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ABSTRACT

A theory is presented which can be used for the practical

calculation of the heat conductivity of polyatomic and polar gases and

gas mixtures. For pure gases, the results are based on the Wang Chang-

Uhlenbeck equations and involve no approximations, provided that a

suitable definition of an internal diffusion coefficient is employed.

This is compared with the known results for a gas of rough spheres, and

found to hold to all orders of approximation. Approximations enter for

real gases only in obtaining numerical estimates of internal diffusion

coefficients and relaxation times. The result is essentially the same

as that of Mason and Monchick. For mixtures, the results are based on

the formal kinetic theory recently obtained by Monchick, Yun, and Mason.

A brief digression on sound absorption and dispersion in mixtures is

made in order to identify the cross relaxation times in the formulas.

Two assumptions are required for mixtures to obtain usable formulas:

neglect of "complex collisions," and no correlation between internal

energy states and relative velocities (or equal differential cross

sections for all scattering channels). With these assumptions plus

suitable definitions of internal diffusion coefficients and relaxation

times, a usable formula for the heat conductivity is obtained. This

formula is further simplified to include only first-order correction

terms, and rearranged so that the heat conductivities of the pure com-

ponents are automatically given correctly. Comparison with experimental

results for a number of different types of mixtures showed that the

calculated results were rather insensitive to inelastic collision

corrections, provided they were forced to go through the correct end

points. It was concluded that for most purposes a theory neglecting

inelastic effects in the mixture would be adequate, but that inelastic

effects must be included in calculations for the pure components.
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I, Introduction

By starting with the formal kinetic theory of transport in

polyatomic gases developed by Wang Chang and Uhlenbeck I and by Taxman 2,

it has recently become possible to put the theory and calculation of

heat conductivity of polyatomic molecules on a basis comparable to that

for monatomic gases. This was achieved for pure gases by introducing

an approximate form including first-order correction terms in the

relaxation times describing inelastic collisions, with rather good

3
agreement with experiment. The consistency of these first-order results

for a gas of rough spheres has also been investigated. 4 Nothing could be

said at the time, however, about mixtures of polyatomic gases because of

a lack of a formal kinetic theory of transport in such mixtures. Such a

formal theory has since been developed, 5 along the lines of the Wang

Chang-Uhlenbeck approach for pure gases, with the ultimate aim of using

it as a starting point for a first-order theory of heat conduction in

polyatomic gas mixtures.

One of the purposes of the present paper is to develop a

practical theory which can be used to calculate the heat conductivity

of polyatomic gas mixtures. A second is to establish with more precision

just where approximations enter into the derivation of usable formulas

from the equations of the formal kinetic theory, which are unusable as

they stand because of our present inability to follow the dynamics of

inelastic collisions for realistic molecular models. It turns out that

the necessary approximations can be put into a much less severe form than

originally presented; at any rate the approximations can be introduced

into the derivations at a later stage and in a physically more

transparent way.

We first consider pure gases and show that the final formulas

for the coefficient of heat conductivity follow from the Wang Chang-

Uhlenbeck equations with n_..ooapproximations, provided only that a suitable

definition of a diffusion coefficient of internal energy is employed.
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This result is checked against the known results for rough spheres, and

found to hold exactly to all orders of approximation. We then consider

mixtures and find that an analogous result does not hold; even with

reasonable definitions of cross relaxation times and internal diffusion

coefficients, complicated collision terms are left over. Two additional

assumptions, which are physically reasonable, are sufficient to remove

these latter terms. A brief digression on sound absorption and dis-

persion is also necessary in order to identify the cross relaxation times

which occur in the mixture formulas.

The mixture formula is then expanded and truncated so as to

include only first-order correction terms in the relaxation times, and

rearranged so that experimental quantities appear in the formula as far

as possible. This procedure also assures that the mixture formula auto-

matically goes through the experimental end points; i.e., it reduces to

the experimental thermal conductivities of the pure components as the

mole fraction of that component goes to unity. In this form the formula

is equivalent to the Hirschfelder-Eucken formula for the heat conductivity

of polyatomic gas mixtures plus a large number of first-order correction

terms. (It is equivalent, not equal, because allowance has been made for

resonant effects in the internal diffusion coefficients).

Comparisons with experimental measurements are made for a

variety of different types of mixtures, including monatomic with nonpolar

polyatomic gases, nonpolar polyatomic gas mixtures, mixtures of nonpolar

and polar polyatomic gases, and mixtures of isotopically substituted polar

gases. When polar gases are involved it is necessary to take special

account of glancing collisions in which a quantum of rotational energy is

exchanged between two molecules. This exchange affects the diffusion

coefficient for internal energy, especially when the exchange is resonant

so that its cross-section is large. A number of detailed conclusions may

be drawn from these comparisons, and are summarized at the end of the

paper. Four main ones may be mentioned here. (i) The heat conductivity
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coefficient of polyatomic gas mixtures can usually be calculated from the

Hirschfelder-Eucken formula within a few percent if experimental values

are knownfor the componentviscosities and heat conductivities and for

the diffusion coefficients. (2) The correction terms for inelastic col-

lisions do not affect the shape of the %mixvs composition curve very much,
but only move it up or down, unless very short molecular relaxation times

occur, such as in the case of polar gases. Thus if the %mix curve is

forced through the end points corresponding to the pure components, it is

usually found to differ only slightly from the Hirschfelder-Eucken curve.

(3) The use of correct internal diffusion coefficients is at least as

important as the inclusion of corrections for inelastic collisions. In

the last section, a crude argument is employed to evaluate the effect of

neglecting the angular dependence of the inelastic channel scattering.

(4) The easiest _a _ procedure of reasonable accuracy for the calcu-

lation of kmi x is to use the fully corrected formulas to calculate the

conductivities of the pure components, and then to use these in the

Hirschfelder-Eucken formula to calculate kmix. To do better requires more

knowledge of inelastic collisions than is available for most gases.
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II, PURE GASES

The purpose of this section is to show that in the development

of a theory involving only experimental quantities, approximations may

be introduced at a later stage and in a less severe form than was

3
previously shown. We shall not write down all the formulas of the

formal kinetic theory, which are sometimes very long and cumbersome (and

are available elsewhere), but will give only enough intermediate results

to allow the argument to be followed.

A. Formally Exact Theory

To keep the size of the formulas within reasonable bounds,

we define the value of a function F averaged over all the dynamic

variables of collisions between molecules of components q and q' as

follows:

0= 27

ijkl 0 0 0

kl

x [F_ 3 exp (._2 _ Cqi ¢q'j) lij sin X],

where the indices i, j, k, i refer to the internal states, i and j to

the internal states before collision of q and q', respectively, and k

and I to the internal states after collision. Qq and Qq, are internal

partition functions,

Qq = E exp (- Cqi ),
i

where Cqi is the energy of the i'th internal state of q, divided by kT.

The angles X and _ are the polar and azimuthal angles, respectively,

describing the deflection of a relative trajectory by a collision, and
kl

I.. is the differential scattering cross section for scattering from
ij
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states i, j into states k, I with deflection angles X, _, and with

relative velocity changed from g to g' by the collision. The reduced

mass , and reduced relative velocity y are
_qq

_qq, = mq mq,/(mq + mq,),

= (_qq,/2kT) ½ gqq,

These definitions hold for mixtures as well as for pure gases.

We now define a collision integral for the diffusion of

internal energy in a pure gas as

(Cint/k) UintA(l'l)_ <(el _ _ ) [(ei _ ej) _2 (¢k - ¢1 ) YV' cos X]>qq ,

where Cin t is the internal heat capacity per molecule, _(1,1)intis the

collision integral, _ is the average internal energy divided by kT, and

the other terms are as defined previously. For elastic collisions this

definition reduces to the collision integral for self-diffusion,

_ i)n ' = <_ - y_ cos X>qq (2)

In terms of this collision integral, the diffusion coefficient for

internal energy is defined as

3kT

int 8nm _(I,i) '
int

(3)

(1)

which for elastic collisions is equal to the ordinary self-diffusion

coefficient, _x"

The foregoing expressions hold quite generally for any number

of modes of internal motion, but of course are very difficult to

evaluate except in certain special simple cases. If the internal modes
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are uncoupled so that a separate heat capacity and diffusion coefficient

can be defined for each internal mode, the overall internal heat capacity

and diffusion coefficient can be written as

Cin t m _ Ck, int,

Cint/_int = _ (Cklint_k,int),
k

(4a)

(4b)

where the summation extends over all the internal modes, k = I, 2, • • ..

