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TEST' AND ANALYSTS OF DESIGN OF A MANIFOLD 
AND REENTRAKT TUBE ASSEM3LY 

Task 3A 

FFASIBILITY OF A CHESIICAL POISON LOOP SYSTEM 

F. C. Engel 
A. A. Bishop 

I. ABSTRACT W' 

. 

An ana ly t i ca l  and experimental model study was performed of  a manifold 
and re -en t ran t  tube chemical poison d i s t r i b u t i o n  system which are p a r t  of a 
rocket r eac to r  cont ro l  loop. The system operates  by changing t h e  concentration 
of the poison (cadmium su l f a t e )  i n  a water so lu t ion  c i r cu la t ing  through a l a rge  
nmber  (198) of p a r a l l e l  tubes which pro jec t  from a manifold i n t o  the core. I n  
order to meet the  spec i f ica t ions  tha t  (1) t h e  flow rate through a l l  the tubes be 
uniform, (2)  the  injected chernical poison a r r i v e  a t  t he  top  of t h e  core wi th in  
0.2 second and (3) t h e  chemical solut ion concentrat ion va r i a t ion  throughout t h e  
core should be within + 58, a spec ia l  manifold and re-entrant  tube assembly 
was designed and a fu lT  s i z e  flow w d e l  w a s  constructed of Plexiglas  and a 
series of  tests perforrned t o  prove t he  design. 

- 1 -  
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11. SUMMARY 

111 order  t o  e s t a b l i s h  t h e  f e a s i b i l i t y  of u t i l i z i n g  a Chemical Poison 
Loop System (CPLS) f o r  the  r e a c t i v i t y  cont ro l  of a Tungsten Water-Moderated 
Rocket Reactor (TWMR), a poison control  tube and manifold system must be 
designed. The performance requirements of these components are based on 
ve r i a t ion  i n  poison concentration and ve loc i ty  i n  t h e  m a n y  cont ro l  tubes 
and on t h e  t i m e  required f o r  changes of  poison concentrat ion t o  occur i n  
t h e  core, 

The design of these components was ca r r i ed  o u t  by Westinghouse Atomic 
Power Division under cont rac t  to NASA L e w i s  Research Center and i s  reported 
i n  references 1 and 2. As part of t he  same contract ,  a full sca l e  plexi-  
g l a s  model of t h e  reference design w a s  b u i l t  f o r  t h e  purposes of checking 
i ts  performance. Single phase flow d i s t r i b u t i o n  and so lu t ion  in j ec t ion  and 
d i s t r i b u t i o n  tests were carried out.  Pressure d i s t r i b u t i o n  was measured t o  
evaluate  v e l o c i t i e s  and concentration measurements were made t o  determine 
t i n e  delays and poison d i s t r ibu t ion .  

The p lex ig las  model w a s  used i n  conjunction w i t h  a flow system i n  
which total  f l o w  rate could be varied. 
included i n  the  flow system which allowed tests of d i s t r i b u t i o n  during 
var ious t rans ien ts .  

A poison i n j e c t i o n  system w a s  

The test r e s u l t s  were evaluated and compared w i t h  t h e  design require-  
ments and t h e  r e s u l t s  o f  t h e  analysis .  A t  full flow t h e  injected poison 
reaches t h e  top  of  near ly  18% of  t h e  198 tubes i n  t h e  reference design i n  
less than 0.20 seconds. With a steady in j ec t ion  rate and full flow, the  
poison so lu t ion  concentration i n  t h e  core region reaches the end of i ts  
first t r a n s i e n t  i n  approximately 1.9 seconds. T h i s  i s  less than one c i r c u i t  
+: -- +L--.--L +h- -r.*r.nanna ~ n - i  en ,-nn+rnT c n l ~ t + i  nn 1 nnp- ULUG LLLLVWU "UL L L L L L L L z L b  U'"lbY U V Y V A V L  I-&- "--- --- 
t i o n  i n  concentration among tubes during t h e  t r a n s i e n t  e x i s t s  between a tube 
which w a s  a l ready gone through t h e  t r a n s i e n t  and one t h a t  has not ye t  s t a r t ed  
t h e  t r ans i en t .  
change i n  r eac t iv i ty ,  t h i s  va r i a t ion  i s  much lower than the  5% permissible. 
For the  xenon over r ide  so lu t ion  Concentration, the 55 l i m i t  is  exceeded during 
t h e  beginning of the  t r a n s i e n t .  

The r n m i  m l m  varia- 

For normal operation so lu t ion  concentrat ion and design rates of 

Tests ind ica t e  t h a t  t h e  f l o w  d i s t r i b u t i o n  among t h e  198 p a r a l l e l  tubes 
is  s a t i s f a c t o r i l y  uniform. The var ia t ions  which d id  exist were random and 
not  a t t r i b u t a b l e  t o  any known design characteristic or dimensional var ia t ion .  
The uniformity of flow d i s t r i b u t i o n  d id  not vary s i g n i f i c a n t l y  over a f l o w  
range of  100 t o  600 gpm. The mean deviat ion from t h e  average over t h i s  range 
var ied  from 6.8% t o  5.3$. 



. 
4 

The technique used t o  design the  rnanifold f o r  uniform flow d i s t r i b u t i o n  
was substant ia ted.  Only minor changes i n  the o r i g i n a l  configurat ion were r e -  
quired t o  achieve a s a t i s f a c t o r y  configuration. The t o t a l  pressure drop, 90 
ps i ,  measured during the  tes t  was about 12$ higher than t h e  predicted value. 
This i s  due i n  a l a rge  p a r t  t o  the  i n s e r t i o n  of a flow s t ra ighten ing  screen 
added t o  the  system. 

For s ing le  phase flow it appears t h a t  the  reference design as modified 
during t h e  t e s t  will m e e t  t he  requirements. It a l s o  appears t h a t  the  design 
techniques used f o r  achieving uniform flow i n  t h i s  r a t h e r  complex system a r e  
f a i r l y  r e l i a b l e .  Further  two phase ana lys i s  and t e s t i n g  would be required 
should it be shown l a t e r  that s ign i f i can t  quan t i t i e s  of undissolved gas 
could be developed and retained i n  t h e  system. 



111. INTROlXJCTIOrn 

a 

. 

The reference method of r e a c t i v i t y  cont ro l  of t h e  Tungsten-Water Moderated 
Reactor i s  accomplished by means of con t ro l l i ng  the  concentration of a nuclear 
poisoning mater ia l  i n  a so lu t ion  flowing through the  r eac to r  core. The pr inc ip le  
of cont ro l  would be t o  add s u f f i c i e n t  quan t i t i e s  of  a high cross  sec t ion  chemical 
t o  the  system when a reduction i n  r e a c t i v i t y  i s  required,  such as a t  shutdown, 
and t o  remove t h i s  chemical when addi t iona l  r e a c t i v i t y  is  needed, such as  a t  
s ta r tup .  
of accomplishing these  tasks .  
(CPLS) i s  shown i n  schematic form i n  Figure 111-1. 

