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3375-9 
Exact analysis is developed with the aid of patched conic 

theory which permits determination of the optimum two-impulse velocity 

requirements for interplanetary transfers. Plane changes are accom- 
plished by adding impulses normal to the instantaneous plane of m h o n  
A slngle transcendental equation is developed in the relative inclinatlon 

of the optimum orbital transfer planes Solution of the transcendental 
equation wi l l  also yield the true anomaly difference from the departure 

terminal at which the secondary impulse is to be applied. 
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Interplanetary transfer from a given planet to a specified 

objective planet is a problem of increasing importance t21. Usually, 
the analysis involved in the solution of such problems must be attacked 

through direct numerical methods. At t i m e s ,  however, the assumption 

of patched conic sections permits certain useful analytical solutions to 
be developed. The andlysis contained within this paper assumes that 

patched conic theory can be utilized to yield the desired transfer 

trajectory. 

The purpose of this paper is to  obtain analytical expressions 

for the out-of-plane velocity increments that must be added normal to 
the orbital transfer plane in order to yield an "optimum" transfer 

maneuver between two terminals . It is assumed that the problem is 
restricted to two impulses and therefore two separate planes of motion 

exist between the departure and arrival terminals. It is further assumed 

that the space vehicle is captured at the second or an-ival terminal by - 

the local gravitational forces of the target planet. 
, 





XIe INITIAL COORDINATE SYSTEM 

The position and velocity vectors of a given planet are usually 

available in terms of osculating mean elements or perhaps more accurate 

parameters relative to the ecliptic coordinate sys tem C43 

e 

Target Planet T 
t' 

Plane of 
Departure Planet . .  

I .  c - .  

Figure 1 

Planet Orientation Parameters 
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For a given Julian Date, corresponding to initiation of the 

optimal transfer trajectory, it is assumed that the position and velocity 
vectors of the deparhik planFt are known in the heliocentric ecliptic 

z axes of Figure 1. In the coordinate system denoted by the x 

analyeis developed herein, it will be beneficial to adopt a coordinate 

system that is fked to the departure planet at time of initial launch into 

the hefiocentric transfer maneuver Hence, the principal axis x 
taken along the radius vector of the departure planet at time of launch. 

The y by a right angle and lies in the instan- 

taneous plane of motion of the  departure planet, thus defining the funda- 

and z forma mental plane Lastly, z is picked such that x 

right-handed system. If it is assumed that SI , w 8 and i ,  that is 0 the 

longitude of the ascending node, the argument of perigee I and the 
orbital inclination of the departure planet are not varying with time, 
then the position and velocity mappings from the ecliptic to the plan- 

€ 

is 
P 

axis is advanced to x 
P P 

P , yP P P 

' 

' etary coordinerte s y s t e m  am given directly by 

L 

where the t ime  dependent transformation matrix is : 

, -  
A' . 

4 



with 

z U 
Y U U 

X 

"X vY vz 

z W W 
- x .  Y 

W 
II 

u ' =  COSU cosn - sinu sin0 cosi 
X 

Y 
U 

uz 

z V 

X 
W 
.- 
W 

W 

X 

z 

c 

= COSU S h q  + sinu cosncosi 

.= sinu sini 

- COSU sini 

- - -COsn sini 

cosi . . - - 

The angle u, the argument of latitude , is defined in terms of true * 

anomaly v by'. 

u O , V f  w 0 -  

. 
. 
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~ 

and .its rate of change can be shown to be [4]: 

where p is the semiparameter of the departure planet and fi  is the 
I 

sum of the masses of the Sun and departure planet. To reiterate then, 

for any given universal or ephemeris launch time t 8 all pertinent 
0 

position and velocity vectars may be rotated into the x 

frame by matrix [MI and EM1 Uvough Eqs. (1) . P yP =P r ltr 

. .  

