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I n  t h i s  report, a model of b io logica l  contamination of a s t ruc ture  
during assembly i s  developed. 
ing both the amount of contamination and its surface d is t r ibu t ion  on the  
s t ruc ture  as mndom variables. 

It is hoped t h a t  by using t h i s  m o d e l  and subsequent refinements of 
it, one m y  be able t o  specify conditions under which the level of 
b io logica l  contsmination of a s t ructure  may be predicted s t a t i s t i c a l l y  
wi th  any desired degree of confidence. 

This model i s  s tochast ic  i n  nature; treat- 

Project No. 340.229.00 
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I n  t h i s  report, a stochastic model of contamination of s t ruc tures  

during assembly I s  developed. 

deterministic m o d e l  developed by J. D. Johnson, formerly of Jet Propulsion 

Iaborator ies  who kindly provided us with much inforarrtion about h i s  model 

and the  problem i n  general. 

This model is  based on an underlying 

I n  t h e  way of a disclaimer,  t h e  m o d e l  developed here is nut intended 

t o  be, nor is it, a m o d e l  guaranteed t o  handle al l  of the  d i f f i c u l t i e s  

which arise i n  the  problem of s t ruc tura l  contamination. Rather, it is  

a model whose =In r l r t u e s  are the recognition t h a t  the problem is 

stochast ic  i n  nature and the  inclusion of certain structural parameters 

which may be useful i n  engineering design. 

I n  the first section of t h i s  report ,  the  problem of contamination 

of a s t ruc ture  during asseuibly is discussed and analyzed from a point of 

v i e w  t h a t  will hopefully allow the matheumtlcalmodel t o  be vlewed 

in tu i t i ve ly .  

second section. 

framework i n  which the  problemmay be m h e r  analyzed. 

number of related areas i n  need of addi t ional  study, and we have attempted 

t o  point these out i n  t h e  sequel. 

i n  detail.  

A rigorous abstract  mathenrntlcalmodel I s  developed I n  the 

This is done in omer  t o  present a precise  axiomatic 

There are a 

The t h i r d  sect ion treats some of these 

Acknowledgement I s  due D. P. Peterson, M. S. Tierney and J. M. Worrell 

of Sandla Laboratory f o r  t h e i r  philosophical and technical  ass is tance.  
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SECTION I - The Problem of Contamination 

of a Structure During Assembly 

Eeferences '11, give some indication of the  current concern L J L J '  [?JI 
about the biological  contamination of space vehicles which are t o  come i n  

contact with other planets,  

It is  frequently proposed, that i n  order t o  obtain a sterile vehicle 

p r io r  t o  launching, one f i rs t  needs t o  obtain a completed s t ructure  whose 

l eve l  of microorganic contamination i s  less than some prescribed bound. 

If the  prescribed bound i s  achieved i n  the c o q l e t e d  structure, it i s  

assumed t o  be possible t o  biologically sterllize the  s t ruc ture  i n  a 

"reasonable" amount of t i m e  j u s t  p r io r  t o  i t s  use by subjecting it t o  

heat of a "reasonable" temperature consistent with the  a b i l i t y  of the 

s t ruc ture ' s  components t o  withstand heat. 

J. D. Johnson of J e t  k o p l s i o r ?  kbora tos i e s  has developed a deter- 
1 

minist ic  model (see [4J ) i n  which the  contamination i s  analyzed at each 

stage of assembly of the  s t ructure  i n  order t o  predict  the contamination 

remaining on t h e  canpleted structure.  I n  t h i s  model, he considers two 

+--e 'Jr-- of contamination: 

physical  d i s t inc t ion  between these two concepts i s  that between micro- 

in te rna l  and external.  I n  a rough way, the 

organisms locked t i g h t l y  i n t o  some inaccessible space (on the threads of 

a screw, f o r  instance) and those on a surface exposed t o  the a i r  i n  the  

work area. Theoretically, the  d is t inc t ion  l i e s  i n  t h e  assumption t h a t  

during a chemical decontamination cycle some small f ract ion,  f ,  of the 

external  contamimiioii siii-;ivec, .ihile al l ;  or  essent ia l ly  all,  of t h e  

intei-iial cc~ t&~&t i .m  siirvives . It i s  assumed t h a t  t he  survival factor ,  

f ,  i s  t h a t  fac tor  associated with the hardiest microorganism known. 
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I n  t he  model presented here, it i s  assumed that "survival" i s  not 

Jus t  a two-valued finction, but that It varies with eurface "type". Our 

concern l ies i n  t h e  pose ib i l i t y  that i n  any given decontamination stage, 

some of t he  "least accessible" external contamination lpay survive i n  a 

higher proportion that the "more accessible" external contawlnation 

while,  at +he same time, have a higher probabi l i ty  of becoming in t e rna l  

contamination at the next assembly stage. 

I n  order t o  make t h i s  more precise ,  l e t  us define external contamina- 

- t i o n  t o  be that contamination which i s  d i r e c t l y  exposed t o  the  sur:*ounding 

a i r  i n  t he  work area. This def in i t ion  differs from that of Johnson's 

model, but it is more convenient f o r  our purpose. 

would seem t o  be a reasonable one, and it leads i n  a n a t u r a l  way t o  

fu r the r  inquiry about the notion of d i r e c t  exposure. 

might be desirable t o  d is t inguish  between exposure on a large flat  surface 

and exposure i n  a t iny crevice since it i s  not unlikely that the l a t t e r  

"protected" contaminants would survive i n  a praportion d i f f e ren t  frum 

that of the former "unprotected" contamtnants during a given stage of 

decontamination. 

p o s s i b i l i t y  of having many degrees of contamination "protection". 

