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In this report, a model of biological contamination of a structure
during assembly is developed. This model is stochastic in nature; treat-
ing both the amount of contamination and its surface distribution on the
structure as random variables.

It is hoped that by using this model and subsequent refinements of
it, one may be able to specify conditions under which the level of
biological contamination of a structure may be predicted statistically
with any desired degree of confidence.
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INTRODUCTION

In this report, a stochastic model of contamination of structures
during assembly ies developed. This model is based on an underlying
deterministic model developed by J. D. Johnson, formerly of Jet Propulsion
Laboratories who kindly provided us with much information about his model
and the problem in general.

In the way of a disclaimer, the model developed here is not intended
to be, nor 18 it, a model guaranteed to handle all of the difficulties
which arise in the problem of structural contamination. Rather, it is
& model whose main virtues are the recognition that the problem is
stochastic in nature and the inclusion of certain structural parameters
which may be useful in engineering design.

In the first section of this report, the problem of contamination
of a structure during assembly is discussed and analyzed from a point of
view that will hopefully allow the mathematical model to be viewed
intuitively. A rigorous abstract mathematical model is developed in the
second section. This is done in order to present a precise axiomatic
framework in which the problem may be further analyzed. There are a
number of related areas in need of additional study, and we have attempted
to point these out in the sequel. The third section treats some of these
in detaill.

Acknowledgement is due D. P. Peterson, M. S, Tierney and J. M. Worrell

of Sandia lLaboratory for their philosophical and technical assistance.



SECTION I - The Problem of Contamination

of a Structure During Assembly

References {1], [2], [3}, give some indication of the current concern
about the biological contamination of space vehicles which are to come in
contact with other planets,

It is frequently proposed, that in order to obtain a sterile vehicle
prior to launching, one first needs to obtain a completed structure whose
level of microorganic contamination is less than some prescribed bound.
If the prescribed bound is achieved in the completed structure, it is
assumed to be possible to biologically sterilize the structure in a
"reasonable" amount of time just prior to its use by subjecting it to
heat of a "reasonable" temperature consistent with the ability of the
structure's components to withstand heat.

J. D, Johnson of Jet Propulsion Laboratories has developed a deter-
ministic model (see [h]) in which the contamination is analyzed at each
stage of assembly of the structure in order to predict the contamination
remaining on the completed structure. 1In this model, he considers two
types of contamination: internal and external. In a rough way, the
physical distinction between these two concepts is that between micro-
organisms locked tightly into some inaccessible space (on the threads of
a screw, for instance) and those on a surface exposed to the air in the
work area. Theoretically, the distinction lies in the assumption that
during a chemical decontamination cycle some small fraction, f, of the
external contamination survives, while all, or essentially all, of the
internal contaminetion survives. It is assumed that the survival factor,

f, is that factor assoclated with the hardiest microorganism known.



In the model presented here, it is assumed that "survival" is not
Just a two-valued function, but that it varies with surface "type". Our
concern lies in the possibility that in any given decontamination stage,
some of the "least accessible” external contamination may survive in a
higher proportion that the "more accessible" external contamination
vhile, at bhe same time, have a higher probability of becoming internal
contamination at the next assembly stage.

In order to make this more precise, let us define external contamina-

tion to be that contamination which is directly exposed to the sur:rounding
air in the work area. This definition differs from that of Johnson's
model, but it is more convenient for our purpose. This definition

would seem to be a reasonable one, and it leads in a natural way to
further inquiry about the notion of direct exposure. For example, it
might be desirable to distinguish between exposure on a large flat surface
and exposure in a tiny crevice since it is not unlikely that the latter
"protected" contaminants would survive in a proportion different from
that of the former "unprotected" contaminants during a given stage of
decontamination., Making such a distinction leads to the uncomfortable
possibility of having many degrees of contamination "protection”.

For the same reason, one might wish to distinguish between contam-
ination lying on a polished metal surface and a soft rubber surface,
particularly when the decontamination mechanism is gas.

Such possibilities lead to the introduction of a stochastic element
into the problem; namely, the distribution of contaminants on the external
surface of the structure. This is clearly a matter of some concern if it
is possible that the survival ratio of the external contamination depends

on the location of the contamination upon the structure's external surface.



