that the forces t@ and Tb have
different signs. A negative stress cannot exist in a ten-
sion tie, and the above equations must therefore be handled

very carefully.
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For the simplified theory three different cases,
as shown in Fig. 15, must be considered separately.

a. symmetric buckling shape (y2 > yl)

b. antisymmetric buckling shape

c. symmetric buckling shape (y2 < yl)

This distinction can be made if the structure has
at least one plane of symmetry [5]. For three tension ties
this symmetry condition is not fully applicable, because
the reaction forces, which are defined as forces in the
strut planes and are opposite to the deflection, are de-
pendent on the sign of the deflection. (B =1 for y < 0,
B=1/2 for y > 0.) Nevertheless an approximation is made
by assuming that symmetric and antisymmetric modes are

independent.

5.1.1 Symmetric mode shape (y2 > yl)

From Fig. 15 it can be seen, that a reaction
force R opposing the deflection in all three struts exists

and can be written as

b _.
Rl = [ATl sinal - AT2 slnaé] B

b b
R2 = ]:(AT2 + AT3 ) sinaz_ B (84)

. b
R3 = [?T4 sine, - AT3 sina21 B



whereas in the case of a column with one strut, for

B = 1 for four tension ties
y>o0
B = 1/2 for three tension ties

y <0 B = 1 for three or four tension ties

Introducing now equation (83) in (84) yields

o

4 AE a a
- 171 1l /5 3 /5 2
Rl -———L —2- 2 + az + —2— 2 sin al Cosal
4 AE, /T /I 2 2
_——;——-{ al(l - TT)'az -a3(1 + 1r) sin a, c05a2
L 4 (85)

R, = [—f.—?-lal(z - /2') -a3(2 + /2’) sinzm2 C°5°2J B (86)

’ -

a a
-R3 = ——;l—ll-T% V2 -a, + 3% Y2 sinzal cosa,
B
4 AE 5
272 Y2 V2 2
_——;——— al(l - 1r—>+ az-a3<} + > sin a cosa2
L —(87)

,_\‘j
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The following notation will be introduced for con-_

venience:
4 A.E
C1 = 11 sinzal COSal (88)
L
4 A_E
C2 = —22 sinza2 cosa, (89)
L

Using these equations the spring strain energy can be com-

puted as
Ul = 1/2 [Rlyl + Ryy, + R3y3]

- B 2 2 2 (90)
T[Cl(al + 2a1a3 + 2a2 + a, )

2 2 2
+ C {al (3-2/f)+2a2 -2a1a3+a3 (3+2/5{}

2

For a virtual displacement of dak the following

equation is again valid

IW
aal dak = oU
k

sa

U
k sa

da, + —= da (91)

k K k
As formerly stated there is a clear distinction between
symmetric and antisymmetric buckling modes. Therefore in
this case only virtual displacements dak which are symmetric
modes can be applied and the following two equations are

obtained.
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2 u4E I
Pr a, = t ¢ a, + Bi|C,(a,+a,) + C a, (3-2/2) - a (92)
2L ‘1 3 %1 1'"1° 73 2 1 3

2 L
sz 14EtIC
g3 25 = 91___3_— a3+3[§1(al+a3)+c2 a3(3+2/§) -a, ] (93)
2 L

5.1.2 Symmetric mode shape (y2 < yl)

Again, from Fig. 15 the following reaction

forces are obtained

a b
Rl = [AT1 + AT2 ] sinal B + ATZ sina2

_ b b _ a a
R2 = - [A'.l‘2 +AT3J sinm‘,2 [AT2 + AT3] sinal B (94)

a b
R3 = [}T4 + AT3 ] sina1 B + AT3 sina2

Following the same procedure as before the following two
energy equations are obtained

w4E I

2
%_ ____t__f,;; a, +4C; 3(1 )a1+c2[(2/7 -3)a, +a,) (95)

2 14F I
tCg1a J*+4C B(1+ +C. [a -(2/7 +3)a.] (96
2L 3 aztCyla azl  (96)
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5.1.3 Antisymmetric mode shape

a
R, = B(AT1 + AT2 )} sina

1 1

a

R 2

= (-AT,® B =~ AT3a) sina (97)

2 1

a
R3 = (AT4 + AT3 ) sinal
For the antisymmetric mode there is only one vir-

tual displacement possible, namely, a displacement in the

second mode.

4Pw - " EtIc 16
2L %27 T3 )

(98)

+Cy B[al(/7—1)+2a

2+a3(/741)]— [al(V2¥l)—2a2+a3(/741)?}

5.1.4 Fourth mode shape

The fourth mode shape is independent of the

tention ties and the following energy equation is valid

2 T E I
2 L

5.2 Buckling theory and optimization

For the optimum design the tension ties must be
arranged in such a way that the first, second, third, and

fourth buckling modes occur at the same buckling force P,
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which is, in this case,rthe solution of equation (99). So
far, it has not been proved which set of equations, (92) -
(93) or (95) - (96), is applicable, but the values of aj.,
3y, and ay can be found, and it can be checked easily

whether the assumption Yy > ¥ OF ¥, € ¥ is valid.

