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ABSTRACT [% 7~ -
*
The time-optimal control problem is investigated for & system that

can be represented by the second-order nonlinear differential equation

where f(x) is a periodic function such that |f(x)] SB<C<A . The
condition that the bound A in the control is always greater than or
equal to !f(x)| is essential for the results obtained.

Pontryagin's Maximum Principle and an existence theorem by Filipov
were used to prove that this optimal control exists, and that it must be
of the form of a piecewise constant function of time which can attain
only the values +A and -A . This justifies working the problem in
backwards time from the origin of the state plane, without getting mis-
leading results.

The time-optimal control problem has been solved for two families
of periodic functions

1) Periodic functions which are at the same time antisymmetric

2) Periodic functions that, without being antisymmetric, satisfy

The two most important facts encountered are

l) The maximum number of switchings is two.

2) There exist indifference curves. Any initial state which is
described by a point on such curves can be brought to rest, in
the same time, in two different ways, one after only one

switching and the other after two switchings.
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An application was made for the case in which f(x) = sinx ,
and a comparison with the linear case is presented.

Singular solutions do not exist.
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INTRODUCTION

In recent years, considerable attention has been given to the
development of control laws which optimize certain performance criteria.
In general, the control policy is obtained as a function of time, while
for engineering purposes we want a control law as a function of the state
variables which describe the process.

Historically, the first problem treated was the time-optimal control
problem for the system X + x = U, Iui < 1 . This problem seems to have
been first mentioned by Doll, Ref. [1], in 1943 in a U.S. Patent, and its
solution was first proposed by McDonald, Ref. [2], and Hopkin, Ref. [3].
The first rigorous solution of this problem was given by Bushaw in his
doctoral dissertation, Ref. [L4], and he solves it by elementary but very
intricate direct geometric arguments.

This problem stood alone for some time, as an example of a wider
class of problems. But it was not until Pontryagin formulated his
Maximum Principle, Ref. [5], that further progress was made, Refs. [6]-[9].
If the differential equations governing the state variables are known and
if the Maximum Principle is used, a control law as a function of the adjoint
variables can be easily found, but, the difficult and tedious task of
determining the initial conditions of the adjoint variables must then be
dealt with.

A wide class of problems which are important from a practical point
of view is that in which the control is not only constrained to a certain
magnitude but enters the dynamical eguations and the performance criteria

in a linear manner. When the Maximum Principle is used, it is found that




the control wu(t) is a piecewise constant function of time, known
generally as a "bang-bang” control. The realization of such a "bang-bang"
control depends on the determination of the switching surfaces in the
state space, that is, the surfaces that separate the regions in which the
control is full on in one direction from the regions in which the control

is full on in the other direction. So, the problem of finding an optimal

control law reduces to that of finding the switching surfaces in the state
space.

The task of finding the switching surfaces is not, in general, an
easy one. Some work has been done in this respect, but mostly concerned
with the fuel-optimal control problem for linear second-order systems,
Refs. [10]-[15]. 1In Ref. [16], the fuel-optimal singular control problem
is solved for a specific nonlinear system.

The object of this research is to find the time-optimal control for a
system that can be represented by the second-order nonlinear differential
equation % + f(x) = u, |u] S A, where f(x) is a general periodic
function of x such that |f(x)] £<B, and B <C <A. This problem
turns up if one becomes interested, for instance, in the minimum settling
time problem for certain motions of a satellite in a circular orbit; notice
that in this particular case f(x) = sin x , and that x may become so
large that if we replace sin x by x the results obtained can be
completely false.

We have been able to solve the problem for two wide families of
periodic functions, see page 58. Two of the most interesting features
of this problem are the maximum number of switchings needed and the presence

of the indifference curves. It can be shown that whatever the initial




disturbance is, the number of switchings cannot be greater than two.
Indifference curves are curves such that a system whose initial state is
described by a point on such a curve can be brought to rest, in the same
time, in two different ways, one after only one switching and the other
after two switchings. It is worth stating that these indifference curves
are alsc the locus of starting , that is; points from where we can
start a trajectory but which can never be reached by a state point
trajectory; the existence of points with this behavior was first dis-
covered by Fluigge-Lotz, Ref. [17]. The appearance of indifference curves
clearly indicates that for nonlinear systems, Pontryagin's Maximum
Principle, although it gives necessary conditions for optimal control,
does not guarantee the uniqueness of the solution.

The main result of our research is given by Theorem 3-2, see page Tk,
in which the optimal control law is expressed as a function of the state
variables. Singular controls cannot occur for the nonlinear system

considered.




CHAPTER I

GENERAL CONSIDERATIONS

The System - A system is composed of a plant or process which is to be
controlled, and a means for providing a control input. It is assumed
that the egquation describing the dynamical behavior of the plant is known

and can be expressed by the differential equation
X + f(x) = u (1-1)

where dots denote differentiation with respect to time t and f(x) is
assumed to be any periodic function with period 2¢ and satisfying the

two conditions

i) f(x) is continuously differentiable on (-00, +00) (1-2)
ii) |f(x)| = B, where B 1is a positive given constant (1-3)
Let
xl(t) = x(t)

(1-4)
x(t)

x,(t)

Then the state variables xl(t) and xg(t) are the solutions of the

differential equations

»
I
%

(1-5)

e
H

5= U - f(xl)

The scalar control function wu(t) shall satisfy the three conditions

i) u(t) is a piecewise continuous function of time (1-6)
ii) wu(t) is constrained to have a finite amplitude limit, that is,

lu(t)| <A for all t e (-c0, +m) (1-7)

4




iii) A2 C , where C 1is any constant such that

CzB (1-8)

The first two conditions imposed on the control function wu(t) are
commonly made in optimal control theory and do not need any further

explanation. Now, we are going to summarize the main implications of

As it will be shown later, Pontryagin's Maximum Principle gives a
control function that can only attain the constant values +A and -A .
If we find the trajectories of equations (1-5) corresponding to these
constant values, condition (1-8) establishes that these trajectories are
always non-decreasing functions of Xy if u = +A, and non-increasing
functions of X if u = -A, see Lemma 1-1 on page 1ll1l. This fact is
used in order to prove the existence of the optimal control within the
class of piecewise continuous functions, and also to prove that the
domain of controllability is the whole state plane.

Another consequence of condition (1-8) is that the zero trajectories
divide the state plane into two different parts. This fact together with
the knowledge that the zero trajectories are optimal trajectories and that
the optimal control is a piecewise continuous function allow us to work
the problem in backwards time and find a solution for the optimal control

problem, with the important result that the number of switchings cannot

be greater than two.

Definition 1-1 - Any control function u(t) which satisfies the above

three conditions (1-6), (1-7) and (1-8), will be designated as an

admissible control.




The Control Problem - For a plant which can be described in the form of

equations (1-5), a control wu(t) satisfying conditions (1-6), (1-7) and
(1_8), will be sought which accomplishes a twofold objective. Firstly, the
control u(t) must transfer the system in accordance with equations (1-5)
from some known initial state <xl(to),x2(to)) to the terminal state
<X1(tf)’X2(tf)> = (0,0). Since equations (1-5) are stationary, i.e., in-
variant under a change of time reference, to may be chosen as any conven-
ient instant, say tO=O. Therefore, the boundary conditions can be written as

(x1(0>’ X2(0)> = (305 %50)
(1-9)
The second requirement on the control u(t) will be that it must optimize

the system performance in a particular sense. For the present case, the

criterion to be used in evaluating the system performance, is
tf
J = \Jf dt = tf - minimum (1-10)
o)

Definition 1-2 - If, for a given problem, a unique control function u*(t)

can be found which satisfies the three conditions

i) u*(t) is an admissible control
ii) u*(t) forces the system (1-5) from the initial state
(XlO’ XQO) to the final state (0,0)

iii) u*(t) minimizes the performance functional J with respect

to all other suitable control functions

then, this control function u*(t) will be called the optimal control

for the problem.




Behavior of the Adjoint Variables -

is given by

H(p’x,u) = Pl;2 + peu -'pef(xl)

where pl(t) and pg(t) are the adjoint variables satisfying the

following differential equations

which yield

= - nd = -
Py 5;; a P2 5;;
df(xl)
B, (t) = p(t) —Ex—l——‘
@g(t) = -pl(t)

Eliminating pl(t) from equations (1-13), we obtain

. ar _
by ¥ & P, =0

whose solution we are going to investigate.

and

where gl(t) and ge(t) are continuous on (to,tf). Let gg(t) > gl(t)

The following comparison theorem, Ref. [18], will be used

Theorem 1-1 - Suppose @(t) is a real solution on (to’tf)
B, + g (t)p, = 0
¥(t) is a real solution on (to,tf) of

5, + g,(t)p, = 0

The Hamiltonian for the system (1-5)

(1-11)

(1-12)

(1-13)

(1-1%)

on (to,tf). If t. and t, are successive zeros of ¢(t) on (to,tf),

1 2




then ¢(t) must vanish at some point of (tl’tg)'
Let (df/dxl) = g(t) . Since Xy is a continuous function of
time and f(xl) is continuously differentiable, it follows that g(t) is

a continuous function of time such that
g(t) <N for any (to,tf) (1-15)

where N 1is a positive constant.
Let us now apply Theorem 1-1 to the solutions of the following

differential equations

B, + 8(t)p, = 0 (1-16)

b, + Np, =0 (1-17)

on the interval (to,tf) . The solution of equation (1-16) cannot be
identically zero on any interval (tl’tg) C (to,tf) because if it were
so, Theorem 1-1 would imply that the solution of (1-17) would also be
identically zero on (tl’tg) , and this can never happen because N 1is
a positive constant. This rules out the possibility of having singular
solutions. Moreover;\the zeros of the solution of (1—16) cannot have a
point of accumulation on any interval (tl’tg) because the zeros of the
solution of (l—I?) do not have such a point. Hence, the solution of the
equation (1-16), i.e., the adjoint variable pg(t), is a continuous

function of time with a finite number of isolated zeros on any finite

interval of time.

