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INTRODUCTION

The purpose of this work is to;show that cost functions,; i.e.,
a— ot

functions depending on an initial state %, and time t and a final state

x5 and time tZ’ whose value Ct1’ tz(xl' x2) is the cost of traversing in
the best possible way the route from x) at t1 to x5 att,, ég_ay be used
to describe dynamical control systems,’

Accordingly, in Chapterl we show how ff;nch a description may be
effected, in Chapter II we prove that very little additional structure is
needed to obtain a desc;'iption of a large class of cost functions;; Thus, in
Chapter 1 we attempt to answer the question, why are cost functions
of interest? And once that interest has been demonstrated in Chapter 1II,
we proceed to study the structure of cost functions.

The results of this work are based on the following fundamental
property of cost functions:

< <
Forall t, = t, = t

1 2 3’

c (%, y) = sup[ c (x,z) + c
t ,t3 5 tl’ tz t

(z,y) ] .
1 ts

2
The latter rests on the fact that in going from x at t, to y at t; some
state z must be traversed at ts. _This property allows trajectories
to be defined in a way that is consistent with our notion of dynamical
control systems and also permits a complete characterization of a
large class of cost functiong_._‘; The main result of this work is such a

characterization.

To obtain this characterization, the following assumptions are made:

(2) An appropriate continuity condition is imposed on Ctl’ t2(x, y)

as a function of %,y and tl’ tz.




(b) 1Itis assumed that the state space X is a linear space and for

all tys t2 ¢ X)

1 2° 1

where Tt is a one-parameter semigroup of linear transformations on

+ —
eR x,ye X, Ctl’ tz(x, y) = CO’ £y-t (0, y-Tt

X satisfying some continuity conditions.

With this assumption it is not only possible to show that the function

Co ¢ (x, y) is convex in x and y, but also an explicit expression may

be obtained for the form of Ci ¢ (x, vy} as a function of tl, tz, x and
1”72

Y.

SUMMARY AND SOME GUIDE LINES

Because of the complexity of some of the relations that arise from
the study of optimal control problems, it often seems desirable to rise
above the problems and attempt to gain an overall view by means of
generalization and simplification, and while generality is by no means
a key to simplicity, it may sometimes provide pointers to help find
that key. This work is an attempt in that direction. In Chapter I, the

‘generalized approach is introduced and some of its implications are
studied. In Chapter I, it is shown that despite the generality of this
approach, it can be made to yield, at least in special cases, the strong
results obtained by classical techniques., Before proceeding with a
more detailed description of the work, a similar approach is developed
for the study of stability problems by Roxin.,. The problems he studies
are of course of a different nature and his method is slightly less
general. With this reservation; ")’Theorem 1.5.1 is a variant of his
Theorem 6.1. The author was unfortunately unfamiliar with his work
during the writing of the manuscript, hence the overlap.

As mentioned above, Chapter I involves mainly the study of fun-
damentals. In Section 1, we discuss the classical control problem of

maximizing an expression of the form:

t

T( o, (V8D j; £ (x(1), u(t), t) at

s



subject to the constraints x(0) = X0 x(t) = )

some given functions f and fo. The functior u(t) is commonly referred

and x = f(x(t), u(t), t) for

to as the input or control variable and x(t) is the state variable., As t
progresses, x(t) describes a trajectory in the state space.

In Section 2 we notice that rather than study a function J[O, t] {(u{t))
defined on the inputs it is more convenient to consider another function

F[O t] (x(+)) defined on the trajectories where F will play the double

-ole of telling us which trajectories are allowable (i.e., satisfy the
equation X% = f(x(t), u(t), t) for some u(t)) and also what is their cost.
Deleting the differential equations and the integral criterion we keep
two fundamental properties (1,2.1 ard 1.2, 2) of the function FT(x(t))
and proceed to study functionals satisfying these properties. As a first
attempt we define the function

c (x ey, x )

gt P ¥y n

= sup({F (x(*)): x(t.) = x_, i:l,”-,nl (1)
(-) { [t,t ] i i |
which tells us how cheaply we may commute from X at t to x at

tn through x, at t, i=2,-+-,n-1, The conclusion of Section 2 is that
i

Ct,-o.,t (Xl’...’xn) has the form
1 n
¢ LAY (x 3"t X )
tl’ ’ tn 1 n
= C (X,X)+C (x,x)+...+c (X ,x) (2)
tl’ tZ ' 2 tz, t3 2’73 tn-l’ tn n-1" "n
and C ot (%, y) satisfies the dynamic programming or semigroup
2
property
C (X3 Y) = sup [C (X, Z) + cC (z’ y) . (3)



We refer to functions satisfying (3) as Markov transition cost functions.
In Section 3 we discuss an analogy with probability theory which

hinges on the similarity between (3) and the Chapman-Kolmogorov

equation encountered in the study of continuous Markov processes.

With this analogy in mind the function ¢ (x, y) may be regarded as

a conditional cost of going to y given th;]t’ f;vze start at x and equation (3)
expresses a ''"Markovian'' property of our process. In more general
circumstances however we could imagine processes which are de-
scribed by a joint cost distribution I"

(x . xn) which is not

1,..

Markovian., Section 5 will be devoted to the study of some properties

tl,...,tn

of such more general processes,
In Section 4 a few technicalities are resolved. To obtain any

results we have to assume that ST (x, y) is upper semicontinuous.
| A

Thus, we begin that section by showing (lemma 1) that this is a very
reasonable assumption and then proceed to state a series of lemmas
leading to theorem 1 which tells us what to do when Ct,-r(b, o) 1s not
upper semicontinuous,

Most of Section 5 is devoted to the definitions and study of terms
whose main purpose is to bring out and utilize the probability analogy.
One of the main conclusions of this section is that is does make sense
to talk about trajectories in much the same way this is done in prob-
ability theory. At the conclusion of the section is theorem 1 which
essentially states the following: Suppose l“a

(x 9 X

0" n+1)

lytlgo..,tn,az

- S¢ S...5¢ €
defined for all @ = t1 = tn @, and all X - tl

cost distribution, i.e., it satisfies the equivalent of the Kolmogorov

ces X is a joint

consistency condition:

r (X5 oeesXy 13X: a5 0eesX )
(11: tl, ---,tk-l, tk+1, --a’yn’% 0 k‘l k+1 n+1
(4)
=supf (X:---’X)
x, ;s tl, . "’tk~1’ tk’ tk+1""’tn’ a, G n
and let
(f(+)) = inf T (faq)s £(t), oo vs £(t ) f{a)))
C[ ) az] ;s tl""’tn’ a, 1 1 n 2




where the infimum is taken over all {inite partitions s tys tyrees tn’ a,
of [al, a, ]. Then if T satisfies the appropriate continuity and compact-
ness conditions, there exists for any selection of times s eees tn and

state X,.,...,% 1 @ trajectory £(t) with f(al) = Xg f(tl) = Xp e .,f(tn)

0 n+
= s I = such that
xp Hepgd =2y
(f ))_ (X s 003 X ) (5)
[ozl,a/] ap 1,...,tn,az 0 n+l
In Scction 6 we are forced, in order to make the analogy complete,

to consider the function FT(x(' }) introduced in Section 2 as a con-
ditional cost of traversing the trajectory x(.) at a . In the discussion
here we may however state the results of the first part of that section
without this slight complication as follows: Given a functional F, ( )
on the trajectories satisfying the fundamental conditions 1.2.1 and

1.2.2 of Section 2 we define

Cal, tl’ e e tn’ @y (XO’ fo xn+l)

= sup {F[ @y,

2](X( Nixle) = x4, x(t)) (6)

= x .,x(tn) = X, x(az) n+1}

lgo.

1
and let F,(x(-)) be defined by an equation similar to (5) above:

7

Bl s, ] 0))

= inf c
n, t]’ ., tn @), tl’ .o tn’ ozz(f(al), f(tl)’ .y f(tn) f(az)) .

Then F[ ap ) (x(-)) 2 F| o a 1((x(*))) and if

2

t

C

o ) is defined as in (6) above:

t,.,.,tn,az(xo""'xn+1

1’71



c! {x

al,tl,...,tn,az O""’Xn+1)

= ?u§) {F!i';(x(')): x(afl) = XO,...,X(QZ): Xn+1} .
x(+

Then c'! (xO, e Xn+1) = c

a’l’ t].’ > e sy tn: Cl’z al, t1, tZ, o0 tn, QZ(XO, .. .,Xn+1).

Thus c (x can be used to construct a cost

3 e 0 o X
sty eeest s ay ?

0 n+1)

functional F!I,( °) which is very closely related to FT( o). Furthermore,
it is shown in lemma 1 that F!I,( °) also has the fundamental properties
(I.2.1, 1.2.2) and that these properties depend for their existence solely

on the fact that cal’ tl’ o tn’ aZ(XO’ PR Xn+1) has the form (2) where

(x,y) satisfies (3).
2

Perhaps the most interesting result of this section is lemma 2

c
ty t

which states conditions under which the supremum in equation (2)

may be taken over arbitrary planes in the time-state space, i.e.,

¢, . (%y) =  sup (c

(X,Z)+C,t (Z: Y))
trt (t,z) e P t2

t,s t

1’
where P is a plane in R+>< X separating (tl, x) and (tz,z) . Basically,
the conditions mentioned above force all the trajectories to be con-

tinuous; therefore, in going from x att, to y at ts the plane P must

be crossed. :
In section 7, the concept of independence of control variables is
defined in a natural way to correspond to out probabilistic notions,
and this concept leads us to the main body of the problems studied in
Chapter 2, where we are concerned with processes whose increments
are independent up to a transformation. Also in Section 7, an example
of a very simple but pathological case of a transition cost function
Ctl’ ; (%, y) which is not only Markovian (i.e., satisfies (2)) but corre-
sponczls to a process with independent increments is worked out.
The objective of Chapter 2 is to characterize a class of Markov
transition cost functions satisfying a linearity and time-invariance

condition:




c, ,(xy)=c. ., _ (0, y-T » x),
bt & 05 tz tl tz tl

where Tt is assumed to be a one-parameter set of linear trans-

formations. The tools with which we attack this problem are introduced

in Section 1. We then proceed to show (§ 2} that it is reasonable to re-

quire the transformations Tt to form a one-parameter semigroup

(ie.. Typs

continuity and boundedness requirements on Tt and c

1

Tt TT) and with this assumption together with some
t , t ( B * ) we
f the temporal behavior of the smallest concave

(0, ¢).
U2
In Section 3 we go one step further and show that a slight additional

(0, o). Finally, in
2

o}
on
(e
AV
o]
13
w
[oN
o
wn
0
H
r
ol
ot
ol
o}
s}
O
P
i
[
[¢

function dominating c,

assumption will also guarantee concavity of Ct "
R l’

Section 4 we replace the conditions of Section 3 which involved the

structure of Ct ¢ (0, ) by more natural conditions which only require

Y »
the cost of reaching y from x at very short times to becomes arbi-
trarily large whenever y # x. Thus, the assumptions and conclusions
of the three sections may be summarized as follows.

Section 2. (a) Continuity condition on Tt(x) as a function of x and
(«,-) and
tl’ tZ
(0, °) stays above

t separately; (b) concavity and upper sermicontinuity of ¢

(c) a requirement that the set of points at which ST
a plane be bounded, hence ¢ (0, «) decreases faster than any plane.

rt

(*5°).
2

Conclusion: A description of the temporal behavior of <,
Section 3, (a) Continuity conditions on Tt(x) as a function of t and

X separately; (b) a requirement that the set of points at which

c (0, °) stays above a given plane be weakly compact.

)

Conclusion: ¢ (0, <) is concave.
t.,t
"2
Section 4, (a) Continuity condition on Tt(x) in x and t separately;
(b) a requirement that whenever tn.LO and CO ¢ (O,xn) > a, x ~converge
s
to zero; (c) a measurability condition; and (d) uﬁlper semicontinuity of

c (0,0°).
tl, tZ



Conclusion: ¢ (0, ) 1is concave,
tl’ tZ

.To conclude the work a number of examples are worked out in

Section 5,




CHAPTER 1
1. THE OPTIMAL CONTROL PROBLEM GENERALITIES

“Optimal control theory is concerned with problems of the following
type. ;
Find a function u(t) defined on the positive real line R which

maximizes the expression

b
J (u(-)) =f fO(X(t),t, u(t)) dt, (1)

a

where x(t) is a time function with values in a linear topological space

satisfying the equation

; d (x(t))
x(t) = —— = {(x(t),t, u(t)) x(a) = x,x(b) = vy, (2)
dt

u(t) belongs to a given set Q@ and the functions fo and f defined on
X x R % @ take on values in R and X respectively.

. Problems of this type have been studied extensively in the literature.

In general, there exist two ways by which the problem may be approached.

One involves essentially variational techniques and endeavors to find
the time dependence of the function u(t). The answer here is given in

the form of a differential equation which together with some auxiliary

conditions on the input must be satisfied by extremal inputs. L 2,5

The second approach due to Bellman considers the following

function:

cp(y) = sup {J(u(-): x = f(x(t), t, u(t)),
u(-)

ue Q,x(a) = x, x(b) =y},




and by proper manipulation of the quantities involved allows us to obtain © 4
a partial differential equation describing the behavior of cb(y). When

cb(y) is given it is relatively easy to find at any point y what control

u should be applied and the final results has the form of a feedback

control.

In both of these methods no attempt is made to study the structure
of the solution except in as much as it is manifest in the final equations.
Also, because of the methods which invariable involved differentiation,
a number of technical problems arise which depend solely on the ap-
proach and are often not of interest in the problem. The end result
in eaither case is a differential equation which at best is not easy to
solve and does not convey as much intuitive information about the
problem as we would like to have.

In this work an attempt will be made to remedy some of these
problems by introducing a new approach involving a slight modification
of the dynamic programming procedure. It is believed that the latter
has the advantage of having a mathematically pleasant appearance as
well as an intuitive appeal. For example, the system studied with
this approach are not assumed (at least a priori) to be described by

a differential equation and the results obtdined are therefore stronger.

2. THE OPTIMAL CONTROL PROBLEM, REFORMULATION, AND
COST FUNCTION

+ .
Let X% be the space XR of all functions from R+ into X. Any

element of b will be called a trajectory. Let @3 be the closed sub-
intervals of R+. We shall define MB to be the projection of XR+ into XBfor
all Be (3. Let Fo(x(*)): B X X — R{J{-»} be a functional on

for every set B ¢ @3 satisfying

(1) FB(Xl(')) = FB(XZ(‘)) whenever MB(xl(o)) = MB(XZ('))
(2) p.(Bln B,) = 0 implies FBIOBZ(X(')) = FBl(x(-)) + FBZ(X(-))

where p is Lebesgue measure. Then F( ).(;) is called a cost func-

tional. Such a functional may arise for example in the following way

-10-




out of equations I.1.1 and I.1.2. For any (fixed) set B e(& define

g(x(t), t, u(t)) dt if x is a solution of x= f(x, t, u) on B,

B
Fy(x( - )) =

- 00 otherwise

It is easy to see that conditions (1) and (2) are satisfied. Thus, these
conditions generalize the type of restriction that is usually imposed on
the output of a system when its input is constrained in a '""reasonable"
way.

let F, (-) be a cost functional, We now consider a function

(+)

defined in the following manner:

(3) C"‘l’ e rt az(xo’ c.sx_ )= sup {F[ o, az]"’(X(' ) :
x(e)) = x5, x(t) = x5 ..., x(a,) = xn+1},
where the function is defined for all (al, tl’ s az) ¢ (R+)n+2 and
(xo, .. "Xn+l) € Xn+Z and the usual convention is adopted sup ¢ = -~oo.
We shall also assume throughout this work that c, , Jt (Xl’ .. xn)<oo

forall t,..., tn and x s X s and proceed to study thenproperties

1
of this function.