5.2.1 Symmetric shape (y2 > yl)

For the assumption that Y, > ¥y equations
(92) and (93) together with equation (98) and (99) give a
system of four equations which can be solved. Introducing
the solution of equation (99) in equation (92), (93), and

(98) yields

%? eal = B {El(al+a3) + Cz[a1(3-2/7) - a3] }

558- 0a, = C;{ Bla, (Y2-1) + 2a, + a, (YZ+1)]
(100)
- [al(./i-l) - 2a, + a, (/§+1)}}
%; 0a3 = B Cl(al+a3) + C2[a3(3+2/§) - all-}
where 4
T E, I
6 = EC_ (101)
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Nontrivial solutions are only obtainable if the fol-

lowing two sub-determinants are zero

2 Cl (1 + B) - 240 =0 {(102)
15 =
> 0 - B[Cl + c2(3~2/2):| B(C2 - cl)
= 0
B(C., - C,) 63 o - B[c_: + C (3+2/§'ﬂ
2 1 Va 1 2
(103)
In solving these two equations the following is
obtained
12 4.875 I%E -2.4609375
C., = =<0 C = 0
1 148 2 B _0.511643
i¥g -

and, for the two different cases under consideration

m = 4 C1 = 60 C2 = 2.01297 ¢ (104)

m= 3 C, = 860 C

1 = 0.93762 o (105)

2

Introducing these results in equations (82) and (100)

leads to the following

m= 4 a; = 3.336734 ay and Y, ~ ¥y = -0.72977 a,

(106)

m= 3 a; = 1.04897 a,y and Yy - ¥, = -1.399857 ag

(107)
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For a positive deflection, a, must have a positive sign, so
that for both cases Yo =¥ ¢ 0. That means Y, cannot be

larger than Yy and the solution is physically impossible.

5.2.2 symmetric shape (y, < y;)

In this case the following two sub-deter-

minants must be zero

2¢, (1+B) -240 =0 (108)
15 /Z
22 0-4c; B(1-4F) - c,(2/7-3) -c,
=0
2 83 o-1c, B(1+ED)+ c, (2/2+3)
(109)

For three and four tension tiesvthis results in

m = 4 C; = 6 0 ¢, = 13.11419 o (110)

m= 3 C, =806® C, = 2.805837 o (111)

2
Introducing these results in the energy equations

m= 4 = 4.82033 a; and y,-y; = -0.29521 a; (112)

m= 3 a, = 0.851514 aq and YooYy = -1.4577 aq (113)

Again, it is obtained that Yo~¥p < 0, which agrees with the

assumptions made. Equations (110) and (11l1) are



therefore valid.

5.3 Reaction forces

To calculate the optimum weight, the maximum values of
the reaction forces Rl, Rz, and R3 are necessary and should

be calculated as functions of the buckling load P.

5.3.1 Reaction forces for the symmetric mode

In this case a, = 0 and the equations for the
reaction forces can be written down with the help of

equation (94).

R, = cl[al(/I-1)+a3(/?41)]B+c2[51(1-42)_33(4;.+1)]

R, = cl[al(/7>2)+a3(/742)]B+02[al(/7—2)+a3(/2+2)

Ry = Cl[al(»/?'—l)+a3(/2'+1) ]B+C, [al (1--'/7-2-)-a éz +1):|

For the two different cases of four or three
tension ties the values Cl, C2, Bl’ and a3/al have been
calculated previously and therefore the reaction forces can

be found as linear functions of ¢ and a .

- = = « l
m 4 B=1 Cl 6 @CZ 13.11419 9;a, = I 82037 A

Ry = R, = 4.687027 0 a

3 1

R, = 0.8715523 0 a (114)

2 1
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m= 3 B=1/2 C, = 86, C, = 2,805837 0;a; = 1.174379 a

1

2 3

R, = R = 8,194398 o a;

(115)

R =-4.,088532 0 a

2 1

5.3.2 Reaction forces for the antisymmetric
mode

From equation (97) the reaction forces

are obtainable as

Ry = Cy [al(/f;l) + 2a, + a3(/§4l)]

2

, =-cy3[ay(Z v 2, + ay(Z +0)] +[ay(F ) -ay0a,(0)

Ry = C; [al(/f—l) - 2a, + a3(/541)]

3

Independent of the number of tension ties it is ob-

tained that

= -0.171573 a

as 1
Therefore
me= 4 Rl==—R3-=12(-)az
= (116)
R2 0
m = 3 Rl = - R3 = 8¢ a2
(117)
R2 = 40 a2



5.3.3 Reaction forces as functions of buckling load P

As in equation (72) an assumption for the maxi-
mum deflection must be made. Introducing the same value as
for the case of a column with one strut results in stresses
in the tension ties of nearly three times the yield stress
of the chosen material. After some trials it is found that
the tension stresses reach the yield stresses of the tie
material for values of P/Lz, which are calculated for the
highest stresses, if a; = L/400 for m = 4, and a, = L/800
for m = 3,

Assuming, furthermore, that the reaction force
Ry is the same for the symmetric and antisymmetric mode
gives a constraint for the magnitude of a,.

From equation (99)

2
0 = Pn
6 T
With these assumptions
m= 4 a; = 2.5 1073 1 a, = 0.976463 1073 1
(118)
R) = 7.2279847 107 3p R, = 1.3440432 1073 p
m= 3 a, = 1.25 1073 1 a, = 1.279749 1073 L
(119)
R, = 6.318396 10 2 P  R. = 3.1525151 10 3 p

2



5.4 Weight assumptions

The weight of the assembled column consists of
parts. A sketch of the parts is shown in Fig. 16.

5.4.1 Weight of the column

P
w
e
L3 g

5.4.2 Weight of the long wires

171
COS a,

mw, A, L

and with equation (88)

C, L

T S
4 s8in @, COSaqy

171

w2 m w1 Cl

Fﬂ

2 2
4 El L sin @y cos” ay

five

(120)

(121)

(122)

Again this results in a constraint on ¢ in the tension

ties.

k! 23 -
Ul 7 _T 7/5-4' 32 + T 7/2] COSul Slnal

']
2]

4Ey) [a) 3 s
— L7 Y2 + a, + - /2-al+a4 cosa, sinal

(123)

(124)
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4E, a2, ay

o3 = —Z~ v Y2 - a, + > /2-al+a3] cosay sinal (125)
4E1 'al _ az _

04 = T I_T /2 - a2 + —2— 7/2J COSGl Sin(!l (126)

5.4.3 Weight of the short wires

mw, A, L
Wy = 2 2
2 cosa,
from equation (89)
C, L
2
Exhp =

L] 2 V
4 sin ay cosa2

W mw, C
_% = 2 22 5 (127)
L 8 E2 L sin a, cos”a,

The constraints for ¢ are, in this case

4E, a; 8,4
0 = == {?1 -a; - 5v/2 - a, - jrl?] sina, cosa,  (128)

4E2 al/_ aj
0, = _E—.{él -ay; - 52+ a, - 1;%5] sina, cosa, (129)

46



5.4.4 Weight of the strut assembly at x = L/4
and x = 3L/4

As in the case of the column with one strut
assembly, the struts are assumed to be simple columns with
circular cross section and shall buckle in the elastic re-
gion of the material used.

