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Introduetion

_ One of the oldest problems in the history of mechanics
is to find functions of the coordinates which satisfy a
simpler (lower order) system of differential equations. Ig
particular, to find functions of the coordinates which satisfy
a first order differential equation. The energy integral and
the integrals of angular momentum are examples of such func-
tions: they are . algebraic functions of the coordinates and
their derivatives which satiéfxlthe simplest of all first
order differential equations, Y' = O.

" In 1887 Bruns [1] proved that in the three body problem
the only algebraic functions of the coordinates and their
derivatives which satisfy the equation Y' = O are those
generated by the known integrals. These results were later
extended to the n-body problem (n > 2) by Painlevé [2]
and to the restricted three body problem, for small values
of a parameter u, which appears in the problem, by Poincaré
[3; vol. 1 ch. v].

In this paper we extend these negative results of Bruns
and Poincaré. One consequence of our results, for the n-body
problem, is that no algebraic function of the coordinates
and their derivatives is an exponential. Similar results ére
obtained for a large class of problems in mechanics.

We use the tools and ideas of differential algebra de-
veloped by Ritt [4]. The following is a summary of definitions,

notations and results that we use frequently.



A differential field, differential ring, differential
ideal is a field, ring, ideal #hich is closed under a given
derivation. In this paper the characteristic of the field
is zero and the derivation is the derivative with respect to
the time t. By KD, K{x) we mean the differential field,
differential ring respectively of K and the elements x =
(Xl’ cens xn). K(x), K[x] is used for field and ring ad-
junction,respectively.

Let K be a differential field and let S be a set of
differential polynomials P(X) ¢ K{X)}. The perfect (radical)
differential ideal’I generated by S, in the differential ring
K(X}, is the interséctiﬁn of a finite number of prime differ-
ential ideals Tys sees Ty Each s has an irreducible
manifold of zeros and the manifold of zeros of S 1is the
union of the manifolds of ., i=1, ..., . A zero x of
Ty is called generic if every differential polynomial
P(X) e K{X}, which vanishes for X = x, belongs to m,;. Every
prime differential ideal has a generic zero. Let y be any
zero of S , then the degree of transcendency of’ K<y> over
K is called the order of y. The order of a prime differen-

tial ideal 1w is the order of its generic zero. We shall .

call the order of S the max.(order "i>l$isﬂ . If s is

a system of differential polynomials defining a mechanical
system of n degrees of freedom,then order of S 1is 2n

which agrees with the usual definition of order of S.



_3_

The problem that concerns us may now be restated as
follows: Let x be a solution of max. order of a mechanical
system S, what are the differential subfields of K>
which are of or&er one over K? For the n-body problem, the
theorems of Bruns and Painlevé'give the subfield of constants
of K<Kx>, where K = Q(Ml’ cees Mn)’ Q stands for the reals

an M. .
d i,i=1l,...n are the masses.

vThese results are possible to obtain without finding the
decomposition of S into its prime components, because all
the irreducible manifolds of S, of maximal order, are isomor-
phic (Theorem three).

Theorems one aﬁd two prepare the background for the
application of formal power series, in an arbitrary parameter,
to our problem. In [4] Ritt proved that if a is any zero of
the highest or lowest degree terms P¥ of a single differen-
tial polynomial P(X), then there exists a formal fractional

power series of the form

. 00 k.
x=acd + = a.c T J =

i=j+1 +#1 if P* is lowest degree

-1 if ©P* is highest degree

such that P(x) = 0. That this theorem does not hold if S
consists of more than one differential polynomial can be
shown by the following example which arises in problems of

coupled springs:
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X; = oX; +BX, + xl(x2 - xl)
(s) u » 3
X, = %) + BoX, + W(X, - X)
X, = X, = a# 0 is a solution of the highest degree terms
(X2 - Xl)3 = 0. This solution cannot be extended to a formal
fractional power series solution of S except in the case

where a + Bl = G, + 82 . However, any solution of the low-

est degree terms i.e. of

P4
|

= Xy + B X,

o = %Xy + BX,

>
]

can be extended to a formal power series solution of S. The
fact that the highest order terms appear to the first degree,
among the highest degree terms or lowest degree terms of the
system, makes it possible to find a formal power series solu-
tion in an arbitrary parameter, where the first term of the
series is a solution of a linear system of the same order.
This is, precisely what occurs in a large class of mechanics
problems which includes practically all the problems arising

in celestial mechanics.
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Formal Power Series for Algebraic Systems