1,..-

Lemma 1. If ¥, (.) is a cost functional satisfying conditions (1)

(+)

< < <
and (2), then for all X990 X and ’c1 = 1:2 = ... 2 tn
(a) ¢ (X435 +..5%X_) = C (%45 X,)
tl, ..,tn 1 n 1:1,t2 1’72
+c,. (x,,x,)+ -+ +cC (x  sx )
tZ’ t3 2’73 tn—l’t n-1""n
(b) Forall x, ye X and ¢t jt St
1 2 3
(4) c (x, Y) = sup (C (x, z) + ¢ (z, Y))-
t ts zex %2 tpr ts

-11-




Proof {F[ » tn] (x(t) - x(t) = x; - x(t ) = _xn} =

{F (x{t) + F (x(t)) + - -+ F (x(t)) :
[tlt‘ t2] [tZ’ t3] ltn—l' tn]
x(t,) = x,- x(t}y=x_} = {F (x,(t)) + F . x5 ()1
1 1 n n [tl, tZ] 1 [tz, t3] 2
TR o Bt ex(t) = xxgity) = oxp s x,(8),
n-1 'n
xp(t3) = xg = xaity) -ox (r q) 2 ox g x (0D =

where both conditions (1) and (2) were used Taking suprema with
respect to xl( S B xn( ). which may be chosen independentiy we

obtain {(a). (b) fcllows immediately if we notice that

sup ¢ (X Xy Xy - X))
w12 her i e nol kot kel n

(x,: S Xy Ky
tl . tk-l" tk*l"'" tn 1 k-1" "k

The property stated in lemma 1(b) is fundamental to the study of

the function ¢ (x It expresses the principle of optimality

RN I 2)
of dynamic programming and will occasionally be referred to as the

X

"dynamic programming condition. ' The latter imposes a semigroup

structure on ¢ {(x.y) in the following sense. Suppose ¢ (x: )
bt bt

M(x) < . For every pair tty e RY, we define on the space

t
W= {gl ). X>RU{-o}, g( ) £ N < w}. an operator T | TRV
12

<

such that

r (g My} =sup [c (y.z) + glz) ]
% z t %

Using this definition of Tt ¢ we may rewrite equation (4) in the form

2

(6) T = T T

-12-




Functions satisfying (4) will be called Markov transition cost

function (M.t.c.f.).

3. THE PROBABILITY ANALOGY

- In this section, an analogy which has proved beneficial in motivating
the results of this work will be discussed._}' It is hoped that this appli-
cation did not exhaust all of its usefulness.

Equation (4) resembles in appearance the Chapman-Kolmogorov

(1)

equation encountered in the study of Markov chains:

(1) P, t3(x’ S) :J; Pt , tz(x’ dz) p,

(z, S),
1 1 3

2t

where we replace in equation (4) sup by ”f" and (+) by (+ ). The
similarity can be extended further. While Py ¢ (x,AS) is the prob-
ability of getting into S and t, given that we start at x at time tl’
Ct]_’ ¢ (x,2z) can be regarded as the conditional cost of getting into z at

ts given that we start at x at t For example, if we assign an initial

1
preference function po(z) at 0, it propagates to the preference function
pt(z) in time t:
(2) p(2) = sup [cy (x2) + po(x)]
xe X
in much the same way as an initial probability distribution at pO(S)

propagates to

(3) pS) = f Py, (%: ) Py (dx) .
Q

Thus the cost functions which shall be examined in this work form a
subclass of a more general class of cost functions which could be

specified by the joint cost distribution I‘t ¢ (xl, e xn) representing
1, e s o9 n

the cost of going through X, at time ti’ i=le-:n in the best possible
way. The restriction (I.1.1, 1.1.2) which we placed at the outset on
FB(x(t)), forces I'to have the form 1.2.3(4)

-13-




x ) = I't‘(xl)+c

1,..- n (xlixz) +

] tpty

+ (x5 %) ++- + ¢ (x__px )

Ttprty o1 b
and the expression thus obtained corresponds to the Markovian de-
pendence. It will be shown later that some of the problems of prob-
ability theory have a meaningful translation into the class of problems
studied here. For example, the problem of extending a joint n dis-
tribution into a distribution on the whole space of trajectories allows
such a translation (see I.5), and while it is much easier to obtain
results concerning cost functions than it is in probability theory, the
problé?ns still turn out to have an interesting meaning. The central
limit problem and the characterization of processes with independent
increments also turn out to have an interesting analogue in the study
of cost functions., The common denominator in this case appears to
be the semigroup structure which exists in both ca ses.(z) In the prob-

abilistic case we may define for a suitable chosen class S of probability

densities and for any pair (tl’ tz) a linear transformation Tt1’ tz defined '
by:

(4) T S —>» S and (T gi{y) :fP (y,dz) g(z),
tl, tZ tl’ tZ o tl, tZ

and it follows from the Chapman-Kolmogorov equation (2) that

(5) T T =T .
trty 2ty Tt
Thus at least formally equations (5) and 1.2.6 look identical. The
fundamental difference is of course that equation (5) involves linear

operators while 1,2,6 involves operators which are basically nonlinear.

In the time invariant case, equations 1.2.6 and (5) reduce to:

(6) T = T T ,
0, t1+t2 o, t1 0, tZ
and TO ¢ forms a one-parameter semigroup of transformations. If '

sufficient continuity conditions are placed on T0 ,it is easy to see that

» t

-14-




it satisfies the [ollowing diiferential equation

dT
2L DTy, ¢
dt ’
and the evolution in time of T is immediately obtained from the

0,t
semigroup condition. Still the semigroup property by itself does

not yield much information about the form of the operator D. However,
if additional continuity and structure conditions are placed on the
behavior of Pt Lt (x,S) it is possible to show(3) that D is indeed as
we might expelct g‘he Fokker-Planck operator. In this work we shall
attempt to determine to what extend it is possible to obtain a Fokker-
Planck type equation for optimal control processes strating with the
bare bone model of Section (2). It will be shown that at least in a
special case corresponding to the control of linear time invariant
systems, such an equation is feasible. Perhaps even more interesting
is the fact that this case is analogous to the process with independent
increments encountered in probability theory. With the continuity
conditions mentioned above the Fokker-Planck equation exists and has
an explicit solution, which is a2 Gaussian distribution. The corre-

sponding result in the theory of optimal control is that C ¢ (Xl’ XZ)
1’2

must be concave.

4. THE COST FUNCTION: CONTINUITY PROPERTIES

To obtain some of our results it is necessary to assume the the
M.t.c.f. Cy ¢ (x,y) is upper semicontinuous in x and y. In this
section the physical meaning and some implications of this requirement
will be studied.

In all that follows we assume that the state space X is a locally

(1)

For any function {{-), £f: X—3R we define f{.) to be the smallest

convex Hausdorff linear topological space.

upper semicontinuous function dominating f. If f depends on more
than one variable, we denote by (f(x, -N(y) the value of f(x, - ) and y.

We may now utilize the fact(z) that f(x inf sup f(x) where N is an

):
0 N xeN

arbitrary neighborhood of x, to obtain:

0

-15-



Lemma 1. Let Ctl’ tz(x, y) = sup {F[tl’ tz] (x(+)): X(tl) = x,
) = y}. Then c (x,y) = inf sup {F {x(-)): x(t,)) e x + M,
B NM x(t) Lt tp] L

x(tz) ey+ N and N, M are neighborhoods of the origin in X} .

Proof, Since c . (xo, yo) = inf sup {ct ;

2 N, M x,v "2

(%, y):

x exy + N, yey +M, N, M neighborhoods of the origin in X} =
inf sup sup{F[t . ](x(-)): X(tl) = x, x(tz) =Y, xex, + N, ye o * M}
N, M x, vy x(°) 1’ "2

= inf sup {F

(x(+)): x(t,))ex_ + N, x(t)) ey + M},
NM x(-) ] 1 0 2 0

[ty 1y

‘Lemma 1 implies that the function of interest to us is

< (-, -) rather than c (¢, ¢) since some inexactitude will appear
tl, tZ tl, tZ

both in the observation of the initial state and the control of the final

(3)

state. By lemmal < (-, ») takes into account such inexactitudes,

tp t2
It is still not clear however on what conditions ¢ (%, y) will
Y2
make c (x,y) a M. t.c.f. The following two lemmas will help us
1" 2
state such conditions.
Lemma 2, Let c (+,+) be an M.t.c.f, If (c (-, z))(x)
—_— t,t t,t
1" 2 1 2
=c (x,z) and (c (x, - )z) = ¢ (x, z) then c (%, y)
frty frte B ety
> sup[z (x,z) + c (z, y)].
= Wt 2 t3
Proof. Since c (-,+) isa M.t.c.f.:
,t
U2
>
c (X: Y) = C (Xs z) + c (z, Y)-
bty ft 23

Taking the upper semicontinuous hull of both sides first with respect

to x
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< cY) = (S, L L) (T, (. z)ix) +
¢ ,t3(xY tp) ty yInRx t)ty ZINx Ctz,t.j(z,y)

= c (x,2z) + ¢ (z,y)
) tyts

and then with respect to y:

Ty;

c (x, y) c
t., tZ t

(x,2) + c (z, * MNy)
1 tyts

b

= c (x,2) + ¢ (z,y)
tl’ tZ tZ’ t3

we obtain the desired result.

Lemma 3. Let gl(w, v) and gz(v, z) be two upper semicontinuous

functions with values in RU{-} . If gz(v, z) E K < o0 and

{w-v: gl(w, v) 2a} isa compact for every a, the function

sup [ g)(w, v) + g, (v, 2) ]
v

is upper semicontinuous in (w, z).

Proof. We wish to show that the set S = {{w, z):

sup | gl(w, v} + gz(v, z) ] 2z a} is closed for all a. Thus, itis enough
v

t6 show that if (w,, zO) is a limit point of S®, that there exists some

0
vy such tkat
( + g, ) 2
81 (wor Vo) + 85(vps 2g) = 2.
Let N, M be any neighborhoods of the origin in X, and let the set
SN, M be defined as follows:

SN, M = {(v-w):gl(w,v) + g,(v, 2) Za, we wy+N, z €z + M} .

Since (WO, zO) is a limit point of Sa, there exists wye W, + N,
zy€ 2 + M such that

sup [gl(wl, v) + gz(v, zl)] 2 a.
v
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But:

supl g, (w), v) + g, (v, zl)] = sup {gl(wl, v) +g,(v, 2)): gilw,, v)
v

+g2(v,zl);a—e}

for every € > 0 and since the set {v: gl(wl, v) + gz(v, Zl) 2 a-ce€ }
is contained in the compact set {v: gl(wl, v) 2 a - € - K} the supremum

is taken on and there exists v1 such that
>
gl(wl, vl) + gZ(Vl’ zl) 2> a.

Thus, the sets SN M are nonempty. It is also easy to see that
N} DNy My DM, implies SNl, MlD SN, M, and therefore

2 2

# 0,

S
N 2

N s S
M) N

n T
2 M2 NlﬂNz, M1 M

4
and the sets S have the finite intersection property,( ) But the

N, M

set SN M is contained in {w-v: gl(w, V) 2 a- K} and the latter is

compact, hence the closure SN, M of SN, M mu(zt) be compact and

there exists a point q. such that q. e( S .
P 0 0 “H1°N, M

The last step of the proof will consist in showing that the point
(wo, e + Wy zO) is a limit point of the set {(w, v, z): gl(w, v) + gz(v, z) 2 a}
hence must belong to it. Indeed, let 6, N, M be any neighborhoods of

the origin and select 9 in (q0 +%)[\S o . Then 9 exists

NﬂE,M

since 9 is a limit point of S‘N M for all N, M and it has the form
¢ X and Wy ew

q, = v; - w; for some v + NN % satisfying

1 0

>

0
for some z) €2 + M, Therefore, V)= Wy + 9y € W, +E ﬂ N +

0
q0+-z-wo+q0+9 and (wl,vl,zl)e(wO+N, v

{(w, v, 2): g(w, v) + g,(v, 2) 2 a}.

ot 8 zO+M)ﬂ

Suppose now that ST (x,yv) is a M.t.c.f. Then
2
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"

(2) c {x, y) sup { ¢, {x,2) + ¢ (z, y)]
tl’ t3 2 tye tZ t?.’ t3

HA

sup|c (x,z) + ¢ (z.y)].
2 1t 213

If Et . (x,y) satisfies the assumptions of lemma 3, i.e.,
1’2

{x-y:?:'t ¢ (%) 2 a} is compact for any tpty € R" and for any
1”2

ae R and St (x,y) £ K < w, the function on the right side of (Z) is
1’2

upper semicontinuous in x and y, hence we have

— S —

(x, z) +_C.t t (z, Y)]
2 1’ "2 2’3

and it follows that:

Theorem 1. If S ot (x,y) is a M.t.c.f. which is bounded above
1’2
c (x,¥) = (c (<> yIUx) = (c (%, 2 )y} and
tl, tZ tl, tZ . tl, »tZ

{(x-y): S ¢ (x,y) 2 a} is contained in a compact set, then
1’ "2

e, t

(x, y) is also an M.t.c.f. and the set {(x-y):c (%, y) 2 a}
1t b t2

is compact.

Proof. The result would follow immediately from the remarks

above and lemmas 2 and 3 if {x-y:_c?t ¢ (%7) 2 a} were compact.
2
— >
Let (x,y) belong to {(x, y): C, 4 (x,y) = a}. Then every
1’ 2 :

neighborhood of (x, y) contains points (x ) such that ¢

171 t tz(xl’ Y1 )Za-e

1!
for some arbitrary (fixed) ¢ > 0. Thus {(x,y) :Et ¢ (%y) 2 a) C
1’ "2

{(x, y): Ct t (%, y) 2 a - €} . We now define the continuous map
1’ "2

f: XXX~ X by f(x,y) = x-y and write {(x-y’):-c':.t ¢ (%, y) Za}
. 1’ "2

-19-



= f[ {(X’ Y) :Et]_’ tZ (X, Y) a} ]Cf[ {(X’ Y) : Ctl’ tz(x: Y) ? a- € }]

C f{xy)ic, ,(my)a-g] = {x-y:ic t(,x,y)ga— ¢ } and the
rt 2

latter is a compact set.

