FINAL REPORT

Nasa Research Contract Ns G-403

Application of Formal Power Series to Some Classical Problems of Mechanics

GPO PRICE \$ CFSTI PRICES) \$ \qquad

Lawrence Goldman ${ }^{\boldsymbol{n}} 053$ Jut v 65

N66 31767

One of the oldest problems in the history of mechanics is to find functions of the coordinates which satisfy a simpler (lower order) system of differential equations. In particular, to find functions of the coordinates which satisfy a first order differential equation. The energy integral and the integrals of angular momentum are examples of such functions: they are algebraic functions of the coordinates and their derivatives which satisfy, the simplest of all first order differential equations, $Y^{\prime}=0$.

In 1887 Bruns [l] proved that in the three body problem the only algebraic functions of the coordinates and their derivatives which satisfy the equation $Y^{\prime}=0$ are those generated by the known integrals. These results were later extended to the n-body problem ($n>2$) by Painlevé [2] and to the restricted three body problem, for small values of a parameter μ, which appears in the problem, by Poincaré [3, vol. l ch. v].

In this paper we extend these negative results of Bruns and Poincare. One consequence of our results, for the n-body problem, is that no algebraic function of the coordinates and their derivatives is an exponential. Similar results are obtained for a large class of problems in mechanics.

We use the tools and ideas of differential algebra developed by Ritt [4]. The following is a summary of definitions, notations and results that we use frequently.

A differential field, differential ring, differential ideal is a field, ring, ideal which is closed under a given derivation. In this paper the characteristic of the field is zero and the derivation is the derivative with respect to the time t. By $K\langle x\rangle, K\{x\}$ we mean the differential field, differential ring respectively of K and the elements $x=$ (x_{1}, \ldots, x_{n}). $K(x), K[x]$ is used for field and ring adjunction, respectively.

Let K be a differential field and let S be a set of differential polynomials $P(X) \in K[X]$. The perfect (radical) differential ideal'I generated by S, in the differential ring $K[X]$, is the intersection of a finite number of prime differential ideals $\pi_{1}, \ldots, \pi_{\ell}$. Each π_{i} has an irreducible manifold of zeros and the manifold of zeros of S is the union of the manifolds of π_{i}, $i=1, \ldots, \ell$. A zero x of π_{i} is called generic if every differential polynomial $P(X) \in K\{X\}$, which vanishes for $X=x$, belongs to π_{i}. Every prime differential ideal has a generic zero. Let y be any zero of S, then the degree of transcendency of $K<y>$ over K is called the order of y. The order of a prime differential ideal π is the order of its generic zero. We shall call the order of S the max. (order $\left.\pi_{i}\right)_{1 \leq i \leq \ell}$. If S is a system of differential polynomials defining a mechanical system of n degrees of freedom, then order of S is $2 n$ which agrees with the usual definition of order of S.

The problem that concerns us may now be restated as follows: Let x be a solution of max. order of a mechanical system S, what are the differential subfields of $K\langle x\rangle$ which are of order one over K ? For the n-body problem, the theorems of Bruns and Painlevé give the subfield of constants of $K\langle x\rangle$, where $K=Q\left(M_{1}, \ldots, M_{n}\right), Q$ stands for the reals and $M_{i, i=1, \ldots n}$ are the masses.

These results are possible to obtain without finding the decomposition of S into its prime components, because all the irreducible manifolds of S, of maximal order, are isomorphic (Theorem three).

Theorems one and two prepare the background for the application of formal power series, in an arbitrary parameter, to our problem. In [4] Ritt proved that if a is any zero of the highest or lowest degree terms P^{*} of a single differential polynomial $P(X)$, then there exists a formal fractional power series of the form

$$
x=a c^{j}+\sum_{i=j+1}^{\infty} a_{i} c^{k_{i}} \quad j= \begin{cases}-1 & \text { if } P^{*} \text { is highest degree } \\ +1 & \text { if } P^{*} \text { is lowest degree }\end{cases}
$$

such that $P(x)=0$. That this theorem does not hold if S consists of more than one differential polynomial can be shown by the following example which arises in problems of coupled springs:
(s)

$$
x_{1}^{\prime \prime}=\alpha_{1} x_{1}+\beta_{1} x_{2}+\lambda_{1}\left(x_{2}-x_{1}\right)^{3}
$$

$$
x_{2}^{\prime \prime}=\alpha_{2} x_{1}+\beta_{2} x_{2}+\lambda_{2}\left(x_{2}-x_{1}\right)^{3}
$$

$X_{1}=X_{2}=a \neq 0$ is a solution of the highest degree terms $\left(x_{2}-x_{1}\right)^{3}=0$. This solution cannot be extended to a formal fractional power series solution of S except in the case where $\alpha_{1}+\beta_{1}=\alpha_{2}+\beta_{2}$. However, any solution of the lowest degree terms i.e. of

$$
\begin{aligned}
& x_{1}^{\prime \prime}=\alpha_{1} x_{1}+\beta_{1} x_{2} \\
& x_{2}^{\prime \prime}=\alpha_{2} x_{1}+\beta_{2} x_{2}
\end{aligned}
$$

can be extended to a formal power series solution of S. The fact that the highest order terms appear to the first degree, among the highest degree terms or lowest degree terms of the system, makes it possible to find a formal power series solution in an arbitrary parameter, where the first term of the series is a solution of a linear system of the same order. This is, precisely what occurs in a large class of mechanics problems which includes practically all the problems arising in celestial mechanics.
I. Formal Power Series for Algebraic Systems