This def in i t ion  

For example, it 

Making such a d i s t inc t ion  leads t o  the uncomfortable 

For the same reason, one might wish t o  distinguish between contam- 

ina t ion  l y i n g  on a polished m e t a l  surface and a soft rubber surface, 

pa r t i cu la r ly  when the  decontamination mechanism is  g a s .  

Such p o s s i b i l i t i e s  lead t o  the introduction of a stochastic element 

i n t o  the  problem; namely, the d is t r ibu t ion  of contaminants on the  external 

surface of the  s t ructure .  This i s  c l ea r ly  a matter of some concern i f  it 

i s  possible t h a t  the survival r a t i o  of the external  contamination depends 

on the location of the  contamination upon the s t ruc ture ' s  external  surface. 

5 



For example, i n  a complex structure possessing many surface "typesf1, 

one possible d is t r ibu t ion  might be "all contaminants l i e  i n  screw hole A", 

although such a d is t r ibu t ion  of external contamination seems improbable. 

Another possible d i s t r ibu t ion  might be "all contaminants l i e  on exposed 

f lat  surfaces", which again eeem unlikely in a complex structure  if 

"surface" is  deflned in some r e a l i s t i c  manner. 

The l a t t e r  counnent gives an indication of the  f'lrst d i f f i c u l t y  

encountered i n  such an approach; namely, w h a t  should be regarded as a 

surface? A s  an example, consider the  fact that geanetr ical ly  most 

surfaces a r e  loca l ly  flat, that is ,  nearly a l l  of the  points  on the  

s t ruc ture ' s  external surface may be thought of as belonging t o  a small 

f lat  subsurface. Hence, it would seem that one should consider subsur- 

faces which are not, i n  general, j u s t  some small neighborhood of a p o i n t  

on the s t ruc ture ' s  external  surface. 

stage, it would be desirable t o  divide the  t o t a l  external  surface of the 

s t ructure  in to  subsurfaces i n  such a way tha t  contamination dis t r ibuted 

uniformly on the external  surface of the s t ruc ture  has a f a i r l y  constant 

survival  f ac to r  a t  a l l  points of any given subsurface when decontaminant 

i s  applied uniformly on t h a t  subsurface. 

I n  f ac t ,  a t  any given assembly 

Suppose f o r  a moment that the ex terna l  contamination a t  a given 

assembly stage i s  uniformly dis t r ibuted Over the external  surface of the 

s t ructure .  Then we w i l l  assume that  the  survival fac tor ,  f ,  is a function 

of two surface parameters a and @ .  Here, a i s  assumed t o  be a parameter 

indicating the  degree of "exposure" of the surface, and 6 i s  a parameter 

indicating the surface "type" a t  any given point of t he  external  surface 

of the s t ructure .  Then the  above states tha t ,  on the external surface, 

the survival fac tor  

6 



i s  a function of t h e  two surface parameters aand  0 when the  contamination 

i s  uniformly dis t r ibuted on the  t o t a l  external area. 

Two comments are i n  order,  First, it i s  one thing t o  say "let a 

be a parameter indicating the  degree of exposure of points on the  external 

surface of the  structure",  and qui te  another thing t o  define such a 

parameter i n  physical terms. 

Secondly, i n  keeping with the above discussion, one would like t o  define 

the  parameters a and 0 i n  such a way t h a t  it I s  possible t o  divide the  

s t ruc ture ' s  external surface in to  subsurfaces on which both a and @ a re  

f a i r l y  constant. This would be convenient, since under such conditions, 

f(u,O) would be essent ia l ly  a constant on each such subsurface. 

A similar comment may be mde about 0. 

Admittedly, it i s  not c lear  how the  external surface of the  s t ruc-  

ture can be parameterized i n  such a way. 

venience w e  w i l l  defer any fur ther  discussion about t h e  def in i t ion  of 

these parameters u n t i l  Section III. 

t h a t  at any stage of assembly, the external  surface of the  s t ructure  has 

associated with it two parameters a and p ,  w i t n  tine prw@i-tg t Z z t :  

a uniform dis t r ibu t ion  of contamination on the  external surface of the 

s t ructure ,  t he  survival factor  

However, as a matter of con- - 

For the  moment, l e t  us  simply assume 

give:: 

f = f(a,/?). 

Making such an assumption allows us  t o  proceed t o  make another. 

Let us sqpuse t h ~ t  t b e  t o t a l  e-xternnl surface S of the s t ructure  i n  

yucouIvll -..--+a e" i s  d i ~ i d e d  into subsurfaces s, ,s,,...,sn i n  such a way that:  
I C  I .  

(1) the  subsurfaces s together cover a l l  of S, 

(2) the subsurfaces si do not overlap, and 

i 
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( 3 )  there e x i s t s  a small number c such t h a t  fo r  any 

two points of si, with parameters (a ,8 ) ,  and ( a ' , @ ' )  

Several comments should be made about these conditions. The three 

conditions yield a t o t a l  decomposition of the  surface S i n t o  subsurfaces 

on each of which t h e  survival  factor  i s  essent ia l ly  a constant function 

of t h e  surface parameters a ,  and @ . 
were known, it would be theore t ica l ly  possible t o  obtain such a decom- 

posit ion of S i n t o  a f i n i t e  number of subsurfaces sa t i s fy ing  (l), (2) 

and ( 3 ) ,  provlded f were a reasonably well behaved function ( t h i s  can be 

made precise).  

e prescribed i n  advance. 

vary as l i t t l e  as desired on t h e  subsurfaces. 

consider f t o  be, i n  f a c t ,  a constant f on each subsurface s Finally, 

f o r  a given e ,  t h i s  decomposition cannot necessarily be accomplished 

i n  a unique way. 

