Annual Report on
Computer-Aided Circuit Analysis
Submitted to

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Office of Grants and Research Contracts
Washington D. C 20546

This work was done under the NASA grant NGR-39-023-004, during the period May 15, 1965 to May 14, 1966, at the Electrical Engineering Department, Villanova University, Villanova, Pennsylvania.
GPO PRIV. S
CFSTI PH... S

RESEARCH AND DEVELOPMENT DIVISION
VILLANOVA UNIVERSITY
VILLANOVA, PENNSYLVANIA

Annual Report on
Computer-Aided Circuit Analysis
Submitted to

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
 Office of Grants and Research Contracts
 Washington D. C 20546

This work was done under the NASA grant NGR-39-023-004, during the period May 15, 1965 to May 14, 1966, at the Electrical Engineering Department, Villanova University, Villanova, Pennsylvania.

$$
N 6631224
$$

PRINCIPAL INVESTIGATOR

Professor of Electrical Engineering

Director of Research and Development

RESEARCH AND DEVELOPMENT DIVISION
VILLANOVA UNIVERSITY
VILLANOVA, PENNSYLVANIA

The contributors to this report are

Tsute Yang
J. J. Hicks
R. M. Jansen
C. P. Rich, Jr.
J. J. Perkowski

Table of Contents

> Annual Report of the Research on Digital Computer-Aided Circuit Analysis under the NASA Grant NGR-39-023-004 covering period from May 15, 1965 to May 14, 1966.

Section

I. Literature Search
II. Study of the Available Programs -- ASAP and ECAP
III. Adaptation of Current Techniques to Moderate Size Computer
IV. On-Line Experience in Time-Sharing Computing Systems
V. A Note on the Accuracy of Monte Carlo Method
VI. Generation of Random Numbers on IBM 1620 Computer
VII. Future Plans

ERRATA

page	line	printed as	should read
1	3	catagories	categories
28	10	fortet	forte
32	1	Machine	Machines
39	10	j	J
41	2 from bottom	C_{4}	$\omega \mathrm{C}_{4}$
42	7, 8, 9	L_{3}	$\omega \mathrm{L}_{3}$
51	Fig. 8	L_{3}	$L_{3} \text { (8) }$
		C_{4}	$\mathrm{C}_{4} \text { (3) }$
55	1	Caption "Table 1" to be added.	
73	5	Matrix equation to be labelled as (2)	
77	18	10	16
78	11	1, 2 1, 3	3, 23,3
85	5, 11	(2) and (4) to be interchanged.	
106	This page is redundant.		
107	19	NPS	NBS
114	11	x	x^{2}
116	Equation for sigma to be labelled as (2.2).		

Section I. Literature Search

One of the initial activities of computer-aided analysis of electric circuits consisted of a literature search in the subject area. Publications in the professional and technical journals may be classified into two catagories: those dealing with the general approach of analyzing circuit performance of any configuration within given sets of constraints, and those tailored for the design of specific types of networks. The primary interest of this project has been in the investigation and development of techniques and programs for the analytic solution of circuit problems in general. There is evidence of growing interest and activity both in industry and research institutions in exploiting digital computers as an aid in system design and reliability evaluation [1], [2]. It gradually comes to the realization that progress and practicality of the concepts involves more than the mathematical model formulation and digital algorithm applied to circuit solutions. Various other facets such as manmachine interface, time cost of operation, etc. will influence and contribute significantly to the success of the program [3].

In order to provide the uninitiated with a starting base to get into the area of computer-aided analysis and design and the specialists in the field with a ready reference which would reflect the current development in research and industry, a comprehensive bibliography is attempted and completed with 205 entries as included in this report. It is expected that the Bibliography will be revised and brought up to date and distributed when necessary.

One difficulty encountered in the preparation of the Bibliography is to arrive at a balanced medium between indiscriminative exhaustiveness which maytend blurring
the significant contributions, and unintentional or misjudged omissions which would adversely affect its usefulness as a source of reference. Since the interest of the research activity weighs heavily on the analysis and design of conventional electronic circuits, many important titles which may be excellent background literature in the application of digital computer for circuit analysis are not contained in the Bibliography. Specific examples include Kron's method of large system analysis, Monte Carlo sampling technique in general digital simulation, computer solution of matrix functions and of nonlinear differential equations, and the design of graphic display as computer output. Another notable missing segment is concerned with the use of digital computers in electric power machinery design, power system distribution and transmission. There is a great wealth of literature in that area published in the IEEE Transactions on Power Apparatus and Systems and during the Power Industry Computer Application Conferences.

An early effort in analyzing the potentialities of automatic digital computers to research seems to be the technical paper in six parts by Clippinger, Dimsdale, and Levin [4] published in the Journal of the Society of Industrial and Applied Mathematics in 1953-54. Although the possible use of computers in the analysis of electric circuits has been recognized for some time, the first recorded arrangement in technical meetings on the subject is the session on "Computers in Network Synthesis" in 1957 WESCON Convention at which time three papers were presented.

[^0]In 1961 the IRE Transactions on Circuit Theory issued a special number on Network Design by Computers, including the following papers:

G. M. Cohen and D. Plantnick, 'The Design of Transistor IF Using an IBM 650 Digital Computer"
C. A. Desoer and S. K. Mitra, "Design of Lossy Ladder Filters by Digital Computer"
D. C. Fiedler, "A Combinatorial-Digital Computation of a Network Parameter"
S. Hellerstein, "Synthesis of All-Pass Delay Equilizers"
K. Yamanoto, K. Fujimoto, and H. Watanabe, "Programming the Minimum Inductance Transformation"

A Computer Program Reviews Department has since been inaugurated to the Transactions under the editorship of P. R. Geffe, which collects and publishes titles and reviews of available programs on circuit theory problems. There was a symposium on the Design of Networks with a Digital Computer at 1962 IRE International Convention when four papers were presented.
F. H. Branin, Jr., "D-C and Transient Analysis of Networks Using a Digital Computer"
O. P. Clark, "Design of Transistor Feedback Amplifiers and Automatic Control Circuits with the Aid of a Digital Computer"
C. L. Semmelman, "Experience with a Steepest Decent Computer Program for Designing Delay Networks"
G. C. Temes, "Filter Synthesis Using a Digital Computer"

In 1963 Lockheed Missiles and Space staff prepared an annotated bibliography on computer-aided analysis and design with 63 entries.
C. M. Pierce, "The Design and Analysis of Electrical and Electronic Systems by Means of Digital Computers: An Annotated Bibliography", Lockheed Missiles and Space Co. , September, 1963; SB-63-65; ASTIA Document AD 439440.

More recently the Third Allerton Conference on Circuit and System Theory, October 20-22, 1965, a special session was devoted to the Network Analysis and Design by

Digital Computers.
R. M. Golden, "Digital Computer Simulation of Communication Systems Using the Block Diagram Computer: BL \varnothing DIB"
J. Katzenelson and L. H. Seitelman, "An Iterative Method for Solution of Nonlinear Resistor Networks"
M. L. Liou, "A Numerical Solution of Linear Time-Invariant System"
C. Pottle, "On the Partial Fraction Expansion of a Rational Function with Multiple Poles by Digital Computer"
H. C. So, "Analysis and Design of Linear Networks with Variable Parameters Using On-Line Simulation"
A. D. Waren and L. S. Lasdon, "Practical Filter Design Using Mathematical Optimization"

In the following Bibliography the entries are arranged in the alphabetic order of the last name of the first author of each paper. A subject index and a chronological index are appended.

References

[1] H. S. Scheffler, ed., "Reliability Analysis of Electronic Circuits," Autonetics Division of North American Aviation Inc., 1964.
[2] University of Michigan Engineering Summer Conference on "Application of Computers to Automated Design, " 1964 and 1965.
[3] D. T. Ross and J. E. Rodriguez, "Theoretical Foundations for the Computer-Aided Design System, " Proc. Spring Joint Computer Conference, AFIPS, vol. 23, pp. 305-322, 1963.
[4] R. F. Clippinger, B. Dimsdale, and J. H. Levin, "Automatic Digital Computers in Industrial Research, " Jour. SLAM, pt. I, vol. 1, pp. 1-15 Sept. 1953 pt. II, vol. 1, pp. 91-110 Dec. 1953
pt. III, vol. 2, pp. 36-56 Mar. 1954
pt. IV, vol. 2, pp. 113-131 June 1954
pt. V, vol. 2, pp. 184-200 Sept. 1954
pt. VI, .vol. 3, pp. 80-89 June, 1955

^ BIBLIOGRAPHY ON DIGITAL COMPUTER-AIDED CIRCUIT ANALYSIS AND DESIGN
 (revised May, 1966)

(1) M.W. Aarons and M.J. Goldberg, "Computer Hethods for Integrated Circuit Design", Electro-Technolozy, vol. 75, no. 5, pp. 77-81; May, 1965.
(2) M.R. Aaron and J.F. Kaiser, "O. the Calculation of Transient responsen, Froc. IEEE, vol. 53, p. 1269; September, 1965.
(3) J.R. Abrahams, "Amplifier Design with a Digital Computer", Electronic Engrg., vol. 37, pp. 740-745; November, 1965.
(4) G.E. Adams and J.E. Gerngross, "IBM 650 as a Tool for Analysis of Transmission and Distribution System Problems", Power Apparatus and Systems, no. 40, (AIEE Trans. vol. 77, pt. 3) pp. 1236-1244; February, 1959.
(5) R.K. Adams, " DH_{E} ital Computer Analysis of Closed-Loop Systems Using the Number Series Approach", Applications and Industry, no. 67, (AIEE Trans. vol. 82, pt. 3) pp. 238240; July, 1963.
(6) F.A. Applegate, "Statistical Circuit Analysis Based on Part Test Data", Electro-Technology, vol. 71, no. 5; pi. 140-145; May, 1963.
(7) K.G. Ashar, et al. "Transient Analysis and Device Characterization of ACP Circuits", IBM J. Hes. and Dev., vol. 7, pp. 207223; July, 1963.
(6) W.D. Ashcraft and W. Hochwald, "Design by Worst-Case Analysis: a Systematic Method to Approach Specified reliability Requirements ${ }^{n}$, IRE Trans. on Keliability and Quality Control, vol. ZQC-10, no. 3, pp. 15-21; November, 1961.
(9) A.G. Atwood and L.C. Drew, "Computer Analysis of an Integrated Circuit Amplifier", RCA Engineer, vol. 10, nc. 3, pp. 2729; October/November, 1964.
(10) W. Austin and K. Angel, "Computer Solutions Aid Rectifier Filter Design", Electronic Industries, vol. 23, no. 12, pp. 5457; December, 1964.
(11) H.S. Balaban, "Selected Bibliography on Reliability", IRE Trans. on Reliability and Quality Control, vol. RipC-11, pp. 86103; July, 1962.
(12) T.C. Bartee, "Computer Design of MultiplemOutput Logical Networks", IRE Trans. Electronic Computers, vol. EC-10, pp. 21-30; March, 1961.
(13) T.R. Bashkow and C.A. Desoer, "Digital Computers and Network Theory", WESCOR Corv. Kecord, vol. 1, pt. 2, pp. 133136; 1957.
(14) , "Network Analysis", Nathematical Methods for Digital Computers (book) Chapter 26, pp. 280-290; John wiley, 1960.
(15) W.F. Baur, D.L. Gerlough and J.W. Granholm, "Advanced Computer Application", IRE Froc. vol. 49, pp. 296-304; January, 1961.
(16) J.H. Beaudette and P.A. Honkaner, "PECAilS Circuit Analysis of Nonlinear Systems", IBM 7090 Program Writeup, IBN Levelopment Lab., Poughkeepsie, N. Y. 1961.
(IV) F. Beck, "Harmonic Analysis Using a Digital Computer", The Computer J. vol. 1, p. 117; October, 1958.
(16) S.D. Bedrosian, "Finding the Raximum Complete Subgraph in Coding Hodels for Random Access Communications", IEEE Internat'l. Conv. Record, vol. 14, pp. 250-253; 1966.
(19) D.I. bell, "Digital Computers as lools in Designing Transmassion Networks", WEsicun Conv. recora, vol 1 , pt. 2, pp. 45 153: 1957.
(20) A.H. Benner and B. Meredith, "Designing Reliability into Electronic Circuits", Proc. Natll. Electronics Conf., vol. 10, pp. 137-145; 1954.
(21) C.L. Bertin, "Transmission-Line Response Using Frequency 'Techniques", IBM J. Res. and Dev. vol. 8, pp. 52-63; January, 1964.
(22) H.D. Bickley, et al. "Digital Techniques for Voltage Regulation Studies", Automatic Control, vol. 15, no. 6, pp. 26-30; December, 1961.
(23) J.A.C. Bingham, "A New Method of Solving the Accuracy Froblem in Filter Design", IEEE Trans, on Circuit Theory, vol. CT-11, pp. 327-341; September, 1964.
(24) G.T. Bird, "On the Basic Concepts of Heliability rrediction", Proc. 7th Nat'l. Symp. on deliability and Guality Control, pp. 51-54; January, 1961.
(25) B. Birtwistle and B.M. Dent, "Digital Computer as an Aid to the Electrical Desifn Engineer", The Engineer, vol. 201, pp. 440-442; May 4, 1956.
(26) W. Bongenaar and N.C. de Troye, "Worst-Case Considerations in Desipning Logical Circuits", IEES Trans. on Electronic Computers, vol. EC-14, pp. 590-599; August, 1965.
(27) A. Brameller and J.K. Denmead, "Some Improved Methods for Higital Network analysis", Proceedings of I.E.E'. vol. 109, Part A, pp. 109-116; 1962.
(20) F.H. Branin, Jr., "D-C An-lysis Fortion of FETAF - A Procram for Analyzing Transistor Switching Circuits", 1BM lech, rept. 00.701, IBM Development Lab. Foughkeepsie, N.Y. 1959.
(29) \qquad nD-C and Transient Analysis of Networks using a Digital Computer", IRE Conv. Record vol. 10, pt. 2, pp. 236-256; 1962.
(30) __ "Machine Analysis of letworks and Its Application", IBN Tech. Rept. TR OU.855; March 30, 1962.
(31) W.in. Branin, Jr., "A New Method for Steady-State A-C Analysis of RIC Networks", IEEE Internat'l. Conv. Record vol. Ih, pt. 7, pp. 218-223; 1966.
(32) N.G. Brooks and H.S. Long, "A Program for Computing the Transient Response of Transistor Switching Circuits-PETAP", IBM Tech. Rept. O0.700, IEM Development Lab. Poughkeepsie, N.Y. 1959.
(33) A. Brown, et al, Mathematical Circuit Analysis and Design", Remington Rand Univac Div. Scientific Rept. no. 2. AFCRL 191; March, 1961 ASTIA AD 259786.
(34) H.E. Brown, L.K. Kirchmayer, C.E. Person and G.N. Stagg, "Ligital Calculation of 3-phase Short Circuits by Matrix Method", Power Apparatus and Systems no. 52, pp. 1277-62 (AIEE Trans. vol. 79 pt. 3); February, 1961.
(35) R.R. Brown, "A Generalized Computer Procedure for the Design of Optimum Systems", AIEE Trans. Comm. and Electronics vol. 78, no. 1, pp. 285-293; July, 1959.
(36) J.D. Brule and B.F. Sah, "Time Response Characteristics of Linear Networks and Transformation Methods in Network Synthesis", Syracuse Univ. ieport; Augnst, 196l; AD 257822.
(37) K.J. Butler and J.N. Narfield, "A Digital Computer Program for Reducing Logical States to a Minimal Form", Proc. Nat'l. Electronics Conf. vol. 15, pp. 456-466; 1959.
(38) R.T. Byerly, R.W. Long and C.W. King, Logic for Applying Topological Kethods to Electric Networks", Comraun. and Electronics, no. 39, (AIEE Trans. vol. 77, pt. 1) pp. 657667; November, 1958.
(39) D.A. Calahan, "Hodern Network Analysis" (book), vol. 1, Chapter 5, Use of the Computer in Approximation. Hayden Book Co. New Yori, N.Y. 1964.
(40) , "Computer Generation of Equivalent Networks", IEEE Conv. Record, vol. 12, pt. 1, pp. 330-337; 1964.
(41) , "Computer Solution of the Network Realization Froblem", Proc. 2nd Allerton Conf. on Circuit and System Theory, pp. 175-10,5; 1964.
_ "Computer Design of Linear Frequency Selective Networks", Froc. Iide vol. 53, pp. 1701-1700; November, 1965.
(43) J.T. Carheton, N. Chackan and T.W. Martin, "The Use of Automatic Programuing Techniques for Solving Engineering Problems", Cormun. and Electronics no. 45, (AIE Trans. vol. 78, pt. 1) pp. 596-601; November 1959.
(44) E.V. Carter, "Thermal Analysis of Integrated Circuits", Proceedings 2nd Design Aids Symposium, Autonetics, Anheim, Calif., Pub. no. 558-A-14, paper no. II; September, 1963.
(45) L.C. Casady and H.T. Breen, "Transistor and Diode State Finding Routine", Proceedings 2nd Design Aids Symposium, Autonetics, Anheim, Calif., Pub. no. 558-A-14, paper no. $\boldsymbol{\nabla}$; September, 1963.
(46) F.W. Case, et al. "Solid Logic Design Automation", IBri J. Res. and Dev. vol. 8, pp. 127-140; April, 1964.
(47) Y.N. Chang and O.M. George, "Use of High-Speed Digital Computors to Study Ferformance of Complex Switching Networks Incorporating Time Delays", Commun, and Electronics no. 46, (AIJE Trans. vol. 78, pt. 1), pp. 982-987, 1959.
(48) I-i Shang Cheo, "arbitrary Delay iqualization Utilizing Digital Computer IBM 704", Univ. of California Report; July, 1961. PB 150512.
(49) D.H. Chung and J.A. Palmieri, "Design of ACF Resistor-Coupled Switching Circuits", IPM J. Res. and Dev. vol. 7, pp. 190-198; July, 1963.
(50) O.P. Clark, "Design of Transistor Feedback Amplifiers and sutomatic Control Lircuits with the uid of a Didital Computer", Iit Convention lecord, vol. 10, pt. 2, pp. $228-$ 235; 1962.
(51) C. Clunies-ioss and S.S. Husson, "Statistical Techniques in Circuit Optimization", Proc. lat'l slectronics Conf. vol. 18, pp. 325-334; 1962.
(52) G.H. Cohen and D. Platnick, "The vesign of Pransistor IF Amplifiers Using an IBM 650 Digital Computer", IiE Trans. Circuit Theory, vol. CT-8 pp. 237-243; September, 1961.
(53) E.U. Cohler, "Statistics Applied to Computer Circuit Design", The Sylvania Technologist, vol. 12, pr. 134-139; October 1959.
(54) D. Coleman, F. Watts and ir. B. Shinley, "Dieital Calculation of Overhead-Transmission-Line Constants", Power Apparatus and Systems, no. 40, (AIEE Trans. vol. 77, pt. 3), pp. 126́61268; February, 1959.
(55) D.F. Cooper, "An Integrated Circuit Desim for a Hish Speed Commercial Computer", Solid State Jesign, vol. 6, no. 6, pp. 21-25; October, 1965.
(56) K.S. Corrington, "Simplified Calculation of Transient Response", Proceedings of 1 ELE. vol. 53, pp. 287-292; March, 1965.
(57) E.L. Cox, "A Computer-Hrogranmed Component Tolerance Analysis", Diamond Ord. Fuze Labs ieport; March 20, 1962, ASTIA AD 269212.
(58) M.D. Creech, "Findine the Natural Frequencies of an Undamped Linear System with a Higital Computer", American Society of Naval Engineering, pp. 129-132; February, 1962.
(59) D. R. Crosby and H. R. Kaupp, "Calculated Waveforms for Tunnel Diode Locked-Pair Circuit", Proc. Eastern Joint Camputer Conf. vol. 18, pp. 233-239; December, 1960.
(60) J.B. Dennis, Mathematical Frograming and Electrical Networks", (book), John Wiley and Sons 1959.
(61) \qquad H.F. Nease and R.M. Saunders, "System Synthesis with Aid of Digital Computers", Commun. and Electronics no. 45, (AIEE Trans. vol. 78, pt. 1), pp. 512-515; November, 1959.
\qquad "Ilistributed Solution of Network Pro, ramming Problems", Proc. First Allerton Conf. on Circuit and System Theory, pp. 367-384; 1963.
(63) C.A. Desoer and S.K. Mitra, widesisn of Lossy Ladder Filters by Diffital Computern, InE Trans. Uircuit Theory, vol. LT-8, pp. 192-201; September, 1961.
(64) A.J. DeVilbiss, D.J. Spencer and G. A. Hogsett, "A Worst-Case Circuit Design Technique Utilizing a Small Digital Computer", Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California; October, 1964.
(65) G. Diaz, "Computer Methods for Analyzing Test Data", ElectroTechnology vol. 71, no. 5, pp. 152-155; May, 1963.
(66) R.J. Domenico, nSimulation of l'ransistor Switching Circuits on IBM 704", IRE Trans. on Electronic Computers, vol. EC-6, pp. 242-247; December, 1957.
(67) R.H. Doxtator and F. Arnold, "PFESS: An IBl 704 Program for Performance and reliability Evaluation by Synthetic Sampling", Tech. Rept. U1.01.112.602, IBM, indicott, N.Y.; December, 1959.
(65) L.C. Drew and A.G. Atwood, "Using the womputer for Integrated Circuit Analysis", Electronic Industries vol. 23, no. 7, pp. 52-57; July, 1964.
(69) T.E. Duby, "Linear Circuit Analysis Using the SPADE Program", Proceedings 2nd Design Aids Symposium, Autonetics, Anaheim, Calif. Pub. no. 558-A-I4, paper no. I: September, 1963.
(70) W.J. Dunnet and y.C. no, "Statistical Analysis of TransistorResistor Logic Networks", IRE Conv. Record, vol. 8, pt. 2, pp. 11-40; 1960.
(11) A.H. El-Abiad, "Digital Calculation of Line-to-Ground Short Circuits by Matrix Method", Power Apparatus and Systems no. 48, (AIEE Trans. vol. 79, pt. 3) pp. 323-332; June, 1960.
(72)
, R. Uuidone and G.W. Stagg, "Lalcuiation of Short Circuits Using the High-Speed Digital Computern, Power App. and Systems no. 57, (ALLE Trans. vol. 80, pt. 3), pp. 702-708; December, 1961.
(73)
 "Digital Computer analysis of Large Linear Systems", Froc. First Allerton Cont. on Circuit and System Theory, pp. 205-220, 1963.
(74) Electro-Technology Staff Report, "The Computer as a Design Tool The M.I.T. Approach", Electro-Technology, vol. 72, no. 5, pp. 112-115, pp. 119; November, 1963.
(75) L. it. Fairbrother anu H. U. Bassett, "computer Frogram for Analysing networks containing inree-terminal active Levices characterized by their iwo-part Parameters", The tralo and slectronic Engineer, vol. 29, pp. 05-92; February, 1965.
(70) H. Falk, "The Computer as a Desim Tool", Electro-Technology, vol. 72, no. 7, pp. 48-50; July, 1963.
\qquad "Computer Programs for Circuit Design", ElectroTechnology, vol. 73, no. 3, pp. 101-104, pp. 162,164; March, 1964.
(78) J.V. Fall, MA Digital Computer rrogram for the עesign of Fhase Correctors", IRE Trans. Circuit Theory, vol. LT-8, pp. 223-236; September, 1961.
(79) \qquad "Higital Computer Analysis of Ihree-Terminal Two-Port Networks", Proc. Inst. Radio Electronics Engrs., Australia; vol. 26, pp. 167-13; May, 1965.
(80) R. Ferguson, "Application of Digital Computer Techniques to Fower System Analysis", Proc. First Midwest Dymp. on Circuit Analysis, pp. 14-1 to 14-9; 1955.
(81) H.W. Ferguson, R.W. Long and L.J. Itindt, "Digital CalcuLation of Network Functions Used in Loss Formula Studies", Commun. and Electronics, no. 39, (aIEE Trans. vol. 77, pt. 1), pp. 64i-652, November, 1958.
(82) D. C. Fiedler, "A Combinatorial-pigital Computation of a Network Parameter", IRE Trans. Circuit Theory, vol. CT-8, pp. 202-209; September, 1961.
(03) T. Fleetwood, "Automavic Solution of Network Frequency Response", Electronic Engrg. vol. 31, pp. 612-614; September, 196 .
(ol) D.A. Franks, "A New Automatic Nethod for the Design of Low Voltace Transformers on IBri 704", IriE Conv. Record, vol. ©, pt. 6, pp. 193-204; 1960.
(85) W.D. Fryer and W.C. Schultz, "Digital Simulation of Transfer Functions", Froc. Nat'1 Electronics Conf. vol. 17, pp. 419-420; 1901.
(86) T. Fujisawa, "Optimization of Low-Pass Attenuation Characteristics by a Digital Computer", Proc. 6th Midwest Symp. on Circuit Theory, pp. PI-P13, 1963.
(87) P.it. Geffe, "Predistorted Filter Design with a Digital computer", WESCON Record, vol. 2, pt. 2, pp. 10-22; 1958.
\qquad "Computer Program Reviews", IRE Trans. on Circuit Theory, CT-9 p. 307; September, 1962 CT-11 p. 512; December; 1964 CT-12 p. 301; June, 1965.
(89) M. Coldberg, Network Analysis by Computer", Instruments and Control Systems, vol. 38, pp. 175-1/8; September, 1965.
(90) RoM. Colden, "Digital Computer Simulation of Communicawion Systems Using the Block Diagram Computer: Blo 1 D", Proc. of 3rd Allerton Conf. on Circuit System Theory, pp. 690-707; October, 1965.
(91) G.H. Goldstick and D.G. Mackie, "Design of Computer Circuits Using Linear Prograrming Techniques", IRE Conv. Record, vol. 9, pt. 2, pp. 224-240; 1961; also IRE Trans. on Electronic Computers, vol. EC-11, pp. 518-530; August, 1962.
(92) R.G. Goodman and R.I. Cummins, "Computer Determination of Isomorphisms in Linear Graphs", Proc. 8th Midwest Symp. on Circuit Theory pp. 12-1 to 12-12; June, 1965.
(93) B.J. Corinnell, "Analysis Testing for Improved Circuit Reliability", Proc. 8th Nat'l. Symp, on Reliability and Quality Control, pp. 103-108; 1962.
(94) P.P. Gupta and M.W.H. Davies, "Digital Computers in Power System Analysis", Proc. Inst. Elec. Engrs. (London) vol. 108, part A, pp. 383-404; October, 1961.
(95) T.J.b. Hannom and G. Kaskey, "Digital Computer as a Design Tool", IRE Conv. Record. vol. 13, pt. 6, pp. 27-38; 1965.
(96) J.N. Hatfield, "A Linear Circuit Analysis Program for the IBM 1620/1311 20k Data Processing System (CIRCS) ${ }^{n}$, Jet Propulsion Lab. Pasadena, Calif.; May, 1964.
(97) MoK. Haynes, "Transient analysis of Cryotion Networks by Computer Simulation", Proc. IRE, vol. 49, pp. 245-257; January, 1961.
 Electronic Design vol. 12, pp. 40-46; March 16, 1964.
(99) L. Hellerman, "Monte Carlo Analysis and Design Frogram", IBM Technical Note, TNOO.11000.54.
\qquad and M. P. Lacite, "reliability lechniques for Electronic Circuit Design", IRE Trans. on Reliability and Quality Control vol. RPC-14, pp. 9-16; September, 1958.
\qquad勋 Computer Application to Reliable Circuit Design", IRE Trans. Reliability and Quality Control vol. R\&Cill, pp. 9-18; May, 1962.
and E.J. Skiko, "Methods of Analysis of Circuit Transient Performance", IBM J. hes. and Dev. vol. 5, pp. 33-43; January, 1961.
(103) S. Hellerstein, "Synthesis of All-Pass velay Equilizers", IRE Trans. on Circuit Theory, vol. CT-8, pp. 215-222; September, 1961.
(104) RoH. Hindricks, n_{A} Statistical Method for Analyzing the Performance Variation of Electronic Circuits", Convair Report no. LX-7009; October, 1953.
\qquad "A Second Statistical Method for Analyzing the Performance Variation of Electronic Circuits", Convair Report No. A2-7-0100; February, 1956.
(100) W. Hochwald and W.D. Ashcraft, "Design by Worst-Case Analysis", IRE Trans. on Reliability anc Guality Control; November, 1961.
(107) J.L. Hogin, "An Active Low-Pass RC Filter Configuration Utilizing the Voltage Follower", Proc. 7th Midwest symp. on Circuit Theory, pp. 179-191; 1964.
(108) K.H. Hosking, B.M.J. Kavanaugh and M. Sadler, "The Application of 'Deuce' to the Analysis of Linear Passive Networks", Marconi Rev. vol. 25, no. 2, pp. 139-1ヶ6; 1962.
(109) T. Iedoroko, T. Tsuchiya and H. Watanabe, "A New Calculation Method for the Design of Filters by Digital Computer with the Special Consideration of the Accuracy Problem", IbEE Conv. Record, vol. 11, pt. 2, pp. 100-113; 1963.
(110) International Business Machines Corp., "1620 Electronic Circuit
 Dept., Wnite rlains, N.1.; 1905.
(111) \qquad ., "ASAP, An Automated Statistical Analysis Program", Tech. Rept. prepared for Goddard Space Flight Center, Greenbelt, Md., Contract no. NAS 5-3373.
(112) M.N. John, "A General Method of Digital Network Analysis Particularly Suitable for Use with Low-Speed Camputers", Proc. Inst. Elec. Engrs. (Iondon) vol. 108, part A, pp. 369-382; October, 1961.
(113) H.J. Joyal, "Power-Supply Circuit Design by Digital Computer Method", Electrical Mfe. vol. 65, pp. 171-177; Niay, 1960.
(174) G. Kaskey, N.S. Prywes and H. Lukot'f, "Applications of Computers to Circuit Design for UHIVAC LaRC", Proc. wJCC, Los Angeles, Calif. vol. 19, pp. 185-205; May, 1961.
(115) J. Katzenelson and L.H. Seitelman, "An Iterative Metnod for Solution of Nonlinear Resistor Networks", Proc. of 3rd Allerton Conf. on Circuit and System Theory; pp. 647658; October, 1965.
(120) S. Klapp, "Empirical Parameter Variation Analysis for Electronic Circuits", IEFE Trans. on Reliability and Quality Control, vo1. RQC-13, pp. 34-40; Liarch, 1964.
(121) T.B. Knapp, "An Application of Nonlinear Programing to Mismatched Filters", IEEE Trans. on Circuit Theory, vol. CT-12, pp. 185-193; June, 1965.
(122) F.F. Kuo, "Network Analysis by Digital Computer", Proc. IEEE, vol. 55; June, 1966.
 , "Computer Techniques in Circuit Analysis", Network Analysis and Synthesis (book), 2nd edition, pp. 438-460; John Wiley, 1966.
and J.F. Kaiser, "System Analysis by Digital Computer", (book) John Wiley, 1966.
(125) C. Kurth, "Analysis of Diode Modulators Having Frequency-Selective Terminations Using Computers", Electrical Communication, vol. 39, no. 3, pr. 369-378; 1964.
(126) D.M. Larson and B.J. Grinell, $\boldsymbol{n}_{\mathrm{A}}$ Comparison of liethods of Urift Keliability Determination", Proc. 7th Nat'l. Symp. on Reliability and Quality Control, pp. $448-454 ; 1961$.
(127) G.L. Lasher and J.C. Morgan, "A General Method of Predicting the Transient Response of a Nonlinear Circuit", IBM Research Rept. RC-7; 1957.
(128) A.P. Lechler, D.C. Mark and H.S. Scheffler, "Applying Statistical Techniques to the Analysis of ilectronic Networks", Proc. 1962 Nat'l Aerospace Electronics Conf. pp. 168-172.
(129) G.H. Leichner, "Network Synthesis Using a Digital Computer", Proc. N.E.C. vol. 12, pp. 830-830; 1956.
(130) \qquad , "Desi ning Computer circuits with a Computer", J. Assoc. Computing Nach., vol. 4, pp. 143-147; April, 1957.
(131) B.J. Leon and C.A. Bean, "Analysis and Desikn of Parametric amplifiers with the Aid of a 709 Computer", IRE Trans. on Circuit Theory, vol. CT-d, pp. 210-215; September, 1961.
(132) V.S. Levadi, "Simplified Method of Determining Transient Besponse from Frequency response of Linear Networiss and Systems", 1RE Conv. kecora, vol. 7, pt. 4, pp. 57-68; 1959.
(133) J.I. Levin, "Failure Prevention Through Design Optimization Utilizing Monte Carlo Simulation Techniques", Solid State Design, vol. 6, no. 10, pn. 26-29; October, 1965.
(134) R.W. Levinge, "A Transfer Function Computer", Electronic Engrg., vol. 37, pp. 218-224; April, 1965.
(135) I.C. Liggett, "Examples of Engineering Applications on IBM Digital Computers", Electrical Engrg., vol. 74, pp. 233236; March, 1955.
(136) M.L. Liou, "Numerical Techniques of Fourier Transforms with Applications", Proc. 2nd Allerton Conf. on Circuit and System Theory, pp. 114-134; 1964.
(137) \qquad "A Numerical Solution of Linear Time-Invariant System", Proc. of 3rd Allerton Conf. on Circuit and System Theory, pp. 669-676; October, 1965.
\qquad ＂A Novel Niethod of Evaluating Transient Response＂， Proc．IEEE vol．54，pp．20－23；January， 1966.
（139）A．J．McElroy and R．M．Porter，＂Digital Computer Calculation of Transients in Electrical Networks＂，Power Apparatus and Systems，no．59，（AIEE Trans．vol．82，pt．3），pp．88－96； April， 1963.
（140）F．J．Mcwilliams，＂Topological Network Analysis as a Computer rrogram＂，I．iE Trans．on Circuit Theory，vol．CT－6， pp．135－136；March， 1959.
（141）A．F．Maumberg，F．L．Cornwell ard F．N．Hofer，＂NET－1 Network Analysis Program，7090／94 Version＂，Heport no．La－3119， $10 s$ Alamos scientific Laboratory，August， 1964.
（142）R．A．Mammano，K．D．Fope and E．P．Schneider，＂Computer－Assisted Circuit Analysis＂，EDN vol．10，no．14，pp．132－139； November， 1965.
（143）J．Marini and K．T．Williams，＂The Evaluation and Prediction of Circuit Perrormance by Statistical Techniques＂，Proc． Joint Military－Industry Symp．on Guided Missile Rellability；19ち7．
（1山山）D．G．Mark and L．H．Stember，＂Variability Analysis＂，Electro－ Technoloey，vol．76，no．1，pp．37－48；July， 1965.
（145）W．Mayeda and M．E．Van Valkenburg，Mivetwork Analysis and Synthesis by Digital Computers＂，WESCON Conv．Record， vol．1，pt．2，pp．137－14 4 ； 1957.
（146）
＿＂Analysis of Nonreciprocal Networks by Higital Computern，IKE Conv．Record，vol．6，no．2，pp．70－75； 1956.
（llil）C．S．Meyer，＂A Digital Computer Representation of the Linear Constant－Parameter Electronic Network＂，N．I．T．， Cambridge，Mass．，Tech．Kemo 6436－TM－3，p．110；August， 1960，ASTIA AD 248437．（OTS PB 155408）．
（148）R．S．Miles，＂Transient Response using Matrizant Procedures＂， Proceedings 2nd Design Aids Symposium，Autonetics，Anheim， Calif．，Fub．no．558－A－14，paper no．Iv；September， 1963.
（1149）M．I．T．Nes．Lab．Electronics，＂Circuit Simulation on a Digital Computer＂，Quarterly Progress Report \＃61；December， 1960 － February，1901．
(150) E.F. Morris and T.E. Wohen, "Automatic Implementation of Computer Logic", Cominun. ACM, vol. 1, no. 5, pp. 14-30; May, 1958.
(151) F. Moskowitz, "The Analysis of Redundancy Networks", Commun. and Electronics, no. 39, (AIEE Trans. vol. 77, pt. 1), pp. 627-632; November, 1958.
(152) W.F. Niesen, "System Analysis Using Digital Computers", Electronic Industries, vol. 19, no. 8, pp. 212-13; August, 1960.
(153) E. Nussbaum, E.A. Irland and C.E. Young, "Statistical Analysis of Logic Circuit Ferformance in Digital Systems", Proc. IRE vol. 49, pp. 236-244; January, 1961.
(154) E.A. Pacello, "The Use of 'Deuce' for lietwork Analysis", The Marconi Review, vol. 24, no. 142, Third Quarter; 1961.
(155) K.C. Parton and U.A. Newey, "Power-System Design - New Techniques", J. Science and Technology, vol. 29, no. 1, pp. 9-19; 1962.
(156) C.M. Pierce, "The Design and Analysis of Electrical, Electronic Systems by Means of Digital Computers, An Annotated Bibliography", Lockheed Missiles and Space; September, 1963, p. 34, AD 439 L山O.
(157) S.C. Plumb, "A Program for Statistical Reliability Evaluation by Syntheric Sampling (STRESS)", Tech. Fubl. no. TR 00.834, IBM Poughieepsie, N.Y.; January, 1962.
(158) C. Pottle, "On the Partial Fraction Expansion of a Rational Function with Multiple Poles by iigital Couputer", IEEE Trans, on lircuit Theory, vol. CT-11, pp. 161-162; March, 1964.
(159) \qquad "Comprehensive Active Network Analysis by Digital Computer - A State-Space Approach ${ }^{\prime \prime}$, Proc. of 3 rd Allerton Conf. on Circuit ard System Theory, pp. 659676; October, 1965.
(160) M.B. Reed and others, "A Digital Approach to Power-System Engineering", (in 4 parts), Power Apparatus and Systems, no. 48 (AIEE Trans. vol. 79, pt. 3) pp. 198-225; June, 1961.
(161) Remington Rand Univac Division, "Mathematical Circuit Analysis and Design", Remington Rand; February 29, 1960, 40 pp., OTS PB 148222.
(162) A.L. Hiemenschneider and C.W. Cox, "Digital Computer Analysis of the Tunnel Diode Relaxation Oscillator", Electronic Engineering, vol. 36, pp. 382-385; 1964.
(163) D. Rigney, L. Kraus and H. Malamud, "Synthesis of Current Waveforms by Type C. Networis", Republic Aviation Report; August, 1961, PB 155213.
(164) L.G. Roberts, "Circuit Simulation on a Digital Computer", M.I.T. Cambridge, Mass., Quarterly Progress Report, no. 61, pp. 239-251; April, 1961.
(165) L.P.A. Robichaud, M. Boisvert and J. Robert, "Signal Flow Graphs and Applications", (book), Cinapter 7 "Algebraic Keduction of Flow Graphs Using a Ligital Computer", pp. 181-195; Prentice-Hall, 1962.
(166) C.W. Hosenthal and H. Simon, "Computers as an Aid in the Development of Trwismission Circuits", Proc. 2nd Allerton Conf. on Circuit and System l'heory, pp. 337-365; 1964.
(167) D.T. Koss and J.E. hodriguez, "Theoretical Foundations for the Computer-Aided Design System", Proc. 1963 Spring Joint Computer Conf. pp. 305-322.
(168) N.A. routledge, "Logic on Electronic Computers: A Practical Method for Reducing Expressions to Conjunctive Normal Form", Proc. Camb. Phil. Soc., vol. 52, pp. 161-173; April, 1956.
(169) H. Huston and J. Bordogna, "Electric Networks: Functions, Filters, Analysis", (book), Section 6.4 "Analysis with a Digital Computern, pp. 435-4山5; McGraw-H1ll Book Co., 1966.
(170) N. Sato, "Digital Calculation of Network Inverse and Mesh Transformation Matrices", Power Apparatus and Systems, no. 50 (AIEE Trans. vol. 79, pt. 3), pp. 719-726; October, 1960.
(171) H.S. Scheffler and F. K. Terry, "Description and Comparison of Five Computer Methods of Circuit Analysis", Proc. 6th Symposium on Ballistic Missiles and Aerospace Technology, Los Angeles, 1961, Ed. by C.T. Morrow, L.D. Ely and M.R. Smith, Academic Press, 1961.
(172)
J.J. Duffy and B.C. Spradlin, "MANDEX-A Worst-Case Circuit Analysis Computer Program", Proc. 1962 Nat'l Aerospace Electronics Conf. pp. 38-53.
(173) J.D. Schoeffler, "The Synthesis of Hinimum Sensitivity Networks", IEEE Trans. on Circuit Theory, vol. CT-11, pp. 271-276; June, 1964.
(174) H. Schorr, "Computer-Aided Digital Bystem Design and Analysis Using a Register Transfer Language", IEEE Trans. on Electronic Computers, vol. EC-13, pp. 730-737; December, 1964.
(175) L.S. Schwartz, "Statistical Methods in the Design and Development of Electronic Systems", Proc. InE, vol. 36, pp. 664-670; May, 1948.
(176) C.L. Semmelman, "Experience with a Steepest Decent Computer Program for Designing Delay Networks", IỉE Conv. Record, vol. 10, pt. 2, pp. 206-210; 1962.
(177) L. Shalla, "Automatic Anelysis of Electronic Digital Circuits Using list Processing", Communications ACM, vol. 9, pp. 372-380; May, 1966.
(170) Y. Shiger, T. Takebe, T. Shinozaki, K. Kinura and S. Watanabe, "Network Design by the Taylor Series Method", Hev. Elect. Commun. Lab. (Japan) vol. 10, no. 9-10, pp. 483-500; September - October, 1962.
(179) R.B. Shipley, D. Coleman and C.F. Watts, "Transformer Circuits for Digital Studiesn, Power Apparatus and Systems, no. 64 (AIEE Trans. vol. 81, pt. 3) pp. 1028-1031; February, 1963.
(180) J.K. Skwirzynski, "The Use of Digital Computers for Network Analysis", Marconi Rev., vol. 26, no. 158, pp. 195-210; 1965.
(181) B.R. Smith and G.C. Temes, "An Iterative Approximation Procedure for Automatic Filter Syrthesis", IEEE Trans. on Circuit Theory, vol. CT-12, pp. 107-112; March, 1965.
(182) H.C. So, "Analysis and Desitn of Inear Networks with Variable Parameters Using On-Line Simulation", Proc. of 3rd Allerton Conf. on Circuit and System Theory; pp. 634-646; October, 1965.
(183) L.H. Stember, H.S. Scheffler and J.J. Duffy, "Circuit Analysis Techniques Utilizing Digital Computers", Proc. 7th Nat'l Symp. on Reliability and Quality Control, pp. 361-374; 1961.
(184) C.W. Stempin, "Application of Matrizant Operators for General Network Response", Procetdings 2nd Design Aids Symposium, Autonetics, Anheim, Calif., no. 558-A-14, paper no. III; September, 1963.
(185) R.W. Stineman, "Digital Time-Domain Analysis of Systems with Widely Separated Poles", J. of Assoc. Computing Machinery, vol. 12, pp. 286-293; April, 1965.
G. Szentirmai, "Theoretical Basis of a Digital Computer Program Package for Filter Synthesis", Proc. list Allerton Conf. on Circuit and System Theory, pp. 37-49; 1963.
(187) N.H. Taylor, "Designing for deliability", Proc. INE vol. 45, pp. 811-822; June, 1957.
(188) G.C. Temes, "Filter Synthesis using a Digital Computer", IRE Conv. Record, vol. 10, pt. 2, pp. 211-227; 1962.
(189) A.O. Thomas, "Calculation of Iransmission-Line Impedance by Digital Computer", Power Apparatus and Systems, no. 40 (AIEE Trans. vol. 77, pt. 3) pp. 1270-1274; February, 1959.
(190) J.B. Tommerdahl, A.C. Nelson and K.K. Mazuy, Mathematical Models for Predicting Pulse Characteristics in Digital Logic Systems", IBEE Trans. on Electronic Computers, vol. EC-13, pp. 705-710; December, 1964.
(191)
_ and A.C. Nelson, "Switching Circuit Transient Performance Prediction Using Empirical Mathematical Modeling Techniques", IEEE Trans. on Reliability and Quality Control, vol. RQC-14, pp. 5-11; March, 1965.
(192) J.G. Truxal, "Numerical Analysis for lietwork Design", IRE Trans. on Circuit Theory, vol. CT-1, no. 3, pp. 49-60; September, 1954.
(193) C.G. Veinott, "Electric Machinery Design by Digital Computer After Nine Iears", Elect. Engrg. vol. 82, pp. 275-280; April, 1963.
(194) S.Y. Wong and M. Kochen, "Automatic Network Analysis with a Digital Conputation System", Comm. and Electronics, no. 24 (AIEE Trans. vol. 75, pt. 1), pp. 172-175; May, 1936.
(195)
A.D. Waren and L.S. Lasdon, "Practical Filter Design Using Mathematical Optimization", Proc. of 3rd Allerton Conf. on Circuit and System Theory; pp. 677-689; October, 1965.
(196) H. Watanabe, "A Computational Method for Network Topolocy", IRE Trans. on Circuit T.eory, vol. CT-7, pp. 296-302; September, 1960.
(197) W.J. West and H.S. Scheffler, "Design Considerations for reliable Electronic Equipment", Pub. no. 558-A-2, Autonetics; October, 1962.
(198) D. Wildfeuer, "The Use of Automatic Digital Computation Machine in Design of Miniature Pulse Transformers and Power Iransformers", Proc. Nat'l Electronics Conf. vol. 16, pp. 631-651; 1960.
(199) S.B. Williams, P.A. Abetti and E.F. Magnusson, "How Digital Computers Aid Transformer Designers", General Electric Rev., vol. 58, pp. 24-25; May, 1955.
(200) and H.J. Mason, "Complete Design of Power Transformers with a Large Size Digital Computer", Power Apparatus and Systems, no. 34, (AIEE Trans. vol. 77, pt. 3), pp. 12821291; February, 1958.
(201) H.M. Wall, MUsing a Computer for Circuit Analysis", Electronics, vol. 2, pp. 56-61; November 2, 1964.
(202) B.A.M. Willcox and i.C.V. Macario, "Iterative Procedure for Analyzing Certain Network by Digital Computer', Proc. Inst. Elect. Engrs. (London) vol. 112, pp. 2243-53; December, 1965.
(203) J.L. Wirth, "The Design and Analysis of Electronic Circuits by Digital Computers", Report no. SC-R-64-1355, Sandia Corp., October, 1964.
(204) K. Yamanoto, K. Fujimoto and H. Watanabe, "Programming the Minimum Inductance Transformation", IRE Trans. Circuit Theory, vol. CT-3 pp. 184-191; September, 1961.
(205) G.W. Zorbist and G.V. Lago, "Digital Computer Analysis of Passive Networks Using Topological Formulas", Proc. 2nd Allerton Conf. on Circuit and System Theory, pp. 573-595; 1964.