Let K be a field. Let
$x_{i}=\sum_{j=s_{i}}^{\infty} x_{i j}{ }^{j} ; i=1, \ldots, n ; s_{i} \quad$ integers, and
$\left(x_{i j}\right)_{\substack{1 \leq i \leq n \\ s_{i} \leq j \leq \infty}}$ are algebraically independent over K,
c transcendental over the field $K\left(x_{i j}\right)$. Any element $u \in K(x)$
$=K\left(x_{1}, \ldots, x_{n}\right)$ has the form

$$
u=\sum_{k=\ell}^{\infty} u_{k} c^{k}, \quad \ell \text { an integer and }
$$

$u_{k} \in \mathbb{K}\left(x_{i j}\right)$ for $\ell \leq k<\infty$.
Lemma 1. Let $u=\sum_{k=\ell}^{\infty} u_{k} c^{k} \varepsilon K[x]$. Then
(A) $\frac{\partial u_{k}}{\partial x_{i}, s_{i}+r}=\frac{\partial u_{k-r}}{\partial x_{i, s_{i}}}$ for all $r \geq 0$,
where we set $\frac{\partial u_{k}}{\partial x_{i}, s_{i}}=0$ if $k<\ell$.
Proof: Let S be the set of all elements $u \in K[x]$
for which (A) holds. S is not empty, since $x_{i} \varepsilon S$, $i=1, \ldots, n$. Also, let (A) hold for $u, v \in K[x]$ and let

$$
\begin{aligned}
& u=\sum_{k}^{\infty} \ell_{1} u_{k} c^{k}, \quad v=\sum_{k=\ell_{2}}^{\infty} v_{k}^{c^{k}}, \text { then } w=u+v= \\
& \left.=\sum_{k=}^{\infty} \ell_{1}^{(} u_{k}+v_{k}\right) c^{k} \text {. Without loss of generality we assumed } \\
& \ell_{2} \geq \ell_{1} \text { and set } v_{k}=0 \text { for } k<\ell_{2} .
\end{aligned}
$$

Now, $\frac{\partial w_{k}}{\partial x_{i, s_{i}+r}}=\frac{\partial u_{k}}{\partial x_{i}, s_{i}+r}+\frac{\partial v_{k}}{\partial x_{i, s_{i}+r}}, \quad r \geq 0$

$$
\begin{aligned}
& =\frac{\partial u_{k-r}}{\partial x_{i, s_{i}}}+\frac{\partial v_{k-r}}{\partial x_{i, s_{i}}} \\
& =\frac{\partial w_{k-r}}{\partial x_{i, s_{i}}}
\end{aligned}
$$

So that (A) holds for $u+v$. Similarly, let $w=u v=$

$$
\begin{aligned}
& =\sum_{k=}^{\infty} l_{1}+\ell_{2} w_{k} c^{k}=\sum_{k=}^{\infty} \ell_{1}+\ell_{2}\left(\sum_{j=\ell_{1}}^{k-\ell_{2}} u_{j} v_{k-j}\right) c^{k} \\
& \frac{\partial w_{k}}{\partial x_{i}, s_{i}+r}=\sum_{j=}^{k-\ell_{2}} \ell_{1} \quad v_{k-j} \frac{\partial u_{j}}{\partial x_{i, s_{i}+r}}+u_{j} \frac{\partial v_{k-j}}{\partial x_{i, s_{i}+r}} \\
& =\sum_{j=}^{k-\ell_{2}}=\ell_{1} v_{k-j} \frac{\partial u_{j-r}}{\partial x_{i, s_{i}}}+u_{j} \frac{\partial v_{k-j-r}}{\partial x_{i}, s_{i}} \\
& =\sum_{j=}^{k-\ell_{2}}=\ell_{1}+r \quad v_{k-j} \frac{\partial u_{j-r}}{\partial x_{i}, s_{i}}+\underset{j=}{\Sigma=\ell_{1}} u_{j} \frac{\partial v_{k-j-r}}{\partial x_{i,}, s_{i}} \\
& ={\underset{j}{\mathrm{k}-\mathrm{r}-\ell_{2}}{ }_{=}^{\Sigma} \ell_{1}}_{\mathrm{v}_{\mathrm{k}-\mathrm{r}-j}} \frac{\partial \mathrm{u}_{j}}{\partial \mathrm{x}_{\mathrm{i}}, \mathrm{~s}_{\mathrm{i}}}+\mathrm{u}_{j} \frac{\partial \mathrm{v}_{\mathrm{k}-\mathrm{r}-\mathrm{j}}}{\partial \mathrm{x}_{\mathrm{i}, \mathrm{~s}_{i}}} \\
& =\frac{\partial w_{k-r}}{\partial x_{i}, s_{i}}
\end{aligned}
$$

So (A) holds for $u v$ and hence S is a ring containing x_{1}, \ldots, x_{n} and $s=K[x]$.

Lemma 2. Let u_{k} be as in Lemma 1 , then $u_{k} \in K\left(x_{i j}\right)_{i \leq i \leq n}$ $s_{i} \leq \bar{j} \leq s_{i}+k-\ell$ for all $u \in K(x)$.

Proof. For any $u \in K[x]$, by Lemma $l, \frac{\partial u_{k}}{\partial x_{i}, s_{i}+r}=0$ for
all $r>k-l$. Let $v=\frac{1}{u}=\sum_{k=-l}^{\infty} v_{k} c^{k}=c^{-l} \sum_{j=0}^{\infty} w_{j} c^{j}$ where $w_{j} \in K\left(u_{\ell}, \ldots, u_{\ell+j}\right) \in K\left(x_{i m}\right)_{i \leq i \leq n}$