The problem of finding numerical values for_in t is postponed to the last

step in the calculation.

The relaxation time, m, for internal energy in a pure gas is

1,2defined as

(Cint/k)

n_ = 2<A¢ 2 > '
(5)

where n is the number density of molecules and

A¢ = Ck + el " _i - cj "
(6)

The expression for m holds for any number of modes of internal motion,

but is very difficult to evaluate for any but the most over-simplified

models of molecular collisions. Values of m can, however, be determined

experimentally from sound absorption and shock tube measurements. If

the internal modes are mechanically independent so that a separate

relaxation time can be defined for each mode, then an overall relaxation

time can be written as

Cint/_ m E (C_int/T k) • (7)
k

With the aid of the foregoing definitions, all the complicated

integrals appearing in the Wang Chang-Uhlenbeck formulas for the heat
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conductivity can be expressed in terms of internal diffusion coef-

ficients, relaxation times, and various experimental quantities. The

general expressions for the translational and internal contributions
1-3

to the heat conductivity are

y2 75 k2T X_ I + (8)
_tr i -_ = 8 m 4 m '

kint 1 - =

c2 T 15 kT Cint iy__.1
3 int Z-I + _XZl , (9)2 m 4 m

where X, Y, and Z are complicated integrals which can be written in

terms of defined quantities as follows:

25 Cint
x ._5 k-!+

2 I] 12 nkT

c
5 int

Y = _ nk---_ '

Z - 3 T Cin t 3 Cint

2 _ + 4 nkT '

(lOs)

(10b)

(10c)

where _ is the viscosity. It should be emphasized that in writing

these expressions no approximations have been made other than those

inherent in the Wang Chang-Uhlenbeck formulation. Substitution of

(lOa)-(10c) will now yield expressions for kin t and ktr and for the

total conductivity k = ktr + _int" Since the correction terms for

inelastic collisions always occur in the combination T/G, it is

convenient to define a collision number _ as

(ll)

where p -- nkT is the pressure. _ may be thought of as the number of

collisions required for the equilibration of molecular internal and

translational energy, or more crudely, as the number of collisions
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required to i_terchange a quantumof internal with translational energy.

The expressions for the heat conductivity can then be written as

( ( °4)]_<r S S 2°i°<5 nt ,_) S°in<n<
I] --_ Cvtr - _ _-_--I 2 3 k + '

(12)

-- Cin t + --¢_/ _-

(13)

3
where Cvt r =_ k is the constant-volume translational heat capacity per

molecule, and p = nm is the gas density. These two terms can be combined

to give the total conductivity,

+(@) (  r)1--_ Cvtr Cint - L__-_--/ _ x

(14)

The first two terms of Eq. (14) together are just the old modified

Eucken expression, and the last term involving the two square brackets

is a correction term that vanishes in the absence of inelastic col-

lisions. It should be remembered, however, that inelastic effects also

enter into the estimation of _in t. If there are many internal modes

that are uncoupled, _int and _ may be replaced by Eq's (4b) and (7).

We emphasize again that no approximations have been made.

Furthermore, since everything on the right hand sides of Eqs. (12)-(14)

can be determined experimentally except for _int, the only way in which

approximations mus_____tenter is through the determination of_in t. There

does not seem to be any independent experimental method known for deter-

mining _in t directly. If the internal energy is attached rather tightly



- 9 -

to the molecules, so that a close collision is required to make it shift

into translational energy or from one molecule to another, it is probably

reasonable to approximate _int by the self-diffusion coefficient, _iI'
which is independently measurable by tracer techniques. Empirically,

3
this seemsto work fairly well in a large numberof cases. However, if

there is somespecial mechanismwhereby internal energy can easily trans-

fer from one molecule to another, A11 is a poor approximation to _int'
and somesort of correction is needed. An example is the exchange of

rotational energy in_]ucedby the dipole field of two polar molecules.

This may occur even at large impact parameters. Whenexchange is

energetically resonant, the effect may be calculated fairly easily and
leads to a large correction of the form

_int :_Ii/(I + 811) , (15)

formulas for estimating 611 being given in reference 3. Another example

is the surfaces of rough spheres causing large energy exchanges when two

molecules come in contact. Rough spheres are discussed further in the

next section. These corrections for _int are very hard to calculate

except in special cases such as the two just mentioned, and no other way

determining _int is known at present, except to back-calculate it fromof

measurements of _. Indeed, with the present point of view, a measurement

is tantamount to a determination of ___nt"of

Equations (12) and (13) show directly that the effect of

inelastic collisions is to decrease the flow of translational energy and

to increase the flow of internal energy. This phenomenon is corroborated

by other available experiments that yield an independent measure of the
6-8

translational heat conductivity alone.
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B, Rough Spheres

It is of interest to see whether the foregoing point of view

is consistent with the known results for a gas of rough spheres. Since

%tr and %int are known separately for this model, two sources exist for

the determination orient__ and these should check. The deviations of

the rough sphere results from the smooth sphere results are given in

terms of the dimensionless parameter K = 41/m_ 2, where I is the moment

of inertia of a sphere of mass m and diameter _. The value of K ranges

from 0 to 2/3. The expressions for %tr' kint' and l] are given by
9

Chapman and Cowling, from which we obtain the expressions

%tr m = 15k (6 + 13K) (i + 2K) (I + K)
2 (12 + 75K + 101K _ + 102K 3) '

(16)

%int m 6k (6 + 13K) (3 + 19K)

= T (12 + 75K + 101K 2 + 102K 3) ' (17)

I] :_4.4 : 10K (18)
pT _ 6 + 13K "

Comparing Eqs. (16) and (17) with the general expTessions for %tr and

kin t given by Eqs. (12) and (13), we can solve for Pqnt/1] on substituting

for _ and for Cin t = 3k/2, to obtain (from bot____hhsets of equations)

P nt
6 + 13K (19)

-- 5(1 + K + 2K_) '

from which we find

3 /mk_.__Tl½ (I + K) 2qnt = 8--_ _I_ (i + K + 2K_) "

It is interesting to compare_in t with the known 9 result for_z:

(20)
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_nt (I + 2K) (i + K)

_'-_ = i+ K+2K 2 •
(2l)

This ratio is unity for K = 0 and rises monotonically to a value of

35/23 - 1.52 for the maximum value of K = 2/3. That is, for rough spheres

we have the apparently peculiar phenomenon of the internal energy dif-

fusing faster than the molecules themselves. An explanation of this
4

phenomenon has been given in terms of energy exchange on collision and

the enhanced backward scattering for rough spheres as compared to smooth

spheres. That is, a substantial fraction of collisions occurring with a

large transfer of linear momentum also involve a large transfer of

internal energy.

Another interesting property of rough spheres follows from

Eq. (18): the smallest value of _ possible is only 44/5_ = 2.80

collisions. Although one usually thinks of rough spheres readily

exchanging internal energy, this value of _ is actually larger than that

for many real molecules having long-range force fields.

Since %tr and fin t yield the same value of _int' we see that

the general results of the preceding section are consistent with the

known special results for rough spheres.
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III, MIXTURES

In this section we carry over to mixtures the point of view

given for pure gases given in the previous section, as far as this is

possible. Additional assumptions are necessary for mixtures in order

to obtain a theory fully in terms of relaxation times and diffusion

coefficients of various sorts. We begin with a digression on sound

absorption in gas mixtures in order to identify the cross-relaxation

times and to get some idea of what sorts of assumptions might be

physically reasonable. In the process, we shall rederive the usual

phenomenological expression I0 for the relaxation time of one component

of a mixture.

