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SUMMARY 

The  diffusion  and  the  electron  emission  properties of the  rhenium- 
tungsten  and  the  iridium-tungsten  duplex  emitter  systems  have  been 
studied at 1600° to 210OoC in  order  to  assess  the  usefulness of these  systems 
in  thermionic  applications.  The  Re -W samples  were  prepared by deposit - 
ing  rhenium  formed by the  pyrolysis of ReC15 at 1000°C on  one  side of 
tungsten  disks  or  tubing  formed  by  the  reduction of W F 6  with  hydrogen at 
55OoC. The I r - W  samples  were  prepared by depositing  tungsten  formed 
by the  reduction of W F 6  with  hydrogen a t  55OoC on iridium  disks of powder 
metallurgy  origin  and 99. 99% purity.  Gross  diffusion-anneal  was  carried 
out  in a high-temperature  resistance  furnace,  and  the  rates of growth of 
the  various  phases  in  the  diffusion  zones of these  systems  were  measured 
by metallographic  and  electron  microprobe  techniques  and  compared  with 
the  results of other  workers.  The  electron  emission  properties of these 
systems  were followed a s  a function of time  during  diffusion-anneal  in a 
diffusion-emission  cell  designed  for  this  purpose. In  addition,  the  effective 
electron  work  functions of the  same  types of tungsten,  rhenium,  and  iridium 
as  those  used  in  the  present  experiments  were  measured  in  the  temperature 
range 1700° to 180OoC to  provide  reference  data. 

In  the  temperature  range of thermionic  interest (1600 to 18OO0C), 0 

appreciable  interdiffusion  occurs  between  the  components of both  these 
systems. On the  basis of the  data  obtained  and  assuming  that  the  thickness 
of a diffusion  layer  increases  with  the  square  root of the  time of diffusion, 
i t   is  shown  that  for  the Re-W system  the  total  width of the u phase  and  the 
X phase  formed  is 6 mils  .at 160OoC and 12 mils   a t  18OO0C, and  the  total 
width of the  diffusion  zone  (defined  as  the  region  between 2 wt -70 Re and 
98 wt-Yo Re) i s  14 mils   a t  160OoC and 25 mils   a t  180OoC after 10 ,000  h r  of 
operation.  Similar  evaluations of the  Ir  -W system show  that  the  width of 
the E phase  is  10 mils   a t  160OoC and 18 mils  at 18OO0C, and  the  total  width 
of the  diffusion  zone  (defined as the  region  between 2 wt-7' Ir  and 98 wt-70 
Ir) i s  12 mils   a t  160OoC and 24 mils   a t  180OoC af ter   10,000  hr  of operation. 
The  vacuum  emission  results  indicate  that  even when the  tungsten  concen- 
tration  near  the  rhenium  and  the  iridium  emitting  surfaces  is  negligible, 
the  work  function  is  lower  than  that of the  rhenium  or  the  iridium  reference 
sample,  presumably  due  to  the  adsorption of tungsten  atoms  arriving  at 
the  emitting  surface by surface  or  volume  diffusion.  These  observations, 
plus  the  fact  that  voids  and  cracks  have  been found in  some of the  inter-  
mediate  phases  formed,  seen  to  indicate  that  the  usefulness of the  duplex 
emitters  is   rather  l imited.  
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INTRODUCTION 

In  the  thermionic  conversion of fission  heat  to  electrical  energy, 
refractory  metals  in  contact with fissile  materials  are  used  in a cesium 
vapor  environment as electron  emitters.   For  some of the  promising 
emitter  materials,  however,  direct  contact with nuclear  fuel  materials 
is ruled out for  compatibility  reasons. F o r  instance,  rhenium  reacts with 
80 UC-20 ZrC* and 30 UC-70 Z r C  at 160OoC in 100 hr,  and  iridium  reacts 
with 80 U G 2 O  Z r C ,  30 UC-70 Z r C ,  and U 0 2  a t  160OoC in 50 to 100 hr.  (1)  
A proposed  solution to  this  problem  involves  the  use of a duplex structure 
in  which  the  emitter  material  is  separated  from  the  nuclear  fuel by a layer 
of tungsten;  the  latter  has  been shown to  be  compatible  with U C - Z r C  and 
U 0 2  a t  18OOOC. ( l )  The  purpose of the  present study was to  evaluate  the 
feasibility of the  Re-W  and  the  Ir-W  duplex  emitter  systems on the  basis 
of the  rates of interdiffusion  and  the  effect of such  interdiffusion on the 
electron  emission  properties of these  systems. 