5, THE COST FUNCTIONAL, THE TRAJECTORY SPACE AND

EXISTENCE OF OPTIMAL SOLUTIONS

As mentioned in Section 3 above, the problem of extending the
joint marginal probability density of a process to a probability on the
whole space has its parallel in the study of cost functions,

We shall now consider a space 2 together with the set@s of all the
subsets of Q. (Q,(S, C) will be called a cost function space if C is a
function on @3 satisfying

(1) (a) C@) < w,(b) cU(a ) = sup C(A ), (c) C(¢) = -,
ael el

Let T be a subset of R+ . Any function ¢(w, t):2X T - X shall be
called a control process on T,
It is easy to see that the function C is definable in terms of its

values on isolated points of 2. C(A)= sup {C({w}): we A} for all

A ¢ @g . Thus C expresses a preference function on the points of
Q. If C({wl}) > C({wz}), w is preferable to w, and C(A) is essen-
tially the cost of the '"best' point in A . Once an w, is chosen, it

0
determines a trajectory ¢(w0, - ) and the cost of this trajectory is the

cost of that subset of 2 which is mapped into it by the mapping
L:wo—>d(w ).
We wish to study the following problem. Suppose that for any

finite sequence of positive real times t .t weare given a joint

R
cost distribution, i.e., a function I| (SIS I E
tl’ cs tn 1 n

" x Xn—%RU{-oo} satisfying the consistency condition

(2) sup L' - p e, e E
Xp 1 p-1, p’ p+l n

1’ ""Xp—lxp’xp-l-l’ ceea X

ARRRTE RS SCTRPTA
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+
does there exist a control process on TCR such that

() Cllwrolut) =x oot = xe) =T (xpoooxy)
For all (tl, s tn’ ppeoes Xn) ¢ T"X X2 In that case I" would
indeed be the joint cost distribution of &( -, tl)- el -, tn) and its
value at (tl’ RN tn’ e SRS xn) would be the least upper bound of the

cost of trajectories going through x, at t,, x, at t,-- X at tn.

1 1 2 2
To answer the question posed above we have to look for a likely
candidate for Q. But we already know that if one such Q exists it may

be mapped by L g

L:w—d(w, *) ¢ XT
. . . T . . T .
into the trajectory space X, thereby inducing on X~ a cost function

CL whose value at any trajectory f( - ) e XT is:

L -1
CY(f(-N=CL (£(+)) = Cl{w:¢(w,t) = £(t) on T}).
Furthermore, it can be seen that the cost CL will also satisfy the

requirements expressed by (3) is we define

T
¢f(-,t): XT—>X by ¢'(f(-), t) = £(t).
Thus we may assume that Q is the trajectory space XT and the problem
may be reformulated in the following terms: given a set function C
defined on the collection :@S’ of subsets of 2 having the form

(5) {f(t):f(tl): xpref(t) = x ottt T}.

Can it be extended to a set function on all the subsets of 2 which would
satisfy (1) a, b, c, ? In view of the remarks made above it is enough to
define it on the points of Q.

If such an extension exists it is clear that C{{w}) = C(A) whenever
A :) {w} . Since we know the value of C on a subset: @S ' of @S’ , namely,

all the sets of the form (5), it is natural to define:
(a) C'({w}) = inf {C(A):we A, Ac C‘S'}

(6)
(b) C'(A) = sup {C'{w}):we A}
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and inquire whether for all A ¢ @S ', C'(A) = C(A) and therefore C!'
is a true extension of C, To answer this inquiry it is enough to show
that for every set A ¢ @' there exists some w ¢ A such that

C'({w}) = C(A) since we know already from (6) that C'({w}) s C(A) .

We shall presently state sufficient conditions for this to happen.

A
Q

<

1, 0= o

R

< o0 and suppose that

Theorem 1.1 Let T = [ozl, a 2
<

AN
A
A

Lot X))y o= =t =ty

conditions in addition to the consistency condition (2):
(a) I

a

a, satisfies the following

< . .
1 az(x, y) = M < o5 (b) I,El’ o tn(Xl, e xn) is upper semi-
. . . > .

continuous in Koo X s (c) {z: l_“”l’ t, az(x, z,y) £ a} is compact for

any {fixed) t,a,x and y. Then for all A ¢ ¢' there exists some
w ¢ A such that C(A) = C'({w}), w is an optimal trajectory in A,
and C' is an extension of C.

In the proof of the theorem, the following standard convention will

be adopted. A partition P of [a/l, o is a sequence of points

]
La o s oy .
axl_ﬁ_ tlé t2= étné az. If Pl and PZ are two partitions, PZ refines
Pl('Pl = 'PZ) if Pl is a subsequence of PZ’ and PIA PE is the coarsest
common refinement of Pl and P, . For any element y ¢ Xn+2,

2

y = (¥gooeoxp ) we let Tiy) = L(xgs . ooox ) = rr;zl,tl,...,tn,az

a projection operator Mp:XT - X* by Mp(f(t)) = (f(a/l),f(tl)" . -f(tn)y
f(ozz)) where P = (a/l,t

(xo, e e s Xn+1) whenever P = (al, t s tn’ az) . We shall also define

Lt
n

T 5)

Proof of Theorem 1. Let A be any set of '. Then for some

B

O, A={f(+): Mp (£(-)) = yg} . The
0

consistency condition (2) may be rewritten

partition PO and some Yo € X

(1) sup {I(Mp(£(-)): Mp (£(-)) = y_} = Ip (v = C(A)

£(-) 0 0 0
whenever P refines PO . It also follows from (2) that
(8) T (x5 £(t)s x_.,) 2 T (M_(f
DLy 0 ) T T (M)
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for all t belonging to the sequence P, and if we let

St = {z: I‘;l’ ¢, az(x()’ z, Xn+1) 2 ClA) - €} we may assume that the
. . TT 2
supremum in (7) is taken over the compact set || St . Since Mp
te T
is continuous on the product topology and T (- ) is upper
o,t,.. ..t &
1" 1 T 2 -
semicontinuous, the supremum is attained and for every P refining
PO the set

u, = {60 ):1e(115) NA, T(Mp(H() = C(A) )

. : 2
is closed compact nonempty, and if Pl £ PZ’ UPl :) UPZ. Thus

DPI n UP D UP AP # ¢, the sets UP have the finite intersection

2 1772

property and there exists some f(t)e ﬂ UP. Let B be any set of §'
containing f(-), B= {g(-): MP(g( ) =y}, P2 PO for some
partition P and y ¢ XE. If f(t) ¢,B, Mp(f(-)) = y and G(B) = In(y)

Tp(Mp (£()) 2 Tppp (Mp A p (£(-))) = C(A). Hence C'(£(-))

inf {C(B):f(t) ¢ B} = C(A).

From now on we shall denote by CT({w}) the functional obtained

by the above procedure to indicate the dependence of C on the interval

of definition of the function w. Thus
T
cT({ "}y X —RU{-} .

Furthermore it will be convenient in the next section to let w belong
+

to XR rather than XT . To mike the notation consistent, we shall

let MT be the projection of XR into XT and consider the function

Cr{Mp(@)}).
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6. THE MARKOVIAN CASE, CONTINUITY OF TRAJECTORIES, T
AND THE STRONG SEMIGROUP PROPERTY

We recall that our problem was motivated by an attempt to find
optimal trajectories of a functional FT(w) defined on the trajectory
space XR+ for some T = [ozl, 012] (Section 2).1 It is convenient to
interpret FT(w) as the conditional cost of choosing w given that the

initial value of w is Ma (w)y. Thus, if Ca (x) is a preference function

1 1
on the choice of the initial state, we can write the total cost of the
i , to b M
following w on the set [af1 012] o be Cal( (al)(w)) + F[ - a’z] (w) .

It is now possible to define

IL(y) = sup {Fp(w) + C (M

b - (M () Mp(Mo(d) =y, X% )

(@)

for any partition P of T = | s ozz] and y e XP, tc obtain the joint cost
distribution of (x(ozl), x(tl)- .. x(tn)x(az)) . It is easy to see that the
latter satisfies the consistency condition I.5.2. We may in the manner
of the previous section (equation 1.5.6) utilize the distribution to define
a new function CT({ - }) on the trajectories. Since, roughly speaking, ' »
CT({w}) was obtained by approximating the trajectory w by piecewise

optimal trajectories of F we expect a relation and perhaps an

T,

equality between FT(w) + Cal(M(al)(w)) and CT(MT(w)). Indeed it
follows from the definition of I‘P( <) that

T(Mp(M () 2 Frlw) + C_ (M, () for all we xR,

(@)

and we have

(1) Cp(M(w) = inf T

>
of Dp(M(My(e) £ Fle) + C (M, ().

P 1 1

-24-




Furthermore, if we let l“}i)(y) = sup {CT(MT(w)) : MP(MT(w))} =y, it

follows from (1) that I‘I‘)(y) 2 I‘p(y), On the other hand, CT( w)

was defined to be the infimum over P of I I:,(MP(MT(m))) (I.5.6) hence
T(Mp(M (@) 2 CL(Mp(e)) and Tp(y) 2 sup {C(Mp(@): Mp(M(0))

vy} = I‘P(y) we conclude that I‘P(y) = I‘l:> (y) and therefore not only
does CT(MT(m)) dominate ’FT(m) + COI(Mal( w}) but also they both
generate the same cost function I” ( * ). 3 Despite all of these relations

it is easy to find examples where F (w) + C (M (w)) # CT(MT(w))°

(a))
In Chapter II we shall show such examples and also find that, as may

be expected, CT(MT(w)) is a smoothed-out version of FT(m) +

Ca (M(a )(w)), at least in the special case studied in that chapter.
1 1

We may now inquire whether there are other properties of

FT( ) which are induced on CT( - ). In particular, suppose FT( <)

satisfies conditions I.2.1 and 1.2.2. We expect CT(MT(w) -

C (M )(w)) to satisfy those conditions also. But by lemma I1.1.2

(e

these conditions imply that the cost function is Markovian, i.e.,

(2) T (X Y oees X }
Qly tl"”’tn’ QZ 0 n+l

= Cal(xO) + ., t(xo, xl) + -0+ c (xn,xn+1),

"1 tn’ 2
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Thus, it is enough to prove that CT(MTw) - Ca/ (Ma (w)) satisfies 1.2.1,

1 1
1.2.2 whenever (2) holds.
Lemma 1. Let I;r ..t a (xo, e Xn+l) be a function defined
1’71 n’ "2
on the space TIhLZ X2 for every n, n=l, 2,3,... satisfying the

consistency condition 1.5.2 and having the form (2). Let CT(MT(w))

1 ! = -
be defined by 1.5.6. and let FT(w) CT(MT(w)) Cal(M(al)(w)). Then
forall 0 $a £b $c < o, we have

(4) F['a,c](w) = F[‘a,b](w)+F[‘b’C](w).

Proof. We shall use the notation of the remarks following the

statement of theorem 1.5.1. Forany 0 £ a $b £ ¢ < o and
partitions P1 of [a,b] and P2 of [b,c] we let P, P2 be the partition
of [ a,c] defined by the sequence P, followed by P,. Itis easy to see

1 2
that if P is a partition of [ a, b] and for some a £ b S ¢, P1 = (a, b, ¢)
there exists a partition P, of [ a,b] and P, of [ b, c] such that
PA P1 = P‘2 P3.
Let T=[a,c], T =[a,b] and T, = [b,c] . Then M_ projects
T P ! T ZP P T
X" into X7, MP projects X l into X° 1 and MP projects X 2
1 2
into XPZ whenever P, P, and P, are partitions of T, T,, and T,,
respectively. Rewriting 1.5.6.(a):
1 - 3 _
(5) Fip(e) = inf [ MY M(0) - G, (M, (N ]
where the infimum is taken over all partitions P of [a,c] . Thus,

' <
e )= Tp Py My - QM) = Ty (Mp (M ()

for any partition P1 of T1 and P2 of TZ' Minimizing the right side

first with respect to Pl and then with respect to P2 we obtain:




(6) Fi(w S F'le) + F'Tz(w)

Conversely for any partition P of [a,c] = T

2 -

? t 1

or

(7) Fir(w) = inf T(Mp(M(w))) - Ca(M(a)(w))

1AV

SISIERLNSIE

Combining (6) and (7), we obtain the desired conclusion.

Thus for any function St ¢ (¢, +) having the semigroup property
1’72

(I.2.4.), it is possible to define a functional F!I,( - ) on the trajectories

which satisfies conditions 1.2.1. and 1.2.2. Furthermore, if

C ¢ (-, ) is upper semicontinuous bounded above and
1”72

(8) {y:c (x,y) 2 a}
ety

is compact for every x and a, it is easy to check that the assumptions

of theorem 1 of section 5 are satisfied and therefore FLI, can be used

to generate back Ctl’ tZ( .,

(9) S ¢ (xl,xz) = sup {F[ t1’ tz] (x(- )):x(tl) = X x(tz) = xz} .

1’2

Iet S be a set in R+ X X such that whenever x(t) is a trajectory

joining Xy and X, satisfying F¥%x(-)) > -0, x(t) must cross S at

some point,
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{x(t):x(t1)= X x(tz) = X, F'(x(+)) > -0}

~

= (tLZ))ES{x(t):x(tl) = X x(tZ) = %, x(t) = z,

F'(x()) > -oo}

Then:

e, tZ](X( D> el

U

eyl D)+ FY o, D exg () = x
o s Ltptl™ [tt,1 %2 119

i

1’

By, o () > mm By gl ) > el

and utilizing (9), we obtain

(10) ¢ (x,x.) = sup |[c (x:52) + ¢C (z,x,)] .
tl 1:2 "2 (2, t)eS tl,t 1 'E,'c2 2

In particular, if F[ - ](x( - )) > o implies that x(t) is continuous,
1’2

it can be seen that any hyperplane L in Rt x x separating (tl, Xl) and
(tZ’ XZ) will satisfy the requirements on S. In that case

2) = sup [C ,t(x’z)+ct’t (Z’XZ)]’

(11) ¢ (x5 x
1 (tyz)e L t1

tl, tZ

and we say that ST (*, ) has the strong semigroup property.
U2
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Thus, it may be of interest to find out when the allowable trajec-
tories, i.e., those for which FT(x( N ))m> -0, are continuous. To this

end we shall state the following definition:

Definition 1. An M.t.c.f. is c-regular iff for any xe¢ X, a € R,

t e R+ and any sequence arT t, ﬁn} t and X

> 2
<, ,t(xn,x) 2 a or Ct,ﬁ (x, xn) £ a
n n
imply X — X in the topology on X.
It can be shown now that if an M.t.c.f. is c-regular and
£ <

< <
4, {S(X’ y) = k(tl, tz) for all x,y and t1 2 a=p= ty all the allowable

trajectories are continuous. Indeed, let x(t) be a trajectory on the

interval [tl, tZ] and suppose there exists some t £ t £ t, such that

1 -2
x(t) is discontinuous at t. Then for some neighborhood N of x{t)

there exist t —> t such that x ¢ N and we may further assume

t
n

that either (a) tn 'r t or (b) tn ‘1: t. In case (a) we may write

Ff tps t2] (x(-) = S, tn(X(tl) , x(tn) + Ctn,t(x(tn)’ x(t))
o+ Ct, t2(x(t), x(tz))

<
S 2Kk(ty, t,) + ctn’ (dx(t), x(t))
and since x(tn) {,x(t) the last expression can be made arbitrarily
close to -0 and F[ t ot ](x( -)) = -w. Case (b) follows in much the
1’ 2

same way. It is possible now to combine the facts mentioned above

to obtain:

Lemma 2. Any M.t.c.f. which is uniformly bounded above on
bounded time intervals, c-regular upper semicontinuous, and satisfies

(8), has the strong semigroup property.

