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ABSTRACT 

The time-optimal control  problem i s  invest igated f o r  a system t h a t  

can be represented by the  second-order nonlinear d i f f e r e n t i a l  equation 

where f (x) is  a per iodic  funct ion such t h a t  I f  (x) I I B I C 5 A . The 

condition t h a t  the bound A i n  tne control i s  a l w a y s  greater tnan or  

equal t o  I f (x) l  is  e s s e n t i a l  f o r  the r e s u l t s  obtained. 

Pontryagin's Maximum Pr inc ip le  md an existence theorem by Fil ipov 

were used t o  prove t h a t  t h i s  optimal control  ex i s t s ,  and t h a t  it must be 

of the  form of a piecewise constant function of time which can a t t a i n  

only the  values +A and -A . This j u s t i f i e s  working t h e  problem i n  

backwards t i m e  from the  or ig in  of the s t a t e  plane, without ge t t i ng  m i s -  

leading r e su l t s .  

The time-optimal control  problem has been solved f o r  two families 

of per iodic  functions 

1) Periodic functions which a r e  a t  the same time antisymmetric 

The two most important f a c t s  encountered a re  

1) The maximum number of switchings is two. 

2 )  There e x i s t  indifference curves. Any i n i t i a l  state which i s  

described by a point on such curves can be brought t o  r e s t ,  i n  

the  same time, i n  two d i f fe ren t  w ~ y s ,  one d t e r  only one 

switching and the other  a f t e r  two switchings. 
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An appl icat ion was made for the case i n  which f ( x )  = s i n  x 

and a comparison with the l i n e a r  case is presented. 

Singular solutions do not exist .  
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INTRODUCTION 

I n  recent years, considerable a t t en t ion  has been given t o  the 

development of control laws which optimize ce r t a in  performance c r i t e r i a .  

I n  general ,  t he  control  po l icy  is obtained as a f’unction of t i m e ,  w h i l e  

f o r  engineering purposes we want a control  l a w  as a function of the s t a t e  

variables which describe the process. 

His tor ica l ly ,  t he  f i rs t  problem t rea ted  was the  time-optimal control  

problem f o r  the  system + x = u ,  This problem seems t o  have 

been f irst  mentioned by Doll, Ref. 111, i n  1943 in  a U.S. Patent ,  and i ts  

so lu t ion  was f i r s t  proposed by McDonald, Ref. [ 2 ] ,  and Hopkin, Ref. [ 3 ] .  

The f i r s t  rigorous solut ion of t h i s  problem was given by Bushaw i n  h i s  

doctoral  d i sser ta t ion ,  R e f .  [4],  and he solves it by elementary but very 

i n t r i c a t e  d i r ec t  geometric arguments. 

iui 5 1 . 

I 

I 

This problem stood alone for  some time, as an example of a wider 

c lass  of problems. But it w a s  not u n t i l  Pontryagin formulated h i s  

Maximum Pr inc ip le ,  Ref. [ S I ,  that  fu r the r  progress was made, Refs. [61-[9]. 

I f  t he  d i f f e r e n t i a l  equations governing the  s t a t e  var iables  a re  known and 1 

i f  the  Maximum Principle  i s  used, a control  law as a function of the  ad jo in t  I 

variables  can be e a s i l y  found, but, the  d i f f i c u l t  and tedious task  of 

determining the  i n i t i a l  conditions of the  ad jo in t  var iables  must then be 

dea l t  with. 

I 
I 

A wide c lass  of problems which a re  important from a p r a c t i c a l  point  

of view i s  t h a t  i n  which the control i s  not only constrained t o  a ce r t a in  

magnitude but enters  the dynamical equations and the  performance c r i t e r i a  

i n  a l i n e a r  manner. When the  Maximum Pr inc ip le  i s  used, it i s  found that 

I 1 



t he  cont ro l  u ( t )  

generally as a "bang-bang" cont ro l .  The r ea l i za t ion  of such a "bang-bangf' 

cont ro l  depends on t h e  determination of t he  switching surfaces i n  the  

s ta te  space, t h a t  i s ,  t h e  surfaces  t h a t  separate  the  regions i n  which t h e  

cont ro l  i s  f u l l  on i n  one d i r ec t ion  from the  regions i n  which the  cont ro l  

i s  f u l l  on i n  the o ther  d i rec t ion .  So, t he  problem of f inding an optimal 

cont ro l  l a w  reduces t o  t h a t  of f inding the  switching surfaces i n  the  s t a t e  

space. 

i s  a piecewise constant function of t i m e ,  known 

The t a s k  of f ind ing  the  switching surfaces  i s  not ,  i n  general, an 

easy one. 

with the  fuel-optimal cont ro l  problem f o r  l i n e a r  second-order systems, 

Refs. [10]-[15]. I n  Ref. [16], t he  fuel-optimal s ingular  cont ro l  problem 

is solved f o r  a spec i f ic  nonlinear system. 

Some work has been done i n  t h i s  respec t ,  but mostly concerned 

The object  of t h i s  research is  t o  f ind  t h e  time-optimal cont ro l  f o r  a 

system t h a t  can be represented by the  second-order nonlinear d i f f e r e n t i a l  

equation i! + f ( x )  = u ,  IuI 5 A ,  where f ( x )  is  a general  periodic 

function of x such t h a t  I f (x)  I 5 B , and B I C 5 A .  This problem 

turns  up if one becomes in te res ted ,  f o r  instance,  i n  t he  minimum s e t t l i n g  

time problem f o r  ce r t a in  motions of a s a t e l l i t e  i n  a c i r c u l a r  o r b i t ;  no t ice  

t h a t  i n  t h i s  pa r t i cu la r  case f ( x )  = s i n  x , and t h a t  x may become so 

la rge  t h a t  i f  we replace s i n  x by x t h e  r e s u l t s  obtained can be 

completely f a l s e .  

We have been able  t o  solve the  problem f o r  two wide famil ies  of 

per iodic  functions, see page 58. Two of t h e  most i n t e re s t ing  fea tures  

of t h i s  problem are the  maximum number of switchings needed and the  presence 

of t h e  indifference curves. It can be shown t h a t  whatever t he  i n i t i a l  

2 



disturbance i s ,  the  number of switchings cannot be grea te r  than two. 

Indifference curves are curves such tha t  a system whose i n i t i a l  s t a t e  i s  

described by a point  on such ii curve can be brought t o  r e s t ,  i n  t he  same 

time, i n  two  d i f f e ren t  ways, one a f t e r  only one switching and the  other  

after two s w i t c h i n g s .  It i s  worth s t a t i n g  t h a t  these indifference curves 

are  ~ l s c  the  locm of s t a r t h g  potnt.sj t.ha.t. i s ,  points f r o m  where w e  can 

star t  a t r a j ec to ry  but which can never be reached by a s t a t e  point 

t r a j e c t o r y ;  the existence of points with t h i s  behavior was  f i r s t  d i s -  

covered by Fliigge-Lotz, Ref. E171. 

c lea r ly  indicates  t h a t  for  nonlinear systems, Pontryagin's Maximum 

Principle ,  although it gives necessary conditions f o r  optimal control ,  

does not guarantee the uniqueness of the solut ion.  

The appearance of indifference curves 

The main r e s u l t  of our research i s  given by Theorem 3-2, see page 74, 

i n  which the optimal cont ro l  law is  expressed as a function of the state 

var iables .  Singular controls cannot occur f o r  t he  nonlinear system 

considered. 
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CHAPTER I 

GENERAL CONS IDERATIONS 

The System - A system i s  composed of a p lan t  or process which is  t o  be 

control led,  and a means fo r  providing a cont ro l  input .  

t h a t  the  equation describing the  dynamical behavior of t he  p l an t  i s  known 

It i s  assumed 

and can be expressed by the  d i f f e r e n t i a l  equation 

where dots denote d i f f e r e n t i a t i o n  with respect t o  time t and f ( x )  i s  

assumed t o  be any periodic function with period 

two conditions 

28 and sa t i s fy ing  t h e  

i) f ( x )  is  continuously d i f f e ren t i ab le  on ( - 0 0 ,  +00) (1-2) 

ii) 1 f (x) I 5 B , where B is  a pos i t i ve  given constant (1-3)  

Let 

I x ( t )  = x ( t )  

x ( t )  = k ( t )  

1 

2 

Then the s t a t e  variables x,(t) and x ( t )  a r e  t h e  so lu t ions  of t he  

d i f f e r e n t i a l  equations 

2 

? = x  1 2  
(1-5) 

2 = u - f(xJ 2 

The s c a l a r  control function u ( t )  s h a l l  s a t i s f y  t h e  three  conditions 

i) u ( t )  is a piecewise continuous function of time (1-6) 

I u ( t ) l  5 A f o r  a l l  t E (-a, +a) (1-7 1 
ii) u ( t )  is constrained t o  have a f i n i t e  amplitude l i m i t ,  t h a t  i s ,  

4 



I -  

iii) A L C , where C is any constant such t h a t  

C Z B  (1-8) 

The first two conditions imposed on the  control  function u ( t )  

commonly made i n  optimal control theory and do not need any fur ther  

a re  

explanation. Now, we are going t o  summarize the m a i n  implications of 

h~-~<iig ~iqc ; sed  conditisn (1-8) oii the mritrol f-izxtion ii(t>. 

As it w i l l  be shown l a t e r ,  Pontryagin's Maximum Principle  gives a 

control  function t h a t  can only a t t a i n  the  constant values +A and -A . 
If we  f ind  the  t r a j e c t o r i e s  of equations (1-5) corresponding t o  these 

constant values, condition (1-8) es tab l i shes  tha t  these t r a j e c t o r i e s  a re  

always non-decreasing functions of  x1 i f  u = +A, and non-increasing 

functions of x i f  u = -A, see Lemma 1-1 on page 11. This f ac t  i s  

used i n  order t o  prove the  existence of t he  optimal control  within the 

1 

c lass  of piecewise continuous functions, and a l so  t o  prove t h a t  the 

domain of con t ro l l ab i l i t y  i s  the whole s t a t e  plane. 

Another consequence of coriditlon (1-8) is  t h a t  the zero t r a j e c t o r i e s  

divide the  s t a t e  plane i n t o  t w o  d i f fe ren t ,  par ts .  This f a c t .  together with 

the  knowledge t h a t  the zero t r a j ec to r i e s  a re  optimal t r a j e c t o r i e s  and t h a t  

the optimal control  i s  a piecewise continuous function allow us t o  work 

the  problem i n  backwards time and f ind a solut ion f o r  the optimal control  

problem, w i t h  the  important r e su l t  that the  number of switchings cannot 

be grea te r  than two. 

Definit ion 1-1 - Any control function 

three  conditions (1-6), (1-7) and (1-8), w i l l  be designated as an 

u ( t )  which s a t i s f i e s  the above 

admiss i b l e  control .  

5 



The Control Problem - For a p lan t  which can be described i n  the  form of 

equations ( l - 5 ) ,  a control  u ( t )  sa t i s fy ing  conditions (1-6), (1-7) and 

(1-8), w i l l  be sought which accomplishes a twofold object ive.  F i r s t l y ,  t he  

cont ro l  u(t.) must t r ans fe r  the  system i n  accordance with equations (1-5) 

from some known i n i t i a l  s t a t e  (xl(tO),x 2 0  (t )) t o  t he  terminal s t a t e  

(xl( t f ) ,x2(tf ) )  = ( 0 , O ) .  Since equations (1-5) are  s ta t ionary,  i . e . ,  in-  

var ian t  under a change of time reference,  t may be chosen as any conven- 

i e n t  ins tan t ,  say t -0. Therefore, the boundary conditions can be wr i t t en  as 

0 

0- 

The second requirement on the control  u ( t )  w i l l  be t h a t  it must optimize 

the  system performance i n  a pa r t i cu la r  sense. For the present case, the 

c r i t e r i o n  t o  be used i n  evaluating the  system performance, i s  

t 
Pf 

d t  = t minimum f J =  J 
0 

(1-10) 

Definit ion 1-2 - If, for a given problem, a unique control  function 

can be found which s a t i s f i e s  t he  three  conditions 

u*(t)  

i) u*(t) i s  an admissible cont ro l  

ii) u*(t) forces  the  system (1-5)  &om the  i n i t i a l  s t a t e  

(xl0, x p 0 )  t o  the  f i n a l  s t a t e  ( 0 , O )  

iii) u*(t) minimizes the  performance funct ional  J with respect  

t o  a l l  other su i tab le  cont ro l  functions 

then, t .h is  control function u*(t)  w i l l  be ca l led  the  optimal control  

f o r  t he  problem. 

6 



I .  

Behavior of t he  Adjoint  Variables - 
is given by 

The Hamiltonian f o r  the system (1-5) 

where F l ( t )  and p2(t)  a r e  the ad jo in t  var iables  s a t i s fy ing  the  

following d i f f e r e n t i a l  equations 

which y ie ld  

= -P#) 

Eliminating p l ( t )  from equations (1-13)y w e  obtain 

df F2 + - dxl p2 = O 

(1-12) 

(1-13) 

(1-14) 

whose solut ion we a r e  going t o  invest igate .  I 
The following comparison theorem, Ref. [18], w i l l  be used I 

Theorem 1-1 - Suppose cp(t) is  a r e a l  solut ion on (toytf) of I 

F2 + g,(t>p, = 0 ~ 

and $ ( t )  is a r e a l  solut ion on (to,tf) of 

c2 + g,(t)p, = 0 

where g l ( t )  and g2 ( t )  a r e  continuous on (t,,tf). Let g2 ( t )  > g,(t) 

on (to,tf) . If tl and t2 a r e  successive zeros of c p ( t )  on (to,tf)y 
, 

7 i 



then $ ( t )  must vanish a t  some poin t  of (t,,t,). 

