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METHODS FOR INJECTION ERROR ANALYSIS

AND THEIR COMPARISON

J. D. Irwin J. C. Hung

Department of Electrical Engineering
The University of Tennessee

A\
SUMMARY ‘ 9’2
W,

Statistical techniques for the analysis of missile injection
errors are studied in detail. The commonly used direct and adjoint
methods are reviewed and extended. It is shown that the determination
of the covariance matrix is equivalent to the determination of two
transformation matrices for both methods. In general, the adjoint
method is more efficient., But for a special case the direct method
could be preferable depending upon the relative dimension of the system
state and the error source. Two examples are given to verify the
results. The techniques presented can equally well be applied to a

wide variety of control system problems,
INTRODUCTION

In space flight, the desired trajectory of the missile, called
the reference or nominal trajectory, is usually predetermined. Then a
guidance and control scheme is used to keep the spacecraft flying along
this reference trajectory. However, the actual trajectory of the missile,
in general, deviates from the reference trajectory due to a large
number of system errors. The trajectory errors at any time, such as
engine burnout, are called "injection errors." The type of system
errors involved will depend upon the hardware used in the system. Some
typical system errors are listed in the following.

1




Gyro drifts,

. accelerometer errors,

. platform initial alignment errors,
airborne computer errors,

misalignment of thrust axis,

. inexact knowledge of burnout time,

~N N WY
-

deviation of thrust from its nominal value,

8. misalignment of the missile's initial state, etc.

The precise injection errors of the trajectory cannot be eval-
uated due to uncertainties in error sources. Therefore we are forced
to settle for the next best description, namely, the statistical know-

ledge of the injection errors,

Since the statistical knowledge of the error sources is obtained
from preflight laboratory tests, the statistical knowledge of a certain
trajectory deviation can usually be determined. This knowledge is
indispensable for successful space flight operation. It indicates the
probability of mission success, the probable range of the target, and

it provides the information required for safety precautions.

Two methods are commonly used for statistical trajectory analysis,
2,3
namely, the direct method *>~ and the adjoint method.3’4 Some analysts

favor the former while others favor the latter.

The purpose of this paper is: first, to generalize these two
methods and formulate them in the simple vector-matrix notation; and,
secondly, to make a comparison between them, It will be shown that even
though both methods result in the same amount of information, one

method will be more efficient than the other depending upon the problem.
FORMULATION OF THE PROBLEM
Consider a missile system which is launched at time to. The

dynamics of the trajectory deviations due to system errors is represented
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by a time-varying vector differential equation

x(t) = Efx(0), £, 2] s,

which is, in general, nonlinear. 1In Eq. (1) x is an n-vector whose
components are n state variables of the trajectory and e is an m-
vector whose components represent m system errors. The state variables
may represent any dynamical quantities, such as, position deviation
components, velocity deviation components; mass, mass rate, fuel; fuel

rate, etc.

In most practical cases, the trajectory deviation is small
enough so that Eq. (1) can be satisfactorily approximated by its linear

perturbation equation about x = 0, which has the form
x(t) = A(t) x(t) + B(t) e (2)

where A is an n X n matrix and B is an n x m matrix whose ij~elements

are, respectively,

p . 3
i

b;;(0) = Se,

It is assumed that the random processes of the system errors

are independent and stationary, with a zero mean Gaussian distributiom.

(0 - == ew [-3 7% ] @
det S{2x)
where S = E [g ET] = covariance matrix of e.

The zero mean assumption is valid, since if the random system

errors have non-zero means they should be corrected before launch.

It will be shown later fhat the stationary assumption for the
error processes is practical and imposes little if any limitation on

our methods.




The assumption that the errors are Gaussianly distributed has
both practical and theoretical justifications. 1In practice, the
statistics of the individual errors can be satisfactorily approximated
by Gaussian distributions., This is equivalent to approximating non-
linear systems by linear systems. Furthermore, since the number of

system errors is large and the errors are independent of one another,

the central limit theorem asserts that the sums of these errors approaches

a gaussian distribution in the 1imit regardless of the distribution of

the individual system errors.

Qur problem is to evaluate the statistical injection errors at
a time t, >t ,
1 o

COVARTANCE MATRIX OF INJECTION ERRORS

Finding the statistical injection errors amounts to determining
their statistical distribution. Since the error dynamics are linear
and the error sources are Gaussian with zero mean, the injection errors

at any time t. > t0 also have a Gaussian distribution with zero mean

1

=

£(x) = =77 eXP [ - %f 1y ] 5)

T . . . . .
where M = E [g X ]= covariance matrix of injection errors.

Eq. (5) shows that once the covariance matrix M is determined,
the complete distribution is specified. Therefore, our problem is
reduced to the determination of M at t1 > to.

DIRECT METHOD

Beginning the analysis, the solution of Eq. (2) is
t
x(t) = 6(t,t dx(t ) + f G(t, 7)B(7T)e(T)dT (6)

t
o




where G(t,to) is the transition matrix , a function of two variables,

Due to the stationary assumption the error vector e is constant

in time, so that (6) reduces to

x(t) = 6(t,t )x(t ) + P(t)e @)
where
t _
P(t) = f G(t,T)B(TYdT . (8)
t
o

Notice that P(t) is an n X m transformation matrix.

In all practical cases, E(to) and e are uncorrelated. The

covariance matrix of the injection errors is therefore

M(t) = E[§(t)3sT(t)]
T T
= G(t,to)MoG (t,to) + P(t)s P (b) ¢))
where
M =E [x(t )xT(t )] = covariance matrix of
) =\o’= Yo L. ..
initial deviatioms

- (10)

wn
i

T . .
E [g e ] = covariance matrix of

system errors
L
Therefore the problem of determining M reduces to the determination of

the matrices G(t,to) and P(t).

