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~ ABSTRACT

22754
Exact analysis is developed with the aid of patched conic

theory which permits determination of the optimum two-impulse velocity |
requirements for interplanetary transfers. Plane changes are accom-

plished by adding impulses normal to the instantaneous plane of motion.

A single transcendental equation is developed in the relative inclination |

of the optimum orbital transfer planes., Solution of the transcendental
équation will also yield the true anomaly difference from the departure
terminal at which the secondary impulse is to be applied.

fuTHon.
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I. INTRODUCTION

Interplanetary transfer from a given planet to a specified
objective planet is a problem of increasing importance [2]. Usually,
the analysis involved in the solution of such problems must be attacked
through direct numerical methods. At times, however, the assumption *
of patched conic sections permits certain useful analytical solutions to
be developed. The analysis contained within this paper assumes that
patched conic theory can be utilized to yield the desired transfer
trajectory.

The purpose of this paper is to obtain analytical expressions
for the out-of-plane velocity increments that must be added normal to
the orbital transfer plane in order to yield an "optimum" transfer
maneuver between two terminals. It is assumed that the problem is
restricted to two impulses and therefore two separate planes of motion
exist between the departure and arrival terminals. It is further assumed

~ that the space vehicle is captured at the second or arrival terminal by

the local gravitational forces of the target planet.




| The analysis cor ‘ned hefein foll ‘s the lines of development
- of Fimple [1]., However. !l small ~ngle ap roximations and singular-
| - ities have been removed f  the ar vsis. T
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The position and velocity vectors of a given planet are usually

(-

available in terms of osculating mean elements or perhaps more accurate
parameters relative to the ecliptic coordinate system [4].
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Figure 1
" Planet Orientation Parameters
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‘For a given Julian I‘Date,' corresponding to initiation of the
optimal transfer trajectory, it is assumed that the position and velocity
vectors of the departure planet are known in the heliocentric ecliptic
coordinate system denoted by the X+ Ye o 2, OXeS of Figure 1. In the
analysis developed herein, it will be beneficial to adopt a coordinate
systém that is fixed to the departure planet at time of initial launch into
the heliocentric transfer maneuver. Hence, the principal axis xp is
taken along the radius vector of the departure planet at time of launch.
The yp axis is advanced to xp by a right angle and lies in the instan-
taneous plane of motion of the departure planet, thus defining the funda-
mental plane. Lastly, ,zp is picked such that xp ' yp and zp form a |
right-handed system. If it is assumed that ), w, and {1, that is, the
longitude of the ascending node, the argument of perigee, and the ‘
orbital inclination of the departure planet are not varying with time,

then the positiori and velocity mappings from the ecliptic to the plan~_

" etary qoordinate system are given directly by

~ roa 0 r.o . N

yol=m |y [, |5 |= ]|y | +00 |y,

. (1)

2 . z ‘z z 1 -z \

L P S LeJ  L*r LN N
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S x Y z
E MY = v vy v, | . (2)
E w W W
| x .. Yy z

E . —
ﬂ | with
u .
F Ux = cosu cos{} - sinu sin(} cosyi

UY = cosu sinfi + sinu cos{} cosi

{1

U = -ginu sini

2
[ an ]
v = =ginu cos{l -~ cosu sinQ cosi

VY .=  =ginu sin} + cosu cos(} cosi
_ , s v
. ,
— Vz = cosu sini
-
L

Wx = sin} sini
~ = -
| x = cosq sin i
[ = L
o i | z _ cos i o

]

- The angle u, the argut_i:_ent of latitude, i8 defined in terms of true -
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and its rate of change can be shown to be . [4]:

A=V +e=v= > Y (3)

where p is the semiparameter of the departure pfanet and @ is the
sum of the masses of the Sun and departure planet. To reiterate then,
for any given universal or ephemeris launch time to . all pertinent
position and velocity vectors may be rotated into the xp . yp i 2

. | P
frame by matrix [M] and [M] through Eqgs. (1) .
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II. TRANSFER PROCESS

