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DIFFERENT SCREENING CONSTANTS FOR DIFFERENT PHYSICAL PROPERTIES, I*

f

William A. Sanders' and Joseph O. Hirschfelder
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_ABSTRACT ’7)

Expectation values of properties other than energy are calculated
for the ground state of the two-electron atom with arbitrary nuclear
charge. The calculations are designed to test the use of simple wave
functions with embedded screening constants, where different screen-

ing constants are used for different properties. The results are

compared with the perturbation expansion of Scherr and Knight, who

have determined a large number of properties correct through sixth
order.

Dalgarno has suggested that a screening constant be chosen so as
to make the first order perturbation correction vanish for the
property under consideration. Robinson has shown that this choice is
equivalent to the requirément that the zeroth order wanrfﬁnction

satisfy a hypervirial relation, where the hypervirial generator is

related to the property through a differential equation. This procedure

gives excellent numerical results for properties having positive
definite operators.
For one-electron properties with positive definite operators,

Dalgarno's method gives expectation values which are too small. When




applicable, slight improvements are obtained by maximizing the
expectation value calculated with the zeroth plus first order

wave functions.

* This research was supported in part by National Aeronautics and

Space Administration Grant NsG-275-62.

¥ National Science Foundation Post-doctoral Fellow 1963-65.
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I. INTRODUCTION

One of the most important problems in quantum mechanics is the
calculation of accurate expectation values of propertieé other than
energy. It remains an open question whether it is necessary to use
Hartree-Fock wave functions for such calculations. We have explored
the possibility of using simpler wave functions with embedded screening
constants, where different screening constants are used for the
calculation of different properties. The properties of the family
of two-electron atoms (and ions) provide a convenient test of the
numerical accuracy of different methods of calculation. As a basis
ot comparison we use ihe calculations cf Scherr and "night,(l) which
are based on a perturbation expansion in powers of one over the nuclear
charge. They have determined a large number of properties accurate
through the sixth order.

(2)

Dalgarno has suggested that a screening constant be chosen

so as to make the first order perturbation correction vanish for the

(3)

property under consideration. Robinson has shown that this choice
is equivalent to the requirement that the zéroth order wave function
satisfy a hyperﬁirial relation, where the hypervirial generator is
related to the property through a differential equation. The Dalgarmno
procedure gives excellent numerical results when applied to the
calculation of properties represented by positive definite operators.
If the wave function contains two or more embedded screening
constants, additional constraints are necessary if the choice of

screening constants is to be unique. Many such constraints suggest

themselves, such as minimizing the energy, satisfying the virial



theorem, etc., but at the present time we can suggest no systematic
method for choosing the best set of constraints.

For those one-electron properties associated with positive
definite operators, the Dalgarno procedure gave expectation values
which were too small. This suggested maximizing the expectation .
value calculated with the zeroth plus first order wave functions.
In some cases slight improvements were obtained in this way, but
the amount of additional work required casts some doubt on the
practicality of the method.

The idea of using different screening constants for different
properties dates back to the early days of quantum mechanics. 1In

1927 Pauling(a)

proposed a systematic procedure for determining the
screening constants. His method was applicable to any property
which, for a hydrogen-like atom, would vary as some power of 2

and as some other power of the principal quantum number. He
predicted rather accurately the mole refraction, diamagnetic
susceptibility, atomic scattering factors,(s) etc., for atoms and
ions throughout the whole periodic table. Unfortunately, Pauling's
method of adjusting the screening constants does not seem to be
currently applicable. However, the principle still remains valid
that the screening is small near the nucleus and becomes large at
large separations. Thus, as is shown in Fig. 1, the optimum
screening constant for calculating the expectation value of 1/r2

is much smaller than the screening constant required for the

expectation value of r2
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I1. THE PERTURBATION EXPANSION

The Hamiltonian operator for the two-electron atom with nuclear
charge Z is

:-%(vf:rv;)-z({-‘ ‘:’;) -:;2 , 1

where the unit of length is the Bohr radius, @, , and the energy is
2

measured in units of € /0.,, (@ is the electronic charge).