For exsmwple, in a complex structure possessing many surface "types",

one possible distribution might be "all contaminants lie in screw hole A",
although such a distribution of external contﬁmination seems improbable,
Another possible distribution might be "all contaminants lie on exposed
flat surfaces", which again seems unlikely in a complex structure if
"surface" is defined in some realistic manner,

The latter comment gives an indication of the first difficulty
encountered in such an approach; namely, what should be regarded as a
surface? As an example, consider the fact that geometrically most
surfaces are locally flat, that is, nearly all of the points on the
structure's external surface may be thought of as belonging to a small
flat subsufface. Hence, it would seem that one should consider subsur-
faces which are not, in general, just some small neighborhood of a point
on the structure's external surface. In fact, at any given assembly
stage, it would be desirable to divide the total external surface of the
structure into subsurfaces in such a way that contamination distributed
uniformly on the external surface of the structure has a fairly constant
survival factor at all points of any given subsurface when decontaminant
is applied uniformly on that subsurface.

Suppose for a moment that the external contamination at a given
assembly stage is uniformly distributed over the external surface of the
structure, Then we will assume that the survival factor, f, is a function
of two surface parameters a and 8. Here, a is assumed to be a parameter
indicating the degree of "exposure" of the surface, and B is a parameter
indicating the surface "type" at any given point of the external surface
of the structure. Then the above states that, on the external surface,

the survival factor



f= f(a,ﬁ) ’

is a function of the two surface parameters a and 8 when the contamination
is uniformly distributed on the total external area.

Two comments are in order. First, 1t is one thing to say "let a
be a parsmeter indicating the degree of exposure of points on the external
surface of the structure", and quite another thing to define such a
parameter in physical terms. A similar comment may be made about 8.
Secondly, in keeping with the above discussion, one would like to define
the parameters a and 8 in such a way that it is possible to divide the
structure's external surface Into subsurfaces on which both @ and 8 are
fairly constant. This would be convenient, since under such conditions,
f(a,B) would be essentially a constant on each such subsurface.

Admittedly, it is not clear how the external surface of the struc-
ture can he parameterized in such a way. However, as a matter of con-
venience we will defer any further discussion about the definition of
these parameters until Section III. For the moment, let us simply assume
that at any stage of assembly, the external surface of the structure has
assoclated with it two parameters a and §, with tThe propertvy that: given
a uniform distribution of contamination on the external surface of the

structure, the survival factor

f = f(a,8).

Making such an assumption allows us to proceed to make another,
Let us suppose that the tctal external surface S of the structure in

guestion is divided into subsurfaces s,,S.,...,S 1in such a way that:
4 1?°p .

i1

(1) the subsurfaces s, together cover all of S,

i

(2) the subsurfaces s, do not overlap, and

i



(3) there exists a small number e¢ such that for any

two points of s,, with parameters (a,8), and (a',B')

i’
1£(a,8) - £{a',8')] < e

Several comments should be made about these conditions., The three
conditions yield a total decomposition of the surface S into subsurfaces
on each of which the survival factor is essentially a constant function
of the surface parameters a, and 8. Further, if the function f(a,f)
were known, it would be theoretically possible to obtain such a decom-
position of S into a finite number of subsurfaces satisfying (1), (2)
and (3), provided f were a reasonably well behaved function (this can be
made precise). This decomposition can be accomplished for any number
e prescribed in advance. That is to say, the function f can be made to
vary as little as desired on the subsurfaces. For thils reason, we will
consider f to be, in fact, a constant £, on each subsurface s,. Finally,

i i
for a given ¢, this decomposition cannot necessarily be accomplished

in a unique way.

Thus, in reality, the assumption of a decomposition of S into sub-
surfaces satisfying (1), (2) and (3) is an assumption about knowledge of
(and the nature of) the function, f, defined on S.

For the remainder of this section let us assume only that the con-
tamination on any subsurface 5; is distributed uniformly and that the
decontaminant is applied uniformly on any s; (although the density may
vary from one subsurface to another due to their varying degress of
exposure ). Suppose that the assembly at some stage has just been com=
pleted, and let us analyze the microbial loading within the framework

developed above,



It seems improbable that the external contamination on the structure
is known exactly. Thus in the model, the external contamination will be
represented by a random variable, C. For convenience, and without loss
of generality, we will assume that C is defined on the integers between
0 and b inclusive and that C assumes values on the integers in this same
range. Here, the positive integer, b, represents a bound on the possible
contamination. Clearly such a number exists although it may be extremely
large.