Examination of the solar system shows that the relative in~-
clinations of all the planets to each other are fairly small. Hence, the
angle i*, the relative inclination between the departure planet's plane
(plane 1) and the first transfer plane (plane 2), also will be small. .
Similarly i*¥#, the inclination of the second transfer plane to the first
transfer plane, will again bé quite small. imagine that a one-impulse
transfer or orbit is found by any of the standard two-position vector and
time interval methods [4] between terminal 1 and the projection
of terminal 2 on plane 1. In other words, a heliocentric transfer orbit
is placed between the position vector of the departure planet and the
projection of the radius vector of the arrival planet upon the plane of

motion of the original departure planet [3]. As may be obvious, if the

target planet happenec_l to lie in the plane of the departure planet upon .

targeting, absolutely no out-of-plane impulse need be applied to effect

the three-dimensional transfer maneuver.

For the immediate future, let it be assumed that a one-impulse
transfer is utilized to satisfy the xp and yp coordinates, call them

X . yp,r , at the final terminal of the target planet. Hence, for an
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assumed launch date and time differential, axiy of the methods devel-
oped in Ref. [4] yield the fictitious transfer orbit constrained to lie

in plane 1, cdntainix@ the departure point and the projection of T, -
i.e., T*, of Figure .1 . Satisfaction of the true transfer will now require
that impulses be applied normal to the departure plane in order to obtain

the correct z_,, or final objective point.

pT

The analysis developed herein will limit the transfer maneuver
to two 1mpulsés . one applied at departure to attain a transfer in plane 2
at angle i* to f)lane 1, and a second impulse applied at point I, an
intermediate point, to obtain an orbit in plane 3, inclined by an angle
i** to plane 2. In the process of performing the maneuver, the total
out-of-plane velocity increment magnitude will be minimized and ,
point I determined. Plane 3 will be constrained to contain the final
point T, '

In closing this section it is well to note that if the projection
of the target- planet upon plane 1 is dropped to a point somewhere be-
tween T' and T in Figure 1, a very slightly different transfer maneuver
will be realized. Actually, if T is not projected at all, then a true
single impulse transfer will be placed» between the respective terminals.
As will be seen later, at times a single impulse transfer is better than
a double impulse transfer. It may be required to fepeat the analysis
developed herein, as will be discussed later, for various projections,
T' lying between point T and plane 1, to obtain the truly optimum
two-impulse transfer. This does not pose any particular problems to
the analysis. .in this case, plane 1 should be redefined to be the

instantaneous plane at the launch time defined by r; and I, , the
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position vector of the first terminal or departure planet position and
the required heliocentric velocity vector obtained from the two-position
vector and time interval method. B
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'IV. ANALYTICAL EXPRESSIONS FOR ELEMENT CHANGE

Consider a vehicle moving in plane 1, as illustrated in
Figure 2, with position and velocity vectors r 1 and _x' 1° Notice

that I 1 is the heliocentric transfer velocity in plane 1.,

<
!

Figure 2

-$

" Plane Change Geometry

10
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' To effect a transfer maneuver from plane 1 into plane 2, a
\

velocity increment must be addedto I | hormal to plane 1, i.e.,

Avlw . The result of this vettor addition can be expressed as 52 '
the new velocity vector, whgre: |
I, =1, + aAv,w,- {4)
or from Figure 2,
. s * _
f,=1, 0+ Vl tani V_Vl . (5)

.

Notice that Vl is the magnitude of velocity vector 5 1° In passing,

#r, ° _i_'l . In the

. e .. - y2 .
it is well to note that r 1 I 1 v1 while r1 I,

-~ process of impulsively adding the velocity requirement for a plane

rotation through the angle i* , the radius vector I is unchanged,

1
i.e., _r2 =T 1 Since the orbital elements of the orbit contained in
plane 2 are functions of r

and i , relationships will now be sought

2 2
between the rates of change of the orbital elements for given changes

in i* ., Consider first the computation of V2 from

Vz B SRR Vz sec 1* : .
2 _ -2 =2 _ -1 """ 6
’ b B 7 !

where i is the sum of the masses of 'the' transfer vehicle and Sun .
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The vis-viva equation may be expressed as:

. : o v2 gec? i* v
a, T, | m

and solved for az . the semimajor axis of orbit 2, to yield

: o -]
\Izsec2 1% ‘
a., = | & -1 . (8)
2 rz o
and thus
da '
z2 . Z (a vl)2 sec2 i* tani* ., (9)

3 1* LA

Similarly, the standard two-body formulas for the orbital eccéntricity e,

and true anomaly .v:'

D = (-5t

| 2 _ Ar‘)z 1 2
o = a(l-ez)
12
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S = esinv = --13—(1-’0i

C, ‘& ecosv =

ﬂ.vu
N
(]

. can be used to derive

aDz

ai*

2 ‘ ]
.9p 2a_V : ro\'
2 21 2 .2 2
S [pz + D ZrZ _(1 5 ):'sec i* tani

25: _ 1 Dy 2p
2 % *
* .
oi | , rz(pz) oi
0 2% o1 %P
21* T2 as*

where the\pai'ameters e and p as functions of i* are

r, -t | ~
= -z -z = L L] L] t
D, 3 (%, + vy, v, + 2121/(#).

13

. (10)

(11)

(12)

. (13)

(14)

- (15)
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2 .
T )
2 2 1 2
2 . ( ‘az az 2
= a.(l-e?) (17)
P, 2 2
with a, obtained from Eq. (8) and -
D, p .
svz r2 ‘pz) ¢ gvz r, 1. (18)

The unit vector W 1= (le R Wyl . Wzl ) is directly computable from
the known position and velocity vectors I and 1 1 from:
S r, X T
-1 -1 .
w, = — . (19)
(“’1) '

An auxiliary set of unit vectors U anc_i v 2 will be introduced

~ and defined by.

A |
v, = = (20)
T, . .
14
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4

v, = [ i, - (DZJ_‘)U ]/(upz)* : (2

.

Geometrically, U 2 is a unit vector pointing towards the vehicle, and

v 2 ¢ likewise, is a unit vector advanced from U 2 by a right angle,

which lies in the plane of motion. As might be evident, f U, is not -

. . [=2
functionally dependent on i*, whereas 'V, is directly linked to 1*
through: ’

2
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V. POSITION AND VELOCITY VECTORS AT SECONDARY IMPULSE

In terms of the unit vectors I_.[ 20 and V.. ., evaluated at

- 20
time to . the position and velocity vectors at any future time, as de-

noted by the secondary subscript I, may be shown to be [4]:

Ta = *a¥0* YV (23)
I = *1Y0*Y1Y20 - | | (24)
where
i _ * -
X = Tpcosvt YYI =1 sinv* |

- 16




SR

B B

[ BN A §

L

H

Ly Uy v

i |

[..

.o

with

v - vV, o

4

In order to effect the second plane changé, a velocity increment

_ will be added normal to plane 1 and thus force the incremented velocity

vector to lie in plane 3. The reason for not adding the second velocity
increment, call it AVz . normal to plane 2 is because t}{is maneuver .

would cause a side velocity increment

AV, sin i* (26)
to occur parallel to plane 1. This situation, under the construction .
employed herein, would cause an error in the interception coordinates

xpT and Yp'r . Actually, adding the velocity increment normal to plane

- 2 causes the error AV2 sini* to be incurred, which must be corrected.

Firing normal to plane 1 causes a loss of velocity increment equal to
Av, sini* . Apparently, no true loss is incurred by adding av,
normal to plane 1 so that it is possible to form the new velocity vector
as: ‘

-~

Fo=h o+ AV, W, ., (27)

The inagnitude of AVZ is still to be determined.

17
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_ VI. EXPRESSION FOR THE PRIMARY IMPULSE

From the previous sections, it is assumed that a heliocentric

transfer orbit has been obtained which passes through the planet located

~ at terminal 1 of the transfer oibit and the projection of T on plane 1.

Hence, 1 1° I 1 the initial heliocentric velocity and position vectors
are known.
- y€ Projection of
’ ‘Target Planet
on Plane
Defined by
r, and t
-1 -1 Target
Planet
- e
I
I -
: Arx
. . -0
el W In
B L |
’ Departure Planet
Figure 4

Velociti and Position Vectors at Takeoff
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As can be seen from Figure 4, addition of Ai‘m to the planetary

velocity at r 1= where the pl subscript denotes the initial planet,

r .
-pi- .
results in the required transfer trajectory. It should be noticed that A _i_'°°
is obtained by the vector subtraction of the heliocentric and planetar?

velocity vectors at the first terminal.