Introducing a "screening parameter", § , the Hamiltonian may be

written in the equivalent form
H__L 2 2)_(2-3(.1..‘,.'-){..‘_ -5 _‘.+..
- 2 Vi + Vl LR Nz L£} . (2)

I1f we make the change of variable P:(Z-S)r and measure the
—q) ot
energy in units of (2-5) e/a, s Eq. (2) may be expressed in

the reduced form

| S

= —_— S 3

H Ho +z_3\'/l +z...s vz 9 ()
where

N A 2y_ 1 A 4

Ho= -2 (V+%)-5. -5 @
|
V= — (5)
! Pra )

and



Vz:-(—-+—')_ (6)

(6)

Eq. (3) defines a double perturbation problem with the natural
parameters !/(Z-8) and S/(Z-S) . The total wave function is

expanded in the double power series

y-% F PO
= (z =Sy (z-s)* , )
where the unperturbed function is simply

P - ‘ e Pa) )

SD(J’K) do not depend upon the value of the parameter $§

We wish to calculate the expectation value {W? of an
operator W  which is a homogeneous function of the coordinates
of degree & . Since the screening constant S does not occur
either in the unreduced Hamiltonian, Eq. (1), or in W itself, the
value of AW cannot depend upon the value of 8 . In the reduced

units, W is designated by W , so that
«
wW=(Z-8) w ., 9 .

The expectation value of W 1is expressed by the symbol (w;S) 3
which stresses its dependence upon the value of S . The

expectation value {W) is then given by the double power series




P4

(W)Y = (2-8)<Kw,; $>

@® K
«
= (Z'S) jZ:‘,oZ (Z- S)J (Z S’K <w>J;
n
« 5 \ K
=(z2-9) gz:olj‘z_s)n ‘“Z S (ll!> , (10)

where

Cwjk = Z Z CANETIE SR SR

PO

The (W)j,k are independent of § (since S does not occur in
either "P("’K) or W ).

Alternately, we can rewrite Eq. (10) in the form

<W> = (Z S) Z -———'—" <w S) , (12)
where
w 5) KZ— SK <w>n-K,K . (13)

In Sec. III, the {u;S8? are obtained directly as the n-th
order terms in {w;S) , where S 1is regarded as a constant and

the perturbation is V, ¥ SVz

In order to compare the results of the V, + SVz perturbation

calculations with the 1/Z expansions of Scherr and Knlght(lb)



it is convenient to expand Eq. (10) in a double power series in §

and 1/Z . Thus
@ ‘ L3 "
(W) = z ) EL 2. ST Akm(®) (14)
K=o m=0
where

and

mo (K-G~|H
Agm &) = [=Z:; TN (Wh_mm-L, K> .  (15b)

The prime indicates that the summation is taken only over terms

involving non-negative factorials.

Since {W> 1is independent of S , we see immediately from

(14) that
& <
(W) = zu; Z% Ao () = Z“Z ?<w>K,o , (16)
=0 Kzo

which is in agreement with the result obtained by setting S =0

in Eq. (10). Furthermore,
K
Z SmAKsm(a)‘—‘-O , K=1,2,3, . (17)
m=i

independently of the value of S , so that




[

AK,m(«)z O s K=1,2,3,- - ;m=‘:21“'aK‘ (18)

These conditions make it possible to express all the W, -K,K
in terms of the (w)n,K,o . For example, for the case & < 0

we have, from Eq. (15b),

r (R4 y-a—=1)!
Kty.) — i=o (Kej-a-4-D1 {1

DM

A (Wi i1 = 0, j=1,2,3,-,09

so that

(K+j-a—1! |
w
W Z o (K+rm - = (j-m)! \ >K,m . (20)

Repeated application of Eq. (20) then leads to the relation

-DF (n-a-nt ;
(n-c-k-ni k! “Whko , (21)

<Uf>~n-K,K =

and therefore Eq. (10) may be rewritten in the form

¥ (n-a-!
(W) = (£~ -38) Z . (2- S)" Z (n-a-1-K)! K1 S <w>n-K,o ’ a<o. (22)