The Necessary Conditions on the Optimal Control - The Maximum Principle

of Pontryagin will now be used to derive the necessary conditions on the
optimal control u*(t). Theorem 2 of Ref. [5] for our problem reads

as follows



Theorem 1-2 - Let u(t), t e [O,tf], be an admissible control

which transfers the state point from (xlO’XZO) to (0,0), and let

x(t)

x{0)

(xl(t), xg(t)) be the corresponding trajectory, see (1-5), so that

) and x(tf) = {0,0) . 1In order that wu(t) and x(t) be

f ..
¥10°%20

time-optimal it is necessary that there exist a nonzero, continuous vector
function p(t) = (p1(t), pg(t)) corresponding to u(t) and x(t),
see {(1-13), such that:

i) For all t, t e [0, t.], the function H(p(t), x(t), u) of the
variable wu, |u|] <A, attains its maximum at the point wu = u(t):

H(p(t), x(8), u(t)) = M(p(e), x(t)) (1-18)

ii) At the terminal time t, the relation

M (p(tf), x(tf)) >0 (1-19)

is satisfied. Furthermore, it turns out that if p(t), x(t) and u(t)
satisfy system (1-5), (1-13), and condition i), the time function
M(p(t), x(t)) is constant. Thus, (1-19) may be verified at any time

t € [0,t,.] and not just at t,.
L 1

Applying Theorem 1-2 to our problem, taking into account (1-7), (1-11)
and the fact shown before that p2(t) # 0 on any interval of time,

relation (1-18) yields
u*(t) = A sgn pg(t) (1-20)
where sgn pg(t) is defined by

+1 if p;(t) >0
sgn pX(t) =
-1 if p*e(t) <0

9




Trajectories - From the condition (1~20) we know that the optimal control

can attain only the constant values +A and -A . 8So, let us find the
trajectories of the system (1-5) subject to these controls.
Then, assuming u to be constant, we can integrate equations (1-5)
and obtain
x2
2
2

= ux; - F(xl) + k (1-21)

where F(xl) is defined as

X

1
F(xq) =f £(o)do (1-22)
o)
Since the trajectories are symmetric with respect to the xl-axis, we
can characterize each trajectory by the crossing point with the xl-axis,

say M(xlm,O) . Then (1-21) becomes

;— = u(xl - le) - F(xl) + F(xlm) (1-23)

X
5 = Ax; - F(x)) + &k (1-24)

cover the entire plane exactly once. This family of curves will be called

the P-system, its curves P-curves, and portions of its curves P-arcs.

Likewise, if u = -A , the solution curves of (1-21) are
2
*2
5 = —Axl - F(xl) + k2 (1-23)
10




and the family of curves will be called the N-system, its curves N-curves,
and portions of its curves N-arcs.
Each P-or N-arc i1s automatically oriented by the increase of time

t along it.

Lemma 1-1 - EveryP-zurve (N-curve) is a non-decreasing (non-increasing)
function of xl.
Proof - In the case of a P-curve, from (1-3), (1-5) and (1-8) we get
i >
dx A - f(xl) >0 if X2 0
&y *2

i <
< 0 if x2 0

Likewise for an N-curve.

Corollary - The zero trajectories, given by

2 ,
-2—'— = i AXl - F(Xl) (1-20)

divide the state plane into two different parts.
Lemma 1-2 - The trajectories whose crossing point with the x,-axis is in

, 2(n+1)8), are obtained by shifting the trajectories

7

the interval [2r@

whose crossing point with the x,-axis is in the interval [0,20), by an

1

amount of 2nf in the positive direction of the xl-axis.

Proof - Let us consider the trajectory

= u(xl - xlm) - F(Xl) + F(le)

where O < Xm < 26.

After a shifting of 2n6 in the positive direction of the -axis,

Xy

it becomes

11



= u(x,-2n9-x x2nm0) + F(x, )
2 . 210 - - F({x2nd 1
2 ( .m) ( l 1m

Let Yim = *1m + 2n6 ; then
2
"2 one) + Fly. -2m0) =
2 = u<xl—ylm) - F<Xl— H Y 1m -
xl-2n6 Xl
= u(xl—ylm) -(jﬁ f(o)do = u(xl-ylm) —‘/F f(o)do =
ylm—Ene ylm

u(x -yy,) - Flx) + Flyy)

is the trajectory whose crossing point is Vi’ and

< +1 )6
2rg <y, 2(n+l)

The Existence of the Optimal Control - Filipov, Ref. [19], proves the

existence of the optimal control within the class of bounded, measurable
functions, for the time-optimal control problem of a system of n first-
order nonlinear differential equations, under certain assumptions. Theorems
of existence are also given in Refs. [20] and [21]. Using the theorem
proved by Filipov, we are going to show that for our problem the optimal
control exists within the class of piecewise continuous functions.

The main theorem in Ref. [19] will now be stated for a special case.

Let the dynamical system be represented by the following n first-order

differential equations

x = g(x,u) (1-27)

12



vhere x and g are n-dimensional vectors, and u = u(t) is the
r-dinemsional control vector which can take on values in a given constant
set U. Moreover, we are interested in the time-optimal control problem.
The following assumptions are made:
i) The vector function g(x,u) is continuous in x and u
ii) The vector function g(x,u) is continuously differentiable with
respect to x

iii) For all x and all u € U the following relation holds:

x - glxu) <a ([x1Pa) (1-28)

where the dot denotes the scalar product, ”x” denotes the
length of the vector x and « is a constant
iv) U is compact
v) R=|g(x,u) :u=10 is a convex set
Note that since U 1is a constant set, it is also upper semicontinuous
with respect to inclusion; therefore, this assumption can be omitted for
the special case we are considering.
In this special case, the theorem proved by Filipov reads as follows
Theorem 1-3 - Suppose that the five conditions stated above are
satisfied. Also suppose that there exists at least one measurable function
u(t) such that the solution x(t) of (1-27), with u = u(t) , and

, attains x for some time t_ > O. Then

initial condition X%(0) = x . f

0

there also exists an optimal control, i.e., a measurable function u(t)

for which the solution x(t) of (1-27), with initial condition x(0) = Xy

attains Xp in the least possible time.

Iet us now check if the five conditions stated above hold for our

particular problem.
13



i) It is obvious since f(xl) is a continuous function
ii) It is obvious since f(xl) is continuously differentiable

iii) From (1-3) and (1-7) we get

u - f(x,) < A+B , |x2|[u - f(xl)] < lxgl(A+B) (1-29)

1)

ILet O be a constant defined as

a=1+-= (1-30)

Then, using (1-29) and (1-30) we get

2
2 2 2 2 . (A+B) 1,2 2
l ! AR - o
a (] +1) = % o> X F Xyt g 5 (x] +x5) +
1 2 2 1 2
+ 3 [x, + (84B)7] + 5 x] 2 X%, + |x2|(A+B) 2 x %, +
+ e [Tu-r(x)] 2 xx, + xp[u-f(x))] = x - &(x,u)
iv) It is obvious since U = lu : Jul = AI

v) R = l(gl,gE) : g, = arbitrary and Ig2| < A+B| which ié
obviously convex.

In order to apply Theorem 1-3, we still have to prove the existence
of the measurable function H(t) as defined in Theorem 1-3 . Let us
assume that x,. > x . Consider the N-curve through the point x

10 1f 0]

and the P-curve through the point x , and let X be the intersection

f

point of both curves. Also, let ts be the time spent from X, to x .
S

Then, the function u(t) defined as

-A if t e [o,ts)
u(t) =

A
A if t € (ts,tf]

1k




i1s a piecewise continuous function that transfers the state point from

x to x in a finite time t_ > 0.

0 f f

Note that if XlO <= x a function

1f’

u(t) could be constructed in a similar way. Then, Theorem 1-3 can be

applied to our problem and the existence of an optimal control within

the class of bounded, measurable functions has been shown.

Let u%(t) be the bounded, measurable function, satisfying (1-7)

and (1-8), which transfers the state point from x. = (xlo,x

o 20) to

x, = (0,0) 1in the least possible time; the existence of wu*(t) is

guaranteed by Theorem 1-3 . Then,

Maximum Principle, that is, u*(t)

u¥(t) must satisfy Pontryagin's

is given by condition (1-20). But,

it has been shown, see page 8, that pg(t) is a continuous function of

time with a finite number of isolated zeros in any finite interval [O,tf].

Therefore, from condition (1-20), it follows that the optimal control

u*(t) 1is a piecewise continuous function of time, as we wanted to show.

Also, it follows that the domain of controllability is the whole state

plane.

15




CHAPTER IT
A. SOLUTION FOR THE ADJOINT VARIABLES AS A FUNCTION
OF THE STATE VARTABLES AND THE INITIAL CONDITIONS
In Chapter I, we found that (1-20) is a necessary condition for the
control wu(t) to be optimal. If we were able to find pg(t) as a func-
tion of time, we would eventually draw some useful information, such as the
maximum number of switchings or the maximum period of time in which pg(t)
keeps a constant sign; then we could study the problem in backwards time
and apply any of the known sufficient conditions in order to get the
switching curves and the optimal control law, as it is done, for example,
in Ref.[7]. |
Eliminating pl(t) from equations (1-13), we get for p2(t) the

nonlinear second-order differential equation

. af
Py * Py g = O (2-1)
1

In order to solve for pz(t) we have to know df/dxl as a function of
time, i.e., xl(t); unfortunately, xl(t) depends on u(t) which, in
turn, depends on p2(t) through condition (1-20); one cannot, then, hope
to find pg(t) as a function of t only.