Now, since the launch velocity, denoted by the,:;subscript o,
at terminal 1 is equal to the sum of the squares of the e@scape velocity
and residual velocity at infinity ,

2
y (28)

where vpar is the parabolic velocity and A _i_'m is the velocity at a very

remote point, say for purposes herein, infinity. Parabolic velocity is
defined by setting the semimajor axis of the vis-viva equation to a very

large number such that for all practical purposes as é- - 0,

\' = ., (29)

where T is the planetocentric position vector magnitude of the vehicle

~ about to commence the transfer maneuver and y' is the sum of the

masses of the vehicle and escape planet. From the previous discussion,

it fqllows that the additional velocity increment is:

20
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J

%
= 2 0y - 2 e - 2 'y -3 2 2 2 %
AV1 3Vpar+(xp.b xl) +(pr yl) +(.zp& zl) +V1 tan 1"}
/ £
[ _2 1
- K (';:— "-;) . (30)
(o] i

where the subscript 1 connotes heliocentric transfer‘velocitx\(, the
subscript p{ denotes planetary velocity, and the last term on the
right-hand side of Eq. (30) is ﬁhe orbital speed at point ro . the launch
point. It should be noted f.hat, the contribution of ép L and 2 1 when
T is projected to T' , is zero due to the coordinate system employed.
The contribution v, tan i* is the velocity required for the out-of-plane

maneuver.

21
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VII. . EXPRESSION FOR SECONDARY IMPULSE

Consider the determination of a third normal unit vector, w 3 ¢

perpendicular to the target planet plane of motion. The normal vector

w 3 is easily found at the desired intercept time from the known position
and velocity vectors r 3 I 3 from:

W, =1, x i, /epy)E BESY

*

It should be noticed that W, is independent of i° and v¥ . In order

3

to constrain 5 or the final velocity vector to lie in plane 3, the fol-

3
lowing condition may be imposed:

I " Wy=0 . (32)
or from Eq. (27),
(B+ aV,W; ) - Wy=0 . (33)

22
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which yields:

where

and

[

szs_

. (34)

om? tg40 gty e

(#p,)* %X . w, +¥ - (w,+ w, tani’)

av, = - A ‘Z R A £ 1)
(#pz) Wy

wy = Uy " W,

w, = 1(E; Wid=lx) - 51Ty - W)

wy = V(W W)

23
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It should be noticed that the w, coefficients are known directly from

the initial conditions and auxiliary data of the problem. Equation (35)
may be thrown into its true fur{ctional dependence by employing Eqgs.

(25), i.e.,

* u B * *'
' %sz-smv ;u wl-i- (—p—;) §Cv2+ cosv %ng'*'. wa tani f

|

2
- | (Bp, ))é w,

The functional dependence of sz . C and p_ upon i* are given by

v2 2

Eqs. (15), (16), (17) and (18).

24
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VIII. TOTAL VELOCITY INCREMENT MINIMIZATION

If the assumption is made that the planetary vehicle or probe
is captured by the objective or target planet, the total mission velocity

increment requirement is given by:

A= AV1,+

AVz ' . : (37)

More explicitly, using Eqs. (30 and (36),

2

A= {31 4_32 tan® 1*} - Byt |- [{sz' sinv*}uwl

() (oar o] oot |

(38)