SUBJECT INDEXX

Amplifiers	3	9	50	52	131			
Analysis	5	6	7	8	14	16	17	21
	22	27	28	29	30	33	34	40
	45	57	58	59	62	65	69	73
	75	79	81	82	83	89	102	108
	112	115	116	118	120	122	123	124
	141	142	145	146	147	151	152	154
	159	161	162	169	170	174	177	180
	182	183	184	185	190	194	201	202
	203	204						
Ribliography	11	156						
Books	14	39	60	123	124	165	169	
Computer Programs	16	28	32	67	69	77	88	96
	370	117.	147	157				
Design and Synthesis	2	3	10	12	19	20	23	26
	33	35	36	39	40	47	42	48
	49	55	61	63	64	74	78	86
	87	91	98	103	106	109	113	14.
	117	119	129	130	131	133	145	161
	163	166	167	173	174	176	178	181
	182	186	188	192	195			
Filters	10	23	63	87	107	109	119	121
	181	186	188	195				
Integrated Circuits	1	9	4	55	68			
				- 23				

Ladder Network	63		154							
Logical Network	12		26	37	46	47	70	150	168	
Nonlinear Netuork	16		115	127						
Numerical Method	5		39	136	137	192				
Power Ne twork	4		54	71	72	80	94	155	160	
	189									
Reliability	11		20	24	67	93	100	101	120	
	126		144	157	187	197				
Simulation	66		85	90	97	149	164	182		
Statistical Technique	6		51	53	70	99	104	105	111	
	128		133	143	14.4	153	157	175		
Survey	13		15	25	43	76	95	122	135	142
	144		171	193						
Topological Method	18		38	82	92	140	165	196	205	
Transfer Function	85		117	134	158					
Transformer	84		179	198	199	200	204			
Transients	2		7	29	32	36	56	97	102	
	127		132	138	139	148	191			
Transistor	28	45	49	52	59	98	162			
Worst-Case	8		26	64	106	172				

1948175

1953104
$1954 \quad 20 \quad 192$
$1955 \quad 80 \quad 135 \quad 199$
$\begin{array}{llllll}1956 & 25 & 105 & 129 & 168 & 194\end{array}$
$\begin{array}{lllllllll}1957 & 13 & 19 & 66 & 127 & 130 & 443 & 145 & 187\end{array}$
$\begin{array}{lllllllll}1958 & 17 & 38 & 81 & 87 & 100 & 146 & 150 & 151\end{array}$ 200

1959	4	28	32	35	37	43	47	53
	54	60	61	67	116	132	140	189
1960	14	59	70	71	84	113	118	447
	152	161	170	196	198			

1961	8	12	15	16	22	21	33	34

36	48	52	63	72	78	82	85
94	97	102	103	106	112	114	126
131	149	153	154	160	163	164	171
183	204						

1962
11 27
$\begin{array}{lllllllll}88 & 91 & 93 & 101 & 108 & 128 & 155 & 157\end{array}$
$\begin{array}{llllll}165 & 172 & 176 & 178 & 188 & 197\end{array}$

1963	5	6	7	44	45	49	62	65
	69	73	74	76	86	109	111	119
	139	146	156	167	179	184	186	193

1964	9	10	21	23	39	40	41	46
	64	68	77	88	96	98	107	120
	125	136	141	158	162	166	173	174
190	201	203	205					
$\underline{1965}$	1	2	3	26	42	55	56	75
	79	83	88	89	90	92	95	110
	115	117	121	133	134	137	142	144
	159	180	181	182	185	191	195	202
	18	31	122	123	124	138	169	177

Section II. Study of the Available Programs -- ASAP and ECAP

Three existing digital computer programs written expressly for circuit analysis and evaluation were reviewed and examined, namely, the Automated Statistical Analysis Program (ASAP) [1], the Circuit Analysis System (CIRCS) [2], and the Electronic Circuit Analysis Program (ECAP) [3]; the first and the third being developed by the International Business Machines Corporation, and the second at the Jet Propulsion Laboratory. They may be regarded as the offspring of the same lineage, because they share the same philosophy of attacking the problem and they possess strong similarities in modeling and formating. All three programs have the capability of accepting a topological description of the circuit in simple language, writing the circuit equations according to Kirchhoff's current law, and carrying out the analysis requested.

The ASAP is primarily designed to perform a Monte Carlo statistical analysis on the d-c currents and voltages of circuits containing transistors and diodes. It computes two types of sensitivities. The first type is a qualitative analysis where the measure of the spread of each parameter about the mean value is taken into consideration. The second type is based on a one per cent deviation of each component parameter from its nominal value. The CIRCS program provides options of d-c, a-c, and transient analysis, and also the Mandex worst case and sensitivity calculations. The ECAP, which has recently been released to general public, has the additional feature of including mutual inductance as a circuit element without finding its equivalent tee or pi. The ASAP works on the IBM-7090/94 computer while the other two operate on IBM-1620 with a 1311 disk file system.

CIRCS requires a 20 k core storage unit while ECAP requires a 40 k core storage. Because ECAP is inclusive of the features of CIRCS, discussions and observations will be made in the this section of the report with regard to ASAP and ECAP only.

One of the justifications in using the digital computer for circuit analysis and design is to obtain information concerning the circuit operation and performance which would otherwise be unobtainable by other means, either for physical reasons or for time considerations. For instance, in the reliability study of a circuit comprising many component parts, it is practically impossible to find out systematically all the effects on the output of varying each component to a different extent on a lab bench. However, a well conceived computer program will have the fortet of carrying out the simulation faithfully and exhaustively. It is with this objective that the ASAP uses Monte Carlo method to produce various statistics of the circuit voltages and currents for any assigned range of tolerance and any shape of statistical distribution curve for each circuit element.

Diodes and transistors in the circuit are to be specified by piecewise linear $\mathrm{v}-\mathrm{i}$ curves for the diodes, by $\mathrm{I}_{\mathrm{b}}-\mathrm{V}_{\mathrm{be}}$ and $\mathrm{I}_{\mathrm{c}}-\mathrm{V}_{\mathrm{ce}}$ curves for the transistor. There may be 2 to 10 values for each curve. The program determines the equivalent circuit for the diode or transistor and an iterative procedure is followed in locating the operating point. The automatic computation requires a large amount of input data and computer time. Moreover, the convergence of the process in arriving at a satisfactory operating point may be difficult to realize.

ASAP, in writing the nodal equations from the topological description in the data input, uses a pattern recognition subroutine to produce a trace table and establishes the algebraic equations satisfying Kirchhoff's current law. It is significant
that the equations are solved algebraically in symbolic form by the Gauss reduction method without back-substitution. The back-substitution occurs numerically during the execution phase. It is quite probable that, during the solution process, some intermediate equation may become longer than the alloted storage space. This may arise as a result of the complexity of the circuit or of the particular sequence of solving one unknown after another. It would be an important factor which could severely limit the actual size of the circuit which can be handled by the program. The official statement concerning the capability limits of the ASAP lists 50 dependent nodes (a dependent node is defined as any node other than ground or those connected to a voltage source) and 40 diodes plus transistors. If these figures truly represent the upper limit of the program, it seems that ASAP will be found useful in quite large population of circuit configurations in practice.

The ASAP program requires a relatively large machine configuration to operate, which may not be readily available in some circumstances. Designers are hoping to be able to make use of digital computers as compactly as a cathoderay oscilloscope, if not demanding the comparable size and elementary simplicity in use as a slide rule. Technology will advance and meet the challenge in time. At the present time, however, efforts are made in developing programs adaptable for small size computer operation. The ECAP is such an undertaking. The complete ECAP program can be obtained through the IBM 1620 Users' Group.

The ECAP is a card input program designed for operation on IBM 1620 with 1311 disk storage drive. It has the features of automatic equation writing, three options of analysis, d-c, a-c, and transient, computation of partial derivatives and sensitivity coefficients of voltages, and automatic logarithmic modification
of frequency in the a-c analysis portion.

Transistors and diodes are represented by their equivalent circuits in the analysis. In the transient calculations the parameter values of the diode and transistor can be made to vary as a function of circuit voltages and currents. To accomplish this, the complement of the circuit elements which are recognized by ECAP contains a "switch" element, which presents the pertinent equivalent circuit for a particular operating region. Thus the three commonly referred to regions of operation of a transistor, cutoff, active, and saturation, can be handled adequately; in a similar manner the diodes can be conducting with different forward resistance or nonconducting.

In the ECAP program the sensitivity coefficients are defined and calculated only for node voltages as their change for a 1% change in the branch parameter. In the worst case analysis both worst-case maximum and worst-case minimum are computed. In the former calculation, positive partial derivatives are multiplied by positive tolerances and negative partial derivatives by negative tolerances. In the latter, positive partial derivatives are multiplied by negative tolerances, etc. The basic assumption is that the circuit output variables are linearly related to the parameter values. This approximation is valid when the parameter tolerances are small. When the tolerance exceeds 10% of the nominal value, the manual recommends the parameter substitution method. First, the partial derivatives of the node voltages are calculated. Then the nominal value of each parameter in the circuit is replaced with its maximum or minimum value, in accordance with the sign of the corresponding partial derivative, and the result is treated as a new ECAP job.

In the d-c analysis program, the d-c parameter modification solutions for a given circuit are obtained by correcting the nodal impedance matrix or the equivalent current vector associated with the circuit. This imposes the condition that the tolerance has to be limited in range in the automatic determination of worst cases. However, the a-c modification solutions, on the other hand, are completely new. Consequently it allows any extent of parameter change in the calculation.

A maximum of five coupled inductances can be included in the circuit that is to be analyzed. This is a feature not often found in other programs.

The transient response of node voltages and element currents are produced by ECAP at the start of a transient solution and at uniform intervals of time thereafter, until the end of the solution is reached. In addition, these output variables are also produced immediately before and immediately after each switch actuation, if any. The time of the switch actuation is also given.

The system of integro-differential equations which arises in the transient analysis is solved in ECAP by an implicit numerical integration technique. It involves two main tasks: the replacement of the system of integro-differential equations by an equivalent set of algebraic difference equations, and the repetitive numerical solution of the algebraic equations. In solving the equations at the end of each series of discrete intervals of time, each new solution is dependent upon the results of the previous solution. That is, the values of certain of the terms in the set of algebraic equations are always computed from the results of the previous solution. For the first solution (at the end of the first time step) these terms are evaluated from the circuit initial conditions. Therefore, the results of each solution become the initial conditions of the succeeding solutions.

References

[1] International Business Machine Corp., "ASAP, An Automated Statistical Analysis Program," Tech. Rept. prepared for NASA Goddard Space Flight Center, Greenbelt, Md., Contract No. NAS 5-3373.
[2] J. N. Hatfield, "A Linear Circuit Analysis Program for the IBM 1620/1311 20k Data Processing System: CIRCS," Jet Propulsion Lab., Pasadena, Calif., May, 1964.
[3] International Business Machines Corp., "1620 Electronic Circuit Analysis Program: ECAP 1620-EE-02X," IBM Tech. Publ. Dept., White Plains, N. Y., 1965.

Section III Adaption of Current Techniques of Computer-Aided Circuit Analysis to Moderate Size Computer

One of the areas of interest to the project for investigation is the possible use of the moderate size computer for circuit analysis. Since the IBM 1620 digital computer is a relatively small machine and is available on campus, it was decided to study programming methods that could be performed using this computer. One method that seemed particularly suitable for programming by the IBM 1620 is the scheme used on the British general purpose computer called Deuce [1]. This method will give the solution of driving point and transfer functions of cascaded networks as a function of sinusoidal frequencies.

The Deuce method of programming was selected for the following reasons: (1) many practical circuits consist of cascaded stages with simple network geometry, although the circuits are composed of many components; (2) it permits and encourages the circuit designer to analyze his design with a minimum of programming experience in a span of time commensurate with bread-boarding a circuit; (3) the program can easily be modified to cope with configurations of various complexities and (4) the program can be run by the designer on a small computer.

1. The Analysis Procedure

The Deuce type program consists essentially of determining the steady state behavior of linear networks consisting of a number of three or four-terminal networks connected in cascade. The technique is designed primarily for identical sections in series. The sections may be one of the following structures: shunt and series branch (ladder network), bridged-T, or lattice. If the structure varies from one section to another, the most complicated segment is taken as the parent structure of the configuration. Other sections are then regarded as special cases of the parent structure by assigning proper values (either short circuit or open circuit) at proper places.

In the simple case of an ordinary ladder network, each section is an L with two branches (Fig. 1a), one shunt and one series. A program written to handle the ladder network is included in this report and will be discussed in detail later. Other programs may be written to handle cascaded networks having bridged-T or lattice sections as the parent structure (Fig. 1b, c, d).

As an illustration of determining the basic structure of a given network, consider the network of Fig. 2. Since one section of the network is the bridged-T, the network is considered a cascade connection of three bridged-T sections, two of which have branches missing. Once the basic structure is decided, the equation for driving point and transfer functions are derived. A table of these functions for all common network configurations can be made and used as needed in the programs.