In addition, the contamination 1s physically distributed among the
subsurfaces Sy That is, some portion of the contamination is on Sy
some portion on S5» and so forth. This corresponds to the statement that
the random variable C is decomposed into a sum of random variables Cl,

c

Cn vhere C, represents the contamination on the subsurface s

2’ i i’
and each Ci is defined on the integers O thru b and assumes values in the
same range. Now such a decomposition of C into the sum of random variables
of this type is not unique, and indeed may generally be accomplished in
many ways, although the number of such ways is clearly finite. The
difficulty here is that, practically speaking, it is not known which of
the many possible decompositions of C is the one which corresponds to
the actual situation.

Since this point is critical, it seems desirable to elasborate some.
In Figure 1, two possible decompositions of a random variable C are shown,
where n = 2, b = 10 and that C is the identity function. In Figure 1(a),
the graph represents C as the identity function mapping the integers from
0 thru 10 into themselves. Figure 1(b) shows one possible decomposition

of C into two random variables Cgl) and Cél). That is, in the usual

(1) , 1) ()

1 5 e Here,

functional way, C = C is the random variable rep-



resenting the contamination on sl ,

on s,. A similar example is shown

(61}

10 .

and Cél) represents the contamination

in Mgure 1(c).
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Without going into mathematical detail, one can intuitively sense
that the two situations lead to quite different physical distributions of
contamination on s and S

1

In the general case, it is obvious that there are many such possible

for many values of C.

physical distributions of the contamination among the subsurfaces 8ys Sy,

- Sn' Let us denote any one such distribution, d, in the following
way: d = (Cl(d), Ce(d), cees Cn(d)), where Ci(d) is the random variable
representing the contamination on 545 i=1,2,...,n, for the particular
physical distribution d.

Clearly many such d's will not represent anything which might
reasonably be called a uniform distribution of contamination on the ex-
ternal surface of the structure. This fact leads us to reconsider our
original ideas about the nature of the survival factor, f. We will still
assume that the subsurfaces s, satisfy the above conditions (1), (2) and
(3) and that f is a constant function fi of the parameters @ and 8 on
si. However, it seems to us that fi cannot be treated as a function of

the surface parameters a and 8 alone, but that it must also depend upon

the amount of contamination present on the surface s This contains the

1°
implicit assumption that the decontaminant is applied in a standard way,
that 1s, no attempt is made to apply more decontaminant to those sub-
surfaces on which the contamination is greatest. This seems to be rea-
sonable since the ldentity of these subsurfaces is not likely to be known
in any given situation. Thus, for each physical distribution,

d = (cl(d)’cz(d)""’cn(d))’ the f, are assumed to be functions of the

random varisble C,(d). That is

fi = fi(ci(d))’ (1 = 1,...,n),

and they become random variables because of their dependence on the random

11



variables Ci(d)' Of course, for this same reason, fi(ci(d)) is an implicit
function of 4.

In this context then, one obtains a new random variable,
T - .

representing the contamination which remains on the subsurface 8y after
the decontaminant has been applied if 4 = (Cl(d),ca(d),...,cn(d)) had
been the physical distribution of C among the subsurfaces. Clearly Ci(d)
is defined on the integers from O thru b. Also, by changing fi(ci(d))
slightly, Ci(d) will assume integral values in the same range without
affecting its physical interpretation. As a matter of convenience, it
will be assumed that this is the case.

Let us assume that there is assoclated with each possible physical
distribution, 4, a probability, P(d), that d will in fact represent the
actual distribution of external contamination among the si's. This is
an assumption with recognizable practical difficulties, but we will post-
pone discussion of these until Section ITI. We assume that the summation
of the P(d) over all possible physical distributions, d, is unity.

This assumption allows one Lo calculate the random veriahle C!

representing the expected contamination on s, after decontamination in

i

the usual manner:

C! = ci(a)r(a).
j= I o

Once again, one may assume that Ci is integral valued. This in turn leads

to a random variable,

n
ct=2 ¢,
1=1

12




representing the expected contamination of the total external surface
of the structure.