* 
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III, TRANSFERPROCESS 

Examination of the solar system shows that the relative in- 

clinations of all the planets to each other are fairly small. Hence , the 

angle i* 8 the relative inclination between the departure planet's plane 

(plane 1) and the first transfer plane (plane 2), also will be s m a l l  . 
Similarly i**, the inclination of the second transfer plane to the first 

transfer plane, wil l  again be quite sma l l .  Imagine that a one-impulse 

transfer or orbit is found by any of the standard two-position vector and 

t i m e  interval methods c4] between terminal 1 and the projection 
of terminal 2 on plane 1 a In other words, a heliocentric transfer orbit 

is placed between the position vector of the departure planet and the 

projection of the radius vector of the arrival planet upon the plane of 
motfon of'the original departure planet C31 . 'As may be obvious 0 if the 

target planet happened to lie i n  the plane of the departure planet upon . 
targetlng, absolutely no out-of-plane Impulse need be applied to effect 

the three-dimensional transfer maneuver 

, 

For the immediate f u t u r e 0  let it be assumed that a one-impulse 

P P 
transfer is utilized to satisfy the x and y coordinates, call them 
X I at the final terminal of the tatpet planet. Hence 8 for an pT 'pT 

7 
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- 

assumed launch date and time differential, any of the methods devel- 

oped in Mf . La] yield the fietitiout transfer orbit constrained to lie 
in plane 1, contalning the departure point and the projection of T 8 

i .e., T' , of Figure 1 . Satisfaction of the true transfer will now require 
that Impulses be applied normal to the departure plane in order to obtain 
the correct 2 or final objective point. PT 

The analysis developed herein will l imi t  the  tfansfer maneuver 

to two impulses, one applied at departure to attain a transfer in plane 2 

at angle i* to plane 1, and a second impulse applied at point I, an 
intermediate point, to obtain an orbit in plane 3, inclined by an angle 

i** to plane 2. In the process of performlng the maneuver, the total 

out-of-plane velocity increment magnitude will be AhimiZed and 
point I determined. Plane 3 will be constrained to contain the final 
point T. 

, 

In closing this section it is well to note that if the projection 

of the target planet upon plane 1 is dropped to a point somewhere be- 

tween T' and T in Figure l ,  a very slightly different transfer maneuver 

will be realized. Actually, if T is not projected at all, then a true 

single impulse transfer will be placed between the respective terminals . 
As will be seen later, at times a single impulse transfer is better than 

a double impulse transfer. It may be required to repeat the analysis 

developed herein, as will 'be discussed later, for various projections, 

T' lying between point T and plane 1 , to obtain the truly optimum 

two-impulse transfer. Th i s  does not pose any particular problems to 

the analysis . 
instantaneous 

In this case,  plane 1 should be redefined to be the 

plane at the launch time defined by r and ? , the . - - 

a 

' I  
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L 
L; 

- -  
I 

position vector of the first terminal or departure planet position and 
the required heliocentric velocity vector obtained from the two-position 
vector and time intetrval method. , .  

. .  

. 
9 



c' 
n N. ANATiYTIGAL MPRESSIONS FOR ELEMENT CHANGE 

* 

r 
L; Consider a vehicle moving in plane 1 ,  as illustrated in 

Figure 2, with position and velocity vectors - r and - k . Notice 

\-- 

Figure 2 
t 

' Plane Change Geometry 
i 

. 

. 



To effect a transfer maneuver from plane 1 into plane 2, a 
\ 

velocity increment must be added to - k normal to plane 1, i.8 . 0 

AVIW . The result of this ve'ctor addition can be expressed as 2 

the new velocity vectar, where: 
- - 2  ' 

or from Figure 2 ,  

i = i + V1 tani*W1 - . - 2  - I  . 

. 
Notice that V1 *is the magnitude of velocity vector - k 
it is well to note that - il 
process of impulsively adding the velocity requirement for a plane 

rotation throughathe angle I* , the radius vector - r 
i .e . , r = r . Since the orbital elements of the orbit contained in 

plane 2 are functions of - r 
between the rates of change of the orbital elements for given changes 

In I* . Conslder flrst the computation of Vz from 

. In passing 8 

In the = v1 2 while i, #il i1 

is unchanged, 

- 2  -1 
and - k , relationships will now be sought 

where p is the sum of the masses of 'the transfer vehicle and Sun. 