However, what we can do, and what is more satisfactory, is to express
pg(t) as a function of the state variables (xl,xg) , and substitute
into (1-20) in order to get an expression for the optimal control law.

As & first step, our aim is finding pg(t) as a function of the
state variables, along every P- and N-curve, for fixed initial values
of the state variables and arbitrary initial values for the adjoint

variables.
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Solution for a P-curve - Let us start solving the problem for a P-curve,

i.e., let us try to solve the following problem:

. A . _ . _ _ ~
X, + f(xl) A xl(O) = X1 s xl(O) = xz(o) = X,
. af ) _ .
2 > (2-2
*o
5 = Ax, - F(xl) + k)
X2
20 ’
Ky =5 - Axg +Fixgg) )
We know that
P, dpp dx; dp, .
dt Xm dt dxl 2
2 2
2 T a2 Yot ATyl
dt dx 1
1
(3.2p9
Substituting =~ in equation (2-1), we get
dt
2
ol d
2 ¢ P ; Pp ar
X2 5 + [A-f(xl)J = + p2 Fre 0
dx 1 1
1
or 5
dpy dp ar
2[Ax1 - F(xl) + kl] —5 * [A - f(xl)] T FP g =0 (2-3)
dxl 1 1

Equation (2-3) is a second-order differential equation, where the point

M(le’o) is a singular point, because for this point

17



Ax, - F(xlm) +k =0

and M 1s its only singular point. For this point M , a singular
behavior of (2—3) must be expected. 8o, excluding a neighborhood of
M , the integration of (2-3) can be done very easily; the solution of
(2-3) is carried out in detail in Appendix A, and the result obtained

for the adjoint variable pg(t) is the following:

1/2 p20
pg(t) = 2[Axl-F(xl)+kl]} ;;8 -{ploxao +
x
e o (24)
F20 “10 2[Ac-F(o)+k ]|3/2
XlO 1
and
1/2]p
pg(t) = - 2[Axl—F(xl)+kl]} ;ig —[plOX2O +
*10
do
¥ pQO[A_f(XlO)]l f {2[AG-F(0‘)+R ]]3/2 (=)
xl 1

Equations (2-4) and (2-5) are only valid for the P-arcs in Fig. 2-1 and
Figs 2-2 respectively.

We have already found the solution of eguation (2-3), given by
(2-%) and (2-5), whenever we keep away from the x,-axis. However, we
would like to know the solution of (2—3) everywhere, in order to connect
the solutions on the P-arcs of Figs. 2-1 and 2-2. Obviously, two limiting
cases have to be considered separately, depending whether the initial or

the final point is on the xl-axis.

Initial Point on the x7-Axis - The solution of (2-3) is given by equation

18
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(2-4) whenever the point P, 1s different from the point M . Now, the
question is: Is it possible to find pg(t) and pl(t) when the initial
point P, coincides with the point M ?  Since pe(t) and pl(t) are

not defined when P. =M , we are confronted with a limiting problem; so,

0

our aim is to find

lim p.(t) and 1im  p,(t)
2 1
PM P> M

The process of obtaining the limiting values of pe(t) and pl(t)
is shown in detail in the first part of Appendix B. The results obtained

are the following:

1/2 P10 N Pro

- A-f(xy,) l2tane (e )10y, 72 °

2[Axl—F(xl)+k ]‘

p,(t) 1

X
1
[A-£(x,)] 2 ;
F20- " am i/P ‘2[A0-F(c)+kl]|37é
1m

L 575 | %
IE[A-f(xlm)](G-le)l

(2-6)

and
A-f(x, ) P
1m 10
t) = - [A-£(x,)] §- +
p,(t) = Py lg[Axl-F(xl)+kl]|l/2 * AF(x, )

1
) [A-f(x, )]-
Ie[A-f(xlm)](xl_xlm)ll/e Pso 1m

L 1 1

|2taor(a)a 177 fela-s(x,))(o-x,

) e do V (2-7)

X
X1m
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So, equations (2-6) and (2-7) are the solutions for the adjoint

variables when the initial point PO coincides with M .

Final Point on the x7-Axis - The solution of (2-3) is given by egquation

(2-5) whenever the point P(xl,xg) is different from the point M(le’o)'
As in the case in which the initial point is on the xl-axis, we are
confronted with the following limiting problems:

lim pét) and lim pl&)

P-M P-M

The process of obtaining the limiting values of pg(t) and pl(t)

is shown in detail in the second part of Appendix B. The results obtained

are the following:

p. X +p.JA-F(x,.)]
pg(t) _ 10720 A-f%glm) 10 (2-8)
and
Poo ) |
pl(t) =- = [A-f(xlm)] - (plox20 + [A-f(xlo)]Pgo [A-f(xlm 1.

10
J 1 l>kll3/2+{2[ e
4 {2[A0—F(c ) A-£(xy ) No-x
Pio¥po * [A-T(x0) oy, (2-9)

)}1/2

i IE[A—f(xlm)](xlo—xlm
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So, (2-8) and (2-9) are the solutions for Pg(t) and pl(t) when

the final point P coincides with M .

Solution for an N-curve - In this case, we have to solve the following

problem:
. _ ] N . _ _ A
Xl+f(xl)— _A, Xl(O) "xlo ) Xl(O) —X2(O) = XEO
B, +p, S =03 p,(0) =p 5,(0) = - p,(0) = - p
2 2 dx; > Po 20 ’ P2 Py 10
2 ? (2-10)
*5
5= - Ax, - F(xl) + kg
2
20
ky = 5= + Axp ) + F(Xlo) J

Proceeding as in the case of a P-curve, we get

1/2| pag
= - {2[- - - <A-
p,(t) l-[ Ay F(x1)+k2]| %0 Iploxeo * Py [-A f(XlO)]l'
*10 iy
l2[—Ao—F(c)+k ]l
x 2
1
if the N-arc remains below the xl-axis, and

T20 X F [-A-f(x, )1
%00 IPlO 20 T P2o *1074

1/2
p,y(t) = ’2['AX1'F(X1)+k2}I £

.\/ﬁl : do (2-12)
X0 [é[-Ac—F(c)+k2],37é
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if the N-arc remains above the xl-axis.

Also, as in the case of a P-curve, equations (2-11) and (2-12) are
valid whenever we keep away from the xl-axis. In order to comnect both
arcs, we have to consider again the two limiting cases. Proceeding as in

the case of a P-curve, we get the following solutions

‘ ) 1/2[ P1q o
t) = - {2[-Ax,-F(x, )+k,] -~ - _
1 | 1 -Flx) )+, } lAﬂf(x]p !2[A+f(xlm)]("1m‘xl) /5
*im
1
- PEO[A+f(X]1H)] [— 5[2 +
X{ '2[-A5—F(o’)+k2]l
1
+ ' do (2-13)
‘2[A+f(xlm)](x1m-d)’3/2 ]
(t) = - p,(t) = 1 o [a+E(x, )] -

Py 2 lg['A"l'F(xl)‘“ke] ’1/2 [ 20 1m

- [A+f(x1m)]p2(t)} (2-14)

and
a PirXon F oo [AF(x 4)]
1 10%20 © P20 10 j
pp(t) = AE(x ) T A+ E(x) (2-15)
Poo P1o¥p0 * PpolhtElxyy)]

= - p(t) = = [a+f(x, )] - +
pl(t) pg( ) *20 *1n '2[A+f(xlm)](x1m—xlo) /2

+ 1-P10%0™P00 [A+f(xlo)]l[A+f(xlm)] .

(Continued)

23



1 1

Im
'if; ['2[-AG-F(G)+k2],3/2 ) IE[A+f(le)](le-d),3/2] do  (2-16)

Equations (2-13) and (2-14) correspond to the N-arc represented in
Fig. 2-3; equations (2-15) and (2-16) correspond to the N-arc represented

in Pig. 2-4.

Equations in Backwards Time - Since part of our later discussion is going

to be based on the study of trajectories in backwards time, 7 , let us

express the solutions for p.(t) and p.(t) as functions of T . So,
2 1

let
T = tf -t
x, (t) =y (r)
x,(8) = 7,(7) (2-17)
b (8) = A(e) |
p(t) = A (1)

Substituting in the corresponding equations in forward time, we get

i) For the case represented in Fig. 2-5a,

1/2 A A
10 20
A(7) = - ‘Q[Ayl—F(yl)+kl]' T A-f(y) IQ[A_f(yl )1y, -v,,) 1/2 ~
m m
1 1
A [A-f(y. )] ~ ' *
20 Vim [ ‘E[AG-F(G)+k1]I37§
Y1m
. 1

)}572] do (2-18)

2[A-£(yy, ) 1(o-yy

2k
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A(r) = A(7) = - L A [A-£(y, )1-[A-£(y. ) TA (1)
1 2 2[Ayl—F(yl)+kl],l/2 20 im e

(2-19)
ii) For the case represented in Fig. 2-5Db,
N Vot [A-T (v, ) ]
M () = 1072020 10 (2-20)
A-f(y, )
A A Yo thon [ A-F(y, 40 ]
M(e) = Ay(e) = = 522 [Anr(y, )] + e 2 IO
20 IE[A—f(ylm)](ylo—ylm)l
710 1
= N o Yonthog [A-T(y )1} [A-£(y )]k/p -
1020720 10 I 1m Ig[Ag_F(G)+kl]ls/§
ylm
L 575 | 4 (2-21)
E[A—f(ylm)](a—ylm)}
iii) For the case represented in Fig. 2-5c,
A () = Iz[‘Ayl'F(y1)+k2]' A+f?lo y* = /5~
Yim lg[A+f(ylm)](ylm-yl)