As shown in (8), P(t) requires the knowledge of G(t,7") as a
function of 7 . 1In general, for a time-varying system G cannot be
obtained analytically. However, for a specific time t = tl’ the
elements of the constant matrix P(tl) can be obtained by applying the

method of numerical solution to (2) from to to t1 m times as follows.

Let E(to) = 0 and let all e, = 0, except e = 1. Then (2) be-
comes
x = A(t)x + Ek(t) x(to) =0 (1)
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where Ek is the k-th column vector of B(t). Integrating (11) from t0

to t., gives

1
X=p = k-th column of P(tl) . (12)
Or, in expanded form,
*1 Pik
*2 Pox
. = . . ( 13 )
_xn_ __pnk_

I1f the system error vector has m components, then m integrations are

needed to obtain the complete matrix P(t).

A similar procedure is used to obtain the matrix G. Let e = 0
and let all Xi(to) = 0, except xk(to) =1, Then (2) becomes

=2 (14

where 2 is the k~th column vector of A(t). Obtaining the numerical

solution of (14) from to to t,, gives
XxX=5g = k-th column of G(tl,to) . (15)

For n-th order trajectory dynamics, n integrations are required to obtain

the complete matrix G(tl,to).

A Speical Case An important special case occurs when E(to) = 0.

Under this condition, the covariance matrix of the injection error is

simply

M(t) = P(E)S P (t) (16)

and the n integrations required for G are no longer needed.
ADJOINT METHOD

In the adjoint method, we first form the adjoint equation5 of (2)

A =-aNm) A %))




where 2\ is an n~-vector. Using equations (2) and (17), the following

is easily obtained

T A -afme

Integrating (13) from to to t1

t

T T 1 T
ATEDx(E) = AT x(e ) + f A'B(t)e dt .

t
(o]

Letting

i
(=]

P itk
k = le=an

7\k(t1) =1

and noting that e is constant, so (19) becomes

= (t)) = Z&i(to)§(to) +-2§(t1)5 K = le==n
where
t
NV ' AL (£)B(t)dt k=1
Rk( 1) - -—k( )B(t) = leeen
t
o]

is a row vector of dimension m,
The vector form of (21) is
x(t;) = 6(t,,t Ix(t ) +P(t))e
where

T
A7)

T
250t

(18)

(19)

(20)

(21)

(22)

(23)

(24)



Bz(tl)

2§<t1>
P(t,) = . : (25)

.

T
B, (tp)
By comparing {(23) to (7), we see that the matrices G and P in one

equation should be identical to those in the other.

Eqs. (23) and (10), once again, give the same covariance matrix

(9) of the injection errors, which is

M(tl) E [x(tl)xT(tl)]

GM G +PSP . (9)
Therefore, again the problem reduces to the determination of G and P.

From the above derivation we see that each row of the matrix G
can be obtained by using the numerical solution method on (17) from t1
to t backward in time with initial conditions (20). Then each row
of P is obtained by integrating (22). This procedure must be repeated
n times, with n different initial conditions, to give the complete

description of G and P.

The Special Case For the same special case considered before,

_}E(to) =0,

T
M(tl) = P(tl) S P (tl) . 27

However, note that one must still solve (17) to get 2£i(t) and then

integrate (22) n times to get a row of P.




D-4.

D-5.

COMPARISON

A comparison of the two methods is shown below.

Direct Method

(1)

Given: x = Ax + Be

M and S
o

To obtain the k-th column of
P, compute the solution of

(i) with the initial condi~"

tions
e, = &y 1=1--n

(ii)
x(0) = 0

To obtain the k-th colum of
G, compute the solution of

(i) with the initial condi-

tions
e=0

(iii)
x; = é-ik i= l«==n

Perform D-2 m times and D-3
n times to give P and'G.,

M(tl) =G MZOGT +P S PT

(iv)

A-lo

Adjoint Method

Given: x = Ax + Be (1)
M and S
0
are therefore
. T . .
A= -AA. (ii)

To obtain the k~th row of G,

compute the solution of (ii),
backward in time with initial
conditions
ag (e = (ii1)

5.

1

To obtain the k~th row of P,
use the value of A (t) ob-
tained in A-2 to evaluate

the integral

t
P—i - -[ ° A'i(t)B(t)dt .
t

1
(iv)
Perform A-2 and A~3 n times
to give G and P.
M(tl) = G MZOGT +P S PT

)

Figures 1 and 2 are diagrams which illustrate the sequence of

computations required for each method.

Several remarks can be made:
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1. In both methods the determination of the covariance matrix
of the injection errors is reduced to the determination of the trans-

formation matrices G and P.

2, 1In the direct method, m + n numerical solutions are needed

to give P and G, m for P and n for G.

3. 1In the adjoint method, n numerical solutions are needed to

give G and to provide data for the n integrations which lead to P.

4. Since the system differential equation is more complex than
its adjoint differential equation due to the forcing term Be, the
complexity of each numerical solution involved in either D-2 or D-3
is approximately equivalent to each combined solution of A-2 and A-3.
Therefore we conclude that whenlg(to) # 0, the adjoint method is

always more efficient than the direct method.

5. For the special caselg(to) = 0, only P is needed. The
direct method requires only m numerical solutions while the adjoint
method still requires n. Therefore the choice of the method depends
upon two numbers n and m, which represent the dimension of state x and
the dimension of the error source e respectively. When n = m, direct
method is preferable; but when m > n, the adjoint method is certainly

more efficient.