Due to the nature of the problem, it may be preferable to be pessi-
mistic about the random variable representing the total external contamin-
ation, rather than rely on expected values as in the last equation. 1In

this case, one wmight choose,
n
C" = max Q. £,(c (a))-c (a)
d i=1

to be the random variable representing the external contamination of the
structure after decontamination. If this is done, let do be a distribu-

tion which maximizes the above sum, That is,

c" = D fi(Ci(do))-Ci(do) .
i=1

Then the ith term in the sum will be the random variable representing the
contamination on the subsurface 5y after decontamination. Since do may
not be unique, that has some disadvantages which will be discussed in
Section ITI. However, in spite of the difficulties, this approach seems
more reasonable than the former. Indeed the cholce of a new random
variable representing the external surface contamination after a decon-
tamination cycle presents a decision making problem. This problem is
discussed in somewhat more detail in Section ITT.

So far we have discussed only the external contamination problem
associated with decontamination just after a given assembly stage of the

structure. In general, the decontaminated structure, Z., will be placed

1’
together with other decontaminated structures, EJ’ J=2, ..., m, to
form a new structure, ¥, which is amenable to the above approach provided

some means exists for obtaining the contamination random variable, C,

13



of Z in terms of the random variables C(J) representing the external

contamination of the 25, j=11,2,...,m. Here of course, each of the

o(9)

on the structure 3

3
Returning to Johnson's model, we will assume, as he does, that the

handling of the zj prior to actual assembly into ¥ imparts some external

contamination, A,, to Z,. This means that the total external contamina-

J J

tion of zh at the moment of assembly of T is C(J) + A Further, some

'jl
portion of the external contamination will become internal contamination

during the actual assembly of the Zﬁ's into ¥, and following Johnson, we

will denote this "fraction" by u Finally, during the actual asseuwbly,

3°

some external contamination, B, will be added to ¥, and followlng Johnson's

model, the total external contamination of Z would be of the form:

C=3B+

n(J) a2 \ - )
(V * Ajl(l l"j/ 4

M=

1

[N
1

Here it must be noted that we deviate from Johnson's model in that we

assume that B, C(j), A, are random variables defined on the integers O

[ =)

thru b and taking integial valuco in the seme range.

Further, it seems reasonable that the fraction of external

)

contamination on the structure Eﬁ which becomes internal, is a function

of the physical distribution of the random variable C(J) + Aj on the

external surface of the structure 23. Thus, #, 1s also a random variable.

J

correspond to the C' or C" or some similarly derived random variable,

This arises from reasoning along the following lines. If the actual physical

{ 2\
distribution of c‘Y/ + AJ on Ej is

d(j) _ (Cl(J)(d(J)),..., ng)(d(j)))

14



defined by

1) C§J)(d(3)) - cld) Ay, end

11) cﬁj)(d(J)) =0, k=2,...,0,

(where n.j is the number of subsurfaces on 26), then it is possible that all
the contamination C(J) + AJ be internal or external if the subsurface
s§3) of zs should become entirely internal or external during the assembly
of 2. This is an extreme situation, but one can easily see from it how
“j depends on the physical distribution, d(J), of the external contamina-
tion C(J) + AJ among the subsurfaces sij), séj),..., sij) of the structure
J
z,.
J
When one allows this possibility, the external contamination con-
tributed by = 3 to Z takes the form:
D)4 (3)4(3)
(3)y . [(j (J)][ (3)al3)5(d ] x
Ef@7) = 5™ (o (@] 1 - (g @) (%)
k=1
where Cﬁj)(d(J)) and #ij)(cﬁa)(d(J))) are random variables which, in
addition, possess a dependence on the physical distribution, d(J), of
£ =\
c'Y’ + 4, .
J on 2J

In these terms, the random variable representing the external con-

tamination of T takes the form:
m
C(d(l), d(e),...,d(m)) =B + Z Ej(d(j)).
j=1

Agein taking a pessimistic view of external contamination, one may
wish to consider the external contamination of I to be given by the

fa\
expression C = max max ...mx c(a‘"’/, a‘'“/,..., a
a(1) 4(2) (@)

or he may wish to use an expected value model

15



c = e, a™yp®) . g(m,

where the sum is taken over all m-tuples (d(l),.“; d(m)), and of course,
it is assumed that the probability, P(d(l),..., d(m)), of the occurrence
of these m-tuples exists and is known.