11 ' 1 



The vis-viva equation may be expressed as : 

b 

2 2 .  V1 sec i* 2 1 
r . P  2 2 
- -  - P  

a . ( 7 )  

and solved for a2 8 the semimajar axis of orbit 2, to yield 

1 - l  

2 2  V, sec i* 

cr a 2 = [+ 2' ' - 

and thus 

- a a2 = - 2 (a2V1) 2 sec 2 i*tant* 
a is cr ( 9 )  

Similarly 8 the standard two-body formulas for the orbital eccentricity e 8 

and true anomaly . v : 

D 

7 
1 

' I  

w 
4 

2 
8 = (1- i) ' 2  .+ - 1 D2 

a 

- - .  

P - a ( 1 - e  2 ) P r7 

.12 

P -  

I 



esinv = -(p) D 8  
r 

E 
V 
S 

P 
r - -  ecosv = - - 1 

can be used to derive 
t 

a D2 
-P 

a r* 
0 

(13) 

- x  a cVz 1 ap2  

a i* '2 ai* 
D (14) 

n 
!J 

where the,parameters e and p as €Unctions of i* are 

. 
13 
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id' 

2 

4 e 2 = (1-5) + -  1 

2 2 .  a 

with a2 obtainedfrornEq. (8) and 

- 1  . (18) 
p2 = -  
2 r 

D2. 9 = - 
( P 2 )  cv2 2 sv2 r 

I 

The unit vector W1 - = (Wxl a Wyl 0 Wzl ) is directly computable from 
the known position and velocity vectors 5 and i from : - 

.- 

An auxiliary set of unit vectors 2 ,and will be introduced 
and defined by: 

b r - 2  

2 r 
7 

14 



Geometrically, - U Is a Unit vector pointing towards the vehicle, and . 

by a right angle, 
which lles in the plane of motlon. As  might be evident, U is not - 
functionally dependent on is 0 whereas V 2  0 Is directly b e d  to i* 

through: 

8 likewise, Is a unit vector advanced from U v 2  - 
- 

L 

. 

. I  
I 
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V. POSlTlON AND VEmI!l!Y VECTORS AX SECONDARY IMPULSE 

In terms of the unit vectors U - 2o and 2o - 8  evaluated at 

time to 8 the position and velocity vectors at any future time, as de- 
noted by the secondary subsctipt I, may be shown to be [4] : 

. 
r = x  -a VI -Ut0 + YVI !! 20 

where 

.- x -  r cosv" , VI = I 



. .  
p1 
ii. 

I: 

F . .  
Iba 

I -  

C 

with 

In order to effect the second plane change, a velocity increment 
will be added normal to plane 1 and thus force the incremented velocity 

vector to lie in plane 3. The reason for not adding the second velocity 

increment, call it AV2 , normal to plane 2 is because this maneuver 
would cause a side velocity increment 

AV2 Sini* (26) 

to occur parallel to plane 1 . This  situation, under the construction 

employed herein, would cause an eiror in the 'interception coordinates 

. 

x and y . Actually, adding the velocity increment normal to plane PT PT 
2causes  the e m  AV2 sini" to be incurred, which must be corrected. 

Firing normal to plane 1 causes a loss of velocity increment equal to 

2 AV2 sini" . Apparently, no true loss is incurred by adding AV 
normal to plane 1 so that it is possible to form the new velocity vector 

The magnitude of AV is still to be determined. 
2 

17 
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Impulse Application Points 
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VI. EXPESSION FOR THE PRIMARY IMPULSE 

From the previous sections, it is assumed that a heliocentric 
transfer orbit has been obtained which passes through the planet located 

at terminal 1 of the transfer orbit and the projection of T on plane 1 .  

Hence, - r , 2 , the initial-heliocentric velocity and position vectors 
are known. 

* 

Projection of 
Target Planet y, 

1 
on Plane 

Defined by 

. 

Figure 4 

Velocity and Position Vectors at Takeoff 
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As can be seen from Figure 4, addition of A - i to the planetary 

velocity at r = r where the p4 subscript denotes the initial planet, 

results in the required transfdr trajectory. It should be noticed that A - Q D  ? 

is obtained by the vector subtraction of the heliocentric and planetary 
velocity vectors at the first terminal. 

