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ABSTRACT

The thesis considers the dynamic stability of the bending vibrations of
a uniform free-free beam subjected to an end thrust of magnitude
Ty + Ty cos 2t , where Ty and T, are constants. The mathematical
model considered approximates an actual rocket vehicle; hence the results
of this investigation are applicable to rockets. The direction of the thrust
is assumed to be controlled by means of a simple feedback system which
uses an attitude sensor to control the thrust gimbal angle; thus the beam
would have directional stability as a rigid body. The equations of motion
are derived for two-dimensional motion. Longitudinal compliance of the
beam is included, but shear deformations, damping, and rotary-inertia |
effects are neglected. Small distortions are assumed. This assumption
results in linear, partial differential equations which are solved by expand-
ing the lateral displacement function in terms of two rigid-body functions
and of the eigenfunctions of the unloaded free-free beam. Application of the
Galerkin method then leads to a set of linear, second-order, ordinary dif-
ferential equations, having in general, periodically-varying coefficients.

For the special case T1 = 0 , the equations are linear differential
equations with constant coefficients. The stability of the vibration modes
is determined in this case by observing the trend of the natural frequencies
as increasingly larger values of T, are considered. Impending instability
is characterized either by the reduction of one of these frequencies to zero
or by the coalescence of a pair of frequencies. In the case of the beam
with no feedback control, it is found that the initial instability occurs when
the two lowest bending frequencies coalesce at a value T, = 109.9 4 7/ ] 2
where £ is the length of the beam and EI its bending stiffness. With a
feedback control system, regardless of the magnitude of the control-system
parameters, the thrust may not exceed Ty = 25.67 E1/R 2 without causing
the system to become unstable.

- iii -




In the more general case (T4 # 0) , the governing differential equations
have certain coefficients which vary sinusoidally with time. A method for pre-
dicting the stability of the system by investigating the nature of the solutions to
this set of equations is developed. The method is similar to that used by Hill to
solve the less general Hill (or Mathieu) equation.

When the beam is very stiff longitudinally, the most severe instabilities
occur when the frequency of thrust variation is in the vicinity of either twice
one of the bending natural frequencies, or the sum or difference of two of these
frequencies. With finite longitudinal compliance, such that the fundamental
longitudinal natural frequency of the beam is in the neighborhood of one of its
lower bending natural frequencies, significant instabilities also occur for the
frequency of thrust variation in the vicinity of the longitudinal natural frequen-
cies. These instabilities are most severe when the fundamental longitudinal
frequency is itself in the vicinity of either twice one of the bending frequencies,
or the sum or difference of two of these frequencies. It is found that insta-
bilities may occur for arbitrarily small magnitudes of Ty » although as Ty
becomes larger, the widths of the unstable regions usually become larger.

The following conclusions regarding the stability of vibrations of a flexible
rocket vehicle are based on the results of the investigation. When the thrust is
assumed to be constant (T; = 0) , the magnitude of the critical thrust con-
siderably exceeds the actual thrust of current, large missiles. On the other
hand, the existence of parametric instabilities due to periodic variations in the
thrust magnitude is a definite possibility in modern missiles. Furthermore,
it appears that longitudinal compliance may play a significant role in these
instabilities.
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NOTATION

Longitudinal acceleration

Beam cross-sectional area

th

The k™ element in the matrix [ck](m)

Square array of elements appearing in characteristic
determinant

Bending stiffness of uniform beam
Fundamental bending frequency of cantilever beam

jth bending frequency of cantilever beam with
tangential end thrust

Coefficient in the jth row and kth

B L2

Acceleration due to gravity

column of matrix [ij]

th

Coefficient in the jth row and k' column of matrix [ij]

-2
= @G,
i Q
Growth factor
Function formed from A(«) to eliminate singularities
Identity matrix

Constants evaluated so as to eliminate singularities of H(w)

Directional control factor determining thrust vector
gimbal angle

Length of uniform beam
Mass per unit length of beam

Moment distribution in beam; also, range of index m in
evaluation of Aj(d‘;j) '
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qA’ qB

Number of bending degrees of freedom assumed in numerical
analysis

Lateral force on beam arising from component of thrust due
to gimbaling

Axial force distribution in beam
Product of diagonal elements of A(w)
Rigid-body generalized coordinates

nth bending generalized coordinate

Modulus of z ¥\/z2 -1

Sum of nondiagonal elements of A(q)
Real-time variable

Amplitude of constant thrust

Amplitude of sinusoidally varying thrust

Critical end thrust for cantilever beam with direction of
thrust parallel to axis of beam

Euler load for pin-ended beam
Nondimensional thrust parameter = Tol2 / EI

Longitudinal displacement of particles of beam measured in
Lagrangian coordinate system

Lateral force distribution in beam

Lagrangian coordinate defining position of particles in
unstrained beam relative to one end of the beam

X - coordinate corresponding to the location of direction -
sensing element in the beam

Lateral displacement of axis of beam from fixed reference
line

= cos 2rQ
= cos 21r6.‘:i
Characteristic exponent whose value indicates the stability of

a system whose motion is represented by linear differential
equations with periodic coefficients

-ix -



(£)
A@)

Argument of z:l:\/zz—l
= Ty [T,

Dirac delta function

Value of the infinite determinant of coefficients obtained from
series expansion of [zpk(r)]

=N®'h£+ﬁ)
A small quantity

Gimbal angle, equal to rotation of thrust vector from a
tangent to the beam-deflection curve

Uniform beam frequency parameter = wrzl

mé
EI
Nondimensional coordinate = x/2
Nondimensional time variable = wlt
Mode shape of nth vibration mode of uniform free-free beam

A function defining the longitudinal force distribution in a
uniform beam arising from the varying thrust component

Rotation of the beam element located at x
Rotation of the beam element located at Xq

A matrix whose elements have a periodic variation of
2r in 7

Fundamental longitudinal frequency of free-free beam
Lateral bending frequency of nth mode of free-free beam

Lateral bending frequency of nth mode of free-free beam
with end thrust

Nondimensional frequency parameter used to represent
general form of solution

Nondimensional longitudinal frequency = Wy, / Wy
Wy, /wl

“/“1

Nondimensional bending frequency

Nondimensional bending frequency

= a(k)/ &
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Frequency of thrust variation
Nondimensional frequency of thrust variation = Q/ wy
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Section 1

INTRODUCTION

1.1 STABILITY PROBLEMS IN FLEXIBLE ROCKETS

The existence of dynamic instabilities in flexible rocket vehicles is well
Inown, One of these, the instability arising froni coupling of liquid-propellant
sloshing with the rigid body motion and the control system, has in its more
basic aspects been extensively investigated. The bending characteristics of the
vehicle have some effect on this type of instability, but generally do not change
its basic nature.

Instabilities may exist, however, even in the absence of propellant
sloshing, and in many cases the missile bending characteristics play an
important role in these instabilities. Yet, despite the fact that in the design
and development stage of a given missile configuration investigation of the
stability characteristics is standard procedure, such investigations have never
been extended into a comprehensive study of the stability of rocket vehicles.
The reason for this lack of investigation is that the engine thrust of current
missiles is sufficiently low that this type of instability presents no immediate
difficulty. It is possible, however, that future missiles, designed to a minimum
margin of safety, may encounter such problems.

This thesis, then, is a first attempt at a comprehensive investigation of
this area by considering the stability of a uniform, free-free beam under an
end thrust. The direction of this thrust is controlled in such a way that the
beam has directional stability as a rigid body; however, the bending character-
istics of the beam may couple with the rigid-body motion in such a way as to
cause instability.

Another aspect which has not yet been considered (at least insofar as its
effect on lateral vibrations is concerned) is the parametric instability due to
the existence of a thrust having periodic variations in its magnitude. Under-
standing which parameters contribute to the existence of such an instability is

necessary to the continued development of the science of missile design.



1.2 SCOPE OF THESIS

This thesis deals with the stability of the lateral motion of a uniform,
flexible, free-free beam under an end thrust whose magnitude is T0 + T1 cos 2 t,
where T T and Q are constants and t is time. The direction of the

thrust is (;ssu;led to be controlled by means of a feedback system which pro-
duces a linear relationship between the gimbal angle 9 (see Fig. 1) and the
rotation ‘IfG of the element at some predetermined location on the beam.
(It is assumed that all motion occurs in a vertical plane.)

Such a model represents an idealization of a slender, flexible rocket
vehicle with directional control, having its engine thrust subjected to periodic
variations in its magnitude. Such fluctuations may result from variations in
the rate at which liquid fuel is fed into the combustion chamber, or possibly
from periodic variations of the flow pattern of the gases passing through the
exhaust nozzle., To an even larger degree, such periodic fluctuations are
inherent in the operation of pulse-jet engines.

An actual missile has, in general, highly nonuniform mass and stiffness
distribution, structural damping, and mass transfer characteristics as well
as servo lag, engine inertia, and rate feedback control. All of these effects
are neglected in this analysis, as are aerodynamic forces and the effects of
shear and rotary inertia.

Because of this high degree of simplification, we wish to emphasize that
the results presented in this thesis represent conditions which may be typical
of similar conditions existing for an actual missile, but, except in a very
general sense are not quantitatively applicable to a specific missile. For this
reason we do not attempt an exhaustive study showing the effects of all the
parameters involved, but rather choose to investigate certain typical values
which would seem to be the most instructive.

The cases to be investigated may be classified broadly into two categories:
(1 Tl =0, and (2) T1 # 0. The equations of motion for the more general
case (T, # 0) are derived in Section 2.

The equations for case (1) are obtained from the more general equation
by merely setting T, equal to zero. Nevertheless the methods of solution
for the two cases are quite different. For the case T1 = 0, we must solve
a system of linear ordinary differential equations with constant coefficients.
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(a) UNDEFORMED STATE

To+T; COSQ t

(b) DEFORMED STATE - NO CONTROL SYSTEM

To+ T1 cos -Q-‘t
6'—' Ke l’ls

Y, = ROTATION OF ELEMENT AT xg -
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(c) DEFORMED STATE — WITH CONTROL SYSTEM

Fig. 1 Free Beam with End Thrust
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The methods of solution of such a system are well known and quite simple.

In the case T, # 0, itis necessary to solve a system of linear ordinary

differential eqtations with periodically varying coefficients.

Several methods have been developed for solving such a system of
equations. For the purpose of this investigation, however, we develop a new
method for predicting the stability of such a system of equations, which is
analogous to the method of solution of Hill's determinant as described by
Whittaker and Watson (Ref. 1). But, whereas the method of Hill is valid for
only a single differential equation, the method developed here is applicable

to a system of differential equations with periodic coefficients.
1.2.1 Beam With Thrust Of Constant Magnitude

In the case of the beam with constant thrust TO » the stability of the
system is determined by observing the trend of the beam's natural frequencies
as increasingly larger values of T0 are considered, It is shown in Section 3
that unstable modes exist either when one of the frequencies is reduced to zero

or when two of the frequencies become equal.

The Euler buckling problem. The classical Euler problem of the buckling of

a uniform, pin-ended beam under the action of axial end forces (Fig. 2) is
an example where the fundamental frequency approaches zero with increasing
load. The critical load is

T. = w2El (1. 1)
E ———
22
where EI is the bending stiffness of the beam and 2 its length. The force
TE » commonly known as the Euler load, forms a basis for comparison of
the buckling loads for identical beams with different end conditions. Note
that an alternate method of analysis — the method which Euler actually used —

is to determine, by statics, the magnitude of the load at which a buckled

equilibrium shape is possible.
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Fig. 2 Pin-Ended Beam under Axial Load

Beck's problem. An example of a system in which instability occurs as a

result of frequency coalescence is a problem considered by M. Beck (Ref. 2).
Beck investigated the stability of a uniform cantilever beam acted upon at its
free end by a nonconservative compressive force. The magnitude of the force
was assumed to be constant; its line of action, however, was assumed to coin-
cide with the tangent to the bending-deflection curve, as shown in Fig. 3.
Beck showed that for a sufficiently large thrust magnitude, an oscillatory
instability develops, which is characterized by the coalescence of the two
lowest bending frequencies (see Fig. 3).

Beck found that the critical thrust magnitude occurs when T = 20.05 EI/J2 ,
which may be compared directly with the Euler buckling load TE or, more ap-
propriately, with the critical load Tc = % TE for a cantilever beam in which
the load remains parallel to the undeflected axis of the beam.

Ziegler points out (Ref. 3) that the only systems known in which instabilities
occur as a result of frequency coalescence are those containing nonconservative
forces. He also notes that instabilities of this type can onlybe determined by use of
the kinetic method of analysis, that is, by analysis of the equations of motion.