Let K be a field. Let

@ .
X. = = Xe Y 3 i=1, «.., Dnj 54 integers, and

(xij)l<i<n are algebraically independent over K,
5340

¢ transcendental over the field K(Xij)' Any element u ¢ K(x)

= K(xl, xn) has the form

@ k
u = z u.c. , 4 an integer and
k
k=14
u, € K(Xij) for £ < k< o
00
ILemma 1. Let u= 2 u o€ K[x]. Then
| K= 4
ou au,_ _
(a) k - KT for all r > O,
OXi s.4+r 9%y, -
*Ti i
auk
where we set X = 0 if k< 2.
i,si
Proof: Let S be the set of all elements u ¢ K[x]
for which (A) holds. S is not empty, since X, ¢S5, 1i=1, ..., n.

Also, let (A). hold for u, v ¢ K[x] and let

@®
u = 2 ukc 3 V =

" ™Mg

vkck, then w=u+v =
ZE

(uk + vk)ck .  Without loss of generality we assumed

5> 2 4, and set Ve = 0 for k < £2.



Now, awk _ auk . avk 'S0
OXi s.4r Xy g X3 s.47 -
2=y ,i+r ’i
_ aU‘k r avk—r
Todx + dX.

i,s4 1,8i
awk=r
aXi,s.
i

So that {A) holds for u+ v. Similarly, let w = uv

@ k 0 2 k
= 3 weeh = 3 ( = ujvk_j)c
k = 21+Z2 k = El+£2 j = El
k-4
ow - e du 3V, .
S% k = 2 Vieos 3% + u Eﬁ{'ig-l_
° i,8;+r =12 J i,8;+r i,s +r
k-2
2 du IV, .
= > Vk-j = -r + u. _a_i_i—_r
j = Zl 1,si :L,Si
k-4 k-r-4
2 du. _ 2 dVy s
= .2z Ve Tt 2 vy gt
Jj = Zl+r Y- j = Zl 1,85
k-—r-—l&2
- s v ou Vi
= 52 k-r-j EEFJL—— + uj Eﬁz——-_l
1 1,85 i,s4
~ oW,
TdX,
i,85

So (A) holds for uv and hence S is a ring containing

Xqys +++s X, and S = K(x].
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Lemma 2. Let wu, De as in Lemma 1, then wu_ ¢ K(xij)igign
> -
s;LJ<s th~4
for all u ¢ K(x).
_ du,
Proof. For any u ¢ K[x], by Lemma 1, ;m/——— = 0 for
dX.
1,84+
00 Qo .
all r> k - 4. Let v . X vkck =c 4 2 w,cY
u N - XK . J
kK= ~f Jg=20
where Wioe K(uz, cens uz+j) € K(x:im)i<i<n

sigmgsi+j+ﬂ—2 = si+j

Since Ww.

J+1 im/1<i<n

= vj, we have Vj e K(x,. )
s <m<s; +J+4 = s;+3-(-2)

Hence Lemma 2 holds for all u ¢ K(x).

Theorem 1. Let. P(X, Y) ¢ K[X, Y].

let r, s be integers such that
P*¥ # kY; k ¢ K, and

£ + higher power of c, wheray%he dis-

P(Xc®, YeT) = P*(X, Y)e
criminant of P¥*, considered as a polynomial in Y with coefficients

in K[X), is not zero. Then there exists

® k ® K
X; = 2 XiC o, 1= 1, ..., n; y = b Y C
k=-s k=r
such that P(x, y) = 0 and the set (xik)lgign are algebraically
" s<k<oo
independent while y, 1is algebraic over (xim)l:g_isn .
s<m<k+s-r

Proof. Let (Xik) be a set of algebraically independent

elements over K in some field extension of X and let

Y=Y= Y. c© , then




J— @© k
P(x, ¥Y) = 2 p,c By Lemma 1
k=1
op op . AP ;s _
._J = d = J_#+r for j> £+ k -r
oYy Ot rt(k-r) oY,
op . 3D .
so that —& = —l if j=4+k -1
° k aYr
3D - B
and —:; = 0 if j< 4+ k~-r. Hence Yk first appears
BYK
: 3P 5 ,
in Py .- Also, . =0,if j< s+ k -r. DNow, let

y, be a zero of pﬂ(xis’ Y}), Yy # 0, (such zeros exist because

P* is not a power of Y). Since
op opP -
—L we have eféig—ﬁ £ 0
Y, X = Xy # 0 _ oY
Yo=Yy

Let Vi be a zero of

Poik-r ¢ KlXips V] 1<in ,
. s<mKk+s-r
r{J<k
v o0 N .
then X =x, Y=y = = y.cC is a zero of P(X, Y) with

the stated properties.