25
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where ;
~ 2. . . 2 . . (2 . . (2
By & Vpar + (X, =%)) + vy, =7) "+ (2, - 2))
2
hp = V)
o o fz o 1)
) 33 I T a- .
o)
As can be seen, A is a function of i* and v© so that
dA A
setting - ' . equal to zero will result in the desired stationary
-9i ov

condition. Hence, by formal differentiation, 3 A / 3i* yields

"F, = B tani* sec? i* B, + B tan® i¥ "3
S ’ 1 2

| % 3 ,
Cy, 9p oC_ .
+ L (—“-) S5 1 ——: - (--“—-) (C Wy seczi*+ 71 v2>
2\\P2/ P2 aff \P2 | at*
o8 | v 3p
- bw, v2 +2p1 7 (—.“—) c-y1+ uwls 2 =0
ai* | “P2.72\\P; ai*
(39)
26
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with:
= *
71 = wz+ w3 tani.
- £
C = C _+cosv¥
ve )
S = S _-sinv®

and 3A/3v* results in
*, [H & *
F. = Kw; cosv™ + o 14! sinv: = 0 . (40)

The 15‘1 ' I-‘2 equations represent a system of two equations in

the unknown optimal variables i* . v¥ . These two equations are very

complicated analytic functions of i* and v*,_ functionally dependent

upon the partial derivatives and elements

5,5 °C,, °p,

ai¥ 24* 3i¥ v2

. 8 ! CVZ' P2 2

which have already been obtained analytically, Eqs. (12) through (18) .

27
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To reduce Eq. (39) to an equation in i* . consider introduction
of the auxiliary angle ¢ defined through:

K : y
. B wj : P, 1
cosge = 3 . Sing = - 3
’ 2 2 2 2
(hw )+ £y , (hw )+ £y
1 P 1 : ~1 p 1
2 2
(41)
so that Eq. (40) becomes
- * '
cos(o=-v ) = 0 (42)
which implies
sinv¥ = £ coso . (43)
Expansiqn'of Eq. (42) also yvields
cos v¥ = - sinv* tang , (44)

28




so that for secondary impulses applied less than or equal to 7 radians
apart from the primary impulse, the sign of Eq. (43) should be chosen
such that sinv¥* 2 0. As may be evident, the last two equations reduce
Eq. (39) to an analytic function of i* , since C and S are uniquely
determined.

Solution of Eq. (39), an exact equation in i* , can be rapidly
and conveniently handled by the standard numerical Newton procedure.
In all cases, a small value of i¥* , say a few degrees, will converge
rapidly to the desired zero. Of the two 'zeros inherént to Eq. (39), a
positive value of i* is chosen if the target planet is above the initial
departure plane, and similarly, a negative i* is the solution of the
transfer problem when the target planet is below the original departure *

plane.

29
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IX. EXAMINATION OF THE VELOCITY INCREMENT FUNCTION

Equation (37), for constant v¥, is an analytic function with
certain properties. Certainly the minimum value of AV1 . from Eq. (38),

is:

.

(avy)) = (8 ) - By - @8
min

for i* = 0, and increases positively for any other values of i*¥. The
absolute function lAVZI is, of course, always positive and vanishes

at:

. (4§)
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A little thought will reveal that AV1 isa tangent function
increasing to the one-half power so that curve ab of Figure 5 is pro-
duced. The second 1mbdse function must increase from both sides of
i: and yield curve c‘ i* 4 of Figure 5. Addition of AVl and lszi

L
results in A , the total velocity increment function., Furthermore,

1.
interval, it is conceivable that a minimum exists, call it i; . As may

since AV1 increases in (o, i¥ ) and lAVzl decreases in the same

be evident from the graphical construction, the maximum value of 1:;1 ‘

the zerc of Eq. (39) will, for optimum transfer, never exceed i : ; since

this would correspond to an increased velocity increment and no minimum

can exist for i* > i .

Figure 5

Graphical Representation
Velocity Increment Equation

31




~
i
r
[ %)

Hence, for a given zero of Eq. (39) corresponding to v* , the limiting

1: is found from Eq. (46). Then, if

L3

* g
Sy ¥,

O |

a single impulse transfer will be better than a double impulse transfer.
In opposite fashion, if

71

(=1

* *
< <
0 1m il, ¢

IS

-

the double impulse transfe:: will be optimum.