-1 - p e '  

Now, since the launch velocity, denoted by the subscript o , 
at terminal 1 is equal to the sum of the squares of the escape velocity 

and residual velocity at  infinity I 

where V is the velocity at a very 

remote point, say for purposes herein, infinity. Parabolic velocity is 
is the parabolic velocity and A 2 

I Par 

defined by setting the semimajor axis of the vis-viva equation to a very 

large number such that for all practical purposes as ; - 0 , 1 

2p1 . 
r 

= -  2 

v P a  0 

. .  

where ro is the planetocentric position vector magnitude of the vehicle 
about to commence the transfer maneuver and ,cr' is the sum of the 

masses of the vehicle and escape planet. From the previous discussion, 

it follows that the additional velocity increment is : 

I 

l 

I 

20 



j 

-cr'(t -$,) 8 0 

where the subscript 1 connotes heliocentric transfer 'velocity, the 

subscript p3, denotes planetary velocity, and the last term on the 

right-hand side of Eq. (30) is the orbital speed at  point ro , the launch 

point. It should be noted that, the contribution of 2 and il when 
PC 

T is projected to T' is zero due to the coordinate system employed. 

The contribution V1 tani* is the velocity required for the out-of-plane 
maneuver. 

,21 
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VII. EXPRESSION FOR SECONDARY IMPULSE 

I 
I 

I 
I 

Consider the determination of a third normal ueit vector, VV3 , 
perpendicular to the target planet plane of motion. The normal vector 

W3 - is easily found at the desired intercept time from the known position 
and velocity vectors - r , 2 from: 

It should be noticed that W3 - is independent of i* and v* In order 

to constrain - i. or the final velocity vector to lie in plane 3 , the fol- 

lowing condition may be Imposed: 

or from Eq. (27),  

f31 y3 = 0 

. .  
22 



which yields : 

r 
i c- 

Using Eqs . (24) and (26) ,  the following reduction is possible : 

. 
where 

and 

.- 

- .  
23 ' 



It should be noticed that the oi coefficients are known directly from 
the initial conditions and auxiliary data of the problem . Equation (35) 

may be thrown into its a 8  h'ctional dependence by employing Eqs . 
(25), i . 8 . 8  

c 

and p The functional dependence of Sv2 8 Cvz upon i* are givenby 
2 

EqS. ( IS)#  (16), (17) and (18). 

24 
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f l  
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i p  

1 : : .  
I -  

T 
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VIIU. TOTAL VELOCITY INCREMENT MINIMIZAITION 

If the assumption is made that the planetary velkcle or probe 

is captured by the objective or target planet, the total mission velocity 

increment requirement is given by: 

A = A V l +  IAV21 . 

More explicitly, using Eqs . (30 and (36), 

(37) 

25 

ii 

(38): 



where : 

As can be seen, A 

setting - ah , - 'A equal 
a i* a IT* 

condition. Hence, byformal 

2 F~ i p2 tani* sec i* 

. 

is a function of i* and v* so that 

to zero wil l  result in the desired s t a t i o n e  

differentiation, a A /a i* yields 

26 

(39) 



with: 

y1 3 w2+ w3 tani* 
b 

c I cv2+  cosv* 

? 

r 
It 
, 

I 

I, 

s = s -sin+ v2 

and aA/av* results in 

F2 pwl cosv* +' (kr y1 sinv* = 0 . 

The F1 F2 equations represent a system of two equations in 
the unknown optimal variables i* , v* . These two equations are very 

complicated analytic functions of i" and v*, functionally dependent 

upon the partial derivatives and elements . L 

n 
/ !  
ti 

r t which have already been obtained analytically, Eqs . ( 12) through ( 18) . 

I-- 

! I  * 
L! 

27 



To reduce Eq. (39) to an equation in i* # consider introduction 

of the awdliary angle. u defined through: 
a 

Lj 

c 
r 

so that Eq . (40) becomes 

cos(o-v*) = 0 

which implies 

sinv* = f COSU : 
.- 

Expansion’of Eq. (42) also yields 

cosv*=-sinv*t*u # 

28 
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c' . 

so that for secondary impulses applied less than or equal to B radians 

apart from the primary impulse 8 the sign of Eq . (43) should be chosen 
such that shv*  2 0 , .  As may be evident, the last two equations reduce 

Eq. (39) to an analytic function of i* , since C and S are uniquely 

determined . 
Solution of Eq. (39), an exact equation in i* , can be rapidly 

and conveniently handled by the standard numerical Newton procedure. 