A, Relaxation in Polyatomic Gas Mixtures

This treatment is a straightforward extension of the method

used by Monchick II in a recent discussion of the case of a pure gas with

many internal degrees of freedom, and we therefore limit ourselves to a
ii

brief outline of the method. We again assume that the internal energy

of the q-th molecular species can be written as the sum of the energies

of the various internal modes,

Eq I = Eql I + Eql 2 + . • • (22)

The singlet distribution function f is expanded about the local
q(0)

equilibrium distribution function f
q

(o) (i + _q + • .)fq V_, Eq) = fq

f (0) _ (nq/Qq) [mq/(2_kT)]3/2 exp [-(Wq 2 + E )3q q '

(23)

(24)
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where nq, mqand Qq are the number density, the molecular mass and the

internal partition function of the q-th species, 2_q is the velocity, and

_q ['mq/(2kT) ]% -= (_Vq Z0 ) ,
(25)

in which _0 is the local mass average velocity. The temperature T

which appears in Eqs. (23)-(25) is really a local temperature T_),

chosen so that the local energy density at point _ is equal to the

total energy density of an equilibrium gas having the same temperature

T. After linearization, the Wang Chang-Uhlenbeck extension of the

Boltzmann equation takes the following form:

_f (o) 8f (o) (
+ • q + fq(O) _fl + _q._rJ = - q q' nq, lqq_t _q _ _t n _. , (_q + _q,),

where the linear operator lqq,

defined as

(26)

operating on an arbitrary function F is

nq nq, lqq, (Fqq,) = _ _ d_q, .r d_ _ sin x dx
JKL

X IIjKL f (0) f (0) (Fqq, - F' ,) (27)gqq, q q ' qq '

where

Fqq,-= F _, Eql _, _,, Eq,j),

Fqq,' = F _, EqK, _,, Eq, L),

the primes in F and Wv,oreferring to values after collision.

J,t K L to refer to sets ofWe are now using the indices I, _ _

quantum numbers. We understand I to mean set_(ll, 12, ...) where Ik

may be a single quantum number or a set of quantum numbers specifying
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the state of an independent or rather semi-independent subset of degrees

of freedom. Thus I and J refer to a set of quantum numbers describing

the internal state before collision, and K and L refer to the internal

state after collision. From here on, however, we will limit ourselves

to no more than two internal modes, i.e., independent sets of degrees of
ii

freedom, just as in the previous study on pure polyatomlc gases. This

is reasonable because in most acoustic studies only two internal modes

can be distinguished - rotation and vibration. In any event, the

extension to more internal modes will be obvious.

The perturbation function _q is now expanded in a set of

or thogona I functions,

_q s_0 q's' (_)s q,s '(_)s
(28)

This rather complicated notation has been explained previously in con-

nection with the results for pure gases. It is sufficient for the present

purposes just to identify the following coefficients:

100 T)/T, (29a)
aq0 = . (3/2) ½ (Tq,tr

aq0010 = - (Cq,i/k) ½ (Tq,l - T)/T, (29b)

001 (Cq, 2/k) ½ (Tq, 2aqo = .
- T)/T, (29c)

where Tq,tr is the translational temperature of the q-th species, Tq, i

is the temperature of the i-th internal mode of the q-th species defined

by

f (o)

i _. f Eq,j i ._.q._.___q dVq,Tq, i - T = Cq, i J nq

and 3k/2 and c are the corresponding constant-volume translational
q,i

and internal heat capacities per molecule, c is evaluated at T
q,i
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Wenowuse the above expansion in conjunction with the

linearized Boltzmann equation to obtain a transport equation for the

of the i-th mode of the q-th species, Eq,i_ defined asaverage energy

Eq,i = n -I _. ; Eq,j i f (0) (I + _q) d_, (30)
q j q

where the summation extends over all the quantum numbers J1, J2, etc.

The corresponding quantity evaluated with an equilibrium distribution

function for an arbitrary temperature T is
a

E (0) (Ta) = n -_ T ; E f (0) dv . (31)
q, i q J q'Ji q _q

When the transport equation for Eq, i is evaluated, it is found that

terms from Eq. (28) with s = 0 are the only ones contributing. The

simplest approximation describing the distribution of energy in the

various modes is obtained by neglecting the heat flux and all terms

except those with _Sy = I00, 010, and 001. The resulting transport

equation for the first internal mode of species q is

½ mq aq, 0( + _D" _r)Eq,l _ " 4nkT
q' Xq, mq

I°°I+ mq, aqo

+ m , <A¢lq ACqq,>qq,
q

010 010 A 2
+ (k/Cq, i)½ aq, 0 (A¢lq A¢lq'>qq' + (k/Cq,l)½ aq0 < ¢lq>qq,

7

001

<_¢lq A¢2q_ + (k/c 001 <A¢I q+ (k/Cq,,2)½ aq, 0 qq' q,2 )½ aq0 Ae2q>qq ,

(32)

with a similar equation for the second internal mode. The pointed

bracket notation has already been defined in Section IIA and the other

terms are

AClq ¢lq ¢lq '
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|-- |j
&¢qq, _ (¢q Cq) + (¢_, - eq ) (33)

the primes on the ¢ referring to values after collision. The factor

I00 I00

mq aq, 0 + mq, aq0

Im + m
q q

can be readily interpreted as the deviation of the translation tem-

perature of the average relative motion of species q and q' from T,

according to Eq. (29a). It will be assumed to be negligibly different

from the translational energy of the whole mixture. Further simpli-

fication of Eq. (32) requires additional assumptions.

An attractive approximation is to assume that all complex

collisions are very rare. Complex collisions are those involving more
12

than a single quantum jump. This is the usual approximation made in
12

the phenomenological theories of relaxation in gases. Thus we neglect

collisions in which the internal states of both colliding molecules

change, or in which both internal modes of one of the molecules change

in one collision. This assumption will later prevent some of our

mixture formulas from passing smoothly over into those for single gases
a

in the limit of a mixture of/gas with itself, since complex collisions

in a given mode must be retained if allowance is to be made for resonant

exchange collisions. At any rate, if we make this assumption, then

Eq. (32) can be reduced to the form of the usual phenomenological

equations,

- -+ Eq, _ - [Eq, Eq, i (Ttr) ]' (34)
q,i

where the relaxation time T for the relaxation of the i-th internal
q,i

mode of the q'th chemical species is given by
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= E . (35)
"rq,i q' 'rqq',i

Equations (34) and (35) are the same as the phenomenological equations,

but we are now able to identify the cross-relaxation times Tqq, i in

terms of inelastic collision integrals, as follows:

i 4nk <A¢_q>qq, . (36)
Tqq',i Cq,i

Notice that this expression is not invariant under an interchange of

subscripts: Tqq',i means the relaxation time for the i-th mode of the

q-th species on colliding with species q', but Tq'q,i means the relaxa-

tion time for the i-th mode of species q' on colliding with species q.

These two times can be widely different - for instance, in the case

where q is a complicated polyatomic molecule and q' is a noble gas atom.

For q = q', it is seen that Eq. (36) agrees with Eq. (5) only if complex

collisions are neglected, in which case <A¢%qq>qq q>qq.

It will prove convenient in the following to include the

possibility of resonant collisions in a single mode between molecules of

the same species. Since these are complex collisions in which

A¢. = 0, it is seen that these processes contribute nothing to Eq. (32)
1,qq

and so may be safely included in the theory without changing the form of

Eqs. (34)-(36). It must be remembered, however, that in the pointed

brackets in Eq. (36) all resonant exchange processes must be excluded.

As in the case of a pure gas, it is convenient to define

collision numbers Cqq',i as follows:

Cqq,,i = (41n) (p Tq_,,i/_qq,),
(37)

where ]]qq, is a fictitious viscosity (unless q = q', when it is the true

viscosity of species q). It is defined formally in terms of a collision

integral,
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where

5 kT
_qq, =

8 f_2q;2) '
(38)

1

y,2 cosex) . _ ACqq,>qq, (39)

In practice _qq, would be determined from an experimental binary diffusion

coefficient,_qq,, and a dimensionless ratio of collision integrals, A_q,,

which is not too sensitive to the law of intermolecular force or inelastic

collisions 4 [see Eq. (47)]:

3

n_qq, _qq, --_ A_q, _qq,
(40)

For rotational energy transfer in simple molecules, _qq',i is usually

less than I0 collisions and increases slowly with increasing temperature;

for vibrational energy transfer _qq',i is usually of the order of 108

collisions or more, and decreases rapidly with increasing temperature.

Exceptions are rotational transfer in hydrogen, which is difficult, and

vibrational transfer in some complicated flexible molecules, which may

be easy.

A few words of explanation are in order as to why relaxation

in mixtures has been discussed again here, when it had been discussed
4

previously. It turns out that the method used previously is strictly

valid only at zero frequency, and so cannot describe sound propagation

properly, although it is still satisfactory for the description of the

effects of inelastic collisions on transport coefficients. The mathe-
ii

matical details have been given elsewhere.