Def. A polynomial P(X, Y) satisfying the conditions of

Theorem 1 will be called non-singular.
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Algebraic Mechanical Systems

A mechanical system of n-degrees of freedom is given-

by a system of second order differential equations of the

X" = F(X, X')

where X, X', X" are n-vectors and the derivatives are with
respect to the time - t. If the system 1s algebraic, the
functions (Fi) = F are algebraic functions of X, X' . More

precisely, the system is of the form:
U, = Qi(X, X', Y) Xi + Pi(X, X', ¥) =0

(s) Aj(X, X', Yj) =0 i=1, «v., n

vees YY) and

Y = (Yl, n

P., Q., A. ¢ K[X, X', Y] , where K 1is some differ-

i’ ™ J

ential field of functions of t.

I

g, ‘
Ag(x, X', Yj)c D

1.
Let Aj(Xcs, X'cS, Ye J)

. )
and let Aj be non-singular, J =1, ..., m. Then by

Theorem 1, there exist formal power series solution of the form:



oo
Xl = Xi = 2 Xiij i=1, ..., n
J =58
: (eo)
Xi = x; = 2 x{. J
j=s M
®© k
Yj = yJ = . i . yjkc jJ=1, ¢, m
J

1 . 1
sgch that Aj(x, x , yj) = 0. Since the (Xij)’(xij) are

4 2 - ! b - - . L2 el
indeterminates, we may sev Xij tO the time-derivative oI

- 1 "
Ui(X, X 5 X, y) =

M8

J

uij € K[(qu)x (XLP)’ (XZH)’ (ygv)]l

<2Z2<n
5 S.“‘S 5 + j - fi
1<ggm
r <v<r +J-f1;
g~ ~ B8 J 1
. H .
and the (ygv> are algebraic over (XZQ)’ (Xza) 1< £<n;
s{al v+ s - Ty g_rg +J - fy + 8 - ry = J-f; +s
1
Thus the uij are rational integral in (XZH)’ algebraic

1 .
over (qu)’ (xﬂu) 1<4<&n, s<p<s+j-fy. If we

let degree of y; = rj/s ;5 j=1, ..., m then every element of

<i<n

K{x, y)} has highest and lowest degree terms. (x;.); 1

is of order 2n if and only if U o is of order 2; that is
i

if x; appears among the lowest degree terms of Ui when

s > 0, or among the highest degree terms when s < O.
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n

Therefore, the relative degree of the terms, in which X5

appears, is determined by the degree assigned to the y.. It

dJ
may, of course, happen that the system Aj =0 1 j=1, ..., m
~ u

has more than one formal power series solution and X; appears

among the lowest (highest) degree terms for one determination

fe)
w

Hy
ct
5

-+ wm
Y but no

e other. It may, also, happen that
X. appears among the lowest degree terms for one determination
of the Vs and among the highest degree terms for ancther
determination of yj s J=1, ..., m, as the following
example illustrates.

Example:
1 l 2
YX:L + xle<+ X2X2 =0
2 2 2
= (X + X + 1
(8) YX, + AX X2 = 0 TR
+ + A =
2 272 47 ki e K; i=1, ..., 4
@ o .
We may let X, = x. = = x. .cY s Y=y =1+ 2 Y-CJ
i i 52178 j=1 9

the degree of y 1is zero, and X110 %oq is a solution of

the linear system

4 X, =0

1 .
X, + X, =0 s o il

1 171

or we may set Xi = X, =

X

o 3 oo 3

hX X. :C Y=y-= Z ysC
i 3= -1 3 _

the degree of y 1is two and X115 Xo7 is a solution of the

inear system
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Theorem 2. Let (S) be an algebraic mechanical system.
Let AJ(X, X', Yj) =0; j=1, ..., m have a formal power

series solution

g k
Xi = Xy = . i . X5y C 5 i=1, ..., n,
x! = v %3 1 k
e Xix ©
k=s
<o k
Y. =y, = 2 vy c ; J =1 ey M
3 3 K = 1 Jk H 3 H
J
as described in Theorem 1.
© X
Let Ui = 2 uikc where
k = fi

n

= ! 1
ify 3 (xg50 Xyg erj)[xis * Ly (xges 25001 104
1<J<m
and L., is linear homogeneous in (x,.), (x,.) with coef-
i £s Is
ficients 1n some algebraic extension of K. Then the system
(S) has a formal power series solution where the Xi), are

generic solutions of

n

1 .
Xip + Li(xzk’ sz) = Py i=1, ..., n

and the p; belong to an algebraic extension of K<(qu)> 5
1<4<n, s < u<k.
Proof. By Theorem 1 the X0 X., are indeterminates.