The  information  available  in  the  literature on the  interdiffusion of 
the  Re-W  and  the  Ir - W  systems  is  summarized  in  Table 1 .  It  can be seen 
that  the  results  available  are  limited  and show disagreement  for  the Re-W 
system.  Even fo r  the  more  thoroughly  investigated  Ir-W  system,  it  was 
desirable  to  carry out  independent  experiments  to  check  the  reproducibility 
of the  data. In addition, no study  had  been  made of the  electron  emission 
properties of Re  and Ir in  contact  with W at  high  temperatures. 

EXPERIMENTAL TECHNIQUES 

Two types of experiments  were  performed:  (1)  gross  interdiffusion 
experiments  in which the  rate of interpenetration of the  components of the 
couple is determined as a function of temperature,  and (2 )  diffusion- 
emission  experiments  in  which  the  electron  emission  characteristics of 
the  Re  and  the  Ir  emitters  in  contact with W substrates   are  followed a s  a 
function of t ime  at  high temperatures  in  vacuum.  The Re-W  couples  were 
prepared by depositing  Re  formed by the  pyrolysis of ReC15 at  1000°C on 
one  side of W disks  or  tubing  formed by the  reduction of W F 6  with H2 at  

* 
A l l  the  compositions  are  in  mol-%. 
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" ." 

Diffusion 
System 

Re- W 

Ro vi 

7- 

Table 1 

AVAILABLE DIFFUSION INFORMATION FOR  THE  Re-W AND THE Ir-W SYSTEMS 

T 
I 

1700 4 

1800 3 

1900 60 

7.000 1 Up to 600 

' 1  -v i  I '706 I 4 

i 1800 ' 3  

I r -  W 52 to 1750 1300 
to 

2 1  10 

I 

0-100 wt-70 Re 

0-100 wt-70 Re 

0-100 wt-70 Re 

Method for 1 
Determining i .- 
Penetration j 

Curve 1 Essential  Results -c 1 Reference 

'! 
I 
I 
! 

Microhardness Thickness of u phase  plus x phase 

equals 10 p 
Thickness of u phase  plus X phase Microhardness 

equals 5 p 

Microhardness Thickness x of intermediate  phases 
varies with time t according  to 
the  relation x = k and 
n being  constants  for  each  inter- 
mediate.  phase, with n = 3. 3 for 
the u phase  and 1 .4  for  the 
X phase 

Microhardness Both u and x phases  grow  according 
to  the  square-  root -of -time  law 

Microhardness 

Thickness o f t  phase  equals 18 p Microhardness 

Thickness of t phase  equals 12 p 

Diffusion  constants  given as a Electron  micro- 
probe  analysis function of composition  and 

temperature 
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55OoC. The I r - W  couples  were  prepared by depositing W formed  by  the 
reduction of W F  with H2 at 55OoC on Ir disks of powder  metallurgy  origin 
and 99. 99% purity. 

6 

In  the  gross  interdiffusion  studies,  the  samples  were  diffusion-annealed 
at the  desired  temperature  in a high-temperature-resistance  furnace  in a 
vacuum of torr  for  the  planned  duration.  The  temperature of the  furnace 
was  measured  with a calibrated  micro-optical  pyrometer  and  controlled  to 
A15OC during  the  diffusion-anneal.  After  completion of the  experiment,  the 
samples  were  mounted  and  polished.  The  distribution of the  concentrations 
of the  components  across  the  interface of the  couple  and  the  microstructures 
of the  interface  were  then  determined by electron  microprobe  analysis  and 
metalloglaphic  techniques. 