B, Reduction of the Formally Exact Theory

In reference 4 it was shown that the steady-state thermal

conductivity of a multicomponent mixture is given by

k= = k=t r + lmint , (41)
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ootr
ffi4

I

LI0, I0 LI0_ 01
qq, qq I Xq

4 .4_

L01, I0 I L01_ I0 I x

qq' I qq I q

I' T -- m

Xq I
0 I 0

I

LI0,10

qq'

01,i0

Lqq,

LI0,01

qq'

L01101
qq

-I

(42)

k=int = 4

i0,i0

Lqq,

01,I0

Lqq,

I

LI0,01, I
qq

x

q

L01,01 I x
qq' q

I

I
0 x , 0

I q I

LI0,10

qq'

L01_I0

qq'

LI0_ 01
qq

L01,01
qq'

-i

(43)

The formal expressions for the elements Lrs_ r's' have been given
qq

previously in terms of collision integrals. We now wish to express

them in terms of various relaxation times and internal diffusion

coefficients, as well as in terms of various properties of the pure

components and other experimental quantities. We have shown in the

preceding section how some of the inelastic collision integrals can be

eliminated in terms of relaxation times. The following four types of

collision integrals can be reduced in analogy with the elastic collision

case:

_(l:l) _ <_ _,
qq - cos X>qq,

(2,2) ?,2 i
qq' = <y2 (_ _ cos_x) - _ ACqq,>qq, ,

3) V,3 , •_ = <y3 (ya - cos X>qq (44d)

(44a)

(44b)
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The first of these can be eliminated in favor of the experimental binary

diffusion coefficient _,
qq

_q = 3kT
ql •16n n(l, i) . (45)

_qq, qq,

The second integral can be eliminated for the case q

the experimental viscosity _q of the pure gas q,

5 kT

q]q = 8 (2,2) "

f?qq

i q in favor of

(46)

To eliminate the other integrals in Eq. (44) we define the dimensionless

ratios,

1 [_(2_2) /r%(1 l)A* ,
=- /_qqqq 2 qq

B* 1 [5a(1:2) (1,31]/(i I)

qq' =5 L qq - Qqq, ]/f_qql

(47)

(48)

The value of A* can be approximated by its value for
qq'

elastic collisions, since it has been shown that the first-order

correction to A* , for inelastic collisions is probably quite small.3'5
qq

This approximation is substantiated by the success in calculating binary

diffusion coefficients from measurements of the viscosities of binary
13

mixtures.

The value of B* is a little harder to determine than that of
qq'

A* even for elastic collisions, since it is more sensitive to the
qq''

force law model than is A* As a first approximation the elastic
qq, •

collision value of B* will be used and is unlikely to be in error by
qq '

as much as I07_, but it is possible to have a better approximation than

this. The value of B* can he related to the temperature derivative of
qq'
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_.__I)¢I and hence to the temperature dependence ofd_,_x which is an
qq _q q '

experimentally accessible quantity. The relation is obtained by suc-

cessive differentiations of Eq. (44a), and is

d_(l, I) d2_(l, I)

B* , = 5. 2 T qq' I Te _qq'

qq 4 3 _(I_i) dT 3 _(I_ i) dT2qq qq

+ _ L qq ((¢qi -¢q + Cq'j (y2 . yy, cos ×)>qq,

I

" _ (Cqint + Cq,int)/k

I [_(i_I)]-i [" _ u qq 5((¢qi - Cq + ¢q'j " "Cq') (Y_ yy' cos X)>qq,

" <(¢qi " eq + ¢q'j " _q') (y4 . yay, cos ×))qq,

" <(¢qi - _q + ¢q'j - "iq,) (y4 _ yy ,3 cos ×)>qq, ].
(49)

Approximation is necessary to evaluate all but the first few terms of

this expression, as will be discussed in more detail shortly.

Another group of inelastic collision integrals can be eliminated

formally in terms of diffusion coefficients for internal energy, just as

in the case of pure gases. We define collision integrals for internal

energy diffusion as

_(l,1) _ <(¢qi(Cq_nt/k) Hqint,q

(Cq_nt/k) "'qint,q'_(l'l)m <(¢qi

eq) [(¢qi - Cqj) ya _ (¢qk - Cql) Y?' cos X]>qq

(50a)

" Cq) [(¢qi - Cq) Y_ " (¢qk - tq) VV' cos X]>qq, ,

(50b)
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and binary diffusion coefficients for internal energy as

3kT

qin%q ' -= 16n _(I,i)
_qq' &_qint, q'

(51)

Note that these expressions are not synlnetric with respect to interchange

'_qint,q' _q Physically this means thatof q and q'; that is # 'int,q"

internal energy of q molecules does not necessarily diffuse through q'

molecules at the same rate as internal energy of q' molecules diffuses

through q molecules. That this is reasonable is seen by considering the

limiting case where q is monatomic and has no internal energy and q' is

polyatomic and has a large amount of internal energy. However, if we

approximate the internal diffusion cc_efficients by their elastic collision

values, then they are symmetric in the indices q and q', since --_q' = --_o'q"

The definitions (50)-(51) have been chosen so that in the limit of elastic

collisions _,int,q becomes equal to the experimental binary diffusion

coefficient _qq,. Also note that _qint,q is __n°t the limit of_qint,q, as

q' -_ q. In most of what follows, this has no important consequences,

except when we wish to make an allowance for resonant exchange between

molecules of different species.

So far we have made no approximations, only definitions of new

quantities. At this point in the discussion of a pure gas, no inelastic

terms remained except the relaxation time, which in principle was

measurable. In the mixture case, a number of extra terms still remain

which can be removed only by further approximations. One such approxi-

mation has already been made in obtaining expressions for the cross-

relaxation times, and can be made again. With the neglect of complex

collisions, the following additional relations hold:

c

2 A 2 2_T__T _ _ (52)

<A,qq>qq = _'z < ¢iqq>qq = nl]q i _qq,i '
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c
, A2 = T cl.i

(ACq ACqq,>qq = (AeS_>qq, = E ( ¢iq>qq E
q i ' _qq' i _qq',i

(53)

Resonant collisions may be safely ignored in Eqs. (52) and (53) since

they do not contribute anyway. The quantity _qq, in Eq. (53) is

obtained from experimental binary diffusion coefficients according to

Eq. (40). The sums in Eqs. (52) and (53) can be reduced by noting that

(I) the vibrational collision numbers are usually much greater than the

rotational ones; (2) at ordinary temperatures Cro t >> Cvib; and (3) the

rotational relaxation of most molecules can be described within experi-

mental error by a single collision number. Thus we obtain

2T c

s q,rot (54)

<Aeqq>qq _ TTI]q _qq '

T c
q,rot

<ACq ACqq,>qq, _ _1]qq, _qq, '

(55)

where the _qq, are understood to be rotational collision numbers, without

further identifying subscripts.

The preceding definitions and the neglect of all complex

collisions except exact resonant collisions permit us to express the

determinant elements I0,i0 in terms of experimental or calculable
Lqq,

quantities:

LIO,IO =__I0,i0 _I0,i0
qq, _qq, + AJ.qq, ,

(56)

,i0,I0 16 x 2 m _ x x ,, T '

_ = - -- q q 16 _q q(mqq q")q 15 _q k - i-_ _ p 2 X
q"#q q,, + m

X [_ m s + (_- 3B_q,,)mq,, s + 4mqmq,, A_q,,]q
(57a)
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2
_ol0,10 32 x m c

= _ D q q q,rot 64

AC_qq 9_ k2 _q _qq - 15--_
q"#q

× q.rot+c Cq,,trot

k _qq,, k _q,,q

Xq Xq,, T A_q,, mq m,,

p_qq,, (mq + mq,,) _

(57b)

o_lO:lO (q,#q) 16 x T m m , { )
=-- q Xq, q q 55

qq 25 p_Fqq, (mq + mq,)2 -_-- 3B*qq, - 4A*qq, ,
(58a)

64 x x, T A*, m (c Ca, rot)A_I0,10 (q,#q) = _ _ q q, qq q )q' q.rot + . .
qq' 15_ p_qq, (mq + mq, k _qq, k _q,q

(58b)

i0_i0 contain no explicit inelastic terms, and have the
The e lementS_qq

same formal appearance as the corresponding elastic formula. Inelastic

terms are contained implicitly, however, in _ , __ , B*
qq'• ._lOqlO qq , A_q, and .

