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22/

The problem of a test particle moving through a2 nlasma, causing in

ot

the process the emission of radiation by the plasme electrons, is treated

Hy

for relativistic conditions. Zxpressions for longitudinal and transverse

by}

electric field components as well as for the radistion spectrun are derived.

¢

It is found that relativistic effects are only quantitative in nature znd
do not alter the general benavior of the spectrum. In particular, no new
resonances are found. If the plasma ensemble is non-relativistic and

1 -

interacts with a single relativistic test particle, the location of the

1]
(f
)
1]

resopance i

same as in the case of a non-relativistic test rarticle.




I AT TOTIT AT
I. IIMTRODUCTIONH

a number of treatments of bremsstrahlung

Bohm and Pines™ use

N

whereas later Majumdar who also discussed the influence of magnetic finlds3,

started from the hydrodynamic eguations. recent summary was

7

A

L

and Cohen
. . . 5 - .
given by Gerwein and Guernsey” . Altschuler , and Dupree ancd Tidman

mission in the neighborhood of the plasma freguency.
g ¢ g N

conputed the resonance
It is the purpose of this revort to investigate the same problem in the

particular, the influence of relativistic speeds

relativistic frame work, ir
on the behavior of the rescnance lcocation near the plasma frequency. We
it appears to vbe the

base our analysis on Altschuler's formalism, since

simplest and most straight-forward approach. We will thus obtain expressicns
article in the

for the radiation emitted by a single relativistic test p
oresent,

presence of a plasma., We assume taat no external magneti

equations under

9

We first review the derivation of the aydrodynamic e
relativistic conditions (Section II). We then derive the electric field

IV). The analysis of the

distributions and their spectrum (Sections III and
in Section VI the results

radiation spectrum is given in Section V. Finally,

of the averaging procedure over collision parameters are obtained.

II. THE BASIC EQUATIONS OF A RELATIVISTIC FLUID

We denote the spatial coordinates by X1 Xps X3 and let Xy = ict.

The summation convention is used, Latin subscripts take the values 1, 2, 3, Uy

Greek subscripts the values 1, 2, 3.



Since in & fluid the number of particles must be conserved (disregarding

ionization and recombination processes), we have
/3t + B(nva)/axa =0, (1)

where n is the particle density, vy the fluid velocity vector. The covariant

formulation of Eq. (1) can be written as

[o] - [o JN—. o
oy Vi)/axi = 0, u° = nm_. (2)

© is the prover number density.

u® is the proper density of proper mass, n
m is the rest mass of each particle, and Vj is the usual relativistic

fouravaelocity vector defined as
Vi = [ va//(l—vz/cz), ic/V(1-v2/c2) 1. (3)

Furthermore,

o]

s L
n” = n y{i=v-/Cj.

The set of equations describing conservation of momentum and energy
in a relativistic fluid in the presence of an electromagnetic field reads in

usual notation

a(r(3) + ng))/axk = 0, (5)
ik ik
where8 3
T(l) = [u® + u%°/c? + p/c?lv.v. + pd (e)
. LU / B bl 1"k POi 0 \
and
(2) - 2 2 - T
220 = (1/8n) [E2 + B2] - (1/km) [E B, + B 3,1, ()
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o2 = () BB = o) 12 2 /e (@2 4 22). (8)

Here, p is the pressure, ¢° is the internal energy per unit proper mass in a

> -
reference frame which moves with the local velocity of the fluid, E and B

b

are electric and magnetic field vectors.

For the total energy and momentum tensor of the electromagnetic field

as given by Egs. {7) and (8}, 1

awgi)/axk S (9)

waere fi is the Lorentz force density written as four-dimensional vector, viz.,

o~ - T
.Li ‘ij uj/c, (10)
with
= . - = 3 o L., = ! .
Fij 3Ai/axJ BAj/axi, Jj (Ja, icen®), A (Ad, ig) (11)
S and en® are current dencity wvectar and ehavee Jdensity. 3 oand A oare
W v - v s

vector and scalar potentials.