A f e a s i b i l i t y  study was undertaken t o  design and t e s t  a system capable 
This system, t h e  Chemical Poison Loop System 

The brief system descr ip t ion  provided below i s  included only to help 
enumerate the condi t ions to which t h e  chemical so lu t ion  and containing system 
w i l l  be subjected. More de t a i l ed  discussions can be found i n  t he  f e a s i b i l i t y  
study task r e F r t s  published by WAFE./1,2 

Solut ion i s  cont inual ly  f h w i n g  through the  primary piping and 
through the  ic-core tubes, When poison i s  required,  the  solenoid 
valve i n  t h e  pressurized poison reservoi r  i s  opened, and concentrated 
poison so lu t ion  i s  in jec ted  i n t o  the  primary flow stream u n t i l  t h e  
so lu t ion  cross-sect ion reaches t h e  desired l eve l .  When poison must 
be removed from the  system, t h e  solenoid valve i n  t h e  ion-exchange 
l i n e  opens, allowing so lu t ion  t o  flow through t h i s  system and back 
again t o  the  primary l i n e s ,  The poison is  removed from so lu t ion  i n  
t h e  exchanger u n t i l  the so lu t fon  i n  the  in-core tubes has been re- 
duced i n  cross  sec t ion  t o  t h e  desired l e v e l ,  Additional components 
included a system pressurizer ,  a main-circulating pump, a loop 
cooler, a d i s t r i b u t i o n  m n i f o l d  and the required temperature, pressure 
and flow recording and con t ro l l i ng  devices,  Nominal loop operat ing 
L V L I U L  -,-.=A +;nn- "LVLIY  UL 9- u 6nn -" - =sia pressure,  125'F manifold inlet temperature, 
and 600 gpm c i r cu la t ing  flow r a t e ,  

The p r i n c i p a l  funct ion of t h e  cont ro l  tube and d i s t r i b u t i o n  manifold 
assembly i s  t o  d i s t r i b u t e  the  so lu t ion  i n  t h e  reac tor  core i n  a uniform manner 
with a minimm loop c i r c u i t  t i m e .  The manifold i s  located i n  t h e  upper gas 
space of the  reac tor ,  Figure 111-2. 
a t  -175OF and 600 p s i  pressure flows through t h i s  space, 
i s  l imi ted  t o  1 t o  10 hours duration, however, extended per iods of  operat ion 
during a f t e r -hea t  removal a r e  planned. The upper por t ion  of the 198 con t ro l  
tubes i s  a l s o  surrounded by hydrogen. The p a r t  below the  bulkhead is  surrounded 
by moderator water a t  an average temperature of  2O5OF. 
h e a t  generat ion i n  t h e  poison so lu t ion  and t h e  tube walls due t o  a t tenuat ion  
of  gamma and neutron rad ia t ion .  T h i s  heat must be removed from t h e  so lu t ion  
so t h a t  s teady state operat ion can be maintained, Without aux i l i a ry  cooling 
only  about 1c$ of t h e  heat load can be t r ans fe r r ed  t o  t h e  hydrogen across 
t h e  w a l l s  i n s ide  the  r eac to r  pressure ves se l  and the re fo re  an add i t iona l  heat 
exchanger i s  required 

A t  f u l l  power operat ion para-hydrogen 
Full power operat ion 

There i s  considerable 
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1 IP lc tP ipe  
2 I n b t  Diatributian 5- 
3 Inlet Plenum 

5 Outlet Plenum 
6 Outlet Diatributlon Reader 

7 Outlet Pipe 

4 Polaw Tulle (Typical) 

. 

8 C o u g i n g T u b e a ( ~ i ~ )  
9 Rsentrant Bleed he1 Aneambly piping 
10 Tie Btrapa 
U Tie Roda 

ManiPold-Eeentrant Tube Assembly 
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The Reference Design evolved durfng the  study i s  shown i n  Figure 111-2. 
I n  t h i s  design the  s ing le  i n l e t  pipe i s  connected t o  the  d i s t r i b u t l o n  mani- 
fo ld  c lose  t o  the  e e n t r a l  hole i n  the  manifold provided f o r  passage of the  
re-entrant  bleed f u e l  assembly piping. 
i n l e t  d i s t r i b u t i o n  header designed t o  provide uniform flow of t h e  poison 
so lu t ion  t o  the  i n l e t  plenum. 
so lu t ion  r a d i a l l y  outward t o  the  re -en t ran t  tube i n l e t s ,  
decreases towards i t s  ou te r  diameter i n  order  t o  maintain a s u f f i c i e n t l y  high 
so lu t ion  ve loc i ty  as t h e  flow decreases. After passing through t h e  re-entrant  
poison tubes, t he  poison so lu t ion  passes i n t o  an o u t l e t  plenum. The height 
of t h i s  plenum increases  towards i t s  ou te r  diameter, where t h e  so lu t ion  en te r s  
an o u t l e t  d i s t r i b u t i o n  header and i s  t ransported t o  the  single o u t l e t  pipe. 
Both t h e  o u t l e t  and the  i n l e t  header have flow-cross sec t ions  whose dinensions 
vary with the  through-put r a t e  i n  order  t o  maintain uniform poison so lu t ion  
v e l o c i t i e s .  

The CPLS inlet pipe feeds i n t o  an 

The i n l e t  plenum d i s t r i b u t e s  t h e  poison 
The plenum height 

The qanifold rests on coupling tubes which are supported by the  r eac to r  
i n l e t  tube shee t ,  Five t i e  s t r aps  &re prsvided f o r  l a t e r a l l y  bracing the  plena 
and tube assembly t o  the  r eac to r  vesse l ,  The manifold p l a t e s  are braced i n t e r n a l l y  
by a series of t i e  rods t o  permit the  use of a minimurn p l a t e  thickness ,  Pene- 
t r a t i o n  through the pressure vesse l  of t ne  i n l e t - c u t i e t  l i n e s  t o  the  manifold 
are made through f l e x i b l e  couplings, The poison tubes are s ized t o  give the  
same down- and up-flow areas. Pr inc ipa l  poison tube parameters are given i n  
Figure 111-3. 

The purpose of the  o v e r a l l  study was t o  design a device fo r  supplying 
equal  f l o w  t o  198 i d e n t i c a l  re-entrant  p a r a l l e l  tubes arranged i n  a spec i f ied  
array. One way t o  achieve t h i s  obgeetive i s  t o  aake c e r t a i n  t h a t  t he  pressure 
drop across each path i s  the  same, The s t a t i c  pressure  i n  a lnanifold of uniform 
cross  sec t ion  decreases along the  length because t h e  flowing mass i s  being re- 
duced by out-flow tG the  re-entrant  tubes. Thus out-flow i s  not uniform. To 
maintain the  same pressure l e v e l  thrmghout ,  the nanifcld requi res  a special 
des ign  t o  keep the ve ioc i ty  constant o r  increasing t o  mercorne t h e  f r i c t i o n a l  
pressure drop, The manifold shape se iec tea  t o  accomplish t h i s  c r i t e r i o n  can 
be ca lcu la ted  using a modification of a method proposed by Acrivos, e t  a1/3 
which i s  simply a so lu t ion  t o  the combined single phase cont inui ty  and 
monentm equations f o r  t h e  system The f l o w  i s  considered t o  be inconpressible 
and t h e  energy addi t ions are not considered t o  inf luence s i g n i f i c a n t l y  the  
f low d i s t r i b u t i o n ,  The designs of t he  headers and t h e  plenulns w e r e  calculated.  
However, t h e  t h e o r e t i c a l  ccntours could be approximated c lose ly  enough by l i n e a r  
reduct ion of the  height of t h e  i n l e t  and o u t l e t  plenums and i n l e t  header or 
t h e  width of the  o u t l e t  header.. The design ana lys i s  diecussed i n  g rea t e r  d e t a i l  
i n  NASA CR-54420 (WCAP-2803) e 

