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ABSTRACT ,)7 ’} /

The spectral characteristics of electromagnetic radiation in the
neighborhood of the plasma frequency are derived. The linearized hydromagnetic
equations are used to find the self-consistent electric field of a test
particle in the plasma., From this electrie field the acceleration of an
electron and the radiation emitted in this process are determined for a
single encounter electron - test particle. The spectrum of the radiation
emitted by the electrons surrounding the test particle is found by integrating
the emission spectrum of a single encounter over a suitable range of impact
parameters. When the relative spsed of the test particle is less than the
thermal speed of the plasma electrons, the spectrum agrees with calculations
based on a spherical Debye potential for the test particle. For a test
particle speed greater than the thermal electron speed a resonance arises
near the electron plasma frequency. The energzy emitted at this resonance
is calculated and is found to increase with the test particle speed,

wnereas the energy emitted in the neighboring continuum decresses.
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1. INTRODUCTION

-

At least two of the most interesting non-thermal radio emissions from
the sun, namely, tane type II and type III events, are commomly thought of

as nanifestations of resonance radiation by the coronal electrons at their

local plasma fregquency. Whereas type II events are apparently connected with
the passage of a snock front through the corona, tvpe III bursts are caused

by clouds of particles generally travelling outwards with nearly relativistic

speed.

The motion of clouds of charzed particles throuzh the corona and the

excitation of electron nlasma oscillations by thelr »nassage suggests that

at least a gualitative understanding of the radistion pattern can be obtained

by considering the electromagnetic fields induced by a "test particle" of

charge q in 2 plasma, The vpurpose of this report is to summarize the

development of such a theory. The extension of these results to ensembles

of rarticles and, in particular, their anplication to type III bursts are

discussed in a subseguent paner.

In order to find the self-consistent electric and masznetic fields, I and i,
1

arising from the passage of a test particle tarough 2 fully ionized zas™,

N

test

one can use the system of linearized aydromagnetic equations. Tor s

particle moving through the plasma with uniform velocity in the absence of

and H both decay

t

an external magnetic field, the self-consistent fields

at least as fast as the inverse square of the distance from the test vparticle.

Consequently, the surface integral of the Poynting vector throuzn z sphere

enclosing the test particle will epproach zero as the radius of the sphere

becomes infinite. No electromaznetic radistion arises therefore from the




self-consistent field of a uniformly moving test particle in the zbsence
of an applied magnetic field.

Electromagnetic radiation is emitted, however, wnenever the test particle

n its vicinity. We will bte concerned with the
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colliides with an electrom
electromagnetic radiation emitted by those electrons which are accelerated

by the self-consistent fields of the test particle. In the non-relativistic

situation which we will treat exclusively the contribution of the self-consistent

magnetie field toward the acceleration of electrons is negligible, and

will be omitted in tne calculations to follow. Further, the treatment will be
limited to the radio frejguency region where the straight-line approximation
is validz.

The spectrum of the resulting electromagnetic radiation has been
calculated up till now using the approximation that the test particle field
is spherically symmetric, in particular, that it can be represented by an
unshielded Coulomb potentialg, or a Coulomb potential cut off at the Debye
distance3. It is well known, however, that the fields of a test particle in
a fully ionized plasma do not have spherical symmetry at test particle speeds
near or above the thermal speed of the plasma electronsh’5’6’7’8.

The radiation field will be calculated in the dipole approximation.

The dipole expressions are obviously valid for electron-ion interactions,
however, they are equally applicable to electron-electron interactions if

one of the participating systems is restricted in its motion by other fields.
In particular, the electrons of 2 Debye cloud interact with a "free" electron
according to tne aipole rules. This result is well-known from kinetic
theoryg. Put in simplified terms, it is reguired that test particle speed and
direction is essentially unchanged during the interaction with the radiating

electron.




In the frame work of the hydromagnetic equations, the velocity aistrivution

of tne plasma electrons is replaced by the mean thermal {root mean sguare)
speed. The conseguent loss of information is compensated in that an explicit

ained for the entire electrowagnetic spectrum, whereas the

approach based on kinetic theory requires extensive machine ca.lc:ulamions.9alo’11=12