Combining Egs. (5) and (9), we obtain

=(1) =
oy /Xy = f

The four equations represented by the tensor equation {12) describe
conservation of energy and momentum in a relativistic plasma in the presence
of an electromaznetic field. They are invariant with respect to Lorentz
transformations. The four eauations can be separated in the following two

sets of eguations:

3Iy?vvy) /oxy + 3(Ly2vy) /ot = - op/3x, - en[z, + (?XK)S/C], (13)



a(Lyzva)/Bxa + 3(Ly2)/3t = 9n/c?23t - en(ENva)/c2 s (1h)
“here
L= w1 + (r/r=1) (p/u°c?2)], v = 1//(1-v2/c2), ¢° = n/{r=-1)y°.  (15)

I' is the adiabatic coefficient.

fo linearize EZgs. {13) and (1h), we define
D=p.+FP,n=n_+I, T =0+E 2 =0+3

wnere o oand ng denote the uniform pressure and density distribution of

[
aid

the system in e

Q

u

librium. Together they descrive the relativistic thermal

motions in the plasma. Using Mas. (15) and (16) in Zq.{13), we obtain

n azno (BVB/Bt) = - en T

o - 37/3x,, (17)

B8

is the thermal plasma sceed. The parameter a is due to the relativistic

temperature of the plasma. For a non-relativistic ensemble, a = 1. It is
worth noting that definition (18) does not hold in an external mesgnetic
field that would introduce additional terms.

Added to the eguations of motion are the linearized ifaxwell Zguations
>
-

for the field vectors T and B, includinz a uniformly moving test particle:

foe

IxZ = - 3%/cdt, (19)
Ux% = 9%/cot - Lmeno‘%/c + lmg (R/e) 8(F-at), (20)



UxE = ~lmell + hmg 8(r-ut), (21)
UXE = 0, {(22)
(23)
l-axis.

> >
s{r-ut) = é(xl—ut)-é(xg)-s(z3) .
U is the uniform speed of the test particle moving parallel to the x

The test particle is represented by the two terms containing §-functions on

e

S) to (22) are the basie

the right of Egs. (20) and (21). Their invariance properties are discussed
11

Egs. (11), (17), (1
nd (22) are not independent,

Thus, the set of basic equations

m

by Landau and Lifshitz
However, Fgs. (1)

eguations of our problem.
to (21).

but can be obtained from Egs. (19)
in the absence of initial plasma motions reduces to (17), (19), (20), and (21).
The relativistic changes are twofold: if the mean speed of the ensemble
is relativistic, a? # 1, and may g0 as high as 5 for v - ¢ and T - 4/3.
2 along to document the influence of relativistic energies
classical radiation

15ve carried a

W27
the ensemblie on the structure of the eguations,

of a
theory breaks down in this domain as can e seen, for inst
cross sections for temperatures of the order

vehavior of the bremssitrahlunz
12

-

1 keV and abovey c.f. Oster
0f major importance for our purposes is the case where the ensemble is
= 1, but the test particle has a relativistic

non-relativistic, i.e., a
speed u »+ c. In comparison with Altschuler's treatment, terms of order u?/e?
may not be neglected any longer and in particular the transverse electric

field derived in the next Section must be included in the spectrum calculations,




III. SPATIAL ZLECTRIC FIZLD DISTRIBUTIONS

Zlectric field and charge density distrik tions are comouted with the

z2id of the well-knowvn methods ¢f Fourier transform36:
Pr,t) = (20)7° [[[[F, (k,0) exp[i(ker-ut)] ak du, (24)
-0
> > - teo > > e g
§{r-ut) = (2n) ffffé(w—K'u) expli(ker—-yt)] dk dw , (25)
> >

where dk = dkxdkydkz. The vector x is the wave vector, rp is the angular
freguency.
Applyinz the Fourier transformations (24) and (25) om ®as. (17), (19),

(20), and (21) results in

- >

iva?v = eE/m + vZikil/n_, (26)
>

Ex7 = wB/c, (271)

- . > > > &> >

iBxE = - igh/c - hnenov/c + 2qu &{w=keu)/c , (28)

i%.F = = hreN + 29 S(w-Keu) . (29)

It is readily seen that aside from the appearance of aZ in Eq.(26) the
relativistic case is formally identical to the non-relativistic case.
These four vector equations constitute ten linear eguations. In

>
writing these equations we assume that the wave vector k is parallel to the

xl-axis. We now split the electric field into a lonzitudinal component

>
varallel to the propagation vector k, and a transverse field component (EE)