Free-free beam, For a constant thrust magnitude TO acting on the free-free
beam, it is found that if a directional control system is not used, the first instability
occurs when the two lowest bending frequencies coalesce at a thrust magnitude

T0 = 109.9 % . It is recognized that for all values of T0 , two zero-frequency
modes exist for this case which are unstable a priori. However, since these
modes involve no bending, structural failure does not occur unless the stress

due to axial force is sufficiently large. Assuming that this is not the case,

we are justified in considering TO = 109.9 f—; to be the critical thrust mag-

nitude. 5



EULER PROBLEM (FOR REFERENCE)
Te = w2EI/42 = EULER LOAD FOR PIN-ENDED BEAM

T.=1/4 Tg =CRITICAL LOAD FOR
CANTILEVER BEAM WITH
CONSTANT DIRECTION LOAD

BECK'S PROBLEM
f(j= 1™ BENDING FREQUENCY OF LOADED
BEAM

f, = FUNDAMENTAL BENDING
FREQUENCY OF UNLOADED BEAM

COALESCENCE POINT

T£2/E1

Fig. 3 Variation of Frequency with Thrust Magnitude for Cantilever Beam
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When a directional control system is introduced, the critical thrust mag-
nitude is found to be considerably lower. For convenience a simple control
system is assumed which produces the gimbal angle 0 = K, \IrG (see Fig. 1),
where KO is a constant. (That is, gimbal servo dynamics are not included
in this study.) Specifically, it is found that, regardless of the magnitude of

KO and x

G the system is unstable for values of T0 greater than
El

T 0= 25, 67 ze - This critical load was predicted by Silverberg (Ref. 4) for a
uniform free-free beam accelerated by a thrust which is always constrained to
move parallel to a fixed line. The analysis which we present shows such a
critical thrust magnitude to apply also in the case of the beam where the control

system has arbitrary values of Ko (positive) and Xg -
1.2.2 Beam With Thrust Of Periodically Varying Magnitude

When the thrust is considered to have a time-varying component, that is,
T1 # 0, it is necessary to consider the longitudinal response of the beam to
this component. If the frequency of this variation is small compared to the
fundamental frequency of longitudinal vibrations of the beam, the axial acceler-
ation is approximately the same everywhere on the beam and is therefore equal
in magnitude to the ratio of the instantaneous thrust force to the total mass of
the beam.

On the other hand, when the frequency of the thrust variation is not small
compared to the fundamental frequency of longitudinal vibrations, such an
approximation is no longer valid. We show in this case that the variations
aleng the beam in the axial force due to the periodically varying thrust may
have a serious effect on the stability of lateral motion of the beam.

If the lateral displacement of the beam is represented as a series of known
functions multiplied by unknown time-varying coefficients, application of the
Galerkin averaging process to the beam-bending equation leads to a set of
linear, second-order differential equations with periodic coefficients. The

form of the equations is:

[qk] + [ij] [qk] + v cos @r [ij] [qk] =0 (1.2)




where

v is a constant equal to the ratio of the varying thrust amplitude T, to the

1
constant thrust amplitude T

[ij] and [ij] are squa(.)re matrices of constants

[qk] is a column matrix of generalized coordinates

Q is a nondimensional frequency constant

r 1is the nondimensional time variable

A considerable amount of work has been done in recent years on systems
of equations of the type given in Eq. (1.2). E. Mettler (Ref. 5) has developed
a perturbation method for obtaining the solutions to equations of this type.
C. S. Hsu (Ref. 6) considers systems governed by equations of this type with
the restriction that the matrices [F] and [G] are both diagonalized by the

same transformation

[1] = [F] [1] AL »

[7] ! [&] [T]

(N,

where [T] is asquare matrix and [j\]A and D\']B are diagonal matrices.
This is a simplification which does not exist for the problem being considered
in this work. A method of successive approximations, valid for v small, which
will handle problems of this type has been developed by L. Cesari (Ref. 7).
Additional relevant papers are cited by Cesari in Ref, 7. Chetayev (Ref. 8)
describes a method for determining the stability of linear differential equations
with periodic coefficients which requires numerical integration of the differential
equations (with certain prescribed initial conditions) and subsequent computation
of the eigenvalues of a matrix formed from the integrated solutions. Chetayev
describes the methods used by Picard and Lyapunov to perform the required
integrations.

This thesis develops a new method for determining the stability of a beam
subjected to an end thrust of periodically varying magnitude. The results

obtained with this method corroborate the discovery of Mettler that for small




v the most critical conditions exist when the frequency of the varying thrust
is in the vicinity of
e Twice one of the natural frequencies

o The sum or difference of two of these frequencies.

In addition to these frequencies, however, it is found that for the system being
investigated here, instabilities may also result when the frequency of the varying
thrust is in the vicinity of one of the longitudinal frequencies of the beam.

1.3 SPECIFIC CONTRIBUTIONS OF THESIS

The major contributions of this thesis are as follows:

e The critical thrust magnitude is determined for the uniform free-free
beam with a constant end thrust whose direction remains tangent to the
deflection curve of the beam. Higher modes of instability are also defined
for such a system.

o The stability of the same beam is investigated with a directional control
system. It is shown that the critical thrust magnitude cannot exceed

T = 25.67 %, regardless of the magnitude of the control constant
KO (excluding the case KG = 0 ) and of the location of the position gyro.

o The stability of a uniform free-free beam having periodic variations in its
magnitude is investigated. The case of a tangential end thrust and the case
of a thrust with controlled rotation are both considered. It is shown that
the periodic fluctuations of the thrust magnitude may cause the bending
vibrations of the beam to become unstable. The critical regions for small
v are shown to be in the vicinity of Q = (2c.oj )/n and Q = (wj + wk)/n ,
where wj and w, are bending frequencies of the beam loaded with a
thrust of constant magnitude T 0’ and n is an integer. Additionally, it
is shown that the longitudinal response to the varying thrust may have a
serious effect on the stability of bending vibrations of the beam.

e A new method of determining the stability of equations of the type given in
Eq. (1.2) is developed. The method is an extension of the method used by
Hill to solve the Hill (or Mathieu) equation and involves the formulation and
evaluation of an infinite determinant. In contrast with most of the known
methods of solution, the method is not restricted to small values of vy .



Section 2
ANALYTICAL DEVELOPMENT

2.1 DERIVATION OF EQUATIONS OF MOTION FOR CONTROLLED FREE-
FREE BEAM UNDER THRUST OF PERIODICALLY VARYING MAGNITUDE

The beam whose stability is to be investigated is shown in Fig. 4. Displace-
ments of the particles of the beam are defined relative to a Lagrangian coordinate
system, Fig. 4(a) , in which x defines a location on the beam in some initial
unstrained state. It is assumed that in this reference state the beam is fixed
relative to a Newtonian frame of reference and that its axis coincides with a
fixed reference line from which lateral motion of the beam will be measured
during the actual motion of the beam.

Displacements of points lying on the middle surface of the beam in a direc-
tion parallel to this reference line are denoted by u(x , t) , the positive
direction being chosen to coincide with the positive x direction. Similarly, the
displacements perpendicular to the reference line are denotedby y (x , t) ,
the positive direction being as indicated in the figure.

The beam is assumed to have uniform mass and stiffness distribution, and
it is assumed that bending of the beam may be adequately described with simple
beam theory, in which shear and rotary inertia effects are considered negligible.

We consider the element of the beam between x - dx/2 and x + dx/2 .

The deformed element is shown in Fig. 4(b). The location of the center of the
element in this state is (x+u, y) , and the length of the element is

dx (1+8u/8x) , as indicated in the figure. Lateral forces acting on the beam
are represented by mggzz-dx (the inertia force) and pdx (forces other than
the inertia force). Theatstress resultants are represented by force components
parallel and perpendicular to the reference line and by moments acting as

shown in the figure.

Before we proceed to the equations of equilibrium of the beam element
shown in Fig. 4(b), we note that the rotation of the axis of the element relative
to the reference line is given by ¥ = tan™1 [g% / é + g%)] . Thus the gimbal

11
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REFERENCE POSITION —\—- REFERENCE LINE

(a) DISPLACEMENTS IN LAGRANGIAN COORDINATE SYSTEM

dn(1+g%)_>

(b) FORCES ON BEAM ELEMENTS

Fig. 4 Controlled Beam with Thrust of Periodically Varying Magnitude
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angle 0 , shown in Fig. 4(a), may be written as

6 = K, - tan” [ﬂ(x t)/(1+ (%X ))] @.1

where %( xG.,t ) and % (xX,,t ) are the values of these derivatives at

=Xz -
he

=

equations of equilibrium for the beam element shown in Fig. 4(b) are

oP 9™

_.+m._=0 (2_2)
ox atz

av, ., o3
9x mat2 P (2.3)
oM uy _

-V (R -0 2.4

In addition to the above equations, the following equations may be obtained
if a linear stress-strain relationship is assumed:

M =E1§‘§’ 1+(%¥)2 (2.5)

P+V%=AE[1-\/(1+%)2+(§X-‘L)2] (2. 6)

where EI is the bending stiffness and A the cross-sectional area of the beam.
We assume that 5 Y and ay are small in comparison to unity. Noting also that

13




V is of first order small compared to P , we obtain the following approximate .

equations:

2

opP 9"u

2 i mEE =0 (2. 2a)

ox 8t2

BV a2y

a—x'+ m-—2—+p=0 (2.33)
ot

oM Sy -

w P~ V=0 (2. 4a)
52

M = E1—32’ (2. 5a)
ox

= _ AR Ou
P = - AE 57 (2. 6a)

Eliminating P from Eqgs. (2.2a) and (2. 6a),we obtain the wave equation:

82u m azu
2~ AE 52 (2.7)
ox

AE o

The force P at the end x = 0 is zero. If we assume that the gimbal
angle 0 and the slope at the end x = £ are small, then the magnitude of P
at that end is approximately P = Ty + T cos Qt . Thus, we require the

following boundary conditions on u to be satisfied:

At x = 0 5-;{-= 0
.8
o To (2.8)
At x = 2 % - -K-E-:-(1+'ycosm)
Ty
where'y='T—.
0
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It may be verified by direct substitution that the following particular solu-
tion satisfies Eqs. (2.7) and (2. 8):

2 2 \ / m
mAE

Qx
= -“2AFfL 2mz ' ® (\/_nT )”sm (2.9)
sin EQI

From Eqs. (2.6a) and (2. 9) it is found that the distribution of the force P
is given by

P(E,t)=T0[§+vq>(§)cosszt] (2.10)

where £ is the nondimensional variable ¢ =4, and

sin %‘;—-9&)
Q

() = ———F———1— (2. 11)
s\ 20 )

The formula for the fundamental frequency of longitudinal vibrations of a
uniform free-free beam is (Ref. 9)

o = 7\ /% (2.12)

(2. 13)

Note that if the ratio of the forcing frequency  to the fundamental longi-
tudinal frequency 9 is small, then & ( £ )—£ . In this case, the axial force
distribution is linear with £ , indicating, as may be seen from Eq. (2. 2),

15



that the longitudinal acceleration is the same for all particles of the beam. If,
on the other hand, the forcing frequency £ is in the neighborhood of w, (or
an integral multiple of W ), longitudinal resonance occurs, and P assumes
very large values for intermediate values of £

Combining Eqs. (2.3a), (2.4a), and (2.5a), we obtain the beam-vibration
equation with axial forces:

2
E1—§+ = (PQX + m-"‘a’—tazh p=0 (2. 14)
ox

It is convenient to consider the thrust force in terms of two components -
one in the direction of the tangent to the deflection curve with the approximate
magnitude T0 + T 1 cos Qt , and the other perpendicular to this tangent with
the approximate magnitude ( T + T1 cos 2t )0 ., We see from Eq. (2.1)
that on the basis of the assumptmn that EX and 'T: are both small, 6 may
be replaced by 0 = KG 5! ( Xg t) " The component (T0 + T1 cos 2t )0 is
considered as an external force applied to the beam to be included in Eq. (2. 14) as p.
If we substitute Eq. (2. 10) into Eq. (2. 14), express p in terms of the
aforementioned component of the thrust force, and introduce nondimensional
variables £ = x/# and T= w,t, we obtain

1

4 92

—l+T—§—[-¥-(§+'y<I>cosﬂr):|+7\1—%

8§ or
+ T (1+7cosTT) Ky oF(£g TI6(E-1) = 0 . 15)
0 09 G, :

= To#® _ o 4 2mt

where T0=T,Q=q,hn=wnﬁ,andé(&)lstheDlracdelta

function.