The optimum buckling load for these simple

columns is given by

2
R 3 rk,E R
12 = -89 3 and g = { 2 t;] (130)
hl wsz 8 h1
Introducing
hl = %%-tanal
yields
2!k E
g = _7 (131)
tan a

The weight of the strut assemblies is now

I 1 L tana
at x L/4 W4 = (m+l) w —= --T——l

R L tana
T . (m+l) w 3 1

at x = 3L/4 W
/ 4 o 4
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With equation (131) and the consideration that Rl = R3

27k ,E

I 2/3 1/3
W W W R
4 _ "4 4 _ml /R 1 5/3
;5 T+ —3 5 w(L?> {T———jﬂ tana, (132)
2

5.4.5 Weight of the strut assembly at x = L/2

Here
2 1/3
R 3 nk,E R
2 8¢ 2 2
- = —> and g = { 3 —;] (133)
h wsz h
Introducing
L
h = T (tana1 + tanaz)
yields
~— 2 1/3
2ﬂk2E R2
o = —_ (134)
(tanu1 + tana2)2 L2

The weight of the strut assembly is therefore

w5 (1) R, 2/3 5/3 1 1/3
m+ —_—
—_ = w(—%) (tanal + tanuz) [é’szZ]

(135)
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5.4.6 Weight of the whole column with three struts

As can be seen from Fig. 16

=

1) 1%
W 1 2 3
L3 L3 L L L L

£

P
Ef . m Wy cy m v, C2
g E,- 2 E

R 2/3 1/3
(m+1) ( 1 1l 5/3
+ —5- W — (tana,)
;7 {ZwszzJ 1
2/3 1/3

wsz

R
+ __Z___(m+l) w<172- [:2—1.7:] (tanu1 + tana2)5/3 (136)

Assuming again that the tension ties, the column and the
struts, are all made from the same material, then the

weight equation can be simplified to

+ m 1 + 2
8E. L 2 2 2 2
sin &y cos”a, sin a, cos”a,

P
IZ 2 C C
o}

W . W
L3 1

2/3
sl 1 1/3|/ Ry 2/32 5/3,<R2 (tmul+tanui{3
T p) L—f (tanal) I?‘

1 4L sinza1 cos oy 2 8L sinza2 c052u2

(137)

49



5.5 Optimization

Since Cl' C2, Rl' and R2 are functions of P only,
the weight equation is again a function of P/L2 with the
angles ay and @, as parameters. For the optimum design the
partial derivatives of equation (137) with respect to ay

and ay must be zero,

= 0 (138)
dal <—§> a2 <_3_>

Differentiating equation (137) the following two equations

are obtained.

L2 1/3
mey 2sinta b5 ey 1 cang. 2/3
B L 3 3 ) 2 ana;
1l c05a1 sin ay 2wk E J

2/3

2/3
—g) (tanal + tanaz) = 0 (139)
2/3
mc, (2sin?a,-1) 5 (m+1) . /3 2/3
E. L 3 + 3 5 —? (tana +tana2) = 0
1l COSstin a, 2wk2E
(140)

For further calculations all trigonometric functions

are expressed as tangent functions. It can be verified that
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V A

2 4
2 sin“a -1 L tan a -1 (141)

sin3a cosa tan3a

Equations (139) and (140) are now

3 2/3 2/3 2/3
tan @y R1 2/3 R2
C1 = 7 _____T__'2<—7 tana1 5 (tanal+tanaz)
l-tan ay L L
- -(142)
u 2/3
tan3a2 R2 2/3
C2 - 2 7 if———i——-<-%> (tana1 + tanaz) (143)
-tan a L

2

where Z is defined by

1/3

E, L
7 = 5(?;1) 1 5 —%T_ (144)
Zﬁsz

For further calculations the cases m =4 and m = 3 must be

considered separately.

m= 4

With m = 4 and k2 again chosen as 0.4, equation (144) yields

2 = 0.7661367 EX/3 L

From equation (118)

R, = 7.2279847 1073 p

1

R, = 1.3440432 10~3

2 P
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and from equation (110)

P
C1 = 6 0 = 3,7011018 I
C2 = 13.11419 © = 8,0894920 %}

With these values equations (142) and (143) can be simpli-
fied, and after some algebraic manipulations the following

two equations are obtained.

1—tan4u1 2/3 2/3
F e = 1,547667 tana1 + 0.2520965(tana1+tanu2)
tan al
(145)
4 3/2
3/2{1-tan a,
tanal = 0,02438888 F - tana2 (146)
tan o,
1/3
where J%
E
m= 3

For m = 3 equation (144) yields

1/3

Z = 0.8172125 E L

From equation (119)

R, = 6.318396 10 ° P

1

R, = 3.1525151 1073 p
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and from equation (111)

p
Cl = 8 0 = 4,9351108 I
C2 = 2.805837 6 = 1.7307814 %}

With these values, two equations are obtained which must

be solved for ay and a,.