The program analysis proceeds step by step beginning with the output terminals of the networks and working toward the input terminals as shown in Fig. 3. (It could also be developed by proceeding from the input terminals to the output terminals).

Each section is analyzed knowing the output voltage and output admittance. As a starting point, the output voltage V_{O} is assigned the reference value of 1.0 volt at an angle of 0°, and the output admittance Y_{O} is assigned the value of zero mhos at an angle of 0°. The input voltage V_{1} and input admittance Y_{1} of the section are calculated using appropriate equations which have been prepared by the designer and stored in the program. Thus, in general, with V_{i} and Y_{i} known, $\mathrm{V}_{\mathrm{i}+1}$ and $\mathrm{Y}_{\mathrm{i}+1}$ of the next section are calculated. This procedure is continued until the input voltage V_{n} and the input admittance Y_{n} are determined.

Note that although V_{o} is assumed equal to one volt, the actual value of V_{n} will ultimately determine the true value of V_{O}. Similarly, Y_{O} may be other than zero but this is simply specified at the start of the program, before $\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{n}}$ are computed.
2. Transforming a Network Diagram to Computer Input

In transforming a given circuit diagram to computer input, the basic component is taken as the series combination of one resistor, one inductor, and one capacitor. Let this RLC series combination be called a "twig". In Fig. 4 a is shown several possible forms of a twig. Note that two elements of
the same kind, e.g. two resistors, in series, form two twigs. The parallel connection of two or more twigs is a "nest". A "branch" may be formed by a twig, a nest, or a combination of the two. See Fig. $4 b$ and $4 c$. In the particular case of a ladder network, the twigs, nests, and branches may appear either in the series arm or in the shunt arm. As shown in Fig. 5, the series arm is specified in terms of its impedance and the shunt arm in terms of its admittance.

The key idea of writing the circuit into the computer input is to assign a proper code to each and every twig. The code is interpreted by the machine and thus determines the location of the twig with respect to others in the basic configuration of the network. A twig may be found in several locations in the ladder network. For example it may (a) stand alone in series or shunt arm, (b) be in parallel with other twigs forming a nest, or, (c) be part of a branch composed of a twig and a nest. This is illustrated in Fig. 6.

It often happens that the network structure requires "dummy" twigs be introduced. The program is written in such a way that each series branch and shunt branch must end in a single twig. This twig serves the program control that causes the total impedance or admittance to be calculated. When the given structure does not contain the twig, the dummy twig is inserted. The dummy twig has zero values of inductance, susceptance and resistance and does not affect calculations other than its use as a program control. The use of the dummy twig will be included in the ladder example to be worked out in the following paragraph.

Input data for the circuit to be analyzed are punched on standard 80 column IBM cards. Each twig of the circuit is represented on one IBM card. In general, each IBM card is divided into a number of fields as illustrated in Fig. 7. Two fields $F(I)$ and $G(I)$ are used to designate the position of the twigs in the structure of the cascaded section. Three other fields are used to indicate the value of the L, C and R components. Note that the type of component is designated by giving its value in a specific position of the fields. In the program, the symbol S (where $S=1 / C$) is used instead of C, since values of infinite C cannot be processed by the computer. The symbol H instead of L was used since L represents a number without a decimal in Fortran programming. If H, S or R are short circuits, the value of zero is entered into the respective fields.

3. Analysis of a Ladder Network

Consider the ladder network shown in Fig. 5 where it is desired to find V_{n} and Y_{n}, the input voltage and input admittance respectively, from some assumed V_{O} and Y_{O} at the output end.

First the equation for the solution of the voltage transfer function $\mathrm{V}_{\mathrm{r}+1} / \mathrm{V}_{\mathrm{r}}$ and the driving-point admittance Y_{r} per section of the ladder network are derived by the circuit designer.

$$
\begin{aligned}
& \frac{\mathrm{V}_{\mathrm{r}+1}}{\mathrm{~V}_{\mathrm{r}}}=1+\mathrm{z}_{2}\left(\mathrm{Y}_{\mathrm{r}}+\mathrm{y}_{1}\right) \\
& \mathrm{Y}_{\mathrm{r}+1}=\frac{\mathrm{V}_{\mathrm{r}}}{\mathrm{~V}_{\mathrm{r}+1}}\left(\mathrm{Y}_{\mathrm{r}}+\mathrm{y}_{1}\right)
\end{aligned}
$$

where z and y denote branch impedance (series) and admittance (shunt) respectively, of each ladder section, and Y_{r} is the input admittance to the section.

Next, it is necessary to decide on a coding scheme in the first two fields, F (I) and G(I), on the data cards for entering the detailed structure of series and shunt branches. In the following example of coding, nine different combinations are possible in stating the location of one twig with respect to others.

F (I)	G (I)	
1	0	Indicates a twig that is part of a nest.
1	1	Indicates a current source G, of value H(I) and angle S(I).
1	2	Indicates a voltage source E, of value $\mathrm{H}(\mathrm{I})$ and angle $\mathrm{S}(\mathrm{I})$.
-1	-1	Indicates a twig that is in series with a nest, both of which are in the impedance part of the structure.
-1	-1	Indicates a twig that is in series with a nest, both of which are in the admittance part of the structure.
-1	-2	Indicates only one twig exists in an admittance part of the structure.
0	0	Indicates only one twig exists in an impedance part of the structure.
0	-1	not presently used.
0	1	not presently used.

Let us take the specific ladder network of Fig. 8 into consideration. Note that two branches are made up of single nests. At locations designated by (A) and (B) dummy twigs must be inserted. Note that these dummy twigs are located at the high potential ends of the Z and Y branches. The dummy twigs will be the last elements of the branches examined and will, therefore, terminate the branches.

In order to use the ladder network program, there are three types of input cards that must be inserted with the program deck. These cards are:
(1) The input control card. This card sets the limits of the four program loops. Only three of the loops are actually satisfied when solving a problem. In particular, the control card specifies $\mathrm{J}, \mathrm{L}, \mathrm{M}$ and N where
a) $\mathrm{J}=$ the number of twigs in the circuit. The network of Fig. 8 shows twelve twigs identified by circled numbers. The twigs numbered 4 and 7 are dummy twigs. This loop must be satisfied since J is equal to the number of input data cards. In the example of Fig. 8, the value of j is 12 .
b) $L=$ the number of frequencies at which analysis is desired. The attached program is written to read in five values of frequency-in radians/sec but could easily be extended. The program calls for 5 values of frequency on the read statement and, hence, at least 5 values must be available on the frequency input card. The value of L determines how many of the 5 frequencies will be used in making analysis computations. Therefore, L must be $1,2,3,4$, or 5 . This loop must be satisfied.
c) $\mathrm{M}=$ the number of sections in the complete network. This number tells the machine when the input terminals have been reached. In the example of Fig. 8, there are 3 sections. This loop must be satisfied.
d) $\mathrm{N}=$ the number of twigs per section. This number varies from one section to the next. The value of N may be greater than or equal to the maximum number of twigs per section. This loop need not be satisfied. In the example of Fig. 8, there are 6 twigs in one section, hence, the value of N is set to 6 or more.
(2) Input data cards. As input "J" cards are inserted, each card identifies one twig and the order in which the cards are entered is of prime importance. The first input card must identify an admittance branch. If this branch possesses a nest, the first card must identify one of the twigs of the nest. Successive cards identify remaining twigs of the nest and then the terminating series twig, or if none is available, a dummy twig. After the admittance branch is terminated, the nest of the impedance branch, if one exists, is encountered. The last twig of the impedance branch must be a series twig or a dummy twig. In the network of Fig. 8, the twigs are numbered 1 through 12 in the order in which the data cards should be inserted with the program. Of course, cards 2 and 3 , cards 5 and 6, as well as cards 8 and 9 may be interchanged but the order of the other cards may not be changed. As input data cards for the network of Fig. 10, the following cards would be inserted:

Card \#	F (I)	G (I)	H (I)	S (I)	R (I)
1	-1	-2	0	0	7
2	1	0	0	0	6
3	1	0	0	10^{4}	0
4	-1	-1	0	0	0
5	1	0	$3 \times 10-3$	0	0
6	1	0	0	0	5
7	-1	1	0	0	0
8	1	0	$2 \times 10-3$	0	0
9	1	0	0	5×10^{3}	4
10	-1	-1	0	0	3
11	-1	-2	0	2×10^{3}	2
12	0	0	10-3	10^{3}	1

Note: Columns $F(I)$ and $G(I)$ indicate code while other columns $H(I), S(I)$ and $R(I)$ indicate magnitude of paramenters.
(3) As additional input data, the several values of frequency for which the analysis is desired are specified.

It should be noted that a given problem may be coded in more than one way. Consider the network structure given by Fig. 9. This network may be coded as a single twig impedance in series with a single nest and dummy twig admittance. The input data will be in the following form:
Card \#
F (I)
G (I)
H(I)
S(I)
R(I)

1	1	0	\mathbf{L}_{2}	0	\mathbf{R}_{3}
2	1	0	\mathbf{L}_{1}	$1 / \mathrm{C}$	0
3	1	0	0	0	\mathbf{R}_{2}
4	-1	1	0	0	0
5	0	0	0	0	\mathbf{R}_{1}

Alternatively, the network may be drawn as shown in Fig. 10, and coded as single y twigs and single z dummy twigs.

Card \#	F (I)	G(I)	$\mathrm{H}(\mathrm{I})$	$\mathrm{S}(\mathrm{I})$	$\mathrm{R}(\mathrm{I})$
1					
2	-1	-2	$\mathrm{~L}_{2}$	0	R_{3}
3	0	0	0	0	0
4	-1	0	$\mathrm{~L}_{1}$	$1 / \mathrm{C}$	0
5	-1	-2	0	0	0
6	0	0	0	0	R_{2}
			0	0	R_{1}

For the example of Fig. 8, calculations will proceed in this manner: First the impedance value is calculated for the first twig which is R_{7}. The value of the total admittance $y_{t}=Y_{o}+\left(1 / R_{7}\right)$ is then obtained. Next the impedance of the R_{6} twig is calculated. Since this is a twig of a nest, the value $y_{a}=1 / R_{6}$ is calculated. Then the admittance of the C_{4} twig is calculated, and then the total admittance y_{a} $=\left(1 / R_{6}\right)+\quad C_{4}$. The dummy card is read in as the twig of zero value terminating the branch.

In a similar fashion the total impedance is obtained for the series branch. As a consequence, we have

$$
\begin{aligned}
& \mathrm{V}_{1}=\mathrm{V}_{\mathrm{o}}[1+(\text { total admittance })(\text { total impedance })] \\
& \mathrm{Y}_{1}=(\text { total admittance })\left(\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{1}\right)
\end{aligned}
$$

The program then moves on to the section 2.
In section 2, the twig containing L_{3} is encountered. The impedance is calculated as $\quad L_{3}$ and the admittance becomes $1 /: L_{3}$. Next the twig R_{5} is read. The impedance is calculated and the admittance becomes $\left(1 / R_{5}\right)+\left(1 / L_{3}\right)$. Finally the dummy card is read and the total admittance $y_{t}=\left(1 / R_{5}\right)+\left(1 / L_{3}\right)$ $+Y_{1}$ is obtained.

The process is repeated until the input terminals are reached.

The complete write-up of the computer program for analyzing the ladder structure of Fig. 5 is contained in Appendix B of this report. It follows the flow chart Fig. 11 and involves four iterative loops of operation. They can be explained as follows.

Block 1
The parameters read here refer to: the number of twigs in the network; the number of frequencies at which analysis is desired; the number of sections in the total network; the maximum number of twigs in a section.

Block 2
The code and value of each twig is read and stored in the memory.

Block 3

The number of values of frequency at which analysis is desired are read and stored in the memory.

Blocks 4, 5 and 6
Initial values of output voltage and output admittance are specified. Note that some of these conditions are within loops and, hence, are executed more or less times than others.

Block 7

The impedance of a twig is calculated by separating the real and imaginary parts and then obtaining the magnitude of the impedance and the associated phase angle.

Block 8

The code of the twig being operated upon is identified. One of six subroutines is chosen.

Blocks 9, 10, 11, 12, 13, 14
Each twig is identified as having a form which must be handled by one of these subroutines. Only one of these subroutines is used for any one twig.

Block 15

At this point, a decision is made. If the loop has been repeated N times, then there are no more twigs in the section and the program precedes to Block 16. If not, the program begins operating on the next twig.

The input voltage to the section just operated upon is calculated along with the appropriate phase angle.

Block 17

The input admittance to the section just operated upon is calculated along with the appropriate phase angle. This completes the calculations for this section.

Block 18
The calculated values of input voltage and input admittance of the section are assigned as the output voltages and output admittance for calculations of the next section.

Block 19
At this point, a decision is made. If the section just handled was the final section, then the values of input voltage and associated angle as well as input admittance and angle are punched as output data. If the section was not the final section, loop M is followed which then causes calculations of the next section to begin.

Block 20
It is at this point that output data is punched. The program is written to punch output data at the end of each section and at the end of the last stage. If only the input voltage and admittance are needed, the extra punch statement may be deleted. (Extra punch statement not shown in flow diagram. The statement would occur between Blocks 18 and 19.)

Block 21
At this point, the final decision is made. The complete network analysis has been performed at one frequency. If analysis is desired at additional frequencies, the loop L is entered; if not, the program is complete.

4. Two Numerical Examples Using Ladder Analysis Program

Example 1.

The circuit in Fig. 8 with the following given element values is analyzed.

$\mathrm{R}_{1}=1 \mathrm{ohm}$	$\mathrm{L}_{1}=1 \mathrm{mh}$	$\mathrm{C}_{1}=10^{-3} \mathrm{f}$
$\mathrm{R}_{2}=2 \mathrm{ohms}$	$\mathrm{L}_{2}=2 \mathrm{mh}$	$\mathrm{C}_{2}=0.5 \times 10^{-3} \mathrm{f}$
$\mathrm{R}_{3}=3 \mathrm{ohms}$	$\mathrm{L}_{3}=3 \mathrm{mh}$	$\mathrm{C}_{3}=0.2 \times 10^{-3} \mathrm{f}$
$\mathrm{R}_{4}=4 \mathrm{ohms}$		$\mathrm{C}_{4}=2 \times 10^{-3} \mathrm{f}$
$\mathrm{R}_{5}=5 \mathrm{ohms}$		
$\mathrm{R}_{6}=6 \mathrm{ohms}$		
$\mathrm{R}_{7}=7 \mathrm{ohms}$		

In order to made use of the program, the following steps must be taken.
(i) Determine the number of dummy twigs to be added.
(ii) Count the total number of twigs including the dummies.
(iii) Assign values to J, L, M and N. See the section under
"The Input Control Card."
(iv) Code each twig.
(v) Determine the value of frequencies at which the analysis is made.

As a result, the input data cards as printed out in Table 1 is obtained. The output is printed in Table 2.

Example 2.

A two-stage RC coupled transistor amplifier as given in Fig. 12a is to be analyzed. Using the short-circuit admittance model of the transistor in Fig. 12c, the given circuit is replaced by its equivalent Fig. 12b.

Input data are printed out in Table 3 and output is printed out in Table 4.

5. Concluding Remarks

The program described in this section when used to determine the voltage gain and input admittance of a two state RC coupled amplifier occupied approximately thirty thousand positions in the IBM 1620 memory and required approximately two and one-half minutes to process, including the compiling and loading time. Some of the conclusions which may be drawn from the numerical examples shown above may be stated as follows: (1) Fortran language circuit-analysis programs can be generated by circuit designers with some assistance of experienced programmers. (2) Advantage of analyzing cascaded type networks by a ladder method rather than a matrix method is the ability to analyze networks of many stages for only a small increase of memory space. (3) Complex numbers are easily manipulated by separating real and imaginary components. (4) The circuit parameter identification and data are easily entered on a punched card. (5) The program can easily be modified to accomodate many types of cascaded networks.

The inherent limitation of a Deuce type program is the network geometry : restriction to cascaded networks. This problem can be resolved by using a matrix program as given in Section IV, but it should be noted that the size of the network will be severely limited due to the large memory space required for the matrix manipulations.

References

[1] E. A. Pacello, "The Use of Deuce for Network Analysis." Marconi Review, vol. 24, pp. 101-114; 1961.

FIG. I FOUR BASIC FOUR-TERMINAL NETWORKS.

FIG. 2 A CASCADED BRIDGED-T WITH DEGENERATE SECTIONS.

FIG. 3 CASCADED NETWORK CONFIGURATION.

盛

(b)

(c)

FIG. 4 SEVERAL VARIATIONS OF A TWIG (a), A NEST (b), AND A BRANCH (c).

FIG. 5 L LADDER NETWORK.

FIG. 6 (a) TWIGS STANDING ALONE; (b) TWIGS IN A NEST; (c) TWIGS IN BRANCHES COMPOSED OF OTHER NESTS.

FIG. 7 FIELDS OF AN IBM CARD

FIG. 8 AN RLC LADDER

FIG. 9 AN INVERTED L SECTION.

FIG. 10 AN ALTERNATE FORM OF INVERTED L SECTION.

FIG. 11

FIG. 12 A TWO-STAGE RC COUPLED AMPLIFIER

TABLE 2

```
C.C
    16.60E-02 .UOE-99
    17.40E-02 29.14E-02
    18.01E-01-13.13E-02 79.28E-03 13.13E-02 50.00E+01
    66.66E-02 15.70E-01
    69.60E-02 12.79E-01
    10.00E-01 15.70E-01
    10.86E-01 15.39E-01
    54.96E-01 49.76E-02 24.00E-02 55.14E-02 50.00E+01
    98.81E-01 42.48E-02 24.79E-02 89.2CE-02 50.00E+01
        9.8816889E+00 4.2481755E-01 2.4799813E-01 8.9207560E-01 5.0000000E+02
    16.66E-02 -00E-99
    19.43E-02 54.04E-02
    16.73E-01-22.79E-02 85.36E-03 22.79E-02 10.OOE+02
    33.33E-02 15.70E-01
    38.87E-02 10.30E-01
    50.00E-02 15.70E-01
    62.95E-02 14.15[-01
    43.OOE-01 48.OBE-03 17.59E-02 61.82E-02 10.OOE+02
    61.80E-01 29.55E-02 36.73E-02 48.24E-02'10.00E+02
    6.1807711E+00 2.9552675E-01 3.6731263E-01 4.8245680E-01 1.0000000E+03
    16.66E-02 .00E-99
    26.03E-02 87.60E-02
    14.15E-01-30.23E-02 10.09E-02 30.23E-02 20.00E+02
    16.66E-02 15.70E-01
    26.03E-02 69.47E-02
    25.00E-02 15.70E-01
    40.45E-02 11.1OE-01
    37.57E-01-24.58E-02 13.39E-02 52.94E-02 20.00E+02
    57.29E-01 50.57E-02 38.1 OE-02-27.27E-02 20.00E+02
```

TABLE 3

TABLE 4

```
10.0OE+03-15.70E-01 10.OOE-08 15.70E-01 10.OOE-01
10.OOE-04 .OOE-99
10.1OE-04 .OOE-99
10.10E-04 99.OOE-06
10.00E-07 .0OE-99
10.OOE-07 99.99E-04
50.55E-02-47.12E-01 19.78E-03 98.54E-04 10.00E-01
10.00E-04 .OOE-99
10.00E-04 99.99E-06
20.00E-04 49.99E-06
11.01E+04-62.73E-01
10.00E-04 -00E-99
10.10E-04 -OOE-99
10.10E-04 99.JOE-06
10.OOE-07 .OOE-99
10.ONE-07 99.99E-04
55.60E-01-94.15E-01 19.78E-03 98.54E-04 10.00E-01
10.00E-08 15.70E-01
10.00E-04 99.99E-06
55.66E-01-94.15E-01 20.78E-03 93.84E-04.10.00E-01
    5.5666943E+00 -9.4153038E+00 2.0784913E-02 9.3848923E-03 1.0000000E+00
10.04E+00-14.71E-01 99.50E-06 14.71E-01 10.00E+02
10.00E-04 .OOE-99
10.10E-04 .00E-99
10.14E-04 98.68E-03
10.00E-07 .OOE-99
10.04E-06 14.71E-01
52.36E-05-44.10E-01 19.28E-02 12.69E-01 10.00E+02
10.OOE-04 .OOE-99
10.04E-04 99.66E-03
20.02E-04 49.95E-03
10.14E-01-47.21E-01 99.95E-06 15.70E-01 10.00E+02
10.OOE-04 .OOE-99
10.10E-04 .OOE-99
10.14E-04 98.68E-03
10.OOE-07 -OOE-99
10.04E-06 14.71E-01
52.36E-06-76.50E-01 19.4GE-02 12.66E-01 10.00E+02
10.00E-05 15.70E-01
10.04E-04 99.66E-03
52.36E-06-76.58E-01 19.50E-02 12.61E-01 10.00E+02
    5.2363348E-05 -7.6587626E+00 1.9506404E-01 1.2616574E+00 1.0000000E+03
14.14E-01-78.53E-02 70.71E-05 78.53E-02 10.OOE+03
10.OOE-04 .OOE-99
```

10.10E-04 .OOE-99
14.21E-04 78.04E-02
10.0OE-07 .OOE-99
10.00E-05 15.60E-01
15.56E-05-31.12E-01
10.00E-04 .OOE-99
14.14E-04 78.53E-02
22.36E-04 46.36E-02
14.18E-02-39.36E-01 99.92E-05 15.69E-01 10.00E+03
10.OOE-04 -OOE-99
10.1OE-04 -OOE-99
14.21E-04 78.04E-02
10.OOE-07 .OOE-99
10.00E-05 15.60E-01
16.53E-06-59.56E-01 85.83E-02 43.92E-02 10.00E+03
10.OOE-04 15.70E-01
14.14E-04 78.53E-02
16.53E-06-59.56E-01 85.96E-02 43.97E-02 10.00E+03
1.6531502E-05 -5.9567135E+00 8.5965164E-01 4.3979027E-01 1.0000000E+04
10.04E-01-99.66E-03 99.50E-05 99.60E-03,10.00E+04
10.OOE-04 -OOE-99
10.1OE-04 -OOE-99
10.05E-03 14.70E-01
10.00E-07 .OOE-99
10.00E-04 15.69E-01
56.67E-05-18.48E-01 17.73E-01 17.78E-02 10.00E+04
10.OOE-04 .OOE-99
10.04E-03 14.71E-01
10.19E-03 13.73E-01
10.08E-02-32.30E-01
99.89E-04 15.65E-01 10.00E+04
10.00E-04 -00E-99
10.10E-04 -OOE-99
10.05E-03 14.70E-01
10.00E-07 .00E-99
10.00E-04 15.69E-01
10.5 E-05-4B.52E-01 95.16E-02 50.75E-03 10.00E+04
10.OOE-03 15.70E-01
10.04E-03 14.71E-01
10.59E-05-48.52E-01 95.32E-02 61.17E-03 10.00E+04
1.0595160E-04 -4.8523403E+00 9.5324231E-01 6.1179165E-02 1.0000000E+05
10.00E-01-99.99E-04 99.99E-05 99.99E-04 10.00E+05
10.OOE-04 .OOE-99
10.1OE-04 -OOE-99
10.OOE-02 15.60E-01
10.00E-07 .OOE-99 - 59-

```
```

10.00E-03 15.70E-01
55.01E-04-15.98E-01 18.17E-01 23.17E-03 10.00E+05
10.0OE-04 .OOE-99
10.0UE-02 15.60E-01
10.00E-02 15.50E-01
10.09E-02-30.37E-01
99.42E-03 15.16E-01 10.00E+05
10.OOE-04 .OOE-99
10.10E-04 .00E-99
10.OOE-02 15.60E-01
10.00E-07 .OOE-99
10.00E-03 15.70E-01
10.57E-04-46.37E-01 95.55E-02 40.48E-03 10.00E+05
10.00E-02 15.70E-01
10.00E-02 15.60E-01
10.57E-04-46.37E-01 96.57E-02 14.40E-02 10.00E+05
1.0571774E-03 -4.6379896E+00 9.6578132E-01 1.4408966E-01 1.0000000E+06

```

\section*{Appendix A}

The Ladder Network Program was written in such a way that nine possible codes could be used. To identify twigs, current sources and voltage sources only seven codes were used. Nine codes were, therefore, more than enough to enter appropriate subroutines in the case of the simple ladder network prorram. When writing programs to handle more complex network structures, it is obvious that a greater number of subroutines will be used and, hence, a greater number of code combinations will be needed. The following sequence of IF statements can be used to enter any one of seventeen subroutines:
\begin{tabular}{ll} 
& \(I F(F(I)) 1,2,3\) \\
1 & \(I F(G(I)) 4,10,5\) \\
2 & \(I F(G(I)) 11,12,13\) \\
3 & \(I F(G(I)) 6,14,7\) \\
4 & \(I F(F(I)-G(I)) 15,16,17\) \\
5 & \(I F(F(I)+G(I)) 18,19,20\) \\
6 & \(I F(F(I)+G(I)) 21,22,23\) \\
7 & \(I F(F(I)-G(I)) 24,25,26\)
\end{tabular}

This enables the programmer to enter the following subprogram statement numbers corresponding to the given code.

Statement \#
\begin{tabular}{cr} 
Code & \\
\(F(I)\) & \(G(I)\) \\
-1 & 0 \\
0 & -1 \\
0 & 0 \\
0 & 1 \\
1 & 0 \\
-2 & -1 \\
-1 & -1 \\
-1 & -2 \\
-2 & 1 \\
-1 & 1 \\
-1 & -2 \\
1 & -1 \\
1 & -1 \\
2 & 2 \\
1 & 1 \\
1 & 1
\end{tabular}


\section*{APPENDIX B}
C. \(C\) RLC ACTIVE-PASSIVE LAUDER NETWORK ANALYSIS J HICKS 9/8/65

READ 22. J.L.M.N
DIMENSION W(10)
DIMENSION F(50),G(50).H(50).S(50),R(50)
OO \(1 \quad 1=1 \cdot J\)
1 READ 20. F(1),G(I),H(1),S(1),R(1)
READ 21. \(w(1), W(2) \cdot w(3) \cdot w(4) \cdot w(5)\)
\(Y A=0.0\)
THYA \(=0.0\)
DO \(19 \mathrm{~J}=1 . L\)
\(1=0\)
\(V O=1 \cdot 0\)
THVO \(=0.0\)
\(\mathrm{YO}=0.0\)
THYO \(=0.0\)
DO 1B K=1.M
CEYI \(=0.0\)
THCEY \(=0.0\)
DO 17 INDEX=1,N
\(1=1+1\)
\(x=w(J) * H(1)-S(1) / w(J)\)
\(Z=\operatorname{SQRT}(R(1) * * 2+x * * 2)\)
IF(Z)2.3.2
2 IF(R:1))4.5.4
\(3 \mathrm{THZ}=0.0\)
GO TO 8
4 THZ=ATAN(X/R(1))
GO TO 8
5 IF \((X) 6 \cdot 3 \cdot 7\)
\(6 \mathrm{THZ}=-1 \cdot 57079632\)
GO TO 8
\(7 \mathrm{THZ}=1.57079632\)
8 IF (F(I))9.10.11
O IF(F(1)-G(I))12.13.14
C SOLUTION FOR SERIES GRANCH OF ONLY TWIG
\(10 \mathrm{ZT}=\mathrm{Z}\)
\(T H Z T=T H Z\)
GO TO 23
11 IF(F(I)-G(1))15.15.16
C SOL FOR PARALLEL GRANCH OF A SERIES AND PARALLEL CKT
\(12 A=Z * \operatorname{COS}(T H Z)+1 \cdot O / Y A * \operatorname{COS}(-1 \cdot 0 * T H Y A)\)
\(B=Z * S I N(T H Z)+1 \cdot O / Y A * S I N(-1 . O * T H Y A)\)
ZTP=SQRT (A**2 + \(A^{*} * 2\) )
YTP=1•O/ZTP
THYTP \(=-A T A N(B / A)\)
C SOL FOR YO + YTP
\(A=Y T P * \operatorname{COS}(T H Y T P)+Y O * C O S(T H Y O)\)
\(B=Y T P * S I N(T H Y T P)+Y O * S I N(T H Y O)\)
\(Y T=\operatorname{SQR} T(A * * 2+B * * 2)\)
\(T H Y T=A T A N(B / A)\)
\(Y A=0.0\)
THYA \(=0.0\)
GO TO 17
\(C\) SOL FOR SERIES BRANCH OF MORE THAN ONE TWIG \(Z T=Z+1 / Y A\) \(13 A=Z * C O S(T H Z)+1 \cdot O / Y A * C O S(-1 \cdot 0 * T H Y A)\)
```