In the  diffusion-emission  studies,  the  samples  were  placed  in a 
diffusion-emission  cell (Fig.  1)  and  heated by electron  bombardment of 
the  tungsten  side of the  couple  in  high  vacuum torr  residual  gas 
pressure)  maintained with a Vac-Ion  pump.  The  electron  emission  charac- 
ter is t ics  of the Re  and  the Ir  surfaces  were  followed by measuring  the 
current-voltage  relationship of the  emitter-collector  system  as a function 
of time up to -1000 hr.  The  temperature of the  sample  was  maintained  to 
*lO°C, as  determined by sighting a calibrated  micro-optical  pyrometer 
into a hohlraum  (10  mil  diameter  and 50 mil  depth)  drilled  into  the  sample 
at  about 10 mils  below the  emitting  surface.  After  completion of the  experi- 
ment,  the  sample  was  mounted  and  polished.  The  distribution of the  concen- 
trations of the  components  across  the  interface of the  couple  and  the  micro- 
structures of the  interface  were  then  determined by electron  microprobe 
analysis  and  metallographic  techniques.  To  establish  references  for  the 
vacuum  electron  emission  data,  the  vacuum  emission  characteristics of a 
vapor-deposited W sample, a vapor-deposited Re sample,  and  an  Ir  sample 
of powder  metallurgy  origin  were  also  studied.  These  reference  sample 
materials  were  the  same  as  those  used  in  the  gross  interdiffusion  and  the 
diffusion-emission  experiments. 

EXPERIMENTAL  RESULTS 

The  characteristics of the  samples  studied  and  the  experimental 
conditions fo r  each of these  samples  are  summarized  in  Table 2. The 
results  obtained with these  samples  are  described  in  this  section. 
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WATER COOLED 

ELECTRON 
BOMBARDMENT 
HEATER 

PYROMETRY 
WINDOW 

V A L V E  

‘ I  I ’  
Fig. 1 --Schematic  arrangements  in  diffusion-emission  cell 

5 



Sample 
Numbel 

1 
2 

3 

4 

5 

6 
7 
8 

9 

10 

11 

12 

13 

Table  2 

CONFIGURATION AND EXPERIMENTAL CONDITIONS FOR SAMPLES  STUDIED 

Composition 

Re-W 
- . . " . - . 

Re- W 

Re- W 

Re-  W 

Ir-W 

I r -  W 

I r - W  

W 

Re 

I r  

Sample  Configuration . . . . -. .. - . - . . - . "" . - . - 
! Vapor-deposited  Re (20 mi ls  
j thick)  over  vapor-deposited 

W disk ( 3 0  mils  thick, 
1/4  in.   diameter) 

Vapor-deposited  Re  (30  mils 
thick)  over  vapor-deposited 
W tube (100 mil  wall  thick- 
ness ,   3 /8   in .   d iameter )  

Vapor-deposited  Re  (10  mils 
thick)  over  vapor-deposited 
W disk  (28  mils  thick, 
0. 614 in. diameter)  

Vapor-deposited  Re  (8  mils 
thick)  over  vapor-deposited 
W disk (30 mils  thick, 
0. 614  in.  diameter) 

I r   d isk (20 mils  thick,  1/4  in. 
diameter)  coated  on  one 
side  with 30 mils  vapor- 
deposited W 

Ir   disk  (18  mils  thick,  0. 560 
in. diameter)  coated  on  one 
side  with  30  mils  vapor- 
deposited W 

Ir  disk  (18  mils  thick, 0. 584 
in. diameter)  coated on one 
side  with  28  mils  vapor- 
deposited W 

Vapor-deposited W disk  (62 
mils  thick, 0. 570 in. 
diameter)  

Vapor-deposited  Re  disk  (40 
mils  thick, 0. 580 in. 
diameter)  