Following a brief review of the radiation equations, we discuss the
hydromagnetic equations and derive the self-consistent electric field.
we then find the radiation spectra in the case of a subscnic and of a super—

sonic test particle.
2. DADIATION FROM AN ACCELERATED CHARGE
The instantaneous power emitted in the form of electromagnetic radiation
by an accelerated charge e 1is
at) = (2e2/3¢3) [a(t)]2 , (1)

wnere a{t) is the instantaneous acceleration of the charse. Eg.(1l) is
vallid under non-relativistic conditions. The total enersy emitted by the

cnarge reads

0o
e = (2e2/3c3) [ |a(t)]|? at. (2)
Fron Parseval's theorem
oo 4o
[la()]? at = [ |a(w)]? 4w, (3)

Jiere w is the ansular freguency, a{t) and a{w) are a Fourier-transform pair:

+oo
a(w) = 1//(2n) [ alt) expliut) at, (¥)

-0




+ oo
a(t) = 1//2m [ a(w) exp(-iut) at. (5)
- O
Thus,
+ o
e ={2e2/3c3) [ lalw)}}? aw. (¢)
- OO

Defininf the spectral intensity GQ(w), that is, the energy emitted per
unit band width, by the relation
4+

] ae) at = [ 3(w) o, (7
[o]

- OO

and usinz Zags. (2) and (6), we obtain
2 (w) = (Le?/3c3) |alw)|? . (8)

The expression of G(w) of Eq. (8) is numerically equivalent to the Qw of
reference (2) in spite of the fact that Eg. (7) does not have a factor of i
on the right. This follows because the Fourier transforms of Has. (4) and
(5) are defined differently from those of reference (2).

Thus to calculate the spectrum of the radiation emitted by an electron

it is necessary to find the acceleration a(w). This will be carried out in

the following sections.
3. ELECTRON - TEST PARTICLE INTERACTION

Let a test particle of speed u and charge g move in the direction of
the positive x-axis. The accelerstior

- . 4

at position r and time t due to the field Z(r,t) of the test particle is

a(r,t) = - {e/m) E(r,t). (9)




If during the interaction, i.e., during a time of the order 2b/u where b is
the lupect parameter, the electron is not displaced siznificantly from its

initial position, r is approximately constant, and

alr,w) = -(e/m) E(r,w). (10)

This statement is essentially the well-xnown straight-line approximationl.

At any fixed value of r,

4o
B(r,t) = 1//(en) [ E(r,w) exp(-iwt) duw, (11)
and also
+o
E(r,t) = 1/ (2m)? [[[[ B(k,0) expli(ker - wt)] dk do , (12)

where E(k,w) is the space and time Fourier transform of E(r,t). Egs. (11)
and (12) then yield
400

Z(r,w) = (20)73/2 [[[ 8(x,w) exo(ik-r) a . (13)
From gs. (38), (10), and (13) ve obtain the electromagnetic radiation spectrum
(w) provided we know E(k,w). This quantity will be deduced from the hydro-
nagnetic equations.

We define a "radiation probability" with dimension [x(w)] = area x

x energy/frequency as the integral of 9 over a range of impact parameters:
X(m) = 27 IQ(m’b,u) bdb, - (lh’)

The numpber of electrons with which the test narticle interacts per unit time
is u . 21b db, if n is the number of electrons per unit volume of

unperturbed plasma. The electromagnetic energy radiated per unit time in




the fregquenecy interval w, wtdw , by the plasma electrons between tine impact

parameters b, and b2 is therefore

1
b2 by
Plw) = 2m _u f Q(b,w,u) odb = n,u x(w) | . (15)
bl bl

As b approaches zero, the straight-line approximation fails. A more complete

treatment2 shows that the lower limit of the integration may be cut off at
bo = ge/mu? . (16)

In the rest frame of the test particle, an electron at this impact parameter

would be deflected by 90°.
4. HYDROMAGHNETIC EQUATIONS

The linearized hydromagnetic eguations, neglecting damping and external

fields, but including the test particle in the form of a Dirac delta

function are5’6
c VxE = -3H/3t, (17)
¢ VxH = 3E/3t - hﬂenov + bwgu §(r-ut), (18)
VeE = —hyen + bng &{r-ut), (19)
av/dt = -(e/m)E - (VZ/n ) Vn, (20)
VeH = 0, (21)
an/3t + ny Vev = 0, (22)

wnere T is the electric field arising both from the test particle of charge
q and the perturbation n in the electron number density [c.f. Eq. (19)];

H is the magnetic field arising from the charge motions; v is the perturbation




in the average plasma electron velocity; no is the number density of electrons
in the absence of a perturbation; V is the thermzl speed of the rlasnma
electrons, i.e., mV2/2 = 3KT/2 in the case of a !laxwell distriobutioni m is the
mass of the electron. It is assumed that the positive charges form a uniform
stationary bvackground of charge density +eno. These equations have been

used by other authors5’6

to find the charge density distribution about a

moving point charge in a plasma and to discuss collective plasma oscillations.
Zgs. (17) throush (20) constitute ten eguations for the ten unknowns £, H
v, and n, and in this sense are self-consistent. 2q.(22) can be derived from

o]

Zgs. (18) and (19), while Za. (21) serves 2s initial condition for Zg. (17).