The purpose of the  model study aiscussed i n  t h i s  report w a s  to  demonstrate 
t h a t  uniform flow can be maintained i n  a l l  198 poison tubes, t h a t  t he  in jec ted  
concentrate  w i l l  reach the  core within the  spec i f ied  t i m e  of 0,2 seconds and 
t h a t  a concentrat ion maldis t r ibut ion g r e a t e r  than + 5% does not exist  among 
tubes.  The four  major parts of the chemical poiso; sys ten  design analyzed by 
t h e  Thermal and Hydraulic Gevelopment Group a t  APD were re l a t ed  t o  the design 
o f  t h e  plenum and were: 

- 7 -  
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INLET SOLUTl ON TEMPERATURE ( O F )  

FLOW AREA DOWNCOMER ( F T ~ )  
VELOCITY IN DOWNCOMER ( FT/SEC. ) 
MASS VELOCITY I N  DOWNCOMER ( L B / M - F T ~ )  

VELOCITY IN UPCOMER ( FTISEC) 
MASS VELOCITY IN DOWNCOMER ( L B ~ H R - F T ~ )  

FLOW AREA UPCOMER (FT') 

SPECIFIC WEIGHT (LB/FT3) 
PRESSURE (PS I A )  
EQU I VALENT DI  A DOWNCOMER ( FT) 
EOUIVALENT DIA UPCOMER (FT)  
TUBE LENGTH, TOTAL ( I N )  
TUBE LENGTH, IN-CORE ( I N )  

i25 
.000630 
IO 
2.48 X IO6 
.000630 
10 
2.48 x IOs 
68.3 
600 
0.0283 
0.01 I I 
52 
36 

I /  Wl 
0.367" 4 

4 
0.560" z 

Figure 111-3 

Principal Poison Tube Parameters 

- 8 -  



1. Design of a plenum and re-entrant  tube assembly f o r  d i s t r i b u t i o n  
of  chemical poison solution. 

2. Achievement of uniform flow distributions among t he  tubes. . 
3. 

4. 

Timing and cont ro l  of  concentration changes, 

Heat removal required to maintain desired f l u i d  and metal tempera- 
tu res .  

A f u l l  scale nodel of the manifold and t h e  198 poison tubes i n  t h e i r  

Plexiglas  was used t o  
hexagonal array was constructed of Plexiglas  for l o w  pressure and m o m  tempera- 
t u r e  flow d i s t r i b u t i o n  and solut ion i n j e c t  on tests, 
obta in  a v i sua l  h i s to ry  of chemical concentration and flow d i s t r i b u t i o n  during 
steady s t a t e  and t r ans i en t  s ing le  and two-phase tests, The tests were conducted 
i n  a hydraulic f a c i l i t y  at WAFD; p a r a l l e l  programs of evaluation of materials 
and t o t a l  system response tests were a l s o  conducted. 
of  a l l  the  test e f f o r t s  were reported on i n  References 1 and 2,  

The purpose and scope 
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I V .  MODEL DESIGN AND OPERATION 

A. Model Design 

The model w a s  constructed using the  p lex ig lass  so t h a t  flow and 
concentration pa t t e rns  could be made v i s i b l e  by gas or  dye in j ec t ion .  
The walls were designed t o  withstand a ca lcu la ted  pressure drop of 
100 psi. 
by the  flow d i s t r i b u t i o n  analysis  fo r  the  prototype, except t he  i n l e t  
and o u t l e t  piping nipples  which had a minimum t h r o a t  of 2-1/8 inch 
I . D .  r a t h e r  than t h e  2-1/4 inch of the  prototype. 
t he  threads of the  outer  tubes was experienced and metal nipples  
were subs t i t u t ed  a t  t h e  upper junc t ion  where the  tubes were tkreaded 
i n t o  the  nanifold p l a t e .  

A l l  i n t e r n a l  dimensions of the  model were those determined 

Some breakage of  

The o r i g i n a l  design of the model and i t s  component p a r t s  are shown 
i n  Figure N-1. 
type are simulated as closely as  poss ib le  using t h e  same length  of  
pipe and t h e  cane nurnber of elbows hptween the shutoff  valves and 
the  model i n l e t  plenum 
j e t  from impinging i n t o  the holes i n  t h e  i n l e t  d i s t r i b u t i o n  p l a t e ( 3 ) .  
The height of t he  i n l e t  d i s t r i b u t i o n  annulus(2) decreases i n  the  
d i r e c t i o n  of  f l o w  such t h a t  t he  flow ve loc i ty  i s  approximately 
constant  and thus the  pressure head across the  perforated annular 
d i s t r i b u t i o n  p l a t e ( 3 )  i s  uniform along i t s  length.  
p l e n u ( 4 )  and o u t l e t  plenum,(5) as w e l l  as t h e  o u t l e t  d i s t r i b u t i o n  
header(6) are tapered i n  order t o  maintain a constant  ve loc i ty  and 
a constant s t a t i c  head, The f l u i d  passes from the  i n l e t  header(2) 
through t h e  perforated d i s t r i b u t i o n  p l a t e (  3) then  through the  i n l e t  
plenum(&) i n t o  the  down f l o w  tubes,(7)  up the  poison tube annul i , (8)  
r a d i a l l y  outward through t k  oiitlet i ; l c ~ u a ,  ( 5)  2nd _f l~ i_~l  ly through 
t h e  perforated o u t l e t  d i s t r i b u t i o n (  9) cy l inder  i n t o  the  o u t l e t  header( 6) 
and the  o u t l e t  pipe. (10) 

I n l e t  and o u t l e t  piping configurat ions of t h e  proto- 

A d e f l e c t o r t l )  $ l a t e  prevents the  incoming 

The i n l e t  

The nanifold i s  fabr ica ted  using th ree  p l a t e s .  Additional spacers 
can be inse r t ed  t o  modify the plenum width i f  t e s t  r e s u l t s  i nd ica t e  
m d i f i c a t i o n s  a r e  required,  Most pressure s e a l s  a r e  made by replacable  
neoprene O - r i n g s ,  
end which c a r r i e s  e i t h e r  a p i t o t  t ube ( l2 )  o r  a conduct ivi ty  probe , ( l3)  
The s t a i n l e s s  steel  inner  f l o w  tubes(7)  are held concentr ic  with the 
ou te r  t ubes ( l4 )  and the  p i t o t  tubes by t w o  l e v e l s  o f  t h r e e  set screw- ! 1 5 )  
There are s t a t i c  pressure taps  a t  f o r t y  e igh t  loca t ions  i n  t h e  manifold 
w a l l ,  as shown i n  Figure I V - 2  which p e r m i t  flow d i s t r i b u t i o n  pa t t e rns  
t o  be co r re l a t ed  with pressure grad ien ts  i n  the  plenums, 

The "poisonft tubes have a p lug ( l1 )  a t  t h e  lower 

( ) Numbers r e f e r  t o  balloons on Figure ! V - l .  
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I .  

The de f l ec t ion  of the  p l e n u  p l a t e s  is ainimized by 38 t ie  b o l t s ( l 6 )  
Located such that they l i m i t  t he  maxiaum bean span. 
b o l t s  are d r i l l e d  out f o r  addi t iona l  pressure taps.  
tubes and 98 conductivity probes. 
are interchangeable so that they can be i n s t a l l e d  using any -3esired 
pa t te rn .  
having d i f f e r e n t  performation pa t t e rns  can be in se r t ed ,  
in jec ted  through one of  t h e  pressure t aps  o r  through one of the center ing 
screw holes. Figure IV-3 i s  a top  view of t h e  manifold model i n s t a l l e d  
i n  the  test  loop. 
p i t o t  tubes and conductivity cells mounted a t  t h e i r  lower ends. Figure 
IV-5 shows t h e  p l a t e s  before assembly. 