$$
s_{i} \leq m \leq s_{i}+j+\ell-\ell=s_{i}+j
$$

Since $w_{j+\ell}=v_{j}$, we have $v_{j} \in K\left(x_{i m}\right)_{\underset{i}{ } \leq i \leq n}^{s_{i} \leq m \leq s_{i}+j+\ell=s_{i}+j-(-\ell)}$
Hence lemma 2 holds for all $u \in K(x)$.
Theorem 1. Let. $P(X, Y) \in K[X, Y]$.
let r, s be integers such that
$P^{*} \neq k Y ; k \in K$, and
$P\left(X c^{s}, Y c^{r}\right)=P^{*}(X, Y) c^{\ell}+$ higher power of c, where ${ }^{V}$ the dis-
criminant of P^{*}, considered as a polynomial in Y with coefficients in $K(X)$, is not zero. Then there exists

$$
x_{i}=\sum_{k=s}^{\infty} x_{i k} c^{k}, i=1, \ldots, n ; \quad y=\sum_{k=r}^{\infty} y_{k} c^{k}
$$

such that $P(x, y)=0$ and the set $\left(x_{i k}\right)_{\substack{1 \leq i \leq n \\ s \leq k<\infty 0}}$ are algebraically
independent while y_{k} is algebraic over $\left(x_{i m}\right)_{\substack{1 \leq i \leq n \\ S \leq m \leq k+s-r}}$
Proof. Let ($x_{i k}$) be a set of algebraically independent elements over K in some field extension of K and let $Y=\bar{Y}=\sum_{k=r}^{\infty} \bar{Y}_{k} c^{k}$, then
$P(x, \bar{Y})=\sum_{k=}^{\infty} p_{k} c^{k} . \quad$ By Lemma 1

$$
\frac{\partial p_{j}}{\partial \bar{Y}_{k}}=\frac{\partial p_{j}}{\partial \bar{Y}_{r+(k-r)}}=\frac{\partial p_{j-k+r}}{\partial \bar{Y}_{r}} \text { for } j \geq l+k-r
$$

so that $\frac{\partial \underline{p}_{j}}{\partial \bar{Y}_{k}}=\frac{\partial p_{j}}{\partial \bar{Y}_{r}}$

$$
\text { if } j=\ell+k-r
$$

and $\frac{\partial p_{j}}{\partial \overline{\mathrm{Y}}_{\mathrm{k}}}=0$ if $j<\ell+k-r$. Hence $\overline{\mathrm{Y}}_{\mathrm{k}}$ first appears in $p_{\ell+k-r}$. Also, $\frac{\partial p_{j}}{\overline{\partial x} x_{i, k}}=0$, if $j<s+k-r$. Now, let y_{r} be a zero of $p_{\ell}\left(x_{i s}, \bar{Y}_{r}\right), y_{r} \neq 0$, (such zeros exist because P^{*} is not a power of Y). Since

$$
\left(\frac{\partial \mathrm{p}_{\ell}}{\partial \overline{\mathrm{Y}}_{\mathrm{r}}}\right)_{\frac{x_{i}}{}}=\mathrm{x}_{\mathrm{ir}} \neq 0 \text { we have } \frac{\partial \mathrm{p}_{\ell+\mathrm{k}-\mathrm{r}}}{\partial \overline{\mathrm{Y}}_{\mathrm{r}}} \neq 0
$$

Let y_{k} be a zero of

$$
p_{\ell+k-r} \in K\left[x_{i m}, y\right] \underset{\substack{l \leq i \leq n \\ s \leq m \leq k+s-r \\ r \leq j \leq k}}{ }
$$

then $X=x, Y=y=\sum_{i=r}^{\infty} y_{i} c^{i}$ is a zero of $P(X, Y)$ with the stated properties.

Def. A polynomial $P(X, Y)$ satisfying the conditions of Theorem l will be called non-singular.

A mechanical system of n-degrees of freedom is given. by a system of second order differential equations of the form:

$$
X^{\prime \prime}=F\left(X, X^{\prime}\right)
$$

where $X, X^{\prime}, X^{\prime \prime}$ are n-vectors and the derivatives are with respect to the time - t. If the system is algebraic, the functions $\left(F_{i}\right)=F$ are algebraic functions of X, X^{\prime}. More precisely, the system is of the form:

$$
U_{i} \equiv Q_{i}\left(X, X^{\prime}, Y\right) X_{i}^{\prime \prime}+P_{i}\left(X, X^{\prime}, Y\right)=0
$$

$$
\begin{array}{ll}
A_{j}\left(X, X^{1}, Y_{j}\right)=0 & i=1, \ldots, n \tag{S}\\
j=1, \ldots, m
\end{array}
$$

$$
\begin{aligned}
& Y=\left(Y_{1}, \ldots, Y_{m}\right) \quad \text { and } \\
& P_{i}, Q_{i}, A_{j} \in K[X, X, Y] \text { where } K \text { is some differ- }
\end{aligned}
$$

ential field of functions of t.

$$
\text { Let } A_{j}\left(X c^{s}, X^{\prime} c^{s}, Y_{j} c^{r_{j}}\right)=A_{j}^{*}\left(X, X^{\prime}, Y_{j}\right) c^{\ell_{j}}+\ldots+
$$

and let A_{j}^{*} be non-singular, $j=1, \ldots, m$. Then, by
Theorem l, there exist formal power series solution of the form:

$$
\begin{array}{ll}
x_{i}=x_{i}=\sum_{j=s}^{\infty} x_{i j} c^{j} & i=1, \ldots, n \\
x_{i}^{\prime}=x_{i}^{\prime}=\sum_{j=s}^{\infty} x_{i, j}^{\prime} c^{j} & \\
Y_{j}=y_{j}=\sum_{k=}^{\infty} r_{j}^{\infty} y_{j k} c^{k} & j=1, \ldots . . m
\end{array}
$$

such that $A_{j}\left(x, x^{\prime}, y_{j}\right)=0$. Since the $\left(x_{i j}\right),\left(x_{i j}^{\prime}\right)$ are indeterminates, we may set $x_{i j}^{\prime}$ to the time-derivative of $x_{i j}$. Then