The case > 0 is somewhat more complicated. However, by using
Eq. (15a) or Eg. (15b), as appropriate, it is possible to show that

« 1 N (@-ne K
(W)= (2-5) { ' (2- -s)" — (@-1)! K STl k0 *

| -1)" (n-a-nt
c—————— > -
+n=Z¢x+. (Z"S)" = (n- ar—|—K)|K‘ §* 4w K’O] ,&>0. (23)



Therefore, in order to obtain the expansion of the expectation value
{W? in either of the alternate forms (12) or (16), it is only

necessary to evaluate the matrix elements

J .
(w0 = Z < ‘P(P'O)\u}\ "P‘J-F'O)>. (24)
p=o
Scherr and Knight(l) have computed the functions 'p(FuO) through
}1: 6 by a variational method and have tabulated the matrix elements
{W)j,0 for a number of operators through j = 6.* In several cases
they were able to check their results with coefficients obtained by

analysis of the best available variational wave function and the

agreement was found to be very good.

* The values of these matrix elements for most of the properties

they considered are included in Table V.




III. DALGARNO'S METHOD

In order to determine directly the coefficients {W;8), in

Eq. (12), it is convenient to rewrite the Hamiltonian (3) in the form

H=H, + (Z‘—S)(V' +5V,) , (25)

where S is assumed constant and ‘/(Z'S) is the perturbation

parameter. If the total wave function is expanded in the power series

@ (K)
Y= Z( -s)K Y ; (26)

K=o

the expectation value {W;S) may then be written in the form

2 \ 2 -
<wis>= ). L 2 (P Nwlye S (27)
n=o K=o
so that
0 K) -K)
Kw;s), = 2 <P w9 (28)
K=0

(%) , Q‘LK)
The 43 , which are related to the functions by the

expression
K A
(K) j (K‘JAJ)
P -ES‘P , (29)

may be obtained, in principle, by the methods of standard

(6)

perturbation theory.
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If the series in Eq. (12) is truncated after a finite number of
terms, the resulting expectation value is a function of the screening
parameter S . As discussed in the introduction, there is a best
value of S for each operator W (usually not the energy-optimized screen-
ing constant). Unfortunately, there is no general variation principle
for the expectation values of operators other than the Hamiltonian,
so that we do not have a firm basis for choosing 8

In the ordinary variational calculation of the energy, the
expectation value of the Hamiltonian (25) is made stationary with
respect to first order variations of the wave function.(7) This is

equivalent to choosing the screening constant so that the first order

perturbation energy

€' - <"P(°)\V|“'sz\lp‘°)> (30)

is zero. TFor cases in which the first order correction to the
expectation value of the observable W can be obtained explicitly,

(2)

Dalgarno and Stewart have suggested that the appropriate value of
the screening parameter to be used in calculating {W?) is simply

the one which makes the first order correction <{W;S7, vanish.

From Eq. (28), the first order coefficient <(W;S> is
(w;sd = <P Iw YY) + PP Twl 9, (31

W .
where (P is a solution of the differential equation




11

(H, - €)P" + (Vi +5V,-€ )9 = ¢ (32)

with the orthogonality condition

§

)

o
N
1]
O

Because of the form of V|, , Eq. (32) cannot be solved explicitly.

(8)

However, according to the Dalgarno Interchange Theorem, Eq. (31)

may be replaced by
w; ), = OOV VLIV YD + (W +5VL 199 | (3

m
where q/ is a solution of the equation

(o)

(H, - € V" + (w-<w,e)¥P " =0 (35)

with an orthogonality condition similar to (33).
If W is a one-electron operator, Eq. (35) can often be solved
W
analytically. Following Dalgarno, it is assumed that W/ may be

written in the form

(§)) (o)
y=F P (36)

where F is some function of the coordinates. From Eq. (35) it

follows that F must satisfy the differential equation




(H, —€,)F 9 + (w-<wh) Y= 0. (37)