1 M

]

-

(-

N

™
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. X. TARGET PROJECTION EQUATIONS

~

The preceding analysis tacitly assumed that the original relative
departure velocity vector was contained in the plane of the departure
planet. Thus, a heliocentric orbit was placed between the radius vector
at the departure planet and the projection of the target planet upon the
initial plane of motion of the departure planet. If T in Figure 1 had

not been projected upon plane 1, it is evident that a single impulse transfer

would have resulted between the initial and final terminals. It appears

feasible to expect that an optimum projection length of T' towards T

or z;'3 exists which, in combination with the previous analysis, will

yield a true optimum. Hence, the previous analysis should be performed

*
p3
= nAz

for Az =_ 0, with no change to the equations developed, and for

z* %*
p3 p3 < .
T'T into even increments. In essence then, the initial one-impulse

where n is a constant such that it divides the length

heliocentric transfer trace is taken slightly inclined to the instantaneous _ '

: depafture plane of the planet at terminal 1.
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oot The angle of inclination between plane 1 and the new departure

B plane, call it 0, will be given in terms of the vectors with components
; = * . ’
. Iy =% e ¥y 2} andr,; = (xp3 * ¥p3 * %p3 ) by:
qz "
j
L

_ -1 . . 2 ‘ , G
1, = cos ;[.(".‘1 Yp3 " *p3 V1 Ylr z, sinlvy = vy )] o

(47)

where

2%
sia{vy =vy) = *[1'(51 Ip/E1Tp) ]

o

L

with the positive sign holding if the target planet is less than or equal

to m radians apart from the first terminal and the negative sign control-
ling for transfers > w apart.

- A-rotation from the xp . yp ‘/ zp coordinate system to the newly

oriented x;, . y; . z; system is given by:

Cx ] 1 0 o [ x|
p P
e — L— — =] o




with the same matrix holding for velocity transformations. Therefore,
the previous analysis may now be repeated with -2.1 ‘ 5'1 to see if the
total velocity requirements are diminished. The optimally gain will in

most cases be very small.

35




e
f

. B

b tngi

r
S

f g R G

{3

)

)

P
8

.7

(-

S

——
by

ACKNOWLEDGEMENT

The author wishes to thank Mr. Eugene‘Wendorf and Robert

Chase for their valuable comments and suggestions.




|

&

{1 71

(-

7

]

r
.
L
C

Y 07y )

a
)
v
-

L A

]

[1]

2]

(3]

a1

REFERENCES

Fimple, W. R., Optimum Midcourse Plane Changes for Ballistic
Interplanetary Trajectories, United Aircraft Corporation Research
Laboratories, Report A-110058-3, June 1962.

.Breakwell, J. V., R. W. Gillespie, and S. Ross, Researches

in Interplanetary Transfer, ARS Journal, August 1961,

Lascody, D. N., Analﬁrtical Determination of Three-Dimensional

Interplanetary Transfers, Lockheed California Co., LR16179,

September 1962,

Escobal, P. R., Methods of Orbit Determination, John Wiley &
Sons, In Press.

37




DISTRIBUTION

1L Internal
t - R. O. Chase : Dr. M. Scott
w Dr. E. Cook Evelyn Sticht
| ' P. R. Escobal (2) E. Wendorf
|~ D. Phillips Dr. A. Williams
L W. Schuman : _ Library
H External
- Mr. Wilbur Funston ) Mr. Bernard Billik
i j Flight Evaluation Branch ) Aerospace Corporation
- Aeroballistics Division Astrodynamics Department
— ' George C. Marshall 2350 East El Segundo Blvd.
Lo Space Flight Center El Segundo, California
— : Huntsville, Alabama . ‘
—a / Mr. Andrew Milstead
e Mr. George McKay Aerospace Corporation
o Performance Evaluation Section Astrodynamics Department
g Propulsion Division ' ‘ 2350 East El Segundo Blvd.
George C. Marshall El Segundo, California
- Space Flight Center
—_ Huntsville, Alabama ~ Dr. Charles Price, Head
: v ' Aerospace Corporation
‘‘‘‘‘ Mr. Bruce Douglas ' Astrodynamics Department
— Space Technology Laboratories 2350 East El Segundo Blvd.
One Space Park El Segundo, California
o Redondo Beach, California '
— . Mr. Donald Lascody
- Douglas Aircraft Company
) : 3000 Ocean Park Blvd.
- ’ Santa Monica, California
- .
! > 38