 B=Z*SIN(THZ) + 1.O/YA*SIN(-1.O*THYA)
 ZT=SQRT(A**2 + B**2)
 THZT=ATAN(B/A)
 YA=0.0
 THYA=0.0
 GO TO 23
 C SOLUTION FOR PARALLEL BRANCH WITH ONLY ONE TWIG YP=1/Z+YO
14A=1.0/Z*COS(-1.O*THZ) + YO*COS(THYO)
B=1.O/Z*SIN(-1*O*THZ) + YO*SIN(THYO)
YT=SQRT(A**2 + B**2)
THYT=ATAN(B/A)
GO TO 17
15 CEYI=H(I)
THCEY=S(1)
GO TO 17
SOLUTION FOR NEST YA=1/Z+YA
16A=1.0/Z*\operatorname{COS}(-1.0*THZ) + VA*COS(THYA)
B=1.0/Z*SIN(-1.0*THZ) + YA*SIN(THYA)
YA=SQRT(A**2 + B**2)
THYA=ATAN(B/A)
PUNCH 24. YA. THYA
17 CONTINUE
SOLUTION FOR VI=VO(1.O+YT*ZT)/(1.O-CEYI*ZT)
23 YTZ=YT*ZT
THYTZ=THYT + THZT
SOLVE FOR C=1.O + YTZ
A=1\bullet0 + YTZ*COS(THYTZ)
B=YTZ*SIN(THYTZ)
C=SQRT(A**2+B**2)
THC=ATAN(B/A)
CZT=CEYI*ZT
THCZT=THCEY + THZT
A=1•O-CZT*COS(THCZT)
B=-CZT*SIN(THCZT)
E=SQRT(A**2 + B**2)
IF(A)30.31.31
30 THE=ATAN(B/A) + 3.14159264
GO TO 32
31 THE=ATAN(B/A)
32 VI=VO*C/E
THVI =THVO+THC-THE
YI=CEYI + YT*VO/VI
D=YT*VO/VI
THD=THYT + THVO-THVI
A=CEYI*COS(THCEY)+D*COS(THD)
B=CEYI*SIN(THCEY) + D*SIN(THD)
YI=SQRT(A**2+B**2)
THYI=ATAN(B/A)
PUNCH 24. VI. THVI. Y!. THYI.W(J)
YO=YI
THYO=THYI
VO=VI
18 THVO=THVI
PUNCH 21. VI. THVI. YI. THYI. W(J)
19 CONTINUE.

```

20 FORMAT (2F4.0. 3E15.8)
21 FO-MAT(5E15.7)
22 FORMAT(414)
24 FORMAT (5E10.2/)
STOP
END

\author{
Section IV On-Line Experience in the TimeSharing Computing System
}

In celebration of M.I.T.'s Centennial Year, the School of Industrial Management of the Massachusetts Institute of Technology sponsored a series of evening lectures on the theme, "Management and the Computer of the Future", in March 1961. During one of the sessions Professor John McCarthy discussed the time-sharing computer systems [1] and introduced the notion of a community utility capable of supplying computer power to each "customer" where, when and in the amount needed. Such a utility would in some way be similar to an electrical power distribution system. There is a large, very large computer complex in some place. Computing services may be obtained at different locations by "inserting a plug into the wall". The time-sharing computer system interacts with many simultaneous users through a number of remote consoles. Such a system will look to each user like a large private computer. This idea goes quite a while back [2], [3], but only recently has it caught wide attention and keen interest in the computing profession. Its experimentation at M.I.T. bears the name of the research project MAC [4]. Other large time-sharing computer systems known in operation include those at System Development Corporation and Carnegie Institute of Technology.

QUIKTRAN [5], developed by the International Dusiness Machines Corporation and Desk Side Computer System [6], developed by the General Electric Company are offered on a commercial basis.

The present computation facilities for academic activities at Villanova University consist of the IBM 1620 Data Processing System. On a first-come-first-served basis, the Computing Center has seen so many instances of overcrowding of man; jobs to be processed in the rush hour, and of the inconvenience and frustration of the waiting period before one can get on the computer again in order to fix a misplaced comma in the program. In taking advantage of the time-sharing computing serivce of the General Electric Company, a direct tie line has been established between Villanova University and the General Electric Computer Center at Valley Forge, Pennsylvania, since September 1965. Villanova University is one of the 85 users that time share the General Electric Computer Complex at Valley Forge. The main frame is the GE 235 Computer with a 20 -bit word len t th and 6 microsecond core memory. The terminal teletypewriter at the user's end does not reach the central processing unit directly; it is first connected to an intermediate computer called Datanet 30 which is analogous to a telephone operator between the main switchboard and the telephone subscribers. Presently there are fifteen lines
associated with the CPU through Datanet 30.
The teletype console accepts keyboard input and/or paper tape input. The tie line is rented from the local Bell Telephone Company. The user is allowed to store 32 programs in the computer, each of which is limited to 6,000 characters. He can exercise the option of either using a stored program or submitting a new program in operation. Associated with the Datanet 30 is a mass storage system disk of 20 million bits in \(B C D\) form. The computer spends 10 seconds with the user at each round. The Datanet 30 , however, is asynchronous in serving the users. There are four Datanet 30 system units for the pool of 15 lines. The computer records the elapsed time in hundredths of a second and prints it out at the end of the task if requested.

The response of the Villanova engineering students to this facility can be judged by the average monthly use in excess of one hundred hours of on-line time. The reason for the immediate and enthusiastic use of this computer facility is the conversational mode of operation where the diagonastic language incorporated for debugging the programs is the main attraction. Also worthy of note is the degree of freedom in using G.E. Fortran as well as a library of mathematical subroutines useful in the solution of engineering problems.

One of the problems which had been worked out on the G.E. facilities is the a-c solution of electric networks using an approach different from that described in Section III. A method for the solution of network responses due to sinusoidal driving forces developed by T. Fleetwood [7] was studied. This approach to nodal circuit analysis is unique in that it does not require the analyst to develop Kirchoff's current equations for the network under study. The method requires only the information of the number of nodes of the network and the elements between the nodes. Between any two nodes, only one element may appear, but this restriction is simplified by reducing series and parallel circuits before the calculation of the responses.

Complex Numbers
One of the difficult problems of using the digital computer for circuit analysis is the processing of complex numbers. This difficulty can be bypassed by replacing each complex quantity by a group of real numbers as shown by the following example:

Given the equations:
\[
\begin{align*}
& Y_{11} V_{1}+Y_{12} V_{2}=0  \tag{la}\\
& Y_{21} V_{1}+Y_{22} V_{2}=0 \tag{Ib}
\end{align*}
\]

If equation (1a) is separated into real and imaginary
parts, one obtains:
\[
\left(a_{11}+j b_{11}\right)\left(v_{1 R}+j v_{1 I}\right)+\left(a_{12}+j b_{12}\right)\left(v_{2 R}+j V_{2 I}\right)=0
\]

Then multiplying and simplifying:
\(a_{11} V_{1 R}-b_{11} V_{1 I}+a_{12} V_{2 R}-b_{12} V_{2 I}+j\left(a_{11} V_{1 I}+b_{11} V_{1 R}+a_{12} V_{2 I}+b_{12} V_{2 R}\right)=0\)
For the above equation to be true both the real and the imaginary parts must be equal to zero giving the following equations:
\[
\begin{array}{r}
a_{11} V_{1 I}+b_{11} V_{1 R}+a_{12} V_{2 I}+b_{12} V_{2 R}=0 \\
-b_{11} V_{1 I}+a_{11} V_{1 R} b_{12} V_{2 I}+a_{12} V_{2 R}=0
\end{array}
\]
equation (lb) could be broken up similarly, giving:
\[
\begin{array}{r}
a_{21} V_{1 I}+b_{21} V_{1 R}+a_{22} V_{2 I}+b_{22} V_{2 R}=0 \\
-b_{21} V_{1 I}+a_{21} V_{1 R}-b_{22} V_{2 I}+a_{22} V_{2 R}=0
\end{array}
\]

All four equations now contain only real numbers and can be solved by conventional methods. Writing these in matrix notation, the equations would be:
\(\left|\begin{array}{rrrr}a_{11} & b_{11} & a_{12} & b_{12} \\ -b_{11} & a_{11} & -b_{12} & a_{12} \\ a_{21} & b_{21} & a_{22} & b_{22} \\ -b_{21} & a_{21} & -b_{22} & a_{22}\end{array}\right| \times\left|\begin{array}{l}v_{1 I} \\ v_{1 R} \\ v_{21} \\ v_{2 R}\end{array}\right|=\left|\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right|\)
From this one can see that each admittance, \(Y_{i j}\), is replaced by the real group \(\left|\begin{array}{c}a_{i j} \\ b_{i j} \\ -b_{i j} \\ a_{i j}\end{array}\right|\) and if this is extended to the general case, the system of equations becomes:
\[
\left|\begin{array}{cccccccc}
a_{11} & b_{11} & a_{12} & b_{12} & \cdots & \cdot & a_{1 n} & b_{1 n} \\
-b_{11} & a_{11} & -b_{12} & a_{12} & \cdots & \cdot & b_{1 n} & a_{1 n} \\
a_{21} & b_{21} & a_{22} & b_{22} & \cdots & \cdot & a_{2 n} & b_{2 n} \\
-b_{21} & a_{21} & -b_{22} & a_{22} & \cdots & \cdot & -b_{2 n} & a_{2 n} \\
\cdot & \cdot & \cdot & \cdot & \cdots & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdots & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdots & \cdot & \cdot & \cdot \\
a_{n 1} & b_{n 1} & a_{n 2} & b_{n 2} & \cdots & \cdot & a_{n n} & b_{n n} \\
-b_{n 1} & a_{n 1} & -b_{n 2} & a_{n 2} & \cdots & \cdot & -b_{n n} & a_{n n}
\end{array}\right| \times\left|\begin{array}{c}
v_{1 I} \\
v_{1 R} \\
v_{2 I} \\
v_{2 R} \\
\cdot \\
\cdot \\
\cdot \\
v_{n 1} \\
v_{n R}
\end{array}\right|=\left|\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
\cdot \\
0 \\
0 \\
0
\end{array}\right|
\]

To solve this system of equations, two node voltages mast be known, and for ease of operation node one has been used as the input and set equal to one volt; node two is used as the reference or ground node.

\section*{Nodal Equations}

Once the equations have been written, there are standard routines available for their solution. However, the writing of the equations can often become tedious and drawn out. It is into the emoval of this work, that efforts were put.

It is known that any admittance, \(Y\), connected between two nodes, \(m\) and \(n\), will be represented in the equation for each node as a self admittance and as a mutual admittance. Since the value of the self admittance is \(Y\) and that of the mutual admittance is \(-Y\), the following chart shows where and how to enter \(Y\) in the matrix:


Referring to the real number group, the real and imaginary parts will be entered in matrix (4) in the sixteen positions given below:
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Col. \\
Row
\end{tabular} & \(2 m-1\) & \(2 m\) & \(2 n-1\) & \(2 n\) \\
\hline \(2 m-1\) & \(a\) & \(b\) & \(a\) & \(b\) \\
\hline \(2 m\) & \(-b\) & \(a\) & \(-b\) & \(a\) \\
\hline \(2 n-1\) & \(a\) & \(b\) & \(a\) & \(b\) \\
\hline \(2 n\) & \(-b\) & \(a\) & \(-b\) & \(a\) \\
\hline
\end{tabular}
(4)

\section*{Voltage Controlled Current Sources}

The effect of a voltage controlled current source upon the matrix can be shown by the following example, see Fig. 1 .

In writing the equations for the five nodes, the effect of the source upon the equations can be observed.
node a \(\quad Y_{1} V_{a}-0 V_{b}-Y_{1} V_{c}+0 V_{d}+O V_{e}+I_{i n}=0\) node \(b \quad 0 V_{a}+\left(Y_{2}+Y_{4}\right) V_{b}-Y_{2} V_{c}-Y_{4} V_{d}-O V_{e}-G M\left(V_{d}-V_{b}\right)=0\)
node \(c \quad-Y_{1} V_{a}-Y_{2} V_{b}+\left(Y_{1}+Y_{2}+Y_{3}\right) V_{c}-Y_{3} V_{d}-O V_{e}=0\)
node \(d \quad 0 V_{a}-Y_{4} V_{b}-Y_{3} V_{c}+\left(Y_{3}+Y_{4}+Y_{5}\right) V_{d}-Y_{5} V_{e}+G M\left(V_{c}-V_{b}\right)=0\)
node e \(\quad 0 V_{a}-0 V_{b}-0 V_{c}-Y_{5} V_{d}+Y_{5} V_{e}-I_{0}=0\)

Combining like terms and writing in matrix form, these equations become:
\(\left|\begin{array}{ccccc}Y_{1} & 0 & -Y_{1} & 0 & 0 \\ 0 & \left(Y_{2}+Y_{4}\right)+G M & -Y_{2}-G M & -Y_{4} & 0 \\ -Y_{1} & -Y_{2} & Y_{1}+Y_{2}+Y_{3} & -Y_{3} & 0 \\ 0 & -Y_{4}-G M & -Y_{3}+G M & Y_{3}+Y_{4}+Y_{5} & -Y_{5} \\ 0 & 0 & 0 & -Y_{5} & Y_{5}\end{array}\right| X\left|\begin{array}{c}V_{a} \\ V_{b} \\ V_{c} \\ V_{d} \\ V_{0}\end{array}\right|=\left|\begin{array}{c}-I_{\text {in }} \\ 0 \\ 0 \\ 0 \\ I_{0}\end{array}\right|\)

Examining these equations, it can be seen that plus or minus GM is added to certain elements in the matrix. The elements to which it is added are given by the following table:
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Col. \\
Row
\end{tabular} & c & b \\
\hline b & -GM & +GM \\
\hline d & +GM & -GM \\
\hline
\end{tabular}
where this means that to \(Y_{b b},+G M\) is added and to \(Y_{b c},-G M\) is added, etc.

If the notation \(G M_{m n p q}\) is adopted to indicate that a voltage from node \(m\) to node \(n\) causes a current to flow from node \(p\) to node \(q\), the above source would be given by \(G M_{c b b d}\). From this and the preceding table, the table can be written in a general form.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Col. \\
Row
\end{tabular} & \(m\) & \(n\) \\
\hline\(p\) & \(-G M\) & \(+G M\) \\
\hline\(q\) & \(+G M\) & \(-G M\) \\
\hline
\end{tabular}

Since GM is a real number, when the change is made to the real number form (see eq. 4), only the real parts are affected. The additions to the matrix then become:
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Col. \\
Row
\end{tabular} & \(2 m-1\) & \(2 m\) & \(2 n-1\) & \(2 n\) \\
\hline \(2 p-1\) & \(-G M\) & 0 & \(G M\) & 0 \\
\hline \(2 p\) & 0 & \(-G M\) & 0 & \(G M\) \\
\hline \(2 q-1\) & \(G M\) & 0 & \(-G M\) & 0 \\
\hline \(2 q\) & 0 & \(G M\) & 0 & \(-G M\) \\
\hline
\end{tabular}

Using these methods, the nodal equations can be
written, and then solved by real number matrix techniques.

\section*{Example Problem}

The single stage amplifier shown in Fig. 2 was chosen for an example, because of its relative simplicity and the ease with which the results could be checked.

The unusual grid resistor circuitry was chosed only to show how to use the condensation commands to reduce the number of nodes.

The AC equivalent circuits are shown in Figs. 3 and 4. The cathode bias was not simplified to show that the paralleling could be done while writing the equations.

To run this problem on the computer, the input data would be as follows:
(frequencies)
20
40
80
100
200
400
800
1,000
2 Kc
4Kc
8 Kc
10Kc
20Kc
40 Kc
80 Kc
100Ke

\[
\begin{array}{ll}
\text { (active torology) } & \text { (The first entry is the trans- } \\
3.08 E-033454 \\
\text { conductance of the source and the } \\
\text { next two numbers are the controlling } \\
& \text { nodes and the last two numbers are } \\
\text { the nodes between which the current } \\
& \text { flows i.e., the voltaze from node } 3 \\
& \text { to node } 4 \text { causes a current to flow } \\
& \text { from node } 5 \text { to node 4.) }
\end{array}
\]

The preceding data was then put on paper tape and run on the computer. The results as printed out by the computer were:
\begin{tabular}{cccc} 
GAIN & DB GAIN & PHASE & FREQUENCY IN CPS \\
\(0.56769436 \mathrm{E}+01\) & \(0.15082292 \mathrm{E}+02\) & 183.957 & \(0.20000000 \mathrm{E}+02\) \\
\(0.57618576 \mathrm{E}+01\) & \(0.15211250 \mathrm{E}+02\) & 187.081 & \(0.40000000 \mathrm{E}+02\) \\
\(0.60765022 \mathrm{~F}+01\) & \(0.15673073 \mathrm{E}+02\) & 192.769 & \(0.80000000 \mathrm{~F}+02\) \\
\(0.62900701 \mathrm{E}+01\) & \(0.15973110 \mathrm{E}+02\) & 195.065 & \(0.10000000 \mathrm{E}+03\) \\
\(0.758656146 \mathrm{~F}+01\) & \(0.17600903 \mathrm{E}+02\) & 201.060 & \(0.20000000 \mathrm{E}+03\) \\
\(0.96962458 \mathrm{E}+01\) & \(0.19732072 \mathrm{E}+02\) & 197.879 & \(0.40000000 \mathrm{E}+03\) \\
\(0.11324897 \mathrm{E}+02\) & \(0.21080685 \mathrm{E}+02\) & 193.044 & \(0.80000000 \mathrm{E}+03\) \\
\(0.11622281 \mathrm{~F}+02\) & \(0.21305827 \mathrm{E}+02\) & 190.857 & \(0.10000000 \mathrm{E}+04\) \\
\(0.12075287 \mathrm{E}+02\) & \(0.21638669 \mathrm{E}+02\) & 185.736 & \(0.20000000 \mathrm{E}+04\) \\
\(0.12201907 \mathrm{E}+02\) & \(0.21728554 \mathrm{E}+02\) & 182.893 & \(0.40000000 \mathrm{E}+04\) \\
\(0.12234158 \mathrm{E}+02\) & \(0.21751481 \mathrm{E}+02\) & 181.418 & \(0.80000000 \mathrm{E}+04\) \\
\(0.12238049 \mathrm{E}+02\) & \(0.21754244 \mathrm{E}+02\) & 181.114 & \(0.10000000 \mathrm{E}+05\) \\
\(0.12243233 \mathrm{E}+02\) & \(0.21757922 \mathrm{E}+02\) & 180.471 & \(0.20000000 \mathrm{E}+05\) \\
\(0.122444468 \mathrm{E}+02\) & \(0.21758798 \mathrm{E}+02\) & 180.062 & \(0.40000000 \mathrm{E}+05\) \\
\(0.12244530 \mathrm{E}+02\) & \(0.21758842 \mathrm{E}+02\) & 179.685 & \(0.80000000 \mathrm{E}+05\) \\
\(0.12244371 \mathrm{E}+02\) & \(0.21758730 \mathrm{E}+02\) & 179.541 & \(0.10000000 \mathrm{E}+06\)
\end{tabular}

As a check, the preceding circuit was set up in the lab and the gain was checked for the same frequencies. The results are summarized in the following table:
\begin{tabular}{cccc} 
FREQUENCY IN CPS & GAIN & FREQUENCY IN CPS & GAIN \\
20 & 5.6 & 2,000 & 12.25 \\
10 & 6.0 & 4,000 & 12.25 \\
80 & 6.0 & 8,000 & 12.25 \\
100 & 6.5 & 10,000 & 12.25 \\
200 & 7.85 & 20,000 & 12.25 \\
400 & 9.75 & 40,000 & 12.25 \\
800 & 11.05 & 80,000 & 12.25 \\
1,000 & 100,000 & 12.25
\end{tabular}

From the curves plotted, it can be seen that the response as calculated by the computer is in agreement with the experimental data.

The input and computing time for this problem was fifteen minutes, while it took close to an hour to set up the circuit and make the required measurements. The saving in time is even greater than it seems because the computer also calculated phase response while the laboratory procedure did not.


\section*{Appendix}

\section*{Actual Program}

Implementing the preceding principles a program has been written for the G.F. Desk Side Computer System (DSCS). The program can be applied to any network made up of admittances and voltage controlled current sources with up to seven nodes. The size limitation is only a factor of memory space and with a larger memory available could easily be extended to twenty or more nodes. Two limitations that have been imposed on the system is that node one be connected only to node three and that the output node have the highest number.

The first thirty-three statements in the program deal with putting in the required data. Statement thirty-four repeats everything that is to follow for each value of frequency in question.

The next sixteen statements calculate the impedance and the admittance for all inductors and capacitors for the frequency in question. If any condensations must be made, the next twenty-two statements will do the required calculations. Statements fifty-seven to sixty-three will combine two elements in series and statements sixty-four to seventy will combine two elements in parallel.

The next twenty-five statements put the admittances into
their proper place in the \(Y\) matrix, following equation (4). Also included in these statements is the ability to parallel elements by adding the new admittance to any value that was previously entered in the same position.

Then following equation (7), the next eighteen statements add the controlled sources, if any, to the proper places in the matrix.

Since \(V_{1 I}\) and \(V_{2}\) were defined as zero, all elements from the first, third and fourth columns and rows disappear. Also since \(V_{1 R}\) was defined as one volt, all elements of column two are constants and can be moved to the other side of the equal sign. The remaining matrix must then be inverted and to do this it was necessary to define a new matrix \(Y M\) which does not contain the values from the first four rows and columns.

The next sixty-three statements write the \(Y M\) matrix and then invert it using the Gauss-Jordan Method. [8] After the matrix has been inverted, it is multiplied by the constant vector to obtain the output. This is simplified since it was stipulated that node one must be connected only to node three and by doing this the constant vector has only one non-zero member and this has the value of the admittance between nodes one and two.

After obtaining the magnitude and phase of the output voltage, the process is repeated for each frequency and then the entire frequency response is printed out.

(1) J. McCarthy, "Time-Sharing Computer Systems", collected in Management and the Computer of the Future, ed. M. Greenberger, pp. 219-248, M.I.T. Press, 1962.
(2) R. Fano, "The MAC System: the Computer Utility Approach", IEEE Spectrum, vol. 2, pp. 56-64, January, 1965.
(3) C. Strachey, "Time Sharing in Large, Fast Computers", Proc. International Conf. on Information Processing, UNESCO, Paris, 1960, pp. 336-341.
(4) J.C.R. Licklider, "Man-Machine Symbiosis", IRE Trans. on Human Factors in Electronics, vol. HFE-1, pp. 4-11, March, 1960.
(5) International Business Machines Corp., "IBM 7040/7044 QUIKTRAN System Programmer's Guide", File No. 7070-25, September 1965.
(6) General Electric Co., "Desk Side Computer System Reference Manual", April, 1966.
(7) T. Fleetwood, "Automatic Solution of Network Frequency Response", Electronic Engineering, September, 1965.
(8) J.M. McCormick and M.G. Salvadori, "Numerical Methods in Fortran", New Jersey: Prentice-Hall, 1965.


FIG. 1


FIG. 2


FIG. 3


FIG. 4
\begin{tabular}{|c|c|c|}
\hline กncon & C & SOI，UTION OF AN FI，FCTETC NETURKK \\
\hline 00010 & &  \\
\hline 000：0 & & \(171(3,21), Y A(3,21), Y I(3,21), Y R(3,21), Y B(3,2,1), Y M(14,14)\) \\
\hline 00030 & &  \\
\hline 00040 & & 4CП．I（ 5），COL，（5），COM（5），PTI（20），PTJ（20） \\
\hline 0onsm & & \(5 \mathrm{INDEX}(10,3), F(20), V(20), \mathrm{FA}(20), P H(20), P \mathrm{~T},(20), P \mathrm{TM}(20)\) \\
\hline 0ヵロスロ & 7 & PRINT 1003 （ \\
\hline 0กロ70 & & READ：NAM，NK，NL，NC，NF \\
\hline 0008\％ & & RFAD：\((F(N), N=1, N F)\) \\
\hline กกロッก & & MFAD：NCOV，NTMP，NA， \\
\hline 00100 & & \(N U M=N A M *\) ？ \\
\hline On110 & & PT＝3．1415927 \\
\hline 001\％n & & \(1 F(\) N．）15，15，9 \\
\hline nol 130 & 9 & RFAD：（AI，（I），I＝1，N．） \\
\hline 170140 & 15 & TF（NC） \(20.20,21\) \\
\hline 00150 & 21 & KFAD：（C（K），\(K=1, N C)\) \\
\hline 00160 & 20 & READ：\((Z(1, K), K=1, N \bar{N})\) \\
\hline 00170 & & D \({ }^{\text {P }} 5 \mathrm{~K}\) K \(=1\) ，NR \\
\hline nolfo & & \(Y \mathrm{P}(1, K)=1.0 / 7(1, k)\) \\
\hline 00190 & 25 & \(7 A(1, K)=Y A(1, k)=0.0\) \\
\hline Orionn & & IF（NCON）23．23，24 \\
\hline กロ？ 10 & 24 & PRINT 1003 \\
\hline nnezn & &  \\
\hline ¢0P30 & 23 & PRINT 1003 \\
\hline 00240 & &  \\
\hline 00250 & & IF（NATO）61，61，6？ \\
\hline 00260 & 62 & PRINT 1003 \\
\hline 00270 & & READ：（AGM（I），ATL（I），ATM（I），ATN（I），ATK（I），I＝，NATO） \\
\hline 0 ロロッ0 & 61 & CONTINUE \\
\hline กกア90 & & D） 792 MAK \(=1, \mathrm{NF}\) \\
\hline 00300 & & TF（NL）28．28．29 \\
\hline 00317 & 2.9 & D \(027 \mathrm{~K}=1, \mathrm{~N}\) ． \\
\hline 00320 & & \(\geq(P, K)=2.0 * P T * A L(K) * F(M A K)\) \\
\hline 0¢， 0 & & \(Y B(2, K)=-1.0 / Z(2, K)\) \\
\hline 00.360 & 27 & \(Z A(2, K)=Y A(2, K)=P I / 2\). \\
\hline 0035 ？ & 38 & 1F（NC）34，34，31 \\
\hline 00360 & 31 & DO \(33 \mathrm{l}=1, \mathrm{NC}\) \\
\hline 06.370 & 32 & \(Y B(3, K)=2.0 * P I * C(K) * F(M A K)\) \\
\hline 00380 & & \(Z(3, K)=1.0 / Y B(3, K)\) \\
\hline Oris：－ & 33 & \(Z A(3, K)=Y A(3, K)=P I / 2.0\) \\
\hline Griains & 34 & IF（NCON）60，60，42 \\
\hline \(00 / 10\) & 42 & 3n \(40.3 \cap=1, N C O N\) \\
\hline 00430 & 45 & \(\mathrm{NO}=\mathrm{CONO}(.10)\) \\
\hline 00430 & & ．\(=\) CO．J（JD） \\
\hline 00440 & & \(\mathrm{k}=\mathrm{COK}(. \mathrm{JO})\) \\
\hline 00＜50 & & \(\mathrm{L}=\) C01．（．jn） \\
\hline 00460 & & \(\mathrm{M}=\operatorname{COM}(\mathrm{J})\) ） \\
\hline 00470 & 47 & GO TO（ \(4 R, 5 R\) ），NO \\
\hline 00480 & 48 & \(Z R(J, K)=Z(. J, K) * \operatorname{COSF}(Z A(. J, K))+Z(L, M) * \operatorname{COSF}(Z A(1, M))\) \\
\hline 00490 & &  \\
\hline 00500 & & \(Z(J, K)=\operatorname{SQRTF}(\mathrm{ZR}(J, K) * * 2+7 \mathrm{~T}(\mathrm{~J}, \mathrm{~K}) * * 2)\) \\
\hline 00510 & & \(Z A(J, K)=A \operatorname{TANF}(Z I(J, K) / Z R(J, K))\) \\
\hline
\end{tabular}

กธ5？
\(005 ? 0\)
\(005 \%\)
ins．50
กП， \(5 \%\)
00575
00580
00590
00600
00610
0ロのマロ
กกห30
\(\therefore-640\)
in 0.50
0065n
0กк7n
0กチャロ
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00910
กロ\＆？ロ
OOR30
\(0 \cap 840\)
テिRSO
008． 50
00870
00880
00890
00900
00910
\(009 ? 0\)
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020106
01030115
\(Y G(. J, K)=1.0 / Z(. J,(<)\)
\(Y \cap(J, K)=-7 A(. I, Y)\)
GO TO 40
\(Y R(. I, K)=\operatorname{COSF}(-Z A(J, K)) / Z(. J, K)+\operatorname{CDSF}(-Z \cap(1, \forall)) / Z(1,, M)\)
\(Y I(. J, K)=S I N F(-Z A(I, K)) / Z(. J, K)+S I N F(-Z A(1, Y)) / Z(1, M)\)
\(Y:(1, K)=S Q R T F(Y R(. J, K) * * 2+Y I(. J, K) * * 2)\)
\(Z(. J, K)=1.0 / Y B(J, K)\)