If W is a function only of the radial coordinate P. , Eq. (37)

is separable and F may be obtained by direct integration of the

equation
— 1 (0) at _ 2 _ 18
ap'(P' ‘P AP' )— ZPn (w <w>0.0)LP . ( )
Gordon(g) has carried out the explicit derivation of (w33,

for the case in which W 1is a positive integral power of the
radial coordinate. He was able to solve Eq. (38) readily for

w= P'“ , obtaining the expression

_ P [K+3 2%+2 p¥
J= 3L e Z -2 N >0, 39
F(p ) Z ey K+ (K+ \)(K+2)! s n ( )

I
= (n+2) /2““ . He could then calculate the

where (P %,0 =
expectation value (\'.") explicitly through first order. In the
ordinary units defined in the first paragraph of Sec. II, the

result is

(emy, = <p>“[\ n(S -S)

n>o, 40)
(z-3)" =S J ’ (

where the subscript D is used to designate an expectation value

which 1is correct through first order and where

12



R
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s 1 [$3 _ “Z_‘_‘.i‘l—]
Sn = T ‘i:\‘; ko KA K= 2 (k+1) . (41)
The fir st order term in Eq. (40) vanishes if S is set equal to 3“.
The value of Sy increases monotonically from 3/9 for m= |
toward a limit of 5/’9 as N becomes infinite. These results are
to be compared with the energy-optimized value(7) Seg = 5&“6 .

The same procedure may also be applied to other one-electron

operators. For example, for uf:'/P, , integration of Eq. (38) yields
_ 3
Feo=p~-7 , (42)
so that
LN 1y _ A -2}, -5
<T.>D‘(Z'S)<P.>u"Z'S)[H(Z-S)(S el = 2 . (43)

The value of the screening constant which satisfies the Dalgarno
criterion is 3§, = 5/\6 , in agreement with the energy-optimized
value. Note, however, that the expectation value of /v, s
independent of S through first order.

Similarly, for w = '/p? |
Fipo=2(p +dnp +7+In2-3), (44)

where 7 = 0.577216 is Euler's constant, and



<T"l> = (z-5)‘<%z>o = 2(2‘3)% ra(3nz-f2s)], e
D ' '

)

The value of S which makes the first order term vanish is

S‘_Z:%Zz-%fnZ:O.Z7I3Z. (46)
Finally, for wf = 8(?.),
1
NF(P|)=IY\P| +ﬂ_i_f;|‘\’7+ln2"5/z (47)

(2)

and

7 5 - 3_ {1
LB AN, = (@-SPICEPM, = (2-9P[1rgTg (b 2 - 1 us)|

(48)
The value of S determined by Dalgarno's method is
Sg= 1t —1n2=0.22255. (49)
43 4

In Sec. II it was shown that the coefficients {W;S>n of the
V/(z-5) expansion of the expectation value { W) may be written in
terms of the coefficients (W)>g,0o of the '/Z expansion. Through

first order, Eqs. (22) and (23) both give

(WY, = (29 [Woo + 55 (@i vas@nl)] | s0)




Dalgarno's choice of the screening parameter is, therefore,

(Wh,o
Sy = — - (51)
*{usdo,0
and the expectation value correct through first order in this
approximation is simply
Wi 1%
= w), [Z'+-______L——]
< W>D < 0,0 a<w>°.‘ . (52)

The relation (52) makes it possible to evaluate the accuracy
of the first order screening approximation for all the operators
treated by Scherr and Knight without having to solve Eq. (35).

Expanding Eq. (52) in powers of ‘/Z , we obtain

H

(W),

— (-a+K-1) dwne ¥ |\
<“”°’°§ xR - K} ((w).,.) &, «<0. I
and

B S R
w=Z <w>°'°\{:)u"(a-m‘.l<! W) Zvi A20. (8

The coefficients of ‘/ZKin Eqs. (53) and (54) may then be compared

with the {WJg, tabulated by Scherr and Knight. In all cases the

first two coefficients are given exactly.