Having considered the component (T0 + T1 cos Qt )0 of the thrust force
in the differential equation, we need consider only the tangential component of
the thrust force in establishing the boundary conditions. From Eqgs. (2.4a) and

16




(2.4b) we see that the boundary conditions at the two ends are

2 3 )
8 8y

tE =0: =0;—3-=0
at 13

{ (2. 16)
2 3
_ %y _ y _

E=1: =0 = 0

% BE> )

Note that the only restriction placed on the displacements is that -g-i- and
—g—}% should both remain small in comparison to unity. Obviously, the displace-
ments u(x , t) themselves become large. There is no reason why y (x , t)
should not be allowed to become large also, provided the slope %%(x , t)
remains small. In fact, we note that there is actually no method of controlling
the lateral displacement, and that a constant lateral velocity, as well as a con-
stant lateral displacement is possible. This permits arbitrarily large values

of y(x, t) toresult.

2.2 APPLICATION OF GALERKIN METHOD TO OBTAIN SYSTEM OF
ORDINARY DIFFERENTIAL EQUATIONS WITH PERIODICALLY VARYING
COEFFICIENTS

Equation (2. 15) is a linear partial differential equation in the dependent
variable y and the independent variables £ and T. A series solution may
be obtained by expressing the deflection (assuming small slopes) as

Y€ ,7) = qy@ + qgé + i 9o (€) (2.17)
n=1

where q A(!) and qB(‘r) are rigid-body coordinates and qn(-r) is the coordinate
associated with the function ¢n(§) . This function is taken (for convenience)

to be the nth vibration »modé\ shape of the free-free beam with no thrust.

Thus, ¢n(§) satisfies the differential equation

4 2 mst (2.18)
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and the boundary conditions

2 3
d7¢ dq)
£ =0 2“-0; 3’“=o1
d¢ d¢
\ (2.19)
d2<pn d3q>n
E = 1: 5 0 ; 3 =0
dé dé )

W being the natural frequency of the nth mode of vibration of the free-free
beam.

Observe that all the boundary conditions of Eq. (2.16) are satisfied by each
of the functions in Eq. (2.17) . With this condition satisfied, the Galerkin
method offers a useful means of obtaining an approximation to the solution when
a finite number of terms in the series is assumed (Refs. 10, 11, 12) . Briefly,
this method converts Eq. (2.15) into a set of ordinary differential equations.

The Galerkin procedure is as follows. The expression

N
b = 40 + agE + > a e @) (2.20)
n=1
when substituted into Eq. (2.15) leads inevitably to a certain error. This error
is weighted by each of the approximating functions, and its integral over the

length of the beam is set equal to zero, thereby leading to the following equations:

1( .4 ' 2 1
OYVN = 8 |%n ~ 49 Ix
f a§4 + T, 55[% (ﬁ + y® cos QT) + 7\1 )
0 5y
—— — N _
+ To(l + v cos QT)KGE-(gG)G(g— 1) pdt = 0
1( .4 2
97y — dy — 4 97y
f —'4—N'+ T0 g—g'l:'a'g_N‘ (‘g + y®cos QT)]+ 7\1 -_'r?'N—
4 o7 }
0 Yy (2.21)
+ Ty (1 + vy cos @T)Kg 37 (6ol - Dkt = 0
1( .4 2
O%yy  —~ a|%YN = 4 2N
f ;éT + TO '52[5&'_ (§ + 'Y@ cos QT) + Al 872
0 oy
— a— N -
+ T, (1 + ycos BT Koé?—(gG)a(gJ L OdE = 0
k=1,2,3,...,N
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As a result of the equilibrium conditions and the orthogonality properties

of the modes of vibration of a uniform free-free beam, we have

1 1
[o@a =0 [ro wa-o
0 0

and Y (2.22)

1
Son® o @dt - 0ifm £

4

The actual magnitude of q)n(é) is arbitrary to a constant factor. We assume
that this factor is such that

1
2
‘/'(pndg =
0

This assumption of the magnitude of ¢n is consistent with that of Ref. 13, from
which the values of 2. and An used in this analysis were taken.

Substituting Eq. (2.20) into Eq. (2.21) and utilizing Eqs. (2.18), (2.20),
and (2.23), we obtain, after performing the necessary integrations, the

(2.23)

following system of ordinary differential equations:
N 3
4.

4 o 1 . - —_
AlqA +§x1qB + T0 (1 + 7y cosQT) qgp + Z a ¢1'1(1)
n=1

N
+ T, (1 + 9 cos ﬁ‘r)Ko qg + Z qn¢;1 (‘EG)

n=1
Sy :
54, + 3-dg + T, (1 + 7 cos B7) fag z 2 onD

0 = = [1-cosmo
-2 9 - To”°°sm<1r&sm 1rc’r>qB
N N
- (1+'Ycosﬂ7')z q_n¢(1)+T ‘YcosQanfm <I>d§
n=1 n=

+ 0(1+'ycos$2'r Kglag + z qn¢n(§G

19 (2.24)




N
4 .. 4 o '
A A g + Ty (1 +y cosQT) qg + Z qn¢n(1):| 9 (D
1

n=

o kDag - Ty cosm[k(l) -f¢k4>'d£ g

N 1 N 1
m R _ T
- TO anfgq)nq)kdﬁ To‘)' cos QT an &0 tpkd§
0

n=1 n=1 0

(2. 24)

N
T el ' =
+ T0 (1 + ¥ cos QT KG[qB + z qn¢n(§G)]¢k(1) =90
n=1

J

In the above equations © = ..9. md1cates %E , and - indicates % .
The first two equations may be combined in such a way as to eliminate g A
Doing this, and expressing the resulting equations in matrix form, we obtain

[&k] * [ij][qk]+ Y cosT [ij][qk] =0 (2.25)

where

[a] -

and [ij] and [ij] are square matrices of order N + 1. The elements of
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F. | and | G., | are defined as follows:
jk jk

= 1
_2 Ty

ij = & 5jk 3 [«» )2, (1) fgs» o' dt + K ¢(1)¢k(§G)]
1

j=1529~'-N;k=1,2,...N
T, K,9.(1)
=._0_LJ__ i =
Fj,N+1 1 s 1,2,... N
*1
12T,
- — 01, 1 s
FrenL k™ 1 [2%(1) - 9D +3 Ko"’i((gg):] i=1,2,...N
1
. _ 8TyK,
N+1, N+1 4
1
T 1
G, = —|Pmei - [ soeldt + Ko (ol (¢
e i ® 959 0?9} ()
1 0
]= 1, 2’ N’k‘: 1, 2, N
T, [ f
G o1~ —4 f¢<l>d£+K0¢ (1) 2,... N
3 N
10
12T0 1 )
- ' _ ! = '
Gns1,k = )‘ ¢k(1) 2 () +_[ 9 2'dk + FK 0L (&G)]
0

(2. 26)

J

where 5jk is the Kronecker delta (éjk = 14i#3j=k, ij =0 if j # k).

Equation (2.25) constitutes a set of ordinary, linear differential equations
having, in general, periodically varying coefficients. The stability of the
vibratory motion of the beam is determined by considering the nature of the
solutions of this set of equations. Special cases are of interest and may be

investigated by prescribing particular values for the various parameters
involved. 21



Section 3
STABILITY OF BEAM WITH THRUST OF CONSTANT MAGNITUDE

The stability of the beam under a constant thrust magnitude may be inves-
tigated by sefting vy = 0 in Eq. (2.25). In this case, Eq. (2.25) reduces to a
set of linear, ordinary second-order differential equations with constant coeffi-
cients; thus, we have

(] + [Fu] [o] = © 3.1)

ik defined in Eq. (2.26). The characteristic modes of motion of such a
system may be determined by representing [qk] in the form

(] = (3] <7 @2

in which w = _Jw_ ( wbeing the frequency with respect to the real-time variable
t), and [Ek] is a column matrix of oonstants.

Substituting Eq. (3. 2) into (3.1), we obtain a set of linear, homogeneous,
algebraic equations. To obtain nontrivial solutions for these equations, we

must set the determinant of coefficients equal to zero; that is,

DET {[ij] - # [1]}= 0 3. 3)

where [I1] is the identity matrix.

The characteristic equation, obtained by expanding the determinant repre-
sented in Eq. (3.3) and by setting it equal to zero, is a polynomial in &2. For
the beam to be stable in every mode, it is necessary that the values of 52 ob-
tained as roots of the characteristic equation be real and positive. A negative

w 2 indicates the existence of a pair of nonoscillatory solutions; one of these
solutions increases (the other solution decreases) exponentially with time. A
complex ZSZ represents an oscillation whose peak amplitudes increase ex-

ponentially with time.
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Some insight into the nature of the transition from stable to unstable modes
is gained by consideration of the root locus plot for iw as shown in Fig. 5. The
points on the imaginary axis represent the frequencies for zero thrust. These
points are situated symmetrically with respect to the real axis. (Corresponding
points on the positive and negative imaginary axis represent the same mode of
oscillation.) As T is increased, one of two events may occur to create unstable

modes:

e The points nearest the real axis on the positive and negative
imaginary axis may move toward each other and meet at the origin
(as in Fig. 5a), after which one root moves onto the positive real
axis and the other onto the negative real axis.

e Two of the roots on the positive imaginary axis (and simultaneously
the two corresponding roots on the negative imaginary axis) may
move toward each other and meet at some point (as in Fig. 5b),
after which one pair of the roots moves into the right half-plane
and the other into the left half-plane.

3.1 STABILITY WITHOUT CONTROL SYSTEM Ky =0)

I K p = 0 , we have the case of a beam under tangential end thrust. It is
observed by a detailed examination of Eq. (2.24) (it is also apparent from physical
considerations) that, if ¥y and K‘9 are both zero, two zero-frequency modes
exist for all values of TO . The characteristic motion associated with one of
these zero-frequency modes is lateral translation of the beam with no accompanying
rotation or bending. The other mode involves rotation of the beam at a constant
angular velocity (or merely a constant angular displacement) accompanied by
translation; but again no bending is involved. These modes are, of course, un-
stable, so that the system is unstable a priori, no matter whether the vibra-
tory modes are stable or not. However, since no bending of the beam is
involved, structural failure does not occur as a result of motion in these
modes. Thus, defining a critical thrust magnitude as the magnitude at which
one of the vibratory modes has impending instability is justified.

There exists, however, one additional problem. If there is motion in the
zero-frequency rotational mode, large slopes 3 will occur. The appearance

29X
of these large slopes violates one of the assumptions on which the derivation of
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Fig. 5 Root Locus Plot of i% Indicating Possible Variation of Frequency with T
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the equations of motion was based. Thus, to get meaningful solutions for this
case, we may impose the restriction that there be no motion in the zero-
frequency rotational mode. An alternative point of view (and a more physi-
cally satisfying one) is to assume that if motion does exist in this mode, the
reference line from which the displacements y(x , t) are measured rotates with
the same angular velocity as that of the rigid-body rotation in the zero-frequency
rotational mode. Thus the original assumption of small %% is valid, and the
derivation of the equations of motion remains unchanged if the angular velocity
of rotation is small enough that the centrifugal and Coriolis forces associated
with the rotating coordinate system may be neglected.

The equations for the case Ky = 0 were programmed for solution on the
IBM 7090 computer. Solutions for the characteristic frequencies were obtained
for progressively larger values of "ITQ until an unstable root was obtained. The
analysis was repeated for several different numbers of bending degrees of free-
dom, (i.e., several different values of N) to determine how many modes are
necessary to represent adequately the frequency trend.

3.1.1 The Magnitude of Critical Thrust

If we use a value of N = 1 , the fundamental (and only) frequency reduces
to zero at a value of TO = 81.4. For N = 2 and higher, the first unstable root
occurs as a result of the coalescence of the first and second characteristic fre-

quencies.

The variation of these frequencies as —T'O is increased is shown in Fig. 6
for values of N equal to 1, 2, 3, 4, and 5. The difference between the curves
for N > 2 cannot be detected when the curves are plotted to the scale shown in
the figure.