5. THE ZLECTRIC TIFLD

Following a method used by Majumdar 5 we Fourier transform Eas. {17)
g J ’ 1

through (20) in space and time, using

¥(r,t) = (2m)72 [v(is,w) exp [1{ker - ot)] dx duw , (23)
and

§(r-ut) = (2n)"2f (2n)=L s(y-keu) exp [i(ker - ot)] &k du . (24)
Wie find

¢ kxZ = uwH, (25)

ic kxil = -iwd - bmn ev + 2qu §(w=keu), (26)

ixer = =Lyen + 29 &§(w=-k-u), (27)

igy = (e/m)T + 1(V2/n )an. (28)

These ten linear alzebraic eguations are now solved simultaneously for the

electric field, with the result
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o N . i 1 -1 : R
El(ﬁ,w) = =291 E[E2V2 (k) ) {52(m62+K2V2—w2>} 5( =k au) (29}
and

5 (k,0) = 231 wlk2 - k(kw)] {582 g, HeZe2-0?) P 6(w-k-u) , (30)

where @ =/[hﬂnoe2/m] is the electron plasma freguency. The total electric field,

E(k,w) = El(k,w) + Eg(k,w) (31)

has been analyzed into the components El parzllel to the propagstion vector k,

and 32 perpendicular to k. The component £, is nezligible in the non-relati-

2
vistic case as will be seen in the next section.

Ve now set up an orthogonal coordinate system with the x-axis parallel to

u and the unit vectors io, %o 20. The total electric field, viz.,

E(r,w) = El(r,w) + E2(r,w) (32)

as a function of the radius vector r is found by substitutinz Zgs. (29)
through (31) into (13). We illustrate the method by solving for El(r,w); the
component I 1s found in a similar manner.

Using Egs.(13) and (29), we obtain the integral

—
el
-
£
St
il

+0
~[2q1/(2m)3/2] [[] (k2 + k9ot k,20) [ 24 24k 2)Vouuic ] x

x ( kxz_*_k r2+kzz )"'l [wez,,,( kx2+kyz+kzz )Vz_wz ]-l X

3

xé(w-kxu) exp[ikax+kyy+kyz)] dk, di ak, . (33)

u S(m-kxu) = 6(kx - w/u) {(34)
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the integration over k¥ is readily performed to give
b4

+ oo
2, (x,0) = ~[2q1/(2m)3/2]7} [ Two) 2o + 5,20 + 6 25] =

x [(w/uf +x,2+ kzzl‘l {1~ w?lu? +(w?/u?)(V2-u?) +

24 2yy21-1 : .
+ + + 4 .
(ky k, VAT exp{il(w/u)x kyy + kzz]} dky dk, (35)
To calculate the field at the position of an electron, we can assune without

loss of generality that the electron is at position (0,b0), that is, at

impact parameter b. Separating El into x-, ¥~, and z-components, we can write

2, (b,0) = ~[2qie/(2m)3/2u2] 1, (36)

By, (b,0) = ~[2a/(2m)3/20] (31/90), (37)

E,,(bsw) = 0, (38)
where

400
= Jf Lw2/u? +x 25,2070 (1= w 2lu,? + (02/u)(V2-u2) +
o 7

2 5 2 2_1 2T 3
+ (ky +k, Y217} exp(lb&v) dk, &k, . (39)

J o

This int-egral has different solutions for u < V (subsonic test particle)

and for u > V (supersonic test particle).
6. ELECTROMAGNETIC RADIATION: SUBSONIC TEST PARTICLE

For the subsonic case, a contour integration in the complex kz—plane

readily yields the result [c.f. Appendix A]l:
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Elx(w,b,u) = -/(2/7) [qim/uz(MZ-weZ)]{wzﬁo(bw/u) - Ko(bgl) wbz}
Eiy(w,b,u) = +/(2/m) [Q/uz(wz—mez)] {(m3/u)Kl(bw/u) - wezﬁlfil(bél
Elz(w,u,u) = 0.