It is easy to verify that the Dalgarno criterion makes the

15

first order expectation value stationary. Differentiating partially

with respect to §,
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a’bs'<W>.,=‘<°‘-”(Z-5)“—z(<w>\.o+“3<‘“>o.o). (55)

The first derivative is zero if S 1is given by Eq. (51) and vanishes
identically for €& =\ . Furthermore, differentiating once again

and setting S =S, ,

az x-2
S5 (W)Y, 5 = —a(a-1XZ2-Sy) KWy, . (56)
=Y

This expression is negative if Woe is positive and vice versa.
Therefore, Dalgarno's method maximizes the fir st order expectation
value of any positive operator which is a homogeneous function of
the coordinates.

Expectation values calculated by the methods discussed in this
section are tabula;ed in Sec. VI. There is one interesting result,
however, which should be mentioned at this point. For the case in
which W is a positive power of the radial coordinate, with
X =-n , all the coefficients tabulated by Scherr and Knight

satisfy the inequality

(nek-DL PNy

n¥(n-n! Kl <pn> -\ s <p'">K,o (57)
' %.0

(see Table V). Therefore, Dalgarno's criterion apparently yields
a valid lower bound for the expectation value {Y,") for‘pOSitive
integral N . This observation forms the basis of the alternate

method discussed in Sec. V.




17

IV. EQUIVALENCE OF DALGARNO AND HYPERVIRIAL METHODS

(3)

As Robinson has shown, the Dalgarno method of requiring

that {W;8>,= 0 is equivalent to satisfying a certain hypervirial

(10)

theorem

<LP(0)‘[H,LH‘"P‘°)>= 0 . (58)

Here 1L 1is an anti-Hermitian operator associated with the
property W.
For a system perturbed by a potential \% , we have, from

Eq. (34),

iy = LGV + (VU IVIY) (59)

)]
where ‘V is defined by Eq. (35). In the Dalgarno method,
m
IV i F‘Pm, where F is a function. However, we might equally

well take ufm: LLP‘” , where' L 1is an anti-Hermitian operator,
L+=——\_ . Then, since (‘P‘O,”Ho,‘_]‘q}m>s 0 ’

Eq. (59) can be written as

wiSy= LPIVILYD) + (LYTIVIYY)

- (LP(O)‘VL + LfV\\P“”)

= (PONVLTIYD) = (@M, LITPY . (o)
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Dalgarno's choice of the screening constant is such that <uf;5)|=:o,
and therefore the corresponding hypervirial theorem is satisfied.
The satisfaction of the hypervirial theorem (58) has the
. . , Lp“’ . .
interesting consequence that the wave function is energetically

stable with respect to variations of the type(ll)

\P(D) I \P‘O)-i» >\L LP(O) ; (61)

that is, the energetically optimum value of A is zero.
Given the function F , the hypervirial operator \_ is

determined by the equation
(0) (0)
LY =F Y, (62)

In order to be anti-Hermitian and real, l_ must involve derivatives
of odd order with respect to the coordinates. If we are not
concerned with the (0138)3 for which j) \ , it suffices to take L.
to be a linear function of the first derivatives with respect to

(11)

the coordinates. The most general operator of this form is

- {::z 9 iy £7%
= E (),

where % is the product of the metric scale factors of the
generalized coordinates t%K and the fK may be functions of all
the %K . Eq. (62) then reduces to a differential equation for

the ‘FK




2- _%_',2 %K (%'Iz ](:’2 LP(O’) - F_- \P(oi . | 68

Little can be said about the solution of Eq. (64) in general.
However, the one-dimensional case is particularly simple, since

in L0\ Tomn
Eq. (64) then reduces to

a ., Z—%In (%:/,_ Lplo))s 2F , (65)

which has the general solution
| (o)z
_ E Yy ]
P=m(2feF g ] )

The hypervirial operator is then obtained by substituting into the
“P ()]

appropriate form of Eq. (63). Since is an eigenfunction of

F4° , however, it is unnecessary to find L- explicitly because

Eq. (58) simplifies to

<;kp<m

For the special case of the two-electron atom, we have

xb% \‘*P‘°’> 0. 67)

| |
= — =S+ +— (68)
v=1 -s(7 %),

so that

. (69)
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The function F may be determined readily for the cases
diséussed in Sec. III. For the property W= Pr with n positive,
, F , (12) .
the function is given by Eq. (39). Integration of Eq. (66)

then yields the expression

f=<p™ [_I‘—(—'—+;+Z)+zi_‘_/i z j (70)
el b b L L #

Therefore, the hypervirial operator corresponding to fa“ may be
constructed much more directly than would seem apparent from the
(13)

discussion of Bangudu.