Thus, i n  r ea l i t y ,  t h e  assumption of a decomposition of S i n t o  sub- 

Further, i f  the function f(a ,@) 

This decomposition can be accomplished for any nurnber 

That is  t o  say, the  function f can be made t o  

For t h i s  reason, we w i l l  

i i' 

surfaces sa t i s fy ing  (l), (2) and (3)  is a.n assumption about knowledge of 

(and t h e  nature o f )  the  function, f ,  defined on S. 

For the remainder of t h i s  section le t  us assume only t h a t  t he  con- 

tamination on any subsurface si is  dis t r ibuted uniformly and that the 

decontaminant i s  applied uniformly on any si (although the  density may 

vary from one subsurface t o  another due t o  t h e i r  varying degress of 

exposure). 

pleted, and l e t  us analyze the microbial loerding within the framework 

developed above. 

Suppose t h a t  t he  assembly at some stage has j u s t  been can- 

a 
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It seems improbable t h a t  the external contamination on the  s t ructure  

i s  known exactly. Thus i n  t he  model, the external  contamination w i l l  be 

represented by a random variable, C. For convenience, and without loss 

of generali ty,  we w i l l  assume t h a t  C i s  defined on the  integers  between 

0 and b inclusive and tha t  C assumes values on the integers i n  t h i s  same 

range. Here, the  posi t ive integer,  b, represents a bound on t h e  possible 

contamination. Clearly such a number ex i s t s  although it may be extremely 

large.  

I n  addition, the  

subsurfaces s That i’ 

contamination i s  

is, some portion 

physically dis t r ibuted among the 

of the contamination i s  on s 1’ 

some portion on s 

t h e  random variable C i s  decomposed i n t o  a sum of random variables C 

C2, ..., C where Ci represents the contamination on the  subsurface s 

and each C, i s  defined on t h e  integers 0 thru  b and assumes values i n  the  

same range. 

and so forth.  This corresponds t o  the statement t h a t  2’ 

1’ 

i’ n 

1 

Now such a decanposition of C i n t o  the  sum of random variables 

of t h i s  t ype  i s  not unique, and indeed may generally be accomplished i n  

many ways, although the number of such ways i s  c lear ly  f i n i t e .  The 

d i f f i c u l t y  here i s  tha t ,  p rac t ica l ly  speaking, it i s  not known which of 

the  many possible decompositions of C i s  the  one which corresponds t o  

the  ac tua l  s i tua t ion .  

Since t h i s  point i s  c r i t i c a l ,  it seems desirable  t o  elaborate some. 

I n  Figure 1, two possible decompositions of a random variable C are shown, 

where n = 2, b = 10 and t h a t  C i s  the  ident i ty  function. In  Figure l ( a ) ,  

the  graph represents C as the iden t i ty  function mapping the  integers from 

0 t h r u  10 i n t o  themselves. Figure l ( b )  shows one possible decomposition 

of C i n t o  two random variables Cil) and C p ’ .  That  is, i n  the usual 

functional way, C = C i l )  + Here, C ( l )  i s  the  random variable rep- 1 

9 
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Without going i n t o  mathematical detai l ,  one can in tu i t i ve ly  sense 

t h a t  t he  two s i tua t ions  lead t o  qui te  different  physical d i s t r ibu t ions  of 

contamination on s- and s2 for many values of C. 
1 

In  the  general case, It i s  obvious t h a t  there are many such possible 

physical d i s t r ibu t ions  of t h e  contamination among t h e  subsurfaces sl, s2, 

..., s . Let us denote any one such d is t r ibu t ion ,  d ,  i n  t he  following 

way: 

representing t h e  contamination on s 

physical d i s t r ibu t ion  d.  

n 
d = (Cl(d), C2(d), . . . , Cn(d)), where Ci(d) is t he  random variable 

i = 1,2, ..., n, for the  pa r t i cu la r  i' 

Clearly mmy such d ' s  w i l l  not represent anything which might 

reasonably be called a uniform dis t r ibu t ion  of contamination on the  ex- 

t e r n a l  surface of t h e  structure.  Th i s  fact leads us t o  reconsider our 

or ig ina l  ideas about t h e  nature of the survival  factor ,  f .  We w i l l  s t i l l  

assme t h a t  the  subsurfaces s satisfy the  above conditions (l), (2 )  and i 

( 3 )  and t h a t  f is a constant 

However, it seems t o  us 

the  surface parameters a and 

i' S 

function fi of the parameters a and @ on 

t h a t  f cannot be treated as a function of 

@ alone, but that it must also depend upon 

i 

the amount of contamination present on t h e  surface s 

implicit assumption that t h e  decontamlnant is  applied i n  a standard way, 

t h a t  is, no attempt i s  made t o  apply more decontaminant t o  those sub- 

surfaces on which t h e  contamination i s  greatest. Th i s  seems t o  be rea- 

sonable since t h e  i den t i ty  of these subsurfaces is  not l i k e l y  t o  be known 

i n  any given s i tua t ion .  

d = (Ci(d),C,(d). .... C.(d) ) ,  t h e  f, are assumed t o  be functions of the 

This contains t h e  i' 

Thus, fo r  each physical d i s t r ibu t ion ,  

random variable 

and they become 

i 11 

C,(d). That  is 
A 

random variables because of t h e i r  dependence on the random 

11 



variables Ci(d). O f  course, for  t h i s  same reason, f (C ( a ) )  i s  an implici t  i i  

function of d .  