-29-




7. THE CONCEPT OF INDEPENDENCE, PROCESSES WITH
INDEPENDENT INCREMENTS, AND SOME EXAMPLES

We shall conclude this chapter with a short discussion of the

concept of independence of functions on a cost-function space and an

example.
Definition 1. Let fk’ k=1,2,2,...,n be functions defined on a cost-
function space (Q ,Qﬁ, C). fn are said to be mutually independent iff

for any collection of sets Ak in X

n

n
c( ﬂl{w:fk(w) ¢ A}) :Z Clorf(w) e A }.
k=

=1

Definition 2. A control process ¢(t, w) defined on (Q,S, C) has

independent increments iff ¢ (0, w) = 0 and the variables ¢(ti’ w)
- ¢(ti_1, w), i=1,2, ..., n are mutually independent for all n and
<
57 Yy
Thus, the cost function of a process with independent increments

has the form:

e B E) = e () bey oy (xpmx) ke (xpmxg )
1 n 1 1’ "2 n-1""n
and the M.t.c.{f. is ST (xz—xl). If, in addition, the process is time
"2
invariant, Ctl’ tZ(XZ_Xl) = CO, tZ_tl(xz—xl), and the semigroup property

reduces to

C o (x3-x.) = sup [c . (xa-x,) + ¢ _(x—x)]

O,'c3 t 371 x., O,t3 t2 3 72 O,t2 tl 271
or equivalently

(1) CO’ t+ T(X) = s;p [CO, t(z) + CO’ T(X-Z)] .

Functions satisfying (1) have been presented in the literature.l’ 2 It
is not difficult to show that if ct(x) is convex in x and is upper semi-

continuous, it has the form:
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(2) ct(x) = tcl(x/t).

However, not all functions satisfying (1) have this form.
The example below will be borne in mind throughout the next chapter.
Let X = R' and <o, 1:(x,y) =-|vyx|. Since—-,/l z| +

(- V| x-z| S/ | x| with equality attained at 2= 0 or z = x

sup[c (O z) + o (0 x-z) = (0, x)

o0, t+1
and (1) is satisfied. The function o 1:(O, x) appears to be well

behaved. 1If is continuous in x and t jointly and is differentiable in
x everywhere except 0. Still, it is not c-regular and does not have

the strong semigroup property since

O<Tsug [c (O, ZO) + CO, t_1_(0, wo)]

= sup (-\/zo +-\/&% (0 wq +z )

. - < <
where L is the plane {(t, z).z—zo} 0 = z, = w0+zo.

Indeed if F!.(-) is the cost functional generated by c¢ (x, y), all

T
the allowable trajectories of Fi

t,t,
£t ](- )} which are continuous on

1,

[tl, tz] must be constant. If otherwise, then there exists a trajectory
x(t) which is continuous on | tl’ tz] and is not constant on that interval.

S, St such that

. . . <
There exists therefore times t3, t4 with 1:1 = t3 4

x(t3) # x(t

Z’
Since

4
Fy £ t)] (x(.))= F £ t,] (x(+))+ F 50 t,] (x(-))
+F['t

(x(.)) S Fy (x(-
ptl [t t)]
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it is enough to show that F[ et ](x( <)) = -ow. But x(t) is continuous.
3’74
1 - <o a o = 1 =
There exist therefore sj,t3 50 < sZn ty with x(sk) x(t3)
+ k(x(t4)-5x( t3))/2n, k=1,2,3,...,n, and we have

21’1
} - wx(si) mx(s; )|
=1

Fly, e <)

n 1
‘\/I x(t4)-x(t3)l (2 ?TZ )

/2

]

"\/I x(t,) - x(t) | (2™ %) —> -cw.
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CHAPTER II
1. CONVEX FUNCTIONS AND SETS, THE MAXIMUM TRANSFORM

The present chapter will be devoted to the study of M.t.c. functions

having the form:

(1) c (x,y) = ¢ (y-T, x),
t, ty 0,t,-1 to-t)

where Tt is a linear transformation for each t. If we construct the
process corresponding to the cost function (1) in the manner of Chapter

I, it can be seen that the variables x(t,)- T, (x(t,)) and x(t,)- T (x(t,))
3 ty 2 2 ty 1

are independent whenever 0 St St S ts < o and we have therefore a

slightly generalized bersion of t%le cozntrol process with independent
increments.

As expected, such processes will correspond to linear systems
and all linear systems will have cost functions of the form (1) above.

The proof of these facts and characterization of ¢ (x,y) are found

tl, t2
in the following three sections., In this section we state some pre-
liminary results which are for the most part simple or well-known but
are presented here for convenience.

The fundamental space X will still remain a locally convex
Hausdorff linear topological space. We shall let XT, X', and X* be,
respectively, the space of all linear functionals on X, the space of
all weakly bounded linear functionals on x, and the space of all con-
tinuous linear functionals on X. Thus XT D X' OX™* . xT and x*
will be referred to as the algebraic and topological duals of X,
respectively. The following three topologies are induced by X on xT

(and therefore on X* and X') will be of interest to us, T, the topology

1
of uniform convergence on weakly bounded sets, T, the topology of
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uniform convergence on weakly compact sets and Tg= 0@ the topology
of pointwise convergence, Thus the usual bases Ni i=1l, 2, 3 of the

neighborhood system of the origin corresponding to T, are
Ni = {{f:sup {#(x):xe S} <1} for some Se Gi}’

where G1 is the collection of weakly bounded sets in X, G2 is the collec-
tion of weakly compact convex sets in X containing the origin and G3
is the collection of all finite subsets of X.

For any function £, f:X — RU{-oo} we may define the set Sf R X X:

sz {ty,x):ye R, x € X, y§f(x)}

and the function M(£(* ))( - ), M(E(-))(-): XT> RU{+ oo} :

M(£)(£) = sup (f(x)-£(x))
xe X

for all 1 e xT . Thus the set Sf represents the '"volume'" under the
graph of f. The transformation M will be discussed later in some
detail. It is referred to as the maximum t:ra.nsforrn1 or the Legendre
transforrn2 and its value at f will be called the support function of .
In all that follows we adopt the convention of Dunford and Schwartz 3
and denote by S the closure of S by co S, the convex hull of S and by
co S, the convex closure of S, We also extrapélate this notation to
functions. Thus co f will be the smallest concave function dominating
g, and co f will be the smallest upper semicontinuous concave function
dominating f. Finally, for all £ ¢ XT we define £(S) to be the supremum
of £(x) over all xe S.

The lemmas below relate some of the properties of f, co f, Sf,

rn(Sf), and M(f)(m).

Lemma 1. (a) { is upper semicontinuous iff Sf is closed.

(b) Sf is a convex set iff f is concave.

Proof. Let Ha: {{y,x):y=a, f(x)Z a}. Ha = {{y,x) 1y £ {(x) m
{ty,x):y=a} = st m {(y,x): y=a}. Therefore, if st is closed
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Ha. and therefore its projection onto X must be closed and f is upper
semicontinuous,
Conversely, suppose f(x) is upper semicontinuous and (yo, x.) is
a limit point of S Let N, be a neighborhood of x, such that on it
(f({x) - f(xo)) < ¢ . Since (y0 O) is a limit point of S?, ((yo- €5yt €)
xN )ﬂS # ¢ and for some z ¢ N, and some w3 Sf(z) £ flx 0) +
€ (w, z)e (yg=¢s yg+e) XN_ . Hence, Yo S wteSf(z)+e §f(xo)
+ 2; . Thus, y, B3 f(xg) + 2¢€ ior all € and y0§ f(x4) ; hence, (yg, x,)
€ S, and every limit point of S belongs to it.
Part (b) of the lemma is immediate from the definitions of con-

vexity and of convex and concave functions,

Definition 1. For any two sets Sl’ SZC X, and a real nurnber k, we
let S, +5, = {v+w:ve Spwe SZ} and kS = {kv:ve S}.

Lemma ?_. I.et £ be a linear functional on RX X. Then
2((y, x)) = £{(y, 0)) + £{(0, x)) = y oL ((1,0)) + £((0, x)) where £((0, *))e xt,
For any function F: X>RU{-x} we have:

-£(03 ° )
(a) I(Sf) - {2(1, 0)[M(f)(—£u’—0)—)] whenever £(1,0) > 0
(e whenever £(i, 0) :< 0

(b) E(Sl+SZ) = Z(Sl)+l(SZ).

f f
(c) £(5) 2 £(S,) whenever 50 S,, § 'S 2 whenever £ 2 £, and

f 21, implies M(f)(*) 2 M(5,)().
(d) Let (T_f)(x) = f(x-z). Then M(T_£)(2) = M(£)(2) - £(2) .

(e) If A is a linear operator on X and AS is the image of S under

A, L{AS) = (LA)XS).

(f) For any linear operator A on X let f(A-l(y)) = sup {f(x):
Ax =y}, then M(H(A (- )N2) = M(£(.))24).
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(g) For any two linear functionals £1 and 12 on X and a positive
real number k, (4 +4,)(S) 2 4(S) + £,(S) and (k£)(5) = k(£(s)) .
Thus, the function £(S) is quasilinear in £ .

(h) M(F)(£) is a convex function of £ .

(1) M{IN0) = sup {(x).

Proof. Statements c, e, and 1 are immediate. We shall proceed

to prove the others.

(a) E(Sf) = sup {2(w, x):w =S f(x)} =
sup {f(x)£(1,0) + £(0, x)} whenever £(0,x)} whenever £(1,0)>0

0 otherwise

))whenever £(1,0) > 0
<
00 whenever £(1,0) = O,

(b) l(Sl+SZ) = sup {L(w) + L(V):w e Sl,ve SZ} = £(S

since w, v may be chosen independently.

) + £(S

1 2)

(d) M(T (f))(£) = sup (f(x-2) -L(x)) = sup (H{w)-L(w)+L(2z)) =
X W

M(£)(£) - £(z) where w was substituted for x-z.

(£) M(SA (- ))(2) = sup (sup £(x) - £(y)) = sup sup (f(x) - £(Ax))
y Ax=y y Ax=y

= sup (f(x)-£Ax) = M(f)(LA).
x

(g) (£,+2,)(8) = sup {(ll(x) + 2 ,(x) 1 x e S} for all x e S £(x)
§

+ 4,(x) = £,(8) + £,(S) and the conclusion follows. Also, 2(kS)

= sup {kf(x):xe S} =k sup {f(x):xe S}.
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£
(h) M({2)y=(1-1¢ )(Sf) and since the function m(S') is convex its
restriction to m of the form m= (1, £) is also convex.
Lemma 3, If S is closed and convex, (a) S = ﬂ {x:2(x) s
Le X
2(S) } and therefore, (b) if f is upper semicontinuous and concave,

f(x) = inf _ (M(£)(£) + £(x)). Ingeneral, (c) @6S = (1 _ {x:8(x)
LeX* LeX"

S £(S})}, and {d) cof(x) = inf (M(f)(£) + £(x)). Also, (e) the
feXx*

maximum transform of any function is lower semicontinuous on (X *,¢ ).

Proof. (a) Since S (C {x:£(x) S£(S)} for all £ ¢ xX*, we have

S C n {x:12(x) s £(S) } ; on the other hand, if x ¢ S, there exists
fe X

£ ¢ X* separating x and S.4 Hence, £(x) > £(S) and x ¢ n
{x:4(x) S 2(S)}; therefore, SO [) 2(x)< 2(5)}.
LeX*

(b) Similarly, f(x) S sup (£(y) - £(y)) + £(x) for all
y
LeX* and f(x) S inf[ M(£)(2) + 2(x)]. Conversely, if f¢ (R x X}
and £(1,0) £ 0 I(Sf) = + o ; hence, {x:1£(x) s Z(Sf)} = X and

f f\ I - £ . m\ - I'd
S = 01 {(yox): 2y, x) = (S)} = 11 tyx) 2 (y, x) £(8")}.
2(1,0)>0 £(1, 0)=1

Thus, if f(xo) < a, there exists m ¢ X * such that f(x) £ m(x) + M{f)}{m)

and rn(xo) + M(f){(m) < a. Thus, inf (m(xo) + M({f)(m)) s f(xo).
m

{(c) Let S be an arbitrary set and let S' = ﬂ {x:2(x) §1(S)} .
feX

Then S C S', and the latter is a closed convex set being the intersection
of such sets, Thus, S'7) co S. Also, £(co S) 2 £(S) and, therefore,

co(S) = [) {x:2(co8) 22(x)} D {x:4(S5) 2 £(X)VLe X }- Thus, S'

= co S.

(d) For any function f, f is no larger than f' =
inf [ M(f)(£) + £(x)] and the latter is upper semicontinuous and concave,
hence, f' £ co f. Conversely, co f = inf[ M(co(f)(£)+£(x)]§ inf [M(£)(£) +

2(x)] = £ ;
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(e) M(f) is the supremum of lower semicontinuous func-

tions, hence itself belongs to that class.

In the next few paragraphs we shall investigate the continuity
properties of M(f)(£) as a function of £ . In particular, we shall show
that the Legendre transform of a large class of functions are continuous
in the appropriate topology. To discuss these functions it is convenient
to made the following definitions.

Definition 2. A function f on X f:X - R {-w} is said to be

sup-compact (sup-bounded) in the topology 7 iff {x:f(x) 2 k} is
compact (bounded) for any k ¢ R.

Definition 3. A function f:X = [ -og o) will be said to be regular

(b-regular) iff f(x) - £(x) is weakly sup-compact (weakly sup-bounded)

e

whenever £ ¢ X,

Definition 4. > ({Bellman)., The maximum convolution of functions

f and g will be the function {(f® g)(+ ) defined by

(fDglx) = sup (f(y) + glx-y)) = sup (f(x-y) + g(y)).
y y

Lemma 4.6 (Moreau). Let f be a concave upper semicontinuous
function on X with values in[ - ©, ©) which is sup-bounded in the weak
topology on X and for some x, f(x) > - o, Let Z be the linear space
defined by Z = {£:1L¢ XT , sup {|(x)] : f(x-x) 2 a} < o for all
Xg € X, ace R} and let T be the topology of uniform convergence on

all sets of the form {x:f(x-x.) 2 a} for some x, ¢ X, ae R. Then

)
0 0
(a)y(Z, ) is a locally convex Hausdorff linear topological space and
zCX* (b) M(f)(4) is continuous at 0 on (Z, T).

Proof. (a) follows immediately from Bourbaki. f

(b) By lemma 3(b) f{(x) = inf (M(f}{m) + m(x)). Thus there
m

exists some m ¢ X¥ such that M(f)(m) < « and f(x) $ M(f)(m) + m(x).
Furthermore, if b is some number such that the set B = {x:f(x) 2 b}

is nonempty sup f(x) s sup {f(x):xe B } s M(f)(m) + sup {m(x):xe B}.
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The last expression is finite since B is weakly bounded and f must
therefore be uniformly bounded. Let a = sup f(x) > - and let

K = {x:f(x) > a -k} ;‘_‘\"Then if k > 0, Ky # ¢ and there exist some

x, belonging to it. Let N= {-f:f¢ Z, (2K -x)) > ~k+ (a—f(xl))}

n {2: Il(xl)l < k}. Then N is a neighborhood of the origin 7.

