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SECTION I 

REPORT COVERAGE 

This semiannual report covers the period from December 5, 1965 
to June 5, 1966. 
of operation. 

This research program is currently in its fourth year  
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' .  
SECTION I1 

STATUS OF RESEARCH 

Theoretical and analytical research on the effects of surface and 

body states upon the ca r r i e r  concentration and mobility in thin films has 

been completed. The results a r e  currently being applied to  experimental 

data and the conclusions along with the theory will be reported in the next 

annual status report (December 5, 1966). 

In the Semiannual Status Report (No. EE-4012- 104- 65U) for June 

1965 it was mentioned that we were initiating an investigation into 

electron tunneling devices where the electrode films were atomically 

rough. 

sandwich structure with unilateral properties. 

was the use of metallic whiskers, grown upon the cathode, t o  produce the 

desired surface conditions. 

during the past year,  we have developed a model for any electron tunneling 

device based upon electrodes which a r e  rough in t e r m s  of atomic lattice 

dimensions. 

a r e  included in Section 111. 

general problem of analyzing electron tunneling experiments will point 

the way to  successful device design. 

been submitted 

For  instance, a rough cathode surface should result  in a tunnel 

Our original suggestion 

As a result of our work on this problem 

The theoretical and experimental results of this investigation 

It i s  anticipated that this approach to  the . 

The material  of Section I11 has 

to  the Journal of Applied Physics for publication. 
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SECTION I11 

EFFECTIVE THICKNESS AND HEIGHT OF THE BARRLER 

FOR CHARGE TRANSPORT 

THROUGH ATOMICALLY ROUGH FILMS 

It has been suggested by many authors that if two electrodes are 

separated by sufficiently thin insulating films the predominant electron 

t ransfer  mechanism is  due to  the quantum-mechanical process of 

tunneling. 

derived expressions relating tunneling current and voltage by considering 

a rectangular potential bar r ie r  for the insulating gap and using the electron 

f ree  mass in both the metals and the insulator. Sommerfeld and Bethe [2 ] -  

were able to extend his work and establish mathematical expressions 

which were applicaue to  very low and very high voltage cases. 

extended the theory to  include the intermediate voltage range; however , 
certain anomalies which appeared in his work were la ter  corrected by 

Simmons [4]. 

This was f i rs t  considered by Frenkel [ 1 ] in 1930 when he 

Holm [ 3 ]  

This phenomenon of electron tunneling has received considerable 

attention in recent years  because of the possibility of designing electronic 

devices for amplification and as  transducers which rely upon this method 

of transport  in their operation. It w a s  the purpose of this phase of our 

research  to  investigate electron tunneling in thin film structures and t o  

derive a method of determining the metal- insulator work function and 

effective film thickness. 

Theoretical expressions for the electron tunneling current density 
. and the Schottky ejnhanced current density through thin insulating films 

form a set of transcendental equations in t e rms  of the effective bar r ie r  

thickness and height. 

characterist ics important thin film structure parameters can be calculated. 

From measured volt-ampere- temperature 

In insulating fi lms between two metal contacts there  a r e  three  

These general  mechanisms which may establish an electric current. 

a r e  Schottky emission, space charge limited current, and direct  electron 

3 
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tunneling. 

dielectric films with ohmic contacts, it was of no importance to this 

investigation. 

Since space charge limited current applies to rather thick 

The action of the insulating material between the two metal 

electrodes is to  introduce a potential ba r r i e r  which impedes the flow 

of electrons. If this insulating barr ier  is sufficiently thin there is a 

significant probability that an electron be transmitted directly through 

this region by electron tunneling. 

It is common practice to consider plane parallel electrodes 

separated by a uniform insulating film as representing the typical 

experimental film structural  arrangement (Figure 14. The actual 

f i l m  is probably fa r  from the ideal structure, however, with both film 

surfaces being irregular a s  shown in  Figure 1% For this nonideal film 

the regions of close electrode approach, where the insulating film is  

thin, may be described in te rms  of a total effective surface a rea  and a 

mean effective thickness although this will introduce an effective 

surface area which may be only a small fraction of the gross geometrical 

a r e a  of the structure. It will be assumed that this effective electrode 

a r e a  can be interpreted by the concept of plane-parallel electrodes. 

Simmons' [ 4 ]  form of the electron tunneling equations may be employed 

for the tunneling component of current density. 

culations of the electron tunneling current density to be performed a s  a 

function of thickness of the insulating film, s, the metal-insulator 

b a r r i e r  height (work function), 4, and the applied potential, V. 