S ix  of  these t i e  
There are 98 p i t o t  

The plugs carrying these  instruments 

The model can be taken apa r t  and d i f f e r e n t  d i s t r i b u t i o n  p l a t e s  
Gas or dye can be 

Figure N-4 shows a 'bottom view of t he  tubes with 

The test  loop shown i n  Figure m-6 consisted of a 1000 ga l lon  supply 
tank, two 600 gpm pumps arranged i n  s e r i e s  t o  obta in  t h e  m a x i m  head, 
and s i x  inch schedule 10 s t a i n l e s s  piping including a s t r a i g h t  measuring 
sec t ion  containing an o r i f i c e ,  A bypass cooler remove& t h e  pump heat 
and an in - l ine  f i l t e r  keeps the  water clean,  A flow regulat ing and a 
back pressure valve a r e  provided; there i s  a l so  instrumentation t o  
measure temperature, pressure,  and flow, The concentrate i n j ec t ion  
system contained a chemical measuring pump, a rotameter and a solenoid 
valve. I n j e c t i o n  rate w a s  s e t  by ad jus t ing  t h e  pump stroke. 

c 
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Figure IV-3 Top View, Manifold-Poison Tube Asseably - Plexiglas Flow Model 



Flgure  I V - 4  Bottom View, Manifold - Poison Tube Assembly - Plex ig la s  Flow Model 
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B. Instrumentation and Cal ibrat ion 

1. Flow Dis t r ibu t ion  

The t o t a l  c i r cu la t ing  f l o w  r a t e  was measured by an - ~ i ; i c e -  
nanometer which w a s  ca l ibra ted  t o  1% aecurscy by cornparison of 
f l o w  rates through an o r i f i c e  which had previously been ca l ibra ted  
a t  t h e  Pennsylvania S ta t e  Universi ty  Eydraulies Laboratory. The 
flow d i s t r i b u t i o n  among t h e  poison tubes w a s  determined by p i t o t  
tubes i n s t a l l e d  i n t o  and concent r ica l ly  w i t h  t he  inner  tubes a t  
the  lower end, Figure IV-4 and Ffgure IV-7.  
were ca l ibra ted  i n  place i n  a t y p i c a l  poison tube assembly mounted 
i n  a separate  l o w  capaci ty  ( 5  gpm) c a l i b r a t i o n  loop. 

These p i to t  tubes 

The e f f e c t s  of depth of i n se r t ion  and of" e c c e n t r i c i t y  i n  in -  
s t a l l a t i o n  of the  p i t o t  tubes i n t o  the  low capaci ty  loop were 
checked and found t o  be smsll. A t  a nominal flow of 3 gpm/tube, 
tubes with a p i t o t  tube i n s t a l l e d  had 8% less flow than tubes  
without instrumentation and tubes w i t h  conduct ivi ty  c e l l ?  had i$ 
less flow than tubes without instrumentstion. T h i s  flow r a t e  
v a r i a t i o n  d id  not introduce e r r o r s  i n  t h e  ana lys i s  s ince  oniy 
f l o w  rates i n  ins t rumnted  tubes were cornpared w i t h  one another 
i n  t h e  normalizing process. 

The p i t o t  tubes were mounted i n  the  bottom plugs f o r  the  
poison tubes as shown i n  Figure IV-7. The p i to t  tube pressures  
were read o f f  banks of water f i l l e d  prec is ion  g lass  tubes Figure 
IV-8. These tubes were manifDlded and pressurized i n  groups by 
regulated conpressed a i r ,  T h i s  arrangement balanced the  mean 
p i to t  tube pressure,  so t h a t  the d e s i r e d  readings could be found 
accurately i n  incne,c of whiei- E~O-G-Z :he ha_lsnring pressure,  The 
balancing pressures were indicated by mercury mnameters which 
showed t h e  d i f fe rence  between a reference pressure and the mani- 
folds,  When steady flow conditions w w e  reached t h e  ind ica t ing  
tube banks were photographed t o  insure simultanTous readings,  
Figure IV-9  shows a typ ica l  record., These records were read and 
t h e  r e s u l t s  punched on TBM cards by using a Benson-Lehner scanner. 
A program was wr i t t en  for  the  IEM 7094 computer to  process these  
cards and p r i n t  out  the normalized f l o w  d i s t r i b u t i o n  i n  a hexagonal 
array corresponding t o  the  tube array. The program is lfsted and the 
r e s u l t s  are reproduced i n  Appendix A. 

2. Concentration Distr ibut ion 

The t i m e  f o r  injected concentrated so lu t ion  t o  reach t h e  mani- 
f o l d  w a s  found by conductivity probes i n s t a l l e d  at  t h e  manifold 
i n l e t  and o u t l e t  and a t  t h e  bottom of the  poison tubes,  
were connected t o  a A-C Bridge which had i t s  output  recorded on 
v is icorders .  When a concentration change occurred t h e r e  was a 

The probes, 
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CONDUCTWITY 
PROBE 

Figure IV-7 Assenbly of P i t o t  Tubes and Conductivity ?robes t o  Botton End of Tubes 

- 19 - 



- 20 - 





I -  

def l ec t ion  of t h e  v is icorder  t r a c e ,  
one e m  square platinum plated opposed p l a t e s  as shown i n  Figure IV-7. 
They were ca l ib r s t ed  individual ly  and also by recording step changes 
i n  t h e  concentration c i r cu la t ing  so lu t ion  and comparing them w i t h  
chemical analyses of samples taken simultaneously, I n  +.he t e s t s  
N a C l  was subs t i tu ted  for  CdSOq on an equal Concentration basis .  
Figure I T - l O i s  a ca l ib ra t ion  record of 14 pmbes which co r re l a t e s  
de f l ec t ion  and concentration. Figure I V - 1 1  shows the  three v f s i -  
corders and the  balancing bridge cabinet ,  The ca l ib ra t ed  operat ing 
range was from 3 t o  4 mg/cc so lu t ion ,  
around 180 mg/cc. Figure ITd-12 is  a t y p i c a l  v i s i co rde r  t r a c e  of a 
test recording time and concentration changes a t  the i n l e t ,  o u t l e t  
and 16 tubes. There i s  a short  delay after t h e  valve opens before  
t h e  concentrat ion change f r o n t  reaches the  i n l e t  probe, 
let t h e  concentration s t i l l  follows the  in j ec t ion  pump stroke, but  
mixing and d i f fus ion  even out the concentration f r o n t  so t h a t  it 
appears as  a near ly  l i n e a r  v a r i a t i o n  a t  t h e  bottom of the  tubes, 

The probes consisted of two 

The i n j ec t ion  tank charge was 

A t  t h e  in -  

The m i n i a m  time for t h e  injected poison to  pass through t h e  
manifold i s  found from a r r i v a l  a t  the probe i n  the  o u t l e t  pipe. 