Also, for all £ ¢ N and x ¢ Kk,f(x) Sa Il(xl)l Sk and -£(x) Sk-a

+ f(xl) - !(xl). Hence, a-2k £ f(xl) - f(Xl) S sup (f(x) -L(x)<atk-at

xeKk
fx,) - £{x;) = f(x;) + 2k S a+ 2k and
sup (f(x) - £(x)) - a | S 2k,
xeKk

We shall complete the proof by showing that outside
Ko f(x) - £(x) - a £ k and therefore | M(f)(£)- M(£)(0)]| £ 2k for all
. . c - - - -
£ e N, Indeed if X, € Kk 2) = 2) I(xl) = -ow<k
or f(xz) >~00 . In the second case f(a(xz-xl) + xl) is concave in «a

€ Kﬁ f(a(xz-xl) + xl) = f(x2)<a-k

either f(x - o0 and f(x

equals f(x.,) at ¢« = 0 and since x
d 1 2

at @ =1, Thus for some 0 < o < 1, f(ar(xz-xl) + xl) = a-k and

alx,-x,) + x, ¢ K.. We may write: alf(x.)) + (1-0) f[x.) =
2 i i K < 1 P4 1

f(a(xz-xl) + xl) = a-k and f(xz) s2 ((2a-k)+(1- o) f(xl)). Also 2(x

)2

2)
l(xl)

- % [ 2(alx, - %) + %) - (1-a) £ (x,) [~k+a-fx)) + £(x))

2
a
S

A

+ af(xl)] for all £ ¢ N and f(xz)—l(xz) a+k.

R b

[Cl'f(Xl) = Q’I(Xl) }
Lemma 4 has a converse:

Lemma 5. 7 (Moreau). If M(f)( ‘) is uniformly bounded above
in a neighborhood of zero in the T, (Tl) topology on X* and f is

weakly upper semicontinuous, f is sup-compact {sup-bounded).

Proof. L.et N be the neighborhood of zero on which M(f)( ") is
bounded and let k be the bound. We may assume that N has the form
N = {£:2(S) < b} for some convex compact (bounded) set S containing
0 and some positive b. If a < k we may write: {x: f(x) 2 a} =
{x:M(f)(2) + £(x) 2 a for all £} {x:k+£(x) 2 a forall £eN} =
{x:4(x) > a-k forall e N} = &BE {x:4(x) > -b for all £eN}
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but if £ (-x) < b whenever £(S) < b, x must belong to -S. Hence
{x:f(x) 2 a} C -S and the latter is a compact (bounded) set.
Corollary 1. Let f be a b-regular concave upper semicontinuous
function and let (Z,T) be defined as in lemma 4. Then M(f)(-) is
continuoﬁs on (3(7*‘, T) where X* is the closure of X* in (Z,71) and
therefore its restriction to X* is continuous when X* is assigned
the topology 7. . If f is also regular M(f)(:) is continuous on (X%, T

1
Proof: Bylemma 2 M(f)(-) is convex and by lemma 4 it is

2)-

continuous at 0. Thus by appendix (1) it is enough to show that the
set S = {£ :M({f)(£) <w} equals X* and therefore its interior s? is
the whole space. But suppose there exists ll ¢ S. Then since S0 # o,
{ﬂl} and S may be separateSd by a continuous linear functional and s©
must have an interior point. This contradicts the that f is b-regular
and M{f)(£) <o for all £ in the set X* which is dense in X* {lermma 6).
When f is sup-bounded (sup-compact) Tl(TZ) is finer than T and
the rest of the assertion follows.
Lemma 6. If f is bounded above, f is b-regular iff M(f){(£) =
sup (f(x) - £(x)) < oo for all £fe X*, hence, if f is bounded above and
b-regular, c_of is b-regular.
Proof. Suppose {x:f(x) > £(x) + a} is bounded for all £ e X,
ae¢ R. Then sup (f(x) - £(x)) € sup {f(x) - £(x):f(x) - £(x) > a} <
sup f(x) + sup {-£(x) : f(x) - £ (x) > a}. The latter set is bounded, hence
the whole expression is bounded. Conversely suppose sup (f(x) - £(x)) < 0
for all £e X* but {x:f(x) - £(x) > a} is unbounded for some £e X%,
Then there exists me X* which is unbounded on this set and f-£ + m
is unbounded on the same set.
Lemma 7. (Moreau). 9 (a) The maximum convolution of two sup-
compact functions is sup-compact. (b) The maximum convolution of
two concave functions is concave. (c) M(fG?Eg) = M(f) + M(f)' (d) If
192 6
fl and fz are two sup-compact functions, S =S +S . (e) For
any continuous linear operator N on X and a sup-compact function

f(N-1 o f -1
f, S (+)) = N'S” where f(N (x)) = sup{f(y) : Ny = x} ; the function
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f(N_l( - )) is sup-compact and N': R X X — R X X is defined by
N'(y, x) = (y, Nx).

Proof, (a) By lemma 1.4.3. f{®g is upper semicontinuous and
therefore the set {y:sup(f(x) +g(y-x) 2 a} C
{x+2z:f(x) 2 a- sup g, gl(z) 2a- sup f} is closed and constrained in

. 1
the sum of two compact sets and is therefore compact. 0

(b) A, [y, - %)) + glx) ] + %, [Hly,-x,) + glx,) ]

A _

L . < [P
f('\l('}'l - Xl) + )\Z (YZ-XZ)’ + g(Kl xl + RZXZ) = slep [t(X1Y1+X2y2-Z)+g(Z)]
= (f@g)()\l Yl + )‘2 Yz)-

Taking suprema with respect to %y and X, on the left side the proof is

completed.

(c) M(f@g) (£) = sup ([ sup f(x-y) + gly) ] -£(x) =

x y
sup sup [ f(x-y) + gly) - £{x) ] = sup sup [ f(w) + g(y) - £(«) - £(y)]
y X y w

= M(f)(£) + M{(g}{2) where w was substituted for x-y.

() Suppose (y),x,) ¢ sy, x,) ¢ SB. Then y, S f(x)),
Y5 s f(x,) and y, + v, s flx;) + g(xz) £ sup [f(x1+x2 -z) + glz)] =

f
{(f ® g)(x1+x2). Thus (yl + Y0 ¥ + XZ) € S ®g.

Conversely, (y,x) ¢ Sf ® g = v £ sup|[ f(x-2) + g(z)]. Since
z

the supremum is attained y S f(x—zl) + g(z1 }» hence y—g(zl) £
f(x-z,) and (y,x) = (y-g(z,), x-z,) + (g(z,), z,). Thus, (y-g{z,)s

1 £ 1 1 1 1 1
x—zl) € S, (g(zl), zl) ¢ S8,

(e) sup {f(y): Ly= x} = sup {f(y):y e {L;r-“— x} N
{z:f(z) 2 sup {f(y):Ly=2} - ¢ }}. Thus, the supremum is taken

over a compact set and is attained. We conclude that
{x: sup f#(y) 2 a}
Ly=x

= {Ly:f(y) 2 a} = L{y:f(y) Z a}.

-4]-




This is the image under a continuous mapping of a compact set, hence
it is compact and f{( L-l(-)) is sup-compact. Furthermore (a,y) ¢

-1

f(L (-
: S( (+)) implies (a, y) = (a, L{z)) = L'(a, z) where (a, z) ¢ Sf and
-1

f L - 1 . °
S( ( ))C L Sf( ). Conversely, (a,z) ¢ L'Sf( ) implies (a, z) =
£(-) '

which in turn implies that a < f(y) and

-1,
a < sup{f(y): Ly = z}. Hence L'Sf(') - sf(L ( ))-,

(a, Ly) for some yeS

§2. THE CONVEX COST FUNCTION

We shall return now to the study of Markov transition cost functions
having the form:

(1) c (x,y) = ¢ (0, y-T, _, x).
tpr ty 0ty t) £, -t

For convenience we shall drop the zeroes and consider a function

c( . )( <) R+>< X —> RU{- o} satisfying the semigroup condition:

(2) ¢

t3_tl(y-Tt _t x) = sup[(:t -t (y-Tt -t z) + ¢

371 372 375 t27h

where Tt is a linear operator on X for each time t. Functions

satisfying (1) will be called linear M.t.c.f{,

Substituting t for to~t T for ty -t and w for z-ttz"tl X,
we obtain the equality
(3) Copp (Y- Ty %) = s::p[cT () + e (y-Tlw+ T _x)]
_ _ _ _ (y-T T x).
= sup [c_r(w) + ct((y TtTTx) Ttw)] = Ciynr t T

w

Thus if w belongs to the range R of the transformation

Tt+'r - TtTT ) w=(Tt+T— TtT-r) v for some v ¢ X and we have for any z:
(4) Coppl2) = Ly (24T V) - T o)

ct+T(z+Tt+'rv-TtT-r v) = (z + w)

C
t+T
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and ft+-r is a constant on the set z + % . Since we shall only be
considering M.t.c. functions which converge to - ¢ as the state x
becomes large we have to require that z + & be bounded and therefore

&R = ¢ and T has the semigroup property:

With these assumptions on Tt and some continuity assumptions it
is desired to find out what the temporal behavior of ct(x) is and if
possible some characterization of its structure as a function of x. As
a first step we shall try to characterize the maximum transform of
ct( ). A knowledge of the latter will by lemma I1I.1.3 allow us to
describe co Ct( * ), the convex closure of the transition cost function.

Let

(5) g 4) = M(c (- N(2) .

Then applying lemmas 1I.1.6. and II.1.2.

w

(6) g,, (1) = M(sup[ clo) +c_(+-T w>]> (2)

M (sup [, suwp ct(w)+cT(--vz[>u)=gtuTT>+gT(z),

T{w=v

and gt(l) satisfies a very simple semigroup condition described by
(6). In the study of the implications of (6) we shall make use of some
properties of the Riemann integral which we shall state below without

proof.

Definition 1. A linear topological space X is semicomplete iff
every Cauchy sequence of elements of X converges to some element

in X,

1
Lemma 1. Let Z be a semicomplete, locally convex, Hausdorff

linear topological space. Let f{a): R+————> Z be a continuous mapping.
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Then:

1) f(a) is Reimann integrable on any interval [ a, b] .

C b C
Z)I (o) de :f f(a)da+f f(a)da.
a a b

3) If Y is any linear topological space and L is sequentially

continuous from Z to Y

b b
Lf f{a) de :f Lf(eo)da.
a

a

b
4) f f(e) da = (b-a)x for some x ¢ co {f(e)V:ae [a,b].
a
| t+9 -
-15\[\ flaydae o > O
5) The function f(9,t) = t ’
£(t) 8 =0

is jointly continuous in 8 and t.

6) If g(-) is a lower semicontinuous real-valued convex function
on Z
b b
f d
f glf(a)) da Z (b-a) g e
a a

Suppose {Tt}te R+ is a one-parameter set of linear transformations
on a semi-complete space X and Tt x is continuous in t on a subset

W of X. We shall denote by Na the operator defined by:

a+b
f Tt(x) dt.

a ’

s b

ol

N, p: W—>X, N (x) =
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Lemma 2. Let Z be a semicomplete locally convex Hausdorff
linear topological space and let L, be a one-parameter semigroup of
continuous linear operators on Z . Let the subset W of Z be defined
by W= {x: Lt(x) is continuous in t } . Then if gt(x) is a nonnegative
convex continuous function on Z such that gt+T(x) = gt(x) + gT(th),
there exists a positive and convex function g on Z such that for any

aannder

gt(NO’ax) :J g(NO,aLT x) d~
0

where
9
NO, a(x) = %f L-r (x) dr, for all xe W
0
and g(NO’ ax) is continuous in X on 50 NO, BW'
Proof.
t t t+d
fga(LTx) dr f [ gy, .00 - g (x)] dv =f g_(x) dr
0 0 0
t
f g_(x) dr
0
t+9 . 9 t
:f g_(x)dr -f g_(x)dr -f g (x)dr
0 0 0
t+0 9

:f g (x) dr -f g (x) dr
I, 0 |
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9 )
=JF (g (%) - g (x)) dr :f glL_x)dT
v

0

where all the integrals are defined and finite because gt(x) is monotone
in t and finite,

Thus:

t 9

fga(LTx) dr :f gt(L'rX) dr .
0

0

Since gt( - ) is convex and continuous the inequality of L.emma 1-6

applies and:

) 0

> 1
f gt(L_I_x) dt Z ag_r [ 3 f L_rxd'r ], for all x e W.
0

0

Therefore:

t 9
> 1
fga(LﬁLTx)dT Z agt[gf LBLTxdT]
0 0

9
= 8[gt+ﬁ(%f L_xdT) - gp(%LTxdT)]
0

v
=]

It follows that the function gﬁ (No BX) is absolutely continuous in f

. 1 _ . 1
and lim + g-r(LBNO, g%) = lim & [g[5+t(NO, 5%) - &g (NO, 8X)]

t lo t Lo

exists a.e. (as a function of B ) for all x ¢ W and is equal a.e. to the

Radon-Nikodym derivative of g[3 (N0 ax), Thus,
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85 (N, o)) = f[ lim sup—t— g,(Ng, oL %) ] dr

o t —> 0

We now define g(x) = lim sup —113— g.(x) and obtain:
t —>0 :

3

gﬁ\ho’ax; = J 8(Ny gL %) dr, for all xe W .
0

We may also notice that g(x) is convex since it is the lim sup of convex

functions and for all xe W

1 [
t g(sf L_xdr)
1 > 5 t 9% 7
ga(x) = lim < ga(L x) dt = limsupd
t—>0 o t —>0 t
= af(NO,a(x)).

Therefore, g(NO a(x)) is continuous on W.2 and utilizing again Lemma 1-6

B
g5 (Ng, 5%) =] g(Ny oL x) dr Eﬁg(NO,aNo’ﬁx)
0

or g,(x) 2 Beg(N, .,x) for all x e U N, oW from which we conclude that
B 0,p 950 0,9

g(NO,BX) is continuous on ago NO,B W(Z).

The following two lemmas will be valuable in applying the results of

lemma 2.
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Lemma 3. Let A be a collection of weakly bounded subsets of x
covering X. Let Z = {f:4 ¢ XT and £ is bounded on the sets of A }

and let T be the topology of uniform convergence on sets of A. Then

(a) Z D X% and (Z, ) is a locally convex semicomplete,

Hausdorff f.t. space.

(by If T is a linear transformation on X which leaves A invar-
iant under the mapping F. s —> TS for all Se A, the mapping

T* f—> { T is continuous on (Z, T).

Proof. (a) The proof of semi-completeness involves routine

2
arguments. The other statements are shown in Bourbaki™.

(b) It is enough to show that the inver <« image of the basic
open sets in T are open. Indeed let S be an element of A. Then
{0:{tTx:xe S} (a,b)} = {2(y):ye TS} (a,b)}, The latter is
openin T since TS e A.

We are now ready to describe the behavior of a large class of

linear M.t. c. functions.