Thus, 

This enables the cal- 

Assuming a rectangular bar r ie r  and neglecting image force, the 

tunneling current density can be determined from the following where 

three regions of operation a r e  defined according t o  the magnitude of the 

applied voltage. 

(a) For  V = 0 

4 
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FIGURE 1A 

PARALLEL ELECTRODE 

MODEL 

FIGURE 1B 

NON IDEAL MODEL 
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(1) = 1. 57 X %)exp [-0.  5125 SQ 1/ 23 

This corresponds to  the Sommerfeld-Bethe [ 2 ]  result for low voltages. 

(b) For  0 < V < + 

1 J T = (  e J {(e+- y ) e x P [ - T  41T s (2rn)1/2(e+ - 7 eV 1/2  

2rrhs2 

which is due to  Holm with the exception of an omitted t e r m  which 

.Simmons showed was of questionable validity. 

( c )  For  V > + 

6 
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2v - (1 t F )  exp 2v I} (3) [- 0.345 + ( 1  t (p 
3 b  

where E = V/ s is the electronic field strength in the insulator. The 

first term of Equation (3) i s  the well-known Fowler-Nordheim [8]  

equation with the exception of B slight modification introduced by Simmons. 

In the region of interest  the second t e r m  in this equation is negligible. 

For  numerical evaluations of the constants an effective electron 

mass Qf l g 4  of the f ree  electron mass was assumed because it i s  

generally accepted that this will produce a better correlation between 

theoretical and experimental results [6] , [ 7 ]  . 
used in  the l i terature,  the units in the above equation a r e  expressed in 

JT [ amperes/  cm'] , 9 [volts] , and s [angstrom units]. 

To agree with the notation 

The presence of image charge appearing within the conducting 

surface reduces the a r e a  of the potential ba r r i e r  by rounding off the 

c w n e r s  and reducing the thickness. 

To include the effect of image charge on tunneling Simmons [4]  

has shown that the following substitutions should be made: 

(a) For  V e 0 substitute + for c$ and As for s in Equation (1) L 0 

where 

7 



I .  

where K is  the relative dielectric constant of the film, $,,the natural 

bar r ie r  height and As is the effective thickness of the insulating film 

for ekc t ron  tunneling. 

by si and SZ in Figure 2 and 

The effective edges of the bar r ie r  a r e  indicated 

AS = 6 2 -  61 
6 where si = - 

K+O 

s2 = s - S] 

(b) For 0 < V < $o substitute As for s and 

V 2 in Equation (2). $I = $o - 

The image reduced bar r ie r  height in this case is 

The effective bar r ie r  limits a r e  

and 6 
8 1  = - 

K+ 0 

46 6 
3 $ o K ~  t 20 - 2VsK ] +KO, 

The region for voltage greater than the bar r ie r  potential has 

been neglected in this discussion because it has been shown that the 

image force has a greater influence on small bar r ie rs  [ 4 ]  and because 

of the extremely high fields required, no t rue Fowler- Nordheim emission 

has been observed from experimental methods [ 5 ]  , [ 6 ]  , [9 1 .  
8 
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By the use of Equations (1) through (5) it is possible to  express 

the electron tunneling component of the film current density 

in explicit form. 

plus the Fowler-Nordheim equation (if that region is desired), the 

analysis of laboratory data is greatly simplified by making a continuous 

plot of Equation ( 6 )  in te rms  of Equations (l) ,  (2), and (3) . 
set  of plots has been made with the aid of a computer. 

this family of curves is shown in Figure 3. 

then these curves a r e  to  be interpreted a s  a family of curves for various 

values of 

Because of the necessity of using Equations (1) and (2) 

An extensive 

A condensed set  of 

If image force is to  be included, 

+I and As a s  defined by Equation (4) and (5). 

As the thickness of the insulating layer is increased the probability 

of electrons tunneling thmugh the barr ier  decreases  exponentially with 

thickness [ S I .  Electron currents can be established now only i f  the 

electrons have sufficient kinetic or  thermal energy to  overcome the 

ba r r i e r  and move in the conduction band of the insulator. 

i s  identical with that of Schottky enhanced emission into a vacuum [ 101 

and is thus analyzed accordingly. It i s  necessary, however, because other 

than a vacuum is  being considered, to introduce the value K, which i s  the 

relative dielectric constant of the insulating medium. 