All the explicit inelastic terms are in A_qq,.

The diagonal elements LOl'O1 can also be expressed in terms of
qq

defined quantities:

+ (.}qq qq '

x n°1 oqq = - P_int,q Cq,int q Xq _qint,q" '
q"#q

(x_m c 6 _ m TA*,,c )= _ __q___ q,rot .A_OI,OI 8k )2 q q q,rot + _ XqXq,, mq,, _qq,,
qq _(Cq, int k]]q _qq q"#q

(60b)
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The reduction so far still leaves the off-diagonal L01_01
qq

and all the elements L01_I0 and I0,01 To reduce these we must
qq Lqq, .

introduce further approximations, whoseultimate justifications must
come from experiment Wenotice that L01_01 has a term of the form

• qq

<(¢qi - -Gq) [(¢q'j - -eq') _ - (¢q'l " -eq') YY' cos X])qq, , (61)

and that the other elements all have terms of the form

((¢qi - Cq) yr (ys _ y,s cos X))qq,
, (62)

where r and s are integers. If these terms are all set equal to zero,

the desired reduction will be complete. This approximation can be made

to seem plausible on physical grounds. If there is no correlation

between initial internal energy states and either the initial or final

relative velocities, then such terms go to zero because of the (¢qi - Gq)

factors when the summation over internal states is carried out. In

somewhat different language, such terms will vanish if the angular

scattering distribution is the same for all scattering channels. Such

an assumption cannot of course be strictly correct, but should be a good

first approximation. We note that for pure gases a similar assumption

_q -4 _o and was fairly successful in the description ofleads to int,q _. 3
pure gas thermal conductivities. Furthermore, we will see in the next

section that these terms contribute to the final answer only to the

extent of second-order corrections. The neglect of terms of (61) and

(62), therefore, should not introduce much error.

The neglect, then, of complex collisions and of (61) and (62)

enables us to reduce the remaining determinant elements:

LOI: 01 (q'#q) : 0
qq

(63)
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LI0, 01 = L01, I0 = A_I0, 01 =
qq qq qq

r

16 /5x 2 m cq q q,rot

15n c L k _q _qqq,int

+

+ 2 _ Xq Xq" T A;q" mq Cq'r°t 1

__ p_qq,, (mq + _qq,, J (64)q"#q mq,,) "

LI0,01 _01,i0 ^_910,01 32
qq, (q'#q) ....Lq,q _qq, 15_ c ,

q int

x x , T , Cqq q A_q mq, ',rot .

× p_qq, (mq + mq,) _q,q (65)

A reduction of B* as given by Eq (49) also results, and B* can now
qq, • qq,

be written entirely in terms of experimentally accessible binary

diffusion coefficients:

1 in/9 In 1
B* , _ 2 qq - 9- 2 qq +-
qq _ in T p _ in T p 3 _(In T

(66)

Although this has the same appearance as the corresponding expression

for elastic collisions, 14 inelastic collisions are concealed in the_q,.--

There is one difference in the effect of the neglect of (62) on B* ,, and
qq

LI0101, however: errors introduced by such neglect propagate into the
on qq

final answer to first order through B* but only to second order
qq''

through L I0'01
qq' •

It is now possible to collapse the expressions for k_ given in

Eqs. (42)-(43) into more compact expressions containing essentially only

measurable quantities or defined diffusion coefficients for internal

energy Mainly because of the diagonalization of L01'01. , stated in Eq. (63),
qq

we can define the following quantities:
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_I0,i0 " TLqq, m Lqq,
q"

LI0,01 _01,I0
qq,, Lq,,q,

01,01

Lq,,q.

(67a)

1 ._I0,01_ I _01,I0_

IAogqq,, ) _Aa_q,,q, ]IV
I

+ A q,,q,, ]

(67b)

ql!

01,I0,o,,,o F i l
Xq. Oi,OI = - |_90I,IO .001,01! '

Lq,,q,, , L&q,,q,, + AO_q,,q,, J

(68)

and write the thermal conductivities in the form

%ootr : 4

I

Lqq, I Xq + yq
I

I

Xq, I 0
I

x [Lqq,l-x , (69)

%mint : 4

I
Lqq, I Yq

Xq, + yq, I 0
I

x

× I'.,_q,I-_ 47,_oI,o_ <_o)
q qq

These formulas are of course approximations in that certain definitions

of relaxation times and diffusion coefficients have been used, and

certain other kinds of terms have been set equal to zero; the degree of

approximation depends on how closely real physical systems are mimicked

by such mathematical decrees. It is well to list the fundamental

approximations made so far, some only implicitly. They are: (i) use

of the Wang Chang-Uhlenbeck formulation of kinetic theory; (2) only

first approximations are used for _, _, and_oq,;__ (3)Cha pman-Enskog

neglect of all complex collisions except resonant collisions between

like molecules; (4) assumption of uncorrelated internal and translational
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motions. In addition, formal definitions have been madefor the cross-

relaxation collision numbers, the diffusion coefficients for internal

energy, and the dimensionless ratios A'q,_ and B'q,._
Weshould note that the neglect of complex collisions and of

the correlation of internal and translational motions deprives us to

some extent of the check obtained by passing to the limit of a mixture

of a gas with itself. This limit does not agree with the known result

for the thermal conductivity of a single gas unless complex collisions

are also neglected in the single gas. But this means neglect of

3
resonant (or nearly resonant) exchange collisions. The reason exchange

collisions are partly lost in the limit of a mixture of a gas with

itself is the neglect of the terms (61) in L01_ 01 (q'#q). Although the
qq

formulas are wrong in this limit, they are probably satisfactory in most

cases since the exchange collisions for like molecules are still pro-

perly included in
q int,q"

Besides the fundamental approximations, there are additional

approximations which sometimes must be made in order to carry out a

numerical calculation. Some of these are caused simply by a scarcity

of relevant experimental data. The additional approximations may be:

(I) approximation of internal energy diffusion coefficients_ , and
q, int,q

_q by the ordinary diffusion coefficient _ ; (2) approximation of'int,q qq'

A_q,_by a calculated elastic collision value; (3) estimation of _qq, and

_q,q from values of _qq and _q,q,, (4) approximation of B*qq, by a

calculated elastic collision value if insufficient diffusion data exist

for use of Eq. (66).

C, First-Order Theory

In view of the fact that additional approximations almost

always must be made before numerical results can be calculated, the

formally exact theory will really be correct only to first-order

correction terms, and there is little point in carrying higher-order

correction terms in the formulas. In other words, in practice it is
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justifiable to use formulas which have been linearized with respect to
_-x. Such a schemeworked well for single gases,3 and therefore seems

worth trying for mixtures. When Eqs. (69) and (70) are linearized, the

resulting formulas turn out to be rather complicated because the cor-

rection terms are, so to speak, strung out on a line:

t_ )!_,_ Z (xv4_°')'_,00,
q ot 8 y

(71)

X_int _-4_q (Xq<_ '01) [Xq

where

, x,)+I tA qff =

ix<0,0,)(_z0,0,)]qq qq '

I

TqO,lO Iq' i 6q_

i 0
68q'

I

(72)

Using the expressions fOr_qq_ r's' A_rs_ r's'and given previously, we
qq

see that we have written the thermal conductivities as functions of the

experimental viscosities, heat capacities, ordinary and internal energy

diffusion coefficients, and relaxation times.

The linearized equations are still not in the best form for

comparison with experiment, however. It is the usual practice in such

comparisons to force the experimental curves through the experimental

end points, which Eqs. (71)-(73) will not do unless exactly the right

values are used for c _" and _qq. We therefore take the limitsq, int' int,q

x -_ 1 in Eqs. (71)-(73) to identify the terms that make up the heat
q

conductivities of the pure components. When these terms are regrouped,
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Eqs. (71) and (72) can be written as

A = AHE + _A (74)

where %HE is the Hirschfelder-Eucken result,

q L. I _ q' _ q X q _qint,q'J

%(mon) = 4

I

O, I0 Iq, x* q

!