In either case, the practical difficulties which exist are much the
same as those arising in the previous analysis of the decontamination
mechanism, and these are discussed in Section ITI.

Nonetheless, depending upon one's decision criterion, either of the
above expressions for C yield a random variable which may be viewed as
representing the external contamination of the structure £ in terms of
the subsurface contaminations Cij)(d(j)) of its immediate substructures
and the external contamination variable, B, added during assembly.

This approach allows the relations between surface type, physical
distribution of contamination, and decontamination to be taken into account.

One can carry this analysis a step further to investigate the "eritical"
subsurfaces only. That is, one can extract information pertaining to those
external suhsurfaces parts of which are to become internal at the next
stage of assembly by simply summing equation (*), above, over the indices
of such subsurfaces only. For the remaining indices, k, in the range 1
to nj one has uéj) = 0.

Without going into detail, it should be clear that internal con-

tamination can be treated using this same approach.

16



SECTION II - Mathematical Model

In thils section, the definitions necessary for the construction of
an abstract mathemmtical mocdel of the situastion described in Section I
are given, A few salient propositions are stated without proof. It is
our intent to rigorously build the foundation from which the problem can
be studied further, and as such, this section is generally devoid of new
ideas about the problem itself. We urge any reader interested only in
expository treatment to advance to Section III. ¥or further elaboration
of Definitions 1 through 9, the reader is referred to [5] , while

for Definitions 10 through 12, [6] may prove helpful.

Contamination Space:

Definition 1. Let I denote the set of integers from O to b (=0)

Ib

inclusive. A probability space of the form (Ib, 27, )

will be called a contamination space, P, A random variable,

C, defined on this space having as its range a subset of

Ib will be called a contamination variable, and the num-

ber b is called the contamination bound. ILet &(P) be

the set of all conitamination variablcs on the contaminaa

Ib’ P).

tion space P = (Ib, 2

M-Parameter Survival Mactor:

Definition 2, If £ is a continuous function of bounded variation mapping

[0, 1)® into [9, 1] it will be called an m-parameter
i m-parameter

survival factor. Note that [O, 1)m contains half closed

L

and half open sets, This is done in order to guarantee
that the Rj to be defined in "Proposition 1" be non-

overlapping.

17




Proposition 1. If f is an m-parameter survival factor and € > O is any

real number, then there exist m-by-n matrices ”ai J“ and
” by ” defined over [O, 1) with the properties:

(1) 1n the region R, of [o, 1) defined by

J
|8.1.j - x1|< 613, (1 = 1, ssey m),
If(xl,..., xm) - f(al,j”“’ amJ)|< e, and

n
(11) U R, = [o, 1)" and R
=1 9

"Proposition 1" (a well known theorem on continuous

iﬁRJ=¢if1;4.j.

functions) will yield a method of breaking the surface of
any component into n subsurfaces on which the m-parameter
survival factor, f, is nearly equal to its representative

value f(ai:)""’ amJ) (J=1,..., n).

€ -Decomposition [0,1)m Relative to f.

Definition 3. Such a decomposition of [0, 1)m into Rl gees ,Rn as given

in Proposition 1 is called a ¢-decomposition of J‘:O, l)m

relative to f. For a given e-decomposition, we define
fJ(e)--f(alJ,uo., amJ), (J=l, soey n)o

The Set &(P,C):

Definition 4. For a given contamination variable, C, in &(P), we define

the set €(P,C) to be that set of random variables
XL - P, 1] with the additional property that
X-C is in &(P).

Pronosition 2. Yor a given contamination space P and contamination

- =

variasble C in &(P), the set &(P,C) is a finite non-

empty set.

18



Definition 5.

Definition 6.

Proposition 3.

Definition 7.