YA（．J，K）＝ATANF（YI（．1，K）／YR（．J，K））
\(7 . A(J, K)=-Y A(. J, K)\)
CONTINUE
Dก \(70 . J=1\) ，NUM
DO \(70 \mathrm{~K}=1\) ，NUM
\(Y(.1, k)=0.0\)
Dก \(99 \mathrm{~L} .1=1\) ，NTOP
\(\mathrm{I}=\mathrm{PTI}(\mathrm{L} . \mathrm{J})\)
I＝FT．I（LJ）
I．\(=F \mathrm{TL}\)（ \(1 . .1\) ）
M＝PTM（L．J）
\(Y(? *[, 2 *, I)=-Y E(L, \eta) * C O S F(Y A(L, M))+Y(2 * T, ? *, 1)\)
\(Y(2 * 1,2 * I)=-Y B(1, Y) *(D) S F(Y \cap(L, M))+Y(Z * .1, P * T)\)
\(Y(P * I-1,2 *, 1-1)=Y(? * I, 2 * . j)\)
\(Y(2 * 1-1,2 * I-1)=Y(2 * 1,2 * I)\)
\(Y(? * I=2 * I)=Y B(1, M) * C O S F(Y A(L, M))+Y(2 * I, ? * T)\)
\(Y(? * J, ? * . J)=Y B(L, M) * C \cap S F(Y A(L, M))+Y(? * J, ? *, J)\)
\(Y(2 * I-1,2 * I-1)=Y(2 * I, 2 * I)\)
\(Y(2 * J-1,2 * J-1)=Y(2 * J, 2 *, J)\)
\(Y(2 * I-1,2 *, 1)=-Y B(L, V) * S I N F(Y A(L, M))+Y(Z * I-1, ? *, J)\)
\(Y(2 * J-1,2 * I)=-Y B(L, M) * S I N F(Y A(L, M))+Y(2 *, J-1,2 * I)\)
\(Y(2 * 1,2 * 1-1)=-Y(2 * J-1,2 *, J)\)
\(Y(2 * 1, ? * I-1)=-Y(2 *, I-1,2 * I)\)
\(Y(2 * I-1,2 * I)=Y B(L, M) * S I N F(Y A(L, M))+Y(2 * I-1,2 * I)\)
\(Y(2 * J-1,2 * . J)=Y B(1, M) * S I N F(Y A(L, M))+Y(2 * J-1,2 * J)\)
\(Y(2 * I, 2 * I-1)=-Y(2 * I-1, R * I)\)
\(Y(2 *, J, 2 *, J-1)=-Y(2 * . J-1,2 * .1)\)
CONTINUF
IF（NATO） \(115,115,100\)
DO 106 MM \(=1\) ，NATO
\(G M=A G M(M M)\)
\(L=A T L(M V)\)
\(M=A T M\left(M V_{1}\right)\)
\(N=A T N(M, M)\)
\(K \equiv A T K(Y Y)\)
\(Y(2 * N, 2 * 1)=,Y(2 * N, 2 * L)+G M\)
\(Y(2 * N-1,2 * 1-1)=Y(2 * N-1,2 * 1-1)+G M\)
\(Y(2 * K-1,2 * L-1)=Y(2 * K-1,2 * L-1)-G M\)
\(Y(2 * 1,2 * 1)=,Y(2 * K, 2 * 1)-G M\)
\(Y(2 * N-1,2 * M-1)=Y(2 * N-1,2 * M-1)-G M\)
\(Y(2 * N, 2 * Y)=Y(2 * N, 2 * M)-G M\)
\(Y(2 * K-1,2 * M-1)=Y(2 * K-1,2 * M-1)+G M\)
\(Y(2 * K, 2 * M)=Y(2 * K, 2 * M)+G M\)
CONTINUE
DO \(120 \mathrm{~J}=5\) ，NUM
\begin{tabular}{ll}
01040 \\
01050 & 120
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Onope & C & SOLUTION OF AN ELECTRIC NETWORK（PART TWO） \\
\hline 00010 & & N＝NUM－4 \\
\hline 00030 & 125 & DETERM＝1．0 \\
\hline กกกลู & 135 & D \(145 . j=1, N\) \\
\hline \(000<0\) & 145 & INDEX（． 1,3\()=0.0\) \\
\hline 00050 & 155 & D） \(550 \mathrm{I}=1, \mathrm{~N}\) \\
\hline 00060 & 165 & \(\triangle M A X=0.0\) \\
\hline \(0 \cap 070\) & 175 & D） \(180, \mathrm{~J}=1, \mathrm{~N}\) \\
\hline on刀 0 & & IF（INDEX（．J，3）－1）1S5，180， 715 \\
\hline Bnoon & 185 & ט0 \(205:(=1, N\) \\
\hline 00100 & & IF（ \(\operatorname{NDOEX}(\mathrm{K}, 3)-1) 195,205,715\) \\
\hline 00110 & 195 & IF（ \(\triangle M A X-A B S F(Y M(. J, \because))\) ）215，205，205 \\
\hline 00130 & 215 & İ゚渻，J \\
\hline 00130 & 295 & ICOLUM＝： \\
\hline O\％14 & & \(A \because A X=A T S F F(Y M(), K)\). \\
\hline 00150 & 205 & CONTINUF． \\
\hline 0016 & 180 & CONTINUE \\
\hline 00170 & & INDEX（ICOLUM，3）＝INDEX（1COLUM，3）+1 \\
\hline 00190 & 260 & INDEX（I，\({ }^{\text {a }}\) ）\(=1 \times 0 \%\) \\
\hline 00190 & 270 & I NDEX（I，2）\(=1\) COL UM \\
\hline 0neno & 130 & IF（IROW－ICOI＿UM） \(140,310,140\) \\
\hline OnP10 & 140 & DETERM \(=-\) DETERM \\
\hline ロロ？ワ0 & 150 & DO \(200 \mathrm{~L}=1, \mathrm{~N}\) \\
\hline \(\therefore .930\) & 160 & SV：AP＝YM（INOW，L） \\
\hline 00\％ 0 & 170 & YM（INOW，L）\(=\) YM（ICOLUM，L \\
\hline 00250 & 200 & \(Y\) Y（ICOL UM，L ）＝SWAP \\
\hline 00260 & 310 & PIVOT＝Y（ ICOL UM，I COLUM） \\
\hline 00270 & & DETERM＝DETERM＊PIVOT \\
\hline 00280 & 330 & \(Y M(I C O L U M, I C O L U M)=1.0\) \\
\hline 00290 & 340 & DO \(350 \mathrm{~L}=1, \mathrm{~N}\) \\
\hline 00300 & 350 & YM（ICOLUM，L）\(=\) YM（ICOLUM，L）／PIVOT \\
\hline \(0031 \%\) & 380 & DO \(550 \mathrm{~L} 1=1, \mathrm{~N}\) \\
\hline 00．3r： & 390 & IF（LI－ICOI＿UM）400，550，400 \\
\hline 003.30 & 400 & \(T=Y M(L 1 . I C O L U M)\) \\
\hline 00340 & 420 & YM（L \(1, I C O L U M)=0.0\) \\
\hline 00350 & 430 & DO \(450 \mathrm{~L}=1 . \mathrm{N}\) \\
\hline 00360 & 450 & \(Y M(L 1, L)=Y M(L 1, L)-Y M(I C O L U M, L) * T\) \\
\hline 00370 & 550 & CONTINUE \\
\hline 00380 & 600 & DO \(710 \mathrm{I}=1, \mathrm{~N}\) \\
\hline 00390 & 610 & \(L=N+1-1\) \\
\hline 00400 & 620 & IF（INDEX（L，1）－INDEX（L，2））630，710，630 \\
\hline 00410 & 630 & JROW＝INDEX（L，1） \\
\hline 00420 & 640 & JCOL．UM＝INDEX（L，2） \\
\hline 00430 & 650 & DO \(705 \mathrm{~K}=1, \mathrm{~N}\) \\
\hline 00440 & 660 & SWAP \(=Y M(K, J R O W)\) \\
\hline 00450 & 670 & YM（K，JROW）\(=\) YM（K，JCOLUM） \\
\hline 00460 & 700 & YM（K，JCOLUM）\(=\) SWAP \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline (1) 470 & 705 & covtivuF \\
\hline \(017 \times 0\) & 710 & COnTTNuE \\
\hline nosion. & & 1) \(730 \mathrm{~K}=1, \mathrm{~N}\) \\
\hline onsma & & IF (INDEX (i, 3)-1) 715,720,715 \\
\hline 00510 & 715 & \(1 \mathrm{i}=2\). \\
\hline 0ก5.? & & (G) TO 740 \\
\hline nrisan & 720 & CONTINUF. \\
\hline or.san & 730 & CONTINUF. \\
\hline nossi) & & \(\mathrm{ID}=1\) \\
\hline 10056n & 740 & (6) T T (750, 760), 10 \\
\hline 00.570 & 760 & LIN=0 \\
\hline 00.50 & & PRINT:LIN \\
\hline \(0 \cap .590\) & & GO TO 8.50 \\
\hline ncifon & 750 & CONTINUF \\
\hline OO610 & & D) \(780 \mathrm{I}=1, \mathrm{~N}\) \\
\hline )n630 & & \(Y V(I, 1)=Y M(T, 1) * Y(1,2)\) \\
\hline 00630 & & \(Y M(1,2)=Y M(T, 2) * Y(P, P)\) \\
\hline OOR40 & 780 & \(Y M(T, 2)=Y M(I, 2)+Y M(T, 1)\) \\
\hline 00650 & & \(V(M A K)=\operatorname{SOKTF}(Y M(N, 2) * * 2+Y M(N-1,2) * * ?)\) \\
\hline OOK60 & & GA(MAK) \(=20.0 / L O F F(10.0) *\) (GGF (V) MAK) \()\) \\
\hline 00670 & & \(\mathrm{PH}(\mathrm{MAK})=180.0 / \mathrm{PT} *\) ATANF \((Y M(N-1,2) / Y M(N, 2))\) \\
\hline 00680 & & IF Y (1 \(\mathrm{N}, 2)\) ) 775,775,791 \\
\hline 00690 & 775 & PH(MAM) \(=180.0+P H(M A K)\) \\
\hline 00700 & 791 & PRINT: (YM(1,2), \(\mathrm{I}=1, \mathrm{~N})\) \\
\hline 00710 & 792 & CONTINUE \\
\hline 00720 & & PKINT 9000 \\
\hline 00730 & & PRINT 899, (V) MAK), GA(MAK), PH(MAK), F (MAK), MAK=1, NF) \\
\hline 00740 & 850 & (1) \(T \cap 7\), 7 ( \({ }^{\text {a }}\) \\
\hline 00750 & 899 &  \\
\hline 00760 & 1003 & FOFMAT("DATA "/) \\
\hline 00770 & 9000 & FORMAT \(/ 8 \mathrm{CX}\), "GAIN", 10 X, "DB GAIN", 10 X, "PHASE". \\
\hline 00780 & & 1 "FREQUENCY IN CPS") \\
\hline 00790 & & STOP \\
\hline 00800 & & END \\
\hline
\end{tabular}

Section V. On the Accuracy of Monte Carlo Method

It is generally recognized that in order to get meaningful answors from Monte Carlo simulation it is necessary to run the "experiment" a great number of times, varying from run to run only the particular random numbers in generating the combination of parameter values, to provide a large sample typical of the system.

The Automated Statistical Analysis Program [I] developed by IBM for circuit analysis, for example, uses 10,000 as the standard setting for the number of cases to be tested. In ascortaining the adequacy of this number of runs there are two extremes to be kept in mind. Cursory computation on one hand imparts little significance to the results to be useful in assessing the true performance of the circuit under investigation. On the other hand, exhaustive testing, even if it would not exceed the capability of the computer facilities available, defeats the purpose of random sampling which attempts at conclusive results from random selection of sample points. It is to be noted, however, that the accuracy of the statistical method actually bears a nonlinear relationship with the number of runs in the test. The intuitive idea that the more times the computation is carried through, the more meaningful the result will be, is often a vague and sometimes misleading notion.

The accuracy of the Monte Carlo method mainly depends upon two factors: the number of runs and the randomness of the random numbers to be used in the tests. Take the instance of findiag the area of an irregular geometric figure by the Monte Carlo method. First, draw the figure on a piece of paper of known dimension and therefore known area, put your finger down at random. Possible outcomes will be (a) the finger will land inside the irregular figure, a "success"; (b) it will be outside the figure, a "failure"; (c) it will come down on the boundary of the area or it may miss the paper entirely. After a large number of trials and ignoring the outcome of (c), the unknown area can be estimated by multiplying the total area of the paper divided by the sum of the number of successes and failures. The accuracy of the answer depends upon two factors. First, the number of trials must be large; second, the finger must be put down in a random manner each time.

Pursued by hand, the Monte Carlo method will only lead to bruised thumbs and poor estimates of the area. Mechanical means can be used to provide random numbers which tell the machine how to "put its finger down". But the wear of mechanical parts will develop a bias in favor of a particular number. With the advent of electronic digital computers, this situation is relieved; and we shall be able to approach randomness as nearly as allowed by the scheme we can devise.

In this section, the accuracy of the Monte Carlo method and some of its main characteristics will be discussed. An exposition on the generation of random numbers will be presented in Section VI.

\section*{Bernoulli's Theorem}

In the theory of probability one of the most important and beautiful theorems was discovered by Bernoulli (16511705) and published with a proof remarkably rigorous in his admirable posthumous book "Ars Conjectandi" (1713). If, in \(n\) trials, an event \(E\) occurs \(m\) times, the number \(m\) is called the "frequency" of \(E\) in \(n\) trials, and the ratio \(m / n\) receives the name of "relative frequency" . Bernoulli's Theorem reveals an important porbability relation between the relative frequency of \(E\) and its probability \(p\). It may be stated as follows: with the probability approaching 1 or certainty as near as we please, we may expect that the relative frequency ( \(\mathrm{m} / \mathrm{n}\) ) of an event \(E\) in a series of independent trials with constant probability \(p\) will differ from that probability by less than any given number \(\delta>0\), provided the number of trials is taken sufficiently large. In other words, given two positive numbers \(\delta\) and \(a\), the probability \(P\) of the inequality
\[
\begin{equation*}
\left|\frac{m}{n}-p\right|>0 \tag{I}
\end{equation*}
\]

Will be greater than 1 - a if the number of trials is above a certain limit depending upon \(\delta\) and \(a\).

To illustrate Bernoulli's Theorem, Uspensky [2] has given the example that, if \(p=1 / 2, \delta=.01, \alpha=.001\), the formula
\[
\begin{equation*}
n \geq \frac{1+\delta}{\delta^{2}} \ln \frac{1}{a}+\frac{1}{\delta}=69,869 \tag{2}
\end{equation*}
\]
shows that in 69,869 trials or more there are at least 999 chances against 1 that the relative frequency will differ from \(1 / 2\) by less than \(1 / 100\). The number 69,869 found as a lower limit of the number of trials is much too large. A much smaller number of trials would suffice to fulfill all the requirements. From a practical standpoint, it is important to find as low a limit as possible for the necessary number of trials (given \(\delta\) and \(a\) ).

Since \(p\) is the required quantity while \(m / n\) is the approximate value obtained by the Monte Carlo method, it follows that the difference \(\frac{m}{n}-p\) is the orror of the Monte Carlo method. It is clear from the above that this error may be estimated probabilistically with a degree of reliability 1-a.

\section*{The Limit Theorem in the Bernoulli's Case}

The concept of Bernoulli trials, which deals with
experiments having only two possible outcomes, is extremely useful because we are often interested only whether a certain result occurs among many possible outcomes or not. For example, although the output voltage of an electric circuit may assume a range of possible values, we are concerned only with whether it exceeds a specified value or not. By Bernoulli's Theorem it is justified to use the ratio of the number of successes \(m\) to the total number of trials \(n, m / n\), as an estimate of the binomial probability of success, \(p\). The number of successes changes from one binomial experiment of size \(n\) to another. It is thus a random variable, which wili be designeted as \(M\), with possible values \(m=0,1,2\). . n. Since \(M\) is a random variable, so is \(\hat{p}=\frac{m}{n}\), with possible values \(0,1 / n, 2 / n, \cdots(n-1) / n, 1\).

The statistical averages of the random variables \(M\) and \(\hat{\mathrm{p}}\) are:
\[
\begin{align*}
& E(M)=n p  \tag{3}\\
& \operatorname{Var}(M)=n p q \quad \quad \sigma_{M}=\sqrt{n p q}  \tag{4}\\
& E(\hat{p})=E\left(\frac{M}{n}\right)=\frac{1}{n} E(M)=p  \tag{5}\\
& \operatorname{Var}(\hat{p})=\operatorname{Var}\left(\frac{M}{n}\right)=\frac{1}{n^{2}} \operatorname{Var}(M)=\frac{p q}{n} \sigma_{\hat{p}}=\sqrt{p q / n} \tag{6}
\end{align*}
\]
where \(q=1-p\). A comparison of equations (4) and (6) reveals the interesting fact that \(\sigma_{M}\) increases as \(n\) increases for fixed \(p\), while \(\sigma_{\hat{p}}\) decreases as \(n\) increases. If the variance is small, then the value of the random variable tends to be
close to its mean, which in this case (so called " unbiased estimate") means close to the true value of the parameter in question.

There are two approaches to find more precisely the relationship between the size of the sample, \(n\), and the error of \(\hat{p}\) in the estimation of \(p,|\hat{p}-p|\).
1. Conservative Chebyshev Approach

The well-known inequality bearing the name of the Russian mathematician Chebyshev (1821-1894) gives the upper (or lower) bound of such probabilities \(P[|X-E(X)| \leq C]\) when \(E(X)=\mu\) and \(\operatorname{Var}(X)=\sigma^{2}\) are given. It may be stated as follows: for any positive number \(C\),
\[
\begin{equation*}
P[|X-\mu| \geq h \sigma] \leq \frac{1}{h^{2}} \tag{7}
\end{equation*}
\]

This means that the probability assigned to values of \(X\) outside the interval \(\mu-h \sigma\) to \(\mu+h \sigma\) is at most \(1 / h^{2}\). In other words, at least the fraction \(1-\left(1 / h^{2}\right)\) of the total probability of a random variable lies within \(h\) standard deviation of the mean.

In applying the Chebyshev inequality with \(\mu=p\) and \(\sigma=\sqrt{\mathrm{pq} / \mathrm{n}}\) in the case at hand, we find the probability that \(p\) is within \(h \sqrt{p q / n}\) of \(p\) is at least \(1-\left(1 / h^{2}\right)\). One difficulty is that \(\sigma\) is dependent upon the exact value of \(p\) which is to be estimated by \(\hat{p}\). However, we can find the
value of \(p\) that maximizes \(\sigma^{2}=p q / n\). Since the graph of \(\mathrm{pq}=\mathrm{p}(1-\mathrm{p})\) is a parabola that is symmetrical about the Iine of \(p=1 / 2\), the maximum value of \(p q\) is attained when \(p=q=1 / 2\). Therefore, the maximum value of \(p q\) is \(1 / 2 \cdot 1 / 2=1 / 4\), and
\[
\max \sigma=\sqrt{p q / n}=1 / \sqrt{4 n}
\]

Therefore we can say conservatively that the probability is at least \(1-\left(1 / h^{2}\right)\) with the distance
\[
\begin{equation*}
|\hat{p}-p| \leq \frac{h}{\sqrt{4 n}} \tag{8}
\end{equation*}
\]

For example, if \(n=1,000\) and if we choose \(h=2\), the probability is at least 0.75 that
\[
|\hat{p}-p| \leq \frac{2}{\sqrt{4 \times 1,000}}=.032
\]
or, in words, at least \(75 \%\) of the probability distribution of \(\hat{p}\) is within . 032 of \(p\). For \(n=1,000\) and \(h=5\), at least \(96 \%\) of the probability distribution of the error is less than \(5 / \sqrt{4,000} \cong .065\).

It is clear from equation (8) that the error in the approximate solution of a problem by the Monte Carlo method can be reduced by increasing the number of trials \(n\), i.e. by increasing the computational time. For example, the time necessary to complete the solution must be increased by a
factor of 100 if the accuracy is to be improved by one order of magnitude.
2. Conservative Normal Approach

From DeMoiore-Laplace Theorem [3] in the theory of probability, it is known that when the mean value \(\mu\) is "far" from 0 and \(n\), the extreme values of the binomial random variable \(X\), (at least \(3 \sigma\) from both 0 and \(n\) ), it is justified to use the stronger normal distribution theory instead of the Chebyshev Theorem. In our case then, if \(n p\) is at least \(3 \sqrt{n p q}\) from both 0 and \(n\), we know that the new random variable \(Z=(X-n p) / \sqrt{n p q}\) is approximately normally distributed. Recalling that \(\hat{p}=\frac{x}{n}\), we have
\[
z=\frac{x-n p}{\sqrt{n p q}}=\frac{\frac{X}{n}-p}{\sqrt{p q / n}}=\frac{\hat{p}-p}{\sqrt{p q / n}}
\]

Now, since \(Z\) is approximately distributed according to the standard normal distribution, we can say that the probability is approximately 0.95 that
\[
\begin{equation*}
-2 \leq z \leq 2 \text { or }-2 \leq \frac{\hat{p}-p}{\sqrt{p q / n}} \leq 2 \tag{9}
\end{equation*}
\]
where the Z's represent 2 standard deviations, to approximate the more precise value 1.96 from the normal table [4].

We now multiply all terms of the right-hand expression
of the inequality ( 9 ) by \(\sqrt{p q / n}\), and get
\[
\begin{aligned}
& -2 \sqrt{p q / n} \leq \hat{p}-p \leq 2 \sqrt{p q / n} \\
& \text { or } \quad|\hat{p}-p| \leq 2 \sqrt{p q / n}
\end{aligned}
\]

Maximizing \(p q\) as before at \(p q=\frac{1}{4}\), we find from the normal distribution that the probability is approximately 0.95 and
\[
|\hat{p}-p| \leq \frac{2}{\sqrt{4 n}}=\frac{1}{\sqrt{n}}
\]

If we choose \(h\) standard deviations instead of 2 , the appropriate probability should be obtained from the normal table.

In general, the number of runs ( \(n\) ) required in the Monte Carlo method can thus be determined on the basis of normal distribution approach by the simple relation
\[
n=\frac{C}{4 E^{2}}
\]
where \(E\) is the tolerable error range in per cent and \(C\) is the square of probability value for a given confidence limit.

For example, for 90 per cent confidence limit, \(C\) has the value of (1.64) \(=2.69\); for 95 confidence limit, \(C=(1.96)=3.84\); for 99 per cent confidence limit,
\(0=(2.57)=6.61\). If we want the simulation result to be within \(\pm .05\) error range, the number of runs corresponding to the three confidence limits would be 269,384 and 661 respectively. Returning to the figure given in the ASAP operating manual, a 10,000-run computation will guarantee the result to be within \(\pm .013\) error range with 99 per cent confidence limit, or, alternatively, \(\pm .02\) error range with 99.99 per cent confidence limit.
(1) International Business Machines Corp., "ASAP, An Automated Statistical Analysis Program", Tech. Rept. prepared for NASA Goddard Space Flight Center, Greenbelt, Md., Contract No. NAS 5-3373.
(2) J.V. Uspensky, "Introduction to Mathematical Probability", McGraw-Hill Book Co., 1937, p. 101.
(3) E. Parzen, "Modern Probability Theory and Its Applications", p. 239; Wiley and Sons, 1960.
(4) M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", Bational Bureau of Standards, Applied Mathematics Series AMS-55; U.S. Government Printing Office, Washington, D.C., p. 968.

> Section VI. Generation of Random Numbers on IBM 1620 Computer:

\footnotetext{
whis is part of a thesis submitted by J.J. Perkowski in partial fulfillment of the requirements for the M.S. Degree to the Electrical Engineering Faculty of Villanova University, June, 1966.
}

\section*{CHAPTER I}

\section*{INTRODTCTION}

A group of \(n\) numbers are random if each number in the group has the same probability of occurring. An important property of random numbers is that knowing some of the numbers we cannot predict any other number in the sequence. In addition, the sequence of true random numbers whould not be limited to a finite length. Thus (1) total unpredictability, (2) equal likelihood of the outcomes and (3) infinite length of the sequence form the three basic properties of random numbers.

When the random digits are generated on a digital computer by means of some repetitive arithmatical process they are called pseudo-random digits. Pseudo is defined as deceptively resembling a specified thing, and the deception encountered here is that a pseudo-random process cannot generate an infinitely long random sequence. Eventually the process will either end up in a string of zeroes or will start repeating itself. Thus pseudo-random numbers violate the third property of random numbers.

Nevertheless pseudo-random numbers are best suited for computer applications as long as they pass predetermined statistical tests which will be used to test randomness in this paper.

Let us consider some of the methods available for generating pseudo-random numbers:
A. Von Neuman's Center Squaring Method 6, 12 Running through the actual procedure of this method gives a hint of what can be expected in these random processes. Proceed as follows:
1) Start with some large number \(a_{0}\) containing \(2 k\) digits; any number will do.
2) Square \(a_{0}\) to get \(a_{0}\) containing \(4 k\) digits.
3) Take the middle \(2 k\) digits of \(a_{0}\) and call this \(a_{1}\), the next random number.
4) \(a_{1}\) is then squared and the process continues. The assumption in this method is that any digit is as likely to occur as any other so the numbers will be random. Let us see if this is true with some examples.

Example 1
1) Let \(a_{0}=1234\), number of digits \(=2 k=4\)
2) \(a_{0}=01522756,4 k=8\)
3) The middle 4 digits are 5227 so \(a_{1}=5227\)

This seems perfectly legitimate but certain numbers do not work so well.

Example 2
\[
\text { Let } \begin{array}{rlll}
a_{0} & =64 & \text { then } & a_{0}=4096 \\
a_{2} & =09 & a_{1}=09 & a_{1}=0081 \\
a_{3} & =06 & a_{1}=0081 & a_{2}=08 \\
a_{5} & =00 & a_{3}=0036 & a_{4}=03 \\
a_{2}=0064 \\
a_{4}=0009
\end{array}
\]
A. Von Neumann's Center Squaring Method [ 6,12 ]

Running through the actual procedure of this method gives a hint of what can be expected in these random processes.

Proceed as follows:
1) Start with some large number ao containing \(2 k\) digits; any number will do.
2) Square \(a_{0}\) to get \(a_{0}{ }^{2}\) containing \(4 k\) digits.
3) Take the middle \(2 k\) digits of \(a_{0}{ }^{2}\) and call this \(a_{1}\), the next random number.
4) \(a_{1}\) is then squared and the process continues.

The assumption in this method is that any digit is as likely to occur as any other so the numbers will be random. Let us see if this is true with some examples.

Example 1
1) Let \(a_{0}=1234\), number of digits \(=2 k=4\)
2) \(a_{0}{ }^{2}=01522756,4 \mathrm{k}=8\)
3) The middle 4 digits are 5227 so \(a_{1}=5227\)

This seems perfectly legitimate but certain numbers do not work so well.
Example 2
Let \(a_{0}=64\)
\(a_{1}=09\)
"
" \(\quad a_{2}{ }^{2}=0064\)
\(a_{2}=08\)
" \(\quad a_{3}{ }^{2}=0036\)
\(a_{4}=03\)
" \(\quad a_{4}{ }^{2}=0009\)
this gives
n \(n\)
" \(n\)
" 1
n n
\(a_{5}=00\)

This process degenerates into a string of zeroes for \(a_{0}=64\) and for many other values. In addition this method often degenerates into short cycles of two or three numuers. Obviously this is not a good method and experience has shown unsatisfactory results if \(a_{0}\) has less than eight digits. The National Bureau of Standards tried this method [6] and produced sixteen programs ranging in length from 11 to 104 numbers of four digits each with an average length of 52. This is not very 1 deal for practical applications.
B. Modified Von Neumann Method [6]

Considerable tetter results are obtained by a modified version of Von Neumann's method, in which a pair of numbers, \(a_{0}\) and \(a_{1}\), are multiplied together and the central digits of the product are used for the number \(a_{2}\). The process is repeated for \(a_{1}\) and \(a_{2}\) to give \(a_{3}\). So if \(a_{0} x a_{1}=\) (1234) \(\times(5678)=07006652\) then \(\mathrm{a}_{2}=0066\). This type of process etves nseudo-random numbers that are more random and with a larger neriod than the mid-square method. In the tests run by NS, ten sequences were computed, all of which degenerated into a string of eroes. The lengths of the sequences ranced from 19 to 1253 with an average length of 591.

This method will be used later in the comnuter to generate data. To summarize:
1) Select \(a_{0}\) and \(a_{1}\); any \(2 k\) digit number will do.
2) Take the product of \(a_{0}\) and \(a_{1} ; 4 k\) digits.
3) Take the middle \(2 k\) digits of this product and call this \(a_{2}\)
4) Take the product of \(a_{1}\) and \(a_{2}\) to get \(a_{3}\) etc.
C. IBM Method

This method was taken from the IBM reference manual [1] and will be used later on the computer. The basic formula for this process is:
\[
\begin{equation*}
u_{n+1}=\text { last d digits of } x u_{n} \tag{1.1}
\end{equation*}
\]

This will produce \(5: 10^{d-2}\) terms before repeating (for \(d\) greater than 3). An outline of this method as dictated in the IBM reference manual follows:
1) Choose for a starting value any integer \(u_{0}\) not divisible by 2 or 5 ; \(u_{0}\) is d digits long.
2) Choose \(t\) for equation 1.2 as any integer
3) Choose \(r\) for equation 1.2 as any of the values 3, \(11,13,19\), 21, 27, 29, 37, 53, 59, 61, 67, 69, 77, 83, and 91.
4) Take the values from 2) and 3) and choose as a constant multipiler an integer \(x\) of the form:
\[
\begin{equation*}
x=200 t \pm r \tag{1.2}
\end{equation*}
\]
(The plus-minus sign is used because \(x\) must be odd and odd numbers have the form \(2 n \pm 1,2 n \pm 3\), etc.; the plus-minus sign simplifies selecting a value close to \(10^{d / 2}\) as a choice for x. )
5) Compute \(x u_{0}\), a product \(2 d\) digits long
6) Discard the high order d digits leaving \(u_{l}\) consisting of the last d digit of the product.
7) The process is repeated.

As an example let \(d=4\) and \(u_{0}=2357\). Since \(10^{d / 2}=100\) a good choice for \(x\) is 109. So \(x_{0}=(0109)(2357)=\) 00256913. Then \(u_{1}=6913\), \(x u_{1}=(0109)(6913)=00753517\) so \(u_{2}=3517\). This method will be studied in much further detail in later discussions.
D. Lehmer Method
D. H. Lehmer is an important name in random numbers and a very simple method [7] which he developed calls for successive multiplications by a constant number (he chooses 23):
1) Choose an eight digit number \(u_{0}\); any number will do.
2) Multiply \(u_{0}\) by 23 to get a nine or ten digit \(u_{0}\) '.
3) The first and second digits on the left are removed and subtracted from what remains of \(u_{o}\) giving \(u_{1}\)
4) Continue the process with \(23 u_{1}\)

Example
1) \(u_{0}=12345678\)
2) \(23 u_{0}=0283950594\)
3) \(\mathrm{u}_{1}=83950594-02=83950592\)
4) \(23 u_{1}=\) etc.

This method supposedly does not repeat until 5,882,352 sequences have been computed which contains about 47 million random digits. And so this paper will contain a method similar
to this that produces sequences of six digits each. The method was modified slightly to better fit the Fortran computer language.

\section*{E. Residue Method}

In these four methods discussed so far, instructions state to choose any initial value for \(u_{0}\) or \(a_{0}\) etc. But when looking at the results of these methods, it will be seen that only certain initial values give good long prosrams; the others give short deteriorating programs. Just what the proper initial value is, though, can only be determined by trying many different values and selecting the best by observing the results. This, of course, entails a lot of guess work and a good bit of combuter hours. And so a method is needed in which one does not have to pick a special initial value in order to eet lone sequences of usuable numbers. Such a method is the power residue method [8] which is extensively used today by anyone wishing to zenerate random numbers. The IBM manual spells out the procedure for this method. The method is based on the equation:
\[
\begin{equation*}
u_{n+1}=x u_{n}\left(\bmod 10^{d}\right) \tag{1.3}
\end{equation*}
\]

The procedure is:
1) \(10^{d}\) represents the word size of the machine and this will produce \(5 \cdot 10^{\text {d-2 }}\) terms before repeating. So in order to have at least 5,000 terms let \(d=5\).
2) The value of \(x\) is arrived at from the congruence
\[
\begin{aligned}
& x \equiv \pm(3,11,13,19,21,27,29,37,53,59,61,67,69, \\
&77,83,91)(\bmod 200)
\end{aligned}
\]
3) Choose \(u_{0}\) as any integer not divisible by 2 or 5.
4) Compute \(x_{0}\left(\bmod 10^{d}\right)\) using fixed point integer arithmetic
5) Continue process for \(u_{1}\) etc.

Example
1) \(d=5\)
2) \(x=3379\)
3) \(u_{0}=389\)
4) \(x u_{0}(\bmod 100,000)\) is simply this: \(x u_{0}=1,314,431\)
\(\frac{x u_{0}}{100,000}=13\) plus a remainder of 14431
It is this remainder that is \(u_{1}\)
\(u_{1}=14431\) etc.
Later on in Chapter III when this method is discussed emphasizing computer techniques, very interesting manipulations must be made to adapt this nrogram to the computer.

But before the computer programs are discussed, the statistical tests to be used must first be listed.

\section*{CHAPTER II}

STATISTICAL TRSTS

\section*{INTRODUCTION}

Before beginning the observations of the computer programs, it is necessary to explain the tests that were performed on the random numbers. By studying these tests in great detail now, we eliminate the possibility of their interfering with the flow of thought from one program to the next in the following chapter.*

CHI-SQUARED TEST
The major problem that will be encountered when testing random numbers is which ones to keep as random and which ones to discard. The chi-squared ( \(x^{2}\) ) test of goodness of fit will be used to tell whether or not a set of numbers is satisfactory.

Wenever an experiment is performed (throwing dice for example), certain expected outcomes can be calculated using the formulas of probability theory. Then when the experiment is performed, the results may be compared with the theoretical calculations. Often these calculated values are put in the form of a probability distribution as in figure 2.1 where

\footnotetext{
* References for this chapter: see 9 to 11 in Bibliography
}
\(f(n)\) is the probability of the number \(n\) appearing on the dice. We will refer to this as a parent distribution since it is the norm
which we are trying to match in the experiment.


11g. 2.1

The chi-squared test is used to tell just how much disagreement between the parent distribution and the experimental values (call this the sample distribution) can be reasonably expected or in other words how great the disagreement must be in order to justify that the dice do not obey the parent distribution.

These distributions are expressed most naturaliy as frequencies of events where the frequency of an event is the total number of times this event occurs among all the trials. Let \(f_{0}\) be the frequency of occurrence of event \(n\) for a sample that will consist of N trials. If the parent distribution is \(f(n)\) then the frequency predicted by the parent distribution is \(\mathrm{Nf}(\mathrm{n})\) written as \(\mathrm{f}_{\mathrm{c}}\). These frequencies are related in the following way to get the chi-aquared goodness to fit:
\[
\begin{equation*}
x^{2}=\frac{\dot{\Sigma}\left(f_{0}-f_{c}\right)^{2}}{f_{c}} \tag{2.1}
\end{equation*}
\]

For a sample of \(n\) events, \(n-1\) events are independent leaving one dependent event. As an example, suppose we are running
a test of the frequency of each digit, zero to nine, in a sample. If there are 1000 digits in the sample and there are 910 digits from one to nine, then the total number of zeroes is already determined and is dependent on the other values. So we say that this sample has nine descess of freedom \((v)\) or independent digits. In general \(v=n-1\).

How are these results then interoreted? Clearly if the observed and calculeted values agree exactly then \(x^{2}=0\). The greater the difference between the samble and parent distribution, the greater will be the value of \(x^{2}\) so generally sneaking the larger \(x^{2}\), the worse the fit. The \(x\) curve is plotted as follows:


Chi-squared tables are found in most statistics books. So as an example, if the number of degrees of freedom is 10 and \(x^{2}\) is calculated as 3.94 then the tables say that the probability that \(x^{2} \geq 3.94\) is 0.95 . That is the probability of obtaining by chance a value of \(x^{2}\) at least as bad as the observed fit is 0.95 . So 95 times out of a hundred a worse fit will occur so we deduce that \(x^{2}=3.94\) is a good fit. But suppose we calculated \(x^{2}=23.2\) for 10 degrees of freedom. The table gives \(P=0.01\), so only one time out of a hundred will we get a worse fit; 99 out of 100 times a better fit
occurs so we easily see that \(x^{2}=23.2\) for 10 d.f. Is not a good fit.

In most of our measurements we will use the 10 ner cent points as our confidence ilmits:

fig. 2.3
so for 9 degrees of freedom, we will generally only accept values of \(x^{2}\) that fall in the range 4.168 to 14.685. These are very tight limits. If we wish to get more lax, we will reduce the limits to the 5 per cent points.

As a short example, take the count of the odd number digits of a group of 500 random digits. Using the decimal system the probability of each digit is one-tenth. So the expected frequency \(\left(f_{c}\right)\) of each is \(\operatorname{Nf}(n)\) or \((500)(1 / 10)=50\) digits. This set of random numbers contains 40 ones, 43 threes, 47 fives, 54 sevens, and 59 nines. Calculate \(x^{2}\) to see if these numbers are random.

The following table is set up:

Table 2
\begin{tabular}{lllcc}
\(n\) & \(f_{0}\) & \(f_{c}\) & \(f_{0}-f_{c}\) & \(\left(f_{0}-f_{c}\right)^{2}\) \\
1 & 50 & 40 & 10 & 100 \\
3 & 50 & 43 & 7 & 49 \\
5 & 50 & 47 & 3 & 9 \\
7 & 50 & 54 & -4 & 16 \\
9 & 50 & 59 & -9 & \(\underline{81}\) \\
& & & & 255
\end{tabular}
\(x^{2}=\sum \frac{\left(f_{0}-f_{c}\right)^{2}}{f_{0}}=\frac{255}{50}=5.1\) from equation 2.1
\(x=5.1\) for \(4 \mathrm{~d} . \mathrm{f} . \quad \mathrm{P} \cong 0.27\)
This is within the 10 per cent confidence limits so this is
a good set of random numbers.

TTA:DARD DEviAtion
The standard deviation will be used in conjunction with the mean or average to gain certain knowledge about the random dieits.
\[
\begin{aligned}
& \text { It is defined as follows: } \\
& \qquad=\sqrt{\frac{1}{n} \sum_{d}\left(f_{0}-f_{c}\right)^{2}}
\end{aligned}
\]
where: \(\sigma=\) standard deviation \(\mathrm{n}=\) number of trials, etc.

In general the probability for a measurement to occur in an interval within \(T \sigma\) of the median is
* d.f. = degrees of freedom
\[
P(T)=\frac{1}{\sqrt{2 \pi}} \int_{-T}^{T} e^{-\frac{t^{2}}{2}} d t
\]

The orobablilty (see flg. 2.4) for a fow values of \(T\) is:
\[
\begin{array}{ll}
P(1)=0.683 & 1-P(1)=0.317 \\
P(2)=0.054 & 1-P(2)=0.046 \\
r(3)=0.997 & 1-P(3)=0.003
\end{array}
\]
fig. 2.4
This means that the probability for a measurement to fall within one standard deviation of the mean is about 68 per cent, the probability of being farther away than \(2 \sigma\) 1s 4.6 per cent and farther away than \(3 \sigma 1\) is 0.3 per cent. So normally we should expect about 30 per cent of the data to fall outside the first standard deviation.

As an example, let us again take the odd numbered digite. The last column of Table II is also the \(\left(f_{0}-f_{0}\right)^{2}\) term in the formula for standard deviation (equation 2.2). So then:
\(\sigma=\sqrt{\frac{1}{n} \sum\left(f_{0}-f_{c}\right)^{2}}=\sqrt{\frac{1}{5}(255)}=\sqrt{51}\)
\(\sigma=7.14\)

This gives the following results:
\begin{tabular}{lcc} 
& Range & \# Readings Within Range \\
\(\sigma\) & 42.86 to 57.14 & 3 \\
\(2 \sigma\) & 35.72 to 64.28 & 5 \\
\(3 \sigma\) & 28.58 to 71.42 & 5
\end{tabular}

These results are very favorable. Three-fifths or 60 per cent fall within one \(\sigma\) compared with 68 per cent theoretically, and none fall further than \(2 \sigma a w a y\).

\section*{FREQUENCY TEST}

This test is basically the comparison of the frequency of occurrence of each digit 0 to 9 with the expected value of the digit, 1.e. one-tenth the number of digits in the group. Chi-squared test and standard deviation are used to see how close the digits are to the expected.

Remember where this expected or parent distribution comes from. Ne have mentioned that one of the properties of random numbers is that each digit is equally probable and even though we are generating pseudo-random numbers, this property still holds true. So we are justified in saying that the expected value for the frequency of occurrence of a digit is \(1 / 10\) the number of digits in a decimal system.

Variations of the frequency test would be munning tests on every other digit, every third digit,......... every tenth digit, and also the frequency of odd digits to even digits is often compared as well as frequency of numbers below the
mean \((0,1,2,3,4)\) to numbers above the mean \((5,6,7\), 8, 9).

\section*{SERIAL TESTS}

This test involves counting the frequencies of all pairs of numbers (00-99) and comparing them with the normal using \(x^{2}\) or \(\sigma\). This gives a good indication of whether certain diefts tend to follow certain other digits, i.e. a given digit being dependent on the digit preceding it.

RUNS TESTS
Three different types of runs tests will be performed:
1) Run test above and below the median
2) Run test of individual digits
3) Run test up and down
(1) The run test above and below the median consists of dividing the numbers letting \(0,1,2,3,4\) equal a and 5,6 , 7,8 , 9 equal b. So a series of digits 2728910447 would give ababbaaaab, which contains four runs of one, a run of two b's, and a run of four a's. The total number of runs and runs of one, two, etc. are then compared with expected values which are calculated as follows:
\(\begin{aligned} & \text { expected total } \\ & \text { number of } \\ & \text { runs }\end{aligned}=\frac{\mathrm{N}+1}{2}\)
\(\begin{aligned} & \text { expected number or runs } \\ & \text { of length } k\end{aligned}=(N-k+3) 2^{-k-1}\)
where \(N=\) number of digita being tested
Confidence limits for expected total number of runs are found
from table 47, dage 203 in [9].
A small samole of this tajle follows:

\section*{Table 3}

90 per cont limits
number of (yuns
expeeted (m)
20088
\(200 \quad 178 \quad 224\)
\(300 \quad 268 \quad 334\)
400
500
lower limits

88

358
448

444
upper 11msts 114
N.B. For m>10, the number of runs is approximately normaily distributed with mean \(m+1\) and varlance ( \(\sigma^{2}\) ) equal to \(m(m-1) /(2 m-1)\).
(2) The run test up and down consists in determining if the differences between successive digits is positive or negative. So for \(N\) points ( \(u_{1}, u_{2}, \ldots \ldots, u_{n}\) ) we write a binary sequence whose nth term 1s "u" if \(u_{n}<u_{n+1}\) and is " \(A^{\prime \prime}\) if \(u_{n}>u_{n+1}\). So agein for the sequence 2728910447 we got uduuddu-u. Letting the dash be a "u" this containg two muns of one, two runs of two, and one run of three. The reaulte are, of oourse, then compared by \(x^{2}\) with expected values that are caloulated as followe:
\[
\begin{align*}
& \text { expected total }=\frac{(2 \mathrm{~N}-1)}{3}  \tag{2.6}\\
& \text { number of runs }  \tag{2.7}\\
& \text { expeoted number of runs }=\frac{5 \mathrm{~N}+1}{12} \\
& \text { of length } 1
\end{align*}
\]
expected number of runs \(=\frac{11 \mathrm{~N}-14}{60}\)
of length 2
\(\begin{aligned} & \text { expected number of muns } \\ & \text { of leagth } k\end{aligned}=\frac{2\left(k^{2}+3 k+1\right) N-\left(k^{3}+3 k^{2}-k-4\right)}{(k+3)!}\) (2.9)
where \(N=\) number of digits being tested.
As noted in the example above, often a dash will occur In the case where \(u_{n}=u_{n}+1\). A good way to overcome this is to take the \(u^{\prime} s\) and \(d^{\prime} s\) from the start of the sequence and use them in the place of each dash that turns up.

ANALYSIS OF PROGRAMS GENERATED ON THE COMPUTER

\section*{INTRODUCTION}

The background of random numbers noted and the tests to be used understood, the discussion of the random numbers that I have generated on the computer can begin.

These programs will begin at the simplest level and proceed toward the complex, but useful, methode. Each method will generally be an improvement over the one preceding it, and these improvements will be emphasized a good deal. Consideration will also be given to variation of inputs and the effects on the results. Chanter I discussed these methods purely from the mathematical viewpoint, the theoretical side, but this chapter considers the problems of getting the programs to work on a computer. So computer techniques will be emphasized but will be tied in closely with the discussions of Chapter I.

As an aid to understanding this chapter, the actual Fortran language computer programs can be found in Apnendix A while most of the actual numbers generated will be found in Appendix \(B\).

This method has been discussed previousiy in Chapter I taken from the \(I 3 N_{\text {refere }}\) refanual. Repeating the general formula for the method we get:
\[
\begin{equation*}
u_{n+1}=\text { last } d \text { digits of } x u_{n} \tag{3.1}
\end{equation*}
\]

The selection of initial values ( \(u_{0}\) ), the input values for the computer is the most difficult task for this method.

The constant \(d\) was first selected \((d=4)\) so the number of terms before repeating is \(5 \cdot 10^{\text {d-2 }}\) which gives 500 terms.

The multiplier \(u_{0}\) is chosen as any number not divisible by 2 or 5. Let \(u_{0}=2357\).

The \(x\) is then chosen by the formula \(x=200 t+r\) where \(t\) is any integer and \(r\) is any of the values listed in Chapter I which gives a value of \(x\) close to \(10^{d / 2(100 ~ i n ~ t h i s ~ c a s e) . ~}\) Then \(t i s\) chosen as one and \(r\) as 91 then
\[
\begin{aligned}
& x=(200)(1)-(91) \\
& x=109
\end{aligned}
\]

So the initial values are in summary:
\[
\begin{aligned}
& d=4 \\
& u_{0}=2357 \\
& x=109
\end{aligned}
\]

Computing \(x u_{0}\) these values will produce a product 8 digits long; but the high order 4 digits are discarded and the 4 low order digits are the value of \(u_{2}\). (gee Appendix A.)

The problem remains of programming this on the computer.

The program was written entirely in fixed-point mode. To show the effect of fixed point, suppose a certain product is 767215.72. Operation in this mode will discard the underlined digits leaving only +7215 . So fixed-point mode rejects all decimals and digits to the left of the four low order digits. When the 8 digit product \(\mathrm{xu}_{0}\) is calculated, only the four low order digits are printed. This is exactly the \(u_{1}\) that is required. This program consisted of numbers of four digits in length and contained 500 terms before repeating (see Appendix 3). But looking at columns of numbers, it is noticed that the period of each column is not 500. The period for each column is
\begin{tabular}{ll} 
units column & \(T=2\) \\
tens column & \(T=10\) \\
hundreds column & \(T=50\) \\
thousands column & \(T=500\)
\end{tabular}

So the low order digits of the numbers are far from random. The periodicity of the digits increases as the order of the digit position increases.

The units column consists aimply of the alternating digits 3 and 7. This column can be discarded as not random.

The tens column is composed of the 10 digit series 1157933975. Each digit appears twice, but they are only odd numbered digits. No even digits occur in this column so it certainly is not random.

The hundreds column contains 50 digits before repeating.

Twenty are oven and thirty are odd. The orobability is only 16 per cent that there could be 10 more odd digits than even digita at these values,
\[
\left(x_{2}=\frac{5^{2}+5^{2}}{25}=2 \quad P=0.16 \text { for } 1 d_{.1}\right)
\]
so the hundreds column is rejected.
The thousands column consists of 500 digits distributed
as follows:
\begin{tabular}{lll}
51 zeroes & 50 threes & 50 sixes \\
50 ones & 50 fours & 50 sevens \\
50 twos & 49 fives & 50 eights \\
& & 50 nines
\end{tabular}

Calculating \(x^{2}\) gives:
\(x^{2}=\frac{1+8(0)+1}{50}=0.04\) for 10 degrees of freedom. From the \(x^{2}\) table a \(x^{2}=0.04\) gives a probability \(P=\) \(0.999999 . .\). for 9 d.f. This means that only one chance in 10,000..... will give a better fit. So it seems logical that this is a good set of random numbers. But statisticians caution about numbers that are too close to the norm. When numbers got too close to what 18 expected, they cease to be random. Hence we have mentioned before that limits of \(x^{2}\) for acceptable results are the range 4.168 to 14.684. This lower limit is chosen to avoid these numbers that follow the norm too closely and are as a result not random. For this reason the numbers in the thousands column must be rejected.

The entire method I is rejected then for the various reasons cited.

METHOD II - IMPROVED IBM METHOD
It was the purpose of this method to attempt to make improvements on liethod I so that every colum in Nethod II would be random instead of just one column.

In Method I it was the last digit which was least random so in this method the last digit is eliminated. After the product \(\mathrm{xu}_{0}\) has been computed and the first four digits are dronped, the remaining digits (formerly \(u_{1}\) ) are now divided by the constant 10. So if \(u_{1}\) was equal to 4487 , dividing by 10 gives 448.7. Sut in the computer language (Fortran language) this number is in fixed-point mode so only the digits 448 are retained as the new \(u_{1}\).

Two statements are taken from Appendix \(A\) to show the difference in computer language \(7 I(J)=N * K . . . . . . . . . .\). . Miethod \(I\) \(7 I(J)=N * K / N . . . . . . . .\). Method II where

7 = statement number
\(I(J)=u(n+1)\)
\(N=X\)
\(\mathrm{K}=\mathbf{u}_{\mathrm{n}}\)
Let us now see if this improvement has helped generate numbers that are more random. Ninety-seven numbers of three
digits each were generated before they started repeating. (See Appendix 3.) Already an improvement can be seen. The hundreds column of Method I had a period of 50 while in this program this column has a period of 97. The other columns also have the same period, and hence it is increased many times over Method I.
a) Frequency Tests: There are 291 digits so there should be statistically speaking 29.1 of each digit. The frequency test on these digits gave the following table which is similar to table 2 in Chapter II:

Table 4
\begin{tabular}{|c|c|c|c|c|}
\hline n & \(\mathrm{f}_{\mathrm{c}}\) & \(\mathrm{f}_{0}\) & \(f_{0}-f_{c}\) & \(\left(f_{0}-f_{c}\right)^{2}\) \\
\hline 0 & 29.1 & 29 & 0.1 & 0.01 \\
\hline 1 & 29.1 & 27 & 2.1 & 4.40 \\
\hline 2 & 29.1 & 31 & 1.9 & 3.60 \\
\hline 3 & 29.1 & 23 & 6.1 & 37.30 \\
\hline 4 & 29.1 & 29 & 0.1 & 0.01 \\
\hline 5 & 29.1 & 32 & 2.9 & 8.40 \\
\hline 6 & 29.1 & 34 & 4.9 & 24.00 \\
\hline 7 & 29.1 & 27 & 2.1 & 4.40 \\
\hline 8 & 29.1 & 30 & 0.9 & 0.81 \\
\hline 9 & 29.1 & 29 & 0.1 & 0.01 \\
\hline & 291.0 & 291. & & 82.94 \\
\hline & \[
\frac{94}{1}=
\] & \[
9
\] & \(P=.965\) & \\
\hline
\end{tabular}
remembering that
\(u=\) digit being tested
\(f_{c}=\) expected number of each digit \(=N f(n)\)
\(f_{0}=\) observed number of each digit \(=F(n)\)
At first glance these do not seem to agree with the present confidence limits so let us look at this with odd and even numbers separated. There are \(\left\{\begin{array}{l}145 \text { odd digits } \\ 138 \text { even digits }\end{array}\right\}\)
and \(x^{2}\) for this information gives
\[
x^{2}=\frac{(3.5)^{2}+(3.5)^{2}}{41.5}=0.173 \text { for } 1 \text { d.1. }
\]
which gives \(P=0.65\). This means the probaility of having 7 more odd numbers than even in this particular case is 0.65 .

This is a good result. Also \(x^{2}\) for odd number digits is 1.87 or \(P=0.75\) for \(4 \mathrm{~d} . f\). and for even digits 0.977 or \(P=0.91\) for 4 d.f. These deviations do not appear significant for rejection.

The standard deviation \((\sigma)\) of this set is
\(\sigma=\sqrt{\Sigma \frac{\left(f_{0}-f_{c}\right)^{2}}{N}}=\sqrt{\frac{32.94}{10}}=\sqrt{8.3}=2.88\)
\(m=29.1\)
So for each standard deviation:
\begin{tabular}{cccc} 
& Range & Observed & Expected \\