[r disk of powder  metallurgy 
origin  (40  mils  thick, 
0. 580 in.  diameter) 

__ "" ." "" "_ 

"- 
Diffusion 

'emperature  
(OC) - - " . - 
2 100 
2000 

1800 

1800 

1600 

2 100 
2000 
1800 

1820 

1600 

"" 

"" 

"" 

" 

Diffusion 
T i m e  
(hr)  

100 
100 

-____ 

100 

1010 

1006 

100 
100 
100 

1011 

101 1 

"" 

"" 

"" 

Cxperiment  Performed 

Gross  interdiffusion 
Gross  interdiffusion 

Gross  interdiffusion 

Diffusion-emission 

Diffuaion-emission 

Gross  interdiffusion 
Gross  interdiffusion 
Gross interdiffusion 

Diffusion-emission 

Diffusion-emission 

Vacuum  emission 
reference 

Vacuum  emission 
reference 

Vacuum  emission 
reference 
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INTERDIFFUSION 

Re-W System 
" 

As required by the Re-W phase  relationship, (5) both  the u and x 
intermediate  phases  are  present  between  the  terminal  phases a (the  Re 
phase)  and p (the W phase)  in  samples  studied at 1600°, 1800°, and 20OO0C, 
and  only  the u intermediate  phase is present  between  the  terminal a and 
p phases  in  the  sample  studied at 2100°C. Typical  microstructures of the 
interface of the  samples  after  the  diffusion-anneal  are shown in  Fig. 2 for 
sample No. 4 which  was  studied at 1800OC for 1010 hr.  The width of the 
diffusion  zone,  defined  arbitrarily  as  that  between 2 wt-yo Re  and 98 wt-'$0 
Re,  and  the  widths of the  intermediate  phases u and X were  measured  from 
the  concentration  penetration  curves  determined by electron  microprobe 
analysis  and  are  summarized  in  Table 3. 

Table 3 

OBSERVED  DIFFUSION ZONE AND INTERMEDIATE  PHASE WIDTHS 
O F  Re-W  DIFFUSION SAMPLES 

Sample 
(OC) Number 

Temp. 

5 1600 
4 1800 
3 

2100 1 
2000 2 
1800 

Diffusion 
Time  (hr)  

1006 
1010 
100 
100 
100 

I Width of Intermediate 

Total Width of 
Diffusion  Zone 

Phases  in  Diffusion Zone 
(microns) 

113 
200 

a 

120 
loo 

25 
25 

8 
7. 5 
b 

22 
70 
22 
30 
50 

aNot 
-Not b 

determined. 
present. 

- 
Comparison of the  data  for  sample No. 3 with  data for  sample No. 4 

indicates  that  the  widths of the  intermediate  phases  formed  increase  with 
the  square  root of the  time of diffusion.  The  same  conclusion was reached 
by Kirner on the  basis of his  work  at 20OO0C. (3 )  

Ir - W System 

In agreement  with  the  phase  relationship of the I r - W  system, (5) both 
the u and  the e intermediate  phases  are  present  between  the  terminal  phases 
CY (the W phase)  and f3 (the Ir phase)  in  samples  studied  at 1820°, 2000°, and 
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X phase 
u phase € 

Rhenium- 
(a! phase) 
Sermediate - 

hi8452  -4 (1OOx) 
(a) Lightly  etched 

~ 8 4 5 2  -5 (100 x) 
(b) Heavily  etched 

Fig. 2 --Cross  section view of the Re-W interface of sample No. 4 after 1010 hr at 18OO0C. 
Note the  presence of cracks  and  voids  in  the two intermediate  phases 



2100°C, and only the c intermediate  phase is present  between  the  terminal 
CY and  phases  in  the  samples  studied at 1600° and 180OOC. Typical  micro- 
structures of the  interface of the  sample s after  the  diffusion-anneal  are 
shown in  Fig. 3 for  sample No. 9, which  was  studied at 182OoC for 1011 hr.  
The  width of the  diffusion  zone,  defined  arbitrarily as that  between 2 wt-% 
Ir and 98 wt-70 Ir, and  the  widths of the  intermediate  phases u and c were 
measured  from  the  concentration  penetration  curves  determined by electron 
microprobe  analysis  and  are  summarized  in  Table 4. 