$$
\begin{array}{r}
U_{i}\left(x, x^{\prime}, x^{\prime \prime}, y\right)=\sum_{j=f_{i}}^{\infty} u_{i j} c^{j}=0, \quad i=1, \ldots, n \\
u_{i j} \in K\left[\left(x_{\ell \mu}\right),\left(x_{\ell \mu}^{\prime}\right),\left(x_{l \mu}^{\prime \prime}\right),\left(y_{g \nu}\right)\right]_{I} \leq \ell \leq n \\
s \leq \mu \leq s+j-f_{i} \\
I \leq g \leq m \\
r_{g} \leq \nu \leq r_{g}+j-f_{i}
\end{array}
$$

and the $\left(y_{g \nu}\right)$ are algebraic over $\left(x_{\ell \alpha}\right),\left(x_{\ell \alpha}^{\prime}\right) \quad I \leq \ell \leq n$;

$$
s \leq \alpha \leq \nu+s-r_{g} \leq r_{g}+j-f_{i}+s-r_{g}=j-f_{i}+s
$$

Thus the $u_{i j}$ are rational integral in $\left(x_{\ell \mu}^{\prime \prime}\right)$, algebraic $\operatorname{over}\left(x_{\ell \mu}\right),\left(x_{\ell \mu}^{1}\right) \quad l \leq \ell \leq n, \quad s \leq \mu \leq s+j-f_{i}$. If we let degree of $y_{j}=r_{j} / s ; j=1, \ldots, m$ then every element of $K\{x, y\}$ has highest and lowest degree terms. ($x_{i s}$); $1 \leq i \leq n$ is of order $2 n$ if and only if $u_{i f}$ is of order 2 ; that is if $x_{i}^{\prime \prime}$ appears among the lowest degree terms of U_{i} when $s \geq 0$, or among the highest degree terms when $s<0$.

Therefore, the relative degree of the terms, in which $x_{i}^{\prime \prime}$ appears, is determined by the degree assigned to the y_{j}. It may, of course, happen that the system $A_{j}=0 ; j=1, \ldots, m$ has more than one formal power series solution and $X_{i}^{\prime \prime}$ appears among the lowest (highest) degree terms for one determination of the \bar{y}_{i} but not for the other. It may, also, happen that $x_{i}^{\prime \prime}$ appears among the lowest degree terms for one determination of the y_{i} and among the highest degree terms for another determination of $y_{j}, j=1, \ldots, m$, as the following example illustrates.

Example:

$$
Y X_{1}^{\prime \prime}+\lambda_{1} X_{1}+\lambda_{2} X_{2}^{2}=0
$$

(S)

$$
Y X_{2}^{\prime \prime}+\lambda_{2} X_{2}+\lambda_{4} X_{1}^{2}=0
$$

$$
x^{2}=\left(x_{1}^{2}+x_{2}^{2}\right)^{2}+1
$$

$$
\lambda_{i} \in K ; i=1, \ldots, 4
$$

We may let $X_{i}=x_{i}=\sum_{j=1}^{\infty} x_{i j} c^{j}, \quad Y=y=1+\sum_{j=1}^{\infty} y_{j} c^{j}$
the degree of y is zero, and x_{11}, x_{21} is a solution of the linear system

$$
x_{1}^{\prime \prime}+\lambda_{1} X_{1}=\dot{0} \quad, \quad x_{2}^{\prime \prime}+\lambda_{3} X_{1}=0
$$

or we may set $X_{i}=x_{i}=\sum_{j=-1}^{\infty} x_{i j} c^{j} \quad Y=y=\sum_{j=-2}^{\infty} y_{j} c^{j}$ the degree of y is two and x_{11}, x_{21} is a solution of the linear system

$$
x_{1}^{\prime \prime}=0 \quad x_{2}^{\prime \prime}=0
$$

Theorem 2. Let (S) be an algebraic mechanical system. Let $A_{j}\left(X, X^{\prime}, Y_{j}\right)=0 ; j=1, \ldots, m$ have a formal power series solution

$$
\begin{aligned}
& x_{i}=x_{i}=\sum_{k=s}^{\infty} x_{i k} c^{k} ; \quad i=1, \ldots, n, \\
& X_{i}^{\prime}=x_{i}^{\prime}=\sum_{k=s}^{\infty} x_{i k}^{\prime} c^{k} \\
& Y_{j}=y_{j}=\sum_{k=r_{j}}^{\infty} y_{j k} c^{k} ; \quad j=1, \ldots, m,
\end{aligned}
$$

as described in Theorem 1.

Let

$$
\begin{gathered}
U_{i}=\sum_{k=f_{i}}^{\infty} u_{i k} c^{k} \quad \text { where } \\
u_{i f_{i}}=q_{i}\left(x_{\ell s}, x_{l s}^{\prime}, y_{j r_{j}}\right)\left[x_{i s}^{\prime \prime}+L_{i}\left(x_{\ell S}, x_{l s}^{\prime}\right)\right] \begin{array}{l}
l \leq \ell \leq n \\
l \leq j \leq m
\end{array}
\end{gathered}
$$

and I_{i} is linear homogeneous in $\left(x_{l S}\right)$, $\left(x_{l S}^{\prime}\right)$ with coefficients in some algebraic extension of K. Then the system (S) has a formal power. series solution where the $x_{i k}$ are generic solutions of

$$
x_{i k}^{\prime \prime}+L_{i}\left(x_{\ell k}, x_{\ell k}^{\prime}\right)=p_{i} ; \quad i=l, \ldots, n
$$

and the p_{i} belong to an algebraic extension of $\left.K<\left(x_{\ell \mu}\right)\right\rangle$; $I \leq \ell \leq n, \quad s \leq \mu<k$.