ixK

e s 1 . .
Hence we may specialize Xigr Xig to be generic solutions of
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the homogeneous linear system

1"
X; + Ly (%, x')=0 i=1, ..., n

We mey extend this specialization to y

3
-

J
. i
Since qi(xﬁs’ X902 yJI‘.) # O and
J
_ ’ 1 1 t
ETEIEN o; (00 %50, yjrj)[xi,s+k + Lo (X s Xp )] A

’ .
where Ai e K[Xﬂu’ xz“, vy.ol 5 1< 2<n, x<u<s+Kk,

y S J S m, r. < v< TJ + K

we may successively specialize Xx to be a generic solution

i,s+k
of the linear system

1

1
X3 aqx T B (X g Xo) = - Ai/qi = Py

and then extend the specialization to y This 1s pos-

j,rj+k’

sible, for by Theorem 1 y. is algebraic over

, T .+k
d0 Ty

K 1
(qu: xzu) L = 1, ..., n

M=28, s+1, ..., 8 + k - 1

and the set Xﬂu’ xk are algebraically independent over K.

o

This proves our assertibn.

Theorem 3. Let (S) be an algebraic mechanical system
with n degrees of freedom. Let K(X, X', Y) be a field ex-
tension of degree r over XK(X, X'). Then (S8) has r
irreducible manifolds of order ©2n. Any two such manifolds are

isomorphic.
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Proof. Since (X, X') 4is a transcendence base for

XK(X, X', Y) over K we may extend any derivation of K

T PR N ! = ~ PP E . ~ AR RAN!
oy defining X 0 be the derivative of X and (X ' =

LT XY , so that (S) has manifolds of order 2n.

. 1 - . - . . .
Since XK(X, X', Y) has r distinct isomorphism in some dif-
ferential extension field of K<X, X'> it follows that (S)
nhas r distinct irreducible manifolds of order 2n. Now,

let M;, M, be any two such manifolds and let (x, vy, (x, V)
be a generic point of Ml’ M2 respectively. The isomorphisn

o X —> X
x'— X'
can be extended to an isomorphism of XK(x, x', y) onto
K(X, X', J) Dby letting ¥ = o(y). This clearly defines an
isomorphism of K<x, y> onto K<x, y> ; for the successive

derivatives of X, y are glven by the same equations as those

given for x, y with the substitution of E,'§ for Xx, vy.

Remark 1. The statement that (S) has r irreducible
manifolds of order 2n means that the field K(x, x') Dbelongs
to a differential field T such that T contains r differ-

T .

ential subfields T .

r
n T, = K(x, x') and each

l’ ¢« o+ l i

i
T; 1s generated by a solution of the system (s) with

X =x X = x!



Remark 2. For the n-vody problem, thils theorem implies
that it is immaterial whether the forces between the bodiles
are attractive or repulsive; the algebraic properties of the
general solution are tne same.

Theorem 4. Let (S) be an algebraic mechanical system

with n degrees of freedom. Let A.(X, X', Y.) j=1,..., m
0o J y J
be non-singular. Let - Ui = z U, C (as in Theorem 2)
k = 1.

i
znd let u = g.{x % v olx" + L.(x x. )] Let
S if, T H1Vis? Ms sr.ttty s\ Xggr Xp5/d -

(%]
t e X< %, n> where x=§&, y=m 1is a solution of order

2n of (S). Let & be & solution of a differential eguation
B(2) = 0 where B(2) ¢ K{8}. Then 8% (x ., yjr_), 1< 4 < n;
1< j<m, is a solution of B¥(®) = 0, where ’
5(gc®, njcrj) = 8¥(€, )c + higher powers of ¢ and B* is

the lowest (highest) degree terms of B if a > 0 (a < 0).