I n  t h i s  context then, one obtains a new random variable,  

represeriting the contamination which remins on the subsurf'ace s a f t e r  i 

the  decontaminant has been applied if d = ( C1( a) ,C2( a), . . . ,Cn( d ) )  had 

been t h e  physical d i s t r ibu t ion  of C among t he  subsurfaces. 

is defined on the  integers from 0 thru  b. 

s l i gh t ly ,  C;(d) will assume in tegra l  values i n  the same range without 

a f fec t ing  i t s  physical interpretation. As a matter of convenience, it 

w i l l  be assumed t h a t  t h i s  is  the case. 

Clearly C;(d) 

Also, by changing fi(Ci(d)) 

L e t  us assume t h a t  there  is  associated with each possible physical 

d i s t r ibu t ion ,  d, a probabili ty,  P(d), t ha t  d w i l l  i n  f a c t  represent t h e  

ac tua l  d i s t r ibu t ion  of external. contamination among t h e  si's. 

a n  assumption wlth recognizable p rac t i ca l  d i f f i c u l t i e s ,  but we w i l l  post- 

pone discussion of these u n t i l  Section 111. We assume t h a t  the summation 

of t he  P(d) over a11 possible physical dis t r ibut ions,  d, is  unity. 

This i s  

This assumption aiiows one iri calc--ts the zzzi!~- - . ~ r i ~ b l e  C' i 
representing the  expected contamination on si a f t e r  decontamination i n  

the usual manner: 

Once aga in ,  one may assume tha t  C '  i s  in tegra l  valued. This i n  turn leads 

t o  a random variable, 

i 

n 

i=1 
C' = c c; , 

12 
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representing the  expected contamination of t he  t o t a l  external surface 

of t h e  s t ructure .  

Due t o  the  nature of the  problem, it may be preferable t o  be pessi- 

mist ic  about the random variable representing t h e  t o t a l  external contamin- 

a t ion ,  rather than rely on expected values as i n  t h e  last equation. 

t h i s  case, one might choose, 

In  

n 

C" = max fi(Ci(d))*Ci(d) 
d i=1 

t o  be the  random variable  representing the external  contamination of t h e  

s t ructure  after decontamination. If t h i s  i s  done, l e t  do be a d is t r ibu-  

t i o n  which maximizes t h e  above sum. That is, 

n 

i=1 
C" = fi(Ci(dO))*Ci(dO) 

Then the  ith term i n  t h e  sum w i l l  be t h e  random var-able representing t h e  

contamination on t h e  subsurface 6. after decontamination. 

not be unique, tha t  has some disadvantages which w i l l  be discussed i n  

Section 111. However, i n  sp i te  of t h e  difficult ies,  t h i s  approach seems 

more reasonable than the  former. Indeed the  choice of a new random 

variable representing t h e  external surface contamination after a decon- 

tamination cycle presents a decision making problem. 

discussed i n  somewhat more detai l  i n  Section 111. 

Since do may 
1 

This problem is  

So far we have discussed only the external  contamination problem 

associated with decontamination j u s t  after a given assembly stage of t h e  

s t ruc ture .  I n  general, t h e  decontaminated s t ructure ,  Z1, w i l l  be placed 

together wi th  other  decontaminated s t ructures ,  ZJ, j = 2, ..., m. 

form a new structure ,  Z, which is  amenable t o  the  above approach provided 

some means e x i s t s  f o r  obtaining t h e  contamination random variable, C, 

t o  
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- .  
I -  

of Z i n  tems of the randm variables C(') representing the external  

contamination of t h e  Z j = 1,2, ..., m. Here of course, each of the 

C ( j )  correspond t o  the C t  or C" o r  some similar ly  derived randam variable, 
3' 

J '  on the s t ructure  C 

Returning t o  Johneon's model, we w i l l  assume, as he does, t h a t  t h e  

handling of the  2. prior t o  actual  assembly in to  Z imperts some external 
J 

contamination, A t o  L: This means t h a t  the  t o t a l  external contamina- 

t ion  of 2 at the  moment of assembly of Z i s  C(') + A 

portion of the external contamination w i l l  become in t e rna l  contamination 

3' J' 
Further, scxne J J '  

during the  ac tua l  assembly of the Z.'s i n t o  Z, and following Johnson, we 
J 

w i l l  denote t h i s  "fraction" by cr Finally,  during the  ac tua l  assembly, 

some external  contamination, B, w i l l  be added t o  Z, and following Johnson's 
3'  

m o d e l ,  the t o t a l  external contamination of 2 would be of the  form: 

j=1 

Here it must be noted that we deviate from Johnson's 

assume tha t  B, C"), A .  are random variables defined 

tnru  b an6 LGiug ir~tegrol -v-&P~cz is t h e  ECS =E- o- - 
J 

m o d e l  i n  t h a t  we 

on the integers  0 

Further, It seems reasonable t ha t  the f rac t ion  I.( of external 

contamination on the  s t ructure  which becomes in te rna l ,  i s  a function 

of the physical d i s t r ibu t ion  of the  random variable C(') + A .  on the  

external  surface of the  s t ructure  Z.. 

This arises from reasoning along the  following l i nes .  

"j 

J 
Thus, pj i s  a l s o  a random variable.  

J 
If the  actual physical 

t a \  

dis t r ibu t ion  of C'"' + A on Z is  3 3 

14 



defined by 

(where n is the  number of subsurfaces on Z ), then it is possible t h a t  a l l  

the contamination C(’) + A be in te rna l  or external  i f  t h e  subsurface 

s(j) of 2 should become ent i re ly  in t e rna l  o r  external during the assembly 

of Z. 