KO and Kl are Bessel functions in conventional notation,

g = VI(ug2/V2) + W2(u=2 - v2) 7t

Followinz the same procedure for the component Ez, we fingd
E, (lwbsu) = V(2/m) [aie/u?(w?~u ?)] {(u?/c?)(v?-u ?) ¥ (bE,) +
+ 2 Ko(bw/u) - w? Ko(ng)} .
E2y(m,b,u) = /(2/w) [q/u(mz—wez)] { —(w3/u)Kl(bm/u) +
+ wzgg Kl(bge) ’
E2Z(w,b,u) = o,
where

£2=¥Tmez/c2 +p2(u~2 - 2],

Several remarks should be made about the electric fields of
BEgs.(40) throuzsh (46):
1. When o =+ both numerator and dencominstor spproach zero in
hen - th numerator an enominatoe POY e

fields E ., Bly’ Egy' L'H6pital's Rule shows, however, that the fields

(40)

)Y,

——
o
[he]

N

(L3)

(L4)

(47)

(L1)
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are finite and continuous at w = gy »
e
2. When w2/w 2 >> u?2/c2, tne non-relativistic approximation u2/c2 << 1
e
indicates that £, = w/u, and therefore [E,] << |B4)

3. When mz/wo2 << u?/c? << 1, we can assume that ¢ - 0, in which

case B, » 0; B. - /(2/n) (qu,/uV) ¥q(bu /V)s E

1% 1y - 03 E -+ 0. Thus, we

2% 2y
can neglect the field components ]Ezl for all frequencies in the non-rela-
tivistic case.
Using Bgs. (40) through (43) for the total electric field, together
with Egs. (8) and (10), we obtain the spectrum of the electromaznetic radiation

emitted by a single electron at izpact parameter b from a subsonic test

particle in a plasma:
Uw,b,u) = (8e2/37c3) (ge/m)? [uz(mz_wez)z]-l «

x {(w?/u?) [szo(bw/u) - wezﬁo(bil)]z +

+ [wd/w)x (ow/u) - w 26,7 (081) 12}, (:8)

wvhere £y is defined by Eg. (43).

In the absence of plasm, w = 0, and
Awybyu) = (8e?/3nc?) (qe/m)2(w2/u*) [K 2 (bw/u) + K 2(bw/u)] (49)

P . X s 2
which is the well-known expression for the electromagnetic radiation spectrum

of an electron-ion collision, if one identifies thne charge g with +Ze.

1. Low frequency limit: In tiae limit of low freguency (w - 0), Ea. (48)
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w(w0,0,u) = (Ee?/3mc?) (qe/n)? (0, 2/V2u?) i 2(ow /7) . (50)

2. Low freguency limit for small impact parameters: If the impact
parameter b is less than the Debye distance, that is, if b < V/u, = Debye

distance, then Eq. (50) becomes

w0,b,u) = (8e?/3mc3) (qe/m)2 (1/b%?) . (51)
3.Limit of slow test particle: For test particle speeds of low lach
number {u2/V2 << 1), the field around the test particle can be described
by & spherical Debye potentialé. The spectrum of Tg. (48), when applied to

a low-speed test particle, is the same as before, except that gl approaches

gy = lu 2/V2 + w?/u?] . (52)

The low frequency limit associated with a slow test particle is the same as
that of Egq. (50) or (51).
4, Hizgh frequency limit for slow test particle: In the limit of high

frequency (w >> w ), the spectrun of =Zq. (L&) bLecomes
e

WUw>>w_,b,u<<V2) = (3e?/3mc3) (ge/m)? (w2/u*) [£,2(bw/u)+K, 2(bw/u)], (53)

which is identical with Eq. (49). Thus, the spectrum of a subsonic collisions

in the presence of plasma should converge at hizgh frequencies to the spectrum

in the absence of plasma, providing that u2/vVZ << 1.

5. High frequencylimit for test particle with u=V (Mach 1): When the test

particle speed equals the mean thermal electron speed V, the high freguency

limit of Eq. (L48) becomes

Q(m>>we,b,u=V7 = (8e2/3nc3) (qe/m)zV—u x

x {[wKo(bw/u) - (mez/m)Ko(bwe/V)]2 + [le(bw/u) - (we3/w2)Kl(bwe/V)]2}- (54)
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sut clearly

lim wK (ow/V) << lin (o 2/w?) E (bw /V), (55)
o 9] RS e [s] [S]

and
1lim le(bm/V) << lim (wes/wz) Kl(bwe/V), (56)
o e

since the asymptotic forms of K and Kl are
o

lim X (x) = lia £ (x) = V(#/2x) e™™ [1 + o(1/x)]. (57)