€-Survival Functions:

Given an m-parameter survival factor, f, a number € >0,
a e-decomposition Ry,...,R of [0,1)m relative to f,
an n-tuple (fl,..., fn) is called a set of e-survival
functions if:

(1) f, is defined on &(P) and fj(C,e) is in &(P,C) for

J
all C in &(P) and 811 j = 1,...,n, and

(i1) for the contamination varieble © in &(P) defined
by o(1) =0, £ = 0,1,...,b, one has fj(e,e) = fj(e),

the latter being defined in Definition 3 above.

m-Parameter Surface:

An ordered pair (S, g) is called an m-parameter surface

if S is a surface in E3 and g i1s a function mapping the
points of S into [O, 1)®.
let an m-parameter survival factor, f, an m-parameter

surface (S, g), € > 0, and an e-decomposition R.,...,R

1’ n
of [0, 1)m relative to £ be given. Then the relation~
among the points of S defined by Py~ Py if and only if
f(g(pl)) and f(g(pe)) belong to the same R, is an equi-

valence relation.

€ -Subsurfaces of S:

The ~ equivalence classes of S, under the conditions of
Proposition 3, are denoted Syse-sSy and are called

€ -subsurfaces of S.

19




Definition 8.

Definition 9.

Proposition k4.

Definition 10.

Contaminated Surface:

An ordered triple (S, g, C) is called a contaminated

surface if (S, g) is an m-perameter surface for some m,
and C is a contamination variable defined on some contamin-

ation space.

Physical Decomposition of C:

Given a contamination space, P, and C in €(P), an

n-tuple (Cl,...,Cn) is called a physical decomposition

of C if:
(1) C, is in &P), 1 =1,...,n, and

(i1) ¢ = Cp+Cy+ .o +C.
We let A(C) denote the set of such n-tuples.

The set A(C) is a finite nonempty set.

An Asseumbly Network:

A digraph is an ordered pair D = (V, X) where V is a

finite nonempty set called the set of points of D and

X CVxVis called the set of lines of D. An assembly

network 15 o digreph, W = (V. X) satisfying:

(i) there is exactly one point of N for which the outdegree
at that point is zero (we denote this point vT), and

every other point has outdegree one, and

(11) N contains no directed cycles.

20



Proposition 5.

Proposition 6.

Proposition T.

Definition 1l.

FIGURE 2. AN ASSENMUELY NETWORK

In any assenbly network there exists a nonempty set of

points, I = vo,. .. ,vo such that each point v° has
1l r i

indegree zero, i = 1,...,r, and all other points have

a8 non-zero indegree.

Iet N be an assembly network, T = {vg,...,vg} as in

Proposition 5, and v any point in N. Then there exists a
directed peth from some point in I to Vo which contains v.
Thus in particular, N is weakly connected.

let v be any point of an assembly network, N. Then there
exists a unique path from v to Ve The relation * def-

ined on Vby v * v' if and only if the v -=>Vn path
and the v' --» Vo path are the same length, is an

equivalence relation.

Assembly Stages:

The * equivalence classes defined on V in Proposition 7




Definition 12.

in an assembly network N are called assembly stages; the

point Vi 1s called the sth assembly stage, where s is the
length of the longest directed path in N. In general,
any other point v belongs to the rﬂ1 stage if it belongs

to a line {v, v with v' in the r + 15% assembly stage.

A Contaminated Structure Assembly Network:

A contaminated structure assembly network is an ordered

12-tuple whose entries are:

(1) an essembly network, N = (V, X), with the number
of vertices = t and v, |

T
(2) a contamination space, P

Vt,

(3) a set {E : 1 =1,...,t} where each Z; is an

g °
un-parameter surface,

(4) a set {A :1 =1,...,t-1 and A, is in C(P)}where

i
each Ai represents the additional external contamin-

ation imparted to Ei prior to actual assembly.

(5) a set {Ci : 1 such that indegree (vi) = 0, Ci

in &(P)},

(6) a set {B, : 1 such that indegree (vi) £0, B, in

x
€ (P)} , vhere each B

5 represents the external

contamination that may be added during actual assembly.