\(m \pm \sigma\) & 31.98 & 7 & 6.8 \\
\(m \pm 2 \sigma\) & 24.12 & & \\
& 23.24 & 8 & 9.5
\end{tabular}
\begin{tabular}{cccc} 
Range & Observed & Expected \\
\(m \pm 3 \sigma\) & 37.74 & 10 & 9.9
\end{tabular}

There are only two readings past \(3 \sigma\). All the others fall within range.
b) Runs Tests: A run test above and below the mean was performed with the following results:
number of runs counted 155
number of runs expected----------------146
range permitted as 90

These results were good.
A run test up and down was also performed. There were 194 runs expected and 206 ooserved. For 90 per cent limits the range allowed is from 173 to 217. The observed value falls within this limit.

According to these tests there is little evidence of eny divergence from the normal expectations. Only in the frequency test of these numbers is the result questionable. So we can conclude that these numbers are random, but there is one glaring fault with these random numbers. There is not enough of them. There are only 97 terms in the series; far from enough to apply this method to a Monte Carlo method.

METHOD III - CENTER SQUARING METHOD
So far the methods that have been investigated have consisted of multiplying various numbers with a definite constant over and over. A better way for generation would be to have two new multipliers for each number generated.

This method (Von Neumann's Center Squaring Hethod) has been discussed in great detail in Chapter I. Short cycles have been obtained by some people that have used this method.

Three sets of random numbers were generated on an adding machine using three different initial values of \(a_{0}\) : \(a_{0}=1111\) gave 54 terms
\(a_{0}=1234 \quad\) " \(82 \quad\) "
\(a_{0}=6043 \quad\) " 66 "
These give an average period of 67 numbers of four digits each. (See Apnendix B).

For \(a_{0}=1234\) ( 82 terms) the frequency test gives:
0-9
3-10
6-6
1-13
4-9
7-5
2-13
5-8
8-8
\[
9-3
\]

This has \(x^{2}=11.75\) for 9 d.f. or a \(P=0.23\) which 1 s good. 3ut notice the digits divided in this manner:
\(\left.\begin{array}{l}(1,2,3,4,5)=53 \text { digits } \\ (6,7,8,9,0)=31 \quad n\end{array}\right\} \quad a \nabla_{0}=42\)

The probability of this occurring is calculated:
\(x^{2}=\frac{11^{2}+11^{2}}{42}=\frac{242}{42}=5.76\) for 1 d.f.
\(P=0.018\)
There is only about one chance in 50 of this occurring so this series is definitely biased toward the lower five digits. The mid-square method is then out of consideration due to its short period and bias to certain digits.

NETHOD IV - MODIFIED VON NEUMANN
Center squaring does not work satisfactorily so logically Wethod IV will be tried.

In programming this method \(a_{0}\) and \(a_{1}\) were multiplied together giving an eight digit number ( \(C=07006652\) ). \(C\) is then divided by a factor \(D=0.01\) giving the product 070066.52. But this product is printed out in ifxed-point mode so only the digits 0066 are printed; this is called \(a_{2}\) or in Fortran language, I(2). (See Appendix A.)

Two different inputs picked at random were fed into the computer. They were as follows (with length of period included):

Input
\(a_{0}=1111 \quad a_{1}=1111\)
\(a_{0}=1234\)
\(a_{1}=5678\)

Period
\(T=61\)
\(T=1137\)

Both sequences ended in a string of zeroes. The period for our runs averages out to \(T=599\) where the NBS tests gave \(T=591\) for ten sequences.

It was virtually impossible to run any tests on the program resulting from the first innut. However, some indication is given that this might be a good method by looking at the frequencies of the digits:
\begin{tabular}{lll}
16 zeroes & 23 threes & 18 sixes \\
20 ones & 21 fours & 14 sevens \\
16 twos & 17 fives & 16 eights \\
& & 18 nines
\end{tabular}

This gives an \(x^{2}=3.72\) for \(9 \mathrm{~d} . f\). or \(P=0.92\). So nine t1mes out of ten a worse fit will occur.

The frequency of digits for the second input were as follows:

212 zeroes
216 ones
203 twos

174 threes
213 sixes
191 sevens
206 eights
188 nines

These were from a test of the first 250 numbers of four digits each. So for two thousand digits we exnect two hundred of each number. Table 5 contains the frequency test.

These two tests show very good results concerning the randomness of these numbers. The probsbilities for the frequency and odd versus even test were well within the confldence limits which we set. (See Table 5.)

Table 5


A runs test above and below the median was taken with the following results:

Table 6
\begin{tabular}{ccc} 
Length of Run & Observed & Expected \\
1 & 479 & 500.5 \\
2 & 268 & 250.1 \\
3 & 135 & 125.0 \\
4 & 59 & 62.4 \\
5 & 31 & 31.3 \\
6 & 13 & 15.7 \\
7 & 10 & 7.8 \\
9 & 4 & 3.9 \\
Total & 1000 & 2.0
\end{tabular}

The results of this runs test are very good; and along with the frequency test, these give very good indication that the numbers generated in this method are random.

METHOD V - LEHMER'S METHOD
This is the method devised by D. H. Lehmer as was discussed in Chapter I, Section D.

Lehmer's formula is summarized:
\(u_{n}=8 R H D O\left[23 u_{n-1}-2 L H D O\left(23 u_{n-1}\right)\right]\)
where RHDO \(=\) right hand digits of
\[
\text { LHDO }=\text { left hand digits of }
\]

In terms of congruences this is written (according to Lehmer) 2.8
\[
\begin{equation*}
u_{n}=u_{0} 23^{n}\left(\bmod 10^{8}+1\right) \tag{3.3}
\end{equation*}
\]
which gives 5,882, 352 eight digit numbers.
The IBM 1620 was better adapted to produce a six digit number as a result. So the initial value \(u_{n}\) is an eight digit number, but this formula is used:
\[
\begin{equation*}
u_{n}=6 R H D O\left[23 u_{n-1}-2 L H D O\left(23 u_{n-1}\right)\right] \tag{3.4}
\end{equation*}
\]
as opposed to equation (3.3)
In the actual generation of the numbers(see Appendix \(A\) and B) certain problems arose with exponents exceeding the computers \(\mathrm{E} \pm 99\) IImit. So three IF statements were used in the program to limit these exponents. This particular program prints out 801 six digit numbers; 4806 random digits total for each input apolied. The program can be continued by using its last number as the input to the continued program.

Testing will now begin to determine whether these numbers are acceptable for use.

FREQUENCY TESTS
W1th 4806 random digits we expect 480.6 of each digit. The results of counting were:
\begin{tabular}{lll}
\(5 l l\) zeroes & 470 threes & 459 sixes \\
490 ones & 505 fours & 473 sevens \\
475 twos & 450 fives & 483 eights \\
& & 490 nines
\end{tabular}

To calculate \(x^{2}\), a chi-squared table is set up.

Table 7
\begin{tabular}{lllcc}
\(n\) & \(f_{0}\) & \(f_{c}\) & \(\left(f_{0}-f_{c}\right)\) & \(\left(f_{0}-f_{c}\right)^{2}\) \\
0 & 511 & 480.6 & 30.4 & 924.16 \\
1 & 490 & 480.6 & 9.4 & 88.36 \\
2 & 475 & 480.6 & -5.6 & 31.36 \\
3 & 470 & 480.6 & -10.6 & 112.36 \\
4 & 505 & 480.6 & 24.4 & 595.36 \\
5 & 450 & 480.6 & -30.6 & 936.36 \\
6 & 459 & 480.6 & -21.6 & 466.56 \\
7 & 473 & 480.6 & -7.6 & 57.76 \\
8 & 483 & 480.6 & 2.4 & 5.76 \\
9 & 490 & 480.6 & 9.4 & 88.36 \\
& & & & 3306.40
\end{tabular}
\(x^{2}=\frac{\Sigma\left(f_{0}-f_{c}\right)^{2}}{f_{c}}=\frac{3306.4}{480.6}=6.879\) for 9 d. \(f_{\text {. }}\)
This gives \(P=0.65\)
For odd digits
\(x^{2}=\frac{1283.2}{480.6}=2.67\) for 4 d.f. \((P=0.60)\)
For even digits
\(x^{2}=\frac{2023.2}{480.6}=4.20\) for 4 d.f. \((P=0.38)\)
So the \(x^{2}\) value for 9 degrees of freedom is 6.879 and the probablilty of exceeding this value is approximately 0.65 . The total number of even digits is 2433 as against 2373 odd digits. Assuming that an even digit is as likely to
occur as an odd, the probability of a departure from normal as high as this (2433-2373) is approximately 0.40 ; in other words, a difference greater than this might occur two times in five so the deviation does not apnear significant. Calculation of this follows:
\begin{tabular}{ccccc}
\(\mathbf{n}\) & \(\mathbf{f}_{0}\) & \(\mathbf{f}_{\mathbf{c}}\) & \(\mathbf{f}_{0}-\mathbf{f}_{\mathbf{c}}\) & \(\left(\mathbf{f}_{0}-\mathbf{f}_{\mathrm{c}}\right)^{2}\) \\
odd & 2373 & 2403 & -30 & 900 \\
even & 2433 & 2403 & 30 & 900
\end{tabular}
\(x^{2}=\frac{1800}{2403}=0.749\) for 1 d.f. \(\quad(P \cong 0.40)\)
With all these calculations considered, we conclude that there is no indication of any discrepancy in the behavior of odd versus even digits.

An inspection of the frequencies of occurrence shows that the digit that appeared most frequently (zero) was associated with a probability of \(0.106(P=511 / 4806)\) and the least frequent digit (five) had a probability of 0.093 ( \(\mathrm{P}=450 / 4806\) ) .

The standard duration of the frequenciea is
\(\sigma=\sqrt{\frac{1}{N} \sum\left(f_{0}-f_{c}\right)^{2}}=\sqrt{\frac{3306.4}{10}}=\sqrt{330.64}=18.2\)
Since the mean is 480.6 , the range of values for one standard deviation is 462 to 499. Six of the ten values of \(n\) fall in this range. This compares favorably with the 68 per cent expected.

These frequency tests give no indication of any abnormalcy
compared with normal distribution.

SERIAL TEST
The frequency of the occurrence of all nossible pairs of digits is given in Table 8. It was formed by entering the pair of digits if into the ith row and the \(j\) th column.

Table 8
Serial Test


Only 4800 of the 4806 digits were used in this test; the last 6 pairs were ignored.

This test is performed to show that the table is a random sample from a sequence in which one pair of digits
is as likely to occur as another.
The chi-squared test compares the frequency \(\left(f_{0}\right)\) in each position of the table with the expected frequency \(\left(f_{c}=48\right)\). The number of degrees of freedom, \(v, 1 s 90\) due to the constraint that totals of corresconding rows and columns are the same.

We find:
\[
x^{2}=\frac{4161}{48}=80.69 \text { for } 90 \mathrm{~d} . \mathrm{f}
\]
\(P \approx 0.40\)
This is within our confidence limits so by the serial test this sequence of numbers seems to be random.

RUNS TESTS
This will be the most severe test performed on the numbers. Having passed the frequency and serial tests, these digits will certainly be random if they can get by the runs tests. A set of non-pseudo random numbers may get past one or two tests but will certainly not get past all three tests.

Three runs tests were performed: runs test above and below the median, runs test up and down, and runs test of individual numbers as are explained in Chapter II.
(1) Above and below the median:- All the generated numbers were used in this test and \(5,6,7,8\), and 9 were considered above the median while \(0,1,2,3\), and 4 were below the median. Table 9 shows the results of this test.

Table 9
\begin{tabular}{|c|c|c|c|}
\hline Length of Runs & Expected & Observed & \% Error \\
\hline 1 & 1202.00 & 1143 & - 4.9\% \\
\hline 2 & 600.90 & 600 & - . \(1 \%\) \\
\hline 3 & 300.40 & 267 & - \(11.1 \%\) \\
\hline 4 & 150.20 & 158 & + \(5.2 \%\) \\
\hline 5 & 75.06 & 72 & - \(4.1 \%\) \\
\hline 6 & 37.50 & 32 & - \(14.7 \%\) \\
\hline 7 & 18.76 & 19 & \(+1.3 \%\) \\
\hline 8 & 9.39 & 7 & - \(25.5 \%\) \\
\hline 9 & 4.68 & 6 & + \(28.2 \%\) \\
\hline IU & 2.34 & 3 & \(+28.6 \%\) \\
\hline 11 & 1.17 & 2 & + \(71.0 \%\) \\
\hline 12 & 0.59 & 2 & +230.0\% \\
\hline & 2401.82 & 2311 & - 3.8\% \\
\hline
\end{tabular}

Range for the Total ( \(90 \%\) 11mits): 2258-2534
The expected values were calculated using the formulas given in Chapter II. Per cent error was calculated for each length of run. For 4806 digits, 2402 runs are expected but with a \(90 \%\) leeway allow, the expected range is 2258 to 2534. The Lehmer method produced 2311 runs which is within the 90 per cent confidence limits.

The observed number of runs for the smaller lengths (1 to 6) fall below the expected amount on the average while lengths seven to twelve fall above the expected amount. But the excess of higher order runs does not effect the total

Picture too much since there are only thirteen runs from lengthe nine to twelve anyway. The difference between observed and expected runs of lengths one and three (59 and 33 digits resnectively or 92 digits as compared with the 91 digit differential of the total) actually cause the deficiency, for the most part, in the total number of runs observed with respect to the number expected; but as was show, this total is well within the \(90 \%\) limits. This test then gives no indication of these numbers not being pseudo-random. (2) Up and down:- This test was performed on 914 of the 4806 digits. Again expected values were calculated for Chapter II expressions, anu the results given in Table 10.

Table 10
\begin{tabular}{c} 
Length of Runs \\
\hline 1 \\
2 \\
3 \\
4 \\
5
\end{tabular}

Totals

Expected
382.40 168.10 48.20 10.50
1.87
611.07

Observed
365
158
45
13
\(\underline{2}\)
583

Note that 611 runs are expected and 583 are observed. The observed total is \(4.6 \%\) in error of the calculated value which is a rather good result. The counts for individual lengths of runs also give no indication of the level of these numbers varying too slowly or too quickly.
(3) Individual numbers:- This test was performed on all
the numbers. The expected values were estimated from a
test of similar nature by the Rand Cornoration [11]. The
results follow:
Length of Run
[ Table 11
1

The total number of runs counted are off from the expected value by only \(0.88 \%\). This is an excellent resuit and more or less confirms the decision that these numbers are pseudo-random.

CONCLUSION.
Ample evidence for the pseudo-randomness has thus been given. The first property of total unvredictability has been upheld by the serial test and runs testa. The serial test showed that no two digits depended on each other overall while the runs tests proved that the digits were not dependent on their preceding or following digit. They were, in fact, unpredictable. Secondly, it was shown that the digits were equally probable by the results of the frequency test on the ten different digits involved.

We thus conclude that none of these tests contradict
the assumption that the numbers generated by the Lehmer method are pseudo-random.

METHOD VI - RESIDUE METHOD
This is the method recommended very highly by the I3M computer manual. It entails obtaining products using the power residue method. This can be adapted to the computer using, once again, fixed-point mode of operation.
\[
\text { Repeating equation } 1.3 \text { we get }
\]
\[
\begin{equation*}
u_{n+1} \equiv x u_{n}\left(\bmod 10^{d}\right) \tag{3.5}
\end{equation*}
\]

This process is separated into three distinct steps:
1) multiplying \(x\) by \(u_{n}\)
2) obtaining the residue of modulus \(10^{d}\) is done by dividing \(x_{n}\) by \(10^{d}\), drooping off the decimals of this result and multiplying this whole number by \(10^{\mathrm{d}}\).
3) now take the result of 2) and subtract it from the result of 2). This gives \(u_{n+1}\).
Example
1) \(x u_{n}=1,314,431\)
2) \(\frac{x u_{n}}{10^{d}}=\frac{1,314,431}{10,000}=13.14431\)
drobping decimals gives 13
13 times \(10^{\text {d }}\) gives \(1,300,000\)
3) subtract: \(1,314,431-1,300,000=14,431\)
\[
u_{n+1}=14,431
\]

Let us now put these series of events into a simple equation which requires only the basic arithmetic operations (addition, subtraction, multiplication, and division).
\[
\begin{equation*}
u_{n+1}=\frac{x u_{n}}{1}-\frac{x u_{n}}{\frac{10^{d}}{2}} 10^{d} \tag{3.6}
\end{equation*}
\]
where operation 2 is that snecial division which ignores remainders (drops off decimals).

This equation can now be anplied very nicely to the computer as follows:
1) let \(Y=X \cdot U(N)\) (same as operation 1 in equation 3.6)
2) let \(J=Y / P\) where \(P=10^{\text {d }}\) and \(J\) is a fīealpoint
variable. Fixed point is ideal for operation 2 because it drops off decimals and retains only whole numbers.
3) let \(Z=J\) thus putting this whole number into floatingpoint mode so it matches up with other variables in the equation.
4) the final computer equation is
\(\mathrm{U}(\mathrm{N}+\mathrm{I})=\mathrm{Y}-\mathrm{Z} * \mathrm{P}\)
(See Appendix A.)
Equation 1.3. 3.6, and 3.7 then are all the same, but the last two grew from the need of the simple operations that are required on the computer.

The numbers generated by this method (see Appendix B)
were tested for randomness by the usual statistical tests. The list consisted of five digit numbers with only zeroes
appearing in the units column. The periods for each power of ten was as follows:
\begin{tabular}{ll} 
units & \(T=1\) \\
tens & \(T=2\) \\
hundreds & \(T=10\) \\
thousands & \(T=50\) \\
ten thousands & \(T=500\)
\end{tabular}

The low order digits then are far from random and will be excluded from the analysis. Looking then at the frequency of the digits in the high order column we get:
\begin{tabular}{lll}
50 zeroes & 50 threes & 50 sixes \\
51 ones & 50 fours & 50 sevens \\
49 twos & 50 fives & 50 eights \\
& & 50 nines
\end{tabular}

Statistically speaking this results in a
\[
\begin{aligned}
& x^{2}=0.04 \text { for } 9 \text { d.f. } \\
& p>0.99
\end{aligned}
\]

This is what is called a fit that is "too good" and usually a sample giving these results is discarded. This sequence is, then, of no use but the reason for this is that in our orogram d (the word length) was equal to 4 . In order for true randomness to occur, the IBM manual states cases where d, being equal to 10 and 35 , gives excellent results. The IBM 704, 709, and 7090 with a 35 -bit word length makes it possible to generate a sequence of over 8.5 billion numbers. The ten-digit word length of the 650 and 7070 allows for a
sequence of 500 million terms.
So using these other computers, this becomes probably the best method available today for generating random numbers. But the numbers produced by the 1620 must be discarded.

\section*{CONCLUSION}

As a result of these tests then, it is rather apparent that this sample distribution of numbers generated by the residue method is inadequate. The most evident failing is that the length of the period of these numbers is too short ( \(T=500\) ) for use in any large scale Monte Carlo nroblems. The reason for this is that the IBM 1620 limits us to a five digit output using fixed-point arithmetic on this computer. This can be overcome on the other computers recommended that have a longer word length. Using a \(d=8\) or higher on another machine will give a much longer cycle..........T \(=5 \cdot 10^{\text {did }}\) 2 so the period will be five million terms or higher; surely enough for anyone's desires.

Taking these things into consideration along with the results of all six methods and the type of computer that was available, it has been decided that method five (D. H. Lehmer's method that was modified to fit the IBM 1620) is the one which best fits the properties of a pseudo-random number. Observe the following: The Improved IBM method passed all the statistical tests (but so did the Lehmer method), the Modified Von Neumann method had a long cycle (but so did
the Lehmer method) and Lehmer's is a quick source of numbers obtainable directly from a comnuter.

From this statement, it is clear that only the Lohmer mothod 1s 1) truely pseudo-random, 2) is of long cycle, and 3) is easily obtainable from the computer that was made available to us.

This method then will be used in chapter IV in the Monte Carlo application. Good approximations from the Monte Carlo problem will be further evidence that the Lehmer method is a good source for nseudo-random numbers.

This next method is considered merely from a curiosity point of view to see just how good or bad the numbers from a roulette wheel really are with respect to randomness.

METHOD VII - ROULETTE METHOD
Leaving now the arithmetic processes behind, we turn to a physical process which is manually controlled; that 1s, the spinning of a roulette wheel. Though this process cannot be seriously considered as a prime source of random digits (the method is much too slow); nevertheless, it will be interesting to see how this physical process compares with the fast arithmetic processes for randomness.

A small roulette wheel was used for this experiment and the following procedure was used:

IF THESE NUMBERS
CAME UP ON THE
THESE DIGITS
ROULETTE WHEEL
WERE USED AS
RANDOM NUNBERS
\(\left.\begin{array}{l}0 \text { to } 9 \\
10 \text { to } 19 \\
11 \text { to } 29\end{array}\right\} \ldots . . . . .\)\begin{tabular}{l} 
the last digits only were \\
used so 17 became 7 and \\
30 became 0 etc.
\end{tabular}
\(\left.\begin{array}{l}30 \text { to } 36 \\ \text { double zero }\end{array}\right\} \ldots . . . .\left\{\begin{array}{l}\text { these numbers were not used since they } \\ \text { would have unbalanced the system }\end{array}\right.\)
Using this method 2,200 digits were produced. The results
of the tests follow.
FREQUENCY TEST:
The frequency test produced the following data:
Table 12
\begin{tabular}{|c|c|c|c|c|}
\hline \(n\) & \(\mathrm{P}_{0}\) & \(\mathrm{f}_{\mathrm{c}}\) & \(f_{0}-f_{c}\) & \(\left(f_{0}-f_{c}\right)^{2}\) \\
\hline 0 & 205 & 220 & - 15 & 225 \\
\hline 1 & 184 & 220 & - 36 & 1296 \\
\hline 2 & 212 & 220 & - 8 & 64 \\
\hline 3 & 208 & 220 & \(-12\) & 144 \\
\hline 4 & 225 & 220 & 5 & 25 \\
\hline 5 & 194 & 220 & \(-26\) & 676 \\
\hline 6 & 265 & 220 & 45 & 2025 \\
\hline 7 & 187 & 220 & \(-33\) & 1089 \\
\hline 8 & 262 & 220 & 42 & 1764 \\
\hline 9 & 258 & 220 & 38 & 1444 \\
\hline & 2200 & 2200 & & 8752 \\
\hline
\end{tabular}

Needless to say this is not within the \(90 \%\) confidence limits for 9 d.f. ( 4.168 to 14.68). There is less than one chance in a hundred that there will be a worse fit than this, which is oretty bad.

For some reason there were too many sixes, eights, and nines. Their probability of occurrence was 0.12, 0.119, and 0.117 respectively compared with the exrected 0.1 . The number which showed up least was one with a probability of 0.0836, compared with 0.1. This great deviation is not typical for a good set of random numbers.

In comparing odd with even digits \(x^{2}\) becomes:
\begin{tabular}{|c|c|c|c|c|}
\hline n & \(\mathrm{f}_{0}\) & \(\mathrm{f}_{\mathrm{c}}\) & \(\mathrm{f}_{\mathrm{o}}-\mathrm{f}_{\mathrm{c}}\) & \(\left(f_{0}-f_{c}\right)^{2}\) \\
\hline odd & 1031 & 1100 & 69 & 4761 \\
\hline even & 1169 & 1100 & 69 & 4761 \\
\hline
\end{tabular}

Another very poor fit and once again there is less than one chance in a hundred of a worse fit.

Apparentily there is some unevenness in the physical structure of the wheel because the conditions effecting the experiment were maintained at a constant level. RUNS TEST UP AND DOWN:

Table 13 gives the results that were found in the runs test up and dow. These results are pretty good so these numbers were distributed fairly well about the median.

Nevertheless these numbers obtained on the roulette
wheel must be declared non-random on the basis that the frequency test showed uneven distribution among the digits that are theoretically supposed to be equally likely.

Table 13
\begin{tabular}{|c|c|c|}
\hline Length of Runs & Observed & Expected \\
\hline 1 & 533 & 550.5 \\
\hline 2 & 285 & 275.1 \\
\hline 3 & 128 & 137.5 \\
\hline 4 & 72 & 68.7 \\
\hline 5 & 27 & 34.4 \\
\hline 6 & 23 & 17.3 \\
\hline 7 & 11 & 8.6 \\
\hline 8 & 6 & 4.6 \\
\hline 9 & 3 & 22 \\
\hline & 1088 & 1098.6 \\
\hline
\end{tabular}

\section*{APPENDIX A}

FORTRAN LANGUAGE PROGRAMS

This is a comnlete list of the Fortran language programs used to generate the random numbers in this paper.

METHOD I
Initial quantities: \(x=N=109, u_{0}=\mathbf{K}=2357\)
DIMENSION I(1000)
PRINT 2
PRINT 4
\(J=1\)
\(\mathrm{N}=109\)
READ 1.K ....input card: 2357
7 I (J) =N*K
TYPE 3,I(J)
IF (J-1000)5,5,6

\(\mathrm{J}=\mathrm{J}+1\)
GO TO 7
6 STOP
1 FORMAT (I4)
2 FORMAT (36RHANDOM NUMBERS GENERATED BY IBM 1620//)
3 FORMAT (I6)
4 FORMAT (13HM=109 K=2357//)
END

\section*{METHOD II}

Initial quantities: \(x=N=91, u_{0}=K=2357, L=10\)
DIMENSION I(1000)
PRINT
PRINT 4
J=1
\(\mathrm{K}=2357\)
\(\mathrm{L}=10\)
(program continued on next page)
```