X X+

Equation (54) is then
lim Q(w,0,u=V) = (8e2/3nc3) (qe/m)?2 (we‘*/wzv“) x
w

x (K 2w /M) + (0 2/u?)K, (bo /V)]. (58)

Thus, at u=V the high frequency tail of the spectrum decaus as l/mz, whereas
for u<V the high freguency tail drops off exponentially. The smaller ratio

u2/V2 results in a faster convergence of the spectrum (L&) to the spectrum (L9).
8. RADIATION PROBARBILITY: SURSONIC TEST PARTICLE

The radiation probability

x(w,u) = 27" fQ(m:b,u) odb (59)

(ol

with integration limits from b to = is found from REg. (L48) to rea
o




x(w,u) = (16€/3c3) (qe/m)?2 [u2(u?- 2) 2170 x

x {=(2030 20 S E (081 )X, (bow/u) = (b2 4/2V2) (w2-0 2)  x

x [ 2(b £,) = K, 2(b £ )] + (b_u®/uK (b w/u)X (b w/u) +

o e 1 ol o 1 ° o ©
+w " £ K (b £ )K (i 60
0¥ 5K (b £ )K (0 €)1 (60)

where gl is defined by Eg. (43). The upper integration limit is taken to be
infinite because 3(w,b,u) converges exponentially to zero as the impact

rarameter increases without 1limit.

In the absence of plasma, w = 0, and Zg. (60) reduces to
e

x{w,u) = (16e2/3c3) (ge/m)? (b w/u?) Kq(o w/u) K (bow/u). (61)

Equation (61) describes the bremsstrahlung spectrum in the limit of the

2
unshielded Coulomb potential™. Iti is interesting to note that for u<<V, i.e.,
for El*w/u, the same result iso obtained to dominant order, since the big

bracket in (60) reduces to
3 2. 2Y2 v (1 . w7 . / 1
(Dow/u) (w W ) AO(OOw/u) ul(OOw/d) + o(u/V).

Physically this behavior means that for a slow test particle, characterized
vy a spherically symmetric Debye potential, the shielding corrections inherent
in Eq. (60) become rather insignificant.

In the limit of low frequency, w*0, we find gl+me/V, and
x(w*0,u) = (16e2/3c3) (qe/m)zu‘2 {(bQZweZ/QVz) [Koz(bome/v) -

- 205 . ; - s Y o (1 , ‘h
- ¥ (Dowe/J)] + (oowe/V) hl(oowe/V) uo(oowe/V) . (62)

Tow, bo << Debye distance = V/we, 5o that
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x(w0,u) = (16e2/3¢3) (ge/m)2 u™2 «x

* o 20 2/2v2) (L(1ai27/o w2 - (V/o w )2] + 1n(2V/bouev)h (63)
wnhere

vy = 1.78... = exp(0.5772...) . (&h)
Since

V/bowe >> ln(EV/bOwey), (€5)
we have

x(wro,u) = (16e2/3e3) (ae/m)2 u™° [1&(2V/bowey) - 1/21, (66)

which agrees term by term with the low freguency approximation of Ost r3

[¢]

for the case of a spherically symmetrical shielding of the test rart

e
o
Pt
(]
*

\O

. ELECTROMAGNETIC RADIATION: SUPEESONIC TEST PARTICLE

R SN it}

In the case of a supersonic test nparticle, the perturbation in charze
. . . P v ‘s sy . o
density is contained within a lach cone trailing behiind the test particle”.

The surfaces of egual charge density are hyperbocloids rather than spheres

and flattened spheroids. Consequently, the self-consistent electric field El

and therefore the radiaticn spectrum of a neighboring electrond may be

.

radically different from their subsonic counterparts. The field 22, however,

is uncheanged when u > V,and is again neglected in our non-relativistic
treatment. The spectrun of the electromaznetic radiation emitted by an electron
in the viecinity of a supersonic test particle is determined by Zgs. (36) throuzh

(32). For those freguencies that satisfy the inequality
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£ 2= (w272 + 2w - v o, (67)
or eguivalently, which satisfy the condition w<w, s waere
W = w(l-u2v) 2>, (683)
r e e

the spectral intensity distrivution G{w,b,u) is given by Egs. (48) and (43).
The qualitative difference to the previous case is that since now u V it

is possible fori% to pe zero. But in the limit of small arsument

lim ¥ {x) - -1In(yx). (69)

xv0 °
Thus, F(w,b,u) > = when &1 > 0, or eguivalently, when w - W, For this
regson we will call(% the resonant freguency.