, 
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v. TEST mSULTS AND ANALYSIS 

A. Flow Dis t r ibu t ion  T e a t s  

The flow d i s t r i b u t i o n  tests were ci?nductea t o  confirm :'le theoretS :dl 

design of t h e  rnanifold r e e n t r a n t  tube aacembly, G f  p a r t i c u l a r  i n t e r e s t  
were uniformity of flow d i s t r i b u t i o n  t o  t h e  tubes and pressure drop No 
major changes i n  design were found necessary and t h e  f i n a l  and preliminary 
designs are v i r t u a l l y  i d e n t i c a l  and va l ida t e  The theorFt ica1  design basis 
Flow d i s t r i b u t i o n s  among the tubes w a s  uniform throughout t h e  rsnge of flaw 
rates t e s t e d  (100 t o  600 gpm) and ne s ingular  f l o w  region exlsted after the  
d e f l e c t o r  plate w a s  removed. 

I n  the f i r s t  flow t e s t  configuration 1A t he  tribe: s m m d  t h e  inner  
periphery of t h e  manifold Mere par t iaLly  starved ,* 
t o  the  model consis ted o f  short  r a d i u s  p i s s t i c  elbctwe These cawed eon- 
s iderable  cav i t a t ion  p a r t i c u l a r l y  %t, high flow rstes - Beccwse nf d i f f e r e n t i s l  
expansion a l a rge  ninber of re -en t ran t  tubes a?. the cuter periphery of the 
manifold f a i l e d  a t  t he  roots  of" t h e  threads eonnceting them ta t h e  manifold. 
For t h e s e  reasons mcdifi:ation~ were macle 8s fni2.0d,cr 

The piping connections 

1, Mechanical Design Modificaticns 

The upper threaded portions c J f  the  pLaetic tubeE were replaced 
by brass  nipples  giUeG t o  the  tubes The tie bolts were replaced by 
b o l t s  of higher a t rpngth rnaterisl t o  prevent r e x r r e n c e  of f a i l u r e ,  
Threaded p o r t i v m  of tne lower end of t h e  plas;tlc tubes showed 
radial  crack? due t o  expansicjn of the p;ug i n s e r t s  (by water absorption).  
They were glued, re-irdorced or  replaced as necessary- 

2" 

To e l imina te  cav i t a t ion  and to reduce c;veralA presbure drap of t h e  
test Bystern, t h e  o u t l e t  elbows w-PP replsced Sy a s r r a i g h t  pipe sect ion.  
The sharp t u r n  p l a s t i c  inlet elbows had been se lec ted  to minimize t r ans -  
mission of v ib ra t ion  t o  t h e  rnodel. These e ibws  replaced by lcng 
rad ius  schedule 10 s t a i n i e s s  steel elbows to  s-appresc eEiVita%ion,*X A 
screen was inser ted  downstream of t h e  elbows t o  f l a t t e n  t he  flow pro- 
f i l e  i n  t h e  nipple.  

3" Manifold Component Nzdif icat ions 

The f l o w  rate through t h e  r e e n t r a n t  tbbes a t  t n e  Inner periphery 
of the manifoid was mch l o w e r  Than average. T h i s  condi t ion was 
corrected by: 

a. removal of the inlet d e f l e e t i c n  b a f f i e  which increaheu the  
flow through t h e  tubes belo3 t h e  illlet n ipple .  This change 
and t h e  cnanges msae i n  (2; above arc  reprted as configurst ion 
1B. 

- * 
** The flow d i s t r i b u t i o n  tes t  da ta  are reproduced i n  Appendix A 

A discuss ion  on t h e  cav i t a t ion  appears i n  Appendix Be 
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b. increasing the height  of t h e  inlet dis t r ibu t ion  header by 
3/16 inch.  
i n  the  tubes 180" f ron the  i n l e t  neader. The entrance 
pressure drop coefficient f o r  t h e  holes i n  the d i s t r ibu t ion  
p l a t e  had been estimated too high as a r e su l t  of t r ea t ing  
the  holes as tube entrances ra ther  t h a n  t h i n  p l a t e  or i f ices .  
A high coeff ic ient  increases the r a t i o  of l a t e r a l  outflow t o  
flow through the header. When the  header res is tance w a s  re- 
duced by increasing i t s  cross sect ion a be t te r  flow r a t i o  
w a s  achieved. Th i s  change is  reported as configuration 1C. 

T h i s  increased t h e  flow t o  t h e  average value 

I n  Table V-1, the  t e s t  r e su l t s  are summarized. Using t h e  normalized 
da ta  and histograms i n  Appendix A, an average percentage deviation from 
average flow has been calculated and i s  listed. Also f o r  t h e  percentage 
of tubes whose flow deviated by ce r t a in  increments from t h i s  average a re  
also tabulated. 

It can be seen t h a t  the minor modifications effected i n  t h e  or ig ina l  
design were successful i n  producing nearly average f l o w  through a l l  the 
tubes. The average deviation was improved through the  modification 
and the number o f  tubes w i t h  considerable deviat ion from the average also 
decreased. 
is about 2 6  with 6 6  of t h e  tubes varying less than + 54 from the average. 
There i s  the l ikelihood that  one of t h e  tubes for whiFh no measurement was 
made as much as3O$below t h e  average. 
a3ktlough the average deviation is  seen t o  increase as the flow rate de- 
creases, the r e l a t ive  flow d i s t r ibu t ion  remains e s sen t i a l ly  unchanged 
even a t  the  lowest flow tested. 

For t h e  design flow, the  maximum deviation from the average 

Another point t o  be noted i s  t h a t  

A deta i led  examination of the  f l o w  da ta  indicated t h a t  t h e  f l o w  r a t e  
through several  tubes was considerably lower or higher than average. 
There wes, however, no discernible  pa t te rn  as to the locat ion of these 
tubes. It was suspected tha t  these i r r e g u l a r i t i e s  xsre ts~.sed by some 
pecul ia r i ty  of tube in s t a l l a t ion  ra ther  than because'of geometric loca- 
t i o n  i n  the  tube array. 
instrumentation abnormality, t h e  p i t o t  tubes from t h e  e ight  "mavericK" 
polson tubes were moved to  the  minor image locations for  those poison 
tubes. 
c lose t o  average. 
o r  entrance effects  in the poison tube ins ta l la t ion .  Later, after t h i s  
program was complete, the Plexiglas model top  plate was removed and the  
poison tube inlets were examined. 
and tube sinlet configuration (such as  re-entrant o r  recessed entry) could 
be found. 

To confirm t h i s  conclusion and t o  rule out  

I n  the  new location, seven out of the  eight  showed flow very 
Thus, t h e  flow maldistribution was ascribed to  dls8ymetry 

No cor re la t ion  between the  f l o w  pa t te rn  
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. 
The s t a t i c  pressures  i n  the m n i f b l d  were rliezscrec1 a t  the  outer  

surfaces  and wiy be s l i g h t l y  d i f f e r e n t  2 t  the tzbe i n l e t s .  There 
i s  a small c i rcwnferent la l  vz r i a t ion  and a .mailer r a d i a l  pressure 
d i f fe rence  i n  both i n l e t  and out;& glecurn, Figure V-1 .  Thus the 
attempt t o  secure uniforx s t a t i c  pressure was compromised . ; l ightly 
by the  use of s t r a i g h t - l i n e  plenum contours instead G f  t he  more 
complicated curved ones calculated.  The t o t a l  v a r i a t i o n  i n  s t a t i c  
pressure i n  the  i n l e t  plenum i s  less than G , 5  p s i  ma 0.3 p s i  for 
t h e  o u t l e t  plenum. 
ps i  and occurred i n  tubes at 8 ,5  inch radius  near t,he i n l e t ,  The 
naximurn pressure drop across any tube i s  iiL2 ps i  snd occurred a t  a 15.75 
inch rad ius  180' f ron  t h e  i n l e t ,  
approximately 6s cannot account f o r  t he  10% flc-ws observed i n  i so la ted  
tubes 