Proof. Since the A.; Jj=1, ..., n, are non-singular,
by Theorem 1, X =x, Y =y 1is a solution of the algebraic
systen Aj = 0 and by Theorem 2 X=X, Y=y 1is a solution
of the system (8) with K<KX£S>> of order 2n over K.
Therefore X<x,y> is of ofder 2n. By Theorem 3 there
exists an isomorphism og: x €< §

y <> n
Therefore, 8{(x, y) is a solution of B(®) = 0. Now,

3(s(x, ¥)) = B*(e*(xzs, Ysr ))c5 + higher powers of c.
J

e L * . . *
Hence § is a solution of B" = 0.




I7I. foplications
1. The n-Body Proovlem
. 5 .w:j(xJ - X.) X
. = . — 1 = n
l 3 . 3y o e ey
J#1i R
(s) ij
M (Y. - Y.
Y. = 2 Y o)
J#1 R
1
2~ s MJ(;; - %)
1
<J
22 = (X - X0+ (Y. - Y02 4 (2, - 2.)?
ally i 7 i 1 J

This 1s a system with 3n degrees of freedom. The
differential field K is C(Ml, e Mn); C is the field
of complex numbers and the (Mi) are n transcendental con-
stants.

This system, clearly, satisfies the conditions of

Theorem 1, 2. Therefore:

co Kk
X.' = X, = 2 X., C
i i .11k
o
k 00
Y. =y, = by Y., C _ K
i i - - 71k Rij = . =Z_ ) 13kC
==1
k
7 = 7 = z Zikc




is & solution of (8), where (Xi,—l)’ (yi,—l)’ (zi,—l) is

a generic solution of the homogeneous linear system

The field of constants of K<:(Xi,-l)’ (yi,-l)’ (zi,—l)>

! \ < H \ ,7' 3\ 3 1l 4y A A
1,-10 Wy a0 (2 ), (way - wu)>, wnere
)

}
n
]

i
Iy

A\

~

i ali th . . . .
u, spans the set {(Xl,—l)’ (yl’_l), (zl’_1 }
Let X =%, Y=m, 2= be any solution of order 6n
cf the n-body preoblem. ILet § bve & polynomial in £Ff, n', ct,

with coefficients in the field X(§, 7m, ¢, (rij)) such that

8'= 0. 3By Theorem %, &*((x ), (v, ), (z )) ¢ D.
i,-1 i,-1 i,-1

2

Hence the highest degree terms of § are polynomials in &',
n', Y, (uku% - uiuz) with coefficients in K. Thus, the
nighest degree terms of the energy integral is a polynomial in
-1 - 1

€, n,s, C , and the integrals of angular momentum are of the

- R L !
iorm hkuz ukuz .

Theorem 5. Let X =¢, Y=m. Z = Dbe any solution
(real or complex), of order 6n, of the n-body problem. Let
£ ¢ K<& m, (> and let & be a solution of P(8) = 0;
P(€) ¢ X{€}, P or order 1. Then P*(8) (the highest degree
terms of P(8) of degree if @ > 0, the lowest degree terms

of P(E) 1if degree § < 0) is divisible by @'.
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5 ) is

Proof. By theorem &4, e*(xi,_l), (y4’_1), (Zi,—l
a solution of P*(@) = 0 which is homogeneous and of order 1.
If P*(8) is not divisibel by @', every zero of, P*(8) =

e' - ki® (ki € to an algebraic extension of K), is an expon-
ential, but K<(xi’_1), (yi,—l)’ (Zi,—l)> has no exponential
elements for K<<(Xi,—l)’ (yi,-l)’ (Zi,—l)> = D<'t? . Hence
P*¥(©¥) is divisible by o',

Cor. Let E, v, (, & be as in Theorem 5. Then 8 can-

not be an exponential.

Restricted Three-Body Problem.

X"—‘2Y' —x;-(xﬂ“u)%-u) X +u - 1)y

; 2

2 2

Ry = (X+ )%+ ¥, Ro=(Xx+u-1)2+7¥

Let X = C(u) where C is the field of complex numbers
and u 1is a transcendental constant over (.