On the other hand, if

g% <0, (70)
that is,

g% =-52% >0, (11)
or eguivalently,

w>w, = (1 - v2/u2)~1/2, (72)

then from Zgs. (36) throuzh (39) the electric fields become [c.f. Appendix B]
B (8,u,0) = =V(2/m) [qu/(w?-w 2)u?] x
x {(n/2)w 23 (bry) + i[w?K (ow/u) + (n/2)w 2Y (oz,)]1} , (73)
Ep (w,u,b) = Y(2/n) [a/(w?-u ?)u] {(m3/u)ﬁl(bw/u) +
* (n/2)w g, ¥, (bgy) = i(n/2)u Pgy3, (bg )}, (7h)

where
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L = Vw2(v-2 - u=°) - (0 2V2)], (73)

and J,, Jy, Y, and ¥, are Bessel functions in conventicnal notation. Using
-

Egs. (10), (73), (T4), and (75) in (8), we obtain for the spectrum
A(w,0,u) = (8e?/3mc3) (qe/m)? [uB(w?-u )] x
< {(n2/h) (0P */u?) [3 2(be)) + Y 2(0gy)] +

+ (wS/u?) [ 2(bw/u) + &) 2(bw/u) + (n2/h)w g 2[3,2(bg ) + ¥ 2(bg )] +

+ n(w“mez/uz) Ko(ow/u)Y (ogy) + ﬂ(w3wez/u)cl Kl(bm/u)Yl(bgl)} . (76)

This expression is valid for Clz > 0, or equivalently w > w . We note that
= ="r
2(w,b,u) goes to infinity as w =+ w... The nature of this discontinuity at

the resonant frequency will be discussed in the next section.

For supersonic test particles, we found in the last section that as w
approaches the resonant freguency w s whether from nigher or lower freguencies,
the spectral intensity 3(w,b,u) aoproaches infinity. This follows because,
on one hand, El + 0 in Eqg. (L48) and the term wezKo(bgl) + », and, on the

other hand,

¢y > 0 in Eq. (76) and thus the term Y 2(bz;l) > o,
o

Although the spectral intensity 7 is infinite at the resonance y , the inte-
r
gral f3(w,b,u) dw is finite over the entire freguency range. That is, the
resonance at w = w 1s an integrable discontinuity. Before we compute an
r

approximate expression for this integral, we first would like to show that

the discontinuity is symmetric with respect to the resonant freguency.
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2

For small z_2, we can replace Yo(bgl) by (E/n)ln(YO;l/E), Yl(bcl) by

-(2/wbcl), Jo(bcl) ty unity, and Jl(bg ) by zero; as before, vy = 1.73...

R
From Zg. (6L),

(w? - uéz) =yl - wrz + wrZVz/u2 . (17)
Thus, for w = gr, we have

(w? - wez) = wrzvz/u2 . (78)

and in the vicinity of @ but just above it, the spectrum of Ww,b,u)

becomes approximately
2w,byu) = (8e2/3med) (ge/m)2 (uz/wr"'V‘*) {(w, 20 */u?) In2(ybg, /2) +
+ (2mr“w82/u2) Ko(bwr/u) ln(ybgl/Z) + (nzmrzmez/huz) +
+ (mre/uz)[lioz(hmr/u) + X

Just below the resonant frecuency, we consider the limit of small 51

n Sg. (L8), and replace Ko(bgl) Ty —ln(ybgl/2), and Kl(bgl) by l/bgl. The

resulting expgression is identical to Zg. (79) excent that the third term is

[RR

wissing. Since this term in the neizhvorhood of the resonance proper is
negligible in comparison with the rist term, we conclude that the resonance
indeed is symmetrical with respect to w.