This process 

The expression for Schottky current density [ l l ]  is given by 

JS = A(l - Y) TZ exp [e { - %+ ( 4:Ec0] 1 / 2  }] 
where A is the Richardson-Dushman coefficient, 

4n mek’ 

h3 
A =  

and has  the value 30. 1 a m p / ~ r n ~ / ( ~ K K ) ~  when an effective mass  of 

one-fourth the electron rest  mass  is used. The electron reflection 

coefficient i s  y and E i s  the electric field strength in volts per centimeter. 

10 
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e+L -t 4 . 4  (y) En 1/2 0 . 4 3 4 X  c1 = - - k 

Explicit analytical expressions for the tunneling and Schottky 

components of the film current density are  presented throughout the 

lit e ra tur  e .  

Schottky emission can be characterized by its dependence on 

temperature while tunneling currents should be completely independent 

of temperature effects. In thinner films, where Schottky emission 

predominates at higher temperatures, tunneling may be the electron 

transport  mechanism in the low temperature range. 

components of current can be identified experimentally by plotting 

logno I/ TZ as a function Figure 4 shows this behavior 

of the current with temperature at constant voltage where Schottky 

emission over the bar r ie r  should be a straight line with negative 

slope while pure tunneling should have a positive slope of 2T. 

These two 

of 1000/ T. 

The slope of the high temperature portion of Figure 4 is given 

by 

E 1/2 
K -t 4 . 4  (-) . 434  x = - - e+L 

k 

This follows f rom Equation 7 because 

where a is the area of the device in  cm'. 

E ,  and + from the simultaneous solution of Equation (8) for data 

determined from Figure 4 for different applied voltages. 

It is possible to  evaluate s,  

L 
Therefore: 

( l o a )  

0 . 4 3 4 x  c2 = - - k 

Substracting Equation (1 Ob) f rom Equation (1 O a )  yields 

15 
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but 

where n is a constant and since the a rea  is  assumed to  be independent 

of voltage 

Substituting Equation 12 in Equation 11 and rearranging t e rms  yields 

0.434 X lo - '  (CP - c2) = 4.4 (1 - n1/2)( s) 1/ 2 

which can readily be solved for El. 

Thus 

and 

0.434 X 
= [ 4.4 

1 e 4.4 ( *)'I2 - 0.434 X c :  

V 
Ea 

s =  _I 

The rectangular bar r ie r  potential, 9 may be evaluated by 
0' 

means of Equation (4), which is transcendental in terms of this 

quantity, using the values of +Land s determined from Equations (8) 

through (1 6). 

' 

Based upon the nonideal film structure shown in Figure lB, 

the effective electrode a rea  for tunneling is  assumed to  be the same 

as that for the Schottky current density. In t e rms  of Equation (7) 

17 



I .  
T T 
1 I s S a = -  - - 
J s  A( 1 - y)T2 exp (c /  T) 

where Is , as a function of temperature, is any point selected from the 

high temperature range of Figure 4. 

Figure 5 contains a plot 9 as a function of (E) = - V from I As 
Equation 6 for one value of V and various values of As where the 

information is taken from Figure 3 and is based upon the tunneling 

current measured at low temperatures and a computed value of effective 

emission area,  a8 based upon an assumed value of Y .  

contains a plot of + 
that 

Figure 5 also 

determined f r o m  Equation (5),which,using the fact I 

can be rearranged to  yield 

The intersection of these two plots yields t$ and A s  thereby, allowing the 

evaluation of s 2 .  
I 

It should be noted that evaluation of 9, and A s  depends upon 

observed tunneling data at liquid nitrogen temperature.  

thickness of the insulator increases,  only a small  component of tunnel 

current  superimposed on the thermonic current may be observed or  

the tunneling may disappear entirely. 

As the 

Films of preselected thickness and high quality were used [12] .  

The films were deposited on carefully cleaned glass substrates at a 

p re s su re  of 1 X 

were produced by the evaporation of selected materials from electronically 

heated crucibles [13] .  

mm Hg (Torr) f rom molecular beams which 

18 
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All of the films investigated were of the metal-insulator-metal 

structure using silicon monoxide as the insulator. 

was evaporated from a newly developed S i 0  sublimation source [ 141 

machined from reactor grade carbon and suitable for electron bombardment 

heating. 