L1m
- A [A+F ] L -
ool AFE (Y ) J/\ [|2[-A0—F(c)+k ]l37§
Y, 2

1
(2-22)
2lare(y, )1y, -0)] /7 ] }
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1
2[—Ayl-F(yl)+k2]}l/2

A1) = Ay(r) = ApolA+t (v )1+ IA+E (3, ) TN (7)

(2-23)
iv) For the case represented in Fig. 2-5d,
) _Aloy20+7\20[A+f(ylo)] (2-24)
ENE A+E(y, )
) A A Y on A A A (Y, ) ]
0
7\1(1) = 7\2(1’) = ;@9 [A'*'f(ylm)] ¢ 220 20 -+ 1/2 *
20 |2tare(y, )1, v,0)]
’ ) ylm 1
+ LN Tt A (v )T [AE(y, )] -
l 1072020 10 Tm IE[—AG-F(G)+k 11%/2
Y10 :
+ 1 do (2-25)

letare(y, )1y, -0)] /2

Typical Trajectory in Backwards Time - Condition (1-20) in backwards time

notation becomes
u(t) = A sgn AE(T) (2-26)

Since a full understanding of the behavior of the trajectories that
satisfy condition (2-26) is necessary in order to get the switching and
indifference curves, we are going to study in full detail a typical
trajectory satisfying condition (2-26).

The study will be carried over until the second switching, for
reasons which will become clearer in the next chapter. A typical
trajectory is sketched in Fig. 2-6, where, without loss of generality,
we have assumed an initial value of u = +A for the control function.

If instead of an initial value of u = +A , we take u = -A , the pattern

28
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of reasoning and the results obtained will be of the same nature, provided

we take the corresponding equations.

Arc O5 - Since we have assumed an initial value of u = +A , it
must be AEO >0 . On the other hand, since the equation (2-1) is
homogeneous and we are only interested in finding the zeros of X2(T) ,

the magnitude of A is irrelevant. Then, for simplicity in the

20
equations, we take for A2O the value
N (2-27)
20 A-f(O
Also
- = (2-28)
ylm—O and kl—O

Substituting (2-27) and (2-28) into (2-18), we get

|2tay, F(y )1 ]2 §
SO S0 faraeeo)y, [P e
Y
° ' - L 1Z /5 + { . 2 /D -]dﬁl (2_29)
& | P amacom] 7 |

Let G(yl) be defined by

|2[Ay -F(yl)]‘l/2
?\2('1') = - A}f(O) G(yl)

It is obvious that A, = O if and only if G(yl) =0 . But G(yl)

is a function of y, such that

i) 1lim G(yl) = -

yI*O
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y, |

F(yl,yz)

Fig. 2-6.

Typical Trajectory in Backwards Time with only Two Switchings
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aG A-£(0)

ii) = >0 i.e., G(y.,) is a positive
d 3/2 ’ ? 1
1 fetay, Fr 1
non-increasing function of vy
o0
iii) lim G(yl) = - AlO - [A—f(O)]\jF - = 575 *
y § | letaoro)
+ L ac

2[A-f(o)]c}3/é

So, lim.G(yl) can be made positive with a suitable choice of A, .
.y_ll,—’w
Then, for every KlO there exists a vy, e[0,»] such that G(yls) =0,
which makes A, =0 .
2s
Thig point Vig 2 which depends only on the value of ”10 , on the
zero trajectory, gives us the point at which the first switching occurs,

and is determined by the equation
Gy, ) =0 (2-30)

Substituting the velue of y., = given by (2-30) and KES = 0 into equation

(2-19), we get

1 1

A = - = (2-31)
1/2
1s E[Ayl-F(yl)] 2" Yog
Arc SM - During this interval, Kg(r) is given by
1/2 -
Ao(r) = - 2['Ay1'F(y1)+k2]l Yoo | ! Mo = Pog (A, )]
(Continued)
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1 do
l/ﬁ |2[-Ao-F(c)+k2]]5/2 (-52)

yls
Substituting A, =0 and (2-31) into (2-32), we get
l1/2 Y1 s
(1) = - |20-ay, B(y, )+, ] Jf (2-35)
2 Loe Ie[-As-F(c)+k2] 3/2

yls
From equation (2-33) we see that 7\2(T) keeps a negative sign

during the whole interval 8M , that is, no switching can occur below

the xl-axis. The crossing M with the xl-axis is given by
2
Ay, + F( )—-3:5+F( ) + Ay. = 2A (2-3L)
I m Y’ = 72 Vs 1s T WVag '
From equations(2-2k) and (2-25) we get
S — (2-35)
em A+fiylm5
1.
letavey, )1, v, )|
y '
1lm
Ve ~HAO-EAG TR, Y1m/  Vim

equations (2-35) and (2-36) give A, @and }\lm respectively.

Arc MF - Substituting (2-35) and (2-36) into (2-22), we get
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Yim™V1s

1/2 1 1
R e el e
Im

Yim ™1

S S, Y i 1 :
( )12 {2[-Aa-F(c;)+k2]l3/2

yls
- = do +k/Zlm 1 -
[otae(y, )10y, 0] P/ 7 Lprsostorns,) E6
- 1 o} =
\e[A+f<ym)]<ym-6>|3/2] }
= |al-ay By )| Y2 - 6y, (2-37)
Substituting (2-35) and (2-36) into (2-23), we get
xl(f) = L Il + [A+f(yl)]xe(r) (2-38)

2l -y, Fy, b 1|72

Equations (2-37) and (2-38) give the values of the adjoint variables

at the point F of Fig. 2-6.
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B. POSSIBLE SWITCHING CURVES t

In the last section, we studied the behavior of a typical trajectory
in backwards time, and obtained the values of the adjoint variables
kg(r) and xl(f) at the point F of Fig. 2-6,as given by equations
(2-37) and (2-38). These two equations show that both adjoint variables
A (1) and Kl(r) are functions of the two variables y, =~ and vy, 3
however, if we consider ylm as fixed, they are only functions of yl :
that is, we have the values of the adjoint variables along a particular
trajectory.

The study of equation (2-37), for fixed Yip and variable ¥y o
and a complete understanding of its behavior, is very important, since
it will tell us if %2(1) keeps constant sign or changes sign along a
trajectory, which in turn correspond to the possibility of either not
having or having a switching. The loci of all the points for which
Re(r) is zero, obtained by varying y, , are possible candidates for
switching curves.

In order for the reader to understand that the locl of the points
for which %2(1) is zero are only candidates for switching curves and
not necessarily true switching curves, we can anticipate that, as shown
in the next Chapter, the zero trajectories are optimal trajectories,
which justifies the study of the trajectories in backwards time; also,
the existence of the indifference curves will be shown, which will enable
us to state that only a part of the loci of points for which Xg(r) is
zero do actually belong to the switching curves.

However, for the proof of the existence of the indifference curves,

we need to know how the possible switching curves look. Therefore, it is

3h




clear that our next task is to find the possible switching curves, that
is, the zeros of equation (2-37).

Let GR(yl,ylm) be the function of two variables defined in (2-37).
Since for every Yy, , the expression {2[~Ayl-F(yl)+k2]|l/2 is positive
for any ¥y f Vim ? the zeros of Kg are the same as the zeros of
GR(yi’yim)' So, the guestion that we are going to investigate now is the
following. Given a Yim such that ylme[0,+oo), is there a value of
¥, < ¥y, for which GR(yl’yim) =0°?

Notice that if in the study of a typical trajectory in backwards time,
we had assumed an initial value of u = -A, instead of u = +A, we should
now have to consider values of Yip such that yime(—oo,o]; however, we
do not consider these cases, because the pattern of reasoning would be
similar, provided we take the corresponding set of equations.

In Fig. 2-7, the definitions used in the rest of the Chapter are
illustrated.

Definition 2-1 - Let Oi

R
2(i+1)0) defined in the following way:

and B; be the points on the interval [2i0,

Max £(y)
yel[ 2i6.2(i+1)8)

Hh
—
o
~—
]

Min £(y)
yel2i6,2(i+1)8)

H
—
™

[y
~
!

Lemma 2-1 - For fixed y, GR(yl’ylm) as a function of y, satisfies

the following three properties:
i) GR(yl,ylm) is always non-increasing
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Fig. 2-7. Illustration of Definitions Used in Part B of Chapter II
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iii) - < 1im GR(yl’yim) < o
Yo

Proof - i) For fixed ¥y, » the derivative of GR(yl,ylm) is

oG
Flj:_ 1 3/2<O for any yl
Y1 2[-Ac-F(o)+k,]

which means that GR(yl,ylm) is always non-increasing

ii) By mere substitution, we get GR(y_ ) = -

2 V-
1m im

s m i m
iii) Let B be the largest BR such that By <y, . Then

L1m L1m
-A5-F(o) + ky = f [a+£(y)lay > f Lare(Bp)lay = [a+£(BR) (v, -0)
4] c

and

1 < 1

(2-39)
2[-Ac-F(c)+k2]l5/2 ‘2[A+f(B§)](ylm-d)|372

fer any o < V1ip

/~lm p 35 " : 7| 40 <
L 2l-ao-F (o), 1|°  |alave(y, )1y, -0)]

Yim
1 ) 1 _
TZ? [rase (81,0 7% felare(yy )10y 00|72 N

ylm

a
)]IS/Q :Z\ (ylm_z)372 == (2

1 1

= |- - -10)
Ie[A+f(a§)]|3/2 ‘2[A+f(y

1m
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Let o be the largest o such that of < ¥y, - Then

R R R
I 1m
~ho-F(o)+k, =f [a+e(v)]ay < [a+e(of)] (v, -0)
o
and
. > L for any ¢ <
|2[-Ac-F(o)+k2]|3/2 [2[A+f(0g)](ylm“6)|3/2 T Y
(2-41)
Then v
m
Jf - 32~ - 57z | 997
| raeren P fetasety, )1y, o))
I1m
> 1 =5 - 1 / do e
IE[A+f(O;)]| /2 IE[A+f(ylm)]|3/2 9 (ylm—d)?);2 (5.12)
2-42

Teking limits on GR(yl,ylm) and taking account of (2-40) and (2-42), we
get
- i <
o < lim GR(yl’ylm) o
yl—>-00

Lemma 2-2 - If y, = B; , then GR(yl’B;) is always negative.