Theorem 1. Let c {x,y) = Cn» (0,y-T, . x) be a linear

_ tl’ tz 0 tz—tl tZ tl

M.t.c.f. whichis b-regular in y and satisfies ¢, (0,0) 2 0 for
1" "2

all ty ‘c2 € R+. Let A be any collection of subsets of X which is

invariant under the mapping T, Tt: S —> Tt(S) forallte R and

>
0,a O) = a}

¢ X. Let U be the space of all

contains all the sets S having the form S = {Ttx:c (0, x-x

for some t, ¢ in R+, ae R and XO
linear functionals on X which are uniformly bounded on the sets of

A. Let T be the topology of uniform convergence on the sets of A,

If X * is the closure of X* in (U, 1), and if




(1) Tt( . ) is weakly continuous on X,

(i1) ET( % RT——> X* is continuous {in the topology T ) for all

f in a dense subset W of (X>':, 7), then there exists a convex function

g defined on X* such that

[\t
() = Mlcy (0,-N(4) = | g(IT,) da
0

for all £ in \J Ng 5(W), where

9>0
3 . a+b
Na,blef {T do .

a

ol
b4

0 a( - )) is continuous on ( U N* _W).

5> 0,90

Furthermore, the function g(N

Proof. Applying lemma 2 we let Z = X* and let the topology on

Z be 1. By lemma 3 U and therefore x* are semicomplete. Also

e
a“

the one-parameter semigroup of linear transformations Lt = Tt

defined by Lt(l) = th maps X™ into itself since Tt is weakly continuous,
and it maps U into itself since th(S) = I(TtS) and TtS ¢ A whenever

Se A. Therefor f ¢ U implies that th is a bounded on the sets of

A and th ¢ U. By lemma 3 T:< is continuous on (U, v), hence it maps
X* into itself. Because of (ii) L

(

for all £ € W and the latter is dense in X . gt( . ) is continuous on

)(1) : Rt—-A X = Z is continuous
(X™, 7) by corollary ILLL and inf g(f) = ¢, (0,0) 20, thus g(f) Z 0.

Finally the semigroup condition is satisfied (equation 7) and the theorem

follows from lemma 2.
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§3. THE REGULAR COST FUNCTION

In the previous section we obtained a characterization of the convex
closure of a b-regular £. M.t.c. function. We shall now continue the
investigation of such functions. The main result of this section is

theorem ! which states that regular cost functions are convex.

Lemma 1, Let {fn}:_ be a sequency of real-valued functions on

1
X and let gn(i) = M(fn( - L), n=1,2,.... Then

(1) If £ {x)= sup fn(x), we have goo(ﬁf, = M(foo( - ) (4) = sup gn(l).

of

(2) 1f fn(x) l foo(x) and in addition the functions fn( - ) are regular

for all n, g (/) | g (1)

Proof. (1) goo(l) sup(foo(x)—l(x)) = sup sup [f (x)-£(x)] =

X be n n -
sup sup [ (x)-4£(x)] = sup g (£).
n  x n
. > . > s
(2) Since gn(ﬁ) z goo(ﬂ) for all n, inf gn(.ﬁ) Z goo(ﬂ).

Conversely, suppose inf g (£) > g () + ¢ for some [ ¢ X * and some
y pp ghn o

€ > 0, Then for all n, sup (fn(x)—l(x)) > g’)c(i’) + € and the sets

Wn = {x:fn(x) 2 Ux) + goo(ﬂ) + €} are compact decreasing and non-
>
2 ﬂ(xl)

“Xl) + g (L) + €. This is a contra-

empty, hence they have a point x, in common, But then fn(x

] 1)

+ g (£) +€¢ for all n and foo(x 5

0 1)

diction, hence gn(l) lgoo(ﬂ).

[e.¢]

Lemma 2, Let {fn}nzl

be a sequence of concave upper semi-
continuous real-valued functions on X and let gn(ﬁ):M(fn(-))(Z),

n=1,2,...,90. Then
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(1y 1f gn(l)l gw(l), fn(x)ifoc(x) where foc(x) = M-l(goo( - (x) and

M—l(g( - ) & ins (M(f)(2) + £(x)) (see lemma II.1.3),
- fe X
o (2) Whenever (2)___>g (Jl), sup £ (x) = foo(x) where foo(x) =
M (g (£))(x).

{3) Whenever gn(i)——-> gw(f), lgmksgg fn(x) = fw(x) = M—l(%o(“)(x)‘
Proof. (1) f (x) = inf [g (£) + £(x)] = inf inf[g (£) + £(x)] =

inf inf [g (£) + £(x)] - inf f (x).
n £ n ": n

(2) Similarly g (1) 0 g J?) implies f (x) is an increasing
sequence, hence M(sup fn( - N{2) = sup M(fn( < ))E) = lim gn(l) = gco(l).
Thus supf =1f ,

n oC

. (3) g ) = mfkiup g (2) and M (g (-)) = me (kszup Bx
n n n

(«)) = 1nfsupf .
D xZn

Corollary 1. Let fn be a sequence of functions and let gn(l) =

M(f (- ))(£), n=12,..., 0. Then

(1) Whenever fn l/ f and fn are regular functions we have

| ot

(2) fn(x) T foo(x) implies szp co fn ="cto {f .

i i = M{f ); also,
Proof. (1) By lemma ], fnl foo implies g, ;gw ( oo) also
. —— er— . -1 - ‘—f
v by lemma 2, g i g 1mp11es» co fn\L co f00 since M (gn) co n

and M~ gw)—cof v

5]~




(2) Similarly, £ (x) T‘foo(x) implies g_(£) 1 g (£), which

in turn implies that sup co fn(x) = Co foc(x),.

Lemma 3, Let < t(0, . ) be a linear M.t ¢, function which is

(weakly) sup-compact and suppose that the corresponding semigroup
of linear transformations Tt satisfied (i) and (ii) of theorem II1.2.1,

. n _ - n-1 . o
Define CO,t(O’X) = 2 sup {CO, t/Z(O’ yvi: {1+ Tt/Z) yv=xt and let

C0
0,t 0,t

Then cg t(O,x) is a monotonically decreasing sequenc of functions
]

(0, x) = ¢, ,(0,x) where the usual convention sup ¢ = - o is used.

whose limit denoted by cgo t(0, x} exists and is a concave function of x.
2

Proof. Let St: {ty,;x):ye R, xe X, y§ °, 1,(05 x)) = S(t)

y

Sp= {lyx)iye Roxe X, y& o (0,5},

]
and define Tt: RxX—> R x X by T;(a,x) = (a, Ttx). Then by

n+l 1 n 1 ) 0
lemma II.1,7(e) St = (I+ Tt/Z)St/Z and St = (14 Tt/Z) St/Z'

Thus

0 .0 o 0, , 0 .
St - St/2+ rt/z St/zD(l +‘Tt/?.) St/?_ = 5

and if S? C S“?nl for all ¢ and some n

n+l _ , n ' n-1 _n
5, = (I+Tt/2) St/ZC(I+Tt/Z) St/Z = S

By induction we show that SI,EH CS;1 and therefore cgl_'L%(O, x)

< n 00 ) n ) .
= CO, t(O’ x). Let CO’ t(O, x) = inf CO, t(O, x). Then
w0 0 ©
SCO’ t O n Sltl = Szo . We shall now show that Szois a convex
n=0

-52-



oo
set and therefore g t(O,
b4

) ) .
=1 S? is also a closed set and in order to show that

- ) is a concave function. Since the sets S?
0
are closed, St =

it is convex it is enough to demonstrate that whenever vy, v, are in
<% 1 1

t?Z2 V172 V2
vectors of S:o. Then V)V, € S? for all n. But

v, + is also in that set. Let v = (yl, xl), v, = (yz, xZ) be two

at ;

Sp + T't/znst = (1+Ty (- NI+ Ty 50) Syppnt
+(I+T! /2)( ees ) I+ Tt/Zn) T{:/zPst/zn
=(I+ T'/Z)( )(I+T/2n)(St/2n+ t'/ZnSt/Zn)
= (I+T, /Zn) S
Thus v + 'I:/Z e(I+T /Zn) S .or there exists W € S?—l such that
1t Tt/Zn > = (I+T/2n)w . Let w = (un. zn). We have: Zun= nty, =

2a for some a. Define Ha to be the set {(y,x):y-_>- a}. Since

. n 0
CO, t(O, ) is sup-compact the sets St Ha are compact and w_ € Ha St
implies that W has a limit point w S?= S:o. Forany fe¢ W X* there

exists k so large that for all z € SS Ha i L{({I+ Tt/Zk)z - Zz)l < € and

L ]
therefore ! ! ((v1+ Tt/Zn VZ)

l!(an— 2w) £ 2¢ infinitely often. Since { (v + Tt'/znvz - 2w) converges

-2w)| = II[(I+Tt'/Zn)wn-2w]| < e 4

it must converge to zero. Furthermore, th'/Z nVv, _ Ivz for all

£ e W so £(v1+v = f{2w) for all £ in a dense subset of X*, hence

2)
v1+ vy = 2w,

Lemma 4. Let c, b(x, y) be a linear M. t.c. function which is

sup-compact in y and suppose that the corresponding semigroup of
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linear transformations Tt satisfies {i) and (ii) of theorem II.2.1.

Let cO (0, +) be defined as in lemma (3). Define hn(x) by the

following recursive relation: h?+1(y) = Sip[ht/Z(X)+ht/2(Y-Tt/2X)] and
h(t)(x) = <, t(O %), Then h?(x) is a monotonically increasing sequence

. o . .

of concave functions whose limit denoted by ht (x) exists and is there-
9 .

fore a concave function of x. Furthermore, ht(x) is bounded above

by CO, t(O, x).

* Proof. Let Rn: {(y,x):h?(x) >yv,ye R, xe X}, n=0,1,..., .
nt+l 1 RE 1.0 O T
Then R = Ry, +Tj, Rijp and Ro= Ry + T Rip = Sept Ty

oC oC
’T"l
Sppp D (14 T/Z)sf/2 We shall now show that (I+T, )87, DS’

oc
T - exi -
therefore RtDRt. Let w belong to St . Then there exist v (yn, xn)

s _ . n .
€ bt/Z such that (I+ Tt/Z) w = (a, z). v lie in St/Z m Ha since
Y, = 2 The latter is compact, hence there exists alimit point v

of {vn} and £ [(I+T /2) v - (I+T/2) v_] <e infinitely often for
sk ' _
any € . Hence £(I+Tt/2)v—£w for all £ ¢ X and (I+Tt/2)v—w.
00 . 00
Furthermore, v belongs to St/Z and therefore we (I+ Tt/Z) St/Z and
00
Rt D St = RS. Using this fact we can prove inductively that

n+l n n n-1 . n+
Rt D R . Indeed suppose Rt/Z D R We obtain Rt = R

t/2 "’ /2 *
' ' n-1_ _n n > . n-1
Ti/s t/ZDRt/Z + T!, R}, = R and therefore hi(x) Z h/” (x). To
complete the proof we shall show inductively that R?CSS and therefore
n < _ 0 o 0
ht(x) = CO, t(O,x), For n=0, St DSt = R.t' Also

o .0 , ) oC , oc .
S, = S.5*t Tt St/ZDSt/Z+ Ti,, S/, and in general

- gv : 0 n \ n _ ,ntl
St/z" St/z * Tt/z St/.z D Rt/Z + Tt/Z Rt/z a Rt/z
Lemma 5. Let <, b(x, y) be a convex £.M.t c. function which

is regular in y and satisfies c, ,(0,0) 2 0. Suppose that the

0,t
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corresponding semigroup Tt of linear transformation satisfies (i) and
(ii1) of theorem II.2.1. and let h?(x) be defined as in lemma 4. Then

M(h?( ) TM(CO’ {0, -)) and therefore sup h?(x) = ¢y ({0, %).

Proof. By theorem II.2.1.

g8 = | g(AT) da Z tg (N (1)

ale

for all £ ¢ U NO’Y

W. Applying lemma I11.1.2(f) and the definition of

.
0,t

Y0
(0,-), Mlcy (0,x))(#) = 2%, /,n(1/2"8 (1+ T ) - - N1+ T, jpn)) 2

tg((1/22 N’g, ¢ 2nd) I+ Ty o) (- - - NI+ T, ;) = tg(N’t)’ (L) since

0, t/
M(eg (0 M £ 2 e 0. n= 0, or all £ e g

* N o}
(N an)(I-I» Tt/Zn) = ZNO, t/Zn.l(l). Therefore, if g, (2) =

N’g W. Also by lemma 2 since c? (0, x) are concave and upper

.y 0,t
iconti ®(9) = M(co (0,+))(2) = inf g(1) 2 tg(N¥ _2)
semicontinuous, g - () = o, {0 N(L) = inf g (£) = tg 0,t °

Let £(£) = M(hy( - ))}(£). Since hl(x) S ¢, (0,%)

O S n _ [ o} PR oo
ge(f) 2 £(4) = [ g pn(l) + + gt/ZnuS{Z“-””””

v

t * * ;
= L8Ny ypnt) +ee + 8Ny onfTion 1) n ]
2

Utilizing the fact that £ € U N% YW, there exists some y > 0 such
« y>0

that £ = NO Ym for some me W and

g(8) 2 1 (1)

At

ata

2

X

t s % . %
—- N telot
= [g(NO’ (/20 O’Ym) g(NO, ¢z No,y ™ T
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Let Jn(oz) be defined for each m e W by

T =
where

1 on{a,b)

' lam (@7 3

0 on| a, b)

Then
t
gle) 2 i) 2 f J (@) da
0

But

J (a) £ sup g(N¥ —N¥ y ™ T) = a
0Sast
051

s,

where a is finite since g(N> (<)) is continuous on ( U NO W, T ),

0, v v>0 s Y
NO:B m Ta = Na,ﬁ m is jointly continuous in ¢ and B (lemma II.2.1,)
and their composition is therefore continuous in o, 3 . Furthermore

T (@) —> g(N|

0.y ™ T ), therefore
' Y (24

for all fe U N W. In this way we obtain go(l) = sup fn(l) for all
v>0 0, vy t t
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1 e U N v W, since g?(l) 2 sup f?(f) everywhere and g(-) is
v>0 0, n
continuous, so is sup f (- )( ) and sup f?( -) = g(t)( - ) everywhere.
n n
with the aid of lemma 2 we arrive at the final conclusion.

Theorem 1. Let <, b(x, y) be an £.M.t.c. function which is weakly

upper semicontinuous and let €a, b(x, y) = co (Ca, b(O, , ))(y—Tb_ax).