The critical value of T, for N = 5 was found to be (71‘_0) CR ™ 109.9 ,

0
which differs from the value found for N = 4 by less than 0.1%. Thus, within

0.1% accuracy, we may assume the critical load to be equal to 109.9. This value
is compared in Fig. 6 with the Euler buckling load TE = 7r2 El/ 12 . Itis seen

that the critical load for the problem investigated here is approximately eleven
times the Euler buckling load.
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3. 1.2 Instabilities at Supercritical Thrust Magnitudes

Assuming TO > (TO) cr Ve investigated the stability of the beam by solv-
ing for the characteristic frequencies and noting their trend. Eight bending modes

were used in the analysis. Figure 7 shows that coalescence of the frequencies

= 405, while
the frequencies corresponding to the next two higher modes coalesce for TO = 870,

Based on this trend, it seems reasonable to expect all the higher modes of insta-

corresponding to the third and fourth bending modes occurs for TO

bility to be created by pairwise coalescence of the characteristic frequencies of

the system.
3.1.3 Comparison with Budiansky's Results

The equations obtained by setting v and K, equal to zero in Egs. (2.25) and
(2.26) are equivalent to those derived by Budiansky (Ref. 14) using Lagrange's
equations. Budiansky used a one-function approximation to predict that the funda-
mental frequency would be reduced to zero at a value of "I_‘O = 81.6. (See curve for
N = 1in Fig. 6.) Rather than improve the accuracy of the computation by consider-

ing more bending degrees of freedom, he chose to represent the frequency in the

form of the series -(1) =p, + pITO + p2T§ + ... and use a perturbation tech-
nique to determine the values of the constants Pg » Py » Pgseve - Using the

first three terms of the series, Budiansky predicted that the fundamental frequency
would be reduced to zero at a value of TO = 82,7, concluding that the consideration
of a larger number of terms would cause little additional change in this value.

Apart from the fact that numerical errors were discovered in Budiansky's com-
putation of (TO)CR , it is doubtful that the series would converge at the coalescence
point; it would probably converge very slowly for values of T

0
(T The reason for this presumption is that it would be impossible to repre-

slightly less than

o'CR _
sent the variation of w ., as shown in Fig. 6 by a power series in T0

(1)

a series could not be made to conform to a curve having a vertical tangency such as

, Since such
exists at the coalescence point.
3.2 STABILITY WITH CONTROL SYSTEM (KG >0)

Using various values of the parameters Ky and EG of Eqs. (2.26), we obtained
solutions for the characteristic frequencies from the 7090 computer. Recall that when
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Fig, 7 Coalescence of Higher Mode Frequencies (N = 8)




Ky =0, two zero-frequency modes existed for all values of TO . In the case
Ky >0, we anticipate that in general there exists only one zero-frequency solu-
tion, namely one that corresponds to the lateral translation of the beam. Rigid-
body rotation is no longer expected to be a zero-frequency solution because of

the characteristics of the control system. We may conclude, as in the case with-
out a control system, that the beam is unstable a priori. However, since no
bending of the beam is involved, we are justified in considering, as before, the
critical thrust magnitude to be that at which one of the vibratory modes has im-
pending instability.

We computed the frequencies for a range of values of Ky and § G using two
bending degrees of freedom in addition to the two rigid-body degrees of freedom.
In Fig. 8 curves are shown of frequency versus thrust. One frequency curve, not
evident in the figure, lies along the w= 0 axis and corresponds to the rigid-body
translation mode. In addition to the frequencies shown in the figure, a higher fre-
quency existed in each case, arising from the second bending degree of freedom.
The use of a larger number of bending degrees of freedom in the analysis would
introduce even more frequency curves as well as alter slightly the lower-frequency
curves shown in Fig. 8. Qualitatively, however, these lower frequency curves
would be expected to have the same general behavior as shown in Fig. 8. Itis
not anticipated, therefore, that the inclusion of a larger number of bending de-
grees of freedom would effectively alter the stability of the system.

Note that in curves (a) and (b) of Fig. 8 (corresponding to values of £G =0
and §G = 0, 2) an unstable region occurs for Kg = 1 as a result of frequency
coalescence. For larger values of §G (EG = 0.5 and §G = 0.8, for example)
this region of instability does not occur, at least for the range of values of Ky
considered. Furthermore, from the trend (with Ky) of the upper sets of frequency
curves in (c) and (d), it does not appear that there is an immediate danger of
frequency coalescence for values of K4 > 1.0. However, there is the recognized
danger that a large value of Ky would cause an early frequency coalescence of
the modes comprising predominantly fundamental bending and predominantly
second bending,.

It is clear that the region of instability discussed in the preceding paragraph
0 and §G . On the other hand, the
lower-frequency curve becomes zero at the same value of T0 for all values of
K 0 and § G* At this point an unstable mode exists in which bending of the beam

occurs. Since no choice of KG and §G exists which will eliminate this instability

may be eliminated by proper choice of K
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(except K, = 0, which reduces the bending participation to zero), the value of

the thrust eat,this crossing point is considered to be the critical thrust magnitude.
This assumes that the higher-frequency curves not shown in Fig. 8 are well-
behaved up to this point.

Silverberg (Ref. 4) showed that for a uniform free-free beam with an end
thrust constrained to move parallel to a fixed line, the magnitude of the thrust at
which a buckled equilibrium shape becomes possible is determined from the
2/3(§ TO =0, where J2/3 is the Bessel function of the first
kind of order 2/3 . From this equation it is found that

equation J

(TO) cr = 25-67 (3.4)

The general shape of the beam in this buckled position is sketched in Fig. 9. The
inertia forces shown acting on the beam are in equilibrium with the thrust

Tycr -

REFERENCE LINEX

Fig. 9 Buckled Equilibrium Shape of Uniform Beam with End Thrust
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Configuration A represenis the system anaiyzed by Siiverberg. Equilibrium
is preserved when the system undergoes a simple rotation to produce the con-
figuration represented by B. It is clear that the amount of rotation required to
rotate from A to B may be adjusted to satisfy the relationship ¢ = K6 \I'G , in
which case configuration B represents a possible zero-frequency configuration
for the case of the beam with feedback control.

We conclude, therefore, that a zero-frequency solution will exist for ar-
bitrary values of K P (nonzero) and £ G at a thrust given by Eq. (3.4). The
discrepancy between the critical thrust as given by this equation and the point at
which the frequency curves cross the w = 0 axis in Fig. 8 is due to the fact that
only two bending degrees of freedom were used in calculating the curves of the
figure. We computed similar curves (not shown) using three bending degrees of
freedom. These analyses showed the crossing point to be at TO = 26,08 , which
differs from the value given in Eq. (3.4) by approximately 1.5%.

The discontinuity which exists at K, = 0 is significant. We concluded in
3.1.1that for K5 = 0, the critical thrust magnitude is (TO)CR = 109.9. We
now see, however, thatif K, > 0, then (TO) CR — 25.67 for every value of
Ky (except for certain large values, as shown in Fig. 8a and b). Thus, even
though K, may have an arbitrarily small, positive magnitude, the critical
thrust remains ("'I"o ) CR = 25.67. However, as K, approaches zero, the fre-
quency curve approaches the @ = 0 axis. For values of T, such that
0 < T0< 25.67 , the curve lies slightly above the axis. For values of "T"O > 25. 67
instabilities exist., However, the characteristic motion is such that for a given
set of initial conditions, the time required for the bending deformations to build
up to an arbitrarily prescribed amplitude becomes very great — approaching in-
finity as Ky approaches zero.

The point (_0) CR 0
becomes exactly equal to zero. The zero-frequency modes involve no bending,

so that T, may exceed ".'[‘_0 = 25,67 with no eventual structural failure. Thus,

our interest shifts in this case to the mode of instability created by the coales-

cence of frequencies at To = 109.9.

So far it has been tacitly assumed that K, is either zero or positive. It

= 25,67 loses its significance completely when K

is clear, of course, that for K,<0 , the (predominantly) rigid-body mode is
unstable for very small values of 71‘-0 . Thus, we restrict our attention to posi-

tive (or zero) values of Ky .
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3.3 APPLICATION OF RESULTS TO MISSILE STABILITY

Virtually all current missiles have some form of directional control system.
Thus for missile applications, the value -’i"o = 25.67 is more significant as a
critical thrust than is the value at which the two lowest bending frequencies coalesce.
(Use of angular-rate feedback control would not affect this critical thrust, since
the rotational velocity is zero in the displaced equilibrium position at the criti-
cal thrust magnitude.)

We may attempt to compare the critical thrust for a uniform beam with the
thrust on a missile in free flight. However, since most missiles have highly
nonuniform characteristics, such a comparison is at best only an approximation.

From the equation T = mé£a (where a is the longitudinal acceleration) and from the
expression for A i in Eq. (2.18), we obtain

T, = (3. 5)

Then, assuming T'o = 25.67 and introducing g , the acceleration due to
gravity at the earth's surface, as a nondimensionalizing factor, we obtain

25. 67 w2
a _ - 1 (3. 6)
- 500.6g :

where the value of 7\‘; = 500.6 has been used (Ref. 13).

If we assume that Eq. (3. 6) may be applied in an approximate way to a
nonuniform missile, where @y is the fundamental frequency in bending (rad/sec)
and £ is the length of the missile, we may obtain an estimate of the acceleration
required to cause the missile to become unstable.

Assuming wy = 27 rad/sec, and £ = 4,500 in. (typical values for a large
missile), and using g = 386 in. /sec2 , we obtain a/g = 23.6, whichis an
acceleration four to five times greater than that experienced by modern missiles.
Thus, it is not anticipated than an instability of this type will be experienced by
current missiles. However, it is conceivable that future space vehicles, perhaps
assembled in space with extremely flexible structures, will be faced with such

problems. 34




Section 4

METHOD OF SOLUTION OF SYSTEM OF DIFFERENTIAL
EQUATIONS WITH PERIODIC COEFFICIENTS

We now consider the most general case — that of a directionally controlled
beam which has longitudinal compliance and is subjected to a thrust whose mag-
nitude varies periodically in the form TO + T1 cos 2t . The applicable equa-
tions for this case were derived in Section 2 and are given as Eq. (2. 25).

4.1 FORM OF THE SOLUTION

It is known (Ref. 5) that solutions to equations of this type may be expressed
in the form

[5] = %7 [ @1

where o is a constant and [‘I’k] is a column matrix in which each element has
a periodic variation of period 27/Q . This is the period of variation of the
magnitude of the periodically varying thrust component in terms of the non-
dimensional time variable T .

Expanding [‘I’k] in a complex Fourier series

[‘I’k] - z [ck] (m) eim Q T (4.2)

we may write (4. 1) as follows:

[qk] - z [ck] (m) ei (a+m)Qr (4.3)

m=-
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where [ck] (m) is a column matrix of constants, the kth element in the m'Ch

matrix being denoted by ck(m)

4,2 FORMULATION OF INFINITE DETERMINANT

If we now substitute the series solution for [qk] as given in Eq. (4.3)

into Eq. (2. 25) and cancel the common factor exp ia$t, we obtain

.2 z ["k] (m) (@ + m)z Amar | [ij] z [ck] (m) imQr

m == m=-x

(ei§7'+ e—iﬁ‘r) [ij] z [ck] (m) eimﬁ'r -0 (4.4

m=_co

+

ol

in which cosQr has been expressed in the form cos Qr = % (eiQT+ e_mT) .

Note that if (emT + e-isZT) is combined with elmm', every term in Eq. (4.4)
has a time-varying factor eikﬁT , k an integer. Equation (4. 4) can be satisfied
for all values of T only if the collected coefficients of like exponentials are

individually equal to zero. Thus, it is required that the following equations hold:

“Fleem® [ e Fyd [

E o BT [T 0 @

m=..,-3,-2,-1,0,1,2,3,...