Table 4 

OBSERVED  DIFFUSION ZONE AND INTERMEDIATE  PHASE WIDTHS 
O F  I r - W  DIFFUSION SAMPLES 

Sample 
Number 

10 
8 
9 
7 
6 

-~ ~ 

. ." ~ .~ .  

Temp. 
(O C) 

1600 
1800 
1820 
2000 
2 100 

Diffusion 
Time  (hr)  

1011 
100 
1011 
100 
100 

Total Width of 
Diffusion  Zone 

(microns) 

96 
b 

94 
132 

270 

~~ 

Width of Intermediate 
Phases  in Diffusion  Zone 

(microns) 

c I 0- 

80 
45. 5 

166 
56 
62 

- a 

- a 
17 
16 
18 

aNot  present. 
-Not  determined. b 

Comparison of the  data  for  sample No. 7 with data  obtained  at 2025OC 
in  Ref. 4 (c = 40 microns  and r = 10 microns  in 63 hours)  indicates  that  the 
widths of the  intermediate  phases  formed  are  approximately  proportional  to 
the  square  root of the  diffusion  time if the  small  difference  in  diffusion 
temperature (-25OC) i s  neglected.  The  data  for  sample No. 8 and  the  data 
obtained  at 180OoC in  Ref. 4, however, do not seem  to f i t  this  relationship. 
Further  experimental  check is needed  to  clarify  this  point. 

ELECTRON EMISSION CHARACTERISTICS 

W, Re,  and Ir Reference  Samdes 

In order  to  set  reference  lines  for  the  vacuum  electron  emission 
characterist ics of the Re-W  and  the I r - W  duplex emitters,  measurements 
were  made on the  vacuum  emission of individual W, Re,  and Ir samples 
in' the  diffusion-emission  cell  at a vacuum of torr.   The  materials 
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M9881-1 (270x) 

1 p phase 
(Iridium) 

t E phase 

u phase 

a phase 
( Tung s teh) 

". 

Fig.  3--Cross-section view of the  Ir-W  interface of Sample No. 9 
after 1011 h r   a t  182OOC. Note the  presence of large  voids  and  some 

cracks  in  the  intermediate  phase c 
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used  were similar to  those  contained  in  the Re-W  and  the I r - W  diffusion 
couples. From  the  saturation  emission  current  at  zero  field,  the  effective 
work  function (9) was  calculated  from  the  Richardson-Dushman  equation, 
using a pre-exponential  factor of 120 amp/cm2 OK2. The  values  obtained 
from  the Schottky  plots  (Figs. 4 through 6) a r e  4.56  ev (1716OC) and 4. 55 ev 
(1802OC) for  W (sample No. 11); 5.  10 ev (17OO0C),  5. 11 ev ( 175OoC), and 
5.  12 ev (18OOOC) for  Re  (sample No. 12);  and 5. 13 ev (17OO0C),  5. 15 ev 
(175OoC), and 5. 17 ev (18OOOC) for Ir (sample No. 13).  Before  the  vacuum 
emission  studies,  the W sample  exhibited  strong (100)  orientation,  whereas 
the  Re  and  Ir  samples  showed no preferred  orientation.  The  grain  size of 
both  the W sample  and  the Ir sample  was -40 microns,  while  the  grain  size 
of the  vapor-deposited  Re  was  extremely  small (-5 microns).  After  the 
vacuum  emission  studies,  there  was no change  in  the  structure of the W 
sample,  but  the  Re  and Ir samples  both  exhibited  large  grains  (approximately 
a few  hundred  microns)  and  developed  strong  (0001)  and  (111)  orientations, 
respectively. 