Proof. By Theorem I the $x_{i k}$, $x_{i k}^{\prime}$ are indeterminates. Hence we may specialize $x_{i s}, x_{i s}^{\prime}$ to be generic solutions of
the homogeneous linear system

$$
X_{i}^{\prime \prime}+I_{i}\left(X, X^{\prime}\right)=0 \quad i=1, \ldots, n
$$

We may extend this specialization to $y_{j r_{j}} \quad j=1, \ldots, n$ Since $q_{i}\left(x_{\ell s}, x_{\ell s}^{i}, y_{j r_{j}}\right) \neq 0 \quad$ and

$$
u_{i, f_{i}+i}=q_{i}\left(x_{l s}, x_{l, 5}^{\prime}, y_{j r_{j}}\right)\left[x_{i, s+k}^{\prime \prime}+I_{i}\left(x_{i, s+k}, x_{l, s+k}^{\prime}\right)\right]+A_{i}
$$

where $\quad A_{i} \in \mathbb{K}\left[x_{\ell \mu}, x_{\ell_{j \mu}}^{\prime}, y_{j \nu}\right] ; 1 \leq \ell \leq n, \quad x \leq \mu<s+k$,

$$
\mathrm{y} \leq j \leq m, \quad r_{j} \leq \nu<r_{j}+k
$$

we may successively specialize $x_{i, s+k}$ to be a generic solution of the linear system

$$
x_{i, s+k}^{\prime \prime}+L_{i}\left(x_{\ell, s+k}, x_{s+k}^{\prime}\right)=-A_{i / q_{i}}=p_{i}
$$

and then extend the specialization to $y_{j, r_{j}+k}$; This is possible, for by Theorem $I y_{j, r_{j}+k}$ is algebraic over
$K\left(x_{\ell \mu}, x_{\ell \mu}^{\prime}\right) \quad \ell=1, \ldots, n$

$$
\mu=s, s+l, \ldots, s+k-l
$$

and the set $X_{\ell \mu}, x_{\ell \mu}^{\prime}$ are algebraically independent over K. This proves our assertion.

Theorem 3. Let (S) be an algebraic mechanical system with n degrees of freedom. Let $K\left(X, X^{\prime}, Y\right)$ be a field extension of degree r over $K\left(X, X^{\prime}\right)$. Then (S) has r irreducible manifolds of order $2 n$. Any two such manifolds are isomorphic.

Proof. Since (X, X^{\prime}) is a transcendence base for $K\left(X, X^{\prime}, Y\right)$ over K we may extend any derivation of K by defining X^{\prime} to be the derivative of X and $\left(X^{\prime}\right)^{\prime}=$ $\frac{P_{i}\left(X, X^{\prime}, Y\right)}{Q_{i}\left(X, X^{\prime}, Y\right)}$, so that (S) has manifolds of order $2 n$. Since $K(X, X, Y)$ has r distinct isomorphism in some differential extension field of $K\left\langle X, X^{\prime}\right\rangle$ it follows that (S) has r distinct irreducible manifolds of order $2 n$. Now, let M_{1}, M_{2} be any two such manifolds and let (x, y), (\bar{x}, \bar{y}) be a generic point of M_{1}, M_{2} respectively. The isomorphism

$$
\begin{aligned}
\sigma: & x
\end{aligned}>\bar{x},
$$

can be extended to an isomorphism of $K\left(x, x^{\prime}, y\right)$ onto $K\left(\bar{x}, \bar{x}^{\prime}, \bar{y}\right)$ by letting $\bar{y}=\sigma(y)$. This clearly defines an isomorphism of $K\langle x, y\rangle$ onto $K\langle\bar{x}, \bar{y}\rangle$; for the successive derivatives of \bar{x}, \bar{y} are given by the same equations as those given for x, y with the substitution of \bar{x}, \bar{y} for x, y.

Remark 1. The statement that (S) has r irreducible manifolds of order $2 n$ means that the field $K\left(x, x^{\prime}\right)$ belongs to a differential field T such that T contains r differential subfields $T_{1}, \ldots, T_{r} ;{ }_{i}^{r} T_{i}=K\left(x, x^{\prime}\right)$ and each T_{i} is generated by a solution of the system (S) with

$$
x=x \quad x^{\prime}=x^{\prime}
$$

Remark 2. For the n-boay problem, this theorem implies that it is immaterial whether the forces between the bodies are attractive or repulsive; the algebraic properties of the general solution are the same.

Theorem 4. Let (S) be an algebraic mechanical system with n degrees of freedom. $\operatorname{Let}_{0} A_{j}\left(X, X^{\prime}, Y_{j}\right) j=1, \ldots, m$ be non-singular. Let $U_{i}=\sum_{k=f_{i}}^{\infty} u_{i k} c^{k}$ (as in Theorem 2) and let $u_{i f_{i}}=q_{i}\left(\bar{x}_{l S}, \bar{x}_{l S}^{\prime}, \bar{y}_{j r_{j}}\right)\left[x_{i}^{\prime \prime}+I_{i}\left(x_{l S}, x_{l S}^{\prime}\right)\right]$. Let $\hat{\sigma} \in K\langle\bar{K}, \eta\rangle$ where $x=\overline{5}, y=\eta$ is a solution of order In of (S). Let θ be a solution of a differential equation $B(\theta)=0$ where $B(0) \in K\{\Theta\}$. Then $\theta^{*}\left(x_{l S}, y_{j r_{j}}\right), I \leq 2 \leq n$; $I \leq j \leq m$, is a solution of $B^{*}(\Theta)=0$, where $\theta\left(5 c^{s}, \eta_{j} c^{r} j\right)=\theta^{*}(\xi) c+$, higher powers of c and B^{*} is the lowest (highest) degree terms of B if $\alpha \geq 0 \quad(\alpha<0)$.