Let (df/dxl) = g ( t )  . Since x1 i s  a continuous function of 

time and f(xl) i s  continuously d i f f e ren t i ab le ,  it follows t h a t  g ( t )  i s  

a continuous function of time such tha t  

where N i s  a posi t ive constant. 

Let us now apply Theorem 1-1 t o  the  so lu t ions  of the following 

d i f f e r e n t i a l  equations 

cL + N p2 = 0 (1-17) 

on the  i n t e r v a l  (to,t,) . 
i d e n t i c a l l y  zero on any i n t e r v a l  

so, Theorem 1-1 would imply t h a t  t he  so lu t ion  of (1-17) would a l s o  be 

iden t i ca l ly  zero on (t,,t,) , and t h i s  can never happen because N i s  

a pos i t i ve  constant. 

so lu t ions .  

po in t  of accumulation on any i n t e r v a l  

so lu t ion  of (1-17) do not have such a poin t .  

equation (1-16), i . e . ,  the ad jo in t  var iable  

function of time with a f i n i t e  number of i so l a t ed  zeros on any f i n i t e  

The so lu t ion  of equation (1-16) cannot be 

(t,,t,) C ( t  O f  ,t ) because i f  it were 

This ru les  out t h e  p o s s i b i l i t y  of having s ingular  

Moreover, the zeros of the so lu t ion  of (1-16) cannot have a 
\ 

(tl,t2) because t h e  zeros of t h e  

Hence, the so lu t ion  of t he  

p ( t) ,  i s  a continuous 
2 

i n t e r v a l  of time. 

The Necessary Conditions on t h e  O p t i m a l  Control - The Maximum Pr inc ip l e  

of Pontryagin w i l l  now be used t o  der ive the  necessary conditions on the  

optimal cont ro l  u * ( t ) .  Theorem 2 of Ref. [ 5 ]  f o r  our problem reads 

as follows a 



. -  
, .  Theorem 1-2 - L e t  u ( t ) ,  t E [O,tf] , be an admissible control 

which t r ans fe r s  t he  s t a t e  point from (xl0,xm ) t o  ( 0 , O )  , and l e t  

x ( t )  = (x,(t) ,  x2( t ) )  be the  corresponding t ra jec tory ,  see (1-5), so t h a t  

) a d  x(t,) = (G,O) . In order t h a t  u(t) and x ( t )  be 

time-optimal it i s  necessary that there  exist a nonzero, continuous vector 

function 

see (1-13), such t h a t :  

10'x20 x (0 )  = (x 

p ( t )  = ( p , ( t ) ,  p,(t)) corresponding t o  u( t )  and x ( t )  , . -  

i) For a l l  t ,  t E [0, t , ] ,  the function H(p(t), x ( t ) ,  u )  of the 

u, IuI I A , a t t a i n s  i t s  m a x i m u m  a t  the point variable u = u ( t ) :  

(1-18) 

ii) A t  the  terminal time t the  r e l a t ion  f 

(1-19) 

is s a t i s f i e d .  Furthermore, it turns  out t h a t  i f  p ( t ) ,  x ( t )  and u ( t )  

s a t i s f y  system (1-5), (1-13), and condition i), the  time function 

M(p(t) ,  x ( t ) )  

t E [O,t,] and not just a t  

i s  constant. Thus, (1-19) may be ver i f ied  a t  any time 

I tf 

Applying Theorem 1-2 t o  our problem, taking in to  account (1-7), (1-11) 

and the  f a c t  shown before t h a t  p,(t) f 0 

re l a t ion  (1-18) yields  

on any in t e rva l  of time, 

u*(t) = A sgn p;(t) 

where sgn p-$t) i s  defined by 

9 

(1-20) 



Trajector ies  - From the condition (1-20) w e  know t h a t  t he  optimal cont ro l  

can a t t a i n  o n l y t h e  constant values +A and -A . So, l e t  us f i n d  the  

t r a j e c t o r i e s  of the  system (1-5) subject  t o  these controls .  

Then, assuming u t o  be constant, we can in tegra te  equations ( 1 - 5 )  

and obtain 

2 
2 X 
- = ux 
2 1 - F ( x l )  + k 

where F(xl) i s  defined as 

F(xl) = J f(b)db 

0 

(1-21) 

(1-22) 

Since the t r a j ec to r i e s  a re  symmetric with respect  t o  t he  

can characterize each t r a j ec to ry  by the  crossing point  with the  

say M(xlm,O) . Then (1-21) becomes 

xl-axis, we 

x 1 -axis, 

2 
2 

- u(xl - x 2 l m  - F(xl) + F(xlm) 
X 
- -  (1-23) 

Defini t ion 1-3 - If u = +A , the  solut ion curves of (1-21)? given by 

2 
2 

X 

- = Axl - F(xl) + kl 2 
( 1- 24) 

cover the  en t i re  plane exactly once. 

the P-system, i t s  curves P-curves, and port ions of i t s  curves P-arcs. 

This family of curves w i l l  be ca l led  

Likewise, if u = -A , the  solut ion curves of (1-21) a re  

2 
X - = -Axl - F(xl) + k2 2- 

10 



and the  family of curves w i l l  be ca l led  the  I?-system, i t s  curves N-curves, 

and portions of i t s  curves N-arcs. 

Each P-or N-arc i s  automatically oriented by the  increase of t i n e  

t alolng it. 

Lemma 1-1 - EveryP-xrve (N-curve) is a non-decreasing (non-increasing) 

function of x.. 
I 

Proof - In  the  case of  a P-curve, from (1-3), (1-5) and (1-8) we get 

r O  i f  x 2 > 0  

5 0  if x 2 < 0  

- =  
d x p  A - f(xi) - 

2 % X 

Likewise f o r  an N-curve. 

Corollary - The zero t r a j ec to r i e s ,  given by 

2 
2 X 
2 = 2 Axl - F(xl) ( 1-26 ) 

divide t h e  s t a t e  plane in to  two d i f fe ren t  par t s .  

Lemma 1-2 - The t ra jector ieswhose crossing point with the  x,-axis is i n  

the  inter\rzl  [2nF, 

whose crossing point with the  xl-axis i s  i n  the  i n t e r v a l  [0 ,28) ,  by an 

2(n+l)G); 8 . n  obtained by s h i f t i n g  the  t r a j e c t o r i e s  

amount of 2nQ i n  the  posit ive d i rec t ion  of t h e  x -axis. 1 

Proof - L e t  u s  consider the t r a j e c t o r y  

2 
2 

X 
- -  - U(Xl  - x I - F(Xl) + F(Xlm) lm 

where 0 I x < 28. lm 
After a sh i f t i ng  of 2n6 i n  t h e  pos i t ive  d i rec t ion  of t h e  x -axis, 1 

it becomes 

11 



2 
v 

i s  t h e  t ra jec tory  whose crossing point i s  ylm, and 

The Ekistence of the Optimal Control - Filipov, Ref. [ l 9 ] ,  proves the  

existence of the  optimal control  within the  c l a s s  of bounded, measurable 

functions,  f o r  the time-optimal control  problem of a system of n first- 

order nonlinear d i f f e r e n t i a l  equations, under ce r t a in  assumptions. Theorems 

of existence a re  a l s o  given i n  Refs. [20] and [21]. 

proved by Filipov, we a r e  going t o  show that  for our  problem the  optimal 

control  e x i s t s  within the  c l a s s  of piecewise continuous functions.  

Using t h e  theorem 

The main theorem i n  Ref. [ l 9 ]  w i l l  now be s t a t ed  for a spec ia l  case. 

Let the  dynamical system be represented by the  following n f i r s t -o rde r  

d i f f e ren t  t a l  equations 

s = g(x,u) 

1 2  



where x and g are n-dimensimal vectors, and u = u ( t )  is  the  

r-dinemsional control  vector which can take on values i n  a given constant 

set U. Moreover, we a re  interested i n  t h e  time-optimal control  problem. 

"te foiiowing assumptions are made: 

i) The vector f u n c t i m  g(x,u) i s  continuous in  x and u 

ii) The vector function g(x,u) i s  continuously d i f f e ren t i ab le  w i t h  

respect t o  x 

iii) For a l l  x and a l l  u E U t h e  following r e l a t i o n  holds: 

x g(x,u) 5 a (Ilxl! 2 +I> (1 - 28 ) 

where the  dot denotes t h e  sca l a r  product, flxll denotes the  

length of the vector x and a i s  a constant 

iv)  u is cmpact  

v) R = 1 g(x,u> : u = U )  i s  a convex set 

Note t h a t  s ince U i s  a constant set, it i s  a l s o  upper semicontinuous 

w i t h  respect t o  inclusion; therefore, t h i s  assumption can be omitted for  

the  spec ia l  case w e  a r e  considering. 

In  t h i s  spec ia l  case, t h e  theorem proved by Fi l ipov  reads a s  follows 

Theorem 1-3 - Suppose that  the f i v e  conditions s t a t ed  above a r e  

sa t i s f i ed .  A l s o  suppose that  there  e x i s t s  a t  l e a s t  one measurable function 

."(t) such that the solution z(t) of (1-q), w i t h  u = z(t) , and 

i n i t i a l  condition Z ( O )  = xo 

there  a l s o  e x i s t s  a n  optimal contr31, i .e.,  a measurable function 

f o r  which the  solut ion x ( t )  of (1-q), w i t h  i n i t i a l  condition x(0) = xo, 

a t t a i n s  xf i n  t h e  least possible t i m e .  

, a t t a i n s  x f o r  some t i m e  tf > 0. Then f 

u ( t )  

L e t  u s  now check i f  the  f i v e  conditions s t a t ed  above hold for our 

pa r t i cu la r  problem. 

13 



i) It i s  obvious s ince f (x l )  i s  a cont inums function 

ii) It i s  obvious s ince f (x l )  i s  continuously d i f f e ren t i ab le  

iii) From (1-3) and (1-7) we ge t  

u - f ( x l )  I A+B , Ix21[u - f(xJ1 5 I x ~ ( ( A + B )  (1-29 1 

L e t  01 be a constant defined as 

a = 1 + -  ( A + B ) ~  (1-30 ) 
2 

Then, using (1-29) and (1-30) w e  get  

+ 1 2  2 1 2  + - 2 [x, + (A+B) I + x1 L x1x2 + I x ~ / ( A + B )  2 

+ Jx2J[u-f(xl)]  2 x1x2 + x 2 [u-f(x 1 > I  = x - g(x,u) 
lX2 

i v )  It i s  obvious s ince U = 1 u : IuI I A 1 
v )  R = 1 (gl,g2) : gl = a r b i t r a r y  and (g21 I A+Bl which i s  

obviously convex. 

In  order t o  apply Theorem 1-3, we s t i l l  have t o  prove t h e  existence 

of the measurable function g ( t )  a s  defined i n  Theorem 1- 3 . L e t  us 

0 assume t h a t  x > x . Consider t he  N-curve through the  point  x 

and t h e  P-curve through the  point x , and l e t  x be t h e  in te rsec t ion  

point  of both curves. Also ,  l e t  ts be the  t i m e  spent from xo t o  x . 
Then, t he  function z( t )  defined a s  

10 If 

f S 

S 

E ( t )  = 

+A i f  t E ( t s , t f l  

14 



. 

i s  a piecewise continuous function t h a t  t r ans fe r s  the  s t a t e  point from 

x t o  x i n  a f i n i t e  t i m e  t > 0. Note t h a t  i f  xlo 5 xlf, a function 0 f f 
e.4 

u ( t )  

applied t o  our problem and the existence of an optimal control  within 

could be constructed i n  a similar way. Then, Theorem 1-3 can be 

the  c l a s s  of bounded, measurable functions has been shown. 

ret u*(t 1 be the bounded, measurable function, s a t i s fy ing  (1-7) 

and (1-8), which t ransfers  the s t a t e  point from x 0 = (xlo,xm ) t o  

xf = (0,O) i n  t h e  l e a s t  possible t i m e ;  the existence of u*(t) i s  

guaranteed by Theorem 1-3 . Then, u*(t) must s a t i s f y  Pontryagin's 

Maximum Principle ,  t h a t  is, u * ( t )  i s  given by condition (1-20). But, 

it has been shown, see page 8, that p*(t)  i s  a continuous function of 

t i m e  with a f i n i t e  number of isolated zeros i n  any f i n i t e  i n t e rva l  [ O , t f ] .  