Similarly, for ur:‘/P., with F given by Eq. (42), we find

'F:: vP‘ . a1

Note that Eq. (67) then implies that the optimum choice of the
screening parameter is such that the perturbing potential makes
no contribution to the usual Clausius virial of the force.

For uJ:‘/Pf the expression for F is somewhat more complicated.

Integration of Eq. (66), with F from Eq. (44), yields

f= %, [~’)’-—an F20-T=In2)p +(3=27-2In2)p}~

-2p>-(1+2p, +2f,‘)1np, yeth Ei(-Zp,)] . (72)

A similar expression is obtained for the case W= S(ﬁ) .




Using Eq. (47) for F , we find

{ 2
f= Z-T-[—W[-*r- In2+20-7-tn2)p, +2(1-7-In2)p*-

—2g>- (v 29, +2pPnp, + € Ei(-2p)] | a3)

Example showing equivalence of Dalgarno and hypervirial methods:

The relationships discussed above may be illustrated conveniently

by the following simple example: Consider the hydrogen-like one-

electron atom whose Hamiltonian is
H -_lvl L3
o= "2V 7Y . (74)

The ground state eigenfunction is

' |
o3\2 _-ar
¢=(5)"e a5

2
and the corresponding eigenvalue is €,= - Ve . Let the atom

be perturbed by a potential of the form V= 13-¢2 and suppose we
wish to calculate the expectation value of the operator w=r.
Following the method of Dalgarno, we solve the differential

equation

I d 2 dF
LEed) 2w, o
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where <W>a'o = 3/20. » obtaining

13 _
F—Za a* : 77
The constant of integration has been fixed by the orthogonality

condition <F>o.o = 0 . The first order correction to the expectation

value <W> is then

gy = L (323
2CLIVIFRDS = 75(3- 27 ) . (78)

This quantity is made to vanish by the choice @ = 2'5/6 .

The function ‘F is determined from Eq. (66) to be
AN
10:5?-('["*&) (79)
and the corresponding hypervirial operator is
- F"d(rf"z ) = 3 ﬁ+l)d
L= 5 I - H2a+(7~ oJgv |. GO

It is easily verified that Eq. (65) is satisfied for this choice

of L . We then have

CAICABIEAERCAT VAR LA

<Y, \f Y19 = —-(‘2'62— ) (81)
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This quantity vanishes if @ = zs/é » which is the same as the value
determined by Dalgarno's criterion. Therefore, Dalgarno's method is
completely equivalent to requiring that the wave function 42 satisfy

the hypervirial theorem with respect to the operator defined by Eq. (80).
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V. MAXIMIZED EXPECTATION VALUES

In Sec. III it was seen that Dalgarno's method provides apparent
lower bounds for the expectation values of the positive powers of the
radial coordinate. We surmise that this method may give a lower
bound for the expectation value of any positive definite operator W.
This suggests that it might be possible to realize further improvement

by maximizing the expectation value

CAURY,
SARY

(82)

<Wy

where "P; is the total wave function corrected through first order.
From Eq. (7), the function "P} may be written in the specific

form

Wl - LP(o,o)+_Z|_l Lp(l.o)+ % lP(a,u) , (83)

’ (1,0} (0,1) .
where Z=Z=8 . The functions L? and LP are solutions of

the differential equations

(1,0)

(Ho "60)‘? + (Vl -<Vl)o,o) LP‘O’O) = O (84)

and

(Ho=€a) 9" + (v, =<V, )Y =0, (85)




where V, and V; are defined by Eqs. (5) and (6). Eq.(84) has

been solved variationally by Scherr and Knight, (1a)

who give the
(1,0)

function ‘p as a 100-term power series. Eq. (85) may be

integrated directly to yield

nl\(o") _

—

!