1—tan4al 2/3 2/3
F 3 = 1.1318870 tanu1 + 0.3560137(tanal+tanaz)
tan al
(147)
4 3/2
3/2{ 1-tan a,
tana1 = 0.34563669 F — - tanu2 (148)
tan 02

Equations (145), (146), (147), and (148) must be solved
for a relatively large number of values of F, and because
equations are not independent the actual calculations
would be very involved. It is therefore advisable that a
computer be used to solve the problem. The solution can

be obtained by using a "Newton Iteration Process."”

y(i)

- ST (149)

LEFD )

Introducing now the notation

X = tanuz

Xl = tanal



me= 4

(Equation (145) can be written as

2/3
y = -x) + —tg - 2220007 7 1.0928455( % - x)  (150)
xl X
3x
' = _a.Y. _3_1 __,i
Y X axl Ix
2/3 1.54 -1/3
- ox - 3 2/3 1.547667 N7 v L 1.0928455(1- -3
1 3 - 1 X ")
(151)
From equation (146), 3Y and xl' can be expressed in x.
32, _ 4772
x| = 9.025389 F | Loy - x (152)
. 32 [, _ 412 5
x,' = 3/2 9.024389 F B (i + ;i> -1 (153)
m= 3
In the same way equation (147) becomes
2/3
y = -x; + b - 1131887, 0 o.1753537s(£§ - g) (154)
X
1
-1/3
. 3 _2/3 1,131887 , 3
y' o= -xy - - X, %y +o.17535375(;- )
1 ) 3 1 X 3

(155)



And with equation (148)

3/2 [l_xzar/z
X, = 0.34563669 F 3 - X (156)
* 4 1/2
x,' = 3/2 0.34563669 F>/2 lil;‘(—j"—jl <1 + ;3-4-> -1 (157)
For an initial assumed value of x the values of
X, and xl' are obtainable. The three values x, X) s and

xl' allow the calculation of y and y'.

With equation (149) a new value of x is obtained.
This procedures has to be repeated until a specified
accuracy of x is reached.

For the calculation of the cross sectional area,

the expressions

1 and 1

2 L] 2
sin a, cosa, sin“a, cosa,

are necessary. Therefore they have also been calculated
by the computer. The computer program listed is in
Appendix II of this paper.

With the optimum angles a; and a, calculated, the
weight of the column with three struts can be obtained and
plotted against the structural index to give the desired

results.



~ SECTION 6

CALCULATIONS AND RESULTS FOR THE COLUMN WITH ONE STRUT

6.1 Material properties

For the application of the theory developed on the
previous pages a typical aluminum-alloy and steel are cho-

sen.

Al-alloy 2024-T4-A1-Alloy
(material properties, see Fig. 10)
Steel Stainless steel 3/4 hard

(material properties, see Fig. 17)

From Ref. 6 the following material data for the ten-

sion ties are found.

. .3
Al-alloy cyield = 60 (ksi) w= 0,10 (1b/in.")

E = 10.5x10° (psi)

3

Carbon steel cyield = 130 (ksi) w= 0.283 (lb/in.")

E = 28.3x10% (psi)

6.2 Application for aluminum-alloy

6.2.1 Four tension ties,

With m = 4 and B = 1 equation (79) takes the

form
11.9197 (158)

T e 1
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Considering the fact that at the instant of
buckling the tension ties are stress free as long as there

is no lateral deflection, this allows the definition

P=gA (159)

where A is the cross section of the column.
With this relation equation (75) can be modi-
fied and gives a relation between wire and column cross

sections.

A -5
7% = 8.45>4 10 o (ksi) (160)

2
sin“a cosa

The weight equation for this particular case

is obtained from equation (77)

2/3 5/3
W P 0.37766 P 1 2.51037 p
= + + = (tana) w
;§ crL:Z 106 ;7 Sinza cosza 106 ;7
(161)

Now all equations necessary for the solution are obtained
and the steps which are followed in solving the problem are
shown by solving for one value of o.

For a stress of o = 20 (ksi) Fig. 10 gives

T =1.0 (162)

Equation (40) gives now the structural index for the simple

column

(1)

_Pz_ = 0.45070 (psi) (163)
L
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In the same way equation (61) gives the struc-
tural index for the optimum column with one strut.
p (I1) .
;7 = 0,.11267 (psi) (led)

Now f(a) can be calculated and Fig. 13 gives an optimum

value of

o = 22.65° (165)

The weight of the simple column can be calculated

by introducing equation (163) in (41)

N = 2.2535 (1b/in.3) (166)

L
With equations (164) and (165) all information
is obtained to calculate the weight of the column with one

strut. Equation (161) yields

L = 0.6107 (1b/in.?) (167)

L

Equation (160) gives

2

Al _
== 1.2355 10 (168)

The results for different values of ¢ are noted
in Table 1 in Appendix I.

The constraint for the tension ties is

2 El cosa sina
g. = (169)
150

58



N

For the example
0.2605 < cosa sina < (0.4655
or

= 36.47 (ksi) g = 65,17 (ksi) (170)

g max

min
oyield for aluminum wires goes up to 70 (ksi), so that the
wires are safe.

6.2.2 Three tension ties

With m = 3 and B = 1/2 equation (79) can be

written as

6.3572 (171)

f(q) =
°f " p2 173

Equation (75) in modified form writes

A -5
A= 18.3208 10 o (ksi) (172)
sin“a cosa
The weight equation is
5/3 p2/3

W p 0.56649 Pp 1 2.0083
3wzt e M Sy g (tana) =
L oL 10 L® sin“acos”a 10 L

(173)

The calculations are similar to the calculation
in Section 6.2.1. The results are noted in Table 2 in the
Appendix.

The stresses in the tension ties are

Omin = 42 .77 (ksi) Omax = 67.55 (ksi)
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The tension ties are therefore safe.
The various results for a column with one strut,

made from aluminum are shown in Fig. (18), (19), and (26).