I.C depends on the physical dis t r ibut ion,  d”),  of the  external contamina- 

- 3 3 

j 

1 3 
This i s  an extreme s i tuat ion,  but  one can eas i ly  see frm it how 

3 
t i o n  (2‘’) + A among t h e  subsurfaces s1 , s”), ..., s”) of the  s t ruc ture  

n3 3 

(“1 

When one allows t h i s  possibi l i ty ,  t h e  external contamination con- 

t r ibu ted  by Z t o  Z takes  the form: 

n .  
3 

where CLj)(d(’)) and I.C(’)(C~’)(d(’))) are random variables which, i n  k 
addition, possess a dependence on the  physical dis t r ibut ion,  d”),  of 

I t \  

3’ + A .  on Z 
3 

I n  these terms, the randam variable representing the external  con- 

tamination of Z takes t h e  form: 

Again taking a pessimistic view of external contamination, one may 

wish t o  consider t he  external contamination of Z t o  be given by t h e  

expression C = rnax max . . . max C(d‘l’, d‘=’ 
f - t \  I n \  ) , 

,** . ,  
d (1) &2) ,(m) 

or he may wish t o  use an expected value m o d e l  

15 



I -  

where t h e  sum is taken mer a l l  z=?x?les (d (1) e * ; d(m)) , and of course, 

it i s  assumed t h a t  t he  probabili ty,  P(d (1) , . . . , 
of these m-tuples e x i s t s  and i s  known. 

of the Occurrence 

I n  e i t h e r  case, the  prac t ica l  d i f f i c u l t i e s  which exist are much the  

same as those a r i s ing  i n  t h e  previous analysis of the  decontamination 

mechanism, and these are discussed i n  Section III. 

Nonetheless, depending upon one's decision c r i t e r ion ,  either of t h e  

above expess ions  f o r  C yield a randan variable which m y  be viewed as 

representing t h e  external  contamination of t h e  s t ructure  Z in terms of 

t h e  subsurface contaminations Ck ( 5 )  (d (j) ) of i ts  immediate substructures 

and the  external contamination variable, B, added during assembly. 

This approach allows t h e  r e l a t i m a  betveer, surfsce type, physical 

d i s t r ibu t ion  of contamination, and decontamination t o  be t a k e n  i n t o  account. 

One can car ry  t h i s  analysis a step further t o  invest igate  the  "c r i t i ca l "  

subsurfaces only. 

cr-xtermsl whsiirfaces ~ r t s  of which are t o  become in t e rna l  a t  t h e  next 

s tage of asseuibly by simply summing equation (*), above, over the indices 

of such subsurfaces only. 

t o  n 

That i s ,  one can ex t rac t  information per ta ining t o  those 

For t he  remaining indices, k, i n  the  range 1 

one has p ( j )  = 0. 3 k 
Without going i n t o  detail,  it should be c l ea r  t h a t  i n t e rna l  con- 

tamination can be treated using t h i s  same approach. 

16 



. 

SECTION I1 - Mathematical Model 

I n  t h i s  section, t h e  def ini t ions necessary f o r  t he  construction of 

an abs t rac t  mtrthziastieal. z&el of t he  sitimt-ion rlescr2bed i n  Section I 

are given. 

our in ten t  t o  rigorously bui ld  the  foundation from which the  problem can 

be studied f u r t h e r ,  and as such, t h i s  section i s  generally devoid of new 

ideas about t he  problem I t s e l f .  

expository treatment t o  advance t o  Section III. 

A f e w  sa l i en t  propositions are stated without proof. It i s  

We urge any reader interested only i n  

For fur ther  elaboration 
, -  

of Definitions 1 through 

f o r  Definitions 10 through 12, [6] may prove helpful.  

9, the  reader i s  referred t o  [5J,  while 

Contamination SDace : 

Definition 1. Let +, denote t h e  set of integers  from 0 t o  b (>O) 

inclusive. A probabili ty space of the  form (5, 2 5, , p)  

w i l l  be called a contamination space, P. 

C, defined on t h i s  space having as i ts  range a subset of 

A random variable, 

+, w i l l  be called a contamination variable, and the  num- 

ber b is called t h e  contamination bound. Let e ( P )  be 

t ion  space P = (\, 2 53 P). 

M-Parameter Survival Factor: 

Definition 2, If f i s  a continuous function of bounded var ia t ion mapping 

[0, l)m i n t o  [o, li it w i l l  be called an m - p a r a m e t e r  

survival factor.  

and half open se ts .  

J 

Note t h a t  10, l ) m  contains half  closed 

This is  done i n  order t o  guarantee 

tha t  t h e  R .  t o  be defined i n  "Proposition 1" be non- 

overlapping. 
J 



. 
' .  

Proposition 1. If f i s  an  m-parameter survival f ac to r  and c 7 0 i s  any 

real number, then there exist m-by-n matrices 

l18ijli defined over [o, 1) wlth the properties: 

(i) i n  the region R of [o, l)m deflned by 

lIaiJll and 

3 

n 

J = l  
(ii) u R~ = [o, l)mand Rin R = fi i f  i + j. 3 

"Proposition 1" (a well known theorem on contlnuoue 

functions) w i l l  yield a method of breaking the surface of 

any component i n t o  n subsurfaces on which the  m - p a r a m e t e r  

survival factor,  f ,  is  nearly equal t o  i t s  representative 

value f ( a  i j , . . . ,  a ) ( j  = 1, ..., n).  m3 

e-Decomposition [O,l)m Relative t o  f .  

Such a decoarposition of [ot l ) m  i n t o  R1,. . . ,R as given Definition 3. 
" r  

i n  Proposition 1 is cal led a c-decomposition of +O, I l ) m  - 
r e l a t ive  t o  f .  For a given c-decomposition, we define - -  

I -  
I -  

The Set ~ ( P , c ) :  

Definit ion 4. For a given contamination variable, C, i n  e(P), we define 

the set e(P,C) t o  be that set of randam variables 

X : r ,  --+ p, 4 with the addi t ional  property t h a t  

X*C is i n  e ( ~ ) .  