Proof - For ylm = B; B (2-39) becomes

3 i < L (2-43)
2l-a(0-)F(o)4r(62) 1|77 |olare(s]) 1 (g -0)] >/

for any G<B;

Then, each integral in the expression for GR is negative, since each

integrand is. Hence, since each term on GR is negative for any yl s
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we conclude that GR(yl,Bg) is always negative.

i
. Corollary - If Vg = BR > the adjoint variable A, keeps a constant

2
negative sign along the trajectory through B;, i.e., there is no switching.

-3 - = ot - J . i
| Lemma 2-3 - If y, =0 , there exists an ap such that %i?GDGR(yl,aR)>O
for any ar = ad . Y1
R~ R
Proof - Taking limits of QR(yl,O:;) , we get
lin G (y,,00) = - > +
e RVY1TR 1 1/2 1\.3/2
y e [2(og-y, )] [a+£(og)]
+f ; 11372 ~
1
: 7 |20-a(c-0d) F(o)+¥ () 1]
S
1
- - " do +
|otare ) 1(at-0) |3/
i
Q.
+J le[-A(o'-Oti)-F(G)+F( i)]lsf2 )
s R %
do (2-kk )

1
[2tase(ag) 1(e-0) | ¥/

For = Oé s (2-34) becomes

<
2]

V1g = 55 80} + F(ag)]

then
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i 1 i i
O - Vg =5 (A - Flog)]
—g—-(ai -y, ) = L [A-7( i)] > 0 for any i
T O "V T2 %R %R
g
that is, a; - Vg is an increasing function of a; . S0, the first

term of (2-44) is a negative decreasing function of Oé , which tends
to zero as Q% > - .

The second term is a positive increasing function of O% s which
tends to a positive finite limit as a%-» -0 ., Tt is positive, since,
from (2-41), the integrand is positive; it is increasing, since the
interval of integration increases with ai ; and finally, it is finite
as a% -+ - o , because of part iii) of Lemma 2-1.

By the same token, we can conclude that the third term of (2-4k4) is

a positive finite constant. Hence, it is obvious that there exists an

ag such that

1 i i3
yﬁiim GR(yl’Oﬁ) > 0 for any o = ap

1

Corcllary - If Yip = a; > 1 2 J , the adjoint variable kg becomes zero

at a point on the trajectory through og ; i.e., we have a switching.

Lemma 2-4 - In any interval [2i6 , 2(i+1)8] such that o% = aﬁf, there

exist two points Y; and 8; such that
1i = : _ ot i
yl»—oo
Moreover,

i-1 i i i i
B < <
Br Tp < % < 8y < B

Lo



f - Taki limit
Proo Taking limits on GR(yl,ylm) we get

Lim  Gplyysyyy,) = - - 172 572+
¥ (2(y, v, )17 “lare(yy )]

ylml' )
+l/[ lJQ[-AG-F(G)+k2]l3/2 )

yls

1

- 775|340 +
[etmety, )16 -0 |77

ylm 1
+f |t -a0-F (o), 1] >/ )

~00

1

- do
lotare(y, )1y, -o)|*/°

(2-45)

Obviously, (2-45) is a continuous function of Vig 2 since every term

is a continucus function. Moreover, from Iemma 2-2, (2—&5) is negative

S 1
L= 4

at Yip = BR ; B; ; and, from Lemma 2-3 (2-45) is positive at Vi = ag .

Hence, from the definition of continuity, we conclude that

i-1 i i i i
<
BR < YR Oﬁ < SR < 6R

and
i

. . i

yl—r-oo

Corollary - If y =% or &

; , the adjoint variable A

2
zero at the point approached by the trajectories through 7% s

k1

4

becomes

i
6R

when




vy approaches -« 3 i.e., the switching occurs at this point . This

follows from Lemmas 2-1 and 2-4.

Lemma 2-5 - The locus in the phase plane of all the points yi for

which GR(yl’ylm) = 0 1is composed of a series of curves, each one

being a continuous curve with two points at infinity, corresponding to
ic < st c s s .

values of Y1n such that Wﬁ SR A 6R for i = j , and with a

continuous variation.

Proof - Follows from Lemmas 2-1, 2-2, 2-3 and 2-4, and the fact
) i i :
that on every interval [YR B SR] every term of GR(yl,ylm) has a

continuous variation:

Definition 2-2 - Let Z; be the set of all states (yl,yg) such that

. . i i
G(yys¥y,) = O for every y, = in the inmterval [Yp , 8] . In a more

precise way

Z; = {(ypv,) @ GRly vy, ) =0 for y, e [Y; ) 5;]} for 1z j
(2-46)
i

Also, let p; be the point on Z% such that the P-curve through pR

is tangent to ;; ; and let (p;,O) be the crossing point of the

N-curve through pR with the Xl-axis. Then

2; for i = j

a

. i iqi
l(yi,yg) P (ypvp) e 5y end yq e lugs Bl

i i)

z%b = [(yl;yg) : (yl,yQ) € Z% and y, € [Yporg
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Definition 2-3 - If Yim € (== , 0] » we have the following analogous

definitions:

1
1..,) _ 1 N 1

1) G (y,y,.) = =75 -
13 1 Rt TR l/§ y1/2
V2 a2y, )1%° 7y v, 0P Gy )

Fls 1
"J 32 ° - 72| -
v !2[Ao'-F(o‘)+kl], |2[A—f(ylm)](c-y]m)]
y
‘f - 3/2 - 372| %°
5 lz[As-F(o)+kl]} IE[A—f(ylm)](c—ylm)], J
(2-49)
ii) vi and 5; are the points on [-2(i+1)9 , -2i6],i = r , such

that

- . i i
llm GL(yl’len) =0 if ylm - ’Y J BL

Y7

.V;]} for i =r

(2-50)

iv) p; is the point on 23 such that the N-curve through pi is
i

tangent to ZL . Also, (pi,O) is the crossing point of the P-curve

through pil with the xl-axis.

i , i i3 .
v) zLa = (yl,yg) : (yl,yg) € ZL and Yy, € [SL,pL] for i=r
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Zib ={(yy57,) 1 (ysv,) € Zi end y, € (uiﬂi] for 1zr
(2-52)
Then, we have shown the existence of certain curves E; and Zi
vhich are possible candidates for switching curves, and our next task
will be to decide which parts of them, if any, do actually belong to
the switching curves. This is done in the next chapter, where we are
not only able to decide the above question, but also prove the existence
of other curves, called indifference curves, and finally establish the

optimal control law.
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CHAPTER III

OPTIMAL CONTROL LAW

Using the control law given by Pontrayagin's Maximum Principle, and
working the problem in backwards time from the origin of the state plane,
we have found, in Chapter II, the loci of the points for which a second
switching occurs. Then, if we want these loci to be possible candidates
for true switching curves, when considering a trajectory in forward time,
the switching before the last must occur on some part of the above loci,
and the last switching must occur on one of the two zero trajectories;
this will be true only if the zero trajectories are at the same time
optimal trajectories. Therefore, the first part of this Chapter will
be concerned with the question of proving that the zero trajectories
are also optimal trajectories; this proof is given in Theorem 3-1, using
the results obtained in Lemmas 3-2 and 3-3. It is worthwhile to point
out that the proof of Lemma 3-2 put some further restriction on the
bound A of the control u(t), and that the proof of Lemma 3-3 restricts
the class of periodic functions so far considered; the nature of the
above restrictions on both A and f(x) are indicated before the
Lemmas 3-2 and 3-3 respectively, in order for the reader to be able to
locate the moment at which they are used for the first time.

The second part of this Chapter is concerned with the question of
proving the existence of the indifference curves, and the question of
deciding which parts of the possible switching curves, if any, are

true switching curves, and which parts can be actually substituted by
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the indifference curves. By using the above results, the optimal control

law is found as given by Theorem 3-2.

Definition 3-1 - A solution of (1-5) satisfying the boundary conditions

(1-9), u(t) being given by the condition (1-20), will be called a solution
curve. A solution curve consists of a countable (probably finite or
vacuous) well-ordered sequence of alternating P- arcs and N-arcs such
that
i) The initial point of the first arc is PO(Xlo’XQO)
ii) The terminal point of each arc is the initial point of the next.
iii) The terminal point of the last arc is the origin.
iv) u = +A on the P-arcs and u = ~A on the N-arcs.
If A 1is the solution curve starting at PO ,and P' 1is any point
on A , then the solution curve starting at P' is that part of A

which follows P!

Definition 3-2 - A point on a solution curve which is both the terminal

point of a P-arc and the initial point of an N-arc will be called a
PN-corner. Likewise, an NP-corner is a point on a solution curve which

is both the terminal point of an N-arc and the initial point of a P-arc.