In order to compute the total energy emitted in the resonance, we

consider only the dominant term, viz.,

C2
[
~—r

2(wsbu) = (Se?/3ne3) (ge/z)? (w /w 2V%) 1n2(vbal/2), (<

and integrate over w Ffrom the resonance w. to some value w,. + ¢ which, for

a gualitative discussion may be fixed such that
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}3@12 =1, if w= w + g, (51)
that is,
g = (2/"{2u2) Vz‘u/(.u v u.z—v2\ (32)
Since
w+E
flnz(ch /2) dw = (V2/u y??) [u?/(u2v2)], (83)
w
T

we find with w from Eq. (68)
T
fﬁr(w,b,u) dw = (8e2/3mc3) (qe/m)2 (me/Yzbzu) Y(u2-72)/ve, (8L4)

lence, the energy emitted in the resonance is indeed finite. It increases
with increasing test particle speed, starting from zero at u = V. We shall

come back on the dependence on the impact parameter presently.
11. RADIATION PROBARILITY: SUPERSOKIC TEST PARTICLE

Inserting the spectrum (76) into Zg. (1i4) and using the results of

ppendix C for the evaluation of the integrals, we obtain for the radiation

probability:

x(w,u) = (16e2/3¢3) (ge/n)2[v?/(w2-0e2)2] {{r?wlu *02/8u2)[J 2(bgy) +

+ le(bCl) + Yoz(bcl) + le(b E)] - (wPv/u)% olbw/u)X (bw/u) +

+(n?w Mg 202/8) [T 2 (5gy) + 3,%(bgy) = (2/og )T (bg))dy(bg ) + ¥ 2(bg ) +

+ le(DCl) - (2/bC1)YO(bCl)Yl(bCl)}+ (quwez/uz)[bvz/(wz-wez) x

x [(-m/u)Y (bg )K (vbw/u) + LlK (bw/u)Y:(bc )] - (nw3wez/u)[glbvz/(mz—wez) x

< [lw/a)i (bu/w)Y (bgy) + g % (bw/u)y (ogl)]}lbm
b

. (85)

e}
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The radiation probability diverges as bo approaches zero because of the
term le(bcl); this behavior is zlso true in the subsonic case and arises
simply because the potential of the test particle increases indefinitely
as we approach the test particle, The radiation probability also diverges
as the upper limit bm approaches infinty. This behavior arises because the test
particle is assumed to have been in the plasma for an infinite time so that
the discontinuities of the iHdach cone are also infinite,

We can again calculate the total radiation emitted in the resonance by

the averaze plasme electron. Again, we consider only the resonant term, viz.,
~ £.2 3 2 2 22 3
X (w,u) = (16e2/3¢3) (qe/m)? (x?/8u2v?) lw_%0,2/(w2-02)]¥ 2o ). (86)

In arriving at Eq. (86), terms of order Yo(bmgl), as well as all terms
multiplied with b02 , such as bozYoz(bocl), etc., have been neglected. The
terms containint Yl(b;l) and Yli(bcl) cancel at the resonance for upper
and lower limit of integration.

If we again replace the Bessel function by ln(ybm§1/2) and integrate

over w from W to W, + £, recalling that
w2 - wez = wesz/(uz—Vz), (87)
we find for the total radiation at the resonance

xp(w,u) = (16e2/3c3) (qe/m)? (wy/y2u) V(u2-v2)/v2, (88)

This expression may be compared with Bg. (8L4) wnich, upon integration over b,

/o

1 3 £ LI 4
o/ that is of no Iinterest

leads to the same result except for a factor 1lu(b O) h

for our present purposes.
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12, CONCLUSIOHN

The hydromagnetic eguations nave been used to find the self-consistent
electric field of a test particle. In an interaction with such a test particle
electrons are accelerated and emit electromagnetic radiation according to
the spectral distribution of

a. Eq. (48) when the test particle is subsonic,

b. Zq. (48) when the test particle is supersonic and the frecuencies
considered are less than w. of Eq. (68),

c. Bg. (76) when the test particle is supersonic and the fregquencies
considered are greater than w . The enerzy radizted at the resonance

r
freguency is given by Eg. (8L4).

The total power radiated by the average electron as defined in Egq. (15)

has the spectral distribution of

o

a. Eq. (60) when the test particle is subsonic,

k3

b. Bg. (85) when the test particle is supersonic. The total enerzy

L

emitted at the resonance by electrons within a Debye distance from the test

).

D

(@3]

particle is ziven by Eg. (

Acknowledgment

I am indebted to Prof. Ludwig Oster of the Yale University Observatory

for suggestions, criticisms, and his continual encouragenent.




The integral

+ &

=~
i

-

If dkydkz exp(ibky) V=2 [(w2/u?) + kyz + Kzz]'l x

x [(w 2/v2) +eX(1/u? - 1/V2) +x 2 + x 2]7%

is to be evaluated for the case when

weZ/Vz + wZ(l/uZ_ l/l'\’vz) > O:

hat is, at all freguencies in the subson

satisfying
w<w /(1-V /u) = w
e r

in the supersonic case.

ic case, and at frequencies

To integrate over the variavle k_ we define

A2 = w2/u? 4z 2

BET
o

Al
N
|

= kyz + wez/V2 + w2(1/u? -

1/v2) > 0.