> o(2)

Then if c; (x, «) is regular c_ (0, 0) and the corresponding

1’
semigroup {Tt} of linear transformations satisfies (i) and (ii) of

theorem II.2.1., c, b( -, «) is a concave function.
2

Proof. Since M(c_ (0, «))(-) = Mlc, (0, * (- )= g,_,(+)

we have: M/ sup (e} b(O y) + ci) C(O, - -T2 yN1(e) =
Yy
,b(o’ < )(2) + M(C' (05 NUT, )= g, _ () + gc-buTb—a) =

g ) = M(c' (0 )) and therefore sup[c' (x,z) +

!
M(Ca

(23] = el (xy) and ¢l (xy) is a £.M.t.c.function ) Let

CO t(O, ) and h;n( ) be the functions corresponding to c0 1:(0 -)

according to the definitions in lemmas 3 and 4. Then by lemma 3
n 0
CO,t(O’x) L CO,t(O’ x)
and by corollary 1 and lemma 3
(0 x) \Lco(c (O x)) = ¢ t(O, x)

Therefore h;n(x) = h?(x). But it follows from lemma5 that
co (C {0, < ))(x) & C(') (0,x) 2 L0 x) 2 h (X) —>
c—o(co, 1:(O, « )x). Thus, co (c (O « INx) = CO, t(O,x) and Ca, b( <y )

is concave.
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§4. C-REGULARITY AND REGULARITY

The conditions imposed on the cost function in the preceding sections
such as ''convexity' or 'regularity' involve the structural properties of
the function a, b( -, +). On the other hand, when the problem is
specified it is usually much easier and more natural to check the
temporal behavior of the cost function. In particular, in most problems
of interest we know that as the time to reach x becomes short the
expense of reaching it mounts and eventually becomes prohibitive.

This is essentially the type of constraint imposed by the requirement
that Ca, b(x,y) be c-regular. In this section we shall comélete our
discussion of cost functions by showing that c-regular cost functions
are concave,

As in previous sections we shall let Ct : (x,y) be an £. M, t.c.f{.

1’2
We shall also let A= {G:G is a weakly bounded subset of X contained
. ) ; >
in {Tax.ctl’ t2(0, X xO) Z a} for some a, tpty ac R, X, € X} and
Z will denote the space of all linear functionals on X which are

uniformly bounded on the elements of A with the topology T of uniform

convergence of the elements of A, It will be assumed that:

(i) T _ is weakly continuous on X.

t
(i1) ET( ): R+——% (Z, v) is continuous for all £ in a subset W
of (X*, 1),
(iii) sup c (x,y) is a measurable real-valued function of t.,t,.
%,y tk,t2 1772

(iv) Ctl’ tz(x,y) is c-regular,
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The function gt( “,*): R X X* ——> R may be defined as follows

gt(a,l) = sup{co’t((),x):l(x) = a}

Lemma 1. Let gt-a((b—a), ETQ_) = ci t(a, b). Then

<, T( *y* ) is a (time varying) M. t.c.f.

Proof.

2

Cat+a+ 'r(a’b) =

(b-a,lTa) = S;lp {CH_T(x): lTax = b-a}

gt+'r

sup{sup| CO,t(O’Z) + CO’T(O,y— T_rz)] : £T0y= b-a}
y z

Zs:;p{co’t(o,z) + CO’T(O,W) : lTaw+£Ta T-r z = b-a}

= sup sup sup {co (0s2z)+c (0,w): ITaw=c,lTaTTz=b-a-c}
cC z W ’ ?

= sup {g_r(c,lTa) + gt(b-(a+ c), T )}
c

= sgp{gT(d-aJTa) + g, ((b-d), 4T__ )}

_ J] JJ
= sup[ <, a+1-(a’d) + c (d,b)] .

d s a+t, atT+t

Lemma 2. Let clt a(x,y) be defined as in lemma 1. Then

cﬁ ch,y) is c-regular for all £ ¢ W,

Proof. We have to show that if T <t n, Zt T n,T>t

2
1) cq oyp) =g, fdy,-xl)—> -
n

t,r]n
x —>0
£
= - _
2) CTn’ t( YO’X) 8o ((x yn), lTTn) oc unless

x—yn'——%' 0.
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Suppose this is not the case. Then there exists £ ¢ W,

afn——> 0 and -rn—'—> t such that

2

{(O,x):ﬂT_rx: an} = g, (a 4T ) o,

! n n n

sup ¢,
X

but an——/-—> 0. Selecting x  to approximate the supremum we obtain a

— >
sequence x such that ZTTn(xn) =a, and CO,oz (0,xn) Z oa-¢€,. The
last inequality implies that x ~converges weakly to zero and in par-

ticular X is weakly bounded. Thus ETTy converges to £Tty uniformly

for all y e {x }*, and for each £ ¢ W. Since T (x_)—>0, 4T x
n’n=1 ttn T ' n

must do likewise. This is in contradiction to the requirement above
that /T x = a—+2> 0 and cf (x,y) is indeed c-regular.
T, R n c,T

Let f(t) = sup o t(O,x). Then f(t+ T ) =
P 3
sup| sup(c0 t(O’y)+CO . (O,x—TTy))] = f(t) + f(7). Since f(t) is
P y 2 2
measurable, f(t) = 6t for some 6§ ¢ R and <y t(x, y) s 6t.(1)

Lemma 3, If ST (x,y) satisfies conditions (i) - (iv), then
1’2

{Ex:co t(O,X) 2 a} is bounded for alla,te R and fe¢ W,

Proof. The function c (x, y) - 6(t, -t;) is still an £.M.t.c.
ty ’c‘2 2 1
function and satisfies (i) - (iv). Furthermore, if {Z yicy t(O,y) -

6t 2 a} is bounded for all a, t, then {ﬂy:co 1:(0,y) z a} is bounded

for all a,t. We may therefore assume that ST (x,v) S o.
1’72
We now proceed by contradiction. Suppose there exists a

sequence {Xn}nozcl with ¢ (O,xn) 2 a, £(xn) —>o £ € W. Then

0,t

>
g (4(x ),0) = sup {co’t(O,x):Z(x) = A(x )} Z a and g (b :f) £ a for some

> n

sequence bn’ bn Z 2. But by lemma 1
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supl g, (2. 0) + g, p(b -2,4T, ;)] = g(b ,1) 2 a,

1
and there exists a sequence a such that

L2

1, . 1 1
‘ gt/Z(an’“ T gt/Z(bn_ 4n? £) a-7z

and since gt(a,!) £ 0 for all a¢ R:

o

1, 5. 1 1
gt/Z(an"e) = a"z: gt/z(bn—an, f) a-—Z- .

Letting bll_l = sup {ai, b_- all1 } we obtain a sequence bi such that

In

1 N 1
BepolPpe 1T ) £ 2 -7 B

n

5 Zn-l and ai is either zero or% .

1
n

- . 2
Continuing this process we generate a new sequence a such that

2 1,2 >, .11
‘ a o + =
n n 4
and letting bIZ1 = sup {ai, bllq- ale} 2 -21 b; R we have

2 > 1 1
gt/4(bn’£Ta 2 = 2-7-7

n

where alzl takes on one of the values (0,1/4,1/2,3/4). In this way we

obtain the double sequence {bi} satisfying for some sequence {ai}:

W) 2

¢4
n

k
g. n(bn,lT a-1

t/2

:a-l.

and bk gzn'k. Thus b" 2 20 =1 and g (b7, 4T )
n n n'"n n

* t/2 n

Since af:_l1 converges this is impossible by lemma 2.
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Definition 1.(2)Let I"be a subspace of XT . The topology with
subbasis consisting of the sets {X:JZ(x—xO) S a} for some ae R
X € X, £ ¢ T" is called the I" topology on X,

With this notation the conclusion of lemma 3 is that

{x, CO’t(O’X) Z a} is bounded in the W topology.

By lemma 3 the function cﬁ t (0, - ) is sup bounded for all

1" "2
£ ¢ W and therefore we may apply theorem 1.4.1, to show that
dﬁ ()= ff  (e,-) isstillan M.t.c.f. and
1" "2 1" "2

{x-vy: dﬂ (x,y) 2 a} = {x- y:af (0,y-x) 2 a} is compact for all
R 1t
£ ¢ W. Furthermore, it is easy to check that di . (x,y) is still

Y,
4L
c-regular, hence possesses the strong semigroup property (I.6).

Therefore, if P is a plane in R X R+ separating(x,tl) and (z,t3) and
{

2 b

dﬂ (x, y) g d

(x,y) - (y~-x),
tl’ t ‘c2

sup (dgt ¢ (y) + dﬁ t (YsZ)>

(yst,)eP 1772 2’"3
2 ’
= sup [d | (=y)+dl L (vs2) - (y-x)-(2-y)]
(y,t,)eP 1772 2’3
2 2
= sup [d | (xy)+d o (y,2) + (z-x) ]
(y,ty)eP 1772 2''3
‘d]Z (x,2z) -2z -x=4d (%, z)
ts s tys ty

and dtﬂ ¢ (%,y) has a strong semigroup property for all £ ¢ W,
1’°2 .
Lemma 4. If di - (+«,+) is a function on R X R having the strong
i

semigroup property and for some x,vy,t, T with 'x— y[ ._.> 2, dT t(x,y)

is larger than a, then there eixsts some a,p, -ré o < 6] s t and

. . i . i
W, z,1 Sl w-zl S 2 satisfying d; l3(w,z) Za whenever a 1is nonpositive,
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Z [ yv-
Proof: Suppose n=|y-x| Sn+ 1. Then 1l $ Ynx

= = ———y—xoco = uv-o =
X = %, xz—x1+ = xi Xi-1+ my xn+1—y. Then the x are

between y and x, and

sup L d'r,tz(xl’ xz)
. < <, <
T=t,;St,. .. St St
+al  x,x)4ec-+dl x.x )=dal (xy)>a
tyty 273 toton Tntl’ T St ¥ .

Selecting ti to approximate the maximum we conclude that one of the
terms in the expression must be no smaller than a. Thus there exists

< .,<$g < : sfvi L > '
T2 a= B 2t and k satisfying da,B (xk, xk+1) Z a together with

_y-x
'xk‘xk-l‘ T

Theorem 1. If Ctl, tz(x, y) is an £.M.t.c.f.satisfying (i) - (iv),

then sup (co t(O,x)-l(x))< oo forall £ ¢ W.
bre F

Proof. As in the proof of lemma 3 we may assume o t(O, x) S 0.

Suppose there exists £ ¢ W and a sequence {xn}oo

x_ € X such
n=1,"n

< -
that CO,t(O’Xn) -E(xn) —> w. Then because CO,t(O’Xn) s 0, I(xn)
must diverge to « and furthermore dé,t(o, I(Xn)) - I(Xn) z cg’t(o, l(xn))

- E(xn) = sup

(0, x) - I(xn) —> o0,
Hx)= l(xn)

€o,t

£

.
Let _
dtl’tz(a’ b) = dtl,tz(a, b) - b+a. Then

¥ . _ )
zug [dO,t/Z(O’a) + dO,t/Z(O’b)] = w. Therefore, either

,th /2

'£ . - . . . B .Ilf
dO,t/Z(O’ } or dO,t/Z (0, ) is unbounded. By induction we may inter
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|£ TQ;
0,t/2

-a 2 2-d “n n(0,a ) z 2 since djZ (x,y)§ 0. But dlﬂ (<) has
. n tl,tz tl,tZ

the strong semigroup property and by lémma 4 there exist bn’ <., and

the existence of ¢ —> « and a_ such thatd 2 (o, an) > 2 2 and

T ,m_ suchthat 1S |b -c | £ 2, 0 S+ Sy together with
n’ 'n n n gl
LT YT
% “n >
d ™ ,c)-(c -b)=4d (b ,c )20
T,m' ' n’ n n n T, n’ "'n
n'n d 'n

£T
o

are satisfied. Hence d (b ,an): 0 + (cn—bn) 3 -2. On the other

Tn, T]n n
hand, dﬁ n(x, y) is c-regular and this fact conflicts with the statement
above.
Thus we have obtained a relation between the temporal behavior of

ST (Xl’ xZ)(c~regularity) and its dependence on x (regularity) when
1’2

x is assigned the W-topology. It remains only to tie up this result

with the conclusions of the previous sections.

Definition 2.(3) I" is said to be a total subspace of XT if for all
xe X, x= 0 whenever f{x)=10 forall £ € T XT
Let X be a linear space and let W be a total subspace of xT. In

the remainder of this section we shall assume that the locally convex

topology on X is the W topology. Thus X = W(4). Let Tt be a

semigroup of linear transformations on X such that the mapping

e o
S

T:, T:c(f) - ETt leaves W invariant. Then Tt;x —_—> Ttx is continuous

for each t. We shall also require that {T :R+ —> W be continuous

()

for all £ ¢ W when W is assigned the topology T of theorem II.2.l.
Suppose now that ca’b(x,y) = CO,b-a(O’Y_ Tb—ax) is a time-invariant
linear M.t.c.f. defined on X X X for any fixed O Satb< w
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which is upper semicontinuous in x and c-regular. By lemma II.1.6

and theorem 1, S t(0, +) is b-regular. We may now embed X in the

dual W’T of W. Let Y be the closure of X in WT when WT is

assigned the W topology and assign that topology to Y. It is now

possible to extend c (x, y} to an upper semicontinuous function
r 2

(%x,,x,) on Y by letting
1, 2 1’72

t

e (0,x.) = inf { sup c, ,(0,x): © is a neighborhood of x
0,t 0 xeOx 0,t

0 inY}.

Since X is continuously embedded in Y, c (O XO) = ¢, t(O,xo) for

all X € X. Also closed bounded sets in Y are compact\(S).

Furthermore, for any £e€ W, £{(-) + sup (c (0,x) - #(x)) is an upper
p. 4
semicontinuous function on Y dominating the restriction of c (0 x)

to X and therefore it dominates c0 t(O x) everywhere on Y. Thus

cg t(O, *) must be b-regular, hence regular. It is now possible to

verify that cf ¢
| G

the W topology is W( ), therefore, M(c (0, ) M(Co,t(o’ N ).

(x,y) is still an £, M.t,c.f. Indeed the dual of Y with

Thus

M(cg’t+T(0» (L) = Mlcg (0, - ))L) + M(cy (0, * J(LT)

e e
M(S§P(CO’T(O:X) +c (0, - - T‘T x)))¢L) ,

0,r

and by lernma I1.1.3

‘sup [c (Ox)+c (0 y+Tx)]

e
(0,y)
xe Y O,t+'r

0,7

where Tt has a natural extension to a continuous mapping (denoted by

the same symbol) on Y.

-
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But cg t(0, . ) is regular, hence sup-compact, By lerma II.1.7

(2), (e)

e e
sup [ o, (0, x) + CO,t(O’ y+ TTx) ]

+ sup ( sup (c0 T(O,z) + y t(O, y-x)))
x TTZZX ! ’

is upper semicontinuous in y and the desired equality is obtained,
We now wish to apply theorem II.3.1, In order toc do so it must
be shown that ET( . ): t —> JZTt is continuous when W is assigned the

topology % of uniform convergence on sets of the form

. -© _ > Y T w -
{Tax.ctl’tz(o,x xg) 2 a }. But sup {(ZTH_T J?It) T x:
c (0 x—x)>a xe X} = sup {(LT -LT) T x:
tl’tZ ’ o= = t+T t’ T
c® (0, x-x_) 2 a, xe Y}. Since 4T :t—> W was assumed
tppt, 0 (+)

continuous when W is assigned the topology 7 , it is also continuous
when W is assigned the topology T ©.