The rnininucn pressure drop zcross any tube i s  10.5 

This t o t a l  spread cf pressure drop of 

The pressure p r o f i l e  through the  rnanifclld a5seOibly was aeternined 
from rhe s t a t i c  pressure measureqents a t  650 gpmr 

A? 
Measured 

tn t h P  MDcie l  - Lac at  L o n 

I n l e t  Pipe (below valve)  t o  
7 nle t Ze ader 25 6 ps i  

I n l e t  Header t o  IfiLpt Tlenwn 24.c p51 

I n l e t  Plenun LO Outlet P1cri.m iC 8 ps i  

Outiet  2 ie :Lu~ t o  Outlet Heaaer k . 3  p s i  

Outlet '.'=raer t o  Out iet Pipe > _  \ ' . L  -UJL 
- I- ..-4 

Total nanifola  pressure drop 97 7 p s i  

Because of t he  inser t ion  of t h e  screen i n  t h e  i n l e t ,  the msnifo'ld 
pressure  drop was higher t h a n  pr=viousLy estllnated by sbout 13 p s i ,  
It was concluded that. the ?dges ieading t o  t t e  c u t l e t  pipe should be 
rounded off o r  flared t o  reduce tne  prescu-re drop. i:3 r k  rsf+rence design, 

The tests were performed a t  at~nospheri c t a p e r a t u r e  and pressure: 
without heat input t o  t h e  tubes,  The non-uniformity i n  t h e  hea t  ab- 
sorp t ion  i n  t h e  prototype will prodace a v a r i a t i o n  i n  the  poison scjlu- 
t i o n  dens i ty  ana v i s c c s i t y  Based on the  r e f c r f f c e  fitix d i s t r i b u t i o n  
these  va r i a t ions  a re  estimbted t.? be lees t h a n  I$ and IC$ respec t ive ly ,  
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Although o r i g i n a l l y  planned no t e s t s  were conducted w i t h  tubes 
which had dimensions s ign i f i can t ly  d i f f e r e n t  than average, 
important no tests were conducted with a gas phase dispersed i n  the  
l iqu id .  
d i f f e r e n t  if a considerable amount of r a d i o l y t i c  gas were pTesent. 

More 

The f l o w  d i s t r i b u t i o n  and pressure drop would be s ign i f i can t ly  

In general ,  the  design bas is  of uniform f l o w  d i s t r i b u t i o n  i n  t h e  
tubes during s ing le  phase f l o w  was f u l f i l l e d  within p r a c t i c a l  l i m i t s ,  
Checks a t  loca t ions  symmetrical with the  fnstrumented ha l f  of the  core 
along t h e  plane through inlet and o u t l e t  cen te r l ines  s b w  t h a t  the  same 
d i s t r i b u t i o n  could be expected in t h e  non-instrumented half' of the  core. 
This conclusion was confirmed i n  the  subsequent concentration d i s t r i b u t i o n  
t e s t s .  
obtained i n  numerous flow d i s t r i b u t i o n  tests of r eac to r  models which have 
a m c h  simpler geometry. 

The nean devia t ion  is  of a magnitude equal t o  or less than t h a t  

B. Concentration Dis t r ibu t ion  Tests 

These tests were rnade t o  e s t a b l i s h  t h e  t i m e  h i s to ry  and spac ia l  
d i s t r i b u t i o n  of  t h e  propagation of concentration change through the  
manifold. In par t i cu la r ,  the  design required t h a t  the  concentration 
gradient  i n  t h e  assembly should not exceed + 5%. 
concentrate was t o  be sensed a t  t h e  top  of The re-entrant  tubes within 
0.2 seconds after opening of t h e  in j ec t ion  valveo The f irst  16 runs 
were c a l i b r a t i o n  runs  Kith only t e n  conduct ivi ty  probes connected t o  
the  recorder ( a r r ay  #O>. When t h e  in j ec t ion  system performed as 
designed, t he  48 probes were d i s t r ibu ted  i n  two arrays (1 and 11) in 
succession, each covering mre than one half of the  core and having 
16 loca t ions  i n  c o m n  f o r  comparison, 

In j ec t ion  of the 

- 
Yrte loop cmccEtrszlan d u r i z  these t e s t s  was near 3.b mg sodium 

chlor ide per cc so lu t ion ,  The concentrate i n j ec t ion  r a t e  gas about 
0-17 gpm except for runs i 6  and 25 for which 8 higher ra te  was used 
t o  maximize v i s i co rde r  response It was found t h a t  the  t i m e  period 
between in j ec t ion  and arrival of the  concentrate a t  the  tubes vas 
independent of t he  in j ec t ion  rate w i t h i n  t he  limits t e s t ed .  
summarizes t h e  eondi t ions and r e s u l t s  of t h e  in j ec t ion  tests, The 
tests covered c i r cu la t ing  f l o w  r a t e s  from 175 t o  600 gpm, 

Table V-2 

Test  r e s u l t s  obtained with t h e  sane flov rates and arrays 0, I o r  
I1 were combined t o  give naps of time delay d i s t r i b u t i o n  from in jec t ion  
valve opening to a r r i v a l  of t he  concentration chmge a t  %he bottom of 
t h e  tubes;  Figure V-2 f o r  300 gpm, Figure V-3 f o r  400 gpm, and Figure V-4 
f o r  175 gpm, 
r e s u l t s  are shown i n  Figure V-5. 
t h a t  t h e  a r r i v a l  time a t  any flow rate va r i e s  p r inc ipa l ly  with radius  
and not very much w i t h  circumferential  loca t ion ,  

The 600 gpm run was made with array I1 only and i t ' s  
h examination of these maps fndfcates  
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A comparison of r e s u l t s  fo r  the  same tubes from t w o  runs a t  t h e  same 
flow rate w i l l  i nd ica t e  reprcducib i l i ty  of r e s u l t s .  
t h i s  comparative da t a  f o r  f l o w  rates of  175, 300, and 400 gpm. Shown 
on t h i s  t a b l e  are readings for  a l l  tubes instrumented during more than 
one t e s t  and the  average values of the  readings i n  any given tube and 
the  average percentage deviation, 

Table V-3 summarizes 

The reference system requirements f o r  t i n e  of a r r i v a l  of poison i n  
t h e  system were checked by d i r ec t  measurement of  concentration change 
h i s to ry  after in j ec t ion  of' chemical solut ion,  The check poin ts  are 
located a t  manifold i n l e t  and o u t l e t ,  and a t  the bottom of t h e  tubes. 
The t es t  r e s u l t s  i n  t h e  form of  v is icorder  traces showed the  s tar t ,  
durat ion and completion of the change (Figure IV-12). The l o c a l  rate 
of change depends on the w i d t h  of  t h e  mixing zone and i t s  change w i t h  
passage through the  manifold, 
i s  derived i n  Appendix C.  

An experimental equation by F. S j e n i t z e r k  
It descr ibes  t h e  v id th  of  such a mixing zone 

T h i s  gives a mixing zone o f  about 1.3 ft length o r  of  0,122 seconds 
f o r  the  4-1/2 f t  long poison tubes and about 1 ft o r  0-03  seconds for 
t h e  approach piping. 