- 

P r q o s i t l o n  2. For a given contamination space P and contamination 

variable C In &(P), the set k(P,C) i s  a finite non- 

empty set. 

18 



e-Survival F’unctions: 

Definition - 5 .  Given a n  m-parameter survival factor ,  f ,  a number e > O ,  
m a e-decamposltion Rl ,..., Rn of [0,1) r e l a t ive  t o  f ,  

an n-tuple (fl,. . . , f n )  is  cal led a se t  of c -survival 

functions i f :  

( i )  f 

a l l  C i n  e (P)  and a l l  j = 1, ..., n, and 

i s  defined on e(P) and f ( C , e )  is  i n  e(P,C) for  3 3 

( i t )  f o r  the contamination variable Q i n  e(P)  defined 

by Q(i) = 0, I = 0,1,. .., b, one has f ( 0 , e )  = fj(c), 

the  latter being defined i n  Definition 3 above. 
J 

m-Parameter Surface: 

Definition 6 .  An ordered pair (S, g) i s  ca l led  an m-parameter surface 

i f  S is  a surface i n  and g is  a function mapping the  

p i n t s  of s i n t o  [0, llm. 

Proposition 3 .  Let  an m-parameter survival factor ,  f ,  an  m - p a r a m e t e r  

surface ( S ,  g), e > 0, and an  e-decomposition R1, ..., R n 

of 0, l)m re la t ive  t o  f be given. Then the r e l a t ion -  

among the  points of S defined by pl- p2 if  and only i f  

f(g(pl)) and f(g(p2))  belong t o  the  same Ri, is an equi- 

valence r e l a t i o n .  

[ 

e -Subsurfaces of S: 

Definition 7. The -equivalence classes  of S, under the conditions of 

Proposition 3, are denoted sl, ..., s 

e-subsurfaces uf 9 .  

and are cal led n 



I ' .  
Contaminated Surface: 

An ordered t r i p l e  (S, g, C) i s  cal led a contaminated 

surface if (s, g) i s  an m-parameter surface f o r  some m, 

and C i s  a contamination variable defined on some contamin- 

- 

Definition 8. 

a t ion  space. 

Physical Decomposition of C: 

Given a contamination space, P, and C i n  e(P), an 

n-tuple ( C1, . . . ,Cn) i s  ca l led  a physical decomposition 

of c if: 

( i )  Ci is  i n  e(P), i = 1 ,..., n, and 

Definition 9. 

- -  

( i i )  ' c  = c1 + c2 + .. . + c*. 

We let  A(C) denote the  set of such n-tuples. 

Proposition 4. me s e t  .4(~) is a f i n i t e  nonempty set. - 
An Assembly Network: 

Definit ion 10. A digraph is  a n  ordered pair D = (V ,  X) where V i s  a 

f i n i t e  nonempty set cal led the  set of points of D and 

X C V x V is  called the  set of lines of D. An assembly 

( i )  there i s  exactly one point of N f o r  which the outdegree 

a t  t h a t  point i s  zero (we denote t h i s  point v ), and 

every other p o i n t  has outdegree one, and 

T 

( i i )  N contains no directed cycles. 

20 



Proposition 5 .  

Proposition 6. 

Proposition 7. 

Definit ion 11. 

FIGURE 2. AN ASSElSrGLY NETWORK 

I n  any asseuibly network 

points, I = (vl, ...,vzl 

indegree zero, i = I,.. 

a non-zero indegree. 

0 

there exists a noneq ty  set of 

such that each point v i  has 

,r, and all other points  have 

0 0 Let N be an asseuibly network, I = (vi,. . . ,v r } as i n  

Proposition 5, and v any p o i n t  i n  N. 

directed path from some point i n  I t o  vT vhich contains v. 

Thus i n  par t icular ,  N is weakly connected. 

Let  v be any point of an assembly network, 8 .  

e x i s t s  a unique path f r a n  v t o  v 

ined on V b y  v * v' if  and only if  the  v --+vT path 

and t he  v' --+v path are the same length, i s  an 

equivalence relat ion.  

Then there  ex is t s  a 

Then there  

The re la t ion  * def- T' 

T 

Assembly Staaes: 

The * equivalence classes  defined on V i n  Pwposi t ion 7 

21 



i n  an assembly network N are cal led assembly stages; t he  

point v i s  called the sth assembly stage, where s i s  the 

length  of t h e  longest directed path i n  N. 

any other point v belongs t o  the  rth stage i f  it belongs 

t o  a l i n e  <v, VI> with v f  i n  the  r + lSt assembly stage. 

T 
I n  general, 

A Contaminated Structure Assembly Network: 

Definition 12. A contaminated s t ructure  assembly network is an ordered 

12-tuple whose en t r i e s  are: 

(1) an assembly network, N = (V, X), with the number 

of ver t ices  = t and vT = vt, 

(2)  a contamination space, P 

(3) a set ( X i  : i = 1,. . .,tl where each Zi i s  an 

m-parameter surface, 

(4) a set {Ai :i = 1,. ..,t-1 and A, i s  i n  e(P)}Where - 
each A 

a t ion  imparted t o  Zi p r io r  t o  ac tua l  assembly. 

a set {Ci  : i such that indegree (v ) = 0, Ci 

represents t he  addi t ional  external contamin- i 

( 5 )  i 

i n  e@)), 
( 6 )  a set {Bi : i such t h a t  indegree (vi) f 0, Bi i n  

e (P)) , where each Bi represents the external 

contamination tha t  may be added during ac tua l  assembly. 