6.3 Application for steel

6.3.1 Four tension ties

With equation (79)

£ (a) 16.588 (174)
(P/Lz)
From equation (75)
A -5
3% - 3.1218 10 (ksi) (175)
sin“acosa

The weight equation for this case is

2/3 5/3
w P 0.14012,/P 1l 1.2958 /P
X e w + + (tana)
L3 oL2 106 \;?)sinzacosza 106 \;7

(176)

The results are noted in Table 3 in Appendix I.

The stresses in the tension ties are calculated

i

as

3 (psi) o .. = 176.485 10> (psi)

g = 78.635 10 max

min

3 (psi), so that for

oyield for steel goes up to 158 10
higher values of P/L2 (over 2.0) the deflection should be

restricted to a value of L/200.



6.3.2 Three tension ties

The angle a, the cross section relation Al/A,

and the weight W/L3 can be calculated using the following

equations:
_ 8.84693
fla) = —2—17—3- (177)
(P/L°)
A -5
1 7.0261 10 (ksi) (178)
sin“a cosa
WP, 0.21018/P> 1 , 1.03695 (tani{-”( pj/3
;3 oL2 106 \;7 sinzucoszu 106 ;7
The results are noted in Table 4 in Appendix I. (179)
The tension stresses are calculated as
3 . k
g = 91,178 10~ (psi) g = 182,737 10~ (psi)

min max
Therefore again the deflections of P/L2 > 2.0
should be restricted to values of L/200.
The various results for a column with one strut,

made from steel, are shown in Fig. (20, (21), and (31).

. .

61



M

N

SECTION 7

CALCULATIONS AND RESULTS FOR THE COLUMN WITH THREE STRUTS

7.1 Optimum angles

With the computer program given on previous pages, the
angles ay and a, are obtained for various values of F,
which are functions of o.

The computed results are printed in Appendix II.

7.2 Application for aluminum-alloy

7.2.1 Four tension ties

With the definitions of C1 and C, [equations
(88) and (89)] and the results for these variables for the
various cases, the cross sections are obtainable. Intro-

ducing E; = E, = 10.5 10% (1b/in.?%) yields

A

7} = 0.0881215 10”3 o (ksi) (180)
sin alcosu1

A, -3 o (ksi)

5= = 0.1926069 10 (181)

sin azcosu2

The weight can be obtained from equation (137)
and is written here in such a form that a computer program

can be set up easily.
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N __F

i% 105 = 103 0.105 f%[}} N 0.35;;8588 . 0.38;:3295}
N o.19ig3222 (Fy + ) (182)
where
F, = 10° sin®a; cos®a, (183)
F, = 10° sin2a2 c082u2 (184)
Fym= 2 tana15/3 <Z¢3%%%§£1. i%)2/3 (185)
F, = (tana; + tana,)°/? (143%%%333 f%)z/B (186)

Again the computing of all necessary values for
the solution of the problem are indicated for one example.

Choosing again a stress of ¢ = 20 (ksi) the
structural index for the optimal column with three struts
can be calculated from equation (98).

p (IV)
=5 = 0.028168693 (187)
L

With the help of equations (150), (151), (152),
and (153) the computer calculates the optimum angles ay
and @, using the above value of the structural index and
the modulus of elasticity for aluminum to calculate the

value F. The following is obtained:
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a, = 25.420° ' (188)

@, = 36.012° (189)
The calculation of Al/A and A2/A can be done
now with equations (180) and (181).
A/A = 1.05902 1077 (190)

A,/A = 1.37758 1072 (191)

With this information given, the computer

solves equation (182)

W 6
;3 10" = 0.16701 (192)

The program for the calculation of the weight

is printed in Appendix II for all different cases, dis-

cussed in the next three sections.

The results for various values of P/L2 are
noted in Table 5 in Appendix I and in the tables containing

the computer results (Appendix II).

7.2.2 Three tension ties

For this case the following two cross section

relations are obtained

A;/A = 0.117495 1073 2 (ksi) (193)
sin ay 00531
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3 o (ksi)

.2
sin“a, cosa,

(194)

A,/A = 0.041209 10~

The weight equation is written in a similar

form as equation (182).

W 6 3 Pl 0.35250792 0.618136095]
100 = 10 0.105 - + == +
L3 57[° F1 Fy
0.15338577
+ 7 (F3 + F4) (195)
10
where
3 2 2
F, = 10° sin @) €08%ay (196)
F2 = 103 sinzuz cosza2 (197)
2/3
- 5/3 {6.318396 P
F3 2 tanal (T ;7) (198)
2/3
F, = (tanas. + tana )5/3 3.1525151 P (199)
4 1 2 103 ;7

The results are noted in Table 5 in Appendix I
and in the results of the computer calculations (Appendix
I1).

The various results for a column with three
struts made from aluminum-alloy are shown in Figs. (22),

(23), (24), (25), and (26).

7.3 Application for steel

7.3.1 Four tension ties
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Introducing E; = E, = 28.3 10%(1b/in.?)

yields here for the cross section relations

A .

7% = 0.032695 10> ¢ ékSI’ (200)
sin @y COSal

Ay -3 (ksi)

- = 0.0714619 10 g (201)

.2
sin“a, cosa,

The weight equation reads

M 108 = 103 0.283 ‘%%[3_.+ 0.13078095 , 0.14%78254]
L L“L¢ 1 2
¢ 0:098999204 (1, byl (509

10
where Fl, Fz,.F3, and F4 are defined as in equations (183),
(184), (185), and (186).

The results for various values of P/L2 are
noted in Table 6 in Appendix I and in the tables containing

the computer results (Appendix II).