Therefore, from condition (1-20), it follows t h a t  t he  optimal control  

u*(t)  

Also, it follows that t h e  domain of c o n t r o l l a b i l i t y  i s  the  whole s t a t e  

2 

i s  a piecewise continuous function of time, as we wanted t o  show. 

plane. 
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CHAPTER I1 

A. SOLUTION FOR THE ADJOINT VARIABLES AS A FUNCTION 
OF THE STATE VARIABLES AND THE INITIAL CONDITIONS 

In  Chapter I,  we found t h a t  (1-20) i s  a necessary condition f o r  the  

control  u ( t )  t o  be optimal. I f  we were able t o  f ind  p ( t)  as a func- 

t i o n  of time, we would eventually draw some useful  information, such as the  

maximum number of switchings o r  the maximum period of time in  which 

keeps a constant s ign;  

2 

p ( t)  2 

then we could study the problem i n  backwards time 

and apply any of the known s u f f i c i e n t  conditions i n  order t o  get  the  

switching curves and the  optimal control  l a w ,  a s  it is  done, f o r  example, 

i n  Ref. [ T I .  

Eliminating p,(t) from equations (1-13), we get  for  p ( t )  the  
2 

nonlinear second-order d i f f e r e n t i a l  equation 

I n  order t o  solve f o r  p 2 ( t )  we have t o  know df/dxl as a function of 

time, i . e . ,  x,(t) ; unfortunately, x,(t) depends on u ( t )  which, i n  

turn,  depends on p,(t) 

t o  f ind  p,(t)  as a function of t only. 

through condition (1-20); one cannot, then, hope 

However, what we can do, and what i s  more sa t i s f ac to ry ,  i s  t o  express 

p 2 ( t )  as a function of the s t a t e  var iables  (x,,x,) , and subs t i t u t e  

i n to  (1-20) i n  order t o  get an expression for t he  optimal control  law. 

As a f i r s t  step,  our aim i s  f inding p 2 ( t )  as  a function of the  

s t a t e  -Jariables,  along every P- and N-curve, for f ixed i n i t i a l  values 

of the  s t a t e  variables and a rb i - t ra ry  i n i t i a l  values fo r  the adjoint  

var iables .  

16 



Solut ion f o r  a P-curve - L e t  us start  solving t h e  problem for  a P-curve, 

i .e.  , let us t r y  to solve the following problem: 

.. 
20 

x + f(xl) = A ; ~ ~ ( 0 )  = xl0 , fl(0) = x ( 0 )  = X 1 2 

(2-2 j 

df 
0 ; P2(0) = P20 J i2 (o)  = - p ( 0 )  = - p i;2 + p2 5 = 1 

2 
2 
- 2 

X 

= Axl - F(xl) + kl 

2 
20 X 

k 1 = -  - 2 - Axlo + F;Xl0) 

(2-2 j 

df 
0 ; P2(0) = P20 J i2 (o)  = - p ( 0 )  = - p i;2 + p2 5 = 1 

2 
2 
- 2 

X 

= Axl - F(xl) + kl 

2 
20 X 

k 1 = -  - 2 - Axlo + F;Xl0) 

We know t h a t  

2 
d P, 

a t2  
- i n  equation (2-1j,  w e  ge t  Subs t i tu t ing  - 

2 

- 0  x -  2 p2 + [A-f(xl); - df 
2 2  

dX1 

or 

( 2 - 3 )  

Equation (2-3) i s  a second-order d i f f e r e n t i a l  equation, where the  point  

M(xlm,O) i s  a singular point ,  because f o r  t h i s  point 



- F(xh) + kl = 0 AXlm 

and M i s  i t s  only s ingular  po in t .  For t h i s  point  M , a singular  

behavior of (2-3) must be expected. So, excluding a neighborhood of 

M , 
(2-3) i s  carr ied out i n  d e t a i l  i n  Appendix A ,  and the r e s u l t  obtained 

f o r  the ad jo in t  variable p 2 ( t )  i s  the following: 

the integrat ion of (2-3) can be done very eas i ly ;  the  solut ion of 

L 

X, 1 

r 
and 

10 X 1 

Equations (2-4) and (2-5) a re  only va l id  f o r  the P-arcs i n  Fig.  2-1 and 

Fig. 2-2 respectively.  

We have already found the  solut ion of equation (2-3), given by 

(2-4) and (2-5), whenever we keep away from t he  

would l i k e  t o  know the  solut ion of (2-3) everywhere, i n  order t o  connect 

the  solut ions on the  P-arcs of Figs. 2-1 and 2-2. 

cases have t o  be considered separately,  depending whether the i n i t i a l  o r  

xl-axis. However, we 

Obviously, two l imi t ing  

the  f i n a l  point i s  on the x 1 -axis.  

I n i t i a l  Point  on the xl-Axis - The solut ion of (2-3) i s  given by equation 

18 
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(2-4) whenever the point  Po i s  d i f f e r e n t  from t h e  poin t  M . Now, the  

question i s :  I s  it possible t o  f ind  p,(t) and p l ( t )  when the  i n i t i a l  

point  Po coincides with the  poin t  M ? 

not defined when Po P M , we are confronted with a l imi t ing  problem; so, 

Since p 2 ( t)  and p l ( t )  a r e  

our aim i s  t o  find 

1 i .m  p,(t) and l i m  p1(t) 
PO+M P04 M 

The process of obtaining t.he l imi t ing  values of p,(t)  and p l ( t )  

i s  shown i n  d e t a i l  i n  the f i r s t  p a r t  of Appendix B. The r e s u l t s  obtained 

a re  the  following: 
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. .  So, equations (2-6) and (2-7) a re  the  solut ions f o r  the adjoint  

var iables  when t h e  i n i t i a l  point Po coincides with M . 

Fina l  Point on the  xl-Axis - The solut ion of (2-3) is given by equation 

(2-5) whenever the  point  P(x ,x 1 is d i f f e ren t  from the point M(xh,O). 

As i n  the case i n  which t h e  i n i t i a l  point i s  on the  x 

confronted with the  following l imi t ing  problems: 

1 2  
axis, we a re  1- 

The process of obtaining the l imi t ing  values of p ( t)  and p ( t)  2 1 

is  shown i n  d e t a i l  i n  the  second pa r t  of Appendix B. 

a r e  the  following: 

The r e s u l t s  obtained 

%OX20 + p20 [A-f(xlO) I 
P2 ( t )  = A-f ( xh) 

and 

1 + 1 ]do - 
2[Aa-F ( o)+kl 1 I 3/2 12 [A-f ( xh) 1 ( b-xlm) I 3/2 

.i'"[- 
Im X 
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So, ( 2 - 8 )  and ( 2 - 9 )  are  the  solut ions f o r  p 2 ( t )  

t he  f i n a l  point P coincides with M . 
and p,( t )  when 

Solution f o r  an N-curve - I n  t h i s  case, we have t o  solve the  following 

problem: 

(2-10) 

2 1 + f ( x l )  = - A; ~ ~ ( 0 )  = x 10 , 2 1 (0)  = x 2 (0)  = x 

df 

2 
2 - - Axl - F(xl) + k2 

X 
- -  
2 

2 
20 X 

k 2 2  = -  + AxlO + F(Xl0) 

Proceeding a s  i n  t he  case of a P-curve, we ge t  

3/21 

da 10 

. 12[ -A6-F(6)+k2]1 
1 X 

i f  t he  N-arc remains below t h e  xl-axis, and 

(2-11) 

1 da 

(2  [ -&-F (6 )+k2 1 I 3’2 

. s’ 
10 X 

22 

(2- 12) 



. .  if the  37-arc remains above the  x -axis. 1 
Also, as i n  the  case of a P-curve, equations (2-11) and (2-12) are 

va l id  whenever we keep away from the  x -axis. I n  order t o  connect both 1 

I arcs,  we have t o  consider again the two l imit ing cases. Proceeding as i n  

the case of a P-curve, we get the  following solut ions 

+ 1 

2 [ -&-F ( cf)+k2 1 I 3’2 

(2-13) 

J 
and 

(Continued) 
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X P m r  

Equations (2-13) and (2-14) correspond to the N-arc represented in 

Fig. 2-3; equations (2-15) and (2-16) correspond to the N-arc represented 

in Fig. 2-4. 

Equations in Backwards Time - Since part of our later discussion is going 
to be based on the study of trajectories in backwards time, T , let us 
express the solutions for p2(t) and p 1 (t) as functions of T . So, 

let 

7 T = t f  - t  

(2-17) 

P2(t) = h2(.‘) 

Substituting in the corresponding equations in forward time, we get 

i) For the case represented in Fig. 2-5a, 

(2-18) 



x- 

9 
n 

E 
x- 
a. U 

0 

x- 

0 2  
F 4 - d  

E-r 

: 
cu 

M 
d 
E4 

pc 

0 
iJ 

M 

cu 

M 

I 
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ii) For the case represented in Fig. 2-5b, 

(2-20) 

1111 

1 
(2-21) 

iii) For the case represented in Fig. 2-5c, 

(2-22) 
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I -  

Fig. 2-5. P- and N-arcs from Po to P i n  Backwards Time 
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i v )  For the case represented i n  Fig. 2-5d, 

(2-25) 

Typical Trajectory in  Backwards Time - Condition (1-20) i n  backwards time 

notation becomes 

U ( T )  = A sgn h2(7) (2-26) 

Since a f u l l  understanding of the behavior of t he  t r a j e c t o r i e s  t h a t  

s a t i s f y  condition (2-26) i s  necessary i n  order t o  get  t he  switching and 

indifference cwves,  we are  going t o  study i n  full d e t a i l  a typ ica l  

t r a j ec to ry  sat isfying condition (2-26). 

The study w i l l  be carr ied over u n t i l  t he  second switching, f o r  

reasons which will become clearer  i n  the  next chapter. 

t r a j ec to ry  i s  sketched in  Fig. 2-6, where, without loss of general i ty ,  

we have assumed an i n i t i a l  value of u = +A f o r  t he  control  function. 

I f  instead of an i n i t i a l  value of 

A t yp ica l  

u = +A , we take u = -A , t he  pat tern 
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. .  
of reasoning and t h e  results obtained w i l l  be of t he  same nature,  provided 

we take t h e  corresponding equations. 

Arc OS - Since we have assumed an i n i t i a l  value of u = +A , it 
must be h20 > 0 . On the  other hand, s ince the  equation (2-1) i s  

homogeneous and we are only interested in finding the  zeros of h * ( d  9 

the  magnitude of h20 is  i r re levant .  Then, f o r  s impl ic i ty  i n  the  

equations, we take f o r  h the value 20 

1 

A20 = A-f(07 
Also 

= O  and k = O  
ylm 1 

(2-28) 

Subst i tut ing (2-27) and (2-28) i n t o  (2-18), w e  ge t  

Let G(yl) be defined by 

It i s  obvious t h a t  A = 0 i f  and only i f  G,yl) = 0 . But G(yl) 2 

i s  a function of y,  such t h a t  
I 

i) l i m  G(yl) = - 03 

Yl+ 
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y2 

C 

Fig.  2-6 .  Typica l  Trajectory i n  Backwards Time with only Two Switchings 
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ii) - dG - A-f  (0)  > 0 , i .e.,  G ( y l )  i s  a pos i t ive  

1 non-increasing function of y 

1 

(2  [A-f ( 0  ) 30 I 3 /2  
+ 

%0 * So, 

Then, f o r  every Al0 t he re  ex i s t s  a y 

which makes 

l i m  G ( y l )  can be made posi t ive with a su i tab le  choice of 
Y‘ 

f [ O J m ]  such t h a t  G ( Y ~ ~ )  = o 1s 

A2s = 0 . 
This point  y , which depends only on the  value of h10 , on the  1s 

zero t r a j ec to ry ,  gives us the point  a t  which the  first switching occurs, 

and i s  determined by the  equation 

(2-30) 

given by (2-30) and A_ = 0 i n to  equation 
d S  YlS Subst i tut ing the  value of 

(2-19), we ge t  

Arc SM - During t h i s  interval ,  Ail(?)  i s  given by 

(2-31) 

( Cont inue d ) 
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(2-32) 

From equation (2-33) we see t h a t  

during the whole in t e rva l  

the x -axis .  The crossing M with the x 1 -axis i s  given by 

A2(.r)  keeps a n e g  a t  i v e  s i g n  

SM , t h a t  i s ,  no switching can occur below 

1 

2 

+ F(Yls) + MIS = 2AYls AYlm + F(Ylm) = 7 y2s (2-34 ) 

From equations(2-24) and (2-25) we get  

1 
23 = - >  A+f Ylm (2-35) 

equations (2-35) and (2-36) give h2, and hlm respect ively.  

Arc ME' - Substi tuting (2-35) and (2-36) in to  (2-22), we get 
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Subst i tut ing (2-35) and (2-36) i n t o  ( 2 - 2 3 ) ,  we get  

(2-38)  

Equations (2-37) and (2-38) give the  values of t he  adjoint  variables 

a t  the  point F of Fig. 2-6. 
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B . POSSIBLE SWITCHING CURVES 

I n  the l a s t  sect ion,  we studied the behavior of a t y p i c a l  t r a j ec to ry  

i n  backwards time, and obtained the values of the  adjoint  var iables  

h 2 ( r )  and h l ( r )  a t  the point F of Fig. 2 - 6 , a ~  given by equations 

(2-37) and (2-38). These two equations show t h a t  both adjoint  var iables  

h2(-c) and h (7) are  functions of the  two var iables  Y h  and Y1; 1 

however, if we consider y as fixed, they a re  only functions of y 

t h a t  i s ,  we have the values of the adjoint  var iables  along a pa r t i cu la r  

t r a j ec to ry .  