* Ix 0
q I

(75)

14 lO,lOl- X I qq' ' (76)

15

kq(mOn) =-_ k (_q/mq) ,
(77)

where Xq is the first-order approximation for the heat conductivity of

pure component q and Ak is the correction term. The connection AX

vanishes as x - i whatever may be the assigned values of the inelastic
q

collision numbers, and is given by the following rather long formula:

a,



- 31-

where

rs'rlst llm _rs,r's'
_qq - . (79)

x -i qq
q

We now take the step of replacing kq in Eq. (75) by the experimental

thermal conductivity of pure component q. The final result is thus

equivalent to the Hirschfelder-Eucken formula for mixtures plus a

correction term. These are the working equations to be used for

comparisons with experiment.
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IV, COMPARISON WITH EXPERIMENT

A, Data Needed

Quite a few experimental quantities are required to calculate

the thermal conductivity of even a binary mixture. In this subsection

we will enumerate what they are and the various choices of evaluating

them that are open to us at the present time. Eight properties of pure

components are needed: %1, %2, _, _, _lint,l, _2int,2 , (Cl,int/_ll),

and (c2,int/_22), of which the first six are needed even for the

Hirschfelder-Eucken approximation. However, it is common practice to

approximate the internal diffusion coefficients by self-diffusion coef-

ficients, and often to calculate these from the viscosities by the

relation

q 5 n mq

(80)

using a theoretical value for A* . If resonant exchange collisions
qq

are believed to be important, a correction may be applied according to

Zq. (15).

Seven mixture properties are required. Three are needed for

the Hirschfelder-Eucken approximation: A_2 , B_2 , and _12' the last

being necessary to calculate %(mon). A_2 is usually calculated

theoretically for some central-field intermolecular force model; the

value of B_2 is often obtained the same way, although it would probably

be better to determine it from the temperature dependence of _12

according to Eq. (66) if good diffusion data are at hand. The value of

2 is best obtained experimentally. A number of apparent anomalies in

mixture thermal conductlvities are probably due to the use of inaccurate
16

values of _12 that were obtained from semi-empirical combination rules.

The values of_lint,2 and_2int,l are also needed for the Hirschfelder-

Eucken approximation_ but are usually both approximated bY_12. This is

similar to the procedure adopted for _lint,l and _int,2 except that in
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this case it is not clear as to how to apply a correction for exchange

collisions. The only inelastic mixture quantities needed are thus _12

and _21"

The only new data not needed for the Hirschfelder-Eucken

approximation are the four relaxation times. The four internal diffusion

coefficients were really needed previously, as shown implicitly in

Hirschfelder's derivation, but the present treatment emphasize6 that these

can be markedly different from the corresponding ordinary diffusion coef-

ficients if exchange collisions are probable. With the exception of this

last very special type of inelastic effect or of very special models, the

effect of inelastic collisions on the internal diffusion coefficients is

unknown. This question will be taken up again in the last section. In

principle, numerical values of the four relaxation times can be obtained

from sound absorption measurements in mixtures, as outlined in Sec. IliA;

in practice such information is seldom available. Values of _iI and _22

are often known from experiment, and in the absence of that may always be

estimated from measurements of %1 and %2" Data on _12 and _21' however,

are almost completely lacking. For some time to come we will be forced to

make educated guesses on their values, based on the values of _ii and _22"

B, Specific Systems

To test the theoretical formulas, a number of systems were

selected that represent different general types and for which a reason-

able amount of experimental data is available. We consider a mixture of

a monatomic plus a nonpolar diatomic gas (He-O_), mixtures of two non-

polar polyatomic gases (N2-COz and N_-H_), mixtures of a nonpolar and a

polar gas (Oz-HzO, N2-NHs, and Hz-NH_), a ternary mixture (N2-H_-NH3),

and mixtures of isotopic polar gases (H_O-D20 and HCI-DCI).

The data used are summarized in Tables I and II, together with

their sources. Direct experimental data were used as far as possible.

Internal diffusion coefficients have had to be approximated by ordinary

coefficients of mutual and self-diffusion, and some of the latter had to
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be calculated from viscosities according to Eq. (80). An exchange

correction to the internal diffusion coefficient has been made for the

most part only for the case of exact resonance in polar gases, as in

Eq° (15). The exception is an ad hoc assumption applied to the H20-D_O

interaction. The values of A_2 and B_2 have been calculated from the

(12-6) or the (12-6-3) potential functions; this may produce errors of

several percent in these quantities, and the final result often does not

seem to be very sensitive to these inaccuracies. However, there seem to

be special cases in which it is necessary to use the correct B_2.

Potential parameters for the pure components are those listed by Mason

17
and Monchick. The mutual interaction parameters were obtained from

17
these by a simple combining rule. Where good diffusion data were

available, empirical values of B_2 were evaluated according to Eq. (66).

These are listed in Table II along with the theoretical values. In most

cases, thermal conductivites were calculated from the empirical B_2.

These will be discussed below, but are not shown in those graphical or

tabular correlations where they did not differ very much from the more

naive calculation. The inelastic collision numbers are the most uncertain

pieces of data; in many cases the numbers used are only educated guesses.

In most cases, we have set _12 equal to _Ii"

Calculations were carried out both for the present linearized

formula, Eqs. (74)-(79), and for the Hirschfelder-Eucken formula where

all _ -_ _. For some systems we have tried the effect of varying the _'s

and_'s a bit, but without any attempt to produce a "best fit." With

some of the polar gases we have tried the effects of resonant collisions

and inelastic collisions independently of each other. The details for

the individual systems are discussed below. It will be noted that con-

sistent values of _ii for a given gas were not used for different

calculations. It was not found necessary to do this because the shapes

of the curves were not too sensitive to the values of _.
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i, He-O2

In this particular system of a rare gas and a polyatomic gas,

we are fortunate in that all the relaxation times have been measured in

18
the temperature range of interest. This is the only system for which

this is true. All the other quantities, with the exception of the self-

diffusion coefficient of He, have also been measured. Since He is a

monatomic gas whose internal degrees of freedom can be ignored, a value

of___11 calculated from the viscosity and a (12-6) value of A_I should

be fairly accurate. From Fig. I it is seen that both the Hirschfelder-

Eucken and the inelastic formula agree with the experimental data to

within 2%. The thermal conductivity was also calculated with the

empirical value of B_2 but differed at most by 1% from the curve calcu-

lated with a (12-6) value of B_2. Some additional numerical experi-

mentation showed that the inelastic formula was very insensitive to the

particular values of the relaxation numbers. This seemed to be a common

feature of all nonpolar gas mixtures.

2, N_-CO_ and N_-H_

In both of these systems the calculations carried out withthe

theoretical value of B_2 only are shown since the theoretical value

differed only slightly from the empirical. At the two lowest tempera-

tures the N2-CO_ data seem to be fitted equally well, within experimental

uncertainty (_ 2%), by the Hirschfelder-Eucken or the various inelastic

curves. Numerical experimentation, shown in more detail in Fig. 2,

demonstrated that this system was more sensitive to the _'s than the

He-O_ system, but that the total variation was less than the experimental

error. The deviation at 1000°K is probably due to experimental error.
19

Recent measurements of the self-diffusion coefficients of C02 indicate

of __I than would be estimated from the viscosityrather larger valuea

data. At 1000°K the data of Ember, Ferron and Woh119 indicate a value

of _ii = 1.246, whereas the viscosity indicates All = 0.962. However,

the values of A_I required if these data are valid seem much too high.
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A calculation was made with _i increased by _ 3%,
but the curves were

lowered only by 0.7%. It was also ascertained that the N_-CO2 curves

were very insensitive to B_2.

Much less numerical experimentation was carried out on the

N2-H2 system, as shown in Fig. 3. The calculations were carried out

only for the (12-6) value of B_2. Gray and Wright 20 indicate that a

value of B_2 = 1.17 would move the Hirschfelder-Eucken curves up to fit

the data better, but the experimental diffusion data seem to indicate a

value of 1.078, which would make the fit even worse.

3, Polar-Nonpolar Gas Mixtures: Ns-NHa, H=-NH_. O2-H_O

In Figs. 4 and 5 are plotted the thermal conductivities of

21
N2-NH s and H_-NH a mixtures. As is seen from Table II the empirical

values of B_2 differ widely from the theoretical. The thermal conduc-

tivities were calculated with both values of B_2. In the Ns-NH a case

the difference was too small to be seen graphically and only the thermal

conductivity calculated with the theoretical value of B_2 is shown.