Definition 3-3 - A path from the initial point PO to the origin is a

countable, well-ordered sequence of alternating P -and N-arcs such that
i) The sum of the time length of the arcs is finite.
ii) The initial point of the first arc is PO

iii) The terminal point of each arc is the initial point of the next.

iv) The terminal point of the last arc is the origin.

L6



v) Two arcs never intersect.

vi) u = +A on the P-arcs and u = -A on the N-arcs.
In order to avoid a conflict between iii) and v), we assume that each
arc contains its initial point but not its terminal point. A path from
P, can therefore almost be described as a curve which could occur as

0

that part of a solution curve from Pb which connects PO with the
origin; we say it can almost be described, because v) need not hold for
every solution curve; however, since we are looking for solutions curves

of shortest time iength, there is no luss of generality if we leave self-

intersecting solutions out of consideration.

Definition 3-4% - A path from P, whose time length is not longer than

0

that of any other path from PO will be called an optimal path from
P0 . Obviously, an optimal path from PO is the solution curve of

least possible time length connecting F, with the origin.

Definition 3-5 - A path A will be called canonical if it does not contain

either NP-corners above the xl—axis or PN-corners below it. When we say
that a corner lies above or belcow the xj-axis, we mean that nearby parts

of the arcs meeting at the corner are above or below it; the corner

itself, regarded as a point, may be on the xl-axis.

Lemma 3-1 - Given any path 4 from PO which is not canonical, one can
find a canonical path from PO whose time length is less than that of
JAREN

Proof - Suppose the path A has an NP-corner above the xl-axis,
and let Ii be such NP-cornmer; also, let P2 be the PN-corner preceding

Pl and P3 the PN-corner following Pl , as shown in Fig. 3-1.

17



2

Fig. 3-1. Canonical and Noncanonical Paths
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Then, let us draw the P-curve forward from P2 and the N-curve backward
from P3 » obtaining the point Ph . If we now modify the given path
A by replacing the section P2P1P3 by the section P2P4P3 » the NP-

corner Pl is removed, no other such corner is introduced, and the time

length of the path is reduced, since

_ do do
(PP,P5) = Jf x,(0) \/p (o) = (P Fs)
PP P, ° PPP, °
2743 2713

Applying this process to every NP-corner above the x,-axis, and the

1

corresponding process to every PN-corner below the x.-axis, the result is

1

a canonical path shorter than the given path, and the Lemma is proved.

Corollary - In seeking an optimal path from a point, it is sufficient to
consider only canonical paths from that point, since it follows from
Lemma 3-1 that a path which is optimal with respect to the class of all
canonical paths is also optimal with respect to the class of all paths
whatever. Hence, from this point on all paths considered are therefore
assumed to be canonical.

Definition 3-6 - Let v, (Y_) De the set of all states that can be brought

to the origin, in positive time, by the control u = +A (u = -A) . 1In

a more precise way

2
]

1/2
. {(xl,xg) tx; >0 and x, = -,2[Ax1 - F(xl)], (3-1)

) (3-2)

1/2'

Y. = [(xl,xg) :x, <O and x, ='2['AX1 - F(Xl)}’

k9




Also, by definition
I\=’Y+U 'Y_

Definition 3-7 - Let nfgnL) be the set of all states to the right (left)

of the T' curve. In a more precise vay, HR and HL are defined by

HR = (Xl’XE : if (x{,xg) €T, then x, >x* (3-3)

HL = (xl,xe) ¢ if (xﬁ,xg) e, then x < xi} (3-4)
Definition 3-8 - Let

f(xl) =K + fl(xl) (3-5)

where fl(xl) is a periodic function with the same period 26 as
f(x1) and such that
2(i+1)e

E(xl)dxl =0 for any i (3-6)

zib
and the constant K is given by

20

K =%9— f £(x, Jax, (3-7)
0

Let Fl(xl) be defined by
1
R ) = [ 100 @ (3-8)
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then, Fl(xl) is also a periodic function with period 2g.

Let us now consider the question of proving that the zero trajectories
Y+ and Y_ are also optimal trajectories. Then, let Q be any point
on T; , See Fig. 3-2; it is obvious that any canonical path from Q
to the origin must have an even number of switchings. So, as a pre-
liminary step, we are going to prove that Y; is optimal with respect
to all canonical paths from @ +to the origin that have only two
switchings, and, once this is proved, it follows that Y, is optimal
with respect to all possible paths.

Then, see Fig. 3-2, let A = QRMSO be a general canonical path
from Q to the origin that has only two switchings, and is completely

determined by its crossing point with the x_ -axis, i.e., by M(-xlm,o).

1
Notice that, since the system is nonlinear, it is not sufficient to
prove that Y, is optimal only with respect to canonical paths in a
neighborhood of Y; , but it has to be proved with respect to all
possible canonical paths; therefore, the point M that characterizes

the path A can be any point on the negative part of the x1-axis.

The most direct way of proving that Y+ is optimal would be to
write an expression for the time spent along the path A and showing
that its absolute minimum occurs when A coincides with T; s however,
this turns out to be almost impossible due to the complicated algebra
involved. Therefore, the procedure we have followed consists of showing
that certain parts of the path QO take less time than the corresponding
parts of the path A , so that when we add all those parts we obtain

the desired result.

Now, see Fig. 3-2, let N be the point on Y, such that X =X
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and P be the point on the P-curve through R such that xlp = xlq .
Since it is obvious that t(QR) > T(PR), it will be only necessary to
prove that t(Q0) < T(PRMSO);sthis is achieved by showing that between the
time spent along the parts QN and NO of QO and the time spent along
the corresponding parts PM and MSO of PRMSO there exists the
following relations

i) t(QN) < t(PM)

ii) T(NO) < T(MSO)

So far, we have considered A and C constants such that
A>C=23B. Fromnow on, and in order to be able to prove Lemma 3-2, we

restrict ourselves to the cases in which the constant C is given by

C=3B+ Z‘K! (3'9)

Lemma 3-2 - Let P(xlp,xzp) be any point in I, Q be the point of
Y, such that xlq = le s M be the intersection point of the x, -axis
with the P-curve through the point P , and N be the intersection

point of vy and the straight line x. = x. , as indicated in Fig. 3-3.
+ 1 im
Then t(PM) > t(QN) .
Proof - The usual procedure to prove this Lemma would be to find

Tys Ty Tx 1> w(PM) > 1, and

T3 > T(QN) > T, » and to show that 71, > 7; . Although the bounds <

12,13 and T, can be found easily, it was thus far not possible to show

quantities and Ty such that =~

l)

> -
that Ty 73,

et H Dbe the point of the Y, curve such that Xy = le + 2xlm’

therefore, we are going to follow a different procedure.

and let ¢(xl) and n(xl) be the zero and any other trajectory defined

by the relations
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iy
2

o(x;) =5~ = Axy - F(x;) = (Ax)x - Fi(x))
2
X2 ,
n(x,) =57 = Alxp+xy ) - F{x)) + F(xp ) = (AK) (e )-Fy (%) )47 (=% )
Then
X, +2x1m’ xlp xlp+2xlm
Il =L/ﬁ ¢(X])dxl ‘M/N n(xl)dxl =k/p [@(Xl) -
xlm —xlm xlm
51p+2xlm
- n(x,-2x, ) ldx, =L/ [(A-K)x, - Fy(-x ) ) + Fy(x,-2x ) -
X

Im

- Fi(x))] dx, = [(A-K)x, - Fl(-xlm)](xlp+x1m) +

1m
x1p+2xlm
+L/F [Fl(xl-2xlm) - Fl(xl)] dx, (3-10)
X
1m

Since Fl(xl) is a periodic function with period 20, there exist

constants Ki, Ké and K, such that

<

2(i+1)e
- K 4 'l -
[Fl(xl) l] dx, =0 for any i (3-11)
2i6
b
K, = \/F fF(xl) - Ki] dx, 2 K, for any [a,b] (3-12)
a
Then

xlp+2xlm le+2x1m
Jf [Fl(xl-2x1m) - Fl(xl)] dx, =\/P [Fl(xl'lem)'Kl]dxl -
le le

(Continued)
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Substituting intc (5-10) we get

I, = [(A-K)xl

1= m Fl(“xlm)](xlp+x1m) Ky - K

But 0 0
- - - - - - >
(A-K)x, - Fy(-x ) _f [a-k+£, (o) Jao zf [B+£(o)+2 k| -2K]d o
_th -le

>
0, for any X1 % 0
Then, given any X % O,Ilwill be positive for any Xy such that

Ky - Kz

x. > -x. =X (3-13)
1p ZA—K)xlm-FlZ-xlm) 1m ler

On the other hand we have

X, 2% X, +2xlm
1p 1m P 1/2
I, =\/h [®(xl)-n(xl-2xlm)]dxl =\/ﬁ (o(x,)] /2 .
X le
1m
¢ [n(xl-2xlm)]l/2‘ { ra(x,) 12 - [n(xl-2xlm)]l/2] ax, <
1/2 1/2 F1p"1m 1/2
< \[@(xlp+2xlm)] + [n(xlp)] If [o(x,)] -
le
- [n(xl-lem)]l/g} ax,
Also o
R = - L ] dx., =
% - ‘wxl-gxlm)]l@ )R
le

56 (Continued)



1/2 1/2
X101 (o(x)] - [n(xq-2x )]
f ) ]l/2 dxl >

1m

x. +2x%

1 1 Im
>
[10x,) - Py g+ )11/2f

[cp(xl)ll/g- [n (xl-2x1m)]]’/2l ax, >

!