- —) . -
perpendicular to k. Ve then find




> >
E [{xeu)y - kzvz}
> . > >
Ll(k,w) = 2ai Su=rea) , (30)
szuzn + v2x? - 42a2]
;-)- >
. alulk?u -~ k{Zeu)] R
Ez(k,w) = 2qi {uw-keu), {31)
K202 + a2(k2c2-y,2)]
w2 + (?-E)w w2a2
> e - - > -
H{k,w) = (g/27me) S{w=keu), (32)
wZ +K.2V2'—u)23
where
— 2 =
w = bre no/mO (33)

D
represents the plasma frequency as in the non-relativistic case, lote, however,
; . X 2z 2 E 5 ,

that m is the rest mass. The veetors ml(ﬁ,w) and mZ(K,m) dencte the

Fourier components of the longitudinal and transverse electriec field
components. The corresponding spatial components can be written down by

usinz Egs. (24) and (25), viz.,

-+ k]

o e iz{(k'g)‘ - 12427 s .
E(r,t) = (a/bv3 fjj — expline{r-ut)] ax, {(34)

1 = ,L{uz + 12242 . 22 (ceu)2]
.. +o (T 120 - R(Tem)]
B.(r,t) (ga?/Ln2) fff — X

2 —o kz[wZD + 32x202 < a2(k-u)?]

> 3> > >
x  explike(r-ut)}ak , (35)

. too o2+ (Fe0)2 - (Ben)2a2
B _ ) o N TR, p
N(r,t) = (g/8nce) fff — exolike (r-ut)}dk. (36)
- w2+ k2v2 - a2(keun)?

In deriving these eguations we have integrated over frequency.
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the transverse field E, from Ba.{35).
IV, SPECTRUM COMPONENTS

In the last Section longitudinal and transverse field components were
derived. Using these expressions, we now obtain the spectrum components
needed to computed the emission coefficients.

It follows from the theorv of Fourier transforms that we can write

for Eg.(2k)
B(F,0) = 1/(2n)~32 [ ¥F,0) exp(if-?) af . (37)
Then, from Egs. (30) and (31), we get

> > a as

N 32 Hlalkeu) - kove]

% (r,n) = 2ai/(2w) fff x
2[p 2 + v2x2 - ;2a2]

x exp(ig';) s{p=F.0) a% . (38)

se . (628 - R(ED]
£ (T,0) = 2giay,(2n)”" " [f] x
kz[wnz + a2(k2c2-02)]

x  exp(ikeF) &(w-Eeu) dk. (39)

Tgs, (38) and (39) are written for a test particle moving parallel to the
~ -~
xl-axis. Let XO, Yos 24 denote the unit vectors along the Threse axes of

a Cartesian coordinate system. Then, Egs. (38) and (39) zive
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-

lox /u+x 2. +%k 2]
> 3/2 L X S Syvo T
E (ryw) = 2qi/u(27) ff = L £ 0 x
1 [w2/uZ + 5,2 + k2]

x exp[i(wx/u+kyy+kzz)]dkvdkz (L0)

[mpz - w2(a2u2 —v2)/u? + (k 2+ k_2)v2]
J A

52(;,m) = 2qazim/u(2n)3/2 x

2/ + 52 4k 2k - (% u/u bk D :
[{w¢/u k Z 4k JuX | (xom/u B+ kzzo)w]

xff X
[W2/u? + %2 + 5,2] [w? + a22(k 24k 2) + a2y?(c2-u2)/u?

Py o

x expli(wx/u + kyy + kzz)] dky dk, . (L1)

-5

In these eguations, kx, k kz are the three components of the wave vector Kk,

y’
-3
Xy ¥y Z are the three components of the vector r. In deriving Egs. (L0)

and (41) we have used the identity
s(u-igu) = u™h 8(x ~w/u) . | (h2)

We now take our electron to be fixed in the plasma, i.e., we make the
. . . . 10 .
straight-line approximation™ . Let the electron thus be at the point (o,b,0).