Then the integration over the variable kz is

4o
I3, = VO [ ak [(ey+in) (x,-12)

Since A and f are positive, the poles
real axis. Using a contour enclosing t

theoren gives

ne uppe

r half plane, the residue
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1, = wlulou, 7 ([0 2/V2 + W2(1/u?-1/72) + 1,272 - (o2/u2+z, 2)"Y/2

o

The integration over dk  can now be completed using the standard Integrels

D

for the modified Bessel functions with the result
T = - 2. 2y=1 XK Y oo
I 2m{w W, ) [xo(bw/u) Ko(bgl)]’

with gl defined by IZg. (43). Insertinz this result into Egs. (36) through (36

~—

yieldas

=
]

ZW{KO(bm/u) + wez(mz-wez) Ko(bw/u) - mez(wz—waz)~l I (bil)] =

s}

il

2 _ 2y=~1 2w {3 - 2 (3
29(w we ) [w nO(Dw/u) We ho(Dil)],
and

= -1 : -
31/9b = ~2n(w?- 2)7" [(w3/u) X (bu/u) - w28y ¥ (gl
APPENDIX B

when
w2/V2 + w2(1/u2-1/v2) < 0,

or eguivalently, w > w , the integral 12 can be written in the form
-

4o
-2 -1
12 = ff dk, dic,, exp(ibky) v (wz/u2+ky2+kzz) {ky2+kzz—

- [w2(1/V2- 1/u?) - w 2/V2]} .

Define
A2 = w2/u? + kvz and 62 =72 - 2

wilere
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£2 = w?(1/v2 - 1/u?) - wez/V2 > 0.

The integration over the variable k 1is then
z

_ =P 5 v oaa N . v s -1
Ty, = 8 [k, LOgHn) (o1 Ggeie) (51017

Since there are two poles on the real axis, we specify the contour to
be that for outgoing waves. The root on the positive side of the real axis
is included when the contour encircles the lower half plane. From the
residue theorem follows
T = m(wl-w 2)°1 [(Cz_ka)—l/z _ (mz/u2+k32)—l/2].

e 3 y

22z

We complete the integration using the expression
3 ( 2"‘1/2 3 151
" = Kk
imHy (DC) i f dny (z2-x_2) exp(lbay)
for the Hankel function. Thus,
I = _2ﬂ(w2—wez)_l [Ko(bw/u) - iﬂHéli(bC)/g]s

where ¢ is defined by Eg. (75).

Finally inserting this result into Egs. (36) through (39) we have

I = 2n(w?-u )7t [WlK (bwfu) - inw 2H (o0)/2]

or’

H
i}

2n(w2-me2)_l [szo(bw/u) +nwezYO(bc)/2 - inwezJo(b;)/E]
and

31/3% = -2m(wl—yw 2)-1 [(w3/u);’il(bm/u) +nwezc"l(bf\/2 - i 2r3 (vr)/2].

e 1t
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The indefinite integrals used to obtain the radiation probabilities are

listed here for convenience.

Sk 2(ax) ax = x2[X 2(ax) - ¥ 2(ax)}/2

/oK ?(ax) dx = x?[K,%(ax) - X Z(ax) - (2/ax)K_(ax)K,(ax)]/2

3 Es] ~ 1—- . Y ’ ~ ’ - s . -
x({ac=-c“) 'L—aKo(cx)Kl(ax) + cKO(ax)Klkcx)J

foO(ax)Ko(cx) ax

fol(aX)Kl(cx) dx

It

X(az-cz)-l[—aKo(ax)Kl(Cx) + cKo(cx)Kl(aX)}

Sy

/x3 2(ax) ax = x2[J 2(ax) + J2(ax)]/2

]

fooz(ax) ax xz[Yoz(ax) + le(ax)]/Z
foi(ax) dx = xz[Joz(ax) + le(ax) - (2/ax)Jo(ax)Jl(ax)]/2

foi(ax) dx = xz[Yoz(ax) + le(ax) - (2/ax)Yo(ax)Yl(ax)]/2

IxK_(cx)Y_(ax) dx x(a2+cz)-l[-ch(ax)Kl(cx) + X _(cx)¥, (ax)]

£k, (ex)¥) () ax —x(a2+c2)-l[cKo(cx)Yl(ax) + aY_(ax)ky (ex)]
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