Im 1 '  

1' The study of equation ( 2 - 3 7 ) ,  f o r  fixed yh and var iable  y 

and a complete understanding of i t s  behavior, i s  very important, s ince 

it w i l l  t e l l  us i f  h 2 ( ~ )  keeps constant s ign or  changes s ign along a 

t r a j ec to ry ,  which i n  tu rn  correspond t o  the p o s s i b i l i t y  of e i t h e r  not 

having or  having a switching. 

h,,(.r) 

The l o c i  of a l l  the  points f o r  which 

i s  zero, obtained by varying y,, , a re  possible candidates for 
c 

switching curves. 

In  order for  the  

f o r  which h2(7) i s  

not necessar i ly  t rue  

i n  the next Chapter, 

1111 

reader t o  understand that  the  l o c i  of the points  

zero a re  only candidates f o r  switching curves and 

switching curves, we can an t ic ipa te  t h a t ,  as shown 

the zero t r a j ec to r i e s  a re  optimal t r a j e c t o r i e s ,  

which j u s t i f i e s  the  study of the  t r a j e c t o r i e s  i n  backwards time; a l so ,  

the  existence of the  indifference curves w i l l  be shown, which w i l l  enable 

us t o  s t a t e  tha t  only a pa r t  of the  l o c i  of points  f o r  which 

zero do actual ly  belong t o  the  switching curves. 

h 2 ( ~ )  is  

However, for the  proof of the existence of the  indifference curves, 

we need t o  know how the  possible  switching curves look. Therefore, it is  
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. _  

c lea r  t h a t  our next t a s k  is  t o  f i nd  the  possible  switching curves, that 

is, t h e  zeros of equation (2-37). 

Le t  G (y ,yh) be the function of two variables  defined in  (2-37). 

i s  pos i t i ve  

R 1  

Sirice f o r  every y 

f o r  any y1 yh , t h e  zeros of h2 are the  same as the  zeros of 

G,(Y~,~,~). 

following. Given a y such t h a t  yhc[O,+oo) , is there  a value of 

the  expression I 2 [  -Ayl-F(yl)+k2] Im’ 

So, t h e  question t h a t  we are going t o  inves t iga te  now is the  -. - 

Lm 
f o r  which %(yl,ylm) = 0 ? y1< ylm 

Notice t h a t  i f  i n  the study of a t yp ica l  t r a j e c t o r y  in  backwards time, 

we had assumed an i n i t i a l  value of u = - A ,  instead of u = + A ,  we should 

now have t o  consider values of y such t h a t  y ~ ( - 0 0 , 0 ] ;  however, we 

do not consider these cases,  because the  pa t t e rn  of reasoning would be 

h Im 

similar, provided we take the corresponding set of equations. 

In  Fig. 2-7, t h e  def in i t ions  used i n  the  rest of t he  Chapter are  

i l l u s t r a t e d .  

Definit ion 2-1 - Let and pi be the poin ts  on the  i n t e r v a l  [2i@, 

2( i+1)6)  

i 
R 

defined i n  the  following way: 

f($) = Max f ( Y )  
ye[ 2 i6 . , s ( i+ l )e )  

f(Y) 
i f(!q = Min 

y ~ [ 2 i B ,  2( i+1)6)  

) as a funct ion of y satisfies yh , GR(yl,ylm 1 Lemma 2-1 - For f ixed  

the  following three  properties : 

i) GJY1’Ylm ) i s  always non-increasing 
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y2 
I 

/ T C R  

Fig. 2-7. I l l u s t r a t i o n  of Defini t ions Used i n  Pa r t  B of Chapter I1 
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.- 
iii) -00 < l i m  GR(yl,ylm )<a, 

Y 1”” 

Proof - i) For fixed y the  der ivat ive of GB(yl,yh ) is Im’ 

1 C 0 f o r  any y I e = - (2[-&-F(d)+k21 13’2 
which means t h a t  GR(yl,ylm ) i s  always non-increasing 

ii) mere subst i tut ion,  w e  get  G, (Y~ ,~ -  ) = - 03 n im 

m i n 
R iii) L e t  13, be the  largest BR such t h a t  B’ < yh . Then 

I -  
I -  and 

( 2-39) 

YLT f c r  any 

Then 

-aJ .r”” 
<Jh 
-03 

r 1 

r -. 1 

1 Y?, 
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Let C$ be the  l a rges t  m ai such t h a t  aR . Then < Y l m  R 

-M-F(o)+k2 = flrn 

o 

and 

1 
12[-Ao-F(o)+k2] 1 3/2 f o r  any 6 < y 1 > 

l m  

(2-41 ) 

1 

Taking l i m i t s  on GR(yl,yl, ) 

get  

and taking account of (2-40) and (2-42), w e  

Lemma 2-2 - I f  ylm = Bk , then G (y Pi )  i s  always negative. R 1, R - 

(2-43 ) 

for any cm:, 
Then, each in tegra l  i n  the  expression f o r  

integrand i s .  Hence, s ince each term on GR i s  negative fo r  any Y 

GR 
i s  negative, since each 

1' 



i we conclude t h a t  GR(y1,PR) i s  always negative. 

Corollary - If yh 

negative sign along 

If Ylm Lemma 2-3 - 
i f o r  any a. L 4 . R 

Proof - Taking 

i 
= PR J the adjoint  variable h, keeps a constant 

the t r a j ec to ry  through BR i Le., there is no switching. 

i there exists an a’ such t h a t  l i m  GR(y1’(x;)X) 
R = QB ? 

Yl+ co 

1 1 

i For y = a, (2-34) becomes Im 

(2-44 ) 

then 
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i 
So, t he  f i r s t  t h a t  is ,  a - yls i s  an increasing funct ion of CX R '  

term of (2-lc4) i s  a negative decreasing funct ion of < , which tends 

t o  zero as C$ 

i 
R 

- ~0 . 
"he second term i s  a pos i t ive  increasing function of C$ , which 

tends t o  a posi t ive f i n i t e  l i m i t  a s  <+ - co . 
from (2-41), the integrand i s  pos i t ive ;  it is  increasing, s ince the  

in t e rva l  of integrat ion increases with < ; and f i n a l l y ,  it i s  f i n i t e  

a s  

It i s  pos i t ive ,  since,  

i 
R 

By t he  same token, we can conclude t h a t  the  t h i r d  term of (2-44) i s  

a 3 - 03 , because of p a r t  iii) of Lemma 2-1. 

a pos i t ive  f i n i t e  constant.  

a' such t h a t  

Hence, it is  obvious t h a t  there  e x i s t s  an 

R 

i i 2 j , t he  ad jo in t  var iable  h2 becomes zero 
1m = J 

Corollary - I f  y 

a t  a point  on the t r a j ec to ry  through i % ; i.e., w e  have a switching. 

Lemma 2-4 - In any in t e rva l  [ 2i0 , 2 ( i + l ) 0 ]  

i i ex i s t  two points y R and ER 

such t h a t  C$ 2 4 , there  

such t h a t  

Moreover, 
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Proof - Taking limits on G (y ) we get R l Y y h  

1 - 
2[ -A6-F(6)+k2] 13’2 

1 7 

Obviously, (2-b5) is a continuous functiori of y lm 

(2-45) do 

, since every term 
is a continuous function. 

at ylm = pR 

Hence, from the definition of continuity, we conclude that 

Moreover, from Lemma 2-2, (2-45) is negative 
2-l , f3: ; and, fron; Lemma 2-3 (2-45) is positive at ylm = c$ . 

and 

i i the adjoint variable h2 becomes 
Corollary - If Y m  = YR Or ‘R Y 

zero at the point approached by the trajectories through yR i , fjR i when 
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y1 approaches -a ; i .e. ,  the  switching occurs a t  t h i s  point . This 

follows from Lemmas 2-1 and 2-4. 

Lemma 2 - 5  - The locus i n  the  phase plane of a l l  the  points  y1 f o r  

which GR(Y1,Ylm ) = 0 i s  composed of a s e r i e s  of curves, each one 

being a continuous curve with two points  a t  i n f i n i t y ,  corresponding t o  

values of y 
i i 

such t h a t  yR 5 ylm 5 6R for i 2 j , and with a 
l m  

continuous var ia t ion.  

Proof - Follows from Lemmas 2-1, 2-2, 2-3 and 2-4, and t h e  f a c t  
i i 

t h a t  on every in te rva l  [yR , E R ] every term of  GR(yl,ylm).has a 

continuous var ia t ion.  

Definit ion 2-2 - Let be the s e t  of a l l  s t a t e s  (yl,y2 ) such t h a t  

GR( 1 "lm 
i i [yR , 6R] . ) = 0 for every y l m  i n  the  in t e rva l  I n  a more 

precise  way 

$ =  

Also, l e t  

for i 2 j 

(2-46) 
i through pR be the point on $ such t h a t  t he  P-curve 

i i s  tangent t o  $ ; and l e t  ( PR' 0 )  be the  crossing point of t he  

N-curve through p with the x 1 -axis.  Then R 
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Definit ion 2-3 - If yh E (a , 01 , w e  h a v e  the  following analogous 

def in i t ions :  

(2-49) 
ii) yL i and 6L i a re  the  poin ts  on [-2(i+1)8 ,, -2 iQ] , i  2 r ,, such 

t h a t  

I 

(2-50) 

i i v )  pL i s  t h e  point  on $ such t h a t  t h e  N-curve through pi i s  
4 L 

i tangent t o  < . Also, (%,O) 

through p; with t h e  x -axis. 

i s  t h e  crossing poin t  of t h e  P-curve 

1 
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Then, we have shown the existence of ce r t a  

.. 
(p L ,y q ] for i 2 r 

( 2 - 5 2 )  

and Xi 
L 

n curves 

vhich a re  possible candidates f o r  switching curves, and our next task  

w i l l  be t o  decide which p a r t s  of them, i f  any, do ac tua l ly  belong t o  

the switching curves. 

not only able t o  decide the above question, but a l so  prove the  existence 

of other  curves, called indifference curves, and f i n a l l y  e s t ab l i sh  the 

optimal control l a w .  

This i s  done in  the  next chapter, where we a re  
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CHAPTER I11 

OPTIMAL CONTROL LAW 

Using the  control  law given by Pontrayagin's Maximum Principle ,  and 

working t he  problem i n  backwards time from the  o r ig in  of the s t a t e  plane, 

we have found, in Chapter 11, the  l o c i  of the points  f o r  which a second 

switching occurs. Then, if we w a n t  these l o c i  t o  be possible  candidates 

f o r  t rue  switching curves, when considering a t r a j ec to ry  in forward time, 

the switching before t h e  last  m u s t  occur on some pa r t  of the  above i o c i ,  

and the  last  switching must occur on one of the two  zero t r a j e c t o r i e s ;  

t h i s  w i l l  be t rue  only if the zero t r a j ec to r i e s  a re  a t  the  same time 

optimal t r a j e c t o r i e s .  

be concerned with t h e  question of proving t h a t  the  zero t r a j e c t o r i e s  

a re  also optimal t r a j e c t o r i e s ;  t h i s  proof i s  given i n  Theorem 3-1, using 

the results obtained i n  Lemmas 3-2 and 3-3. 

out t h a t  the proof of Lemma 3-2 put some fur ther  r e s t r i c t i o n  on the  

bound A of the control  u ( t ) ,  and t h a t  the  proof of Lemma 3-3 r e s t r i c t s  

the c lass  of per iodic  functions so f a r  considered; the  nature  of the 

above r e s t r i c t i o n s  on both A and f ( x )  a r e  indicated before the  

Lemmas 3-2 and 3-3 respectively,  in order f o r  t he  reader t o  be ab le  t o  

loca t e  the moment a t  which they a re  used fo r  the  f i r s t  time. 

Therefore, the  f i r s t  p a r t  of t h i s  Chapter w i l l  

It i s  worthwhile t o  point  

The second p a r t  of t h i s  Chapter i s  concerned with the question of 

proving the existence of the  indifference curves, and t h e  question of 

deciding which pa r t s  of the  possible switching curves, i f  any, a re  

t rue  switching curves, and which pa r t s  can be ac tua l ly  subs t i tu ted  by 
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t h e  indifference curves. By using t h e  above r e s u l t s ,  t h e  optimal cont ro l  

law i s  found as given by Theorem 3-2. 

Definit ion 3-1 - A solut ion of ( 1 - 5 )  sa t i s fy ing  the  boundary conditions 

(1-9), u ( t )  

curve. 

being given by the  condition (1+20>, w i l l  be ca l l ed  a so lu t ion  

A solution curve cons is t s  of a countable (probably f i n i t e  or 

vacuous) well-ordered sequence of a l t e rna t ing  P- arcs  and N-arcs such 

t h a t  

i )  

ii) 

The i n i t i a l  point of t he  f i r s t  a rc  i s  

The terminal po in t  of each arc  i s  t h e  i n i t i a l  point  of t he  next. 

Po(xlo,x20) . 

iii) The terminal point  of t he  l a s t  a r c  i s  the  o r i g i n .  

i v )  u = +A on t h e  P-arcs and u = -A on the  N-arcs. 