S i 0  molecules while emission of S i0  particles was prevented. 

ra te  of 4. 2 angstroms per second at a power of about 190 watts was de- 

termined by comparing run t ime against film thickness. Multiple beam 

interferometer measurements were used to  determine film thickness. 

calibration curve for S i 0  is shown in Figure 6 .  

The silicon monoxide 

The design was such as  to  provide the desired molecular beam of 

A deposition 

A 

The principal metal used for the electrodes was gold although silver,  

It was found lead, and various combinations of the three were investigated. 

to  be advantageous (because of the increased initial charge capacity) Eo use 

machined carbon crucibles for the metal vapor sources. However, for gold 

it was necessary to use dimpled boats of tantalum because of the excessive 

power required to  obtain emission from a carbon boat. 

A photo etched stainless steel mask mounted on the linear feedthrough 

allowed the desired pattern of the multimaterial thin film devices to  be 

obtained. Figure 7 shows the geometric configuration of the films tested. 

There a r e  five devices per film each with an active a rea  of approximately 

0. 355 -2. 

In producing the active device a step was formed when the bottom 

electrode was deposited Dnto the glass substrate. 

field concentrations present along the edge of this step, the thin insulating 

film between the two electrodes was found to  be inadequate in preventing 

electrical  breakdown. 

layer of S i 0  approximately 2500 

trode (see Figure 7). 

Because of the high 

Therefore, it was necessary to  deposit an additional 

thick along the edges of the bottom elec- 

It was discovered fo r  the thinner films used that the relative thickness 

of the metal electrodes became more critical. In order  to prevent breakdown 

along the metal-insulator interface, the thickness of the bottom electrode was 

not allowed to exceed 600 %. Best results were obtained when the top 

20 
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electrode was approximately 1000 1 thick. 

substrate prior t o  evaporation was determined to  be an important factor 

in obtaining repeatable results. 

Also, the cleanness of the 

Indium was used to  make electrical contact because of its ability 

to  adhere to  glass. 

leads were used. 

Due to  their  flexibility and high conductivity, gold 

F rom the methods discussed previously various thin film structure 

All theoretical and transcendental equation parameters were determined. 

solutions were carr ied out with the aid of a Burroughs B5500 digital 

computer. 

Numerous films of the Au-SiO-Au structure, with a variety of 

thicknesses (150-750 dl ), were tested to  determine their  temperature 

dependence. 

almost perfect tunneling characteristics as determined by the independence 

of current with temperature, while at room temperature Schottky emission 

was the chief transport  mechanism. 

observed to  occur near 235°K where both components of current had 

approximately the same magnitude. 

At liquid nitrogen temperature most films tested exhibited 

The transition between the two was 

Figure 8 shows the same data a s  that shown in Figure 4 except 

the straight line Schottky approximations have been extended until an 

intersection of the loglo (I;/T2) axis was  obtained. 

by the broken lines. 

(I/ T2) vs. 1000/ T plot the value of the ordinate intercept should be 

independent of the applied voltage because the effective a rea  is not a 

function of potential. Therefore , an averaging techrfique was employed 

to determine this common intercept value and the curves redrawn as in- 

dicated by the solid lines in Figure 8, Experimental inaccuracies were 

considered to  be responsible for these deviations. 

These a r e  indicated 

FromBquation ( 9 )  it can be seen that on a loglo 

For the Au-SiO-Au devices tested <+s, the natural barrier 

From Equation (4) K+o>, the rectanghlar bar r ie r  potential was 

potential, was determined to be . 32 eV for  a dielectric value of 6 [15 ] ,  

[16] .  

23 
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calculated to  be . 4  eV. 

potential of . 5 eV with a dielectric constant of 4. 

exact agreement was obtained; however, a dielectric strength of 6 is 

more commonly accepted [16] .  

<s; was determined to  be 95 A . 
51 thus supporting the model of close electrode approach presented in 

Figure 1B. 

temperature. 

be 3 X of the gross geometrical area.  Using Figure 5, As and 

were determined a s  60 

Scales El81 predicted a rectangular ba r r i e r  

Using this value, 

From the data shown in Figure 4 
0 

The interferometer thickness was 420 

Tunneling data was  available for this device at liquid nitrogen 

From Schottky data the effective a r e a  was determined to  

and . 3 e V  respectively, 

Pollack [ 191 presented current-voltage-temperature data for a 

Pb-AlzOpPb film where he determined a natural ba r r i e r  potential of 

.64 eV and a measured thickness of 340 x. Applying the previously 

described method <$' was determined to  be . 6 6  eV. 

determined were <c$o> of .73 eV and <s> of 63 A .  