Good agreement was obtained at 298.5°K, but at 348°K the agreement is as

poor as in the N2-H2 case. For the He-NH 3 mixture a significant improve-

ment was obtained by using the empirical value of B_2.

In Table III the calculated values of the ternary mixture

He-N2-NH s are tabulated. The parameters used are the same as those used

in the binary cases and the general fit with experiment is similar.

In the O2-H20 system shown in Fig. 6 the two values of B_2

differed at most by 3%, but in the final calculations with the two

values of B_2 , k differed only by a fraction of a percent. This seemed

to be a general feature of all the systems investigated. A system where

the molecular weights were very different was much more sensitive to the

value of B_2 than a system where the masses were comparable in magnitude.

As shown by Mason and Monchick 3 the resonant correction tO qint,l
is

very important for polar molecules. In the present system this correction

was applied independently of the inelastic correction. It was observed

that the general effect of the resonant correction was both to move the

curves upward and to change the magnitude of the inelastic correction.
22

The first effect had already been anticipated by Baker and Brokaw, who
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predicted that since the diffusion cross section for unlike collisions
should be less than that for like collisions if resonant exchange is

probable, the rate of transfer of internal energy should increase

initially as the mole fraction is varied. The second effect is a rela-

tively minor one. The inelastic correction may move the curves up or

down and it is not possible to predict the direction a _riori, because

Ak as given by Eq. (78) is made up of many terms and a large amount of

partial cancellation takes place. The Hirschfelder-Eucken formula

seems to be preferable at the two temperatures shown. At 1000°K all

approximations seem to be equally good.

4, Polar Gas Mixtures: He O-D_O. HCI-DCI

We chose two systems to investigate. The HeO-DsO system has

been investigated by Baker and Brokaw 22 but unfortunately it now seems 23

that hydrogen-deuterium exchange takes place and this system is really

a ternary mixture of HsO, HDO, and D2(> whose exact composition is not

known. Furthermore, because H20 and D_O are not symmetric tops the

exact magnitude of the resonant correction is not known. Following

22

Baker and Brokaw's suggestion, we used values of 611 and 622 roughly
3

½ the ones previously used. The calculations were carried out as if

the system were really the binary mixture H20-D_O in order to see the

effect of various assumptions. As in the previous calculations, the

resonant correction applied only to like interactions bows the curves

upward. In this case the inelastic effect is appreciably altered by

the resonant correction. Following the suggestion of Baker and Brokaw 22

that perhaps easy exchange also takes place between HeO and DeO, we

assumed that

lint,2 2int, 1 -- 12 12 )'

and that 512 = ½(611 + 622). This procedure is inconsistent with the

foregoing derivation which neglected all complex collisions for unlike
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molecules. In another sense, however, the equations become more con-

sistent in that they would now give the correct result for the mixture

of a polar gas with itself. The results are shown in Fig. 7. Curve (a)

is the result for the Hirschfelder-Eucken approximation with exchange

corrections in all the internal diffusion coefficients, and is indis-

tinguishable from kHE with no exchange corrections. Curve (c) is the

corresponding inelastic curve and we see that the inelastic effect has

actually been changed in sign by introducing a non-zero 612.

The HCI-DCI system should be a much more clear-cut one to

study. Both molecules are linear dipoles for which the resonant exchange

correction can be calculated with much more confidence. A sample calcu-

lation is shown in Fig. 8 in the hope that someday this system will be

investigated experimentally. There is one complicating feature: there

is evidence that rotational energy exchange takes place in HCI-DCI

24
collisions. This is due to the fact that the moment of inertia of DCI

is almost twice that of HCI and so almost resonant dipole interactions

can take place.

V, DISCUSSION

The general conclusion that may be drawn from these calcu-

lations, and others that have been carried out but not presented, is

that for nonpolar gases or a mixture of a nonpolar and a polar gas, the

thermal conductivity is rather insensitive to the exact values of the

collision numbers. For these cases, the inelastic correction is small,

generally less than experimental uncertainty, and the Hirschfelder-

Eucken mixture formula seems to be satisfactory. As shown by the

sensitivity of the results to the exchange correction, it is important

in both approximations to use the correct values of _. The results are

also sensitive to errors in B_2 , very much so if there is a large

disparity in the molecular weights of the two gases. The inelastic

correction may be positive or negative and moves the curve a little
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bit up or down but does not change the shape much. Only in half of the

systems investigated does the change seem to be in the right direction.

The reason for this apparent insensitivity of %mix to inelastic effects

is that we have forced agreement with the pure component end points.

Had the calculations been made on a completely theoretical basis, the

inelastic effects would have appeared to be much more important. The

pure component thermal conductivity is much more sensitive to the

relaxation times. Thus the easiest way to calculate mixture thermal

conductivities from scratch, if the pure component thermal conductivities

are not known, is to use the fully corrected formulas for the pure com-

ponent thermal conductivities and then to use these in the Hirschfelder-

Eucken formula.

Some of the experimental data seems to deviate from theory by

amounts outside the quoted experimental error. Gray and Wright 20 have

suggested that changes of 6% in_12 or 9% in B_2 could explain these

deviations in the Ne-H2 system. It is possible that the diffusion

measurements might be that much in error, but it is also possible that

approximations for_iint,j and B*.z3might be inaccurate. The_ following
our

crude treatment to examine the effect of inelastic effects on _int,l
is

put forward not as a proposed correction, but as a plausible argument

that this is an area to be investigated more closely.

First, we rewrite Eq. (I) as

n! l'z) <(c - (c
(Cint/k) lnE : i i cj) (_2 _ y?, cos ×)

- <(_i - _) (&t - 4¢ 1) _y' cos ×>. (81)

Assuming the existence of inverse collisions 3 and neglecting complex

collisions, we can write this as
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(Cint/k) _(i, i)int _ <(¢i " _) (¢i - cj) (_2 _ _/y, cos X)> + _ <(A¢)2 VV cos X>

(Cint/k) [_(i,I) + % ((A¢)2 yy, cos X>- (82)

To procede further an explicit model is needed to evaluate the last

integral. Except for an isotropic differential scattering pattern for
the inelastic channels, the last term will not vanish in general. The

excludes resonant collisions
neglect of complex collisions/which also introduce a large correction

into _lint,l" The correction term in Eq. (82), therefore, includes types

of collision other than complex collisions.

To evaluate the correction term approximately it is con-

venient to introduce the differential scattering cross section for diffuse

scattering of rigid spheres for all inelastic channels. For this model 25

<yy' cos X>diff =- (4/9) <y2>e I . (83)

where the suffixes diff and el refer to diffuse and elastic rigid sphere

scattering. Assuming the same relation for real molecule scattering and

that

3
<v (n,) <A, , (84)

we have finally that

16 A_I Cl,rot]

15_ Cl,in t _llJ

-l

(85)

For N2 at 300 °, the correction amounts to 87o. A definite possibility

exists, therefore, that the angular dependence of the inelastic scat-

tering channels must also be taken into account in order to obtain the
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last few percent in the calculation of transport properties. This has

already been observed in the special cases of resonant collisions of

polar molecules, 3 the thermo-mechanical effect in dusty gases
25,5
, and

the rough sphere model. 4 The foregoing use of the diffuse rigid sphere

scattering model should not be taken too seriously. In the case of

real molecules, it is probable that the correction to be added tO_in t

may be positive or negative, depending on the dominant molecular

interaction. A similar correction may be derived for
qlnt,q' " B_q,

may be investigated in the same manner, but several additional ques-

tionable assumptions must be made along the way and so no results will

be reported here except to say that we feel that B_2 may also have a

small correction due to inelastic effects.



- 42 -

Table I. Pure component properties.

Gas

H_

He

N_

02

CO_

m_

H2 0

D2 0

HCI

DCI

T

o K

l0s )k iOs _]g _I (i atm)

cal/cm-sec-°K R_cm- sec cm2/sec

298.5

348.0

303.2

318.2

298.5

348.0

300

5OO

i000

303.2

318.2

450

700

300

500

i000

42.1 s 8.92 1.425 h

46.9 a 9.917 1.871 n
36.37 b 19.545 1.681.1

37.68 D 20.249 1.8121.

6.20 a 17.77 0.212J
6.99 a 19.92 0.277-].