7.3.2 Three tension ties

The cross section relations are

A ,
7} = 0.043594 1071 : (ksi) (203)
sin“a, cosa
1 1
) -3 o (ksi)
£ = 0.015289 10 (204)

2
sin a, COSaz



A

The weight equation is

¥ 106 - 103 0.283 3%[5_ » 0:13078916 o.oz§93438J
L L 1 2
0.079197485
+ 1o (F; + F,)» (205)

where Fl, F2, F3, and F4 are defined as in equations (196),
(197), (198), and (199).

The results for various values of P/L2 are
noted in Table 7 in Appendix I and in the tables contain-
ing the computer results (Appendix II).

The results for a column with three struts

are plotted in Figs. (27), (28), (29), (30), and (31).

7.4 Check of the tension stresses in the ties

7.4.1 Tension stresses for a construction with

four tension ties

From equation (118) it can be seen that
a, = 2.5 1072 1L, a, = 0.976463 107> L, a, = 0.207455 a,.
1 2 3 1
In looking at equations (123), (124), (125),
and (126) it can be seen that only oy is critical. It is

obtained

-3

= 12.44385 10 E1 cosa; sina, (206)

%

Equations (128) and (129) again yield only one critical

stress 02 .
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“/ o, = 10.462488 10 ° E, cosa, sina,  (207)

The maximum values of the product cosa sina

can be calculated from the computer results

Aluminum
(cos<x1 sinal)max = 0.,48059 and g = 62.794 (ksi)
(208)
(COSa2 sinaz)max = 0.49867 and g, = 54.782 (ksi)
(209)
Steel
(cosal sinul)max = 0.48223 and oy =169,822 (ksi)
(210)
. (cos<:2 91na2)max = 0,49882 and o, = 147.650 (ksi)
(211)
7.4.2 Tension stresses for a construction with
three tension ties
From equation (119)
a, = 1.25 103 1L, a, =1.27975 10> L, a, = 0.58789 a
1 : ’ 2 * r“3 * 1

Again there are two critical stresses oy and 95

° = 10.73055 10>

1 E1 cosa, sinal (212)

0, = 0.41028 10"3 E2 cosa, sinu2 (not critical)

(213)

A
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With the maximum values of cosal sinul the
maximum tension stresses are obtained as
Aluminum

(cosa1 sinal)max = 0.48566 and 0 = 54,720 (ksi)
(214)

Steel

(cosa1 sine = (0,48428 and = 147.064 (ksi)

l)max %

(215)

The results indicate that the maximum de-
flections are chosen in such a way that the tension ties

are never loaded beyond their yield strength.
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SECTION 8

DISCUSSION AND CONCLUSIONS

The weight curves Figs. (29) and (31) indicate that
for small values of the structural index the column sup-
ported by tension ties is up to 50% lighter than the sim-
ple column. To demonstrate for which values of the struc-
tural index a wire supported column configuration is
advisable, a weight savings factor is defined as

weight of the simple column - weight of the wire supported
column

weight of the simple column

Using the weight curves in Figs. (29) and (31),
respectively, this weight saving function can be found
graphically and is plotted in Figs. (32) and (33) for the
two used materials. There is hardly any difference be-
tween the weight of the column with three and four ties,
so that the weight figures and the weight saving figures
are drawn without the distinction between a column with
three and four ties.

During the calculations it was found that the
angles a are always smaller than 45° and in a very reason-
able region. The cross sectional area of a tension tie is
usually from one to five percent that of the central

column.
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Both values (the tie angles and tie cross sections)
increase with increasing values of the structural index,
where the greatest rate of change occurs for very small
values of the structural index. This indicates that the
additional weight from the tension ties also increases
rapidly for these values of the structural index [Figs.
(18),(20),(22),(23),(27),(28)]}.

If typical design parameters (P and L) are given,
a decision must be made whether a column with three or one
strut is chosen. When the weight curves indicate signifi-
cant weight savings and weight savings are important for a

particular problem, it seems reasonable to calculate the

column with three struts first. Except for large values of

P and very large values of L, the wall thickness of the
central column usually is too small to be manufactured.
In this case the column with one strut must be used,

To indicate how the calculations in this paper can
be used, a typical practical example is calculated.
Assuming that a load of 1000 pounds has to be carried over
a distance of 10 feet and that an aluminum construction
with one strut and three tension ties is chosen. This

allows the calculation of the structural index:

p/L? = 0.0695 and /L% = 0.2635
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Fig. (18) gives immediately

a = 25,15°

Ay

-2
yulla 1.73 10

From the expression for the second buckling mode, equation

(61), the following maximum stress is obtained

3/2
3 "k, £y

g = P
12 2

for the given values

—f§7 = 16.34 (ksi)

T

To evaluate ¢ an iteration is usually required. In this

case however Fig. (10) yields tr = 1, so that

g = 16,34 (ksi)
From equation (159) it is obtained

2

= 0.0612 (in.")

An_P-= 1000
o 4

1.634 10

Now the cross section of the tension ties is

A, = 1.73 107% A = 0.1059 10~2 (in.?)

and for a circular cross section

D, = 0.0372 (in.)

1
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From equation (39) it is obtained

5 1/3
D k,” E
r P/L

With D/t and A given, the wall thickness and column dia-

meter D can be calculated

t = 0.715 1072

{(in.)
D = 2.825 (in.)

The result for t indicates that a column with three struts
would be impossible for this particular case.
The required pretension in the tension ties is

obtained from equation (12). Introducing in this equation

sin 91 = COSa

€1 = €2 ¥ 7 Cosa

the following simple equation is obtained

P
T01 = Ac = 16.53 (lbs)
3 cosa + EI

The fact that the weight of the optimal wire
supported column is nearly independent of the number of

tension ties leads to the conclusion that an arrangement
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of four ties does not bring any advantages, so that from
the manufacturing point of view the column with three ten-
sion ties 1is preferred. Figures (29) and (31) show that
for small values of the structural index P/L2 the column
supported by tension ties has a significantly smaller
weight than the simple column. Nevertheless it should be
mentioned that the calculated optimum weight for very small
values of P/L2 cannot be reached in practice because the
optimum ratio D/t reaches values which give dimensions of a
column which is nearly impossible to fabricate. As is
often the case in calculations in optimum design, the re-
sults presented in this paper have to be considered as the

theoretical limit.
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Tables and Figures
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TABLE 1 (a)
Column with one strut, four tension ties,

made from aluminum-alloy.