If A i s  the so lu t ion  curve s t a r t i n g  a t  Po ,and  P '  i s  any point  

on A , then the so lu t ion  curve s t a r t i n g  a t  P '  i s  t h a t  p a r t  of A 

which follows P '  . 

Definition 3-2 - A point  on a solut ion curve which i s  both the  terminal 

point of a P-arc and the  i n i t i a l  point of an N-arc w i l l  be ca l l ed  a 

PN-corner. 

i s  both t h e  terminal point  of an N-arc and the  i n i t i a l  point  of a P-arc. 

Likewise, an NP-corner i s  a point  on a so lu t ion  curve which 

Definit ion 3-3 - A path from the  i n i t i a l  point  

countable, well-ordered sequence of a l t e rna t ing  P - a n d  N-arcs such t h a t  

Po t o  the  o r ig in  i s  a 

i )  

ii) 

iii) 

i v )  

The sun of t h e  time length of t h e  a rc s  i s  f i n i t e .  

The i n i t i a l  point of the  f i rs t  a rc  i s  

The terminal point  of each arc  i s  t h e  i n i t i a l  point  of t he  next.  

The terminal point  of t he  l a s t  arc  i s  the  o r ig in .  

- 
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v )  TWO arcs never in te rsec t .  

v i )  u = +A on the  P-arcs and u = -A on the  N-arcs. 

I n  order t o  avoid a conf l i c t  between iii) and v) ,  w e  assume t h a t  each 

arc contains i t s  i n i t i a l  point but not i t s  terminal point .  

Po 

t h a t  p a r t  of a solut ion curve from Po which connects Po with the 

A path from 

can therefore  almost be described as a curve which could occur as 

I 
origin;  w e  say it can almost be described, because v)  need not hold f o r  

every solut ion curve; however, s ince w e  a re  looking for solut ions curves I 

of sho r t e s t  t i m e  iength, there is no IUSS uf g e n e r d l t y  if WE l e a v e  self- 

in te rsec t ing  solut ions out of consideration. 

I 

Defini t ion 3-4 - A path from Po 

t h a t  of any other  path from 

Po . Obviously, an optimal path from Po i s  t h e  so lu t ion  curve of 

least  possible  t i m e  length connecting Po with the  or ig in .  

whose t i m e  length i s  not longer than 

Po w i l l  be ca l led  an optimal path from 

I 

Defini t ion 3-5 - A path A w i l l  be ca l led  canonical if it does not contain 

e i t h e r  NP-corners above the  x -axis or €"-corners below it. When we say 1 

t h a t  a corner l i e s  above or below the  xl-axis ,  we mean t'nat nearby parts 

I 

1 

of t h e  a rcs  meeting a t  the corner a re  above or below it; the  corner I 

i tself ,  regarded as a point ,  may be on the  x -axis. 1 

Lemma 3-1 - Given any path A from Po which i s  not  canonical, one can 

f i n d  a canonical path from 

A .  

Po whose time length i s  l e s s  than t h a t  of 

Proof - Suppose the  path A has an NP-corner above the  xl-axis, 

and l e t  Pl be such NP-corner; also,  l e t  P2 be the  PN-corner preceding 

P1 and P3 the  PN-corner following P1 , as shown i n  Fig.  3-1. 
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c 
I 

Fig. 3-1. Canonical and Noncanonical Paths 
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Then, l e t  us  draw the  P-curve forward from 

from P obtaining the  point  P4 . If w e  now modify the  given path 

A by replacing the  sect ion P P P by the  sec t ion  P P P the  NP- 

corner P i s  removed, no other  such corner i s  introduced, and the  t i m e  

length of the  path i s  reduced, since 

P2 and the  N-curve backward 

3 ’  

2 1 3  2 4 3 ’  

1 

Applying t h i s  process t o  every NP-corner above t h e  xl-axis, and t h e  

corresponding process t o  every PN-corner below the  x -axis,  the  r e s u l t  i s  

a canonical path shor te r  than the  given path,  and the  Lemma i s  proved. 

1 

Corollary - I n  seeking an optimal path from a point ,  it i s  su f f i c i en t  t o  

consider only canonical paths from t h a t  po in t ,  s ince it follows from 

Lemma 3-1 t h a t  a path which i s  optimal with respect  t o  the  c l a s s  of a l l  

canonical paths i s  a l so  optimal with respect  t o  t h e  c l a s s  of a l l  paths  

whatever. 

assumed t o  be canonical. 

Definit ion 3-6 - L e t  

t o  t h e  or igin,  i n  pos i t ive  t i m e ,  by the  cont ro l  

Hence, from t h i s  point  an a l l  paths considered a re  therefore  

y+(y - ) be the s e t  of all s t a t e s  t h a t  can be brought 

u = +A (u  = - A )  . I n  

a more precise  way 

49 



Also, by def in i t ion  

Defini t ion 3-7 - Let  

of t he  I’ curve. I n  a more precise  way, IIR and IIL a re  defined by 

II (TI ) R L  be the  se t  of a l l  s t a t e s  t o  the r i g h t  ( l e f t )  

n -  
R -  

x =  
L 

(x1,x2) : i f  (xT,x2) E I? , then x1 > 

(x,,x2) : i f  

Defini t ion 3-8 - Let 

f ( x l )  = K + f ( X  1 1  

<xT,x9) E I’ , then x, < 9 i c  I L 

(3-3) 

where f l (xl)  i s  a periodic function with the  same period 20 as  

f (x, ) and such t h a t  - 

(3-4 1 

(3-5) 

and 

Let 

q(xl)cix1 = o f o r  any i 

the constant K i s  given by 

20 

K = - 28 f(Xl)dxl 
1 

0 

F ( x  ) 1- 1 be defined by 

F ( x ) =  1 1  s’ f,(d do 

0 

(3-6 j 

( 3-7 1 

( 3-8 1 



-- 

I 

I 
i -  

I .- 

I .  

l -  

then, F (x ) is  a l so  a periodic function with period 28. 1 1  
L e t  us now consider the  question of proving t h a t  t h e  zero t r a j e c t o r i e s  

and y - a r e  a l s o  optimal t r a j e c t o r i e s .  Then, l e t  Q be any point  y+ 

on y+ , see  Fig.  3-2; it i s  obvious t h a t  any canonical path from Q 

t o  the or ig in  m u s t  have an even number of switchings. So, as a pre- 

l iminary s t ep?  we are  going t o  prove t h a t  

t o  a l l  canonical paths from Q t o  t h e  or ig in  t h a t  have only two 

switchings, and, once t h i s  i s  proved, it follows t h a t  

with respect  t o  a l l  possible  paths .  

y+ is optimal with respect 

y+ i s  optimal 

Then, see  Fig. 3-2, l e t  A 3 &RMsO be a general  canonical path 

from Q t o  the  or ig in  t h a t  has only two switchings, and i s  completely 

determined by i t s  crossing point with the  x -axis ,  i . e . ,  by 

Notice t h a t ,  s ince the system i s  nonlinear, 

prove t h a t  y+ 

neighborhood of 

possible canonical paths;  therefore,  the polnt M t h a t  characterizes 

the path A 

M(-xlm,O). 1 

it i s  not s u f f i c i e n t  t o  

is optimal only with respect t o  canonical paths i n  a 

y+ , but it has t o  be proved with respect t o  a l l  

can be any point on the negative pa r t  of t he  x,-axis.  
A 

The most d i r e c t  way of proving t h a t  y+ i s  optimal would be t o  

wri te  an expression f o r  the  t i m e  spent along the  path 

t h a t  i t s  absolute minimum occurs when A coincides with y+ ; however, 

t h i s  tu rns  out t o  be almost impossible due t o  the  complicated algebra 

involved. Therefore, the procedure we have followed consis ts  of showing 

t h a t  cer ta in  p a r t s  of the path 

pa r t s  of the  path 

A and showing 

QO take l e s s  time than the  corresponding 

A , so  tha t  when we add a l l  those p a r t s  we obtain 

the  desired r e s u l t .  

ln= xlm Now, see  Fig.  3-2, l e t  N be t h e  point on y+ such t h a t  x 
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. .  
and P be the  point  on the  P-curve through R such t h a t  x = x . 
Since it i s  obvious t h a t  

prove t h a t  

1P Iq 
~ ( ( $ 3 )  > T(PR), it w i l l  be only necessary t o  

T(QO) C 7 ( M O ) * h i s  i s  achieved by showing t h a t  between t h e  

t i m e  spent along t h e  p a r t s  Qld and NO of QO and the t i m e  spent along 

the  corresponding p a r t s  PM and MSO of PfiMsO there  e x i s t s  the  

following r e l a t ions  

So far,  w e  have considered A and C constants such t h a t  

A 1 C L 33 . From now on, and i n  order t o  be able t o  prove Lemma 3-2, w e  

r e s t r i c t  ourselves t o  t h e  cases i n  which the  constant C is  given by 

C = B + 21KJ (3-9) 

Lemma 3-2 - Let  P(x,,x2,) 

y, such t h a t  x = x M be the  in t e r sec t ion  point of t he  xl-axis 

be any point  i n  IIL, Q be the  point of 

1q l P  ’ 
with the P-curve through the  point P , and N be the in t e r sec t ion  

point  of y+ and the  s t r a igh t  l i n e  x.. = x, as indicated i n  Fig. 3-3. 

Then T(PM) > T(Q,N) . 
I m ’  

Proof - The usual procedure t o  prove t h i s  Lemma would be t o  f ind  

quant i t ies  T ~ ,  ‘c2, T~ and T~ such t h a t  T~ > .r(PM) > -r2 and 

T > T(QN) > T~ , and t o  show t h a t  T~ > T~ . Although the  bounds T ~ ,  

‘2’ ‘3 

t h a t  

3 

and 
T~ 

can be found easily,  it was thus f a r  not possible  t o  show 

T > ‘r3; therefore ,  w e  are going t o  follow a d i f f e ren t  procedure. 
2 

lm’ Let H be the  point of the  y, curve such t h a t  x1 = x + 2x 
1P 

and le t  cp(x,) and q(xl) be t h e  zero and any other  t r a j e c t o r y  defined 

by the  r e l a t ions  
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Then 

x +2x 

[(A-K)x~ - F J - X ~ ~ )  + F (X - 2 ~  ) - J1" 'm 1 1 Im - ?(X1-2Xlm)Idx, -_ = 

Im X 

+J  
lm X 

(3-10) 

Since F (x ) i s  a periodic function .sith period 2 0 ,  t he re  e x i s t  

constants 

1 1  

K1, % and $ such that 
" 

[F1(xl) - K1l dxl = 0 for any i 

2 i9 

(3-11) 

(3-12) 

Then 

Im X xlm 

55 
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l r n  X 

Subst i tut ing into (3-10) we ge t  

But. 0 0 

> o , f o r  any x f o lrn 

Then, given any x lrn # 0,I 1 w i l l  be pos i t ive  f o r  any x 1P 
such t h a t  

K, - K, 

On the other  hand we have 

xlp+2xlm 
I 1 = J  

x, - 

(3-13) 

lm X 
1111 

(Continued) 



l -  

So, I2 w i l l  be pos i t ive  whenever (3-13) ho lds .  &t 

= J  
X lm 

dx = I2 
1 1  

being smaller or l c r  Now, two cases m u s t  be considered, i . e . ,  x 

Im' grea ter  than x 

i s  smaller than x the  inequal i ty  (3-14) holds f o r  any If X l c r  Im 
and the Lemma is  c o q l e t e l y  proved. Im' x such t h a t  x > x 

1P 1P 

is  grea te r  than x the inequal i ty  (3-14) holds only If X l c r  Im 
fo r  values of x grea te r  than x and needs t o  be proved f o r  values of l P  l c r  
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such t h a t  x < x < x . S o ,  l e t  P1 be a poin t  f o r  which 
lm l p  l c r  X 

l P  
and l e t  P be a poin t  f o r  which x < x < x then ,  2 ~m l p  l c r ’  x > x  l p  l c r  

see Fig.  3-3. 

and it i s  obvious t h a t  

(3-16) 

S o ,  subt rac t ing  (3-16) from (3-15) we get  

t h a t  shows tha t  t he  inequal i ty  (3-14) a l s o  holds f o r  t he  poin t  

t he  Lemma i s  proved f o r  any 

P2 , and 

P E TIL. 

So far ,  we have considered t h e  function f(x) t o  be a general  

periodic function. 

groups of periodic functions 

From now on, we w i l l  consider only the  following two 

1) Periodic functions which a re  a t  the same time antisymmetric. 

2) Periodic functions t h a t ,  without being antisymmetric, s a t i s f y  

Lemma 3-3. Notice t h a t  f o r  t h i s  group of per iodic  functions 

we need t o  check i f  Lemma 3-3 i s  s a t i s f i e d  only for values of 

such t h a t  28 > xlm 2 0 ,  s ince  i f  t h i s  i s  t r u e  it follows 

x h -  

xlm 

from Lerma 1-2 t h a t  it w i l l  a l so  be t r u e  f o r  any value of 

Lemma 3-3 - Let 

be t h e  point  on y+ 

M be any poin t  i n  t h e  negative p a r t  of t h e  xl-axis, P 

such t h a t  xIp = xh, A, be t h e  path from P 



following the  Y+ curve in to  t h e  or ig in ,  and be the path which is  

obtained by following the  N-curve through M u n t i l  the  y - curve and 

then the  y- curve i n t o  the  or igin.  Then, it is .(Al) < T(+) . See 

Fig. 3-4. 