12 as employed by Pollack was IS ed in all calculations. 

Other parameters 

A dielectric value of 
0 

In a similar manner data presented by Standley, et a l .  [ l o ]  for a 

Ta-TazOs-Au film was investigated. 

potential of . 63 eV was given for  the film which was estimated t o  have an 

insulator thickness of 110 A .  

to  be . 66 eV and 

thickness <s>, was determined to be 22 A .  

A value for the natural ba r r i e r  

0 
From analysis of this data <k> was found 

calculated t o  be .78  eV. The mean effective film 
0 

It can be seen that almost exact agreement was obtained for the 

natural bar r ie r  potentials f rom the analysis of data presented in the 

l i terature.  In each investigation <s> was determined to be approximately 

one- fifth of the interferometer measured thickness. Future investigation 

is planned to  determine if  this fact is of any significance. 

Variations in the reflection coefficient had little o r  no effect upon 

the final result over the range of the experimental data obtained. 

unlikely that a metal- insulator interface would have an appreciably large 

reflection coefficient, and it has been suggested [ 7 ]  that a good approxi- 

mation is to  neglect it completely. 

It is 

25 



I .  

In order to verify the tunneling hypothesis, it was necessary to  

establish that t6e current-voltage characteristics were independent of 

temperature. 

range from liquid nitrogen at 73°K t o  room temperature a t  300°K. 
samples with an approximate thickness l e s s  than 100 % exhibited no 

temperature effects thus establishing that tunneling was the only conduction 

process. 

emission became more apparent and eventually became dominant. 

Various experiments were conducted over a temperature 

All 

As the thickness of the insulator was increased Schottky 

Figure 9 shows the tes t  circuit used in obtaining the d-c voltage- 

current data. 

obtained using pulse techniques if the pulses were of sufficient length. 

This has also been verified by others [7]. 
theory for low voltages, the current was proportional t o  the voltage, 

demonstrating an ohmic relationship. 

current increased exponentially as could be expected f rom Equation 2. 

Figure 10 shows these characteristics plotted from experimental data 

for an Au-SiO-Au sample. 

It was discovered that identical information could be 

As predicted f rom tunneling 
b 

As the voltage was increased the 

All theories concerning tunneling a r e  based on ideal plane-parallel 

electrodes assuming uniform thickness whereas the effective surface area 

for  emission may be only a small  fraction of the gross geometrical a r e a  of 

the structure a s  explained in the theory. 

attempted to  alleviate these shortcomings; however, at present the best 

correlation between experimental and theoretical results appears to exist 

when one considers plane-parallel electrodes separated by an effective 

insulator thickness. 

Various methods have been 

For  the gold- silicon monoxide tunneling structures,  film breakdown 

This would tend occurred for applied potentials of approximately . 7 volts. 

t o  indicate that breakdown was occurring at the beginning of the Fowler- 

Nordheim region o r  where the work function and applied potential became 

equal. 

the rectangular barr ier .  
of considering the field to  be determined by the relationship E = - 

Breakdown was higher than the work function of . 4  eV determined for 

A possible explanation for this can be that instead 
V 
6 ’  

26 



FIGURE 9 

DEVICE TEST CIRCUIT 

DEVICE 

27 



- - - - 
- - 

lo-., I I i I I , 
2 .3 .4 .6 .6 .7 .8 
Voltage in Volts 

.1 .' 

F I G U R E  10 

EXPERIMENTAL TUNNELING C'URVE 

28 



high voltage techniques must be employed. Thus: 

E = g V  (1 9) 

where 

be employed to  account for any localized high fields which might exist. 

Future investigation is planned to determine the extent of variation pro- 

duced by these localized high fields and to obtain a value for p which 

would give r ise  to  a more accurate model for tunneling junctions. 

obtaining experimental verifications of the ideas presented, several  thin 

film phenomena were observed which a r e  worthy of mention. 

is the form factor associated with the negative electrode, must 

In 

I. Observed Switching 

0 
For Au-SiO-Au films between 200 and 300 Athick a switching 

effect in the direct current-voltage characteristic was repeatedly observed. 