(7) 

(8) 

( 9 )  

an m-parameter survival fac tor ,  f, 

a real number c > 0, 

a se t  I R ~  : j = 1, ..., ni &ose elements const i tute  

a e-decomposition of [0, l)m re la t ive  t o  f ,  
' J  

I -  

(10) a s e t  i s i j  : sI3 y . .  . ,s n3 a re  the  c -subsurfaces of 

22 



(11) a se t  (fil, fi2, .  . . , f ) of E-survival functions i n  
for each i = 1, ..., ty  and 

f o r  each i = l,...yt, where each v represents 

that fract ion of the  external contamination on the  
i3 

jth subsurface of the 2 th m-parameter surface that 

remains external after decontamination and assembly. 
i 

In  Section I, 

Definition 13. Given a contaminated s t ructure  assembly, the contamination 

of a point v 

as follows: 

i n  M I s  defined i n  terms of i ts  indegree i 

(i) i f  indegree (vi) = 0 

C(i) = Ci + Ai where 

= JC,,(d(i)),...,C rn (d(i))} i s  i n  A(Ci), o r  
\ ** 

($1) i f  indegree (v,) f 0, 

I A \  

C (d'")} is  i n  A(CiJ'), and 
3n 

A (d'j))} i s  i n  A(Aj) . (A (a")), . . . , Jn 31 
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SECTION 111 - Pract ical  Aspects of t h e  Model 

I n  t h i s  section, the  prac t ica l  features  of the  model w i l l  be 

discussed. 

presentation of the model i n  Section I. 

upon one's a b i l i t y  t o  parameterize the external surface of the  s t ruc ture  

i n  such a way that the survival  f ac to r  was completely 

function of these parameters alone i f  the var ia t ions i n  amount of contamina- 

t i o n  were ignored. 

abs t rac t  m o d e l  was developed fo r  an a rb i t r a ry  f i n i t e  integer,  m. 

reasoning i n  Section I was the  following: 

then  the survival fac tor  w i l l  depend, i n  a l l  probabili ty,  upon the  a b i l i t y  

of the  gas t o  reach the contamination (a) and upon the  a b i l i t y  of the 

surface t o  "adsorb" gas, once the gas has reached it. 

meter, a, was envisioned e a  the  degree of "expsure'*, while the  parameter, 

0, was envisioned as being related t o  the "adsorptivity" of the  surface. 

Both parameters seem capable of precise def in i t ion  within the realm of 

present technology. 

I n  geneml, cxr remarks K i l l  be confined t o  the in tu i t i ve  

The development depended heavily 

specified a i  a 

I n  Section I, we chose only two parameters, whi le  the 

The 

i f  the  k i l l  mechanism is  gas, 

Thus, t h e  para- 

(h\ *.he other hand, only one re la t ive ly  sa t i s fac tory  means of defining 

The p rac t i ca l  d i f f i c u l t i e s  arising from t h i s  d e f i n i -  

However, if the  behavior of f as a function of a could 

a has occurred t o  us. 

t i o n  are formidable. 

be determined experimentally under laboratory conditions on surfaces 

designed t o  have specif ic  a values, the r e su l t s  might lead t o  surface 

design c r i t e r i a  fo r  t h e  s t ructure  i n  question. 

formulate a rigorwus def i~ i t i s : :  fsr c?egre nf exposure, a. 

W e  would  now l i k e  t o  

We -411 c a l l  P cltrffice S i n  ?-space a P,, +P, snake, where Po and P1 
U .L 

are points i n  3-space, i f :  

(1) there  e x i s t s  a simple different iable  r ec t i f i ab le  a rc ,  

I 
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A(t) = (xl( t ) ,  x,(t), x ( t ) ) ,  0 5 t 5 1, I n  3-space with 

(%(I), %(I), x3( i ) )  = Pi, I = 0,1, such t h a t  every point on 

S belongs t o  a circle z(t) whose plane i s  perpendicular t o  

A ( t )  and whose center is (%( t ) ,  %(k), x3(t)), 

3 

(2) the radius  of z ( t l )  5 radius of z ( t2)  for tg _< tl, and 

(3) there exists t', 0 5 t1 < 1 such that the surface fo r  t I t1 

I s  a r i g h t  cone having as i ts  base the  disc enclosed by z ( t l )  

and as Its vertex, the point  P kt to be the  first such t t .  1' 
The value of the snake S is defined t o  be v ( s )  = radius z ( to) .  

For any given external point P1 on the  s t ructure ,  we consider the  

- 

set 

T(P1) = { S: S I s  a Po -*PI snake whose i n t e r i o r  does not i n t e r sec t  any 

portion of the  structure,  and Po is a point from which gas 

I s  t o  be dfspensedi . 
Thus, t he  set T(Pl) is  a mathearttical descr ipt ion of the set of a l l  

paths a gaseous decontamlnant might take entering the  decontamination chaniber 

a t  Po and finally reaching the  point P1 on t h e  surface t o  be decontaminated. 

The value of any subset T1(P1) of T(P1) is defined t o  be, - 

A subset T1(P1) of T(P1) i s  ca l led  independed if  f o r  any two elements 

S1 and s2 of T ~ ( P ~ ) ,  s1 and s2 have no i n t e r i o r  points i n  camon. - 
Then the  value of P I s  defined t o  be 1 - 

v(P,) = llll~x v(T'(P1)) 

where t h e  maximum is taken over a l l  independent subsets Tt(P1) of T(P ). 
1 
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Vhen t h e  values  of all points P1 are known, they can c l ea r ly  be 

normalized t o  l i e  i n  t h e  interval  

considered t o  be t h e  exposure parameter values, a .  