Proof. Since the $A_{j} ; j=1, \ldots, n$, are non-singular, by Theorem 1, $X=x, Y=y$ is a solution of the algebraic system $A_{j}=0$ and by Theorem $2 \quad X=x, Y=y$ is a solution of the system (S) with $\left.K<\left(x_{2 S}\right)\right\rangle$ of order $2 n$ over K. Therefore $K\langle x, y\rangle$ is of order en. By Theorem 3 there exists an isomorphism

$$
\begin{aligned}
\sigma: & x \longleftrightarrow \xi \\
y & \vdots
\end{aligned}
$$

Therefore, $\theta(x, y)$ is a solution of $B(\theta)=0$. Now, $B(\theta(x, y))=B^{*}\left(\theta^{*}\left(x_{\ell s}, y_{j r_{j}}\right)\right) c^{\beta}+$ higher powers of c. Hence θ^{*} is a solution of $B^{*}=0$.
2. The n-Body Problem

$$
\begin{gathered}
X_{i}^{\prime \prime}=\sum_{j \neq i} \frac{N_{j}\left(X_{j}-X_{i}\right)}{R_{i j}^{3}} \quad i=1, \ldots, n \\
Y_{i}^{\prime \prime}=\sum_{j \neq i} \frac{M_{j}\left(Y_{j}-Y_{i}\right)}{R_{i j}^{3}} \\
Z_{i}^{\prime \prime}=\sum \frac{M_{j}\left(Z_{j}-Z_{i}\right)}{R_{i j}^{3}} \\
R_{i j}^{2}=\left(X_{i}-X_{j}\right)^{2}+\left(Y_{i}-Y_{j}\right)^{2}+\left(Z_{i}-Z_{j}\right)^{2}
\end{gathered}
$$

This is a system with $3 n$ degrees of freedom. The differential field K is $C\left(M_{I}, \ldots, M_{n}\right) ; C$ is the field of complex numbers and the $\left(M_{i}\right)$ are n transcendental constants.

This system, clearly, satisfies the conditions of Theorem 1, 2. Therefore:

$$
\begin{aligned}
& x_{i}=x_{i}=\sum_{k=-1}^{\infty} x_{i k} c^{k} \\
& Y_{i}=y_{i}=\sum_{k=-1}^{\infty} y_{i k} c^{k} \\
& Z_{i}=z_{i}=\sum_{k=-1}^{\sum}-0 z_{i k} c^{k}
\end{aligned}
$$

is a solution of (S), where $\left(x_{i,-1}\right),\left(y_{i,-1}\right),\left(z_{i,-1}\right)$ is a generic solution of the homogeneous linear system

$$
X_{i}^{\prime \prime}=0, Y_{i}^{\prime \prime}=0, z_{i}^{\prime \prime}=0 ; \quad i=1, \ldots, n
$$

The field of constants of $\left.K<\left(x_{i,-1}\right),\left(y_{i,-1}\right),\left(z_{i,-1}\right)\right\rangle$
is $D=K\left(\left\langle\left(x_{i,-1}^{\prime}\right),\left(y_{i,-1}^{\prime}\right),\left(z_{i,-1}^{\prime}\right),\left(u_{k}^{u} u_{l}^{\prime}-u_{k}^{\prime} u_{\ell}\right)\right\rangle\right.$, where
$u_{i} \operatorname{spans}$ the $\operatorname{set}\left\{\left(x_{i,-1}\right),\left(y_{i,-1}\right),\left(z_{i,-1}\right)\right\}$.
Let $X=\xi, Y=\eta, Z=\zeta$ be any solution of order σ n of the n-body problem. Let θ be a polynomial in $\overline{5}^{\prime}, \eta^{\prime}, \zeta^{\prime}$, with coefficients in the field $K\left(\xi, \eta, \zeta,\left(r_{i j}\right)\right)$ such that $\theta^{\prime}=0$. By Theorem 4, $\theta^{*}\left(\left(x_{i,-1}\right),\left(y_{i,-1}\right),\left(z_{i,-1}\right)\right) \in D$.

Hence the highest aegree terms of θ are polynomials in 5^{\prime}, $n^{\prime}, S^{\prime},\left(u_{k} u_{2}^{\prime}-u_{k}^{\prime} u_{2}\right)$ with coefficients in K. Thus, the highest degree terms of the energy integral is a polynomial in $\xi^{\prime}, \eta^{\prime} ; \zeta^{\prime}$, and the integrals of angular momentum are of the form $u_{k} u_{\ell}^{\prime}-u_{k}^{\prime} u_{\ell}$.

Theorem 5. Let $X=5, Y=\eta \cdot Z=\zeta$ be any solution (real or complex), of order 6n, of the n-body problem. Let $\Theta \in K<\bar{\zeta}, \eta, \zeta\rangle$ and let θ be a solution of $P(\Theta)=0$; $P(\Theta) \in \mathbb{K}\{\Theta\}, P$ or orajer 1 . Then $P^{*}(\Theta)$ (the highest degree terms of $P(\Theta)$ of degree if $\theta>0$, the lowest degree terms of $P(\Theta)$ if degree $\theta<0$) is divisible by Θ^{\prime}.

Proof. By theorem 4, $e^{*}\left(x_{i,-1}\right),\left(y_{i,-1}\right),\left(z_{i,-1}\right)$ is a solution of $P^{*}(0)=0$ which is homogeneous and of order 1 . If $P^{*}(\Theta)$ is not divisibel by Θ^{\prime}, every zero of, $P^{*}(0)=$ $\Theta^{\prime}-k_{i} \Theta\left(k_{i} \in\right.$ to an algebraic extension of K), is an expoential, but $\bar{K}\left\langle\left(x_{i,-1}\right),\left(y_{i,-1}\right),\left(z_{i,-1}\right)\right\rangle$ has no exponential elements for $K\left\langle\left(x_{i,-1}\right),\left(y_{i,-1}\right),\left(z_{i,-1}\right)\right\rangle=D\langle t\rangle$. Hence $p^{*}(\theta)$ is divisible by ρ^{\prime}.