The time i n t e r v a l  required f o r  flow t o  t rave l  from t h e  top  t o  t h e  
bottom of the  tubes a t  the averag? velocity aDd the  t i n e  equivalent 
of the  change i n  wid th  of the mixing zone were subtracted from t h e  
measured arrival t i m e s  at  the  bcttom t o  give, f o r  600 gpm, t h e  d i s t r i -  
but ion of concentration change a r r i v a l  times a t  the  top  of  t h e  tubes 
aTter G F E ~ ~ I ~  ~f the i g e c t i n n  Ttalve; Figure V-b0 
a t  about 18% of t h e  tube locations the  ccncentrate w i l l  a r r ive  within 
0.2 secmds.  Figure V-7  shows t h e  a r r i v a l  times a t  minimum and average 
loca t ions  f o r  600 gprn (Run #25), 

I t  i s  shown t h a t  

The t i m e  schedule is, of course, a funct ion of flow rate. The 
g rea t e r  t he  flow rate, the shor t e r  t he  times. 
from a l l  the  tes ts  were prepared i n  t h e  manner indicated above and the  
r e s u l t s  are p lo t ted  i n  Figure V-8,  The slope of these l i n e s  ind ica tes  
that t h e  t i m e  fn te rva ls  are inversely proportional tQ flow rate. 

Time schedules r e su l t i ng  

The visicorcier t r aces  ind ica te  t h a t  t h e  change i n  Concentration is  
l i n e a r  with t i m e ,  The durat ion of the  change, ice, t h e  width o f  t h e  
mixing zone, increases w i t h  d i s tance  f r o m  t h e  in j ec t ion  point,  i .e ,  
with t i n e .  T h i s  is  i l l u s t r a t e d  I n  Figure V-9 where the  times t o  s ta r t  
and complete the concentration changes a t  manifold i n l e t ,  manifold out- 
le t ,  and bottom of tubes are p lo t ted  i n  proportion to t h e i r  appearance 
i n  the  test  records,  The slope of the  top-of-tube times were calculated 
using t h e  expression of  S jen i tzer  f o r  t he  width of t he  mixing zone. 
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Curve V-9 was cxoss p lo t t ed  to  show in Figure V - 1 0  and V-11 t h e  con- 
cent ra t ion  d i s t r i b u t i o n  i n  the tubes a t  any time between in j ec t ion  and 
completion of one c i r c u i t  after in jec t ion .  Figure 8-11 w a s  obtafned by 
def ining th ree  groups of tubes located cen t r a l ly ,  average rad ius  a d  
per iphera l ly  and ca lcu la t ing  the  progress of  concentration change 
r a t h e r  than using t h e  times f o r  each individual tube. 
of the  t o t a l  poison tube length of the  core t h a t  has undergone t h e  
concentration change i s  also shown, as a dot ted curve. 
tube length  completing t h e  change can be t r ans l a t ed  i n t o  core volume 
f r ac t ion .  

The percentsge 

The normalized 

The time required for completion of one pass through t h e  CPLS 
Reference System w a s  calculated f o r  600 gpm f r o m  knowledge of the 
V O ~ ~ S ,  shapes, and mean ve loc i t i e s  i n  t h e  components: 

Vo lune 
Gallons 

Piping, including 
pump and valves 33 6 

Dis t r ibu t ion  
maniZuld 6 -  92 

Poison tubes 7 . a  

Heat exchanger 4,2 

Length 
F t  

I 2  

- 

4.5 

3 

Total  C i rcu i t  22- 56 

Mean M e  an 

Ft/sec Seconds 
Velocity Residence Time 

Y 

23.8 0,366 

205 1 666* 

1 0 ~ 7  

1L 0 214 

- 2.246 

Check 22;, 56 x 60 sec/min t 600 gpm = 2.26 sec,  

*From neasurements 

Approx:. 
Pres,  Drop 

p s i  

90 

50 

140 

Figure V-9 shows that it takes 2,1 seconds f o r  a f ixed concentration 
change throughout the  mnifo ld  to be completed. If the  in j ec t ion  valve 
remains open a f'urther increase i n  concentration takes  place as t h e  
a ix ing  f r o n t  completes one c i r c u i t ,  
(about 2 ,3  seconds) i s  longer than the  time for completion of the  con- 
cen t r a t ion  change i n  the  manifold, the  maximum dff fe rence  i n  Concentration 
between tubes t h a t  can e x i s t  is that at  the  begfnning, when some tubes 
have completed the  first change while o the r s  hsve not y e t  s t a r t e d  t o  
be reached by the  concentration increase,  Table V-2 shows that for 
600 gpm and a n  in j ec t ion  rate near 0,212 gpm t h i s  maximh di f fe rence  
i s  wel l  below 5% of t h e  loop concentratfon {Ruxs 2h and 25); i n  Run 25 
the i n j e c t i o n  r a t e  was four times t h e  nominal one, This produced a 
quadruple change i n  the loop concentration and t h e  v i s i co rde r  def lec t ion ,  

But s ince  the  t o t a l  c i r c u i t  time 

- 43 - 



LEGEND: 

---- FIRST TUBE - AVERAGE TUBE 

--0--- LAST TUBE 

0 

- 44 - 



, 

1.C 
w 
z 
I 
0 
z 
0 
I- 
Q: 
E 

w 

.s 
- 

2 .a 

c 3 -  - 7  

0 z 
0 

z 
i= 
Y 
2 .6 
0 
0 

Qf 
0 
W 

0 .5 

- 

OVERALL - 198 TUBES - I188 FEET I NTERMEDI ATE 
3 TUBES-756  FT. 

PERIPHERAL 5 4  TUBES - 324 

- 

1 1 1 
.2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 

TIME - SECONDS - AFTER OPENING OF SOLENOID VALVE 

EXTENT OF COMPLETION OF CONCENTRATION CHANGE IN THE TUBES INSIDE THE CORE vs. 
TIM ACTCD nDwir,w n c  TUC IN iFrTtnhi \ / A I  VF 
I IlVlL nl IL I \  VI L I U I I U W  VI I I  IL II..JLU a I”,. . . .-. - 



. Normal concentration change for (2.212 gpm in jec t ion  rate would have been 
less than 6.40$ = 1 6%- 

I n  sumnary t h e  so lu t ion  in j ec t ion  t e s t s  demonstrated that ;  

a. A t  ncrninai flow (600 gpm) t h e  injected concentrate 
will ar r ive  ai, t h e  top of about 18% of the number 
cf tubes i n  0,2 seconds o r  less \ F i g u r e  7 - 6 )  

b, Within the range tested t h e  t i m e  of a r r i v a l  i s  indeperklent 
of i n j ec t ion  rate a d  i n j ec t ion  concentration (Table I J - 2 ) .  

c. The t i m e  f o r  t h e  flow to pazs tkrcugh t h e  manifold- 
re-entrant  tube assembly i s  inversP1y p ropor t lomi  t o  
t h e  rste of f1c.w ‘.Figure V-8). 

. 



1. General 

The manifold tes t  d a t a  reduction code was w i t t e n  to expedite test  
data conversion t o  a so lu t ion  flow d i s t r i b u t i o n  arr&y corresponding to 
t h e  poison tube pa t te rn ,  The code was a l s o  devised to normalize the 
a r r a y  and t o  p l o t  a histogram descr ibing the  number of tubes having 
normalized flow of various magnitudes. 