Then, we can write for Eq.(h0):

B, (byw) = = [2qim/u2(2w)3/2] LI (L3)
By (byw) = = [20/u(2n)3/2] a1 /o0, ()
Blz (b,w) =0, (L5)

whereas for the transverse.components from Eq.(ltl) we get
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. . 2 . L
zgx(a,w) = - [2qa21w/(2ﬂ)3/ 1 {1, - (w2/u2)13; . (45)
s, (o,0) = - [2ga2w?/u(2r)3/2] 31,/3b, (47
5, (b,0) = 0. (48)

The integrals I I

. L,s I are defined by
i . o]
+co
I, = Jilx -{wZD ~w?(a2-1)H{w 2= («?/u?)(au?-v2) + (k24K 2)}] «x
-0 R P +
o 20024 % 2 4+ 1 2171 s 5
x Ekp(lbky) Tw?/u+ Ly +k, ] axy dk, (49)
+®
= 245202 (k 24k 2 2,2 (0212 ju2 3 v 3 l
12 {i[wp a‘c (ky PZ ) + 2%l (et=u?)/u ]exp(loky) dﬂy dk,_, (50)
e 1
I = [[{lw2/uZ+x 24k 2] [w 2+a2c2(k 2+k_2)+a202(c2-u?)/u?]} x
3 % vz P v oz
x exp(idk ) dk  dk, . (51)

b is the impact parameter.
The integrals (49) - (51) are discussed in the Appendix. Their solutions

are grouped in the fllowing according to the cases au < v and au > v.
CASE (1): au < v

In tihis case the integrals (43) to (45) can be solved by contour integration;

c.f. Appendix. On solving we obtain

Elx(b,w) = -/ (2/7) {qiw/uz(wz-wplz)] {wzﬁo(bw/u) - wﬁlzxo(bkl)} . (52)

I
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and
w 2 =w 2 - w{aZ-1). (55)
1 L
i and X. are modified 3essel functions of the second xind. At w? = whz/az,
o 1

ix iy
Ttosnital's rule. Tor a non-relstivistic ensemble. Zcs. (52) and (53)

-
&

reduce to Altschuler's eguations , since no relativistic terms are left.
Egs. (52) and (53) are valid for frecuencies that satisfy tae conditions

A

Alz > 0, or

r 2 272N n I~
in / ,T\L] (,‘2 - Vé/u.{_l < 1. {ca)
This inequality is always satisfied for au < v. rence, it holds for in

whole spectrum. I a2u > v, It is valid if

o< w /(a® - V2 2yt (7)

P

i.e., only for frequencies velow the resonance toc be derived presently.
CASE (2): au > v

. 5 . a i - L
In this case, the solutions of Has. (43) end (LL) are:

)

Lad




- 1k -

'lx(b’w) = - /(2/n) {Qw/uz(wz—wplz)] x

o~

i
(8]

S

< (n/2)e 123 (be) + 10?2 (ou/u) + (n/2)w 2V ()],

dly(b.w) = Y(2/7) [q/u(wz-wplz)] x
x (WP (ow/u) + (n/2)u 2eY, (bg) = i(n/2)w , 20T, (b0) , (59)
waere
£2 = 2[a2/v2 - 1/u2] - m:2/v2 ] (60)

Jos Jl, and Yo’ ¥, are Bessel functions of first and second kind. Zgs. (59)

and (58) are valid for 2 > 0. If we define a resonance frequency w_, oY

o, = w V(a2 = v2/u?), (61)

o

nd (59) are valid for freguencies w > w_. A5 compared with the case 2 = 1,

a relativistic mean speed thus merely reduces the rescnance freguency by an

oY)

insignificant amount.
The solution for the transverse component, Egs. (L45) and (47), is

independent of the relative size of au and v. It reads

£, (byw) = = /(2/7) [qaziw/(wz—w 2)]{(m2/u2)h (bw/u) -A 2K J(0A,)1, (62)

5, (0y) = V(2/1) 19750 fulu? oy V10 (01)) = (w/w)iy(bo/a) , (63)
“here

A= W - 1/2] +u 2e?e = /ey +w 2feta? (64)

Again it is easy to show that Bgs. (62) and (63) are continuous at w = w




=)

and at w = w» /a. Jote that the transverse field was neglected in Altschuler's
D

non-relativistic limit.

We are now ready to compute the radiation emitted by the »lasma. The
. . . & | . .
conceptual approach, as outlined by Altschuler , is to consider an arbitrary

electron interacting with the combined field of the (positive) test particle

(]

and its shielding cloud, as exvressed by the fields which we derived in
the previous Sections.
I 03 . . > * B
The acceleration of the electron at position r and time t due to the

electric field E(T,t) is

- <> -
a(b,w) = -(e/m) E(b,w). (65)
Then, the spectrum function Qw(b,u) follows from Larmor's formuls
(byw) = (4e2/3¢3)[2%(v,0) 2(b,w0)] (65)
\‘éw sw) = (d4e“c/3c?)la sW/taAN D/ 1, 0o

where starred quantities are complex conjugates. Eq.(66) was also used

by Altschuler in his non-relativistic derivation. Since we have assumed that
the particle is in that system of reference in which it is at rest at a
given moment, Eg.(66) still holds in our relativistic context.