N 2 (1) y, WL’ !

[k:i] | [Pp/sl;l] /P-/LZ(I); [Pp/sLi]( VX 1D simp{e cozlsumn 5

‘ | [(1b/inch™] %
5 0.00704 0.08391% 0.00176‘ 0.0419 0.1408
10 0.05634; 0.2374 l 0.01408; 0.1187 0.5634
15 0.19014| 0.4365 | 0.04753; 0.2182 1.2676
20 0.45070| 0.6713 0.11267 ;. 0.3356 2.2535
25 0.88028{ 0.9382 0.220071 0.4691 3.5211
30 1.6527 1.2855 0.41317} 0.6427 5.5090
35 3.5038 1.8718 0.87595} 0.9359 10.0109
40 11.1626 3.3410 2.7906 1.6705 27.9065
45 53.2218 7.2953 (13.3054 3.6476 118.2706

50 ]185.1575 |13.606 46,2894 6.803 -
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TABLE 1 (b)

Column with one strut, four tension ties,

made from aluminum-alloy.

o 3
[ksi] a [lbjiich3] A, /ax10°
5 15,70 0.0366 0.5997

10 19.20 0.1488 0.8278
15 21.20 0.3395 1.0403
20 22.65 0.6107 1.2355
25 23.85 0.9645 1.4136
30 24.95 1.5225 1.5726
35 26.38 2.8124 1.6729
40 28.72 7.7527 1.6705
45 31.83 32.709 1.6098
50 34.30 102.356 1.6115
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TABLE 2
Column with one strut, three tension ties,

made from aluminum-alloy.

[kei] Lo W(LB 5 A, /Ax10?
| [lb/inch”) .t ]

5 18.83 0.0367 0.8573

10 22.30 0.1499 1.2694

15 24.45 0.3429 1.6266

20 26.12 0.6185 1.9438

_ 25 27.45 0.9794 2.2420
30 28.70 | 1.5500 2.5080

35 30.22 | 2.8392 2.6842

40 L 32,50 | 7.9345 |  2.7782

| 45 i 35.42 % 33.5885 f 2.7804
| 50 | 37.40 °  105.4972  2.8851
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TABLE 4

Column with one strut, three tension ties

made from steel.

[ksi] a® [1by{i:h3] Al/Ax102
5 14.45 0.01435 0.5809
10 17.35 0.05808 0.8254
15 19.40 0.13243 1.0099
20 20.80 0.23722 1.1886
25 22.0 0.37319 1.3461
30 22.85 0.54095 1.5125
35 23.70 0.74073 1.6575
40 24.45 0.97304 1.7970
50 25.72 1.53041 2.0650
60 27.0 2.50986 2.2890
70 28.27 4.0809 2.4828
80 29.35 6.2036 2.6766
90 30.35 9.1587 2.8620
100 31.35 13.3948 3.0294
110 32.30 19.8377 3.1932
120 33.43 32,3650 3.3186
130 35.15 72.7204 3.3607
135 37.80 359,551 3.1865
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TABLE 5

Cross-sections for a column with three struts

made from aluminum-alloy.

[kgi] Al/Axlo2 A2/Ax102
a. Aluminum, four tension ties
5 0.47614 0.49210
10 0.69934 0.80191
15 0.89810 1.10036
20 1.05902 1.37758
25 1.21974 1.65809
30 1.36118 1.92900
35 1.46380 2.18063
40 1.49475 2.39816
45 1.48305 2.60242
50 1.52370 2.83670
b. Aluminum, three tension ties

5 0.58023 0.28604

10 0.85935 0.42299
15 1.11027 0.52447
20 1.31643 0.61119
25 1.52328 0.69771
30 1.70715 0.77123
35 1.84640 0.81951
40 1.90227 0.81966
45 1.90997 0.78856
50 1.91193 0.78987

82



TABLE 6
Cross-sections for a column with three struts,

four tension ties, made from steel.

ot A, /Ax10° A,/Ax10°
5 0.28273 0.26323
10 0.40425 0.40324
15 0.50193 0.52712
20 0.58822 0.64402
25 0.66732 0.74832
30 0.74127 0.86311
35 0.81176 0.97527
40 0.87901 1.08232
50 1.00729 1.29371
60 1.11332 1.48636
70 1.20580 1.68601
80 1.29687 1.88009
90 1.38358 2.08258
100 1.46535 2.26512
110 1.54110 2.45446
120 1.59827 2.63642
130 1.61218 2.79976
135 1.50938 2.83423




Cross-sections for a column with three struts,

TABLE 7

three tension ties, made from steel.