6. For the special case e = 0, only G is needed. Both methods

require n numerical solutions and either method is as good as the other,

7. We have assumed, when formulating the problem, that the
random processes of the system errors be stationary. This assumption
imposes little limitation on the methods. For all practical cases, the
time-varying characteristics of error processes can be handled by
writing

e(t)

where e' is a constant q-vector; q > m in general. The time-varying

c(t)e’ (28)

matrix c(t) is m x q. By defining
12




B'(t) = B(t) c(t) (29)

the forcing term of Eq. (2) becomes

B'(t) ' . (30)
EXAMPLES

Example 1. Consider a simplified error dynamics of a space

vehicle given by the following set of differential equations

where

" u 3u 2 ]
y + :3 - ;g [ Yy + Y2+ ro)z ] = e + Azezt
» (31)
" u 3u 2
z+:§z-? [Y(2+r°)y+(Z+ro) z] =e2-A1e2t‘

Y,Z - nominal trajectory position

y,z - position errors of Y, Z, respectively

2 2
r =-\/; + (Z + ro) - radius from earth's center to vehicle

2
u=gr - gravitational constant

o o
By = 9.81 meters/second2
r = 6.37 x 106 meters

Al’AZ - nominal sensed acceleration along Y and Z respectively

es€y - bias in Y- and Z-accelerometers respectively

e, - constant platform drift rate about x-axis

3

t - time variable.

All errors el, e, and e3 are random, uncorrelated, and have zero means.

Their standard deviations are

10-4 meter/sec

Te

1 2

o
i

5x 10-6 radian/sec

Ci

The initial trajectory error is taken as zero.

13




Defining the state variables
X =7, X, =, X3 =2, X, = 2, (32)

the state equation of (31) is

x = A(t)x + B(t) e x(0) =0 (33)
where x = X, X,y X T
x [ 1> *20 *3» "4]
e e, e, e, 17
£= [ 1 €22 3]
o 1 0 0
3uY2 u . 3uy(zZ + :o) o
5 3 5
r r r
A(t) = 0 0 0 o ©GW
3uY(Z + r ) 3u(Z + ¢ )2
- ° 0 _—° .5 0
5 5 3
r r r
[0 0
1 A2t
B(t) = (35)
0 0
o

Notice that n = 4 and m = 3, Values of Y, Z, A1 and A2 as functions

of time are contained in Appendix 1,

Both direct and adjoint methods were applied to find the trans-
formation and covariance matrices at the final time t = 853.6 sec, with
the initial time being t = 0. The computations were carried out by an
IBM-7040 digital computer. Appendix 1 contains the computer
programs for the two methods in Fortran language and all the data. The

numerical results are given below,

14




Direct Method:

0.34014471 06  0.21969810 05 0.15577654 09
P =10.77391915 03  0.15434290 03 -0.91316429 06
0.20111238 05  0.42568219 06 -0.13046488 10
1 0.13661971 03  0.11185155 04 -0.45767998 07

0.60782003 06 -0.35535729 04 -0.50806797 07 -0.17823240 05
M = |0.35535729 04 0,20852953 02 0.,29784779 05 0.10448703 03
0.50806797 07 0.29784779 05  0,42554526 08  0,14928269 06
10.17823240 05  0.10448703 03  0.14928269 06  0.52369010 03

Adjoint Method:

0.33980686 06  0.21823815 05 0.15780548 09
P = |0.77376799 03  0.15387262 03 -0.91028112 06
0.19978623 05  0.42534883 06 -0.12998004 10
10.13642535 03  0.11184063 04 «~0.45736717 07

0.62372363 06 -0.35885207 04 ~0.51277296 07 -0.18043053 05
M = 10.35885207 04 0.20721517 02  0.29580402 05 0.10408595 03
0.51277296 07 0.29580402 05 0.42238837 08 0.14862628 06
10.18043053 05  0.10408595 03  0.14862629 06  0.52297451 03

Note that the following notation is being used above:

0.34014471 06 = 0.34014471 x 106.

Computer time (including loading time and execution time):
direct method - 0.40 minute

adjoint method - 0,41 minute.

Comparing the numerical values, we see that both methods led to
the same results, However, the direct method is more efficient in this
case since it consumed less time., This is what we expected, since here
%x(0) = 0 and n> m. The difference in time is not very much in this

example due to the small difference between n and m.

Example 2. Consider a second order system with six system

errors.

1% .

- Ax + Be
15



wher = X T e=1le e e e e e T
ex = [Xl, 2] s £ 1? <29 32 4L 5 6

0 1 1 0 1 1
1 ] 1 1 0 1

Assume x(0) = O and assume that the system errors are independent with

standard deviations

0;1 = 0?1 0;2 = 0.05 0;3 = 0.01
g = 0.2 o = 0.06 g = \/ 0.04 .
84 35 86

The problem is to evaluate the transformation matrix and covariance

matrix by both methods.

Notice, the system is time-invariant, so the solution can easily

be obtained analytically. However, to demonstrate the main theme of

this paper, we still use the numerical solution technique and let the
digital computer carry out the computations. In this system m = 6

and n = 2.

The result, for the direct method, is

[ 0.49000891 02 0.99999254 00 |
0.50000862 02 0.
T 0.99001753 02 0.99999254 00 |
P~ = | 0.49000891 02 0.99999254 00 |
0,50000862 02 0.
| 0.99001753 02 0.99999254 00 | {
|
M = | 0414854030 04 0.19650208 02 | |
| 0.19650208 02 0.34999478 00 | s

and for the adjoint method i

16



0.48985892 02 0.99994580 00 |
0.50000000 02 0.