Re-W S a m d e s  

The  f irst  Re-W  duplex  emitter  sample (No. 4) was  studied  at 180OoC 
for a period of 1010 hr.  The  sample  was  prepared by depositing  Re  formed 
by the  pyrolysis of ReC15 at 1000°C onto  one side of a vapor-deposited W 
disk.  The  finishe-d  sample  after  polishing  had a Re  layer of 10 mil  thickness. 
X-ray  examination  showed  the  normal  hexagonal  close-packed  structure 
with no preferred  crystal  orientation.  Metallographic  study  indicated  that 
the  grain  size of the  Re  deposit was very  small (-5 microns).  Figure 7 
shows  the  log  current  density  versus  square  root of field  plots  obtained 
from  the  Re  surface  during  the  diffusion-anneal  at 18OO0C. The  emission 
remained  fairly  steady  after 434 hr  at  temperature.  The  saturation 
emission of 2. 1 rna/cm2  at  zero  field,  however,  corresponds  to  an  effective 
work  function of 4.67 ev, as  compared with  about 5. 1 ev for  the  Re  reference 
sample  and 4.6 ev  for  the W reference  sample.  The  microstructure of the 
Re  surfac.e  after  the  vacuum  emission  study is shown in  Fig.  8.  The  grain 
size  increased  from -5 microns  to a few  hundred  microns.  X-ray  examina- 
tion  showed a strong  (0001)  preferred  orientation. 

The  second Re-W  duplex  emitter  sample (No. 5)  was  studied at 160OoC 
for a period of 1006 hr.  This  sample was prepared  in  the  same  manner  as 
sample No. 4 and  had  the  same  physical  characteristics.  The  finished  sample 
after  polishing  had a Re  layer of 8 mil  thickness.  The  emission  character- 
ist ics of this  sample  became  very  steady  after  about 200 hr   a t  16OO0C, a s  
shown in  the  log  current  density  versus  square  root of field  plots  in  Fig. 9. 
The  saturation  emission  at  zero  field  was 0.06 ma/cm , corresponding  to 
an  effective  work  function of 4.  78 ev, as compared with 5. 1 ev  for  the Re 
reference  sample  and 4.61 ev  for  the W reference  sample.  Metallographic 
and  X-ray  studies  made  after  the  emission  measurements  showed  that  the 
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10.0 

1 .o  

0 

1802°C 

X 

1716°C 

0 

0 

0 

20 40 60 80 IO0 120  I40 

4--Current  density  versus  square  root of field at 1716 C  and 1802 C 
0 0 

for  tungsten  sample No. 11 
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0 .  I 

0.01 
0 

A 
b 

1 700" C 

20 
J I 
40 60 80 100 

I I I 
1 20 

0 Fig.  5--Current  density  versus  square  root of field  at 1700 , 1750°, 
and 180OOC for rhenium sample No. 12 
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Fig. 6- -Current  density  versus  square root of field at 1700 , 1750°, and 
180OoC for  iridium  sample No. 13 
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1.0 

Fig.  i"-Log  current  density  versus  square  root of 
field at 18OO0C and  various  times  for Re-W  duplex 

emission-diffusion  sample No. 4 

15 



M8415 (2 50x) 

Fig.  8--Top view of the  Re  surface of Re-W  duplex 
emission-diffusion  sample No. 4 after 1010 hr   a t  

180OOC. Note the  large  grain  size 
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Fig.  9--Log  current  density  versus  square  root of 
field  at 160OOC and  various  times  for Re-W 

emission-diffusion  sample No. 5 
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Re  grains  had  grown  to -75 micron  size  and  had  developed a strong  (0001) 
preferred  orientation. 