LZo.(66) can be justified in still another way. In the reference frame
in which the electron is initially at rest, and the test particle moves by
with a speed u v ¢, the corresnponding motion is non-relativistic throughout
the interaction. This means that in this frame of reference the radiation

. st oas . 10
nrocess can be treated non-relstivistically; c.f. Jackson, v.5147 7. Thus,
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relativistic effects will enter through the transverse component of the
electric field and, pessibly, relativistic thermal motions.

From Egs. (65) and (66) we ovtain

> > . > . *> -
g (vyw) = (he"/3em?) [E)(o,u) B *(b,0) + Ej(0,0) E *(b,0) ], (67)

where we have substituted for the electric field its longitudinal (El) and
transverse components.
Ls one expects, the spectrum function depends on whether u < (v/a)

(subsonic case), or u > v/a (supersonic case). ¥e nov discuss these two

cases separately.
(1) SUBSOHIC TEST PARTICLE (u < v/a)

To obtain the spectrum function in this case, we substitute Egs. (52),

\

(53), {63) and (64) into Eq.(57) anad

by

ind

i

2,(Psw) = (8e2/3nc) (ae/me?)?[c?/u?(w?-u_42)?]

x  {(e?/u?) {7 (bu/u) - wmlz‘:io(b)\l)}z + {(wd/a)xg, (ou/u) -

2y v - 2 4 2..2 27422 7 [ - 2y 2
- wy Alnl(bkl)} + aw?ut {{w?/u?) ho(cw/u) AQ &O(bk2)} +

+ wha DR (0A,) - (w/u) X (bw/w)}?L . (58)

The first two brackets on the righi-hand side denote the terms due to the

longitudinal electric field distribution, the last two brackets are due to

5

the transverse electric field. Agzain, we have two relativistic effects present

A

in Tg.(568): one is given by the appearance of the factor a that describes

.

relativistic thermal motions, whereas the second one refers to the test particle
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and manifests itself by the fact that the arzunent of the
derived from the transverse electric field denends on y = 1//(1-u2/c2);

c.fe Da.(6h).

the following dimensicn=-

It is convenient to express Zq.(68) in terms o

less parameters:
Q=w/w; n=ulvy 8=ulc; A= b/(v/mﬂ) = Db/, (629)

where A. is the Debve-length. Then, Zg.(63) takes on the form

i

20(2,2) = (8e?/3em) (ge/me?)? [czwnz/V“n“(azﬂz—l)Z] x
< {a2{a%g_(Aa/n) - £,%_(A5/n)}2 + {2%;(a0/n) - £,28,5, (g, /) )2 &

+ a“az{gzxo(xﬂ/n) - Eh“Ko(Aah/n)}z + n“a“{ghxl(xgu/n) - 2 (Ae/n) 2}, (79)

where
g, = /In? + 22(1-a2n?)], (71)
gr = /[1 - p2(a2-1)], (72)
g, = /[a2(1-g2) + g2/22]. (73}

(2) SUPERSONIC TEST PARTICLE (u > v/a)

Int his case, we insert the supersonic solutions of the longzitudinal
electric field, that is, Egs. (5%) and (59), into Eq.(67), and obtain

the spectrum function
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% (v,w) = (8e2/3qc) (qe/mcz)z[cz/uz(wz-mplz)} x

w

{2/ (w2 2) (3 (00) 2+ (02/02) (02K (bu/a) + (mu_)2/2)Y_(0g))2 +

|
?
+ /) (bu/u) + (ﬂwplz'z oY {vg)32 + (n2u  #/4)g2{31 (500} + 1
+ mzuza“{(mz/uz)xo(bw/u) - AQZKO(be)}Z + ‘
+ ot a4{x Il(bk ) = (w/w)X (bw/u)} } (k)

Again, the last two brackets on the right are due to the transverse electric
field distribution and contain the relativistic effects of the test particle's
motion. All cther terms are derived from the longitudinal field distribution.