Pt = 0.98985891 02 0.99994580 00
0.,48985892 02 0.99994580 00
0.50000000 02 0.

| 0.98985891 02 0.99994580 00

Mo o= 0.14847956 04 0.19643997 02

0.19643997 02 0.34996206 00| °

The computer times are:

direct method - 12.69 minutes
adjoint method - 2,61 minutes,
Here, as we expected, the adjoint method is much faster. Appendix 2

contains the complete program for the problem.

CONCLUSION

The techniques for statistical analysis of the injection errors
of a missile have been studied in detail, Two commonly used methods,
namely, the direct and adjoint methods, have been reviewed and extended.
It has been demonstrated that, under the assumption of Gaussian random
processes and linear error dynamics, all the necessary information is
contained in covariance matrix of the injection errors. It has further
been shown that for both direct and adjoint methods, the determination
of the covariance matrix is equivalent to the determination of two

transformation matrices.

A comparison of the two methods has revealed that, in general,
the adjoint method is more efficient. But for the special case, where
the initial state deviation is zero, the direct method could be pre-
ferable depending upon the relative dimension of the system state and

the error sources,

Several remarks have been made to emphasize the main points and

two examples have been given to verify the theoretical conclusion.
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The techniques presented here are not limited to the injection
errors of a missile; they can be applied equally well to a wide variety

of control system problems.
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APPENDIX 1

DATA AND PROGRAMMING FOR EXAMPLE I

TIME RECORD OF Y, Z,

Y

+.0000000Q0E+Q0
+.327080001E+04
+.654130001E+04
+.981730001E+04
+.131214000E+05
+.164903000E+05
+.1997T90000E+05
+0236632000E+05
+.27642TODOE+0S5
++316410000E+05
+.320104000E+05
+.356D41001E+0S
+.382483001E+05
+.423758001E+405
+.486854000E+05
+.559806001E+05
+464444TO01E+05
+.T42712002€E+05
+. 856682002E+05
+,98866T002E+05
+.103433100E+06
+<113865900E+06
+.1164876600E4+06
+.1148T6600E+06
+.125651100£406
+.125651100E+06
+<125651100E+06
+.1645476400E+06
+.1454T76400E+06
+.1698T8900E+06
+.275100500E+06
++332519900E+06
+.393416000E+06
+.458015300E+06
+.526565201E+406
+.599337201E+06
+.6T6629501E+406
+.758771501E+06
+.846217602E+06
+.939103T700E+06
+.103815360E+407
+.11437B920E+07
+.125659120E+07
+o137723D020E+07
+.150648250E+07
+.164527210E+07
+.179471800E+07
+.1956216T0E+07
+.204140940E+07
+.204140940E+07
+.212257910E+07
+.229998250E+07
+.26879598T70E+07
+.266133980E+07
+.284510480E+07
++303077950E+07
+.321823771E+07
+2340T734230E+07
+.350246650E+07
4.359794680E+07
+.368282860E+07

1

+.000000000€¢00
+.774000002E+02
+.330600000€+03
+.793200002€E+03
+,15027T0000E+D4
+.,26499T0000E+04
+.382670000E+04
+.55256000iE+04
+.76287T0001E+04
+.992180001E+04
+.,101390000E+05
+.122832000€E+05
+.13885T000£405
+.164090000E+05
+,202724000E+05
+.246898000E+05
+.297017000E+05
+.353485000E¢05
+.416762000E+0S
+.487418001E¢05
+.51128T000E+DS
+.564438001E+05
+.569476001E+05
+.569476001E+05
+.621644001E+05
+.621644001E+05
+.621644001E+05
+.711239001E+05
+.711239001E+05
+.811763001E+05
+.114040800E+06
+.126059800E+06
+.135139000E+06
+.141261600E+06
+.144393900E+06
+.1444B230DE+0D6
+.141451000E+06
+.135197800E+06
+,125589900E+06
+.112458200E+06
+.955905001E+05
+.T47227002E+05
+,495272000£+05
+.195985000E+05
-+155671000E+05
—«565997000E+05
-+104296800E¢06
-+159686500£¢06
~.190446800E+06
-o190446800E+06
-«220835200E+06
~e291349401E+06
~+368553000E+06
-+ 452741900£4¢06
~ 544622 T400E+06
~.643336B01E+06
~a750414201E4+06
-+ 865822500E+06
—--926769B02E+06
~.989945801E406
-+104782650E+07

Al AND A2

Al

+.000000000£+00
+.000000000E+00
+.T26415412E~01
+.434657900E-00
+.100800650€401
+.187102800E+01
+.309198121E¢01
+.458397441E+01
+.614840531€+01
+.T5622TT61E¢01
¢+.T71688391E+01
+.938704022E+01
+.106870600E+02
+.126661420E+02
+.154503620E¢02
+,183388170E+02
+.213673500E+02
+.246218340E02
+,282318200€E+02
+.323945421E¢02
+.338601490E¢02
+.168718450E+02
¢, 1T8T761430E4+02
-+ 266089220E-01
~+1356199806-01
~+135679770€-01
+.4965449T1E¢01
+.5108T7T1041E+01
+.511245431E+01
+.529025961E+01
+.607381949E+01
+.651405425E+01
+.699152672E+01
+.75106536TE+01
+.807656900E+01
+.869529904E+01
+.937399866E+D1
+.10121286TE+02
+.109647T7T198E+02
+.118667132E+02
+.128944549E+02
+.140537226E+D2
+.153741100E+02
+.168970932E+02
+.186823604E+02
+.208191602E+02
+.234469T741E+02
+.26T958TLTE+D2
+.28840983TE+02
+.69T7197991E+01
+.704132551E+01
+.T1T816951E+01
+.729599551£+01
+.739434251E+01
+.74T7341411E+01
+.753407482E+01
+.157780721E+D1
+.T760664521E+01
+.T616244T1E+D]
+.762309291E+401
+.T62716282E+01