The  widths of the  diffusion  zones  and  the  intermediate IT and x phases 
in  these two samples   are  given  in  Table 3. Electron-microprobe  examina- 
tions  indicated  that  the  concentration of W dropped  to  less  than 1% at a 
distance of about 3 mils  from  the  Re  emitting  surfaces  in  both  cases. 
Since  the  vacuum  emission  characteristics of an  emitter  are  extremely 
sensitive  to a fraction of a monolayer of impurities  adsorbed on its  surface, 
it  seems  likely  that a small  amount of W diffused  to  the  Re  surface  and  was 
adsorbed  to  cause  the  observed  work  function  changes  from  that of pure  Re, 
even  though  the  bulk W concentration  near  the Re emitting  surfaces  may  be 
negligible.  Normally a new emitter  surface  needs  about 100 to 200 hr  for 
outgassing  in  order  to  stabilize  its  emission  characteristics.  The  fact  that 
neither of the  Re-W  duplex emitters  attained  the  vacuum  emission  charac- 
ter is t ics  of pure Re seems  to  indicate  that W adsorption on the  Re  surface 
occurred  before  the  outgassing of either of the Re-W duplex  emitters 
was  completed. 

I r  -W Samples 

The  first  Ir-W  duplex  emitter  sample (No. 9 )  was  studied at 182OoC 
f o r  a period of 1011 hr .  It  was  prepared by vapor-depositing 30 mils of 
tungsten  onto  one  side of an  Ir  disk of powder  metallurgy  origin  and 99. 9970 
purity.  After  polishing  to  remove  surface  contamination,  the  finished 
sample  had  an  Ir  layer of 18 mil  thickness.  The  vacuum  emission  charac- 
ter is t ics  of this  sample  as a function of time  at 182OoC a r e  shown in F i g .  10. 
It  can  be  seen  that  the  emission  increased  continuously  until it reached a 
steady  state with a zero-field  saturation  emission of "3 ma/cm2  after 
722 hr   a t  182OoC, which  corresponds  to a work  function of 4. 58 ev.  This 
i s  about  the  same  value  as  the  work  function of the W reference  sample. 
Metallographic  examination of the  Ir  surface  after  the  test  showed  very 
large  grain  size (-500 microns) with a considerable  amount of thermal 
etching of the  grains  (Fig. 11). X-ray  studies  indicated a strong { 111) 
preferred  orientation. 

The  second I r - W  duplex  emitter  sample (No.  10)  was  studied  at 160OoC 
for a period of 1011 hr.  The  sample  was  prepared  in  the  same  manner  as 
sample No. 9 and  had  the  same  physical  characteristics.  The  finished 
sample  after  polishing  had  an  Ir  layer of 18 mil  thickness.  The  vacuum 
emission  characteristics of this  sample  as a function of time  at 160OOC 
a r e  shown in  Fig. 12. The  saturation  emission  at  zero  field  after  the 
emission  characteristics of the  sample  were  stabilized  after 208 hr   a t  
160OOC was 0 . 0 9  ma /cm , which corresponds to  a work  function of 4. 71 ev. 
This  is  close  to  the  work  function of 4. 6 ev  for  the W reference  sample. 
Metallographic  and  X-ray  studies  indicated a grain  size of -250 micr&s, 
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various  times  for I r - W  emission-diffusion  sample No. 9 
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Fig. 11 --Top view of the  iridium  surface of 
duplex  Ir-W  emission-diffusion  sample No. 9 
after 101 1 h r   a t  182OOC. Note the  large  grain 
size  and  extensive  thermal  etching of the  grains 
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with  evidence of thermal  etching of some of the  grains,  and a strong { 11 1) 
preferred  orientation. 

The  widths of the  diffusion  zone  and  the  intermediate Q and (r phases 
in  these two samples  are  given  in  Table 4. Electron  microprobe  studies 
indicated  that  the  concentration of W dropped  to  less  than 1% at a distance 
of 7 mils from  the Ir emitting  surface of sample No. 9 and at a distance of 
14 mils from  the Ir emitting  surface of sample No. 1.0. It is believed  that 
the  same  explanation  for  the  work  function  changes  observed  for  the Re-W 
samples  probably  also  applies  to  the I r - W  samples. 