Proof - Since we have assumed t h a t  t h i s  Lemma is  s a t i s f i e d  by the 

flrnctions i n  group 2, we have t o  prove it only f o r  the  functions belonging 

t o  the  f i r s t  group. If f(xl) is an antisymmetric function, it i s  

obvious t h a t  y - is antisymmetric t o  y+ , which y ie lds  t o  

But it is  obvious t ha t  

(3 -18) 

Theorem 3-1 - Let Q be any point on y . Then the optimal path from 

Q t o  the  o r ig in  i s  obtained by  following the  r+ curve i n t o  the 

or igin.  

+ 

Proof - From Theorem 1-3 we know t h a t  the  optimal path from Q t o  

the o r ig in  exists within t h e  class  of piecewise continuous functions.  

Then we have t o  show t h a t  the time spent along 

time spent along any general  canonical path from 

y+ i s  smaller than the 

Q t o  t he  or ig in .  

As a f i r s t  s tep,  we a r e  going t o  prove t h a t  i f  A 3 -0, see 

Fig. 3-2, i s  a canonical path from Q t o  the  or ig in  t h a t  has only two 

switchings, it i s  T(QO) < T(A) . From Lemma 3-2 we have 

59 



h 

0 
c 

E - 
x 
Y 

I 

Ca 

a 

60 



From kmma 3-3 we have 

T(NO) < T(MSO) 

Also, it is obvious that 

Then, adding (3-19) and (3-20) and using (3 -2L)  we ge t  

Now, see Fig. 3-5, l e t  4 be the path from Q following the  

y+ curve i n t o  the  origin, and + be any general  canonical path from 

Q i n t o  t h e  or igin.  Assuming t h a t  t he  control  sequence i s  (-A, ...,+A 

t he  t o t a l  rider of switchings is odd, s a y  

control  sequence w e r e  1 -A,. o ,  -A 

would be even and the proof would follow the same pa t te rn) .  

i s  composed of 2n P- and N-arcs, the  first one being t h e  N-arc 

through Q and the last  one being the  part of the  y+ curve s t a r t i n g  

I 
(2n-l),, (Note t h a t  i f  the 

the  t o t a l  number of  switchings 

Then L$ 

at S h - 1  

Since + i s  a canonical path, the switching points  Si a r e  

such t h a t  

'2i E 5 Y i = 1,2, ...,( n-1) 
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~- I -  

Now, l e t  Mi , i = 1,2, ...,(a- 2) be t h e  in te rsec t ion  point of t he  

( i + l ) - t h  a rc  with t h e  x -axis; l e t  P2i 1 - , i = 1,2, ...,( n-1) be the  

in te rsec t ion  point of t he  (2 i ) - th  a r c  with t h e  y curve; and l e t  

i = 1,2,. I? 

with the  y+ curve. 

- 
, (n-2) be t.he in te rsec t ion  p i n t  of the  (2i+l)-+,h n_rc 2 i  ’ 

From (3-22) w e  ge t  

i = 1,2, ...,( n-1) 

i = 1,2, .  . . , (n-2) 

(3-24) 

(3-25) 

Adding equations (3-23), (3-24) and (3-25), and doing the  necessary 

s implif icat ions w e  get  t h e  following result: 

and the  theorem is  proved, i . e . ,  y+ i s  an optimal path. 

Now, once w e  have proved t h a t  t he  zero t r a j e c t o r i e s  are a l s o  opti-  

mal  t r a j e c t o r i e s ,  the  l o c i  of possible switching points  found i n  Chapter 

I1 can be considered as candidates f o r  t r u e  switching curves. Then, 

considering canonical paths from an i n i t i a l  point t o  the  or ig in  tha t  

have only two switchings, and using the  results given by Lemmas 3-4 and 

3-5, w e  w i l l  be able t o  show i n  Lemma, 3-6 the  existence of indifference 

curves, first mentioned and defined i n  the Introduction, and a l s o  t o  

decide which parts of the  loc i  found i n  Chapter I1 are r e a l l y  t r u e  

switching curves and which par ts  can be subs t i tu ted  by the  indifference 

curves. 
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Both t h e  indifference and t h e  t r u e  switching curves separate, i n  

t h e  s t a t e  plane, t he  regions of one switching from those of two switch- 

ings,  allowing us t o  write down t h e  optimal cont ro l  l a w .  

Lemma 3-4 - Let Po be any point  i n  nz and be the  canonical path 

which i s  obtained by following the  P-curve through Po u n t i l  a point  F , 
then following the  N-curve through F u n t i l  y+ and f i n a l l y  by following 

y, i n t o  the  origin,  see, Fig.  3-6. When considering Po a s  f ixed and F 

as qariable, one obtains 

Proof - 

T ( + )  = T ( P ~ F )  + T(FM) + ~ ( m )  + T ( S O )  

But 

d - 
dx 1 m  

d 

d X l m  

d 
dx 
- 

lm 

( 3-26 ) 

r o  1 A+f ( Xlm) 
- ( 3 - 2 8 )  d 

X .;.-e]=- Is 2Ax2s 

d - 
dXlm 

do + 

(Continued) 
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rxlm r 1 1 1 

( 3 - 3 0 )  

Taking derivatives of ( 3 - 2 6 ) ,  and subs t i t u t ing  ( 3 - 2 7 ) ,  ( 3 - 2 8 ) ,  ( 3 - 2 3 )  

and ( 3 - 3 0 ) ,  we get  

r 1 

L J 

d6 - [A+f(x lm)]  - 1 1 

J (Continued) 
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Lemma 3-5 - Let  

M(xh,0) such t h a t  GR(xLf,xb ) = o , and let X ~ ( X L = , O )  be such that 

' = x + 26 . Then, the  point  F' ( x k , x l f )  on the  N-curve through 

F(xlf,xZf) be the  point on the  I?-curve through 

xlm Im 
M' , f o r  which GR(xb,x&) = 0 , i s  such t h a t  x& - x' ~f < x l m  - Xlf 

Proof - Let S ( X ~ ~ , X ~ ~ )  and S ' ( X ; ~ , X ; ~ )  be the  in t e r sec t ion  points  

of the  N-curves through t he  poin ts  M and M' w i t h  t he  y+ curve. 

Then, from (2-34) we get  



1 
- 2A 

1 - - [ (A+K)2B - 2A 

From t h e  d e f i n i t i o n  of 

F1(X1m +20) - F ~ ( X ~ ~ )  J = e(i + 4) A 

GR 
, see equation (2-37), w e  ge t  

(3- 33) 

I+ 1 

lm 1 

+ 1 

6 [A+~(X;~)]~/~ (x' lm -x' 1s 
1 

GR(x;>xim) = - (x' -x')''~ 

S m  r 

1 + 

r X lm 

( Continued) 
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1 

But G R ( X U ' X L m  ) = 0 , by hypothesis. Hence (3-34) yields 

X 

r l f  do 

Now, i f  we want GR(x;f,xL) = 0 , it is necessary that 

X r Is do 

( 3 -  35) 

(Continued) 



x,’ ,-28 

( 3 - 3 6 )  

Hence, the  But (3-36) has a solut ion i f  and only i f  xif-20 > x l f  

point F’ f o r  which G R ( ~ ; f Y ~ ; m )  = 0 i s  such t h a t  

I f  
+ 2 e - x  - 2 e = x  - x  x i m  - Xif < x i m  If l m  

i Lema 3-6 - Let Po be any point  i n  IT,. Let FR 

sect ion points  of the  P-curve through P with 22; 

see Fig.  2-7. Let + be the canonical path,  not necessar i ly  sa t i s fy ing  

Pontryagin’s Maximum Pr in icp le ,  which i s  obtained by following the P-curve 

and Fi be the i n t e r -  
\ a *b 

and < respect ively,  
a b 0 

through Po until the  point  F then following the  N-curve through FR R ’  

u n t i l  y+ and f ina l ly  by following 

the  canonical paths corresponding 

i y i n to  the or ig in ,  and l e t  AR and L$ 
t o  Fi and 9 b 
+ 

a 
see Fig.  3-7. Then 

a %’ 

i i+l 
i v )  On every in t e rva l  (F, , FA+’) there  e x i s t s  a point  F, 

I\ 
C 

Proof G R ( X l f ~  x l m  ) 

a function of x - from i t s  def in i t ion ,  we know t h a t  

- Since Po i s  a f ixed  point,  

If ’ 
( F L  Y FR-) i > posi t ive if FR belongs t o  the  in t e rva l  

U ti i i+l 

a b 
i f  FR belongs t o  (FR , FE ), and it i s  zero if FR 

w i l l  be e s sen t i a l ly  

it i s  negative 

i = FR or 
a 
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i 

Rb 
F = F , t h i s  being t r u e  f o r  any i 2 j . 

from If ' 
T(+) has  a s ign 

On the  other hand, considering T(%)  as a function of x 

Lemma 3-4 we know t h a t  the  slope of t he  function 

opposite t o  t h a t  of GR(xlf,xln,) . So, T ( % )  w i l l  be a decreasing 

belongs t o  ( F ~  , F~ ) , a n  increasing function function of F if FR 

of FR if FR belongs t o  (FR , FC1) , and w i l l  have r e l a t i v e  extremum 

if' F = F  or F = F , since f o r  these  poin ts  t h e  der iva t ive  i s  

i 

Rb a R 
i 

a i i 

Ra Rb 
zero.  

i 

Rb 
F i  ) , it i s  obvious t h a t  T ( % )  > T(< ) f o r  any i 2 j .  

i )  Since T ( + )  i s  a decreasing function on t h e  i n t e r v a l  (F , 

a a 
ii) From Lema 3-5, w e  know t h a t  we can f ind  a point  Fi+l i n  the  

Rd 
i in te rva l  (FR , F T )  which i s  the  in t e r sec t ion  point  of t he  

P-curve through t h e  point  

sh i f t ing  of 28 i n  t he  negative d i r ec t ion  of t h e  x -axis  of 

. Moreover, it i s  obvious the  N-curve through the  point 

t h a t  T(+ ) > 'r(% ) . On t h e  other  hand, s ince T(+) i s  

a 

Po with the  curve obtained by a 

1 

F? a i +l i +1 

i a a 
an increasing function of FR i n  the  i n t e r v a l  ( F ~  , F?) w e  

a 
have tha t  ~(c) > ~(4 ) . Therefore, it follows t h a t  

a .(e) > T ( < Y )  > T(L$ ) . 
a d a 

iii) The proof follows the  same pa t t e rn  as t h a t  of p a r t  ii) . 
i v )  We know t h a t  T(+)  i s  increasing i n  (F: , F < ~ )  and 

a 
decreasing i n  (Fi+', FF1) , and from p a r t  ii) we a l so  know 

t h a t  T(+ ) > T(L$ ) . Hence, it i s  obvious t h a t  t he re  e x i s t s  
a a 

a point FF' i n  the  i n t e r v a l  

Rb a i+l 

i i+l ) f o r  which T(<')= (F , F% C Ra C 

T g 1 )  . 
a 

i 
Definit ion 3-9 - Let CR be defined, see Fig. 2-7, as  

C 

72 



there  e x i s t s  a Fk E $ such 
c C a a 

I n  the same way, w e  can define si as 
C 

(3-37)  

i : i f  Po = FL 4 = 1FL I there  e x i s t s  a Fi E Xi 
L I, 

such 
C C C a a 

It i s  c l e a r  t h a t  $ ( ) meets the curve Ci ( .Xi ) a t  the point 
C C a a 

Definit ion 3-10 - Let 4 be defined as 

(3-39 1 

I n  the  same way, w e  can define î, as 

(x,,x,) : i f  (xl,x;) E $ and (xl,x;) E CL i 
a C 

then x2 E (x ’ ,x” )  f o r  i P r 2 2  
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Hence, we have establ ished,  as the  main r e s u l t  of our research, t h e  

existence of cer ta in  switching and indifference curves, and the  suf f ic iency  

of t h e  control  law u*(t) as given by the  following theorem. 

Theorem 3-2 - The optimal cont ro l  l a w  

s t a t e  (x,,x9) i s  given by 
I L  

u*=+A i f  

u*= -A i f  

+A 

-A 
i f  

Proof - Let 

U*(X ,x ) as a function of t h e  1 2  

k 
O R  Po be any i n i t i a l  point  such t h a t  P E A . We a r e  

going t o  show that  t he  optimal path from 

existence i s  guaranteed by Theorem 1-3, i s  the  canonical path 

A k 

Po t o  the  o r ig in ,  whose 

P0F%?SkO, see Fig. 3-8. 