Equation (4. 5) represents a set of linear, homogeneous, algebraic equations

in the unknowns cl({m),k=1, 2,...,N+1, m=...-3,-2,-1,0,1, 2,
3 ... . Inorder that such a system of equations have nontrivial solutions,

the determinant of coefficients must be equal to zero. Thus, only the values of
o which satisfy this requirement are permitted in the solutions expressed in
Eq. (4.1).
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To determine such values of o the equations represented by Eq. (4.5) must
be divided by the proper factors to insure convergence of the determinant.
Dividing the k™ equation of the m™® set of Eq. (4.5) by & [-(@+ m)% + & ]
and combining all of the sets of equations into a single matrix equation, we
obtain

J
]
J

J
(]
~

-

.
.
.
.
]

3
.
.
.
.
U
8

o
o DN AN 2w

Y
* D, , 3P

Dy.2 Dy

12,)0,1 0 - - - . =0 (4. 6)

0,0

1,0
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where Dj k 2re square arrays of elements having the following values:

| 2 = - = |
| -(@+m)” + Fuy Fio .. FyoNe1 :
: -(ot+m)2+/(>% -(a+m)2+’¢})i —(a+m)2+’a)i |
|
: Fo1 ~ e m?® s Fynn :
A
: —(a+m)2+/¢};§ -(a+m)2+/¢l§ -(a+m)2+w§ | 4.7
- . . |
Dm,m B : |
. |
' F F. - (o + m)2 + F |
| FNe1,1 Fre, 2 . SN N :
| 2 A2 T . A2 _ A
| lermTrg - (e m)T by, (ot m”+ U
| - _ _ |
|
I Su Gz . C1,N+1 ,
: -((x+m)2+e)i -(a+m)2+’a:§ -(a+m)2+’(};i |
|
| G G G
21 22 2, N+2 |
' . s » o
| —(a+m)2+/¢.\u§ -(oz+m)2+’¢}:g —(a+m)2+’(§§ : (4. 8)
D - | |
m, m+l
I |
| & a & |
| Cii1,1 CGne1, 2 . 5% 5 |
2 A2 2 N2 P EAY ]
: Slerm +dg, -arm g, S larm g, :

In the above expressions, ij = ij/ﬁz , é-jk = ij/ﬁ2 , and c':k are the
characteristic values of the matrix [ij] : that is, they are the solutions to

the determinant

- A2 = -
Fiu-@ Fio - . - 1,N+1
- — h2 -
For Fog - @ v Fynm
. . e . o (4. 9)
- - - A2
Fye1,1 FNel,2 Frel,Ne1 ¢

Thus, o’.\i( = 5(19/(2- , where G(k) are the characteristic values of [ij] .

The values of w(k) , therefore, represent the nondimensional vibration fre-

quencies for the beam with constant thrust magnitude T
38
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We define the determinant of coefficients of Eq. (4. 6) as

"Dg, 2 yED-.z, -1 0 0 0
052 -1,-1 %010 ° 0 -
Algy = 0 %P0, -1 Do, 0 $20.1 0 - (4.10)
0 ° %010 D1 3012
0 0 0 %Dz’l D, ,

Inspection of Dm m indicates that

3

le,m' =1 (4.11)
for all o except when o is such that - (a + m)2 + u")ﬁ = 0 for some m and
some k , in which case | D, ml is undefined.

We know (Ref. 1) that an infinite determinant converges if the product of
the diagonal elements and the sum of the nondiagonal elements each converge

absolutely. The product of the diagonal elements of A(a) is given by

) - (a+n)2+§11 = (a+n)2+i‘-22
Pr = T 5 A5 5 ‘
n=-« | - (¢ + n) +w1 - (¢ +n) +
- (a + n)2 + F.
N+1,N+1
53 (4. 12)
- (a+n)" + WN+1
which may be written as
2 | = 2 =
w ~— (a+ n) +F11 w - (a+n) +F22
Pr = 5 || 1 2 2
==~ - (a + n) + W n==%° - (a + n) + o,
o et Fyg g,
I =2 (4. 13)
n=-0o - (a+ n)2 + a‘>2
N+1
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Each of the infinite products in the brackets of Eq. (4. 13) can be shown to be
convergent (except when some factor - (a+ n)2 + c?)i is zero) from the theorem

(Ref. 1) which states that the absolute convergence of the infinite sum 2 a,

=1 i

guarantees the absolute convergence of the infinite product n (1+ a;).

The sum of the nondiagonal elements of A(c) is

N+1 N+1 0 = N+1 ®© -~

Yy 3 wlma.y v I

A
j=1 k=1 n=-w O R I e I G
i#k

(4. 14)

Each of the infinite sums in Eq. (4. 14) behaves asymptotically like 1/n2 , in-~
suring its convergence (except when some factor - (a+ n)2 + o@i is zero) and
consequently the convergence of S .

Thus, A(d) converges for all values of o except those for which some
factor - (a+ n)? + c'})i is zero.

Inspection of Eq. (4. 10) with the definitions of Eqs. (4.7) and (4. 8) shows
that A(@) is an even, periodic function of o with period 1 and that it is an
analytic function of o (Ref. 1) except when o = n+ "/"\k for some integer n
and frequency parameter ak . Additionally, we observe that l-l—rfee A(d) =
This follows from the fact that, as o—ix, all elements in the arrays Dn,n +1
approach zero, so that A(c¢) approaches the product of the determinants
|Dn,n| , that is,

lim A(o) = ﬁ IDn’nl (4. 15)

=i n=-o

However, since each of the determinants |D nl is exactly equal to unity, it
follows that

lim A(@ =1 (4. 16)

o —=ico
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4.3 DERIVATION OF CHARACTERISTIC EQUATION

We now choose constants Kl s K2 seae s KN +1 such that the function
H(a) , defined by

K K,

R +
008211'(:)1 - cos 2T = CcOS2TW, - cosS2Tw

>
Ky

H(d) = A(d) +

Y ) 7ru'5N+1 - cos2Ta (4.17)
has no poles at the points &, , 632 e s &N +1 - Such constants exist except

when Ebj:t E.‘.k = n for some j and k (n an integer). We therefore exclude
this possibility in the following analysis.

Observe that H(o) is a periodic function with period 1. Therefore H(d)
has no poles at any of the points a = n % ak . It follows that H(o) is an
analytic function with no poles. Thus, the postulates of Liouville's theorem
(Ref. 1) are satisfied, and we conclude that H(o) is a constant. We evaluate
this constant by allowing a to approach iw , in which case we see that

H(c) = lim A(d) = 1. Thus,
a—1i oo

Kl K2

cos2Td, - cos2ma costréb2 - cos2ma

1
K'N+1

cos 2 m.?m_l - cos2ma

Ag) = 1 -

(4. 18)

..

The constants K1 s K2 » e s KN 41 are evaluated by allowing o to
A A A . . = A .
approach Wys Wyyeens Wggos respectively. Letting o w] + €, we find

that

K, = -27sin 27“% 51-1:12) [eA(c’bj + e)] (4. 19)
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We define a new determinant Aj(o!) , which is obtained by removing the factor
1/(- o2+ Co‘?j') from A(d) . Thus,

Afo) = <—a2 + Cozj>A(a) (4. 20)
and Eq. (4. 19) becomes
7T sin 27rc'5j n
K. = A fw 4,21
i z J(wl ) (.20

The characteristic equation is obtained by setting A(0) equal to zero in
Eq. (4.18). If we make the abbreviations cos 27rc/:>i = Zi and cos 2Ta = z ,

the characteristic equation becomes

K K K
1 2 N+1 _
1 - g - ; T eee T g - O (4. 22)

1 2 N+1 ~ 2

Excluding the possibility of repeated roots, we note that there exist N + 1
solutions to Eq. (4.22), from which the corresponding values of o may be

determined.

4.4 STABILITY OF SYSTEM AS INDICATED BY THE NATURE OF THE
SOLUTIONS

From the solutions z = cos 2 ma of the characteristic equation, the corre-

sponding values of « are readily obtained. It may be shown (Ref. 15) that

oz=-2—i1r-1n (z:l:\/zz—l> (4. 23)

Mettler has shown (Ref. 5) that if a solution o exists that has a positive
imaginary part, there corresponds a solution that has a negative imaginary
part. It follows that unless a is real, an unstable solution exists. Therefore,

in order that the system be stable, it is necessary that z be both real and

limited to the range -1 < z < 1.
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Mettler has classified the areas of instability in terms of Type-1 and
Type-2 region. The boundaries of the Type~-1 instability regions are character-
ized by values of z = +1. On the boundaries of the Type-2 instability regions
incipient complex solutions z exist which are characterized by double roots.
Furthermore, Mettler shows that, as ¥ approaches zero, the Type-1 instability
regions impinge upon the loci Zcﬁi = m (m a positive integer), whereas the
Type-2 instability regions impinge upon l cﬁi + c?)] ‘ =m.
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Section 5

STABILITY OF BEAM WITH PERIODICALLY VARYING THRUST
MAGNITUDE — NUMERICAL RESULTS

An IBM 7090 program was developed to determine the stability characteristics
of a beam under an end thrust whose direction may be controlled and whose mag-
nitude has a periodically varying component.

In this program, the most difficult task was evaluating the determinants
Aj (6\)].) in Eq. (4.21). We assume that the index m in this determinant ranges
from -M to M ; however, we cannot be certain of adequate convergence unless
M is large enough that

(&. s M)2 > &2 .1

where &max is the largest of the cﬁk . When Eq. (5.1) holds, we may be
assured that all the factors -(&; + m)2 + &i , with 1ml > M , will grow in-
creasingly larger in absolute value as |m] is increased, in which case the

absolute values of the elements in the arrays D rapidly grow smaller.

Thus, since |Dm,m| =1 for all m, itis expl::c’tltla](;it that convergence will be
rapid as larger determinants are considered, especially if y is small.

From Eq. (5. 1) we see that if we are to evaluate A, (c’é.) accurately, M
must be large enough that M > &‘)j + amax . Since cﬁj =w (j)/ﬁ , it follows
that, as 2 becomes smaller, the size of the determinants to be evaluated be-
comes larger, making the computations increasingly difficuilt.

The value of M used in the computation of Aj (ﬁj) was generally chosen
to be the first integer larger than cﬁj + z‘\’max . We found, in most cases, that
the solutions obtained for this approximation were very accurate, since increasing
M produced virtually no change in the values obtained for z .

A check on the method of analysis and the formulation of the computer pro-
gram was obtained by actually evaluating A(ce) (using a particular set of param-
eters) for several real values of o and noting at what value A(ax) changes
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signs. It was found that the values of @ determined in this way check very closely

with the values obtained with the method described in Section 4.
5.1 INTERPRETATION OF COMPUTER RESULTS

The computer program was set up to evaluate the necessary determinants
and solve for the values of z satisfying Eq. (4.22). For a given set of data, the
frequency parameter $ was varied in discrete quantities, while the other param-
eters remained fixed. For each value of £, N + 1 roots were computed and
their real and imaginary parts were printed out. Inspection of these roots
showed whether or not the system was stable. The values of @ at which transi-
tion from stable to unstable regions exist were determined from interpolation.

A typical output is shown in Table 5, in which @ is represented by OHM
and the real and imaginary parts of z are ROOTR and ROOTI, respectively.
For this particular set of data, the system is unstable (since a root exists having
an absolute value greater than 1) for values of Q@ between (approximately) 9. 53
and 9. 77,

5.2 BEAM WITHOUT DIRECTIONAL CONTROL SYSTEM AND WITH NO
LONGITUDINAL COMPLIANCE

Figure 10 shows regions of instability associated with the two lowest non-
zero frequencies which were computed with the method described in the preceding
section. The computations were carried out for the case where two bending
degrees of freedom were assumed; a value of v = 0.1 was used. The ratio of
longitudinal frequency to fundamental bending frequency was taken in this case
to be infinite, so that, according to Egs. (2. 10) and (2. 13), the beam response
longitudinally is the same as that of a rigid bar. It may be shown from the defini-
tions of Eq. (2.26) that in such a case the matrix [qk] in Eq. (2. 25) reduces to
a matrix containing only the bending coordinates Qys Qg s ceeo aQy -

Only the regions of instability in the vicinity of Q = 2 5(1) , =2 5(2) ,
Q= 5(2) + c_o(l)l are shown in the figure. These loci may be determined from

the frequency curves corresponding to N = 2 in Fig. 6. "Higher order' regions

of instability, occurring in the vicinity of Q = 2(.«_)( /n, Q= 25(2)/n , and

1)
Q= (5(2) + ZB(I))/n , n > 1, may also exist, but are not shown. An investiga-

tion was made in an attempt to define such regions for n = 2. In every case,
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Fig. 10 Instability Regions Associated with Two Lowest Frequencies Using

Two Bending Degrees of Freedom (y = 0.1, wp, = o0)
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however, such regions were either nonexistent or were so narrow that on the
plot of Fig. 10 they would appear as very thin lines.

From Fig. 10 we see that the Type-2 region expected in the vicinity of
Q= c_o(z) + 25(1) failed to occur. However, note that the Type-2 region in the
vicinity of @ = 5(2) - o_J(l) appears with a comparatively wide band of instability.

Figure 11 shows the same regions as Fig. 10 with the exception that three
bending degrees of freedom were assumed in the analysis. Qualitatively, the
results are essentially the same as in the case where two bending degrees of
freedom were used (Fig. 10), the difference being primarily that the loci of
5(1) and c—o(z) are slightly changed.