The procedure consisted of taking photographs of t h e  nanometer boards 
and reading the photos by the  Senscn-Lehner scanner urhicti converted the 
readings t o  btegers fro= 1 t c  999 punched cn T'3M cards i n  a specified 
a r r ay  e 

The code uses ca l ib ra t ion  data  t3 :;anvc'rt t m  punched ca rds  i n t o  
f l o w  r a t e s  in the tubes. 

where V(K) = Flow veloc i ty  i r ,  tub? K 

J = 2 * K  

Flow I K )  = Flow i n  tube  K, i n  gpm 

PressiJj = Static pressure a t  p i to t ,  tube K 

PresslJ-1) = Total pressure of p i t n t  tube K 

C '  = Flow e o e f f i c i e r t  - ?empcrature dependent  input 

RH0 = Water density - TPmperaturF dependent input 

G . 3 5  = g c '  

0,060 = Scale  f a e t c r  f o r  Benson-Lehner scamer 
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where: 

VNorrn(K) = Normalized flow i n  tube K 

V(K) = Flow ve loc i ty  i n  tube K 

SUM V = Sum of v e l o c i t i e s  i n  tubes 0 to K 

SUM I = Number of tubes from 0 t o  K whose flow r a t e  d i f f e r s  
from zero, 

3. Input Cards 

Card Type 1 

Card Type 2 

Card 'Type 3 

T i t l e  card, any t ex t  i n  locat ions 7 t o  71 
1 i n  loca t ion  72 if  t i t l e  i s  complete 
0 i n  l o c a t i o n  72 i f '  more title cards fgllow. 

Format (213, 6x, ~ 7 . 2 ,  8x, A4, 7X, 313: 
Configuration - two d i g i t  in teger  
Temperature, OF - t w o  d i g i t  in teger  > a, < 81 
Flow, GPM, four d i g i t  f ixed point  No. 
Run Xumber, f o u r  d i g i t  lnteger  
Cate: Month, Day, Year - two d i g i t s  in teger  each 

Forrnat IF5.1, 9 ~ 6 "  1 : 
40 casds with ten three  d i g i t  in tegers  each 
16.7 ti3es the rnanoraeter r e a a i w )  

. 
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CAVITATI3N I N  II'?LET Ei;BOWS 

During the  preliminary flow d i s t r i b u t i o n  t e s t s  t h e  flow cavi ta ted  i n  
the  inlet and o u t l e t  short  radius  elbows. 
surging noise i n  t h e  flow of about one cycle  per  second frequency and con- 
s iderable  v ib ra t ion  of the  model, 
near ly  suppressed by r a i s ing  the  back ( o u t l e t )  pressure to  1 5  psi.  
450 gp5 it continued full fo rce  with 10 p s i  back pressure.  
with the  help of a stethoscope pinpointed the  source of t he  noise t o  be 
located a t  the  centers  (45O) of t h e  two goo i n l e t  P K  elbows. 
p l a s t i c  ( W C )  elbows were in s t a l l ed  t o  give g r e a t e r  r e s f l l ancy  and thus 
prevent cracking of t h e  glued j o i n t  a t  t h e  model i n l e t ,  
were replaced by long radius  schedule 10 s t a f n l e s s  s t e e l  elbows, which 
had been proposed earlier f o r  t h e  reference design, The o u t l e t  elbows 
were replaced by a s t r a i g h t  pipe connection. 

This manifested itself by a 

A t  300 gpa the  cav i t a t ion  could be 
A t  

Observations 

These  

The i n l e t  elbows 

It had been assumed t h a t  the  PSPC elbows w e r e  of standard short  radius  
schedule 40 dimensions, 
i n s ide  bend radius  w a s  p r a c t i c a l l y  zero, i - e .  a sharp corner. 

However it turned out  on disassembly that t h e i r  

Assuming a radius  of 1/32 i n c h  and a flow p r o f i l e  approaching t h a t  of 
a f r e e  Vortex& (ITg = constant)  it could be calculated for t he  case of 
the  elbow with a s ap in s ide  turning radius, using the  expressions and 
curve of TMB 5 7 5 b  t h a t  water, f a i r l y  well  sa tura ted  with a i r  because of 
the  free i n t e r f a c e  in t he  supply tank,would have a s t a t i c  pressure w e l l  
below t h e  vapor pressure,  Thus steady state cavi ta t ions  should be expected. 
For t he  long radius  elbows t h e  s t a t i c  pressure w a s  estimated by the  same 
method t o  be 15 p s i  above v a p r  pressure so t h a t  t h e r e  should be no cavi ta t ion .  
For the  standard schedule 40  short  radius  elbow the s t a t i c  pressure w a s  
estimated t o  be 10 psi  above vapor pressure,  
be expecieir. 

Here again no cav i t a t ion  would 

The same r e s u l t s  were obtained by the use of t h e  equation of the  ve loc i ty  
p r o f i l e  i n  a bend contained i n  t h e  paper of W. A. M a r r i s , h  
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where: p = s t a t i c  pressure a t  l cca t ion  x 

= inside radius of bend 

= outsice  radius of bend 

d = width of channel = R - Ri 
x = r a d i a l  dis tance of  loca t ion  from the inside boundary 

Ri 

RO 

0 

r = R + x = r ad ia l  distance to t h e  loca t ion  under consideration 

Vm = s p a t i a l  meari value of t h e  mean t raverse  veloci ty  mer t h e  
channel width 
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DERIVATION AND U S E  O F  MIXING IXNGTH 

. 

~ -~ ~ ~ 

f r o m  F, SJenItzer - The Pipe Line  engineer 1958) 4 

I ; ; .  

a =  

v =  
L =  

t. = 

a =  

Y =  

V =  

Y =  

(f. I. 

2 s 3 e c t i v e  mal dITfusivity, m sec-1 

pipe radius, m 

- mean velocity i n  pipe, m see-’ T -  
pipe length, m 

time for pasaage through pipe, sec 

lellgth of pipe containing contaminated liquid, m 

fractional purlty.at  either end of mixing zone 
kinematic v i s ~ o e i t y  of SO/SO mixture, m 2 sec -1 

fanning friction factor 

K Taylor found that the ratio a depend solely on the fannix 

iFiction factor 

- K =. 10.1 4- &y - 7.15 $ aV 

then 

From t e a t  data: 

K n L m  
av c Y - =  

7 
where c = 2.4 x 10 

’n  = 3.6 

N = 0.141 
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. Combining and rearrangipg gives 

For inder poison tube 

L = 4.5 ft 

X& in. a =  2 
u = 10.7 ft/sec 

y = 0.0060 

erf (*-I) = erf (0.9) = 1.640 

T o t 4  mixlag Lewth  S = 1.30 ft 

Forward dilfueion = 2 = 0.65 f t  S 

0.65 ft/l0.7 ft/sec = 0.061 sec forward diffusion t i m e  

lb obtain poleon arrival a t  the  top of t he  tubes f ind  

from t e s t  data: 

(1) 

(2) 

(3)  

t h w  after InJection for first  arrival of poison a t  bottom 

time for completion of concentration'change a t  b o t t o m  

t h e  mean of 1 and 2, 1.e. the  time for t he  front to arrive 

at bottom of tube. 

t r ane len t  tims through tube; a t  600 gpm 

= 0.42 B~C. 

(4) 4.5 f t  + 10.7 fi + sec 

( 5 )  forward diff'ueion length  a t  b p  of tube 

= forward di f fus ion  length a t  bottom minus change of diffusion 

length a 111 tube 
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- =  0-(2) - 0.61 seconds a t  10.7 f t / s e c  2 2 

(6) time for arrival at  the top of the tubes equals 

arrival of the  front a t  the bottom of the tube minus 

t rans i t  time through tube minus forward diffusion length. 

For 600 gpm t h i s  is: 
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