In this way we obtain:

Theorem 2, Let X be a linear space and let W be a total sub-

space of XT. Assign to X the W topology. Then if ¢

t t('s')

1’2

is a £.M.t.c.f. which is upper semicontinuous satisfies (i), (ii), (iii),

6) then c (0, - ) is a concave function.
2 R

and (iv) and c, . (0,0) 2 of
tl, t

The proof follows from the remarks above with the help of

theorem II1.3.1,
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Theorems 1 and 2 may perhaps be more easily visualized when
stated under somewhat more restrictive assumptions. For example
when X is a Hilbert space it is possible to apply theorem 1 directly
to obtain the final result. To do so we let W= X = X and let
A = {S:S is a weakly bounded subset of X}. Then Z = X and
conditions (i) - {iv) read:

(i.a) Tt is a continuous operator on X (in the weak or strong
topology),

(ii.a) || Tf, x- Tk || —> 0 whenever + —> 0 for all x on

t, thus T, x:R+ > X is continuous when x is assigned the strong

()

topology,
(iii.a) sup ¢ ¢ {(x, y) is a measurable real-valued function of
X, ¥ 1°°2
tl,tz,
(iv.a) (x,y) is c-regular (i.e., whenever tn——>0 and

c
tl’tZ

ot (O,xn) z a, x_ must converge weakly to zero) and we may state

theorem 2.

Theorem 2: Let X be a Hilbert space. Then if C, 4 (<, °) is
1’2
an £.M.t.c.f., which is weakly upper semicontinuous and satisfies
(i.a) -(iv.a) and c (0,0) 2 0(6), then c (0, *) is a concave
1t2 12
function and has the representation of theorem II.2.l.

t t

This result can be easily obtained with the help of theorem II,3.1

and lemma II.1.6 if the following facts are kept in mind:

(a) In a reflexive Banach space any weakly bounded set is also

strongly bounded (Banach-Steinhaus). (7
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(b) In a Hilbert space any closed bounded set is weakly
(8)

compact.

(c) M is a continuous mapping from (X, T) to (X,T) when 7 is a
metric topology iff M is continuous from (X,o) when ¢ is the weak

topology. (9)
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§5. EXAMPLES

Consider the following optimal control problem: Maximize
t

f(u(t)) dt subject to x = Ax + Bu, x(0) = X1 x(t) = x, where

2
xoe R, ue R" for some m, n. The problem may be restated as

follows:

t t

Maximize ! f(u(t)) dt subject tof eAaBu(t— a) da =
0

x2 - lAtxl . The cost function in this case is

t
(1) CO,tZ(Xl’XZ) = sup {J:f(u(t)) dt:f eAaBu(t—a/) da
0

x. - eDty }
2 1
and its maximum transform is:
L
(2) M - [ g Aa 1 4
(2) Mlcy, (0, - )N(2) = sup | f{u(a)) - £ Bu(a) | de
*2
0
t
- f g(2e®%) da
0
where g(£) = sup[f(u) - £Bul]. If f is concave so is C. ¢ (0, «),
1’ "2
hence
¢ -
(3) To.4 (0,%) = inf ‘fg(zeA“)daux .
*72
0 .
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(1)

Suppose the system is controllable and { is finite everywhere.

Then Cy ¢ (0, x) is finite for all x hence continuous in x and has a
1"72
tangent £(x) + a at every point X and {(x) + a 2 ST (0, x) for all
1’72
x with equality at X
Therefore,
(4) a=sup[c  (0,x) -] = M(c, , (0, -))(4),
x 1’2 1’2

and the irnfimum in equation (3) is taken on at some £. Furthermore:

t t t
f f(u(a) da—ﬂf eAaBu(a/) da S <y t(O,f eAa Bu(a) do
0 0

0

t t
- sz 2 Bu(e) do £ M(c, (0, - (L) if g(zeA"‘) da.
0 0

From here on we shall assume that f is b-regular. Suppose now that

S t(O, - ) is strictly concave at x Then the supremum in (4) is

0°
reached at exactly one point, x If we select u(t) to maximize

fu(t) - et Bu(t) we have!?).

t
\f g(ZeAa) do
0

Ol

t

f [ f(u(e)) - leAa Bu(e) | dea
0

t t
o t(OJ eAaBu(a/) de) - lf eAaBu(a/) da
0 0

i

HA
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t
and thereforef At Bu(t) dt = Xo+ Thus the control u(t-t) brings us
0

t
X0 in time t and alsoff(u(a)) da = <o t(O’XO)' Hence u(t-o) is an
0

optimal control, We see that in this special case existence of optimal

control follows immediately., To compute it we need only find £ and

t

the latter is obtained by minimizing the expression f g(leAa) da-£x
0

where Xq is the state to be reached. Thus we reduced the problem of
maximization over a function space to one of minimization of a convex
function in finite dimensional space. To this problem we may apply a

variety of existing techniques such as Newton's method or steepest

descent to obtain the solution. It may be of interest to find what g is

like in some particular situations, Suppose f(u) = EI;:]l | u.llpz - Hu HI;.
1 1
Thenil = + = =1
P g
lull?  ¢Bu P /B Qg
sup(f(u) - £Bu) = p sup (- P . y=— ||l— |
P p q k!

and the problem reduces to approximation in Lq [o,t]:

t

A q
¢y ((0:%) = inf f Pfe B |~ de - £x
’ 1 p q
0

P

A q
= inf JB 128 Maa-a
fx=a Oq P q
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Another interesting example is the minimum time problem where the

cost function has the form

0 if X, is reachable from Xl in tz-tl

c (%, x,)} =
I'—2 - oo otherwise

‘cl,t2

and it is desired to reach x, from Xy when the only constraint is

2
” u“ S a and %= Ax + Bu. Itis easy to check that in that case

M(c, , (0, ) has the form (2) where g({) = sup {4Bu:| u| = a}=|B| a.
1’72 u

In general the fact that gt(ﬂ) = M( 0, *)(£) is continuous

c (
tpts

in { is not sufficient to guarantee continuity of g(#) in theorem II.2.1

and therefore it is not always true that c (x,y) has a representation

tl, 1:2

of the form (1) above., Still, the representation (3) always holds true
and g(Ng Yl) is continuous in £. The following example will illustrate

2

this point,

Let X = L2 [0,0). Then X" = LZ[O,oo).(3) Let Tt be the shift
operator:
flw-t), w z t
T, (£(2))(w) =
o, w S t

Tt( +) is clearly strongly and weakly continuous on X and since the

weakly bounded sets of X are also strongly bounded (Banach-Steinhous

(4)

theorem)

sup ( th
xeS

<
4o T = 4T, - 2T || a for some a > 0
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whenever S is weakly bounded. Therefore whenever £ corresponds to

a continuous function h{w) we have

b
2 M~ 2 2

I T -thH ‘[ [h(t+r)-h(t)] 4dt Ef [h(t+7)-h(t)] At + ¢
| 0

when b is chosen sufficiently large. Letting T —>, h(t+T1) —> h(t)

’

2

b
uniformly on [ 0,b ], hencef [h(t+T) - h(t)] dt —> 0 and !T( )
0 " .

is continuous into (X", 'rl) whenever f is in the dense set W consisting

of the continuous functions in L, | 0, o).

51
Let
0 whenever Slip l f(a) I s 1, f(a) = 0 outside
0Sost
co (0.5 )) = =4 [0,t]

- o otherwise

It is easy to see that c (x,y) = ¢ (0,y-T (x)) is an
tl’tZ O,tz-tl tz-tl

.M. t.c. function,

Mleg (0, + ))(2) = sup(cy (0,%) - £x)

X

sup {-fx:x € {CO,t(O’Y) 2 0}}

t
sup {f h(a) f(a) da: fla) =1}
0

t
‘[‘ ’h(oz)l da:fg(lTa)da
0

1}
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£ |

where g(£) h(O)I whenever { corresponds to the function h on

[0,0). Clearly g( - ) is not continuous on L2 and ST (%, y) cannot
1’2
be represented in the form (1). The function gl NO T( . )) is continuous

since
Y Y Y
NO’Y! = Talda :f h(t+ o) de and g(NO,Yl) = ]\j‘ h(o) de ' .
0 0
Theorem II.3.1 states that whenever c (-, +) is regular it is

tl,t2

concave, Itis interesting to note that b-regularity and strong upper
semicontinuity are not always sufficient to guarantee concavity of

S (0, ). The following example was given by Radstrom:
1’2

Let X = 1.,{0,1]. Let ¢, (0, -) be defined by:

2[ 0,t

0 whenever ( |f(oz)| da S t and f is integer-valued

- 0 otherwise

Then g t(O, - ) is uppse semicontinuous and b-regular since the set

{f:c. (0,f) = 0} is (strongly) closed and bounded. A'so it can be
0,t gy

easily verified that the function ¢ (x,y) = ¢ (0,y-x) is an
tl,tz O,tz-tl
£.M.t.c.f. with Tt = I. Despite all these facts, <, t(O,x) is not
convex since let
1 1
Oon[O,Z) Oon[—z—,l]
T 1 2 - 1
lon[—z—,l] lon[O,E).
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L]

Then

1 1
\[; | f(e)[da=] [f,a)] da = % ,
0

- - 1 le -1
and co’l/Z(O,fl) = co,l/z(o,fz) =0, but > f +5f, = 5 on [0,1] and
1 1 _ . .
CO,l/Z(O’Efl + > fZ) = -. The weak upper semicontinuous hull

EO t(O’ ) of o t(O, - ) is convex, however, by theorem II.4.2

1
0 wheneverL | fle)| da St

<. (0,f) =
0.t - otherwise

To conclude this section we shall remark that theorem I11.4.2 is

applicable in the following general problem: Minimize

t

f G(u(t, -)) dt subject to x = A(x(t, - )) + Bl(u(t, - )),
0

x(0,+)= 0, x(t+)=g{-)

where G is a functional on u(t, - ) and A, B are linear operators
mapping x(t, - ), u(t, - ) respectively into X. The cost function of such
systems is typically convex (when the theorems apply) and is identical
with the cost function of the system in which the criterion functional
G(-) is replaced by co G(+). Itis in this sense that F' of 1.6 is a

smoothed version of the original functional F.
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1 n

n
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1 1
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+7T
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case.
(2) We use here the well-known fact that when f is convex and
finite on the convex open set G and f is bounded above on some open
subset of G the restriction of f to G is continuous (see appendix 1). i
o
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(3) Bourbaki (ii), p. 17, prop. 1, p. 19, prop. 2.

§3. (1) See appendix 1.

(2) The assumption that . ¢ (0,0) Z 0 may be removed here by
2

subtracting from the set St = {(y,x) 1y < S t(O,x)} an extremal point

v(t) = (a(c), x(t)) thereby shifting c (x,y) so as to make it non-

tl,tz
negative at 0 without affecting its semigroup structure. However, in
most cases of interest the cost of transferring the state a distance 0 is

zero and the condition is automatically fulfilled.

(3) sup (C'a’b(x,z) ey [zoy) =
z

sup | ca’b(O,z-Tb_ax) + Cb,c(o’ y-TC_bz)] = sup[ sup ca,b(O,z—Tb_Zx) +

w Tc_bz:w

y C(O,y—c,o) ] and the latter is upper semicontinuous by lemma II.1.7(a)
and (3).
§4. (1) Hille and Phillips, p. 144, Th. 4.17.2 and p.241, Th. 7.4.1.

(2) Dunford and Schwartz, p. 419, def. V.3.2.

(3) p. 418, def. V.3.1.
(4) p. 421, theorem V.,3.9,
(5) p. 423, Lemma V.4.1.

(6) See remark (2) of section 3.
(7) Dunford and Schwartz, p. 52, Th. II.L.11.
(8) p. 425, Th. V.4.7.

(9) p. 422, Th. V.3.15.
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§5. (1) A linear system is said to be controllable if all of its states

are reachable from the zero state.

(2) wu(t) exists for all t since f(-) is regular and it can be shown

that u(t) can always be chosen to be measurable.
(3) Dunford and Schwartz, p. 286, Th. IV.8.1,

(4) See reference (7) of section 4.
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Definitions of some terms

Markov transition cost function: A function c, .
ul, \.2
on R x RTX Xx X isa Markov transition cost function (m.t. c. f) iff

(x,y) defined
C (x, Y) = sup [ C (X,Z) + c (Z, Y) ] .
tl’t3 t1,t2 tZ,t3

time invariant m.t.c.f. : ctl,tz(x,y) = CO,tZ-tl(x,y).

linear M.t.c.{. C
tpty

(x,y) = c -t (0,y-Tx)
0,t,-t t

where Tt is a2 one parameter semi-group of linear transformations.

semigroup: An ordered pair (5,+) is cailed a semigroup if S is a

set and + is an operation on it which is associative.

one parameter semigroup: A mapping f(- ), f: R—> S where S is

a semigroup js called a one parameter semigroup if f preserves the

operation (+).

strong semigroup property: A Markov transition c.f. is said to have

the strong semigroup property iff

ST (x,y) = sup (c

(x,2) + c,_, (z,y))
) (t,z) e P t tt,

tl,

whenever P is a plane in R+X X separating (tl, x) and (tz,y).

sup-compact: A real-valued function f on a topological space is

said to be sup-compact iff {x:f(x) Z a} is compact for all a.
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sup-bounded: A real-valued function f on a linear topological

space is said to be sup-bounded iff {x:f(x) £ a} is bounded for all a.

Regular (function): A real-valued function f on a real linear
topological space is said to be regular iff {x:f(x) - Ax) 2 al is weakly

compact for all continuous linear functionals £ on X.

b-regular (function): A real-valued function f on a real topological
space is said to be b-regular iff {x:£(x) - £(x) 2 a} is weakly bounded

for all continuous linear functionals # on X.

c-regular (M.t.c.f.): An M.t.c.f. is said tc be c-regular iff

whenever a_ = t, B 2t o, B_—>1t and either - (x_,x) 2 a or
n n n n a ,t'n

n

nv;
ja]

c (x,%x_) for some a then x_ — x for any x.
t,ﬁn n n
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Appendix 1

Theorem: Let f be a convex function which is continuous at zero,

Then f is continuous in the interior of the set on which it is finite.

Proof: We shall first show that f is lower semicontinuous.
Indeed let G1 = {(y,x): y 2 f(x)} and suppose that for some
(yo,xo), Yo < f(xo). Then since G1 has an interior point there exists
a continuous linear functional separating (yo,xo) and G1 (Dunford
and¢ Schwartz, p. 417, Theorem 8). Thus f(x) = szlig {#x) + a: 2(x}+a < f(x)
for all x} and f is therefore lower semicontinuous .

To show upper semicontinuity on the interior S0 of the set S on
which f{x) < oo let G2 = {{y,x):y > f(x), x < SO} and prove that G2

is an open set. But B2 has an interior point and by theorem 1lc, p.413

of Dunford and Schwartz every internal point of G2 is interior to it.

It is therefore enough to show that every point of GZ is an internal
point. Let (yo,xo) belong to GZ and let (yl,xl) by any point of R X X,
We must show that there exists 6§ > 0 such that (YO’XO) + ‘S(ylsxl) € GZ'
But since Xy € S0 there exists 61 such that xq + 61x1 € SO and the

function f(x0+ 6x1) - 6y1 is convex and finite for all 0 £ & S 61 and

lies strictly below Yo at & = 0. Therefore for some 0 < § = 61

it lies below Yo and f(xO + 6x1) hS Yo + 6y1 or ((y0 + 6y1 ), (x0+ 6xl))

€ GZ.
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