Rewriting Zq.(7L) in terms of dimensionless parameters results in

9,(1,2) = (8¢/3mc) (qe/mcz)z[czwpz/V“n“(azﬂz-l)zl X

< {n22/T (e, /) B + 220 (/) ¢ (7/2)5,27 (he,/n)}2
{ 3 W i) 2 h'a 2 . 2 ) i r Ll’ 2 T 2 -+
+ 127 £, (a/n) + (5/2)¢, g (e /)32 + (2 /h) g e 22 {0, (085/n) )2
+ a"?{e?K (a/n) - £) 2% (Ag, /n)}2 +
+oataMg X (g /n) - ek 00/n)¥2) (75)
where }
g5 = /[2%(a%n?-1) - n?] . (76)

The other terms are already defined. |

The two spectrum functions {(70) and (75) are the zeneralized form of

e i 3 o e L,

P

6
Altschuler's eguations. For non-relativistic situations, i.e., for 2 = 1
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and 3 << 1 or Y = 1, they reduce to Altschuler's corresponding eguations. If
we further assume W= 0, that is,in the absence of plasn Loth Taosz. (7C)

and (75) give the same spectrum function, viz.,
05(2,2) = (8e?/ 3mc) (ge/me?)2(c?w?/u*)[{K,(A2/n) 12 + (K (22/n)}?]. (17)

- . 11
26.(77) agrees term by term with Oster's result™ .
Tor epnlications, the collision parameter must be intezrated out. e

hus discuss the various subcases after introducing this "radiation cress

of the radiating electron with respect to the test particle. The average

azdiation is found from the radistion cross section x{w) as defined by
[JzcksontY]
o{max)
x(w) = 2 5 (250)db, (78)
o{min)

Thaaid A add

wnere b(min) and b(max) are minimum end mexinuwn impect tarameters. Th

Y
phivsical dimension of Yw) is erg cm® / sec™L,

We will obtain the radiation cross section for the following cases:

(1) in the absence of nlasma, (2) in the presence of plesma, sudsonic case,

| (3) in the presence of »nlasma, supersonic case. In esch of these cases, the

linits of high and low freguency will be discussed.



(1) IN THE ABSESCE OF PLASMA

Qu(b,m) = {8e*/3c3m2) (g2w2/uM) [{KO bw/u)}? + {Kl(bm/u y}2+

+ (£ (bw/u) - y=2% (ow/uy)}2+ {Y‘lﬁl(bw/vu) - 7y (bw/a)}?], (79)

y = 1//(1 - u?/c?) (60)

as before. The first two terms on the right which are due to the longitudinal
field distribution do not contain relativistic guantities. The remainder of
the two brackets contains the influence of the transverse electric field

and, thus, the relativistic parameter y from the motion of the ion. In the non-
relativistic limit y = 1, Eq.(79) reduces to (77).

Upon multinlying both sides by 27bdb and integrating we zet

x{w) = (16e2/3¢c) (ge/me?)2 (eZ2u2/u*) x
x  [(1-1/¥2) (o 2/2v2){K 2 (gp/yu) - Klz('%w/yu)} +
+ (boyu/uy?)K (bow/yu)x, (bgu/yu) +

+ (@b u/w)X (bgw/u)X, (bjw/u) - (2bou/yw)Ko(mbo/u)Kl(bom/Yu)], (81)

where we have set b(min) equal to the 90°-deflection narameter bo, as is
L P e 129 . . . 3
customary in the straizht-line aporoximation [Oster™~]. Since b(max) + =, we

nave x(w) + O at the upper boundary. Eq.(81l) is the generzl form of the

radiation cross section in the absence of plasma,
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OQur straight-line approximation is most accurate at low frequencies, in
particular, at radio freguencies. For smzll arzuments the modified Bessel-

functions Ko(x) and Kl(x) can be approximated by
Ko(x) « ln(2/Y2x), Kl(x) « 1/x3 x << 1, (82)

where y, = 1.756... is Euler's constant.
Inserting (82) into Eq.(81) leads to

x{w) = (16e2/3c) (qe/me2)2 (e2/u2) x
« (n(2yu/o uyp) = F(1-1/42) + 3(1-1/42) (u420,2/y2u2) [1n(2ya/oguy,) 12} (83)

= K - A L - L s > - R R I I 1 . . .
Eguation (83) denotes the radiation cross section Tor low freguencies,

to be precise, for , << Yu/bo. Using the definition of y in Eq.(83),

ve get

x{w) = A [(e2/u2)1lnx - 1/2 & (1nx)2/2x2], (8L)
where

A = (16e2/3c) (ge/me2)2, x = 1.123 u/bow2 . (85)

Since Eg.(83) holds for x »»> 1, where x is defined by £g.(85), we see

that the third term on the right-hand side of Eqg.(84) is small for all
practical purposes. This behavior of y(y) vs. wa/Yu agrees with Jackson's
result (p.52h)10.