[n(y) - 0leypv2x 3172 To0x s2x 01724 [nGx, ) 17

>

So, I, will be positive whenever (3-13) holds. But

x. +2x ax

X1p 1p —lm 1
FE - e 2_[1 [n(x f [o(x,)172

jclp+2xhn { 1 1 }dx e
[n(xl-Exlm)]l/2 [CP(xl)]l/2 tooe

T(PM) > t(gN) > 1(QN) (3-14)

Now, two cases must be considered, i.e., X op being smaller or

greater than Xym
If chr is smaller than xlm

+ - i ot .
xlP such that le > g ? and the Lemma is completely proved

the inequality (3-14) holds for any

If x

1oy 1S greater than x, = the inequality (3-14) holds only

for values of xlp greater than Xiop and needs to be proved for valuesof
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le such that le < le < chr So, let Pl be a point for which
i i < < :
le > Xy oy and let P2 be a point for which X1 xlp X{op then,
see Fig. 3-3.
(P M) > 1(Q,N) (3-15)
1 1
and it is obvious that
< -
(P.P,) < 1(Q;Q,) (3-16)

So, subtracting (3-16) from (3-15) we get

T(P2M) > T(QEN)

that shows that the inequality (3-14) also holds for the point P, , and

the Lemma is proved for any P € HL.

So far, we have considered the function f(x) to be a general

periodic function.

groups of periodic functions

From now on, we will consider only the following two

1)

2)

Lemma 3-3 - Let M be any point in the negative part of the x

Periodic functions which are at the same time antisymmetric.

Periodic functions that, without being antisymmetric, satisfy

Lemma 3-3. Notice that for this group of periodic functions

we need to check if Lemma 3-3 is gatisfied only for values of

X1 such that 206 > X1 > 0, since if this is true it follows

from Lemma 1-2 that it will also be true for any value of X

l-axis, P

be the point on W;

such that x

1p = ¥ M

58
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following the W; curve into the origin, and A? be the path which is
obtained by following the N-curve through M until the Y_ curve and
then the Y_ curve into the origin. Then, it is TCﬁl) < TLAE). See

Fig. 3-L.

Proof - Since we have assumed that this Lemma is satisfied by the
functions in group 2, we have to prove it only for the functions belonging
to the first group. If f(xl) is an antisymmetric function, it is

obvious that 7Y_ 1is antisymmetric to 7; , Which yields to

©(a,) = t(0P) = 1(0Q) (3.17)

But it is obvious that
7(sQ) < t(sM) (3-18)
Then, from (3-17) and (3-18) we get

1(a) = (0Q) = 7(08) + 1(8Q) < t(08) + 7(sM) = ©(n,))

Theorem 3-1 - Let Q be any point on Y+ . Then the optimal path from
Q to the origin is obtained by following the Y+ curve into the
origin.

Proof - From Theorem 1-3 we know that the optimal path from Q to
the origin exists within the class of piecewise continuous functions.
Then we have to show that the time spent along Y+ is smaller than the
time spent along any general canonical path from Q to the origin.

As a first step, we are going to prove that if A = QRMSO, see
Fig. 3-2, is a canonical path from Q to the origin that has only two

switchings, it is 1(Q0) < 1(A) . From Lemma 3-2 we have
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T(QN) < 7(PM) (3-19)
From lemma 3-3 we have

7(NO) < T(MSO) (3-20)
Also, it is obvious that

7(PR) < 1(QR) (3-21)

Then, adding (3-19) and (3-20) and using (3-21) we get

!

1(Q0) = T(QN) + T(NO) < T(PM) + T(MSO) =

7(PR) + T(RMSO) < 7(QR) + T(RMSO) = T(A) (3-22)

i

Now, see Fig. 3-5, let Ai be the path from Q following the

Y

, curve into the origin, and A? be any general canonical path from

Q into the origin. Assuming that the control sequence is I-A,,..,+A‘
the total number of switchings is odd, say (2n-1). (Note that if the
control segquence were !-A,.qa,~A} the total number of switchings

would be even and the proof would follow the same pattern). Then Ay
is composed of 2n P- and N-arcs, the first one being the N-arc

through @ and the last one being the part of the Y+ curve starting
at sEn—l s

Since 42 is a canonical path, the switching points Si are

such that
S2n-l €Y
Sgi—l € III' s 1l = 1,2,.09,(11-1)
Sy; € I ’ i=1,2,...,(n-1)
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Now, let M, , i = 1,2,...,(2n-2) be the intersection point of the

(i+1)-th arc with the x -axis; let P

REE 1,2,...,(n-1) be the

1
intersection point of the (2i)-th arc with the v_ curve; and let

N, ,1=1,2,...,(n-2) be the intersection point of the (2i+l)-th arc
2i ol

with the Y, curve.

From (3-22) we get

1(Q0) < T(QSlMlPlO) (3-23)

1,2,...,(n-1) (3-24)

T(Pp; 10) < (B 1 SpMpspy0) 5 1

T(NeiO) < (N

2150111 M541 P01 4100 1,2,.0,(0-2)  (3-25)

[N
I

Adding equations (3-23), (3-24) and (3-25), and doing the necessary

simplifications we get the following result:
A A
T(8)) < 1(8,)

and the theorem is proved, i.e., Yy is an optimal path.

Now, once we have proved that the zero trajectories are also opti-
mal trajectories, the loci of possible switching points found in Chapter
II can be considered as candidates for true switching curves. Then,
considering canonical paths from an initial point to the origin that
have only two switchings, and using the results given by Lemmas 3-4 and
3-5, we will be able to show in Lemma 3-6 the existence of indifference
curves, first mentioned and defined in the Introduction, and also to
decide which parts of the loci found in Chapter II are really true
switching curves and which parts can be substituted by the indifference

curves.
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Both the indifference and the true switching curves separate, in
the state plane, the regions of one switching from those of two switch-

ings, allowing us to write down the optimal control law.

Lemma 3-4 - Iet PO be any point in HR , and AF be the canonical path
which is obtained by following the P-curve through Po until a point F ,

then following the N-curve through F until Y. and finally by following

Y, into the origin, see Fig. 3-6. When considering P, as fixed and F
as variable, one obtains
d [T( )] ==2AG (%, .yX, )
dx AR RV1F T Im
if
Proof -
T(AP) = T(POF) + 7(FM) + 1(MS) + 7(80) (3-26)
But x
4 3 1f do A+f(xlm)
ax IT(POF>] = 175 | = 2Ax (3-27)
1m im '2[Aﬁ-F(d)+kl]l of
10
0
a a do A+t (%)
5 |70 = o |- 75 | = am — (3-28)
1m 1m . |2[Ac-F(c)| 2s
1s
1s
w09 ] = = |- Jf -2 73| =
1m 1m I2[-Ac-F(c5)+k ]l
X 2
Im
X
- g Jflm , L 1 do +
T odx ‘ |1/2 ) I 1 v 11/2
Im 5 2(-As-F(0)+k,] 2[A+£(x, ) 1(x -0)
(Continued)
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20, %) 2 ~im 1
+{EEGED—} =_[Awbﬁm”f[ |2PAyFw)m2H3ﬁ3—
1s

- s dc + 1 A+f(xlm)

l [A+£(xy ) 1(x —0’)]3/2 12[A+f R CRN |1/2 2Ax_

(3-29)
d d 1m do
T ax, = - [A+f(x, )]
Xmm [T(FM)] Xmm f ‘2[’AG'F(G)+1{2]|1/2 1m
1f

.flm - - = do +
e | A PV T )

Xr

1 A+E(xy ) (5.50)
" Jetare (e, )1 |12 2

1m'X1f)

Taking derivatives of (3-26), and substituting (3-27), (3-28), (3-29)

and (3-30), we get

a ~ 1 1 1 -
e [T(Aﬁ)] = lg[A+f(le)]}1/2 {(X e )2 + (le_le)l/é]

Im “1s

le | 1
- [A+f(x1m)]\/P [‘2[-A5—F(c)+k2]l372 -

X1s

2[A+f(xlm)](xlm_0)|3/2

- L ] do - [A+f(xlm)].

(Continued)
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le . )
' - a 3-21
i/P lg[‘AG-F(G)+k2]}3/2 are(ey )1(x, -0)] %/ o (331)

1f

Changing (yy»¥yp0¥; ) imto (xppox, 5% ) on Gplysyy ), see (2-37),

from the result obtained and (3-31), we get the following relation

A [ sa vt oraiers N1 A (e o (z_z0)

dxlm l I\Lh} ] - Lﬁ-r'l'\-x-]m/J uR\xlf,xlnl/ \3-‘““/
But -

TR P %50 R I SE i A+f(xy )

1f T ZA Im 107 T 72 T/ T V0 7 axg 2A
Then

dx
a a 1m
ax ; [T(AR)] = [T(AR)] T 24 Cplxyprxy,)

Lemma 3-5 - ILet F(xlf, be the point on the N-curve through

Xop)

M(xlm,O) such that G

= let M'(x! ,0) uch that
R(le’xlm> 0, and let (le,O, be such that

x! =x,_ + 28 . Then, the point F’(xif,

1m 1m ) on the NfcurveAthrough

H
Xop

,x! )= 0, is such that x! - x!'_.<x, -x

] =S ] 1
M' , for which GR(le 1m 1m 1f im 1fr

1 H 1 - . .
Proof - let S(Xls’XES) and S (Xls’x2s) be the intersection points

of the N-curves through the points M and M' with the Y+ curve.