Cor. Let $5, r_{i}, \zeta, \theta$ be as in Theorem 5. Then θ cannot be an exponential.
2. Restricted Three-Body Problem.

$$
X^{\prime \prime}-2 Y^{\prime}-X=-\frac{(X+\mu)(1-\mu)}{R_{1}^{3}}-\frac{(X+\mu-I) \mu}{R_{2}^{3}}
$$

(S)

$$
\begin{aligned}
& Y^{\prime \prime}+2 X^{\prime}-Y=-\frac{Y(I-\mu)}{R_{I}^{3}}-\frac{Y \mu}{R_{2}^{3}} \\
& R_{1}^{2}=(X+\mu)^{2}+Y^{2}, R_{2}^{2}=(X+\mu-I)^{2}+Y^{2}
\end{aligned}
$$

Let $K=C(\mu)$ where C is the field of complex numbers and μ is a transcendental constant over C.

It follows from Theorems 2, 3 that (S) has a solution $\mathrm{X}=\mathrm{x}=\sum_{\mathrm{k}=-\mathrm{L}}^{\infty} \mathrm{X}_{\mathrm{k}} \mathrm{c}^{\mathrm{k}} \quad, \quad \mathrm{Y}=\mathrm{y}=\sum_{\mathrm{k}=-\mathrm{I}}^{\infty} \mathrm{y}_{\mathrm{k}} \mathrm{c}^{\mathrm{k}}$

$$
\mathrm{R}_{\mathrm{l}}=\sum_{\mathrm{k}=-1}^{\infty} \mathrm{r}_{1 \mathrm{k}} \mathrm{c}^{\mathrm{k}} \quad \mathrm{R}_{2}=\sum_{\mathrm{k}=-1}^{\infty} r_{2 k} \mathrm{c}^{\mathrm{k}}
$$

x_{-1}, y_{-1} is a generic solution of the homogeneous linear system:

$$
\begin{gathered}
X^{\prime \prime}-2 Y^{\prime}-X=0 \\
Y^{\prime \prime}+2 X^{\prime}-Y=0 \\
r_{1,-1}^{2}=X_{1,-1}^{2}+Y_{1,-1}^{2}=r_{2,-1}^{2}
\end{gathered}
$$

Note that if $X=\bar{\xi}, Y=\eta, R_{1}=\rho_{1}, R_{2}=\rho_{2}$ is any solution of (S) then

$$
\left.\left.K<\bar{\xi}, \quad \eta, \quad \rho_{1}, \quad \rho_{2}\right\rangle=K<\xi, \quad \eta\right\rangle
$$

Lemma 3. Let $X=a, Y=b, R=\rho$ be a generic solution of the system:

$$
\begin{aligned}
& X^{\prime \prime}-2 Y^{\prime}-X=0 \\
& Y^{\prime \prime}+2 X^{\prime}-Y=0
\end{aligned}
$$

$$
R^{2}=X^{2}+Y^{2}
$$

Then the field of constants of $K<a, b, p\rangle=K\left(C_{1}, C_{2}\right)$ where

$$
\begin{aligned}
& C_{1}=a^{\prime 2}+b^{\prime 2}-\left(a^{2}+b^{2}\right) \\
& C_{2}=a b^{\prime}-a^{\prime} b+a^{2}+b^{2}
\end{aligned}
$$

Proof. $\quad C_{1}^{\prime}=2\left(a^{\prime} a^{\prime \prime}+b^{\prime} b^{\prime \prime}-a a^{\prime}-b b^{\prime}\right)$

$$
=2\left(a^{\prime}\left[2 b^{\prime}+a\right]+b^{\prime}\left[b-2 a^{\prime}\right]-a a^{\prime}-b b^{\prime}\right)=0
$$

$$
C_{2}^{\prime}=a b^{\prime \prime}-a^{\prime \prime} b+2\left(a a^{\prime}+b b^{\prime}\right)
$$

$$
=a\left[b-2 a^{\prime}\right]-\left[2 b^{\prime}+a\right] b+2\left(a a^{\prime}+b b^{\prime}\right)=0
$$

Let $u=a^{\prime}-b \quad$ then

$$
u^{\prime}=a^{\prime \prime}-b^{\prime}=2 b^{\prime}+a-b^{\prime}=b^{\prime}+a
$$

and $u^{2}+u^{\prime 2}=\left(a^{\prime 2}+b^{\prime 2}\right)+\left(a^{2}+b^{2}\right)+2\left(a b^{\prime}-a^{\prime} b\right)$

$$
=c_{1}+2 c_{2}
$$

Also, $a^{\prime} u-a u^{\prime}=a^{\prime}\left(a^{\prime}-b\right)-a\left(b^{\prime}+a\right)$

$$
\begin{aligned}
& =a^{12}-a^{2}-\left(a^{\prime} b+a b^{1}\right) \\
& =u^{2}-C_{2}
\end{aligned}
$$

Therefore, $\left(\frac{a}{u}\right)^{\prime}=\frac{u^{2}-c_{2}}{u^{2}}$
Also, $u^{2}+u^{\prime 2}=C_{1}+2 C_{2}$ implies

$$
2 u^{\prime}\left(u+u^{\prime \prime}\right)=0 \text { but } u^{\prime}=a+b^{\prime} \neq 0
$$

since a, b is generic, so that $u^{\prime \prime}=-u$
let $\quad v=\frac{a}{u}-\frac{C_{2}}{C_{1}+2 C_{2}} \frac{u^{\prime}}{u} \quad$ then

$$
\begin{aligned}
v^{\prime} & =\frac{u^{2}-c_{2}}{u^{2}}+\frac{c_{2}}{C_{1}+2 C_{2}}+\frac{c_{2}^{\prime} u^{\prime 2}}{\left(C_{1}+2 C_{2}\right) u^{2}} \\
& =1-\frac{c_{2}}{u^{2}}+\frac{c_{2}}{c_{1}+2 c_{2}}+\frac{c_{2}\left(c_{1}+2 c_{2}-u^{2}\right)}{\left(c_{1}+2 c_{2}\right) u^{2}} \\
& =1
\end{aligned}
$$