6.13 c 17.86 0.2113
9.16 c 25.73 0.299.1

15.70 c. 40.15 1. 620 _

6.442. b 20.88 0.213 -1

6.68_ b 21.63 0.2323

9.00_ 27.80 0.424. I
12.70- 37.66 0o892. z

3.93 c 14.93 0.i17.K

7.80 c 23.70 0.526 z.

16.80 c 39.70 0.962. t

0.992.1

5.82 a 9.99 0.187. I

7.10 a. Ii.00 0.244.1

7.35 ° 15.22 0.409. z

13.90 d 24.25 1.019.i

7.95 e 16.40 0.481.1

8.00 e 16.90 0.4561

3.29 t 14.40 0. 1254 m

3.27 f 14.59 0.1238 m

298.

348.

450

700

478.

478.

295.

295.

611

_ii

collisions

O

0

0

0

0

0

0

0

O

0

0

0

0

0

0

0

0

0. 149

0.118

0.70, 0.31

0.16

0.287

0.083

0.487

0.179

200

200

¢0

Oo

4.0

4.0

5.41

7.42

10.5

4.0

4.0

4.0

7.5

1.84, 2.5

2.5

3.84

oo

2.0

2.0

4.0

4.0

2.3

1.2

3.0

i .582
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c
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e
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f
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h
P. Harteck and H. W. Schmldt, Z. physik. Chem. B21, 447 (1933),

i
Calculated from viscosity and a theoretical A_I.

J E. B. Wlnn, Phys. Rev. 80, 1024 (1950); E. R. S. Winter, Trans.

Faraday Soc. 47, 342 (1951).
k

I. Amdur, J. W, Irvine, E. A. Mason, and J. Ross, J. Chem. Phys. 20,

436 (1952).

I
Explained in the text.

m
H. Braune and F. Zehle, Z. physik. Chem. 49B, 247 (1941).
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Table II. Mixture properties.

T
System OK

He-O2 303.2
318.2

N2-C02 300

q12 (1 tm)a

cm 2/sec

0.756 a

0.825 h
0. 147-

612 _ 621

h h
_12 _21 B_2

Collisions Collisions Theor,

500 0.440_

i000 1.450 D

Om-HmO 450 0.579 c
700 1.217_

N_-H_ 298.5 0.784_

348.0 1.000_

N2-NHa 298.5 0.230_
348.0 0.316_

Ha-NH s 298.5 0.780_

348.0 1.057 °

H20-D20 478.0 0.469 e-
HCI-DCI 295.0 0.1246 t

O_

0 _ 7.5.i i .092

0 m 7.51 1.092

0 5.41 1.84 1.150

I0.0, 1.84 5.0, 1.84

0 7.42 2.5 1.097

0 10.5 3.84 1.092

0 4.0 4.0 1.124

0 7.5 4.0 1.103

0 4.0 200 i .093

0 4.0 200 1.092

0 4.0 2.0 i .134

0 4.0 2.0 1.122

0 200 2.0 1.107

0 200 2.0 I. 102

0.19 g 2.3 1.35 1.255

0 3.0 1.582 1.215

Empirical

I.i15 j.

1.1157
I 122 K

i. 100 k

1.092.k

1.093.K

1.092 K

1.0783.

1.078 I.

1.2653

1.2651

i .2003

1.200 j
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a
R. Paul and I. B. Srivastava, Indian J. Phys. 35, 465 (1961).

b
R. E. Walker and A. A. Westenberg, J. Chem. Phys. 29, 1147 (1958);

actual values used were obtained from the best Lennard-Jones fit of

the experimental diffusion data.

c
R. E. Walker and A. A. Westenberg, J. Chem. Phys. 32, 436 (1960);

see remark under b.

d
R. E. Bunde, University of Wisconsin Naval Research Laboratory Rept.

No. CM-850 (August 1955).

e Calculated from the (12-6-3) potential.

f
}{. Braune and F. Zehle, Z. physik. Chem. 49B, 247 (1941).

g Average of 611 and 622.
h

Estimated from _II and _22' or else varied arbitrarily.
i

R. Holmes, G. R. Jones, N. Pusat, and W. Tempest, Trans. Faraday

Soc. 58, 2342 (1962).

J Estimated from Eq. (66).

k
Estimated from the best Lennard-Jones fit of the experimental diffusion

data; see R. E. Walker, L. Monchick, A. A. Westenberg, and S. Favin, in

Physical Chemistry in Aerodynamics and Space Fli_ht (Pergamon Press,

Oxford, 1961), pp. 221-227.
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Table III. Thermal conductivity of the mixture N2-NH3-H e.

XNe,

0.572

0.376

0.086

O.151

0.389

0.230

0.6305

0.6185

0.1020

0.493

0.2955

0.244

0.282

0.091

0.238

0.238

O.117

0.1215

0.390

0.568

0.4265

0.3145

0.326

0.152

0.177

0.135

0.1675

0.687

0.271

0.558

0.419

O.28O5

10s kHE 10s kinel 10s kexpt

XNH I/cm-sec-°K cal/cm- sec-°K ca i/cm- sec-°K,_ ca

T = 298.5°K

11.40

0.195 10.68 10.82 {ii.05

0.176 16.05 16.21 16.80

0.6365 11.83 12.15 12.50

0.291 19.85 20.19 20.85

0.5335 7.68 7.79 8.74

0.5975 9.51 9.70 9.95

0.234 8.75 8.87 9.16

0.120 11.22 11.32 12.00

0.471 15.81 16.24 16.70

0.159 13.32 13.46 14.00

0.159 19.09 19.22 19.95

0.384 14.21 14.52 14.80

0.133 20.39 20.47 22.10

0.353 19.90 20.34 21.15

0.130 22.16 22.22 21.20

0.0895 23.64 23.58 24.80

0.112 28.30 28.28 31.20

0.226 23.32 23.60 24.65

T = 348.0°K

0.221 16.58 16.75 17.90

0.156 13.21 13.34 14.90

0.105 18.56 18.61 20.50

0.442 13.12 13.35 13.60

0.124 21.60 21.64 23.70

0.570 14.02 14.31 15.10

0.333 20.36 20.70 20.85

0.450 17.93 18.31 18.70

0.2685 22.99 23.27 24.70

0.167 10.24 10.34 11.30

0.1685 22.29 22.40 24.10

0.300 10.42 10.55 11.30

0.4405 10.54 10.67 11.25

0.569 10.80 10.94 11.25
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Figure Captions

Fig. i.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

He-O_. Experiment: 303. 2°K,O; 318. 2°K,•. Theoretical:

Hirschfelder-Eucken (HE), --; inelastic, - -

Na-C02. Experiment: 300°K, O; 500°K, O; IO00°K, _. Theoretical:

300°K: HE and inelastic with _II = _12 = 5.41, _21 = _22 = 1.84,

--; inelastic with _ii = 5.41, _12 = I0, _21 = 5, _22 = 2.5, - - -;

inelastic with _Ii = 5.41, _12 = _21 =_22 = 1.84, .... . 500°K:

HE, ----_; inelastic with _ii = _12 = 7.42, _21 - _22 = 2.5,

1000°K: HE, _2 = .962, --; HE with_2 "= 0.992, .... ;

inelastic with D22 = 962, _iI = _12 = 10.5, _21 = _22 = 3.84, ---

Ha-N_. Experiment: 298. 5°K, C); 348. 0°K, •. Theoretical: HE,

--; inelastic,

He -NH 3 . Experiment:

--; inelastic,

Na -NH3. Exper ime nt:

--; inelastic,

Oe-HaO. Experiment:

298.5°K,O; 348.0°K,•.

298.5°K,O; 348.0°K, •.

Theoretical: HE,

Theoretical: HE,

450°K, O; 7O0°K,•. Theoretical: HE with

no dipole resonant exchange correction, --; inelastic with no

dipole resonant exchange correction, -- --; HE with dipole resonant

exchange correction,- ; inelastic with dipole resonant

exchange correction, .....

HaO-DmO. Experiment: 478.0°K, O. Theoretical: (a) HE with no

exchange corrections, and HE with exchange corrections between

all molecules; (b) inelastic with no exchange corrections; (c) HE

with exchange corrections between like molecules only; (d)

inelastic with exchange corrections between like molecules only;

(e) inelastic with exchange corrections between all molecules.

HCI-DCI. Theoretical HE with exchange correction between like

molecules only, --. Inelastic with exchange correction between

like molecules only,
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