READ 1,N
....input card: 0091
$7 I(J)=N * K / N$
TYPE 3,I(J)
IF (J-1000)5,5,6
$5 \mathrm{~N}=\mathrm{I}(\mathrm{J})$
$\mathrm{J}=\mathrm{J}+1$
GO TO 7
6 STOP
1 FORMAT (I4)
2 FORMAT (36HRANDOM NUMBERS GENERATED BY IBM 1620//)
3 FORMAT (I6)
FORMAT (12HN=91 K=2357//)
END

```

METHOD III
The random numbers for this method were not generated on the IBM computer; an adding machine was used.

METHOD IV
Initial quantities: 1\() a_{0}=A=1111, a_{1}=B=1111, D=0.01\)
2) \(a_{0}=A=1234, a_{1}=B=5678 \quad D=0.01\)

DIMENSION I(1300)
\(J=3\)
PRINT 2
READ 1,A,B,D .....input card: 1111. 1111. 0.01
\(7 \mathrm{C}=\mathrm{A} * \mathrm{~B}\)
1234. 5678. 0.01
\(I(J)=C * D\)
\(F=I\) (J)
PUNCH 3,F
IF (J-1300) 5,5,6
\(5 \mathrm{~A}=\mathrm{B}\)
\(B=F\)
\(\mathrm{J}=\mathrm{J}+1\)
GO TO 7
6 STOP
1 FORMAT (2F6.0.F10.6)
2 FORMAT (13HA=1111 B;1111,//)
3 FORMAT (F8.O)
IND

\section*{METHOD V}

\section*{Initial quantities:}
1) \(u_{0}=A=12345678, B=23, D=0.000001\)
2) \(u_{0}=A=68470236, B=23, D=0.000001\)

DIMENSION \(G(2000)\)
PRINT 2
\(J=1\)
READ 1,A,B,D ....input card: 12345678. 23. . 000001
\(7 \mathrm{C}=\mathrm{A} * \mathrm{~B}\)
\(I=C * D\)
\(F=I\)
\(G(J)=C-F\)
PRINT 3,G(J)
IF (J-175)5,5,6
\(5 P=0.1\)
\(A=G(J) * P\)
\(\mathrm{J}=\mathrm{J}+1\)
GO TO 7
IF \((J-410) 8,8,9\)
\(8 Q=0.01\)
\(A=G(J) * Q\)
\(\mathrm{J}=\mathrm{J}+1\)
GO TO 7
9 IF (J-800)10,10,11
\(10 \mathrm{R}=0.1\)
\(A=G(J) * R\)
\(\mathrm{J}=\mathrm{J}+1\)
GO TO 7
11 STOP
1 FORMAT (F11.0,F4.0.F10.8)
2 FORMAT (35HLEHMER METHOD IGNORE FIRST 2 DIGITS//)
3 FORMAT (E14.8)
END

This method prints out data in the following manner:
\(.28395031 \mathrm{E}+09.65308506 \mathrm{E}+09.15020941 \mathrm{E}+10 . .34548130 \mathrm{E}+10.79\) \(460620 \mathrm{E}+10.18275935 \mathrm{E}+1.42034649 \mathrm{E}+11.96679687 \mathrm{E}+11 \mathrm{e} \cdot 222363\) \(28 \mathrm{E}+12.51143554 \mathrm{E}+12.11763017 \mathrm{E}+13.27054939 \mathrm{E}+13.62226360 \mathrm{E}\) \(+13.14312063 \mathrm{E}+14 \cdot 32917745 \mathrm{E}+14 \cdot 75710814 \mathrm{E}+14 \cdot 17413487 \mathrm{E}+15\) \(.40051020 \mathrm{E}+15.92117346 \mathrm{E}+15.21186990 \mathrm{E}+16.48730077 \mathrm{E}+16.11\) \(207918 \mathrm{E}+17.25778211 \mathrm{E}+17.59289885 \mathrm{E}+17.13636674 \mathrm{E}+18.31364\) \(350 \mathrm{E}+18.72138005 \mathrm{E}+18.16591741 \mathrm{E}+19.38161004 \mathrm{E}+19.87770309\)

\section*{METHOD VI}

Initial quantities: \(x=3379, u_{0}=U(0)=389, P=100000\)

DIMEANSION U(2000)
PRINT 2
\(\mathrm{N}=0\)
READ 1, X,U(N),P ....input card: 3379. 389. 100000.
\(7 \mathrm{Y}=\mathrm{X} * \mathrm{U}(\mathrm{N})\)
\(J=Y / P\)
\(\mathrm{Z}=\mathrm{J}\)
\(\mathrm{U}(\mathrm{N}+1)=\mathrm{Y}-2 * \mathrm{P}\)
PUNCH 3, U(N+1)
IF (N-2000)5,5,6
\(5 \mathrm{~N}=\mathrm{N}+1\)
GO TO 7
6 STOP
1 FORMAT (F8.O.F6.0.F8.0)
2 FORMAT (33HRESIDUE METHOD IGNORE LAST 2 NOS.//)
3 FORMAT (F9.0)
END

\section*{APPENDIX B}

RANDOM NUMBERS

METHOD I (280 of 500 numbers)
\begin{tabular}{llllllll}
6913 & 3837 & 7913 & 2837 & 8913 & 1837 & 9913 & 0837 \\
3517 & 8233 & 2517 & 9333 & 1517 & 0233 & 0517 & 1233 \\
3353 & 7397 & 4353 & 6397 & 5353 & 5397 & 6353 & 4397 \\
5477 & 6273 & 4477 & 7273 & 3477 & 8273 & 2477 & 9273 \\
6993 & 3757 & 7993 & 2757 & 8993 & 1757 & 9993 & 0757 \\
2237 & 9513 & 1237 & 0513 & 0237 & 1513 & 9237 & 2513 \\
3833 & 6917 & 4833 & 5917 & 5833 & 4917 & 6833 & 3717 \\
7797 & 3953 & 6797 & 4653 & 5797 & 5953 & 4797 & 6953 \\
9873 & 0877 & 0873 & 9877 & 1873 & 8877 & 2873 & 7877 \\
6157 & 5593 & 5157 & 6593 & 4157 & 7593 & 3157 & 8593 \\
1113 & 6937 & 2113 & 8637 & 3133 & 7637 & 4113 & 6637 \\
1317 & 0433 & 0317 & 1433 & 9317 & 2433 & 8317 & 3433 \\
3553 & 7197 & 4553 & 6197 & 5553 & 5197 & 6553 & 4197 \\
7277 & 4473 & 6277 & 5473 & 5277 & 6473 & 4277 & 7473 \\
3193 & 7557 & 4193 & 6557 & 5193 & 5557 & 6193 & 4557 \\
8037 & 3713 & 7037 & 4713 & 6037 & 5713 & 5037 & 6713 \\
6033 & 4717 & 7033 & 3717 & 8033 & 2717 & 9033 & 1717 \\
7597 & 4153 & 6597 & 5153 & 5597 & 6153 & 4597 & 7153 \\
8073 & 2677 & 9073 & 1677 & 0073 & 0677 & 1073 & 9677 \\
9957 & 1793 & 8957 & 2793 & 7957 & 3793 & 6957 & 4793 \\
5313 & 5437 & 6313 & 4437 & 7313 & 3437 & 8313 & 2437 \\
9117 & 2633 & 8117 & 3633 & 7117 & 4633 & 6117 & 5633 \\
3753 & 6997 & 4753 & 5997 & 5753 & 4997 & 6753 & 3997 \\
9077 & 2673 & 8077 & 3673 & 7077 & 4673 & 6077 & 5673 \\
9393 & 1357 & 0393 & 0357 & 1393 & 9357 & 2393 & 8357 \\
9517 & 7553 & 5077 & 9593 & 1437 & 8833 & 2597 & 1273 \\
7353 & 3277 & 3393 & 5637 & 6633 & 2797 & 3073 & 8757 \\
1477 & 7193 & 9837 & 4433 & 2997 & 4873 & 4957 & 4513 \\
0993 & 4037 & 2233 & 3197 & 6673 & 1157 & 0313 & 1917 \\
8237 & 0033 & 3397 & 8473 & 7357 & 6113 & 4117 & 8953 \\
7833 & 3597 & 0273 & 3557 & 1913 & 6317 & 8753 & 5877 \\
3797 & 2073 & 9757 & 7713 & 8517 & 8553 & 4077 & 0593 \\
3873 & 5957 & 3513 & 0717 & 8353 & 2277 & 4393 & 4637 \\
2157 & 9313 & 2917 & 8153 & 0477 & 8193 & 8837 & 5433 \\
5113 & 5117 & 7953 & 8677 & 1993 & 3037 & 3233 & 2197
\end{tabular}

METHOD II (All numbers included)
\begin{tabular}{llllllllll}
998 & 285 & 744 & 753 & 033 & 587 & 463 & 035 & 910 & 204 \\
228 & 174 & 3600 & 482 & 778 & 355 & 129 & 249 & 487 & 082 \\
739 & 011 & 852 & 607 & 374 & 673 & 408 & 689 & 785 & 327 \\
182 & 592 & 816 & 069 & 151 & 626 & 458 & 397 & 024 & 073 \\
897 & 534 & 331 & 263 & 590 & 548 & 950 & 572 & 656 & 206 \\
422 & 863 & 016 & 989 & 063 & 163 & 915 & 820 & 619 & 554 \\
465 & 409 & 771 & 107 & 849 & 419 & 665 & 274 & 898 & 577 \\
600 & 401 & 724 & 219 & 109 & 758 & 740 & 581 & 658 & \\
420 & 515 & 646 & 618 & 691 & 660 & 418 & 941 & 090 & \\
994 & 385 & 262 & 662 & 868 & 562 & 552 & 793 & 213 &
\end{tabular}

METHOD III (three inouts)
1) \(a_{0}=1111\)
\begin{tabular}{llllllll}
1111 & 0228 & 6756 & 9606 & 0342 & 7758 & 5980 & 4996 \\
2343 & 0519 & 6435 & 2752 & 1169 & 1865 & 7604 & 9600 \\
4896 & 2663 & 4092 & 5735 & 3665 & 4782 & 82088 & 1600 \\
9708 & 2522 & 7444 & 8902 & 4322 & 8675 & 3712 & 5600 \\
2452 & 3604 & 4131 & 2456 & 6796 & 2556 & 7789 & 3600 \\
0123 & 98888 & 0651 & 0319 & 1856 & 5331 & 6885 & 9600 \\
0151 & 7725 & 4238 & 1017 & 4447 & 4195 & 6892 & 1600
\end{tabular}
2) \(a_{0}=1234\)
\begin{tabular}{llllllll}
1234 & 1684 & 8579 & 7491 & 1406 & 6915 & 6863 & 2900 \\
5227 & 8358 & 5992 & 1150 & 9768 & 8172 & 1007 & 4100 \\
3215 & 8561 & 9040 & 3225 & 4138 & 7815 & 01400 & 8100 \\
3362 & 2907 & 7216 & 4006 & 1230 & 0742 & 0196 & 6100 \\
3030 & 4506 & 0706 & 0480 & 5129 & 5505 & 0384 & 2100 \\
1809 & 3040 & 4984 & 2304 & 6306 & 3050 & 1474 & 4100 \\
2724 & 2416 & 8402 & 3084 & 7656 & 3025 & 17266 & 8100 \\
4201 & 8370 & 5936 & 5110 & 6143 & 1506 & 9790 & \\
6484 & 0569 & 2360 & 1121 & 7394 & 2680 & 8441 & \\
0422 & 3237 & 5696 & 2566 & 2281 & 1824 & 2504 & \\
1780 & 4781 & 4444 & 5843 & 2166 & 3269 & 2700 &
\end{tabular}
3) \(a_{0}=6043\)
\begin{tabular}{llllllll}
6043 & 9163 & 3558 & 8601 & 7156 & 3025 & 0384 & 8100 \\
5178 & 99605 & 6593 & 9772 & 2083 & 1506 & 1474 & 6100 \\
8116 & 2560 & 4676 & 4919 & 2488 & 2680 & 1726 & 2100 \\
8694 & 5536 & 8649 & 1965 & 4785 & 1824 & 9790 & 4100 \\
5856 & 6472 & 8052 & 1812 & 8962 & 3269 & 8441 & 8100 \\
2927 & 8867 & 8347 & 1665 & 3174 & 6863 & 2504 & \\
5673 & 6236 & 6724 & 7722 & 0742 & 1007 & 2700 & \\
1829 & 8886 & 2121 & 6292 & 5505 & 0140 & 2900 & \\
3452 & 2833 & 4986 & 5892 & 3050 & 0196 & 4100 &
\end{tabular}

METHOD IV (2 innuts)
1) \(a_{0}=1111, a_{1}=1111\)
\begin{tabular}{llllllll}
11111 & 1778 & 1475 & 9659 & 4122 & 3956 & 0091 & 0005 \\
1111 & 5034 & 7436 & 1953 & 7938 & 9144 & 0098 & 0000 \\
2343 & 9504 & 9618 & 3867 & 7204 & 0549 & 0089 & 0000 \\
6030 & 8431 & 9879 & 1601 & 1853 & 0035 & 0087 & 0000 \\
1282 & 1282 & 6385 & 1910 & 3490 & 0012 & 0077 & \\
7304 & 8085 & 0774 & 0579 & 4669 & 0067 & 0066 & \\
3637 & 3649 & 9419 & 1058 & 2948 & 0128 & 0050 & \\
5646 & 5021 & 2903 & 6125 & 7642 & 0085 & 0033 & \\
5345 & 3216 & 3433 & 4802 & 5286 & 0108 & 0016 &
\end{tabular}
2) \(a_{0}=1234, a_{1}=5678\)
\begin{tabular}{llllllll}
1234 & 0365 & 1965 & 1921 & 9065 & 5243 & 8736 & 2317 \\
5678 & 5190 & 7432 & 8165 & 0883 & 5666 & 7744 & 3420 \\
0066 & 8943 & 6038 & 6849 & 0043 & 7069 & 6515 & 9241 \\
3747 & 4141 & 8744 & 9220 & 0379 & 0472 & 4521 & 6042 \\
2473 & 0329 & 7962 & 1477 & 0162 & 3360 & 4543 & 8341 \\
2663 & 3623 & 6197 & 6179 & 0613 & 5859 & 5389 & 3963 \\
5855 & 1919 & 3405 & 1263 & 0993 & 6862 & 4822 & 0552 \\
5918 & 9525 & 1007 & 8040 & 6087 & 2044 & 9857 & 1915 \\
6498 & 2784 & 4228 & 1545 & 0443 & 0259 & 5304 & 0598 \\
4551 & 5176 & 3180 & 4218 & 6965 & 5293 & 2815 & 1279 \\
5723 & 4099 & 6358 & 5168 & 0854 & 3708 & 9307 & 7533 \\
0453 & 2164 & 2184 & 7986 & 9481 & 6263 & 1992 & 6347 \\
5925 & 8702 & 8858 & 2716 & 0967 & 2269 & 5395 & 8199 \\
6840 & 8311 & 3458 & 6899 & 1681 & 2130 & 7468 & 5312 \\
5270 & 3223 & 6309 & 7376 & 6255 & 8329 & 2898 & 1281 \\
0468 & 7863 & 8165 & 7870 & 5146 & 7407 & 6422 & 8046 \\
4663 & 3424 & 5129 & 4251 & 1882 & 6929 & 6109 & 3069 \\
1822 & 9229 & 3782 & 7063 & 6847 & 3231 & 2319 & 6931 \\
4959 & 6000 & 0428 & 0248 & 8860 & 3875 & 1667 & 2712 \\
0352 & 3740 & 7586 & 7516 & 6644 & 5201 & 8657 & 7968 \\
7455 & 4400 & 2468 & 8639 & 8658 & 1538 & 4312 & 6092 \\
6241 & 4560 & 7222 & 8307 & 5237 & 9991 & 3289 & 5410 \\
5266 & 0640 & 8238 & 4031 & 3019 & 3661 & 1821 & 9577 \\
8651 & 9184 & 4948 & 5165 & 9053 & 5770 & 9892 & 8155 \\
5561 & 8777 & 7616 & 8201 & 9522 & 1239 & 0133 & 7173 \\
1082 & 6079 & 6839 & 3581 & 2026 & 1490 & 3156 & 2088 \\
0170 & 3553 & 0858 & 3667 & 2915 & 8461 & 4197 & 9772 \\
1839 & 5986 & 8678 & 1673 & 9057 & 6068 & 2457 & 4039 \\
3126 & 2682 & 4457 & 1516 & 4011 & 3413 & 3120 & 4691 \\
7487 & 0544 & 6778 & 6352 & 3276 & 7100 & 6658 & 9469 \\
4043 & 4590 & 2095 & 1287 & 1400 & 2323 & 7729 & 4190 \\
2699 & 4969 & 1909 & 9008 & 5864 & 4933 & 4596 & 6751 \\
9120 & 8077 & 1879 & 5932 & 2096 & 4593 & 5224 & 2866 \\
6148 & 1346 & 7561 & 4354 & 2909 & 6572 & 0095 & 3483 \\
0697 & 8716 & 2071 & 8279 & 0972 & 1851 & 4962 & 9822 \\
2851 & 7317 & 6588 & 0467 & 8275 & 1647 & 4713 & 2100 \\
9871 & 7749 & 6437 & 8662 & 0433 & 0485 & 3859 & 6262 \\
1422 & 6994 & 4069 & 0451 & 5830 & 7987 & 1874 & 1502
\end{tabular}

\section*{METHOD IV (cont.)}
\begin{tabular}{llllllll}
4055 & 6909 & 5192 & 3767 & 6959 & 1209 & 5812 & 6086 \\
0906 & 7367 & 5125 & 0141 & 3023 & 7264 & 9774 & 3681 \\
6738 & 8986 & 6090 & 5311 & 0370 & 7812 & 6321 & 4025 \\
1046 & 1998 & 2112 & 7488 & 1185 & 8117 & 5918 & 8160 \\
0479 & 9540 & 8620 & 7687 & 4384 & 4830 & 4076 & 8440 \\
5010 & 0609 & 2054 & 5602 & 1950 & 2051 & 1217 & 8704 \\
3997 & 8098 & 7054 & 0625 & 5488 & 9063 & 9605 & 4617 \\
0249 & 9316 & 4889 & 5012 & 7016 & 5882 & 6880 & 1863 \\
9952 & 4409 & 4870 & 1325 & 5038 & 3085 & 0755 & 6014 \\
4780 & 0742 & 8094 & 6409 & 3466 & 1459 & 1944 & 2040 \\
5705 & 2714 & 4177 & 4919 & 4617 & 5010 & 4677 & 2685 \\
2699 & 0137 & 8086 & 5258 & 0025 & 3095 & 0920 & 4774 \\
3787 & 3718 & 7752 & 8641 & 1154 & 5059 & 3028 & 8181 \\
7339 & 5093 & 6826 & 4242 & 0288 & 6576 & 7857 & 0560 \\
1872 & 8357 & 9151 & 5278 & 3323 & 2679 & 7909 & 5813 \\
7387 & 6552 & 4647 & 9223 & 9570 & 6171 & 1410 & 2552 \\
8265 & 3070 & 5246 & 6789 & 8011 & 5321 & 1516 & 8347 \\
0452 & 1146 & 3781 & 6149 & 6652 & 8358 & 1375 & 3015 \\
7357 & 5182 & 8351 & 7455 & 2891 & 4729 & 0845 & 1662 \\
3253 & 9385 & 5751 & 8407 & 2309 & 5249 & 1618 & 0109 \\
9232 & 6330 & 0226 & 6741 & 6753 & 8225 & 3672 & 1811 \\
3277 & 4070 & 5297 & 6175 & 5926 & 1730 & 9412 & 1973 \\
5514 & 7631 & 4090 & 2658 & 0182 & 2292 & 5608 & 5731 \\
0693 & 0581 & 6647 & 8484 & 0785 & 9651 & 7824 & \\
8212 & 4336 & 1862 & 5504 & 1428 & 1200 & 8769 &
\end{tabular}

METHOD V (all numbers: 4806)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 839501 & 506272 & 990397 & 238698 & 248515 & 192777 & 327344 \\
\hline 530856 & 464430 & 837790 & 749003 & 171593 & 743393 & 455285 \\
\hline 502091 & 968199 & 226913 & 242271 & 189468 & 309806 & 347166 \\
\hline 454810 & 832681 & 721914 & 157222 & 735773 & 451251 & 698473 \\
\hline 946060 & 215177 & 236043 & 186169 & 292270 & 337887 & 770645 \\
\hline 827595 & 694901 & 142897 & 728171 & 447220 & 677134 & 072499 \\
\hline 203469 & 229829 & 182863 & 274792 & 328619 & 765741 & 365730 \\
\hline 667967 & 128602 & 720592 & 443200 & 655807 & 061208 & 154343 \\
\hline 223638 & 179570 & 257355 & 319366 & 760832 & 340776 & 955004 \\
\hline 114354 & 713037 & 439192 & 634536 & 049923 & 148374 & 139658 \\
\hline 176307 & 239979 & 310141 & 755949 & 314826 & 941273 & \\
\hline 705499 & 435198 & 613328 & 038670 & 142404 & 136492 & 028756 \\
\hline 222630 & 300947 & 751062 & 288943 & 927546 & 613931 & 386611 \\
\hline 431203 & 592171 & 027450 & 136450 & 133336 & 012048 & 189211 \\
\hline 291775 & 746203 & 263130 & 913851 & 606666 & 382771 & 335182 \\
\hline 571084 & 016267 & 130521 & 130188 & 995431 & 180372 & 687091 \\
\hline 741347 & 237396 & 900195 & 599423 & 378922 & 314858 & 880318 \\
\hline 005100 & 124609 & 127047 & 978638 & 171539 & 682414 & 924711 \\
\hline 211736 & 886584 & 592201 & 375090 & 294533 & 869557 & 052689 \\
\hline 118690 & 123914 & 962077 & 162721 & 677740 & 899987 & 721173 \\
\hline 873007 & 585001 & 371275 & 274261 & 858806 & 046990 & 085873 \\
\hline 120798 & 945501 & 153930 & 673085 & 875252 & 708098 & 497507 \\
\hline 577821 & 367466 & 254058 & 848082 & 041307 & 082869 & 744259 \\
\hline 928985 & 145172 & 668431 & 850590 & 695010 & 490581 & 321174 \\
\hline 363665 & 233894 & 837398 & 035631 & 079853 & 728332 & 038713 \\
\hline 136430 & 663796 & 826007 & 681963 & 484663 & 317519 & 989037 \\
\hline 213805 & 826732 & 029982 & 076850 & 712417 & 030289 & 607478 \\
\hline 659171
816104 & 801481 & 668950 & 476756 & 313853 & 299656 & 697199 \\
\hline 816104 & 024343 & 073861 & 696541 & 021865 & 603016 & 503555 \\
\hline 777039 & 655980 & 469872 & 310208 & 950299 & 686941 & 955812 \\
\hline \[
\begin{aligned}
& 018711 \\
& 643043
\end{aligned}
\] & 070876 & 680719 & 013473 & 598560 & 479951 & 498389 \\
\hline \[
\begin{aligned}
& 643043 \\
& 067903
\end{aligned}
\] & 463012 & 306566 & 930986 & 676707 & 950382 & 034628 \\
\hline 456170 & 664933 & 005109 & 594124 & 456430 & 484889 & 379659 \\
\hline & 302936 & 911731 & 666490 & 944979 & 031754 & 473180 \\
\hline 299315 & 996759 & 589694 & 432939 & 473455 & 373038 & 258836 \\
\hline 988427 & 892524 & 656303 & 939578 & 028898 & 457974 & 895317 \\
\hline 873371 & 585288 & 409505 & 461020 & 366457 & 255333 & 659212 \\
\hline 580872 & 386146 & 934 & 026031 & 442841 & 887269 & 531624 \\
\hline 636013 & 928813 & & 359887 & 251851 & 640715 & 522729 \\
\hline 362845 & & & 427726 & 879267 & 527363 & 102279 \\
\hline 923453 & 4 & 353321 & 248379 & 622314 & 512942 & 863525 \\
\hline 423946 & 3246789 & 412644 & 871269 & 523131 & 079765 & 286108 \\
\hline 017508 & 397606 & 244904 & 603919 & 503208 & 858344 & 358031 \\
\hline 340266 & 241447 & 863282 & 518902 & 057367 & 274194 & 267348 \\
\hline 382619 & 855333 & 514680 & 493475 & 853198 & 830641 & 214899 \\
\hline 238005 & 567269 & 483760 & 034982 & 262340 & 261048 & 199420 \\
\hline 847402 & 510478 & 012652 & 848049 & 803404 & 200412 & 758681 \\
\hline 549028 & 474081 & 842912 & 250506 & 254781 & 196098 & 344968 \\
\hline
\end{tabular}

METHOD V (cont.)

356484095212 71992 775584 083835 392839 160351 968805 142827 628491 045549 390470 198098 355610 691791 891128 894581 058404 734328 088894 504454 760256 324850 047177 008501 611959 707496 527248 961268 510916 037511 386272 488448 262335 903376 677778 535883 532548 124848 868711 298044 885495 273664 229421 202765 766366 362645 463405 365836 741431 780522

095212
418996 166369 982659 146007 635823 062393 394350 207000 376115 696506
901969 974517 064134 747513 091922
511432
776320
328553
055667
028031
616442
771826
551008
966733
523480
040409
392921
503728
265858
911463
696371
540167 542384 147488 873928 310018 913048 279994 243996 206117 774073 280372 467488 375213 762998 784490 106520 445241 172408

996531
149206
643160
079288
398238
215940
396660
701233
912833
999519
069883
760744
094974
518432
792397
332257
064179
047615
620956
728184
574827
972216
536084
043294
399586
519058
269384
919575
715039
544456
552255
170188
879146
322027
940651
286356
258607
209480
278184
398141
471573
384629
784621
790465
118064
471553
178452
010459
152404
650351
\begin{tabular}{ll}
096212 & 437936 \\
402134 & 710720 \\
224899 & 934665 \\
417268 & 049733 \\
705771 & 081431 \\
923738 & 787309 \\
024593 & 101083 \\
075653 & 532487 \\
774003 & 824721 \\
098021 & 339686 \\
525458 & 081279 \\
808588 & 086939 \\
335965 & 629995 \\
072711 & 748987 \\
067240 & 622673 \\
625468 & 983215 \\
728576 & 561397 \\
59873 & 049120 \\
97704 & 412973 \\
548724 & 549851 \\
046202 & 876465 \\
40623 & 935877 \\
53439 & 752506 \\
272911 & 553076 \\
92719 & 572079 \\
733740 & 215770 \\
54867 & 889621 \\
562146 & 346143 \\
192441 & 996123 \\
884371 & 299103 \\
33063 & 287953 \\
968358 & 216228 \\
292726 & 797322 \\
273257 & 433853 \\
212847 & 479786 \\
789553 & 404509 \\
415979 & 828069 \\
47672 & 800452 \\
394057 & 141040 \\
80316 & 524401 \\
795458 & 190619 \\
129544 & 038410 \\
497942 & 158838 \\
182524 & 665320 \\
024410 & 130230 \\
155610 & 409953 \\
65915 & 242899 \\
113204 & 458653 \\
406038 & 715494 \\
233886 & 945632 \\
&
\end{tabular}
\begin{tabular}{ll}
074945 & 107226 \\
087234 & 546666 \\
800643 & 857206 \\
104141 & 347157 \\
539549 & 098454 \\
840947 & 126449 \\
343412 & 639087 \\
089869 & 769839 \\
106684 & 670718 \\
634530 & 994267 \\
759431 & 588600 \\
646707 & 054965 \\
988742 & 426410 \\
574108 & 580769 \\
052041 & 283570 \\
419704 & 952225 \\
565312 & 790118 \\
280020 & 561727 \\
940056 & 591961 \\
771314 & 261529 \\
557408 & 900156 \\
582024 & 370347 \\
238667 & 005182 \\
894890 & 311915 \\
358256 & 317404 \\
002399 & 223008 \\
305512 & 812904 \\
302680 & 469687 \\
219616 & 488025 \\
805126 & 422463 \\
451772 & 871666 \\
483908 & 810481 \\
412992 & 164111 \\
849875 & 577455 \\
805478 & 202818 \\
152581 & 066470 \\
550947 & 165280 \\
196715 & 680167 \\
052453 & 164378 \\
162066 & 417801 \\
672743 & 260953 \\
147315 & 500195 \\
413888 & 725049 \\
251934 & 967606 \\
479439 & 125499 \\
720272 & 098864 \\
956288 & 827388 \\
100237 & 110297 \\
093050 & 553680 \\
814022 & 873481 \\
&
\end{tabular}

Mothod V (cont.)
\begin{tabular}{llllll}
350904 & 382524 & 421750 & 612392 & 496334 & 854328 \\
107079 & 007986 & 270041 & 060857 & 441559 & 816490 \\
146261 & 318354 & 521095 & 439956 & 915588 & 567932 \\
643645 & 332214 & 729857 & 611902 & 820582 & 906253 \\
780372 & 226410 & 978659 & 290730 & 187340 & 358433 \\
694854 & 820740 & 150915 & 968691 & 630898 & 124401 \\
999814 & 487709 & 104716 & 827997 & 215100 & 186136 \\
599580 & 492170 & 840834 & 570437 & 094748 & 652819 \\
057904 & 431999 & 113399 & 612013 & 171791 & 801464 \\
433178 & 893592 & 560804 & 307620 & 695115 & 743370 \\
596309 & 815529 & 889842 & 910715 & 198779 & 010973 \\
287150 & 175719 & 354669 & 394732 & 425712 & 625245 \\
960443 & 604134 & 115720 & 010789 & 279159 & 063805 \\
809028 & 208965 & 166171 & 324814 & 542044 & 446750 \\
566076 & 080587 & 648216 & 347074 & 734674 & 627535 \\
601972 & 168534 & 790901 & 229829 & 989742 & 294334 \\
284543 & 687634 & 719087 & 828609 & 176417 & 796968 \\
905444 & 181552 & 005388 & 505784 & 110377 & 847026
\end{tabular}

METHOD VI
\begin{tabular}{lllllll}
14431 & 89670 & 24870 & 72070 & 51270 & 82470 & 85670 \\
62349 & 94930 & 35730 & 24530 & 41330 & 66130 & 78930 \\
77270 & 68470 & 31670 & 86870 & 54070 & 53270 & 04470 \\
95330 & 60130 & 12930 & 33730 & 02530 & 99330 & 04130 \\
20070 & 79270 & 90470 & 73670 & 48870 & 36070 & 55270 \\
16530 & 53330 & 98130 & 30930 & 31730 & 80530 & 57330 \\
54870 & 02070 & 81270 & 12470 & 15670 & 10870 & 18070 \\
05730 & 94530 & 11330 & 36130 & 48930 & 29730 & 58530 \\
61670 & 16870 & 84070 & 83270 & 34470 & 57670 & 72870 \\
82930 & 03730 & 72530 & 69330 & 74130 & 66930 & 27730 \\
20470 & 03670 & 78870 & 66070 & 85300 & 56470 & 99670 \\
68130 & 00830 & 01730 & 50530 & 27330 & 12130 & 84930 \\
11270 & 42470 & 45670 & 40870 & 48070 & 87270 & 78470 \\
81330 & 06130 & 18930 & 99730 & 28530 & 85330 & 50130 \\
14070 & 13270 & 64470 & 87670 & 02870 & 30070 & 89270 \\
42530 & 39330 & 44130 & 36930 & 87730 & 06530 & 43330 \\
08870 & 96070 & 15270 & 86470 & 29670 & 64870 & 12070 \\
71730 & 20530 & 97330 & 82130 & 54930 & 95730 & 84530 \\
75670 & 70870 & 78070 & 17270 & 08470 & 71670 & 26870 \\
88930 & 69730 & 98530 & 55330 & 20130 & 72930 & 93730 \\
94470 & 17670 & 32870 & 60070 & 19270 & 30470 & 13670 \\
14130 & 06930 & 67730 & 76530 & 13330 & 58130 & 90930 \\
45270 & 16470 & 50970 & 94870 & 42070 & 21270 & 52470 \\
67330 & 52130 & 24930 & 65730 & 54530 & 71330 & 96130 \\
03070 & 47270 & 38470 & 01670 & 56870 & 24070 & 23270 \\
68530 & 25330 & 90130 & 42930 & 63730 & 32530 & 29330 \\
62870 & 90070 & 49270 & 60470 & 43670 & 18870 & 06070 \\
37730 & 46530 & 83330 & 28130 & 67930 & 61730 & 10530
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 34952 & 60471 & 61711 & 93776 & 26624 & 05995 & 08842 & 24603 \\
\hline 35127 & 25844 & 26638 & 34063 & 96199 & 84343 & 07349 & 58047 \\
\hline 18016 & 39578 & 49763 & 18036 & 28019 & 37442 & 75582 & 90675 \\
\hline 20707 & 72736 & 27380 & 06462 & 36834 & 59647 & 21510 & 33894 \\
\hline 02089 & 56703 & 89359 & 49088 & 99370 & 24983 & 62205 & 67621 \\
\hline 06864 & 28916 & 98981 & 75856 & 62690 & 39800 & 44419 & 93936 \\
\hline 82984 & 72156 & 82689 & 89950 & 11630 & 98604 & 16257 & 60845 \\
\hline 83668 & 07181 & 61425 & 59376 & 91491 & 62225 & 19270 & 81669 \\
\hline 76785 & 28060 & 69981 & 16896 & 46217 & 76946 & 65427 & 21750 \\
\hline 59422 & 27285 & 34793 & 57593 & 62853 & 10911 & 21228 & 32098 \\
\hline 26050 & 82179 & 45790 & 80923 & 42656 & 44760 & 42024 & 56031 \\
\hline 08805 & 66646 & 51533 & 63718 & 13898 & 85901 & 54703 & 01506 \\
\hline 00341 & 79158 & 49524 & 30935 & 09349 & 97364 & 05891 & 12182 \\
\hline 03779 & 60954 & 64978 & 03279 & 89866 & 44127 & 67397 & 64898 \\
\hline 43996 & 88943 & 11640 & 69406 & 01549 & 68492 & 99045 & 42686 \\
\hline 50707 & 69868 & 77889 & 63652 & 98524 & 42354 & 25199 & 86868 \\
\hline 15378 & 18483 & 82622 & 15821 & 33607 & 68938 & 73186 & 04481 \\
\hline 45577 & 82011 & 24735 & 43720 & 88090 & 65992 & 59149 & 14620 \\
\hline 86497 & 70045 & 39931 & 50992 & 63667 & 13093 & 10123 & 49386 \\
\hline 47674 & 30983 & 86279 & 71382 & 44059 & 13199 & 91438 & 18701 \\
\hline 07572 & 52689 & 21911 & 99951 & 74464 & 81789 & 60268 & 12648 \\
\hline 46437
46580 & 33942 & 13521 & 09244 & 48477 & 51802 & 50105 & 46485 \\
\hline 46580 & 59189 & 46571 & 40438 & 94822 & 82979 & 41586 & 42706 \\
\hline 46992
87054 & 96902 & 88312 & 98913 & 62863 & 27146 & 08965 & 61608 \\
\hline 87054 & 42439 & 66246 & 14436 & 28318 & 30996 & 77184 & 54742 \\
\hline 58458 & 56247 & 03734 & 09224 & 94862 & 98692 & 21676 & 93469 \\
\hline 54028 & 66194 & 28020 & 67434 & 18798 & 15244 & 89967 & 69783 \\
\hline 08387 & 61683 & 12188 & 95846 & 00536 & 95992 & 53751 & 52015 \\
\hline 36492 & 96935 & 62390 & 23598 & 13176 & 46336 & 39380 & 42675 \\
\hline 09897 & 09807 & 10385 & 58159 & 59470 & 57850 & 24945 & 96763 \\
\hline 84962 & 53012 & 36515 & 29384 & 73549 & 53395 & 58747 & 56676 \\
\hline 89203
84331 & 78581 & 29858 & 86035 & 68103 & 08333 & 50530 & 86544 \\
\hline 84331
54309 & 27445 & 83799 & 81486 & 75460 & 32533 & 78894 & 60190 \\
\hline 54309
70288 & 02866 & 68831 & 49243 & 79307 & 42354 & 73615 & 67624 \\
\hline 70288 & 47016 & 94808 & 28093 & 81090 & 78037 & 57785 & 89380 \\
\hline 79842 & 28977 & 06480 & 37873 & 34771 & 37888 & 27864 & 95566 \\
\hline 05969 & 96973 & 27580 & 85842 & 72470 & 63838 & 44363 & 10675 \\
\hline 45668 & 07042 & 02841 & 24588 & 53867 & 08848 & 73209 & 80950 \\
\hline 97560 & 48078 & 77699 & 19682 & 32202 & 11285 & 45632 & 60864 \\
\hline 59181 & 65625 & 66044 & 18909 & 42762 & 47119 & 23340 & 03183 \\
\hline 83357 & 16857 & 93649 & 58496 & 43700 & 39779 & 61368 & 41034 \\
\hline 26978 & 60659 & 09626 & 85501 & 10882 & 22340 & 71188 & 68142 \\
\hline 70823 & 20730 & 77864 & 49555 & 16734 & 14092 & 21872 & 15861 \\
\hline 97345 & 08270 & 82141 & 55513 & 73557 & 57662 & 24221 & 61525 \\
\hline 65781 & 38934 & 24132 & 24799 & 86009 & 06036 & 77462 & 20592 \\
\hline 94937 & 43273 & 99552 & 14369 & 66691 & 91421 & 38162 & 93203 \\
\hline 93163 & 14424 & 55580 & 93089 & 08689 & 92105 & 42666 & 31069 \\
\hline 51039 & 86966 & 65533 & 13884 & 51632 & 68689 & 45918 & 27916 \\
\hline 83860 & 16508 & 22444 & 29585 & 09108 & 56911 & 06088 & 63083 \\
\hline
\end{tabular}
1. IBM Reference Manual, Random Number Generation and Testing, International Business Machine Corporation, 1959.
2. The RAND Corporation, A Miliion Random Digits with 100,000 Normal Deviates, The Free Press, Glencoe, Illinois, 1955.
3. N. G. KENDALI and B. Babington BMITH, Randomness and Random Sampline Numbers, Journal of the Royal Statistical Society, Vol. 101, Part 1 (1938) pp. 147 - 166.
4. F. MOSTELLER, R. ROURKE, and G. THOMAS, Jr., Probab111ty with Statistical Applications, Adaison Wesley Publishing Co., 1961.
5. S. H. HOLLINGDALE, High Speed Computing, The Niac Millan Co., New York, 1959.
6. George E. FORSYTHE, Generation and Testing of Random Digits at the National Bureau of Standards, The Monte Carlo Method, The National Sureau of Standards Applied Mathematics Series, Los Angeles, No. 4, 1951, pp. 34 - 35.
7. D. H. LMHMER, Mathematical Mothods in Iacge-Scale Computing Units, Proceedings of the 2nd Symposium on Large Scale Digital Calculating Machinery, Harvard University Press, 1951, pp. 141 - 146.
8. H. GRIFFIN, Elementary Theory of Numbers, Mc Graw-Hill Book Co. Inc., New York, 1954, pp. 53-65.
9. J. F. KENNEY and E. S. KEEPING, Nathematics of Statistics Part I, D. Van Nostrand Company Inc., Princeton, New Jersey, 1957.
10. Hugh D. YOUNG, Statiatical Treatment of Experimental Data, Mc Graw-H1ll Book Company, Inc., New York, 1962.
11. Bernice BROWN, Some Tests of the Randomness of a Million Random Digits, RAOP-44, The RAND Corporation, Santa Monica, California, 1948.

These sources also were used:
12. Bernard A. GALLER, The Language of Computerg, The Mic Graw-Hill Book Co. Inc., 1959.
13. G. R. STIBITZ and J. A. LARRIVEE, Mathomatics and Computers, Mc Graw-Hill Book Company Inc., 1957.
14. Howard W. ALEXANDER, Elements of Mathematical Statistics, John Wiley and Sons Inc., 1961.
15. J. M. CAMERON, Results on Some Tests of Randomness on Pseudo-Random Numbers, Annals of Mathematical Statistics 23, 1952, pp. 138.
16. W. J. COCHRAN, The \(x^{2}\) Teat of Goodness of Fit, Annals of Mathematical Statistics 23, 1952, pp. 315-345.
17. B. LINDGREN and G. MC ELRATH, Introduction to Probability and Statistics, The Mac Millan Company, 1959.
18. Herbert A. MEYER (Ed), Symposium on Monte Carlo Methods, John Wiley and Sons, Inc., 1956, Bibllography.
19. D. D. MC CRACKEN, The Monte Carlo Method, Scientific America, Vol. 192, May 1955, pp. \(90-96\).
1. Judging from the number of requests for reprints of the Bibliography on Computer-Aided Circuit Analysis and Design compiled earlier this year, it seems there is an existing demand for such a reference in various quarters. Continuous attention will be given to newly published literature so that the Bibliography may be updated by bringing in additional entries from time to time.
2. The time-sharing computer service provided by General Electric Company on the Villanova University campus has been used by graduate and undergraduate students to solve various types of problems ranging from the relatively short ones connected with simple laboratory experiments through more complicated and lengthy thesis problems. This research project is particularly interested in the use of a circuit analysis program developed by the General Electric staff called STANPAK (Statistical Tolerance Analysis Package). It is basically a reliability prediction and tolerance analysis and adjustment program using the statistical approach. It handles the steady states only and has not been extended to transient computations. Because of incomplete knowledge about the program and the peculiar limitations of the Desk Size Computer at the input terminal, the program has not been managed to smooth operation yet. Further effort will be made in the study and evaluation of the STANPAK in the coming months.
3. In the process of circuit design there is a stage of parameter optimization after the circuit geometry has been chosen. Instead of numerical values available for analysis, the circuit components and other parameters such as frequency may be represented by symbols. Nonnumerical manipulation by the digital computer is a vast
area to be explored. The practical programs written for symbolic manipulation are far sparse than theoretical dissertation published on the subject. Techniques will be attempted for efficient manipulation of mathematical symbols. Again the interest will be centered around the computer size of the same order as IBM 1620 with a disk file.
4. In the manual solution of the transient response of electric circuits, the frequency domain approach by Laplace transform is always a favorable one. Several recent research papers were published in the new methods of finding the inverse of the Lapalce transforms. An attempt will be made, using the digital computer as an aid, to evaluate and compare various approaches for accuracy, time and storage requirements for computation, and the ease with which these methods may be applied to various types of electronic circuits.```


[^0]:    T. R. Bashkow and C. A. Desoer, "Digital Computers and Network Theory" D. T. Bell, "Digital Computers as Tools in Designing Transmission Networks" W. Mayeda and M. E. Van Valkenberg, "Network Analysis and Synthesis by Digital Computers"