In the non-relativistic case, where y = 1, finally, Eq.(83) gives

x(w)=(16e2/3c) (qe/me2)2 (c2/u2) In(2u/b uy,) (86)
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and agrees with Jackson's formuls (p.Sll)lO by taking bo = A/mu.
For high freguencies (w >> y u/bo), Eq.(81) gives

x(w>>yu/b ) = (16me?/3c) (qe/me2)? (c2/u?) x

x [(3/2)exp(-20 u/u) = v~ 2exp[-2b_(w/u)(141/7)], (87)
where we have used the following asymptotic values for Ko(x) and Kl(x):

Ko(x) = Kl(x) = (n/2x) e~*, x >> 1. (88)

For non-relativistic situatioms, formula (87) reduces to

x(w) = (8e27/3c) (qe/me?)? (c?/u?) exp[-2b_w/ul, (89)

6

which agrees with Altschuler's result .
The discussion shows that our results reduce in the absence of plasma
to the expressions that are available in the literature.

(2) IN THE PRESENCE OF PLASHA: SUBSONIC CASE

We have obtained two different spectrum functions (68) and (Th4)

14

;Ex

depending on the thermal speed and the velocity of the test particle.
first discuss the subsonic case where u < v/a.
To obtain the radiation cross sectiom, we integrate Eg.(68) over all

impact parameters and find




- 23 =

(16e2/3c) (ge/me?2)2 [c2/u?(w 2?] x

<
~~

€
~—

H

X

{(1 + a4) (msbo/u) {O(uow/u) Ky (o wlu) +

+

(mplqb02/2) (m2/u2 _112) [{K]_(bo)\l)}2 - & (bo)\l)}zl *

o}

: b~ - AR o fas Y f~ 3 2 (v s 7.3
+ A0 KD [ - 3 i - K u, +
w‘l 1 ol Al) \0A) V2w m‘l uo/u/ ‘o\“oAl) 3\u w/dy

+ a%w?u?(b_2/2)ap% (w2/u?-2p2) [{K (0Ap)}? = {K;(025)12] +
+ a5 K (BA,) Kiboro) -
- 2atw*ap X (b w/u) £ (25)) . (90)

The details are the same as in deriving 20.(81). Zxpression (S0) represents

5.

the radiation cross section in a plasma when the test particle's speed is

smaller than the thermal speed of the electrons in the system. The relativistic

effects due to the test particle are included in the parameter AE which 1is

Gefined (c.f. Eq.(6L4)) as
= [w?/y%u + mpzlazczll/2 . (91)

Again one may retrieve the general non-relativistic case by using
Zzs.(54), (55), (80), and (91). It mey suffice to quote the low-frequency

v Z

limit (52) which we obtain for w » O from Hg.(20):

x{w*0; u<v/a) = (16e2/3c) (ge/mec2)2 (czwnz/uzvz) x

x [(b02/2){ Kg(bwplv) - Klz(bow/v)} + (vbo/wp) Ko(bowp/v) Kl(bowp/v)]'

Since by << v/wp, i.e., the minimum impact parameter is much smaller

than the Debye length, Bq.(92) sives
x/w*0) = (16e?/3c) (ge/mc?)? (c2/u?) x

x {ln(2v/y2bowb) - 1/2 + (bozmnz/vz{ln(Qv/bowag)}2]. (93)

(92

)
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A3 before,
v/bomp >> ln(2v/bOwPY2), (k)
and we can neglect the third {erw on the right. Thus, finally
x{w>0) = (16e?/3c) (qe/mc?)2 (c2/u2) [1n(2v/ybow)) - 1/2]. (95)