CONCLUSIONS 

From  the  experimental  results,  the  following  conclusions  can  be 
drawn  with  regard to  the Re-W  and  the  Ir-W  duplex  emitters: 

1. In the  temperature  range of thermionic  interest (1600  to 1800 C), 
the Re-W system  forms two intermediate  phases,  the x phase  and 
the IT phase;  the  Ir-W  system  forms  one  intermediate  phase,  the 
Q phase. 

0 0 

2. There is appreciable  interdiffusion  between  the  components of 
both  these  systems  in  the  temperature  range of 1600° to 180OoC 
during  the  designed  operating  life of these  emitter  systems, i. e . ,  
10,000  hr. On the  basis of the  data shown in  Tables 3 and 4 and 
assuming  that  the  thickness of a diffusion  layer  increases with 
the  square  root of the  time of diffusion,  the  widths of the  diffusion 
zones  and  the  intermediate  phases of the Re-W and  the . I r - W  
systems  after 10, 000 hr  at  various  temperatures  were  calculated 
(Figs. 13 and  14).  The  data  deduced  from  the  results  in  Refs. 3 . 
and 4 are  also  included  in  these  figures.  It  can  be  seen  that  for 
the Re-W system,  the  total width of the IT phase  and  the x phase 
is 6 mils   a t  160OOC and 12 mils a.t 1800OC; the  total width of the 
diffusion  zone i s  14 mils  at  160OoC and 25 mils at 180OOC. F o r  
the  Ir-W  system,  the width of the E phase is 10 mils  at  160OoC 
and 18 mils a t  18OO0C, and  the  total width of the  diffusion  zone 
i s  12 mils at 160OoC and  24 mils at  18OO0C. 

3. The  formation of intermediate  phases  between  the Re o r  the  Ir  
emitting  layer  and  the W substrate  limits  the  usefulness of the 
duplex  emitter  concept  for  these  materials. As illustrated  in 
Figs. 2 and 3,  voids  and  cracks  may  be  present  in  these  phases, 
especially upon thermal  cycling,  which  impair  the  mechanical 
integrity  and  the  heat  transfer  property of the  duplex  emitter 
structure. 
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4. Vacuum emission  studies  made on the Re-W and I r - W  duplex 
emitters  indicate  that  even when the W concentration  near  the  Re 
or  the Ir emitting  surface is negligible,  the  work  function is lower 
than  that of the  Re  or  the Ir reference  sample.  In a cesium  con- 
verter,  a high  emitter  base  work  function is preferred  since it 
reduces  the  cesium  pressure  (and  thus  the  plasma  impedance  loss) 
needed  for a given  emitter  surface  coverage by cesium  atoms. 
Although  both Re  and Ir are  attractive  emitter  materials  because 
of their  high  work  functions,  this  advantage  seems  to  be  partially 
lost  in  the  samples.  studied  in  the  temperature  range of 16000 to 
18OO0C, probably  due  to  the  presence of an  adsorbed  layer of W 
on the  Re  or  the Ir emitting  surface.  The  samples  used  in  these 
studies  were  prepared by depositing  Re  onto  one  side of a W disk 
and by depositing W onto  one  side of an  Ir   disk;  part  of the  surface 
of the W substrate  was  therefore  exposed  during  the  experiments. 
The W atoms  could  arrive  at  the  Re o r  the  Ir  surface by two 
mechanisms: ( 1 )  surface  diffusion  along  the  exposed W surface  to 
the  Re  or  the Ir emitting  surface,  or ( 2 )  volume  diffusion  through 
the  bulk of the Re or  the  Ir  layer  to  the  emitting  surface. With 
the  present  sample  configuration,  the  contribution of each of these 
two mechanisms  to  the  observed  work  function  changes  cannot  be 
deduced  individually.  Nevertheless,  the  importance of avoiding 
any  exposed W substrate  surface is demonstrated,  and  this  should 
be  taken  into  consideration  in  any  duplex  emitter  design.  To  study 
the  role  played by volume  diffusion  alone,  future  work  using  samples 
consisting of W completely  encapsulated  in  Re  or  Ir  should  be 
carr ied out. 
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