(7) an m-parameter survival factor, f,

(8) a real number e > O,

(9) a set {Rj : J=1,...,n} vhose elements constitute
a e-decomposition of {0, 1)® relative to f,

(10) a set { are the e-subsurfaces of

SiJ : 813,...,SnJ
z{j" J = l)-'-:t})
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(11) a set (fil’ finseees fin) of e-survival functions
for each i = 1,...,t, and
(12) a set (nil”ﬁ2""’"in) of e-survival functions
for each 1 = 1,...,t, where each "13 represents
that fraction of the external contamination on the
th th
J subsurface of the 21 m-parameter surface that

remains external after decontamination and assembly.

In Section I,

My = (1- #ij)

Definition 13. Given a contaminated structure assembly, the contamination

of a point \ in N is8 defined in terms of its indegree
as follows:
(1) if indegree (vi) =0
(1) _ o
C = Ci + Ai where

n

C! =

(1) (1
177 & eyyt@ ] eyt ), ana
=

al1) . 104,(d(1)),...,Cﬁn(d(i))} is 1n A(C,), or
i 1 §

(11) if indegree (vi) £ 0,

C(i) =B, + > max 3Ejk(d(d))- T4k {Ejk(d(J))}z where

J-»i 4(3)
{le(d(J))""’ Cjn(d(J))} is in A(C(J)), and

{Ajl(d(d)),..., AJn(d(J))} is in A(AJ) .
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SECTION III - Practical Aspects of the Model

In thls section, the practical features of the model will be
discussed. In genersal, ocur remarks will be confined to the intuitive
presentation of the model in Section I. The development depended heavily
upon one's ability to parameterize the external surface of the structure
in such a way that the survival factor was completely specified as a
function of these parameters alone if the variations in amount of contamina-
tion were ignored. In Section I, we chose only two parameters, while the
abstract model was developed for an arbitrary finite integer, m. The
reasoning in Section I was the following: i1f the kill mechanism is gas,
then the survival factor will depend, in all probability, upon the ability
of the gas to reach the contamination (a) and upon the ability of the
surface to "adsorb" gas, once the gas has reached it. Thus, the para-
meter, a, was envisioned as the degree of "exposure", while the parameter,
B, was envisioned as being related to the "adsorptivity" of the surface.
Both parameters seem capable of precise definition within the realm of
present technology.

On the other hand, only one relatively satisfactory means of defining
a has occurred to us. The practical difficulties arising from this defini-
tion are formidable. However, if the behavior of f as a function of a could
be determined experimentally under leboratory conditions on surfaces
designed to have specific a velues, the results might lead to surface
design criteria for the structure in question. We would now like to
formulate a rigorous definition for degree of exposure, a.

We will call a surface S in 3-space a Po--»Pl snake, where PO and Pl
are points in 3-space, if:

(1) there exists a simple differentiable rectifiable arec,
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A(t) = (xl(t), xa(t), x3(t)), 0 <t <1, in 3-space with
(xl(i), xz(:l), x3(i)) = P,, 1 = 0,1, such that every point on
S belongs to a circle z(t) whose plane is perpendicular to
A(t) and whose center is (xl(t), xg(t), x3(t)),

and

(2) the radius of z(tl) < radius of z(te) for t, <t

2 1
(3) there exists t', 0 < t' < 1 such that the surface for t < t'
is a right cone having as its base the disc enclosed by z(t')
and as its vertex, the point Pl’ Iet to be the first such t'.
The value of the snake S is defined to be v(s) = radius z(to).
For any given external point Pl on the structure, we consider the
set
T(Pl) ={S: Sis a P, > P, snake whose interior does not intersect any
portion of the structure, ‘a.nd P0 is & point from which gas
is to be dispensed}.

Thus, the set T(Pl) is a mathematical description of the set of all

paths a gaseous decontaminant might teke entering the decontamination chamber

at Po and finally reaching the point P1 on the surface to be decontaminated.

The value of any subset T'(Pl) of T(-Pl) is defined to be,

W) = 2o ().
seT' (P, )

A subset T'(Pl) of T(Pl) is called independen$ if for any two elements
S, and S, of T'(Pl), §, and S, have no interior points in common.

Then the value of Pl is defined to be

v(Pl) = max v(T'(Pl))

where the maximum is taken over all independent subsets T'(Pl) of T(Pl).
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¥hen the values of all points P, are known, they can clearly be

1

normalized to lie in the interval 0,1) and these normalized values are

considered to be the exposure parameter values, a.