Suppose tha t  Ak i s  not the  optimal pa th  from . Let Ar be 

the  t r u e  optimal path;  it is  c l ea r  t h a t  t h e  number of switchings is  even, 

say 2n, n l l  . 
r Consider f i r s t  t h e  case n > 1. Whatever i s  the  behavior of A , 

were defined, t h a t  t he  we know, from the way t h e  switching curves 7; 

l a s t  switching must occur a t  

occur on some of t he  switching curves, say < ; then, t he  l as t  p a r t  of 

a 

?+ and the  switching before the  l as t  must 

a 
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r r r r r  Ar w i l l  be t h e  path Ar I N MIF M S 0 ,  where Nr  i s  any poin t  such 1 
r r r  t h a t  no switching occurs on N MIF . From t h e  p r inc ip l e  of opt imal i ty ,  

the path A,, -which i s  a subpath of Ar , should be a l s o  optimal; however, r 

from the  way T; was defined, we know t h a t  t he re  e x i s t s  a canonical path 
n 

r r r  r r 
2 N SIO suchLthat .(A’,) < -r(A,> ; then, Al i s  not t he  optimal path 

r 
from Nr t o  the o r i g i n ,  and our assumption i s  f a l s e ,  t h a t  i s ,  A i s  not 

the optimal path from Po . 
Therefore, we must have n = 1, t h a t  i s ,  t h e  number of switchings is  

two. 

t o  the  o r ig in ,  with no more than two switchings, Ak 

Hence, t h e  optimal path from 

show. 

From Lemma 3-6, we know t h a t  of a l l  t he  canonical paths from Po 

i s  the  optimal. 

t o  t he  o r ig in  i s  Ak, as we wanted t o  

Po belongs Similar arguments can be used whenever the  i n i t i a l  point  
k 

t o  any other  region d i f f e ren t  from AR , and the  theorem i s  proved. 

Corollarv - The optimal number of switchings N as a function of 
Y 

the  i n i t i a l  s t a t e  i s  

N =  0 i f  

N = l  i f  

N =  2 i f  

N = 1 ~ 2  i f  

i h j  i2r (xlo , 20 

i Z j  c i2r c (xlo , x20 

U 
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C H A m  IV 

APPLICATIONS 

A s  an example of' the first group of periodic functions considered 

in our research, that is, periodic functions which are at the same time 

antisymmetric, let us consider the case 

f(x) = sin x 

Then equation (1-1) becomes 

.. 
x + sin x = u 

Equation (4-1) represents a number 

(4-1) 

f physical systems, for example 

certain motions of a satellite in a circular orbit, and also a pendulum. 

In this particular case, 6 = x ,and (3-7) becomes 

2 n  
1 r 

K=' sin x dx  = C 2n ' 1 1  
"0 

(4-2) 

Also 

Substituting (4-2) and (4-3) into (3-9) ,  we get for A the following 

bound for which our results are applicable 

Analog Simulation - In order to get the switching curves we have to plot 
the right hand member of equation (2-37) equated to zero, which turns 
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out  t o  be rather  complicated; t he  algebraic complications a l s o  appear 

when w e  t r y  t o  p lo t  t h e  indifference curves. 

switching and indifference curves i s  by simulation on a n  analog computer, 

and finding the  t r a j e c t o r i e s  i n  backwards t i m e ,  s t a r t i n g  a t  t h e  o r ig in  of 

The easiest  way t o  ge t  t he  

the  phase plane. 

The equations t h a t  have t o  be simulated on t h e  analog computer are 

equations (l-?), (1-1.3) and (1-20) i n  backwards t i m e .  Then, using t h e  

backwards t i m e  notation given by (2-l7), t h e  system t o  be simulated i s  

t h e  following: 

u = A sgn  h, 

1 h = - h2 cos y 1 

h = A  2 1  

(4-5)  

and the  i n i t i a l  conditions are given by 

The analog computer diagram f o r  t he  system (4-5) with t h e  i n i t i a l  

conditions (4-6) i s  given i n  Fig. 4-1. 

Since s i n  x i s  an antisymmetric function, t h e  switching and ind i f -  

ference curves i n  t h e  region 

curves i n  t h e  region I$. 

region I$. 

w i l l  be antisymmetric t o  t h e  corresponding 

So, w e  w i l l  only f ind those curves i n  the  
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4 Moreover, f o r  obvious reasons, we have only determined t h e  
^. a 

and ,$ curves; i n  t h i s  case j = r = 1 . Figs. 4-2 t o  4-9 show 
C 

these curves f o r  d i f f e ren t  values of A. Fig. 4-2 a l s o  shows two sample 

t r a j e c t o r i e s  s t a r t i ng  a t  Pl and P2. The numbers on t h e  curves C' 

refer t o  t h e  minimum s e t t l i n g  t i m e .  

Looking at t h e  curves i n  Figs. 4-2 t o  4-9, w e  see t h a t  when t h e  value 

of  A 

sh i f ted  upwards and t o  t h e  l e f t ;  t h i s  w i l l  a l s o  happen t o  every region 

A; . 
become the  void set, as it i s  t o  be expected, because i n  t h e  l i m i t  our 

plant  becomes merely 

increases, t h e  region A i  becomes not only narrower but  a l s o  

i I n  t h e  l i m i t ,  when A -, O3 , a l l  these  regions AR w i l l  eventual ly  

.. 
x = u  

and it i s  w e l l  known t h a t  f o r  such a p lan t  any i n i t i a l  disturbance i n  

t h e  region 

t i m e ,  after switching on t h e  y+ curve. 

15 i s  brought t o  t h e  o r ig in  of  t h e  phase plane, i n  minimum 

Comparison w i t h  t h e  Linear Case - So far, i n  t h e  l i t e r a t u r e  concerning 

optimization, whenever equation (4-1) appeared, it was customary t o  

l i nea r i ze  t h e  equation and t o  consider only s m a l l  motions of  t h e  system. 

So, w e  f ee l  it i s  worthwhile t o  ind ica te  some of t he  differences encoun- 

tered,  i n  t h e  case of  t h e  minimum t i m e  problem, between t h e  nonlinear 

problem represented by equation (4-1) and t h e  l inear ized  one represented 

by 

.. 
x + x = u  ? IUJ  5 A (4-7 1 

The f i r s t  rigorous solut ion of  t h i s  problem was given by Bushaw, Ref . [4] .  
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-6 -4 -2 0 2 4 6 

Fig. 4-3. y-  , F i r s t  Switching and Indifference Curves f o r  A = 1.4 

82 



I I I I I I 

-6 -4 -2 0 2 4 6 

Fig. 4-4. y- , F i r s t  Switching and Indifference Curves f o r  A = 1.8 
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Fig. 4-5. y- , F i r s t  Switching and Indifference Curves f o r  A = 2.2 
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-6 -4 -2 0 2 4 6 

Fig. 4-6. y- , F i r s t  Switching and Indifference Curves f o r  A = 2.6 
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Fig. 4-7. y- , F i r s t  Switching and Indifference Curves f o r  A = 3 
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Fig. 4-8. y F i r s t  Switching and Indifference Curves f o r  A = 3.2 - 
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Fig. 4-9. y- , F i r s t  Switching and Indifference Curves f o r  A = 3.4 
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The main differences encountered between t h e  two problems, are 

i) Different number of switchings needed t o  zero any i n i t i a l  d i s -  

turbance. 

with t h e  d is tance  f'rom t h e  i n i t i a l  disturbance t o  t h e  o r ig in  of t h e  

While i n  t h e  l i nea r  case, t h e  number of switchings increases  

state plane, i n  the nonlinear case, t he  number of switchings cannot,in 

any case, be g rea t e r  than two. 

,$ and , which ii) The presence o f  the indifference curves 
C C 

do not appear i n  t h e  l i n e a r  case. It i s  worth noting too, t h a t  these  

indifference curves are a l s o  the locus of s t a r t i n g  points ,  t h a t  i s ,  points  

from where w e  can start a t r a j ec to ry  but which can never be reached on 

a t r a j ec to ry .  

iii) Big d i f fe rences  i n  t h e  t i m e  needed t o  zero an i n i t i a l  disturbance. 

I n  Figs. 4-10 t o  4-19, t h i s  time i s  given as a function of t h e  i n i t i a l  

state var iab le  x , f o r  d i f f e ren t  values o f  t h e  o ther  i n i t i a l  state 

variable x and t h e  constant A . W e  not ice  t h a t ,  i n  general, i f  

x > 0 the re  are zones f o r  which t h e  nonlinear case allows a faster 

zeroing than t h e  l i n e a r  case, and other  zones f o r  which t h e  zeroing i s  

10 

20 

20 

slower; a l so ,  i f  x < 0 , t h e  zeroing i n  t h e  nonlinear case I s  i n  

general faster than i n  t h e  l i nea r  case. 

20 

Something must be sa id  about t h e  corners appearing i n  t h e  curves 

be t h e  value of x2 Let x2c r corresponding t o  the nonlinear case. 

such t h a t  t h e  s t r a i g h t  l i n e  x2 = x i s  tangent t o  t h e  curve. 

[2ie ,  "hen, i f  xm 

2 ( i + l ) e )  corresponding t o  t h e  i n t e r sec t ion  poin ts  of t h e  s t r a i g h t  l i n e  

with t h e  curves $ and ; on t h e  o ther  hand, i f  

2c r 
C 

we w i l l  have two corners i n  every i n t e r v a l  ' X2cr 

a C 
x2 = x20 

x I x  w e  w i l l  have only one corner corresponding t o  t h e  in t e r sec t ion  

point o f  x2 = x20 with the  y+ curve. 

20 2cr  
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CONCLUSION 

This research concerns t h e  problem of finding t h e  m i n i m u m  s e t t l i n g  

time cont ro l  l a w  f o r  a system t h a t  can be represented by t h e  second-order 

nonlinear d i f f e r e n t i a l  equation j i  + f ( x )  = u , lul 5 A , where f ( x )  

i s  a per iodic  function such t h a t  ( f ( x )  I B and B 5 C -< A. 

I n  Chapter I, a f t e r  an exposit5rm of t he  cont ro l  problem to be studied, 

t h e  Maximum Principle  o f  Pontryagin w a s  used i n  order t o  get  a necessary 

condition f o r  t h e  cont ro l  u ( t )  t o  be time-optimal. A s  was t o  be expected, 

t h e  cont ro l  law turned out  t o  be a "bang-bang'' control .  Also, a theorem 

proved by Fi l ipov was used i n  order t o  show t h e  existence of t he  optimal 

cont ro l  within t h e  c l a s s  of piecewise continuous functions. 

I n  Chapter 11, t h e  ad jo in t  var iables  p l ( t )  and p2 ( t )  were found, 

as functions o f  t h e  state var iab les  and t h e  i n i t i a l  conditions; p 2 ( t )  

w a s  obtained by solving a s ingular  second-order d i f f e r e n t i a l  equation, 

valid everywhere except when e i t h e r  t h e  i n i t i a l  o r  t h e  f i n a l  point  i s  

on the  x -axis, and using l imi t ing  processes f o r  these  two spec ia l  

cases ,  

a t  t h e  o r ig in  of the  phase plane. 

1 

Then, t h e  problem i n  backwards t i m e  was considered, by s t a r t i n g  

The existence of possible switching 

curves, designated , xi , and xi , was shown. 
a Rb a Lb 

So far, t h e  periodic function f ( x )  w a s  not subject  t o  any r e s t r i c -  

t i o n .  However, i n  Chapter I11 it seemed advisable t o  r e s t r i c t  t h e  

inves t iga t ion  t o  t h e  following two famil ies  of periodic funt ions 

1) 

2) 

Periodic functions which are at  t h e  same t i m e  antisymmetric. 

Periodic functions tha t ,  without being antisymmetric, s a t i s f y  

Lemma, 3-3. 
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The existence of cer ta in  indifference curves ,Z$ and 
C C 

was shown. Together with the parts $ and ,Xi of the  switching 

a i  and < ; any curves found i n  Chapter 11, they form t he  regions 

i n i t i a l  disturbance i n  these regions i s  brought t o  rest after two switch- 

a 
hR 

ings, w h i l e  any i n i t i a l  disturbance outs ide these regions is brought t o  

gation, expressed i n  a formal nay by t h e  optimal control  l a w  given by 

Theorem 3-2. The indifference curves are a l s o  the  l o c i  of s t a r t i n g  points .  

I n  Chapter I V ,  t h e  pa r t i cu la r  case f ( x )  = s i n  x was considered, 

and a comparison with the l i n e a r  case, i n  which s i n  x i s  replaced by 

x , w a s  made. 
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APPENDIX A 

SOLUTION FOR THE ADJOINT VARIABLES 

As was pointed out in Chapter 11, the only singular point of the 

differential equation (2-3) is the point 

of the P-curve with the xl-axis. 

M , (2-3) can be transformed in the following way 

M(xlm,O), intersection point 

Then, by excluding a neighborhood of 

2 

p2 + [A-f(xl)] - dp2 
df p2 + 2[A-f(xl)l - dp2 + 

2 

dx1 . dxl 
o = x  - 2 2  

dxl 

2 dxl 

Hence, integrating we get 

2 dp2 x - + p2f(xl) - Ap2 = c1 2 dxl 

Dividing (A-1 

c 1 dP2 
- = -  

1 2 dx 
2 X 

o r  
C 1 1 dp2 p2 dx2 
-;-- - - - = -  

X 2 

Integrating 

10 2 



Then 

L J 

From t h e  i n i t i a l  conditions a t  t = 0 , w e  get  

-s*(o) = - q0 = - 1 + [A-f(xlO)] - '20 c)r 
C 

x20 x20 

( A - 3 )  

Substi tuting (A-4)  and (A-5)  i n t o  (A-2), w e  ge t  equations (2-4) and 

(2-5) as solut ions of t h e  d i f f e ren t i a l  equation (2-3), for the P-arcs 

in Fig. 2-1 and Fig. 2-2 respectively. 