Since

$$
\begin{aligned}
\mathrm{K}\langle\mathrm{a}, \mathrm{~b}\rangle & =K\left(C_{1}, C_{2}^{\prime}\right)\langle u, v\rangle, \\
\text { for } \quad a & =\left(v+\frac{C_{2} u^{\prime}}{\left(C_{1}+2 C_{2}\right) u}\right) u \\
b & =a^{\prime}-u,
\end{aligned}
$$

and $K\left(C_{1}, C_{2}\right)\langle u, v\rangle$ is isomorphic to
$K\left(C_{1}, C_{2}\right)<\sqrt{C_{1}+2 C_{2}}$ sine $t, t>$, we have field of constants of $K<a, b>$ equals field \mathfrak{a} of constants of
$K\left(C_{1}, C_{2}\right)<\sqrt{C_{1}+2 C_{2}}$ sine $t, t>$ equals $K\left(C_{1}, C_{2}\right)$.
Now let $\quad \alpha \in K<a . b, \rho>; \rho^{2}=a^{2}+b^{2}$ and let $\alpha^{\prime}=0$.
Let $a=\gamma+\delta p ; \gamma, \delta=K\langle a, b\rangle$
$a^{\prime}=\gamma^{\prime}+\delta^{\prime} p+\delta p^{\prime}=0, \quad \gamma^{\prime} p+\delta^{\prime}\left(a^{2}+b^{2}\right)+\delta\left(a a^{\prime}+b b^{\prime}\right)=0$
$\therefore \gamma^{\prime}=0$ and $\left(\delta^{2} p^{2}\right)^{\prime}=0$ but $\delta^{2} \rho^{2} \in K\langle a, b\rangle$
$\therefore \delta^{2} p^{2} \in K\left(C_{1}, C_{2}^{\prime}\right)=K\left(a^{\prime 2}+b^{\prime 2}-a^{2}-b^{2}, a b^{\prime}-a^{\prime} b+a^{2}+b^{2}\right)$
It is clear that a rational function in the polynomials
$a^{\prime 2}+b^{\prime 2}-a^{2}-b^{2}, a b^{\prime}-a^{\prime} b+a^{2}+b^{2}$ cannot be divisible by $a^{2}+b^{2}$. Therefore $\delta=0$ and $a=v \in K\left(C_{1}, C_{2}\right)$.

Theorem 6. Let $X=\xi, Y=\eta, R_{I}=\rho_{1}, R_{2}=\rho_{2}$ be any (real or complex) solution, of order four, of the restricted three body problem. Let $\theta \in K\left(\xi, \eta, \rho_{1}, \rho_{2}\right)\left[\xi^{\prime}, \eta^{\prime}\right]$ and let $\theta^{\prime}=0$. Then $\dot{\theta}^{*}$ is a polynomial in $P_{1}=5^{12}+\eta^{\prime 2}-5^{2}-\eta^{2}$, $P_{2}=\xi \eta^{\prime}-\xi^{\prime} \eta+\xi^{2}+\eta^{2}$.

Proof. There is no loss in generality in assuming degree of $\theta \geq 0$, since degree of $\frac{I}{\theta}=-$ degree of θ and $\left(\frac{l}{\theta}\right)^{\prime}=0$. By theorem 4, $\theta^{*}(\mathrm{a}, \mathrm{b})=0$, so that

$$
a^{*}(a, b)=K\left(a^{12}+b^{12}-a^{2}-b^{2}, a^{1}-a^{1} b+a^{2}+b^{2}\right)
$$

But θ is a polynomial in $\overline{5}^{\prime} r_{1}^{\prime}$ so that $\epsilon^{*}(a, b)$ is a polynomial in

$$
\begin{aligned}
P_{1}(a, b)=a^{\prime 2}+b^{12}- & a^{2}-b^{2} \\
& P_{2}(a, b)=a b^{\prime}-a^{\prime} b+a^{2}+b^{2}
\end{aligned}
$$

Therefore $\theta^{*}(5, \eta)$ is a polynomial in $P_{1}(5, \eta), P_{2}(5, \eta)$.

Theorem 7. Let $X=5, Y=\eta_{1}, R_{1}=\rho_{1}, R_{2}=p_{2}$ be any
real solution, of order four, of the restricted three-body problem. Let $\theta \in K<\overline{5}, \eta\rangle ; K=C(\mu)$ where C is the field of real numbers. Then θ is not a real exponential.

Proof. Same argument as for the n-body problem. For, the differential field $K<a, b\rangle$ does not contain any real exponentials.
[1] H. Bruns, Sächs, Sitzber. 13 (1887), pp. 1-39, 55-82.
[2] P. Painlevé, Comptes Rendus 124 (1897), pp. 173-196
P. Painleve, Buã. Astr. 15 (1898), pp. 81-93.
[3] Fi. Poincaré, Les Methodes Nouvelles de la Nécanique Celeste. Dover (1957).
[4] J. F. Ritt, Differential Algebra, New York, Amer. Math. Soc. Colloquium Publications, Vol. 33 (1950).
[5] A. Wintner, The Analytical Foundations of Celestial Mechanics, Princeton, N. J., Princeton University Press (1941).