The practical problems inherent in such a definition are obvious, but
it 1s possible to design surfaces on which the parameter values, in the
above sense, can be evaluated. Hence, it would be possible to experimen-
tally determine the dependence of f on a if the problems of control and
measurement of contamination could be overcome. If this could be done,
the results would certainly provide design criteria for surfaces of the
structure which would be directly related to the problem of contamination.

It would be difficult to determine a priori whether such criteria
would conflict with others designed for the same purpose. We are thinking
particularly of design criteria which would maximize the decontamination
due to assembly of the structure in a clean room environment.

At this point it seems appropriate to mention the major fault of the
model, that is, its independence of time. 1In any clean room situation,
the amount of contamination on a surface, whether viewed as a random variable
or otherwise, should be considered a function of time. Also, the amount
of contamination on a surface should be regarded as a tunction of tiwme in
a completely different sense, namely, in terms of the ability of many
microorganisms to multiply rapidly. Certainly any model which can be
considered "good" must take these things into account. It is our opinion
that the analysis of clean room effects upon complex contaminated structures
would involve a great deal of time and effort.

Another point which we promised to discuss is the problem of
determining with what probability the various possible physical distribu-

tions of contamination occur. Given a static situation, this would seem
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to be almost impossible on an a priori basis because of the unknown way
in which the additive contamination, AJ, is introduced at each assembly
stage. On the other hand, it would not seem unreasonable to expect that a
thorough analysis of the effect upon contamination by the air flow in a
clean room would help determine the probable location of contamination on
the surface as a function of time, surface characteristics, and structure
orientation.

Another notion whose discussion was deferred until this section deals
with decision criteria for choosing a random variable to represent the
contamination remaining after decontamination has occurred.

Tt will be recalled that we suggested the cholce

n
c" = ugx i}._—.:l fi[ci(d)] - ¢,(d)

and suggested that the distribution d, which maximizes the above sum would

0
not generally be unique. This causes certain theoretical difficulties at
this stage in the event one would like to analyze only those particular
subsurfaces which are to become interior at the next stage. That is, the

sum of the
£, [Ci(do)] JCACH!

taken over indices, i, corresponding to surfaces, parts of which are to
become interior, does truly depend on the choice of distribution do
maximizing the sum over all indices.

However, if one desires to be pessimistic about internal contamination,

the following decision criterion seems most desirable.
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Let Dy = {a I d maximizes 12231 fi[ci'(d)] - ¢,(a)} and let

I-= {i, a8 portion of 8y becomes interior in the next stage of assembly}.

Then choose déf D, which maximizes

1621 2, [c (@) - eyla).

Again, d(') might not be unique, but the original obJjection has been overcome
in the sense that
n

c" = El fi[ci(d(')ﬂ c,(ag)

represents the maximum possible external contamination remaining and, subject
to this condition, ylelds maximal interior contamination at the next stage.
There are other philosophical and practical problems associated with
any attempt to make such a decision. From a predictive point of view, it
seems that one would like to make decisions that yleld a maximum total
contamination remaining on the structure after decontamination following
the last stage of assembly. If such contamination was less than the
prescribed bound (with the desired probability) then surely the true
amount of contamination would also be. At least two difficulties arise
in attempting to do this. The first is that, even in the above framework,
the mathematical problem may prove too difficult to be solved, principally
because the quantity to be maximized is a random variable. Secondly, such
an approach is severely limited as long as +the dependence of the problem
upon time is not included.
Three further comments. First, this model is based upon the assumption

that by obtaining 8 completed structure with a known amount of biological
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contamination, one can proceed to sterilize the structure by heating it.
This is probably not unreasonasble, but we feel that the usual law of
logarithmic kill should be investigated further since there seems to be
evidence (see [T]) that it may not be valid in all situations.

Secondly, the assembly analysis 1s sequential in nature, moving from
one assembly stage to the next. This has great advantages in large calcu-
lations involving a computer,

Thirdly, any attempt to obtain the rendom variables representing
the total external and internal contamination at the last stage of
assembly in closed form is probably doomed to failure. Finally, because
of the mathematical complexities involved in any such an attempt, we would

recommend a Monte Carlo approach.
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