A2

+.120799580E+02
+.125616170E+02
¢.130824120E+02
+.136T020T0E+02
+.143013510€+02
+.149689500£+02
+.156259500€+02
+.161591550E+02
+.162030730E+02
+.159052600E+02
+.159357100€+02
+.165115960E+02
+.170085680£402
+.176696090E+02
+.186029930E+02
+.190295T10E+02
+.196411870E+02
+.20331 7860E+02
+.2119373008+02
+.223380760£+02
+.22TTT1100E+02
+.113493850E¢02
+.114078160E+02
-.168971780€-01
-.8164331026-02
-.8164331026-02
+.410229881E+01
+.44D107741E+01
+.440430270E401
+.440034891E+01
+.435132581E+01
+.430235131E+01
+.423283871E+01
+.413883071E+01
+.401557851€+01
+.385736490E+01
+.365727650€+01
+.340690530E+01
+.309594860E+01
+.271165290E+01
+.223801900E+01
+.1654626T0E+O1
+.934814501E+00
+.428068001E-01
-.107111450€+01
~.247897360£+01
-.429048751E+01
-.668325901E+01
-.817465852E+01
-.197613050E+01
~.222347550E+01
- 278689420E+01
-.338884470E+01
-+403012590E+01
-.471222231E+01
~.543766181E+01
-<621042841E+01
-+ 703643602E401
-.747191681E+01
-.792409181E+01
-.833993871E+01



A PROGRAM FOR DIRECT METHOD

SIBFTC MAIN

C

500

10

15

* * * * * * * * *
DIMENSION T(61)e Y(61)e Z(61)e R(61)e A21(61Y0

1 A23(61%¢ A41(61)e A43(61)e B23(61)¢BA3(61 )0

2 Ai1(615¢ A2(61)

RO = 637000040

GO = 981

READ S500e¢ (T(I%e Y(1)s Z(1)e A1(1)s A2(1)e I = 14619
FORMAT(S(E1SeBs 1X))

PMU = GO®RO*¥2

DO 10 1 = 1461

R(1)Y = SQRT(Y(II**2 + (Z(1) + RO)I¥*2)

A21 (1) = 3H#PMURY (I I¥XZ2/R(II¥*5 — PMU/R(])I1%¥%3

A23(1) = S¢¥PMURY(IIH(Z(1) + ROI/R(II®XS

AQ1 (1) = S« ¥PMUFY (I (Z(T) + ROI/R(I)¥%S

A43(1) = B¢¥PMUR(Z (1) + ROI¥X2/R(IHIRRS ~ PMU/R(] )*%3
B23(1) = A2(1)®T(1)

Ba3(1) = ~AL1(IY*T(])

CONT INUE

INITIAL CONDITIONS

DIMENSION E(3)e¢X1(3:61)¢X2(3¢61)¢X3(3061)eX4(3+461)
DO S0 1 = 1.3

DO 20 J = 1.3

IF(1=JY TeBa7

E(J) = 16C

GO TO 20

E(J) = 060

CONTINUE

X1{1s1) = 040

X2(1e1) = 000

X3(1el) = 000 -
X4(1e1) = 060 -

SOLUTIONS OF DIFFERENTIAL EQUATIONS
X1 (I1e2) = X1(1el)

X2(1¢2) = X2(1el) +BO%®(E(1) +B23(1)1% E(3))
X3(1e2) = X3(14s1)

X4(142) = Y4(1s1) 4+ BeO¥* (E(2) + B43 (1) %E(3))
N = 1

X1(1e2) = X1 (1al) 4+ 440 (X2(1a1) + X2(1e2))

X2(142) = Ae0%(A21(2)¥X1(1+2) +A23(2)IEXI(142142e%E())
1 + B23(Z)#E(3) + B23(1)1*E(3) + A21(1)1¥X1(T+1) +

2 A23(1)1%X3{(lel13)+ X2(1s1) ~

X3(I142) = X3(141) + 4e0%(XA(Tel) + Xa(le2))

X4(1e2) = 360¥(AA1(2I%X1(142) +AAB(2)%EXI(142)+2e%E(2)

20



16

30
50

40

61

70

1 + BA3(2)¥E(3) 4+ BAa3(1)*E(3) + Aa1 (1)%X1(I1e1) +
2 AA3 (1 INX3I(Tel1)3+ X4(1e1)

N = N+1

IF(N-B)15+16416

DO 30 K = 3¢61

HT = (TIK) ~ T(K«1)I%0eS

X1 (TeK) = X1(T K=ty + HTRIX2(] K1) +X2{1+K=2})

X2(1eKY) = X2(ToeK~1) + HTE(XI (] K-1)%A21 (K=1) +20%E(1)
1 - +A23(K=1)1%¥X3(]eK=1) + B23(K-1)¥E(3) +B23(K-2)*E(3)

2 + A21 (K=2)%EXI (] oK=2) + A23(K=2)%XI (] +K=2}))

XA(TeK) = XI3(T4K-1) + HTR(XE (1 K=1) +X4(I+K=2))