[k:i] Al/Ax102 A2/Ax102
5 0.34190 0.17257
10 0.49116 0.24423
15 0.61226 0.30337
20 0.72005 0.35022
25 0.81920 0.39497
30 0.91945 0.43648
35 1.00146 0.47557
40 1.08718 0.51278
50 1.25084 0.58295
60 1.38845 0.63868
70 1.51025 0.68539
80 1.63065 0.73089
90 1.74650 0.77342
100 1.85632 0.81226
110 1.95833 0.84622
120 2.04084 0.86828
130 2.07327 0.86065
135 1.96292 0.77879
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strut plane j before deflection

— — — - strut plane j after deflection (A g )J

FI1G.5: peflection geometry at the plane of strut J.
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Computer Programs and Results
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18J08B
$1840

$IBFTC 3TIES

98
99

100 FORMAT (1HO,10X,F10.7510XsF6.3,10X,F6.3,10X4F10.5,10X,F10.5 )

1

$J0B CC694G 002 015 HAGEN MAUCH BOOM PROBLEM
$EXECUTE 18408

VERSION &

B BOOM o L

BEGIN COMPILATION o M1l S

FORMAT (1H1)
FORMAT (F10.9)

J0L=0,00001
WRITE (6,98)
READ (5,99)F
Bl= 0.3456367
B2=3.0+81/2.0
B3=1.131887
B4= 0.17535375

10

85=2.0+B3/3.0

A=2,0/3.0_

B=1.0/3.0

X=0.1 e,

XA= (l.0-XeXaXaX)/{(XaXuX)

X1l= Bl1#FeSQRT{(F)=xXA#SQRT(XA)-X

==X141,0/(X1#X1eX1)-B3eX1eoA/F-Bbe(1,0/(XnXeX)~X)

OPTIMUM ANGLE

Y1=X2+3,08X2/(X1eX18X1#X1)+B5eX2/(FexX1leeB)+84(]1.0+3,0/{XexXaXaX))

XAl=X-Y/Y1 R N L
IF (ABS{XA1-X}.LT.TCL) GC TO 500
X=XAl

A= _ATANIX1)

— - L1=1.0/(SIN(A3)«SIN(A3)=COS(A3))

S
.

GO 70 10
_ALl=ATAN(X1)»180.0/3.14159
A2=ATAN(X)#180.0/3.14159

A4= ATAN(X)

€2=1.0/{SIN(A4)=SIN(A4)=COS(AG))

WRITE (6210Q) FyALeAR+C1,C2
GO 10 1

3TIES 0 M17 S

122



$EXEC
$I18JO

$J0B CC694H 002 015 HAGEN MAUCH  BOOM PROBLEM OPTIMUM ANGLE

UTE 18J08B
8 BOOM

$IBFTC 4TIES

98
99

100 FORMAT (1HO,10X,F10.7410X,F6.3,10X,F6,3,10X,F10.5,10%X,F10.5

10

BEGIN COMPILATION 0O M09S
FORMATY {1H1)
FORMAT (F10.9)

TOL=0.00001
WRITE (6,98}
READ (5,99)F
Bl= 9.025389
82=3.0+81/2.0
B3= 1.547667
B4= 1.092845
B85=2.0#83/3.0
A=2.0/3.0
B=1.0/3.0

X=0.1 S
XAz (l.0-XsXeXaX)/{XuX2X)

Xl= BleFeSQRT(F)#XA«SQRT(XA)-X

X2=1.0+B2*FeSQRT(F)#SQRT(XA)#(1.0+3.0/(X*#X#X*X))
Y==-X141.0/{X1eX1#X1)-B3ex]lseA/F-B4#(1,0/(XaX2X)=X)

Y1=X2+43.00X2/(X1eX1eX1#X1)+B5#X2/(FeX1n®B) +B48{1.0+3.0/(XuXnXeX])

XAl=XxX-y/vy1 o
IF (ABS(XAl-X).LT.TOL) GO TC 500
X=XA1l

GO TO 10

500

Al=ATAN(X]1}#180.0/3.14159
A2=ATAN({X)#180.0/3.14159

A3= ATAN(X1)

A4= ATAN(X)
Cl=1.0/(SIN(A3)=SIN(A3)*COS(A3))

C2=1.0/(SIN(A4)*SIN(A4)*COS(A4))
WRITE (6,100} F,A1,A2,C1,C2
GO 7O 1

END o ;
BEGIN ASSEMBLING 4TIES 0 M15 S

)
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$JCB  CCe94G CC2 C15 KAGEN MAUCK BCCVM PRGRELFM WETGHT R
$EXECLTE TRJCH T
sIBJCe gccwe -
$IBFTC ¥TwR

BEGIN CCMPILATICN C ¥ 05 S

98 FCRMAT (1K1)
5G9 FORMAT (F14.04F16.CyF1C.CyI5,F12.0)
100 FCRMAT (1H0 10X F5.14F18.94F1Ce34F10.3,F15.5)

C1=5.0/3.0C

C2=2.0/3.C

WRITE (6,98)

GC TC (20421,22,22),A

2C B1=0.1307¢£098

B2=0.1427825%4

R3=0.C9869G2(4

B4=7.2276847

B5=1.34404732

Be=0.283
GC TC 30

21 Bl=0.3524¢58¢

B2=0.38483295

B3=0,162746C

B4=7.2279847

B5=1.344043?2

B&=0.105
GC 7L 3¢~

22 Bl=0.13078516

Be¢=0.02293438

B3=0.C079197485

B4=6.218366 R

B5=3.1525151

Be=0.283
GC 1C 3¢

23 Bl=C.2525(7¢2

B2=0.€618B136(C95

B3=0.15338577

B4s€.218396

B5=3,1525151

B&=C.10C5

30 A3=A1+3.14159/180.0

A4=42#3,14159/18C.0
GCl= SIN(A)

G2= SIN (A4)

G3=SQRT(1.,0-G1%G1)

G4sSQRT(1.0-G2#G2)
F1=1CC0.C#G1leGl#{1,C-G1l2Gl)
F2=1CC0,0#G22G2%(1.0-G28C2)

F352.0#(G1/G2)wsClu(P42AS/10CC,0)nu(2

Fas(Gl/G34G2/G4)»aC15(B52A5/1000.0) %%(C? .
XA=1CCO.C*P6'(A55(l.C/AC*BI/F1+82/F2)+BB*(F3*F4)/10.0)
WRITE (64,1C0C)A64A5,A1,A2,XA
GC TC 10
ENC

FEGIN ASSEMBLING NMTWBR 0 M1l §
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