Figure 11 illustrates this for one sample. 

across  the device, the current approached an ohmic relationship until a 

potential of approximately 1. 5 volts was applied. 

two orders  of magnitude giving the indication that the I-V characterist ics 

had a region of negative resistance, Maximum peak-to-valley ratios of 

300: 1 have been reported; however, ratios of approximately 1000: 1 were 

observed here for some cases. 

negative resistance region that the measurable current was extremely noisy 

and highly errat ic .  No consistency was obtained in the data from sample to  

sample. 

obtain any data in the negative resistance region. 

extremely poor with film destruction often occurring immediately following 

the switching phenomena. 

- Initially as voltage was mcreased 

The current then dropped 

It is observed for all samples with this 

Due t o  the extremely fast switching t ime it was impossible t o  

The repeatability was 

Hickmott [ 201 has concluded that the establishment of conductivity 

and negative resistance in insulating films was due t o  a "forming process". 

He stated that this forming of conductivity was dependent on the field in the 

oxide, on purity of the oxide, on the metals used for electrodes, and on the 
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environment. 

and because of the structure of the oxide layer,  negative resistance was 

detected in films of certain cri t ical  thicknesses. 

Thus, due to  the impurities present such a s  Si and Si02 

The circuit shown in Figure 12 was used to  obtain current voltage 

relationships for films exhibiting this switching effect. 

was applied and the effects of varying the amplitude were observed on an 

oscilloscope screen. Figure 13 s h w s  a sample of the results obtained. 

This film had an initial low conductivity as shown by the data in Table I. 

As the voltage was increased, the conductivity, approximated by the 

slope at zero  voltage, increased until amaximum occurred at 2 volts. 

Further voltage increases beyond this point resulted in a reduction of 

conductivity. 

it can be deduced that the sample was a nonlinear device. 

were s imilar  to those observed by Hickmott [ 2 1 ]  for Al-AlzOs-Al 

structures but as  this switching phenomenon was not the primary objective 

of this research, further investigation of its causes and effects has been 

set  aside for future research. 

A 1000 cycle signal 

’! 

By observing the nature of the t races  shown in Figure 13 

These results 

11. Effect of Electrodes on the J-V Characteristics 

For  devices having electrodes of the same mater ia l  it was found 

that the J-V characterist ics were independent of the polarity of the applied 

voltage. Thus, it can be concluded that the metal-insulator potential 

b a r r i e r  was symmetrical. 

Simmons [ 2 2 ]  has extended the theory of tunneling to  include devices 

having electrodes of different materials and work functions. 

that in these devices, because of the difference in work functions of the 

electrodes, theresristls an intrinsic field which produced an asymmetric 

potential barr ier .  

a r e  polarity-dependent with the greater current existing fo r  low voltages 

when the electrode of lower work function is positively biased. 

voltages a larger  current i s  obtained when the electrode of lower work 

He proposed 

F rom this it can be concluded that the J-V characterist ics 

At higher 

31 



b 

AUDIO 
OSCILLATOR 

b 

FIGURE 12 
TEST CIRCUIT FOR A.C. SWlTCHlNd 

OWICE INPUT 

b 

TABLE I 

A.C. SWITCHING DATA' 

FI LM CONDUCTANCE 
(MHOS X IOo3 

0.91 
3.15 
2 .50  
1 .25 
0.20 

MAXIMUM IKC 
VOLtAOE 

0.2 
2 .o 
2.2 
3.8 
9.0 

SEE 
**Fl6URE 13 
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function i s  negatively biased. Figure 14 i l lustrates this for a 

Au-SiO-Pb film and thus from Simmons' explanation it can be 

concluded that the bar r ie r  potential for lead is greater  than 

that for gold. 

because of randomness of the results no condusions could be 

drawn. 

Silver was also used as the counterelectrode but 
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SECTION IV 

FUTURE RESEARCH 

We a r e  currently concluding a theoretical and experimertal study of 

electronic conducitivity in polycrystalline thin films. It is anticipated 

that the results of this study will permit us to  return to the problem of 

depositing acceptable thin film field effect t ransis tors  of the MOS-FET 

type. 

Research on electron tunneling is continuing with the intention of 

divising several  control type devices of an active nature. 

this research will be a continuation of the metallic whisker cathode idea. 

Included in 

Some high temperature device investigation is being initiated. 

felt that certain thin film devices may be better suited fo high temperature 

operation as contrasted to  the usual room temperature or  cryogenic temp- 

erature  ranges so commonly under investigation today. 

It i s  
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