It follows from Theorems 2, 3 that (S) has a solution

@ @
X=x= 2 xkck s Y=y = b ykck
k=-1 : XK= -1
0o @
K k
R, = > r,,C R, = 2 r..C
1 -1 1k 27 1%k



““““““““““

- 19 -

i1s a generic

10 Va1
system:
x" - 2y
Y"' o+ 2X!
2 . 2 .
1,-1 7 f1,-1 7
Note that if X =&, Y=mn,
of (S) then
K< g€, T Pl
Lemma 3. Let X = a,
of the system:
X" - 2yt - X

Y o+ 2X' - Y

2

1l

il

solution of the homogeneous linear

Then the field of coconstants of

>

is any solution

K<E, n>

= p Dbe a generic solution

K<a, b, p> = K(Cl, cg) where

Ci = at® +p'2 - (a2 + b2)
C, =ab’ - a'b + a® + b°
Proof. Ci = 2(a'a" + p'p" - aa' - bb')
= 2(a'[2p' + a] + b'[b - 2a'] - aa' - bb') =0
Cé = ab"‘- a"v + 2(aa' + bb')

= a[b - 2a'] - [2b' + alo + 2(aa' + bb!') =0




Let u=a' -> then
u'' = a" - o' =2b' +a -Db' =b' + a
and u2 -+ u'2 - (a'2 £ h'g) + (n2 + b2) + 2(8}" - .-.tu)
Cl + 202
Also, a'u - au' =4{(a' - b) - al{v' + a)
=a'? - 42 _ (a'v + ab')
= u2 - C
a u® - Co
Therefore, (ﬁ) = N
Also, w2 4 u'2 = Cy +2C, implies
2u'(u+u") =0 but u'=a+Db' £O0
Since a, b 1is generic, so that u" = - u 2
C
a 2 u'
let V = = e — L. then
u C1 + 202 u
TR C ¢l u'@
vi o= 2 + 2 + 2 -
u2 Cl + 2C2 (Cl + 2C2) u
' 2
N Cy C, 02(0l +2C, - u )
=1l-—+—=+ 5
u C, + 2C, (cl + 202)u
= 1
Since  K<a, b> = K(Cp, Cp) <u, v> ,
Cs u!
for a = (v + e+ 202)u ) u
b=a'-u ,




- 21 -

and K(Cl, CE) <u, v is isomorphic to

e et bl S o, 18

K(Cl, 02) <./cl + 2C, sine t, t>, we have field of constants

of K< a, o> eqguals field of constants of

K(Cq, c2) <\/cl'¥‘§6; sine t, t > eguals K(Cy, 02).

Now let 2 2

let a=vy +%p 5 v, 6§ 2 K< a, b>

a' = y' 4+ 8§'p + &' = O, y’p+6'(a2+b

. y' =0 and (62p2)' =0 but 5202

. ' 12 2
-T. 859 e K(Cqy, Cp) '

= k(a2 +1p'" -a® -p

2)

+ &{aa' + bb')

Qe K<a. v, p>3; p =a4a + b2

and let

e K <a, >

2

a'

1
, ab - a'db + a

It is clear that a rational function in the polynomials

a'2 + b'2 - a2 - b2, ab' - a'b + a2 + b2

by a2 + b2. Therefore & =0 ana

Theorem 6. Let X =E, Y = n, Rl = P

5

R

2

a=v g K(Cl’ 02).

Po

cannot be divisible

be any

(real or complex) solution, of order four, of the restricted

three body problem. Let

let § = O. Then §° is a polynomial in

P,=8n -&'n+g2+ .

P

1

8 € K(g: > pl: 92){§!: 'ﬂl]

_ 512_*_ n

12

and

1l

2

-2

Proof. There is no loss in generality in assuming degree

of g§ > O, since degree of = = - degree of

By theorem 4, g (a, b) =0, so that

g¥(a, b) ¢ K (a'2 + Db ¢ - a“ - v,

S

and (%)'

~

n

2

2
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But 8 1is & polynomial in & v so that ¢¥(a, b) 1is a

polynomial in

2

Pl(a, b)) =a'“+Db'c -a - p°,

Pg(a, b) = ab' - a' b+ 2% + v°

Therefore & (g, m) is a polynomial in Pl(g, n P2(§ n) .

b

Theorem 7. Let X =&, Y = n, Rl = P9 R2 = 25 be any

real solution, of order fcur, of the restricted three-body

problem. Let 6 ¢ K< &, n> ; K= C(u) where C 1is the
field of real numbers. Then § 1is not a real exponential.
Proof. Same argument as for the n-body problem. For,

the differential field X < a, b > does not contain any real

exponentials.




(3]

=
n
bt

(3]

[%]

[5]

<y
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