This expression agrees completely with the low-freguency approximation

. i2 y . . - o s . 5
zZiven by Oster for a spherically symmetric, siielded potential of the test
particle. We see tnat the relativistic situation leads to the same result

as the non-relativistic cne.
{(3) IN THE PRESENCE OF PLAS:A: SUPERSONIC CASE

The case of a supersonic test particle can be treated in a manner
completely analogous to the last subsection. The elementary, but lengthy

calculation results in the expression

x(w, w>v/a) = (16e2/3c) (qae/me?)? {Cz/u2(m2_wD12f] *

x[(Zw?a_ 4D2/8u?) (I 2(br) + J12(br) + Y 2(bg) + ¥ 2(br)} -

- (w’b/u) Ko(bm/u) By (bw/u) + (nzwnl4c2b2/8) x

x {7 2(bg) + J12(br) - (2/b8)3,(vr)d,(be) + ¥ 2(bz) + ¥, 2(bg) -

= (2/00)Y,(g)¥1(br)} + (wutu  2b/u?[w?/u?4g?]) x

x {-(m/u)Yo(bC)Kl(wb/u) + K (bw/u)¥, (b2)} - (w3wplZC/u) (v/[w?/u2+22])
x {{w/w)K (bw/u)Y (bg) + Yo (bg)iy(bw/u)} - (a%w’p/u)¥, (ow/u)K, (bu/u) +
+ mzuz)\22("02/2)a‘+ {Koz(bxg) - Klz(bxg)} + m“a“xez{xlz(bxg) -

- B 2(oh,) = (2/DA,)K (0A5)K (oAg) Y +
b{max)

b 4y HeX (b < ;
+ 2aty AEO KO(Ow/u) hl(bkz)]bo s >
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where the parameters are defined as before. In particular,

2=02[a2/v2 = 1/u2] - w 2/v? (97)

whicn does not contain any effect of the relativistic motion of the test
particle, and hence leads to the same resonance behavior as the non-relativistic
case, although the amplitude and the width of the resonance are, of course,
different. A calculation of these details can be readily carried ocut with the
aid of Eg.(96), but requires extensive numerical work.

The major result is the similarity of the resonance behavior of the
relativistic and of the non-relativistic case. In particular, no new resonances
appear due to the relativistic motion of the test particle, and the location
of the only resonance that does occur in a non-relativistic ensemble is
independent of the magnitude of the relative speed between test particle and

radiating electrons.

I am indebied to Prof. I. Oster for suggesting this problem to me and

for his critical reading of the manuscrint.
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APPENDIX

We write the integral %_from Zq.(49) as sum of two components:

- - = T 2_ 27 2__-.\1-» I oA
I =1, Lép w{a-1)] I,,, {(41)
where
+oo 1
I, < [i exp(ibky) [(w2/u?) + 5,2 + X 2] G Ak, (A2)
and
4o 1
= i Dl 2 /42 v 2 P 217
112 {i exp(lbxy) [{w2/u?) +Ky + k, ] x
2 4 2 2 _ a2/v2)v2 + k.2 + % 21°% .. ;
x [up w?(1/u al/v2)v ky k, ] dky dlz (A3)

The integral I.. can easily be solved [Altschuler6] and becomes

11

I, =2m Ko(bw/u). (ak)

The integral 112 is similar to Altschuler's integral I. The only difference

is the definition of
22 = (e 2/v?) + w2(1/u2 - 82/v2). (A5)
6
Thus, the integral reads [c.f. Altschuler”; Appendix A]
12

1. = (2n/a2[m2-wp23) {Ko(bxl) - Ko(bw/u)} . (A6)

On combining (A1), (Ak), and (A6) one gets Zas. (52) and (53).

In the case au > v we define

z2 = w2[{a?/v2 -~ 1/u2] - w 2/v2 , (A7)
2
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and, following Altschuler's Appendix 3, obtain

I [2n/(a2w2-wp2)] {szo(bm/u) + (nmp12/2)Yo(b§) - (inwp12/2)Jo(bg) , (48)

2

. is defined in Eq.(55).

where w
P

In treating the integral 12 defined by Eq.(50), we note that ¢ > u,

and find

I, = (2m/a2c2) £ (02,), (A9)
where

A22 = w?{1/u? - 1/¢2] + (uw %/c2a?). (210)

The integral 13 is similar to integral 112, except that we have to

replace v by ¢ in its solution. Hence,

13 = (2ﬂ/[a2(m2—w‘2)] {K (pr) - € {ow/u)} . (x11)
is [e) 2 8]
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