Figure 12 shows the effect on the unstable regions due to varying v .* A
value of TO = 60 was chosen and two bending degrees of freedom were assumed,
as in the case portrayed in Fig. 10. Also, as in that case, the fundamental
longitudinal frequency was assumed to be infinite. We note from Fig. 12 that
the widths of the unstable regions considered here increase approximately
linearly with . Mettler shows (Ref. 5) that the higher-order regions (the un-
stable regions impinging upon the y = 0 axis in the vicinity of Zw(k )/n and
[I@ () + W (k)l] /n >1) do not have this property, but rather that the boundaries
of such regions approach a vertical tangency at the vy = 0 axis. Thus, for
small v , it is not expected that such regions will have much practical significance.

Computations performed with values of TO other than TO = 60 indicated
that the linearity property (between region width and ) shown in Fig. 12 holds

generally for all values of T, for the cases considered in Figs. 10 and 11.

Tables 1 through 5 show (’zhe results of computations of the characteristic
values z = cos 27« obtained as solutions to Eq. (4.22) for values of Q in the
vicinities of expected regions of instability. Three bending degrees of freedom
were used and Y = 0.2 and -'fo = 60.0 were assumed. As pointed out earlier,
for the parameters here assumed, the matrix of coordinates [qk] contains only

the N bending coordinates 975> 5 -- Thus the characteristic equation

OGN
is a polynomial of degree N, so that three solutions for cos 27« are expected.

These solutions are presented in the three columns of the tables.

*The coordinates used in Fig. 12 are analogous to those used in the conventional
plot of stable and unstable regions for the Mathieu equation.
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CHARACTERISTIC VALUES IN VICINITY OF & = 2

Table 1

(T, = 60, v = 0.2, N = 3) (&)
Ccos 2T
|

OHM = 1.190 A 1

ROOTR 0. 94326 0.41937  -1.00668

ROOTI 0.0 0.0 0.0
OHM = 1.200

ROOTR 0. 99204 0.33032  -1.00969

ROOTI 0.0 0.0 0.0
OHM = 1.210

ROOTR 0. 99657 0.23958  -1.01199

ROOTI 0.0 0.0 0.0
OHM = 1.220

ROOTR 0. 95883 0.14810  -1.01360

ROOTI 0.0 0.0 0.0
OHM = 1.230

ROOTR 0. 88239 0.05674  -1.01457

ROOTI 0.0 0.0 0.0
OHM = 1.240

ROOTR 0.77214  -0.03373  -1.01493

ROOTI 0.0 0.0 0.0
OHM = 1.250 UNSTABLE

ROOTR 0.63395  -0.12259  -1.01472

ROOTI 0.0 0.0 0.0
OHM = 1.260

ROOTR 0.47433  -0.20921  -1.01398

ROOTI 0.0 0.0 0.0
OHM = 1.270

ROOTR -0. 29302 0.30010  -1.01273

ROOTI 0.0 0.0 0.0
OHM = 1.280

ROOTR -0. 37350 0.11806  -1.01102

ROOTI 0.0 0.0 0.0
OHM = 1.290

ROOTR -0.45022  -0.06518  -1.00888

ROOTI 0.0 0.0 0.0
OHM = 1.300

ROOTR -0.52278  -0.24349  -1.00634

ROOTI v 0.0 0.0 0.0
OHM = Q

ROOTR = (COS 27TCY)REAL
ROOTI =

{cos Z”O[)IMAG.
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Table 2

CHARACTERISTIC VALUES IN VICINITY OF Q = w

- W

cos 2FQ)IMAG

52

(T, =60, v =02, N =3 @
Ccos 2T

OHM = 1.530 A

ROOTR 0.57235 -0. 86976 -0. 86976

ROOT1I 0.0 0. 11080 -0. 11080
OHM = 1.540

ROOTR 0. 67282 -0. 84953 -0. 84953

ROOTI 0.0 0.11883 -0.11883
OHM =  1.550

ROOTR 0.76109 -0. 82807 -0. 82807

ROOTI 0.0 0. 12558 -0. 12558
OHM = 1,560

ROOTR 0. 83621 -0. 80586 -0. 80586

ROOTI 0.0 0. 13085 -0. 13085
OHM = 1.570

ROOTR 0.89752 -0. 78139 -0.78139

ROOTI 0.0 0. 13479 -0. 13479
OHM = 1.580

ROOTR 0.94457 -0. 75690 -0. 75690

ROOTI 0.0 0. 13686 -0. 13686
OHM =  1.590 UNSTABLE

ROOTR 0.97722 -0.73148 -0.73148

ROOTI 0.0 0.13704 -0. 13704
OHM =  1.600

ROOTR 0.99552 -0.70530 -0. 70530

ROOTI 0.0 0. 13510 -0.13510
OHM = 1.610

ROOTR 0.99973 -0. 67847 -0. 67847

ROOTI 0.0 0. 13072 -0. 13072
OHM = 1.620

ROOTR 0.99032 -0. 65108 -0. 65108

ROOTI 0.0 0, 12345 -0, 12345
OHM = 1.630

ROOTR 0. 96792 -0. 62322 -0. 62322

ROOTI 0.0 0. 11255 -0. 11255
OHM = 1.640

ROOTR é 0.93328 -0.59498 -0.59498

ROOTI 0.0 0. 09668 -0. 09668
OHM = Q

ROOTR = (cos 27a)
ROOTI = ( REAL




Table 3

(cos 27 oz)IM AG.
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CHARACTERISTIC VALUES IN VICINITY OF @ = 3, + &,
(T, =60, v = 0.2, N = 3) @ @
cos 2mo
OHM =  2.772 A 1
ROOTR 0. 07840 0.31187  -0. 06334
ROOTI 0.0 0.0 0.0
OHM = 2.774
ROOTR 0. 07697 0.31002  -0.07114
ROOTI 0.0 0.0 0.0
OHM = 2.776
ROOTR 0. 07532 0.30805  -0.07893
ROOTI 0.0 0.0 0.0
OHM = 2.778
ROOTR 0. 07326 0.30578  -0. 08673
ROOTI 0.0 0.0 0.0
OHM = 2.780
ROOTR 0. 07024 0.30274  -0.09454
ROOTI 0.0 0.0 0.0
OHM =  2.782
ROOTR 0. 06363 0.29681  -0. 10246
ROOT1 0.0 0.0 0.0
OHM = 2.784 STABLE
ROOTR -0. 08504 0.23536  -0.14308
ROOTI 0.0 0.0 0.0
OHM = 2.786
ROOTR 0. 08423 0.31724  -0.11724
ROOTI 0.0 0.0 0.0
OHM = 2,788
ROOTR 0. 07677 0.30904  -0.12511
ROOTI 0.0 0.0 0.0
OHM =  2.790
ROOTR 0. 07342 0.30577  -0.13285
ROOT1 0.0 0.0 0.0
OHM = 2.792
ROOTR 0. 07104 0.30364  -0.14055
ROOTI 0.0 0.0 0.0
OHM = 2,794
ROOTR 0. 06901 0.30197  -0. 14822
ROOTI \V/ 0.0 0.0 0.0
OHM = Q
ROOTR = (cos 2Ta)ppAL,
ROOTI =




Table 4

CHARACTERISTIC VALUES IN VICINITY OF Q = 2w

(T, = 60, vy = 0.2, N = 3) 2)
cos 2T o

OHM =  4.290

ROOTR % l 0.71079 0.62690 -1. 00459

ROOTI 0.0 0.0 0.0
OHM =  4.300

ROOTR 0.72213 0. 62864 -1. 00483

ROOTI 0.0 0.0 0.0
OHM =  4.310

ROOTR 0.73325 0.63034 -1. 00502

ROOTI 0.0 0.0 0.0
OHM =  4.320

ROOTR 0.74414 0. 63201 -1.00515

ROOTI 0.0 0.0 0.0
OHM =  4.330

ROOTR 0. 75480 0. 63365 -1. 00522

ROOTI 0.0 0.0 0.0
OHM =  4.340

ROOTR 0.76523 0. 63528 -1. 00525

ROOTI 0.0 0.0 0.0
OHM =  4.350 UNSTABLE

ROOTR 0.77543 0.63688 -1. 00522

ROOTI 0.0 0.0 0.0
OHM =  4.360

ROOTR 0.78538 0.63847 -1. 00514

ROOTI 0.0 0.0 0.0
OHM =  4.370

ROOTR 0.79510 0. 64004 -1. 00500

ROOTI 0.0 0.0 0.0
OHM =  4.380

ROOTR 0.80458 0.64160 -1.00482

ROOTI 0.0 0.0 0.0
OHM =  4.390

ROOTR 0.81381 0.64314 -1. 00459

ROOTI 0.0 0.0 0.0
OHM =  4.400

ROOTR 0.82281 0. 64467 -1. 00431

ROOTI {7 0.0 0.0 0.0
OHM = Q

ROOTR = (cos 2mq)
ROOTI = REAL

(cos ZWa)IMAG.
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Table 5

CHARACTERISTIC VALUES IN VICINITY OF & = 2,

(T, =60, v = 0.2, N = 3 @)
cos 2Tma
OHM = 9.400 | |
ROOTR 0.91789 0.11735  -0.99737
ROOT1I 0.0 0.0 0.0
OHM = 9.450
ROOTR STABLE 0.91875 0.12498  -0.99863
ROOT1I 0.0 0.0 0.0
OHM = 9.500
ROOTR 0.91959 0.13253  -0. 99960
ROOTI 0.0 0.0 0.0
OHM = 9.550 +
ROOTR 0.92042 0.14000  -1.00028
ROOTI 0.0 0.0 0.0
OHM = 9.600
ROOTR 0.92123 0.14737  -1.00067
ROOTI 0.0 0.0 0.0
OHM = 9.650 UNSTABLE
ROOTR 0. 92203 0.15467  -1. 00079
ROOTI 0.0 0.0 0.0
OHM = 9.700
ROOTR 0. 92282 0.16188  -1.00065
ROOTI 0.0 0.0 0.0
OHM = 9.750
ROOTR 0. 92360 0.16900  -1.00025
ROOT I 0.0 0.0 0.0
OHM =  9.800 +
ROOTR 0.92437 0.17605  -0.99961
ROOT1 0.0 0.0 0.0
OHM = 9.850
ROOTR STABLE 0.92513 0.18301  -0.99872
ROOT1 0.0 0.0 0.0
OHM = 9.900
ROOTR 0. 92587 0.18990  -0.99759
ROOTI 0.0 0.0 0.0
OHM = Q
ROOTR = (cos 2ma)
ROOTT = REAL

{cos 21roz)IMAG
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From the solutions z = cos 2ra, we may determine R and B such that

Rei‘e =zxvVz -1 (5.2)

From Eq. (4. 23) it follows that

= .4 gy = B _ jlnR
@ = - 5=(InR +if) = 5z - i3 (5.3)

and

InR i
. Qr Qr
ela?f'r = o 2T . 2T 5. 4)

We define a growth factor, designated G.F. , as the increase of the factor
o InR/27 Tr i/2r Cr

, when r is such that the oscillatory term e has ex-
perienced one complete cycle, that is, when E%ﬁ-r = 27 . With this definition,
we obtain

2—; InR %
G.F. =e = (5.5)

The growth factor is indicative of the severity of a given instability. For a
given region of instability, it is necessary to compute the growth factors corre-
sponding to several values of z to determine the most severe instability in
that region. It is reasonable to expect, however, that in the Type-1 instability
regions the maximum growth factor will occur in the vicinity where the absolute
value of z exceeds 1by the greatest amount. In the Type-2 regions, the maxi-
mum growth factor is expected to be close to the point where the imaginary part
of z is the greatest,

Each of the sets of data in Tables 1 through 5 represents solutions for
values of © on each side of certain expected regions of instability. In Table 6
are computed the growth factors corresponding to the solutions in Tables 1
through 5. These factors were found to give the most severe instability for
each of the regions involved.
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Note that the growth factors corresponding to the most severe conditions
given in Tables 1, 4, and 5 apply to the regions Q = 25(1) , 25(2) , and 25(3) ,
respectively. The decreasing trend of these growth factors indicates that the
instabilities associated with the lower frequencies are probably the most severe.
The largest growth factor is associated with the region Q = 5(2) - G(l) . No

instabilities were found in the vicinity of @ = w, . + ©,

2 @

5.3 BEAM WITH DIRECTIONAL CONTROL SYSTEM AND LONGITUDINAL
COMPLIANCE

Values of K, = 1.0 and &G = 0.5 were arbitrarily chosen for the study
of a beam subjected to a thrust whose direction is controlled by an attitude feed-
back system (as described in Section 2). A parametric study showing the effect
of values of K 0 and & G other than those selected was not made, since such a
study would have no significant qualitative value. The only anticipated variation
would be a change in the location of the unstable regions. (These regions would
necessarily change, since the vibration frequencies themselves are functions of
these parameters.)