XA(TaK) = XA(14K=1) + HTRE(XI (] K~1)1%AQ1 (K=1) +20%E(2)
1 +A43(K=1)%X3(I+K=1) + BA3Z(K-1)I*E(3) +B4A3(K-2)*¥E(3)

2 + AQGI(K=2)%XI (] eK=2) + AQB(K=2)1%XI([¢K=2))

N = 1 :

17 X1C(1eK) = X1 (TeK=1) + HTE(X2(T4K=1) +X2(1+K})

X2(TelK) = X2(1eK=1) 4+ HTE(X]I(TeK-1)1%A21(K=1) +20%E(1)
1 + A23(K~-1)EX3(] 4K~1) + B23(K-1)1%E(3) + B23(KI*E(3)
2 + A21(KIRXI(T+K) + A23(KIEX3(IeK))

X3(IeK) = X3(TeK=1) + HTE(XA(T oK-1) +X8(1eK))

X4 (TeK) = XE(IoeK=1) + HTH(X1(]eK=1)%A81(K=1) +20%E(2)
1 + AQ3(K-1)1%X3(]¢K~1) + BaA3(K~1)IRE(3) + B4A3(KIHE(3)
2 + A41(KYIEX] (14K) + AQ3(KIEXI(]I.K))

N = N 4+ 1

IF( N - B) 17+ 30e¢ 30

CONTINUE

CONTINUF

DIMENSION P(4,43)

DO 40 I = 13

P11} X1(1.61)

P(2+1) X2(1e¢61)

P(3.1) X3(1+61)

P(4ael) X4(1461)

CONT INUE .

COVARIENCE MATRIX OF STATE VECTOR ERROR

DIMENSION FR(343)¢C(4+3) +D(4.4)

READ 61+ ({ER(1e¢J)e1=1e3)eJ=1¢3)

FORMAT (SEBe0/4EB840)

DO 70 1 = 1.4

DO 70 J = 1.3

CtlsJ) = D0

DO 70 K = 1.3

Clled) = C(leJy + PLIWKIXER(KsJ)

CONTINUE ’

DO 80 1}

DO 80 J

nuwhHnn

' 4
4

21




D(ted) = 040
DO 80 K = 13
D(1eaJ) = D(leJ) + C(lKI¥ P(JeK)

ao CONTINUE
PRINT 201¢ ((P(1eJ)e J = 16¢3)e 1 = 144)
PRINT 202¢ ((D(IeJ)e J = 1¢8)e | = 1e4)H
PRINT 2032 ((ER{TJIe J = 1+3)¢ 1 = 143}

" 201 FORMAT (1H1+38H TRANSFORM MATRIX P BY DIRECT METHOD /
1 Z773(2X+E15B4¢3X))
202 FORMAT(///7/738H COVARIENCE MATRIX OF STATE VECTOR )

1 23H ERROR BY DIRECT METHOD///74 (2X+E1S5¢843X1})
203 FORMAT(////38H COVARIENCE MATRIX OF SOURCE VECTOR )
1 6H ERROR///73(2X+E15e843X))
CALL EXIT
END
SENTRY :
DATA CARDS
+e1E=07 440E4+00 4 ¢0E+00 +e0E+00 +e¢1E=-07
+e0E4+00 +40E4+0C +40E+00+¢25E~10
$1BSYS

- NOTE~1 DATA CARDS INCLUDES THE TIME RECORD OF Y. Z« Al AND
A2 WHICH IS LISTED IN THE BEGINNING OF APPENDIX=Ie
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A PROGRAM FOR ADJOINT METHOD

SIBFTC MAIN
[ of * * »* % L ] * * * *
DIMENSION T(61)¢ Y(61)e Z(61)e R(61)¢ A21(61)0
1 A23(61%¢ AA1(61)s AA3(61)e B23(61)¢BE3(61Y
2 A1(61)4 A2(61)
RO = 63700000
GO = 9,81
READ SO0+ (T(Ids Y(I)e Z(1)es A1(I3e A2(I3e I = 1e61)
S00 FORMAT(S(E1Se8s 1X))
PMU = GO®RO¥%2
DO 10 1 = 1461
R(I) = SQRT(Y(1)I#%2 + (Z(1) + RO)I*%2)
A21 (1) = 3Bo¥PMURY (ISR /R(]IIXRS ~ PMU/R(] HI#%3

A23 (1) = 3B*¥PMU¥Y(IIR(Z(1) + ROI/R(II*%S

A41 (1) = 3BH¥PMURY(IIR(Z(I) + ROI/R(I1)I#R5

A43 (1) = 34HPMUR(ZI{I) + ROI¥XR2/R(IIHES « PMU/R(TIH#3
B23(1) = A2(I1)%T(1)

Ba3(1) = <A1 (I)¥®T(])

10 CONT INUE: :
DIMENSION XLE(4+70)
C INITIAL CONDITIONS
DO 100 ! = 1.4
DO 90 J = 1+4
IF(1I=U)2¢12:

1 XLE(Je61) = 160
GO TO 90
2 XLE(Je61) = 000
90 CONT INUE
C SOLUTIONS OF DIFFERENTIAL EQUATIONS

XLE(1460) = XLE(1461)+(A21 (61 )I¥XLE(2+61)

1 + A41(E1IXXLE(4¢61)3%10.6333

XLE(2+¢60) = XLE(2+61) + XLE(1+61)%#10633

XLE(3¢60) = XLE(3¢61)4+(A23(61)%#XLE (2:61)