0 , l )  and these normalized values a r e  

--.. --- 

The prac t ica l  problems i n h e r e n t  i n  such a def in i t ion  are obvious, but 

it i s  possible t o  design surfaces on which t h e  parameter values, i n  t h e  

above sense, can be evaluated. Hence, it would be possible t o  experimen- 

t a l l y  determine t h e  dependence of f on a i f  t h e  problems of control  and 

measurement of contamination could be overcome. If t h i s  could be done, 

t h e  r e s u l t s  would cer ta in ly  provide design c r i t e r i a  f o r  surfaces of t h e  

s t ructure  which would be d i r e c t l y  related t o  t h e  problem of contamination. 

It would be d i f f i c u l t  t o  determine a p r i o r i  whether such criteria 

- 

- 
would conf l ic t  with others designed f o r  t h e  same purpose. 

pa r t i cu la r ly  of design c r i t e r i a  which would maximize the decontamination 

due t o  assembly of t h e  s t ructure  i n  a clean room environment. 

A t  t h i s  p o i n t  it seem appropriate t o  mention the major f a u l t  of the  

W e  are thinking 

m o d e l ,  tha t  i s ,  i t s  independence of t i m e .  

the  amount of contamination on a surface, whether viewed as a random variable 

or  otherwise, should be considered a function of time. Also, the  amount 

of contamination on a surface should be regarded as a runction of t i m e  i r i  

a completely different  sense, namely, i n  terms of the a b i l i t y  of many 

microorganisms t o  multiply rapidly. Certainly any m o d e l  which can be 

considered "good" must take these things i n t o  account. 

t h a t  the  analysis  of clean room e f fec t s  upon complex contaminated s t ructures  

would involve a great deal of time and e f f o r t .  

I n  any clean room s i tua t ion ,  

It i s  our opinion 

Another p o i n t  which we promised t o  discuss i s  the  problem of 

determining with what probabili ty t h e  various possible physical d i s t r ibu-  

t i ons  of contamination occur. Given a static s i tua t ion ,  t h i s  would seem 
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t o  be almost impossible on an  - a priori basis because of the unknown way 

i n  which the addi t ive contamination, A i s  introduced a t  each assembly 

stage. 

thorough analysis  of the effect upon contamination by the  a i r  f l o w  i n  a 

clean room would help determine the  probable location of contarnination on 

the surface as a function of time, surface charac te r i s t ics ,  and s t ructure  

or ientat ion.  

3'  
On the  other hand, it would not seem unreasonable t o  expect t h a t  a 

Another notion whose discussion was deferred u n t i l  t h i s  section deals 

with decision c r i t e r i a  f o r  choosing a random variable t o  represent the  

contamination remaining after decontamination has occurred. 

It will be recal led t h a t  we suggested t h e  choice 

and suggested t h a t  the  d is t r ibu t ion  do which maximlz-s t h e  above sum would 

no t  generally be unique. This causes ce r t a in  theore t ica l  d i f f i c u l t i e s  a t  

t h i s  stage i n  the  event one would l ike t o  analyze only those pa r t i cu la r  

subsurfaces which are t o  become i n t e r i o r  at the next stage. 

sum of t h e  

That is, t h e  

taken over indices,  i, corresponding t o  surfaces,  parts of which are t o  

become i n t e r i o r ,  does truly depend on the choice of d i s t r ibu t ion  do 

maximizing the sum over a l l  indices. 

However, if one desires t o  be pessimistic about i n t e rna l  contamination, 

t h e  following decision c r i te r ion  seems most desirable. 



Let Do = {d I d maximizes Ci(d)l and l e t  
i=1 

I = { 1 I a portion of si becames In t e r io r  I n  t he  next  stage of assembly}. 

Then chooee d;cDo which maximizes 

Again, d; might not be unique, but the  or ig ina l  objection has been overcome 

i n  the sense t h a t  

represents the maximum possible external contamination remaining and, subject 

t o  t h i s  condition, y ie lds  maximal  i n t e r i o r  contamination at the next stage. 

There are other philosophical and p rac t i ca l  problems associated with 

any attempt t o  make such a decision. From a predict ive point of view, it 

seems that one would l i k e  t o  make decisions t h a t  yield a maximum t o t a l  

contamination remaining on the s t ruc ture  after decontamination following 

t h e  last stage of assembly. If such contamination was less than  t h e  

prescribed bound (with the desired probabi l i ty)  then surely the  true 

amount of contamination would also be. A t  least two difficulties arise 

i n  attempting t o  do t h i s .  The first is  tha t ,  even i n  the above framework, 

t h e  mathematical problem may prove too  d i f f i c u l t  t o  be solved, pr incipal ly  

because the quantity t o  be maximized i s  a random variable. Secondly, such 

a n  approach is  severely limited as long as t h e  dependence of t he  problem 

upon t i m e  i s  not included. 

Three further comments. First, t h i s  m o d e l  is  based upon the assumption 

that by obtaining a completed s t ruc ture  Kith a known amount of biological 
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contamination, one can proceed t o  s t e r i l i z e  the s t ructure  by heating it. 

T h i s  i s  probably not unreasonable, but we feel  t h a t  the usual l a w  of 

logarithmic k i l l  should be Investigated fur ther  since there  seems t o  be 

evidence (see 7 ) that it may not be valid In a l l  s i tuat ions.  [I 
Secondly, the assembly analysis i s  sequential  i n  nature, moving from 

one assembly stage t o  the  next .  

l a t i ons  involving a computer. 

T h i s  has great  advantages i n  large calcu- 

Thirdly, any attempt t o  obtain the  random variables representing 

t h e  total external and in te rna l  contamination at  the  last stage of 

assembly i n  closed form I s  probably doomed t o  failure. 

of t h e  mathematical complexities involved i n  any such an attempt, we would 

recommend a Monte Carlo approach. 

Finally, because 
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