Then, from (2-34) we get

[Ax]m + F(xlm)] =

Bl

1 - — _J_‘_ 1 1 -
*15s " *1s = 2R [Axlm * F(Xm)]

= ;—K [(A+K) Xim + Fl(xim) ] - -;_A- [(A+K)xlm + Fl(x]m)] =

67
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[(A+K) (xim_xlm) * Fl(xim) - Fl(xlm)] =

I\Jlr—'
fo=4

[ (w020 + ¥ (x, 420) - P () | =001 + 5 (3-33)

l'\)ll—J
=3

From the definition of Gp , see equation (2-37), we get

G ( ) = L + 1 +
X]_’le = \/—[A+f(, 3/2 (im"ﬁs)lfg (xim'xi)l/g

t
X
1s

I
* f - -
oAy, -0)-F(0)F (x3. ) 1]

; L do +
ottt )16y, -0 *7P ]

X

Im
+f [lz [A(x! - o)+ (x! l3/2 )

X!

1

1 1

- do = - .
Rrare(x )1 -0)| 2} V2 [ave(x, )1%/7

1 1
‘[lxlm-xls+6(l- %5‘1/2 i <xlm-xi+29>l/2]+

Im 1
" -5 [ 214G, -0)F(0)4r ()1

(Continued)
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- 1 = do +
‘2[A+f(xlm)](xlm-d)lu/2 ]

+ le L -
X»é_g@ [atatx, ,-0)-w(0 e (e )1/

1
l2 [A+e{x ) 1(xq,

_6>13/2:l A0 = Gplxyprxy ) +

xls do .
+‘/F _ K) {E[A(xlm—d)—F(d)+F(xlm)]|3/2

Xls_e(l A

X
+ = , do 573 (3-34)
X126 {2[A<X1m'°)'F(")+F(X1m)]l

But GR(xlf’xlm) = 0 , by hypothesis. Hence (3-34) yields
X
1s
d
GR(Xi:Xim) =J/‘ 9 15/2 +
-0)- +
Y o %) [PLaG, o) F(@)48(,)])
1s A
X
1f
+ , do 575 (3-35)
-g)- +

X120 lE[A(le 0)-F(o) F(xm)]l

. ' , — . LR
Now, if we want GR(le’le) = 0 , it is necessary that
X
1s do ~
, 575 =
-0 })-F{o )+F
(Continued)
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do
m-c)-F(d)+F(xlm)] 5/2

(3-36)

But (3-36) has a solution if and only if xif-ee > x Hence, the

1f °
. 1 . 1 1 — 3
point F' for which GR(xlf’le) = 0 1is such that
t 1 - _ = -
X = Xp S X ¥ 29 - X - =X - X,
Lemma 3-6 - Let P, be any point in Tp. Let F; and F; be the inter-
\ . a . b
section points of the P-curve through Pb with Zé and Z; respectively,
a b

see Fig. 2-7. Let AR be the canonical path, not necessarily satisfying

Pontryagin's Maximum Prinicple, which is obtained by following the P-curve

through PO until the point Fh, then following the N-curve through FR
until Y, and finally by following Y, into the origin, and let A; and A%
. . a b
the canonical paths corresponding to F% and F- , See Fig. 3-7. Then
a o
i) T(A%b) > T(ﬁ% ) for i =2 ]
a
- .
ii) T(A; l) > T(A% ) for i=j
a a
111) T(A§:l> > r(é§b> for 1z j
. . i i+l . . i+l
iv) On every interval (FR s FRb ) there exists a point Fr
. a . c
+ +
such that T(Aé l) . l)
c

= T(AR

Proof - Since P

o is a fixed point, GR(x

10 % 1)

a function of x from its definition, we know that

1
. i i
belongs to the interval (FRb » Fr )
a

), and it is zero if FR

pogitive 1if FR

i i+l
belongs to (F. , Fu

R E
a b

if FR
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GR(xlf,xlm) is

it is negative

i
= F
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F_=F , this being true for any 1 = J
b

On the other hand, considering T( ) as a function of x from
f J

1
Lemma 3-4 we know that the slope of the function T(AR) has a sign

opposite to that of G

R(le’xlm) . So, T(AR) will be a decreasing

function of Fp if Fp belongs to (F. F; ) , an increasing function
. . a
. +1
of Fp if Fp belongs to (F; , Fﬁb ) , and will have relative extremum
. . a
if F_ = Fl or F_ = Fl , since for these points the derivative is
R Ra R Rb
Zero.
i) Since T(AP is a decreasing function on the interval (F; 5
b
F; ) , it is obvious that T(éRb ) > T(AR for any 1 = j.
a .
ii) From Lemma 3-5,we know that we can find a point F;+l in the
d

i 1+l
2
Ry Rb

P-curve through the point P

interval (F } which is the intersection point of the

0 with the curve obtained by a

shifting of 26 in the negative direction of the x -axis of

1
i+
the N-curve through the point Fl . . Moreover, it is obvious
Ra
i+l 1+l
that 1 ) > 1( . On the other hand, since T(A,) 1is
ARa AR i il
an increasing function of Fp in the interval (FR , FRb ) we
. a
have that 7( 1+l) > T(AR . Therefore, it follows that
i+l
T(AR > T(AR ) > T(AR
a
iii) The proof follows the same pattern as that of part ii)
. "
iv) We know that T(AR) is increasing in (F; s F;bl) and
. . a
+
decreasing in (Fl 1, F§+l) , and from part ii) we also know
+
that A; l AR ) Hence, it is obvious that there exists

i +
a point Fl+l in the interval (FR s Fl+l) for which A% l

RC a Rb

1+1

AR

i
Definition 3-9 - Let ZR be defined, see Fig. 2-7, as
e
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2% = { FR : if Po = Fi there exists a Féa € Z%a such

\

c c

that 1( . ) = 1( . for i = j (3-37)
TR
In the same way, we can define zi as
c
i _ , i, S . i i
ZL = 'FL i if Py = FL there exists a FL € XL such
c d c a a
that T(Ai ) = (Al ) l for izr (3-38)
a be I

It is clear that Z; ( Zi ) meets the curve Z; ( Zi ) at the point
c c a a

i, 4
pR(pL)

Definition 3-10 - ILet A; be defined as

i o , i " i
AR = (Xl’xg) : if (Xl’XE) € ZR9 and (Xl’Xg) € ZRp

1

then x. € (x2

- ,Xé) for i = j (3-39)

In the same way, we can define Ai as

i_ . ' i " i
AL = (xl,xg) : if (xl,xg) € ZE‘ and (Xl’XE) € ZLb
a

") for i=>r (3-40)

1
then x, € (XE’XE
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Hence, we have established, as the main result of our research, the
existence of certain switching and indifference curves, and the sufficiency

of the control law u*(t) as given by the following theorem.

Theorem 3-2 - The optimal control law u*(xl,x2) as a function of the

state (xl,xg) is given by

e sn ir (xl,xg)e’Y_I_U(.U' A;>u T~ L(U Ai)u (U ZIi,c>

we= oA AT (xx)ev_ U <U Ai) U, ~ (U A;) u (U ZRZ)T

A 1 i
u¥* = if (xl,xg) € (U b )U (U b )
-A izj c izr c
s . k
Proof - Let PO be any initial point such that PO € AR . We are

going to show that the optimal path from P to the origin, whose

0

existence is guaranteed by Theorem 1-3, is the canonical path
Ak = PFM s¥o , see Fig. 3-8.

Suppose that Ak is not the optimal path from P Let Ar be

0"
the true optimal path; it is clear that the number of switchings is even,
say 2n, n=1.

Congsider first the case n > 1. Whatever is the behavior of Ar )

we know, from the way the switching curves Z%
a

last switching must occur at Y+ and the switching before the last must

were defined, that the

occur on some of the switching curves, say Z; ; then, the last part of
a

Th
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r r..r.rJr.r’r

r
A will be the path Al =N MlF M'S 0, where Nr is any point such

that no switching occurs on NrMiFr. From the principle of optimality,

the path Ai , -which is a subpath of Ar, should be also optimal; however,

from the way ZE was defined, we know that there exists a canonical path
c

= Nrsio such that T(AZ) < T(Ai); then, A

2

r

& 1

is not the optimal path
from. Nr to the origin, and our assumption is false, that is, Ar is not
the optimal path from PO ;

Therefore, we must have n = 1, that is, the number of switchings is
two. From Lemma 3-6, we know that of all the canonical paths from PO
to the origin, with no more than two switchings, AF is the optimal.
Hence, the optimal path from PO to the origin is A?, as we wanted to

show.

Similar arguments can be used whenever the initial point P belongs

0

to any other region different from Ak

R’ and the theorem is proved.

Corollary - The optimal number of switchings N as a function of

the initial state is given by

N= 0 if (xlo,x2o)e r

=
I
[

. i
if (XlO’XQO)e ‘HRfv <i>j AR)IJ

N=1la2 if (x O,xgo)e




CHAPTER IV

APPLICATIONS

As an example of the first group of periodic functions considered
in our research, that is, periodic functions which are at the same time

antisymmetric, let us consider the case
f(x) = sin x
Then equation (1-1) becomes
X+ sinx = u (4-1)

Equation (4-1) represents a number of physical systems, for example
certain motions of a satellite in a circular orbit, and also a pendulum.

In this particular case, 6 = n ,and (3-7) becomes

— b
dx, =0C (4-2)

27
[‘ sin xl

“0

;vlw
=

Also

[f(x)] = |sin x| =1 ,i.e., B=1 (4-3)

Substituting (4-2) and (4-3) into (3-9), we get for A the following

bound for which our results are applicable

aAzc=B+2lkl=1, az1 (k-1

Analog Simulation - In order to get the switching curves we have to plot

the right hand