1 + A43(61)1%XXLE(4+61))#106333

XLE(4+60) = XLE(4¢61) + XLE(34¢61)%10633

N = 1

21 XLE(1¢60) = XLE(1461) +53165%#(A21 (61)%XLE(2.61)

1 + A41 (61 )%¥XLE(4461)+ A21 (60)XXLE(2+60)
2 + AA1 (60 )IXXLE (4460))

XLE(2¢60) = XLE(2:¢61) +5e1365% (XLE (14613 + XLE(1+60))
XLE(3e¢60) = XLE(3¢61) +S5¢1365# (A23 (61 )I%¥XLE(2,61)

1 + AA3(61)EXLE(44613)+ A23(60)¥XLE(2:60)
2 + AAR(ANIRXLE (4460))

XLE(A+60) = XLE(4461) +561365% (XLE(3+61) + XLE(3.60))

23




22

N = N +1

IF(N=B)21:22+22

DO 60 K = 1459

N = 60 - K

DT = (T(N+1)I=TI(N)I%0eS :

XLE(IosN) = XLE(1+N+1)I)+DTH(A2]1 (N+2)EXLE (2e¢N+2)
1 + A4 1 INF2IEXLELANF2Y + A2T N+ IRLEI2¢N+1)
2 + AA1 N+ I IRXLE(4eN+1 ) -

XLE(2eN) = XLE(2:N+1)+DTRI(XLE (] «N+2) + XLE(] «N+1))

XLEC(3eNY = XLE(3«N+4+1)I+DTR(A2I (N+2IXXLE(2:N+2)
1 + AABINI2)IEXLE(4QN42) + AZ23(N+1I#XLE(2eN+1)

2 + A4 IN+IIHXLE (AsN+1))

XLE(4oN) = XLE(4oN+1I+DTHIXLE (3.N+2) + XLE(3¢N+1))
M =1

23 XLE(1eNY = XLE(1oWN+1) + DTH(AZ2]1 (NI®XLE(2N) +A41 (N)*

60

110
100

61

70

1 XLE(4eNI+AZ2T (N+1IEXLE(2eN+1) +AA1 (N+IIXXLE (44N+1))
XLE(2eN)Y = XLE(2:N+1) + DTHIXLE(1oN) + XLE(1+N+1))
XLE(3eN) = XLE(3«N+1} + DTR(ASI(NIEXLE(2+NY) + A4G3(NI*
i XLE(QsNYFAZS (N+1IXXLE(2eN+1) +A43(N+1IEXLE (4eN+1)Y)
XLE(4+eN) = XLE(AJN+1) + DTH(XLE(3sN) + XLE{3N+13)

M =M+ 1

IF(M=B)23¢234+60

CONT INUE

TRAPIZOIDAL RULE IS USED FOR INTREGTRATION

DIMENSION Q(4:3)

Q(l1,1) = 060
Qll1e«2) = 00
Q(ie3) = 0,00

DO 110 K = 1.60

FT = (T{K+1) = T(KII*DeS

Q(Iei) Q(T o1 I+IXLE(24K) +XLE(2:K+1))HFT

Qi1+2) Q(Te2)+H(XLE(40K) +XLE (AsK+1))¥FT

Q(143) Cr143)+(B23(KINXLE(2:K)I4+BAI(KIRXLE (44K) +
1 B23IK+1 ) RXLE(2:K+1) + BA3(K+1IRXLE(4¢K+])IRFT
CONTINUE

CONT INUE

DIMENSION SR(3:3):C(443) sD(4.+4)

READ 61+ ({ER(IoJ)oI=103)0J=1e3)

FORMAT (SF8¢0/4E840)

DO 70 I = 1.4

DO 70 JU = {3

C(leJd) = 060

DO 70 K = 13

ClleJd) = C(IoJY + QUIKINRER(KJ)

CONT INUE

DO 80 I = 1¢4

"

®un
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DO B0 J = 1.4
D(led) = 060
DO BO K = 143
D(led) = D(1eJ) + ClIKIR Q(JIeKY
a0 CONT INUE
PRINT 201¢ ((QCleJYe J = 143)e 1
PRINT 202 {((DII:4)s U = 14} ¢ 1443
PRINT 203¢((FR(TeJ)Ye J = 1633 1 13}
201 FORMAT{1H1 +38H TRANSFORM MATRIX Q BY ADJOINT METHOD /
1 Z/773(2%XE15e8Be3X})
202 FORMAT(////738H COVARIENCE MATRIX OF STATE VECTOR .
1 24H ERROR BY ADJOINT METHOD///3(2X«E15¢84¢3X 1))
203 FORMAT(//7738H COVARIENCE MATRIX OF SOURCE VECTOR .
1 6H ERROR//7/73{(2X+E15e8B+¢3X))
CALL EXIT
END
SENTRY
DATA CARDS ‘
+o0E4+00. 4 40E+00 4+ 40FE+004e25E~10
+e1E=07 +20E+00 +¢0E+00 +«0E+00 +01E~07
$1BSYS

1+4)

W un

NOTE-1 DATA _CARDS INCLUDES THE TIME RECORD OF Ye Z+ Al AND
A2 -WHICH 1S LISTED IN THE BEGINNING OF APPENDIX«le
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APPENDIX 11