APPENDIX B 

SOLUTION FOR THE ADJOINT VARIABLES WHEN EITHER 
THE INITIAL OR TKE FINAL POINT IS ON THE xl-AXIS 

I n i t i a l  Point on the  x,-Axis - Let us f ind t h e  l i m i t  of equation (2-4). 

Looking a t  equation (2-4) we see t h a t  on one s ide  p /x becomes 

and on the  other  s ide  i n f i n i t e  f o r  x 

20 20 

[da/::z( a )  ] a l s o  be- l: 20+ O ' 
comes i n f i n i t e  because the  integrand does it. Then, we a r e  going t o  

transform the  in t eg ra l  i n  such a way t h a t  i t s  pr inc ipa l  pa r t  cancels 

the  corresponding pr inc ipa l  pa r t  of 

quantity,  f o r  any f i n i t e  xl, when we take l i m i t s .  

substract ing from t h e  integrand i t s  pr inc ipa l  par t ,  and, i n  order t o  leave 

p20/x20 , t h e  r e s t  being a f i n i t e  

.This i s  done by 

the  equation unchanged, adding the  same quant i ty  and integrat ing it. 

Near t h e  singular point M(xlm,O) we have the  following s e r i e s  

expansions: 

3 



Substituting (B-1)  and (B-2 ) i n t o  (2-4) ,  w e  get 

(B-3) 

Applying 1'Hopital rule we ob ta in  



and 

which y ie ld  

l i m  +] = 1 

Po+ M x2( 0) A- f ( Xlm 1 
10 

Taking l i m i t s  on (B-3 ) ,  a f t e r  subs t i tu t ion  of (B-4)  and (B-5) ,  we ge t  

equation (2-6), where now t h e  in t eg ra l  i s  f i n i t e  f o r  any f i n i t e  

t 

1 '  x 

Now, l e t  u s  f ind  p l ( t )  . From (A-2) and ( A - 3 ) ,  w e  ge t  

C 1 P & t  1 
p,(t)  = - &Jt) = - - - [A-f(xl) I - 

x2 x2 

and taking l i m i t s  



(B-5)  

Subst i tut ing (2-6) i n t o  ( ~ - 6 ) ,  w e  get  equation (2-7). 

Final  Point on the  xl-Axis - Let us f ind  the  l i m i t  of equation (2-5). 

L e t  us first f ind  p,(t). Since i n  t h i s  case it i s  P instead of Po 

the  one which approaches M(xlm,O) , going through the  same p rxedure  

as before, w e  get, instead of equation (B-5)  t h e  following equation 

1 A-fo 

and taking l i m i t s  on equatlon ( A - 2 )  

1 C 

p ( t )  = l i m  ( c  x,) + i i n  
P-44 ,m 2 2  

p.M 
2 

Subst i tut ing the  value of c1 given by (A -5 ) ,  w e  get  equation (2-8). 

L e t  us f ind  p l ( t )  . N e a r  the  s ingular  point M(xlm,O) , w e  have 



Then 

S' do . J' = 
) 3 / 2  

10 
t- 

b-Xlm X 10 X 

1 - +  
3 

X,b) 

1 

1 

1 

1 

Subs t i tu t ing  ( B - 7 )  and (B-8)  i n t o  (A-3), we get 

L J 

and t ak ing  ljrnjts 
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Subs t i tu t ing  the  value of  c1 given by (A-5) i n t o  (B-g), we obtain 

equation (2-9). 

. 
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. 

ADDENDUM TO SUDAAR 271 

Correspondence has shown that some readers would welcome d e t a i l s  aboEt 

the spec ia l  case i n  which 

t h i s  addendum t o  SUDAAR 271. 
A = B. Therefore the authors have prepared 

Some words must be said about a special  case that  was not t rea ted  

completely i n  this report .  

Condition iii) of page 5 s t a t e s  t h a t  A 2 C, where C i s  any con- 

A = B. stant such t h a t  C 2 B; 

Besides, since If(x) l  9 B, and assuming t h a t  the  function f ( x )  i s  not 

a constant function, there  i s  the poss ib i l i t y  of being 

which would imply t h a t  t h e  expressions (2 -6) ,  (2 -7) ,  (2-8) and (2-9) w i l l  

then, w e  admit the  poss ib i l i t y  of being 

If(x) l  = B = A, 

become meaningless when 

expressions (2-13), (2-14), (2-15) and (2-16) when f (xh)  = -A. 

fore ,  we see t h a t  the  spec ia l  case A = B should be given spec ia l  

a t ten t ion .  So, our a i m  w i l l  be t o  follow the same s teps  as i n  the report  

f(xlm) = A, and the  same w i l l  happen t o  the 

There- 

and indicate  the  changes t h a t  should be made i n  order t o  get  f o r  the 

spec ia l  case A = B the  same conclusions as f o r  the general  case A > B. 

First of all, it should be pointed out t h a t  i n  the special  case 

A = B 

f o r  which f(x ) = +A are  not only singular points  of the equations ( 2 - 3 ) ,  

but a l s o  c r i t i c d  points  of the system (1-5) with 

the  d i f f i c u l t i e s  arise from the  f a c t  t h a t  the points  on the xl-axis 

Im 
u = +A. Notice tha t ,  

i n  a similar way, the points  on the  xl-axis f o r  which 

c r i t i c a l  points  of the  system (1-5) with 

f(x ) = -A a re  lm 
u = -A. 

Then, l e t  us  consider a typical  t r a j ec to ry  i n  backwards time, 

s t a r t i n g  w i t h  u = +A, as sketched i n  the following f igure:  

1 



* . 

0 

! 

Sketch 1 

I f  the  point M i s  such t h a t  f(y,) = -A, i . e . ,  M i s  a c r i t i c a l  point 

of the  system (1-5) with u = -A, it w i l l  a l so  be f'(y,) = 0, and near 

t h e  point M w e  w i l l  have the  following se r i e s  expansions: 

2 



and the  time spent from S t o  M, it i s  given by 

V -  
" IS 

which means t h a t  w e  w i l l  never be able t o  reach the point M. This would 

imply tha t ,  when considering the problem i n  forward t i n e ,  i f  our i n i t i a l  

s t a t e  were the point 

an i n i t i a l  u = -A; however, since M i s  a c r i t i c a l  point of the system 

(1-5) only i f  u = -A, but not i f  u = +A, we could always start a tra- 

jec tory  with an i n i t i a l  value of u = +A. As  we s h a l l  see l a t e r ,  t h i s  

w i l l  imply t h a t  the c r i t i c a l  points must be inside the regions <, 
w e  w a n t  t o  have f o r  the  same optimal control  law as f o r  the 

M we would never be able t o  s t a r t  a t ra jec tory  w i t h  

i f  

A = B 

general  case A > B. 

Keeping +,he above i n  mind, l e t  us define the f-mction G3 4 ' Y l m  1 
i n  t he  same way as we did i n  the report ,  i .e., by t'ne equation (2 -37 ) ,  

with the  only difference that  now the function 

all ylm except f o r  those corresponding t o  c r i t i c a l  points  of the system 

(1-5) with u = -A. 

GR w i l l  be defined f o r  

The next step,  w i l l  be t o  show the existence of the Possible Switch- 

ing Curves. It should be noticed t h a t  the  point M(yh,O) f o r  which 

i 
yh = 8, i s  a c r i t i c a l  point of the system (1-5) w i t h  u = -A. 

except f o r  those Lermna 2-1 (page 35) remains t r u e  for any y lm 

corresponding t o  c r i t i c a l  points. Lemma 2-3 (page 39) remains also t rue .  
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i Lemma 2-2 (page 38) m u s t  be modified because (B, ,O)  i s  a c r i t i c a l  

point .  This modification is eas i ly  done i f  we consider the point 

i i yh = pR + E instead of the point yh = B,. For the  new elected point, 

t he  inequal i ty  (2-43) w i l l  be t r u e  f o r  a q  value of 

i 
i n  a very small neighborhood of' pR + E; 

of the  in t eg ra l s  appearing i n  equation (2-37) w i l l  be negative f o r  any 

d except f o r  those i n  a very s m a l l  neighborhood of 

neighborhood can be made as small as we want and the  contribution t o  the 

in t eg ra l s  w i l l  thus be small, we m a y  conclude tha t  f o r  large values of 

yl, the  function GR w i l l  be negative (because the  in t eg ra l s  are nega- 

t i v e ) .  From t h i s  conclusion and Lema 2-1, it follows that the function 

G (y ,pi + E )  

proved. 

d except f o r  those 

t h i s  means that the integrands 

pi + E;  s ince t h i s  R 

w i l l  be a l w a y s  negative, and the  modified Lemma 2-2 i s  R 1 R  

I n  a s imilar  w a y  w e  could prove the modified Lemma 2-2 f o r  

Lemaa 2-4 w i l l  a l s o  be t rue with the obvious change, due 

modified Lemma 2-2, t h a t  now it w i l l  be 

Therefore, Lemma 2-5, which i s  

2-1, 2-2, 2-3 and 2-4, w i l l  a l so  be 

Switching Curves has been shown. 

E .  

essen t i a l ly  a consequence 

t rue  and the existence of 

t o  the  

of Lemmas 

the Possible 

Once the existence of t he  Possible Switching Curves has been shown, 

Chapter I11 can be applied t o  the spec ia l  case of A = B and show, i n  

the  same way as fo r  the general  case A > By the existence of' the 

Indifference Curves and the regions 

Law, as given by Theorem 3-2 (page 74), t o  be va l id  a l so  f o r  the spec ia l  

i 
+. I n  order for the  Optimal Control 
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case A = B, it i s  c l ea r  t ha t  we must prove that the c r i t i c a l  point 

(l3:-',0) i s  inside the region <, because, since it i s  a c r i t i c a l  

point,  we must have an i n i t . i a l  value f o r  the  control  of u = +A and 

therefore  two switchings. 

i-l,O) i s  inside 

and f o r  t h i s  we need t o  prove t h a t  the indifference 
(BR 

So, our a i m  now w i l l  be t o  prove t h a t  the  point 

i t h e  region A,,, 

curve 

such t h a t  BR E (vl , v2 ). 

II Gc crosses the x -axis i n  two points  (Y1 i-1 ,o) and ( Y ; - l , o )  
1 

i-1 i-1 i-1 

Then, l e t  us consider t he  c r i t i c a l  point M(pR i -1 ,O) .  I n  order t o  

because start  a t ra jec tory ,  w e  must have an i n i t i a l  value of 

M I s  a c r i t i c a l  point  of the  system (1-5) with u = -A. Since the  

optimal control  ex i s t s ,  the  t r a j ec to ry  s t a r t i ng  at 

u = +A, 

M must switch at 

some point belonging t o  the  Possible Switching Curves. 

switching occurs at the  curve denoted by 

point w i l l  be $ 
shown t h a t  T(%)  > ~ ( 4  ). But i f  r > i, w e  know fron Lema 3-5 

(page 67)  t h a t  w e  can f ind  another point 

Suppose t h a t  the 

r, r > i, then the  switching 

because i n  Lemma 3-6 (page 70) it was and not $ 
a % 

a 
Fk k < r, such t h a t  ~(4 ) R '  -. a a 

< T(G ), which would imply tha t  the i n i t i a l  point 8 would not give 
a Ra 

the  optimal t ra jec tory ,  as it was assumed. Therefore, it must be r = i. 

So, l e t  us consider the following s i tua t ion  
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Sketch I1 

It is c l e a r  t h a t  i f  % -, M, then T( H 0 -, m and T(YFISIO)--r(finite 

time); also, i f  -, P, then T(%%O)*(finite t i m e )  and -r(%FISIO)-, co, 

this last result being t r u e  because the  point 

51) 

P i s  a c r i t i c a l  point f o r  

t he  system (1-5) with u = +A. Hence, there  w i l l  be a point q(v ; - l ,o )  
between P and M f o r  which -r(%H1O) = T(M.,-F~S~O). I n  a similar way, 

w e  can show the  existence of a p o i n t  % between M and Q for which 

-r(P$%O) = -r(%F2S20). These two points  Y(v;-l,O) and %(v;-’,O) do 

ac tua l ly  belong t o  the  Indifference Curve X i c ;  so, the  Indifference 

Curve crosses the  %-axis at the poin ts  % and M2, and since it i s  a 

continuous curve this would i q l y  t h a t  the  c r i t i c a l  point 

i remains ins ide  the  region %. Hence, the  optimal t r a j ec to ry  which starts 

at  any point  of the  N-curve (above the  x -axis) through the c r i t i c a l  point 

M w i l l  g e t  t o  the  o r ig in  after two switchings (v i a  P-arc, N-arc, P-arc) which 

i-1 
R (@ ,O) 

1 

implies that the  Optimal Control L a w  given by Theorem 3-2 i s  also va l id  

for the  spec ia l  case A = B. 
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