In all cases, a s m a l l  value of i* , say a few degrees, will converge 

rapidly to the desired zero. Of the two zeros inherent to Eq.  (39),  a 

positive value of i* is chosen if the target planet is above the initial 

departure plane, and similarly, a negative i* is the solution of the 

transfer problem when the target planet is below the original departure 
plane. 

' 

L 

. 29 
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DC. EXAMINATION OF THE VELOCITY INCREMENT FUNCTION 

Equation (37), for constant v+ , is an analytic function with 

certain properties Certainly the minimum value of A V1 , from Eq. (38), 

is : . 

9 (q) = ( 8 , )  - 83 
min 

(45) 

for i* = 0 , and increases positively for any other values of i*. The 

is, of course, always positive and vanishes IAV21 absolute function 
t 

at : 

30 
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A little thought will reveal that AV1 is a tangent function 

increasing to the one-half power so that CUNB ab of Figure 5 i s  pro- 

duced. The second impulse function must increase from both sides of 

i* and yield curve c i* d of Figure 5 .  Addition of AV, and AV 
results in A , the total velocity increment function. Furthermore, 

since AV1 increases in ( 0 ,  i* ) and I AV2 I decreases in the same 
22 

interval, it is conceivable that a minimum exists, call it i* . As may m 
be evident from the graphical construction, the maximum value of iz , 
the zero of Eq. (39) will, for optimum transfer, never exceed i 4 ’  
this would correspond to an &eased velocity increment and no minimum 

can exist for i* > iz . , 

.t 4 I 2i  

* since 

b . 
A 

I 

I 
I I I 1 1 I I I T i  

I -i 

A 

,-4 --3 --2 0-1 .o 1 2 3 , 1 . 4  

;* m c 
Figure 5 

Graphical Representation 
Velocity Increment Equation 
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Hence, for a given zero of Eq. (39) corresponding to v* 8 the limiting 

i* is found fiom Eq. (46). Then, if 4 

a single impulse transfer will be better than a double impulse transfer. 

In opposite fashion, if 

0 i’ 5 i* m . c e  

the double impulse transfer wi l l  be optimum. 

c 

32 
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. 
X. TARGET PROJECTION EQUATIONS 

. 

The preceding analysis tacitly assumed that the original relative 
departure velocity vector was contained in the plane of the departure 

planet. Thus, a heliocentric orbit was placed between the radius vector 

at the departure planet and the projection of the target planet upon the ' 

initial plane of motion of the departure planet. If T in Figure 1 had 

not been projected upon plane 1 , it is evident that a single impulse transfer 

would have resulted between the initial and final terminals. It appears 

feasible to expect that an optimum projection length of T' towards T 

or z * exists which, in combination with the previous analysis 8 will 
P3 

yield a true optimum. Hence, the previous analysis should be performed 

for z * =_ 0 ,  with no change to the equations developed , and for 
P3 

z *  = nAzp3 * where n is a constant such that it divides the length 

T'T into even increments. In essence then, the initial one-impulse 
P3 

heliocentric transfer trace is taken slightly inclined to the instantaneous 

departure plane of the planet at terminal 1. 

33 



The angle of inclination between plane 1 and the new departure 

plane call it '0 0 will be given in terms of the vectors with components * 
0 z ) by: f l  ( X I  Y1 21) andzp3 ( x p 3  5 3  p3 

-1 - x y v t r l  rp sin(vg - vl I] 8 cos ! [@l yp3 p3 1 

where 

+! 
sin(v - v l )  = f 1 - ( r l  - Tp/:-l r r p 12] 

3 il 
with the positive sign holding if the target planet is less than or equal 

to n radians apart from the first terminal and the negative sign control- 
ling for transfers > n apart. 

A-rotation from the x , yp i z coordinate system to the newly . P P 

(47) 

- 
oriented x' ' , z' sys tem is given by: 

P I Y P  P . 

- 
1 0 0 

. o  cosi, sin io 

. -  
X 

P 

yP 

Z 
P - -  

. I  

34 



with the same matrix holding for velocity transformations. Therefore, 
the previous analysis may now be repeated with - ?\ , L\ to see if the 

total velocity requirements are diminished. The optimally gain will in 

most cases be vefy small ,  

35 
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