From Fig. 9, we see that the frequencies for this choice of parameters are
well behaved for values of TO up to approximately 27.5 (the exact solution gives
25.67). Stability considerations are limited to values of T0 in this range.

Several values of Wy (the ratio of the fundamental longitudinal frequency
to the fundamental bending frequency) were considered. A valueof v = 0.1
was assumed for all analyses in this category. It was shown in subsection 5.2,
that for the case of the beam with no feedback control, the widths of the unstable
regions considered were approximately proportional to v . For the beam with
feedback control, a number of cases were run for a value of v = 0.05 , which
indicated that this linearity relationship continues to obtain. The results of
these investigations, however, are not presented here.

Two bending degrees of freedom were assumed in addition to the rigid-body

coordinates. After eliminating the coordinate ¢ A three coordinates —Ap>
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q, > and q, — remain. Thus the matrix { qk] of Eq. (2.25) is

[%] = |% (5.6)

e e

Considering a larger number of bending degrees of freedom would improve the
accuracy but increase the difficulty of the computations. Qualitatively, it is
not expected that the results would be greatly changed.

The curves of Fig. 13 show the variations of the frequencies as the thrust

is increased. The frequencies are designated w, and o, s0

® < (2 *
named because of the predominance of motion in the coordinates > 9y and
q, > respectively. The curves of E(B) and 5(1) are the same as those that

in Fig. 8 correspond to the values K, = 1.0 and EG =0.5.

Regions of instability are expected when  is in the vicinity of either

o Twice the frequencies, or
e The sum or difference of any two of the frequencies shown in
Fig. 13

The unstable regions actually computed for these vicinities are shown in Fig. 14

for a value of W, = 100.0-—a value which, for the purposes of this investiga-

tion, is essentialIiy infinite (i. e., the beam is longitudinally very stiff). In some
cases no instabilities were located in the vicinities of expected unstable regions.
Such cases are indicated by a dashed line. In some cases instabilities were
found, but the regions were so narrow that they only appear as solid curves in
the figure (note, for example, 0 = 25(1)). In one case (& = 6(2) + “—J(l))’ a
narrow unstable region disappears completely beyond an intermediate value of
TO . In another case (€ = 5(2) - 5(1)), although no instabilities were found for
the smaller values of TO , a narrow region developed beyond an intermediate
value of T, . This is in contrast to the case of Ky = 0, for which a definite

0
region of instability exists in the vicinity of Q = 5(2) - w(l) » apparently for

arbitrarily small values of TO (see Figs. 10 and 11).

The unstable regions for a longitudinal frequency G’:L = 4.0 are shown in
Fig. 15. The most significant difference between this case and the previous case

is the presence of a new region of instability in the vicinity of @ = 4.0. The
59
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existence of this new region arises from the fact that the elements in the arrays
Dm, mel defined in Eq. (4.8), become very large when { is in the vicinity of
an integral multiple of wL (see Egs. (2.13) and (2. 26)). Thus, the determinants
Aj(csj) , normally quite small for small v, become very large, and consequently
the coefficients K]. of Eq. (4. 22) become large also. It is to be expected,
therefore, that in this case the solutions z = cos 27 will likewise become large,
exceeding an absolute value of unity and thus indicating unstable solutions.

The unstable regions for EL = 2.0 are shown in Fig. 16. In this case, the
unstable region which might be expected in the vicinity of € = 2.0 (for the
reasons described in the preceding paragraph) appears to merge with the region
w(l) . A relatively broad region of instability
results. Additionally, an unstable region appears in the vicinity of @ = 4.0,

expected in the vicinity of Q = 2

which is twice EL . Although not shown here, unstable regions might also be

expected in the vicinity of € = 6.0, 8.0, etc.
Figure 17 is a concise illustration of the effect of longitudinal frequencies.

The three axes correspond to O, TO , and @ . For @ = 100.0, the un-

stable region corresponding to = 2o appears as a line in the figure. Other

1)
unstable regions exist (see Fig. 14) but are omitted from this drawing. When

@, = 4.0, aregion of instability appears at € =4.0 and © = 8.0 (also at

12.0, 16.0, etc.). However, the unstable region in the vicinity of @ = 26(1) is

as yet relatively unchanged. When EL = 2.0, abroad unstable region exists

in the vicinity of © = 2.0 . Unstable regions also exist in the vicinity of

2=40,6.0, 8.0, etc.
Tables 7 through 14 show sample computer results for values of £ in the
vicinity of some of the critical regions. Tables 7 through 12 correspond to the

2 * “m) *

W — W and to

@ ®°

regions Q = 25(.5) s 5(1) + G(B) s 25(1) s
za(z) in Fig. 14 for a value of TO =10.
Tables 13 and 14 show the solutions z = cos 27a in the vicinity of € = 2.0

and $ =4.0 for @, =2 and T, = 10. The solutions for € = 2.0 or 4.0 are

%

L 0
meaningless, since, for these cases, infinite values for the elements in the arrays
are obtained.

Dm, mt1

Even in the near-resonance regions, the large amount of longitudinal motion
makes the assumption that g% << 1 questionable. However, on the basis of
assumed typical values of missile acceleration, frequency, and length, it may
be shown that even for a value of @ = 3.99 (in the case of EL = 2.0), the max-
imum value of % is still of the order of magnitude of only 1 to 2%, i.e., it

is still very small in comparison to unity. 63
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CHARACTERISTIC VALUES IN VICINITY OF @ = 23

Table 7

(cos zna)IMAG

66

— 2 b I - (B)
(@ =100, T, =10, v =0.1, N = 2)
cos i21roz

OHM = 0.574 |

ROOTR STABLE -0. 99955 -0.52865 -0. 99667

ROOT1I ‘9 0.0 0.0 0.0
OHM =  0.576 '

ROOTR o -0.99981 -0.55885 -1. 00015

ROOTI 0.0 0.0 0.0
OHM = 0.578

ROOTR -1. 00043 -0.58811 -0. 99344

ROOTI 0.0 0.0 0.0
OHM =  0.580

ROOTR -1. 00065 -0. 61642 -0.97766

ROOT1 0.0 0.0 0.0
OHM =  0.582

ROOTR UNSTABLE -1. 00075 -0. 64375 -0.95288

ROOT1 0.0 0.0 0.0
OHM =  0.584

ROOTR -1. 00074 -0. 67010 -0.91950

ROOTI 0.0 0.0 0.0
OHM =  0.586

ROOTR -1. 00060 -0. 69545 -0. 87801

ROOTI 0.0 0.0 0.0
OHM =  0.588

ROOTR -1.00034 -0.71978 -0. 82895

ROOTI v 0.0 0.0 0.0
OHM =  0.590 A

ROOTR STABLE -0. 99996 -0. 74310 -0. 77289

ROOT1 0.0 0.0 0.0
OHM = Q0

ROOTR = (cos ZWQ)REAL
ROOTI =




Table 8

CHARACTERISTIC VALUES IN VICINITY OF T = Gy + @
@y = 100, T, =10, v = 0.1, N = 2 (B)
cOoSs 2|7ro.'

OHM = 1.234 ]

ROOTR 0.81183 0.10827 0. 10827

ROOTI 0.0 0.03859  -0. 03859
OHM = 1.236

ROOTR 0.82411 0. 10558 0. 10558

ROOTI 0.0 0.04187  -0. 04187
OHM = 1.238

ROOTR 0. 83597 0. 10290 0. 10290

ROOTI 0.0 0.04433  -0.04433
OHM = 1.240

ROOTR 0. 84742 0. 10022 0.10022

ROOTI 0.0 0.04609  -0.04609
OHM = 1.242

ROOTR 0. 85845 0. 09754 0. 09754

ROOTI 0.0 0.04725  -0.04725
OHM = 1.244

ROOTR 0. 86907 0. 09486 0. 09486

ROOTI 0.0 0.04784  -0.04784
OHM = 1.245  UNSTABLE

ROOT R 0.87926 0.09231 0. 09231

ROOT I 0.0 0.04790  -0.04790
OHM =  1.248

ROOTR 0. 88904 0. 08958 0. 08958

ROOT” 0.0 0.04743  -0.04743
OHM = 1.200

ROOTR 0. 89840 0. 08693 0. 08693

ROOTI 0.0 0.04642  -0.04642
OHM = 1.252

ROOTR 0.90734 0. 08428 0. 08428

ROOTI 0.0 0.04484  -0.04484
OHM = 1.254

ROOTR 0.91586 0. 08164 0. 08164

ROOTI 0.0 0.04263  -0.04263
OHM = 1.256

ROOTR 0.92396 0. 07900 0. 07900

ROOTI 0.0 0.03969  -0.03969
OHM = Q

ROOTR = (cos Z”Q)REAL
ROOTI = (cos 2T0)pyag.
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Table 9

CHARACTERISTIC VALUES IN VICINITY OF @ = 23,
@, =100, T, = 10,7 = 0.1, N = 2 (O
0
cos 2T«

M = 1.896 |

ROOTR 0.56452  -0.66728  -0.99989

ROOTI 0.0 0.0 0.0
OHM 1. 898

ROOTR 0.56537  -0.66052  -0.99993

ROOTI 0.0 0.0 0.0
CHM =  1.900 STABLE

ROOTR 0.56621  -0.65371  -0.99997

ROOTI 0.0 0.0 0.0
OHM =  1.902

ROOTR 0.56705  -0.64687  -0.99999

ROOTI 0.0 0.0 0.0
OHM =  1.904 X

ROOTR 0.56789  -0.63999  -1.00001

ROOTI 0.0 0.0 0.0
OHM = 1.906  UNSTABLE

ROOTR 0.56873  -0.63307  -1.00001

ROOTI 0.0 0.0 0.0
OHM = 1.908

ROOTR 0.56956  -0.62612  -1.00000

ROOTI < 0.0 0.0 0.0
OHM = 1.910 A

ROOTR 0.57039  -0.61913  -0.99998

ROOTT 0.0 0.0 0.0
OHM = 1.9.2

ROOTR 0.57122  -0.61211  -0.99995

ROOTI 0.0 0.0 0.0
OHM = 1.914 STABLE

ROOTR 0.57205  -0.60505  -0.99991

ROOTI 0.0 0.0 0.0
OHM = 1.916

ROOTR 0.57288  -0.59796  -0.99986

ROOTI 0.0 0.0 0.0
OHM = Q

ROOTR = (cos 21TO£)REAL
ROOTI =

(cos Zwa)IMAG
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Table 10

{cos 27q)
REAL
(cos 27 a)IMAG.

CHARACTERISTIC VALUES IN VICINITY OF Q = Eo'(z) - E(B)
(mL—loo,To—lo,'y=0.1,N=2)
cos 2|1ra

OHM = 2.290 AN

ROOTR 0.67624 0. 69678 -0. 86405

ROOTI 0.0 0.0 0.0
OHM = 2.292

ROOTR 0.68014 0.69793 -0. 86290

ROOT1I 0.0 0.0 0.0
OHM = 2.294

ROOTR 0. 68373 0. 69935 -0.86174

ROOTI 0.0 0.0 0.0
OHM = 2.296

ROOTR 0. 68689 0.70116 -0. 86059

ROOTI1 0.0 0.0 0.0
OHM = 2.298

ROOTR 0.68952 0.70347 -0. 85943

ROOT1 0.0 0.0 0.0
OHM = 2.300

ROOTR 0.69159 0. 70631 -0. 85827

ROOTI STABLE 0.0 0.0 0.0
OHM = 2.302

ROOTR 0.69319 0. 70957 -0. 85711

ROOTI 0.0 0.0 0.0
OHM = 2.304

ROOTR 0. 69446 0.71314 -0. 85594

ROOT1 0.0 0.0 0.0
OHM = 2.306

ROOTR 0.69549 0.71690 -0. 85477

ROOTI1 0.0 0.0 0.0
OHM = 2.308

ROOTR 0.69638 0.72077 -0. 85360

ROOTI 0.0 0.0 0.0
OHM = 2.310

R._.OTR 0.69717 0.72471 ~0. 85243

ROOTI Vv 0.0 0.0 0.0
OHM = O

ROOTR =

ROOTI
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Table 11

CHARACTERISTIC VALUES IN VICINITY OF
N

0] +
2)(2) (B)