PROGRAMMING FOR EXAMPLE 11

A PROGRAM FOR DIRECT METHOD

SIBFTC MAIN

C

50

51
10

100

200

* * * * »* * * »* *
DIMENSION E(6)eP(246)
DO 10 1 = 146
DO 20 J = 16
IF(1=U)1e2¢1
E(JY = 140

GO TO 20

E(JY = 060

CONTINUE

T = 00

X1= Oe0

X2= Oe0

H = 06001

T =T+ H

AK1 = (E(2) + E(3) + E(S) + E(6) + X2)%H

BK1 = (E(1) + E(3) + E(4) + E(6) — X2)%*H

AK2 = (E(2) + E(3) + E(5) + E(6) + X2 + 0¢5%BK]1 I*¥H
BK2 = (E(1) + E(3) + E(4) + E(6) ~ X2 = DeS¥BK1)¥H
AK3 = (E(2) + E(3) + E(5) + E(6) + X2 + D«S*BK2)¥H
BK3 = (E{(1) + E(3) + Ela) + E(6) =~ X2 -~ 0eS¥*¥BK2)¥*H
AK4 = (E(2) + E(3) + E(5) + E(6) + X2 + BK3)¥H

BK4 = (E(1) + E(2Y + E(4) + F(6) - X2 - BKAAY*H

X1 = X1 4+ (AK] + 2¢%¥AK2 + 2¢%#AK3 + AK4)/640

X2 = X2 4+ (BK1 + 2¢%¥BK2 + 2%BK3 + BK4)/6¢0

IF(T-4949999)50¢50+51

P (1e1y = %3

P (2¢1) = X2

CONTINUE '

PRINT 100s (Pl1e1)e 1=146)s (P(2¢1)¢1=1+6).
FORMAT (1 H1 ¢ 38H TRANSFORM MATRIX BY DIRECT METHOD
1 /76 (2XsE15¢843X)Y)

COVARIENCE MATRIX OF STATE VECTOR ERROR
DIMENSION V(2¢2)1¢C(246)ER(E+6)

READ 2004 ((ER(1e¢J)0e1=146)eJ=146)

FORMAT (12FSe0)

DO 70 1 = 142

DO 70 U = 146

C(léeJ) = 00

DO 70 K 146

26




Clled) = CllaJdY 4 PLIJKIRERIK W)

70 CONT INUE
DO 80 1 = 1¢2
DO B0 J = 142
D(IeJy) = 000
DO 80 K = 146
DlleJdy = D(1eJ) + ClIeKIN¥P(JeK)

- 80 CONT INUE

PRINT 300 ((D(IsJ)ed=1e2)el=142)

300 FORMAT(////738H COVARIENCE MATRIX OF STATE VECTOR
1 23H ERROR BY DIRECT METHOD///72(2X+E1S5+84¢3X))
CALL EXIT
END

SENTRY ‘

Oel ©Oe0 0De0 000 0Oe0 Oe0 0eD 0405 060 0Oe0O 060
Oe0D 0e0 0,401 Oe0 Oe0 00 00 060 060 062 Oe0
000 060 Oe0 000 0e06 0D 00 00 0e0 0De0O 0e0

$1IBSYS
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A PROGRAM FOR ADJOINT METHOD

$SIBFTC MAIN

C

12

11
50

75

82

81

60

100

200

*

1

* »* * * * * * *
DIMENSION XLEMDA(2) +Q(2:6)
DO 60 I = 142
DO 80 J = $.2
IF(I-Ji11¢12011
XLEMDA(J) = 140
GO TO S0
XLEMDA (J) = 00
CONTINUE
T = 85060
H =0,001
U = XLEMDA (1)

V = XLEMDA(2)

FUNY (V) = (U=V)I*H
Ql141) = VHEHED4S

T =T «H

CK1 = FUNY (V)

CK2 = FUNY(V + CK1#0e5)
CK3 = FUNY(V 4+ CK2%045)
CKa = FUNY(V + CK3 )

V =2 V 4+ (CK1 + 2.%#CK2 4+ 2¢%CK3 + CKA)I/6e0
IF (T=H)B1.:82+82
Q(le1) = QCIe1) + VEH
GO TO 75

Q(le1) G(Iel) 4+ VEHRD S

Q(1+¢2) = UXS04,00

Q(1¢3) = URS0,00 + Ql1e1)
Q(led) = Q(Is1)

Q(leS) = Q(1+42)

Q(le6) = Q{1:+3)

CONTINUE :

PRINT 100¢ (Q(1+1)¢ I=146)e (Q(2e1)e1=146)

FORMAT (1H1 +39H TRANSFORM MATRIX BY ADJOINT METHOD
7776(2XeE1S5eBe¢3X)) ‘

COVARIENCE MATRIX OF STATE VECTOR ERROR

DIMENSION D(242)¢C(2:6)+ER(646)

READ 2004 ((ER(I4J)eI=2146)0J=146)

FORMAT (12FS5e0)

DO 70 1 = 1,2

DO 70 J = 146

C(leJ) = 040

DO 70 K = 146

Clled) = Cl1eJY + QUIKIRERI(K D)
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70 CONTINUVE

DO 80 1 = 142

DO 80 U = 142

D(leJ) = 060

DO B0 K = 146

Diled) = DlleJY + CL1IKIRQ(JeK)
/0 CONT INUE

PRINT 300¢ ((D(IvJ)eJ=142Ye1=1+2)

300 FORMAT(////38H COVARIENCE MATRIX OF STATE VECTOR .
1  24H ERROR BY ADJOINT METHOD////6(2X+E15e843X))
CALL EXIT
END

SENTRY

Oet O0e0 0Oe0 060 00 060 060 0e05 0e0 00 00 060
O0e0 0e0 0601 Oe0O 040 0.0‘ Oe0 0e0 0e0 062 De0 080
O0e0 DeO Oe0 0e0 0e06 0s0 00 00 0e0 0e0 000 0404

$1BSYS
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