(wL = 100, T0 =10, v = 0.1,
cos 2ra

OHM = 2,878 A |

ROOTR 0. 80584 0. 80584 -0. 48742

ROOTI 0. 00300 -0. 00300 0.0
OHM = 2,879

ROOTR 0. 80533 0. 80533 -0. 48679

ROOTI 0. 00362 -0. 00362 0.0
OHM = 2. 880

ROOTR 0. 80482 0. 80482 -0. 48615

ROOTI 0. 00404 -0. 00404 0.0
OHM = 2.881

ROOTR 0. 80430 0. 80430 -0. 48552

ROOT1I 0. 00434 -0. 00434 0.0
OHM = 2,882

ROOTR 0.80379 0. 80379 -0. 48489

ROOT1 0. 00452 -0. 00452 0.0
OHM = 2,883

ROOTR UNSTABLE 0. 80327 0. 80327 -0. 48426

ROOT1I 0. 00460 -0. 00460 0.0
OHM = 2,884

ROOTR 0. 80275 0. 80275 -0. 48363

ROOTI 0. 00459 -0. 00459 0.0
OHM = 2,885

ROOTR 0. 80224 0.80224 -0. 48300

ROOT1I 0. 00449 -0. 00449 0.0
OHM = 2,886

ROOTR 0.80172 0.80172 -0. 48237

ROOT1I 0. 00429 -0. 00429 0.0
OHM = 2,887

ROOTR 0.80120 0.80120 -0. 48174

ROOTI 0. 00397 -0. 00397 0.0
OHM = 2,888

ROOTR 0. 80067 0. 80067 -0.48111

ROOT1 A\ 0. 00350 -0. 00350 0.0
OHM = Q

ROOTR = (cos 2710)
ROOTY = REAL

(cos ZWOZ)IMAG.
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Table 12

CHARACTERISTIC VALUES IN VICINITY OF § = 2%

(@, =100, T =10, v =0.1, N = 2) @)
cos |27ra

OHM = 5.170 A ]

ROOT R 0.93731 0.40133  -1.00003

ROOTI 0.0 0.0 0.0
OHM = 5.172

ROOTR 0.93736 0.40174  -1.00004

ROOTI 0.0 0.0 0.0
OHM = 5.174

ROOTR 0.93740 0.40215  -1.00004

ROOTI 0.0 0.0 0.0
OHM = 5.176

ROOTR 0.93745 0.40256  -1.00005

ROOTI 0.0 0.0 0.0
OHM = 5.178

ROOTR 0. 93750 0.40297  -1.00005

ROOT1 0.0 0.0 0.0
OHM = 5.180

ROOTR 0.93755 0.40338  -1.00005

ROOTI 0.0 0.0 0.0
OHM = 5,182 UNSTABLE

ROOTR 0. 93759 0.40379  -1.00005

ROOTI 0.0 0.0 0.0
OHM = 5.184

ROOTR 0.93764 0.40419  -1.00005

ROOT1 0.0 0.0 0.0
OHM = 5,186

ROOTR 0.93769 0.40460  -1.00005

ROOT I 0.0 0.0 0.0
OHM = 5.188

ROOTR 0.93774 0.40501  -1.00004

ROOT1I 0.0 0.0 0.0
OHM = 5.190

ROOTR 0.93778 0.40542  -1.00004

ROOTI 0.0 0.0 0.0
OHM = 5.192

ROOTR 0.93783 0.40582  -1.00003

ROOT1I v 0.0 0.0 0.0
OHM = 0

ROOTR = (cos 27na).
ROOTI - REAL

(cos 21roz)IM AG
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CHARACTERISTIC VALUES IN VICINITYOF & = 2.0

Table 13

(@ =20, T, =10, 7 =01, N =2
cos Troz

OHM =  1.920 A ]

ROOTR 0.56279 -0.57689 -1, 04103

ROOTI 0.0 0.0 0.0
OHM = 1.930

ROOTR 0.56343  -0.53846  -1.05301

ROOTI 0.0 0.0 0.0
OHM = 1.940

ROOTR 0.56219 -0.49816 -1.07148

ROOTI 0.0 0.0 0.0
OHM = 1.950

ROOTR 0.55755 -0.45500 -1.10235

ROOT1I 0.0 0.0 0.0
OHM = 1. 960

ROOTR 0.54592 -0. 40641 -1. 15981

ROOTI 0.0 0.0 0.0
OHM = 1.970

ROOTR 0.51727 -0.34444 -1. 28545

ROOTI 0.0 0.0 0.0
OHM = 1.980 UNSTABLE

ROOTR 0.43503 -0. 23394 -1. 64886

ROOTI 0.0 0.0 0.0
OHM = 1.990

ROOTR 0.43751 -0. 07097 -3.61712

ROOTI 0.0 0.0 0.0
OHM = 2.000

ROOTR 0.20000 0.90000 0.90000

ROOTI 0.0 0. 10000 -0. 10000
OHM = 2.010

ROOTR 0.48105 -0. 05931 -3.56733

ROOTI 0.0 0.0 0.0
OHM = 2.020

ROOTR 0.44836 -0.08164 -1.62351

ROOTI 0.0 0.0 0.0
OHM = 2,030

ROOTR 0.53997 -0. 11249 -1.26277

ROOTI ‘> 0.0 0.0 0.0
OHM = Q

ROOTR = (cos 2ma)ppa7,
ROOTI =

(cos 27roz)IMAG
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Table 14

CHARACTERISTIC VALUES IN VICINITY OF & = 4.0

(aL = 2.0, To =10, vy=0.1, N = 2)
cos 21
OHM = 3.960 [ j
ROOTR 0.88291 -0. 05289 -0. 49049
ROOT1 0.0 0.0 0.0
OHM = 3.970 STABLE
ROOTR 0.87510 -0. 17051 -0. 40583
ROOT1I {, 0.0 0.0 0.0
OHM = 3,980 A
ROOTR 0. 85272 -0. 33127 -0.33127
ROOTI 0.0 0. 30037 -0.30037
OHM = 3.990
ROOTR 0.74542 -0. 56082 -0.56082
ROOTI 0.0 0. 81604 -0. 81604
OHM = 4.000
ROOTR UNSTABLE 0. 85000 0. 85000 1. 20000
ROOT1 0.0 0.0 -0. 40000
OHM = 4,010
ROOTR 0.74424 -0.56369 -0.56369
ROOTI 0.0 0. 79757 -0. 79757
OHM = 4,020
ROOTR 0. 85425 -0. 33964 -0. 33964
ROOTI 0.0 0. 25387 -0. 25387
OHM = 4,030
ROOTR 0. 87796 -0. 09109 -0.51126
ROOTI 0.0 0.0 0.0
OHM = 4. 040 STABLE
ROOTR 0. 88689 0.00151 -0.57988
ROOTI 0.0 0.0 0.0
OHM = O
ROOTR = {(cos 21 a)
ROOTI = REAL

(cos 2m a)IM AG
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Section 6
CONCLUSIONS

6.1 BEAM WITH CONSTANT THRUST MAGNITUDE

The results of the investigation of this thesis show that instabilities may

occur in the lateral vibrational modes of a free-free beam subjected to a sufficiently

large thrust. Because of the similarity between an actual vehicle and the mathe-
matical model used, these results may be applied to rocket vehicles. The initial
appearance of the noted instabilities is characterized either by the reduction of one
of the lateral vibrational frequencies to zero, or by the coalescence of two-such

frequencies.
6. 1.1 Beam Without Directional Control

In the case of the uniform beam with no feedback control, the initial
instability occurs when the two lowest bending frequencies coalesce at a value
of the nondimensional thrust parameter TO = 109.9 (as shown in Fig. 6).
Higher modes of instability occur by pairwise coalescence of the higher-frequency

modes (as shown in Fig. 7).
6.1.2 Beam With Directional Control

Introduction of a simple directional control system considerably lowers the
magnitude of critical thrust. Variation of the characteristic frequencies with
thrust is shown in Fig. 8 for a range of values of the control parameters K6
and £ G when two bending degrees of freedom are used in the analysis.
Instabilities may result from frequency coalescence; however, by proper choice
of KG and §G , this coalescence (and accompanying instability) may be
avoided (as shown in Fig. 8a and b). However, regardless of the values chosen
for K, and £ G’
T, = 27.5 . The exact value of T
the requirement that J 2/3 ( %—

the lowest frequency is reduced to zero at approximately
0 at this critical point is determined from
\/_"I_T )= 0 , from which TO = 25,67 .
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Physically, this critical thrust corresponds to the load at which the beam would
buckle under the action of uniformly distributed inertia loads.

On the basis of this critical load we concluded that the thrust level on
modern missiles is considerably lower (by a factor of approximately five) than
that which would cause buckling, However, space vehicles of the future may
be faced with such problems,

6.2 BEAM WITH PERIODICALLY VARYING THRUST MAGNITUDE

When a thrust of magnitude T ot Tl cos Ot is assumed, the equations of
motion are reducible to a set of linear, second-order, ordinary differential
equations with certain coefficients varying sinusoidally with time. A method
for predicting the stability of the system by investigating the nature of the
solutions to this set of equations is developed. The method is similar to the
one used by Hill to determine the nature of the solutions of a single differential

equation having a periodically varying coefficient (Ref. 1).
6.2.1 Regions of Instability

Infinite longitudinal compliance, When the beam is assumed to be very stiff

longitudinally, unstable solutions occur for frequencies of variation of the thrust
in the vicinity of twice one of the natural frequencies of the bending modes, or
the sum or difference of two of these frequencies. (See, for example, Figs.

10 and 14.)

Finite longitudinal compliance. With finite longitudinal compliance, instabilities

also occur for frequencies of the thrust variation in the vicinity of the longitu-
dinal natural frequencies. These instabilities are expected to be most severe
when the fundamental longitudinal frequency is itself in the vicinity of one of the

already critical regions (as demonstrated in Fig. 17).

6. 2.2 Width of Unstable Regions

Instabilities may occur for arbitrarily small magnitudes of the constant

thrust component. However, as this component becomes larger, the band of
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thrust frequencies over which instabilities occur usually becomes larger; also
the instabilities themselves usually become more severe at the center of the

unstable regions (see, for example, Figs. 10, 11, 14, 15, and 16).

Effect of thrust ratio, The width of the unstable regions investigated is approxi-

mately linear with the ratio v = Tl / T, (as iilustrated in Fig. 12). However,
this linear relationship is not expected to hold for the ""higher-order" regions of
instability, as shown by Mettler (Ref. 5).

6.2.3 Application to Flexible Rocket Vehicles

We conclude that the existence of parametric instabilities due to periodic
variations in the thrust magnitude is a definite possibility in modern missiles.
Due to the known proximity of the fundamental longitudinal and the fundamental
bending frequencies (at least in certain missiles), it is apparent that the longitu-
dinal compliance of the missile may play a significant role in these instabilities.
Although the magnitude of the thrust ratio ¥ will probably not be as large for an
actual missile as the values considered here, we feel that such values may be
sufficiently large (of order of magnitude 1 or 2%) that instabilities may develop
which would not be overcome by structural damping.

6.3 SUGGESTIONS FOR FURTHER STUDY

The present study was based on the assumption that the most significant
aspects of the problem could be determined without considering dissipative forces.
We feel that a followz study to determine the effect of such forces on the stability
boundaries would be useful. A first step might be to determine the effect of damping
in the longitudinal motion. This effect would not change the basic nature of the
differential equations, but would produce a somewhat different expression for
the distribution of the force P . This would be true especially in the regions of
longitudinal resonance, where the forces P would be large but finite (as con-
trasted with the infinite values obtained when damping was neglected).

Other forms of velocity-dependent forces which should be considered are
structural damping (which would always be dissipative, but not necessarily
stabilizing (Ref. 3) and a velocity-dependent feedback system. Both of these
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types of forces would lead to an additional matrix in Eq. (2. 25) which contains
the first derivatives of the coordinates 9 - The method developed in this thesis
would then no longer be applicable. It is possible that some revisions in the
theory could be made which would lead to a modified theory. In case efforts
toward a modified theory to include the effects of damping should prove to be
unfruitful, the method described by Chetayev (Ref. 8), referred to in Section 1,
would appear to present a suitable method.

More generally, the method developed in this thesis for solving a system of
differential equations with sinusoidally varying coefficients may easily be extended
to include cases where the coefficients vary periodically in a form expressible
as a Fourier series in time, In such a case, the elements appearing as zeroes
in the matrix of coefficients of Eq. (4.6) would be replaced by elements contain~
ing, as factors, coefficients of the higher-order terms in the Fourier series.

The manner of their replacement would be very similar to the manner in which such
terms enter the elements of Hill's determinant (Ref. 1).
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