A o
Tl

\o (P|+ Pz.)

3; i?z[\- . (86)

Making use of (83), the numerator of the expression (82) may be

written in the explicit form

(.\yl ‘Wll\yl> - z'“[(tp“'”\wl q)(a,o)) + %(Lpu,o\whpu,o)> +

+ £Z‘S7 (‘P“’”\wl \P“'") + _;7‘<‘Pu,o)|w| tPu.m> +

o 0,1 0,
25,00 w94 + S @] @

while the denominator becomes

(‘K, | 11!1> =1+ ';g’l—h("P“'w | O 4

] 2 0, )
+ %%(‘«P"' AR %(‘P( "> (88)

The first order terms in the integral (‘K |1K> drop out because the

(1,0) {0,1) (0,0)
functions "P ’ and l‘P are both orthogonal to LP '

Using (86),

25



(1,0)
together with the results of Scherr and Knight for \P "7, all the

matrix elements of (87) and (88) may be evaluated either analytically
or by simple numerical calculations. Most of the integrals required
may be taken directly from the results of Sec. III or from reference
(1b). The screening parameter may then be varied to maximize the

expectation value (82).
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VI. RESULTS AND DISCUSSION

Some of the expectation values computed by the various methods
discussed above are summarized in Tables I, II, and III for He,
Li+, and Be++ , respectively. The zeroth and first order hydrogenic
(S = 0) values are included for comparison. The first order
perturbed Hartree-Fock values included in Table I are taken from a
paper by Weiss and Martin.(la)

The improvements obtained by adjusting the screening parameter
are evident in all cases. Variations of S become less significant
as Z 1increases, but the improvement is still noticeable for Be++ s
especially for the higher powers of ry - For all the observables
listed in Tables I, II, and III, the expectation values calculated
by Dalgarno's method are bounded from above by the values which are
correct through sixth order.

For the positive powers of Ty the results are improved
appreciably by maximizing the expectation values calculated with
the approximate eigenfunction 1*& of Eq. (83). For the observables
/¢, ,'/¢} and 8(), as might be expected, the maximization of the
expectation value led to the condition $=O . This gives the
largest possible amplitude of the wave function at the nucleus.

In the last columns of Tables I, II, and III are listed the
percentages of the higher order corrections which are recovered in
the best first order screening approximation. For the positive

powers of r, , more than ninety per cent of the discrepancy (with

respect to the values obtained by Scherr and Knight) has been
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removed by varying the screening parameter in the first order
function (83). 1In the other cases, Dalgarno's method accounts for
approximately eighty per cent of the difference. The accuracy of
the first order approximation increases as Z increases. However,
it is interesting to note that, for a given Z, the percentage
improvement is substantially constant for Y? through ﬂs . Thus
the expectation values of rf and Y: included in Table I are
probably of the same order of accuracy as the lower powers.

The values of the screening parameter determined by Dalgarno's
criterion for the observables Y| are plotted in Fig. 1. For n=-3,
the value plotted is the one obtained for the delta-function, 87y,
For the positive powers of T, , the screening constant is given
explicitly by Eq. (41). This function increases from a value of

3/8 for n =1 toward a limit of 5/8 for infinite wm . For

large N , the screening parameter is given approximately by the

relation
5 0.514 ] 3
~ — + -_— — = JInn 89
Sn 3 n nt 4n s 89
It shouid be pointed put that the limiting value Se = 5/8 is

different from the value S=Z —VIEL (= 0.3 for He) which is
obtained by requiring that the screened wave function display the
correct asymptotic behavior.

The trends in the values of the screening constant obtained in
the optimization procedure may be understood on the basis of a

comparison of the behavior of the screened function with that of the

31
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FIGURE CAPTION

Variation of the screening constants Sn

. n
corresponding to the observables T, » as
determined by Dalgarno’s method. The case

n = -3 corresponds to the delta-function 8 (;1).
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exact wave function. As pointed out by Dalgarno,(z) the energy-
optimized function has too much of the charge density concentrated
near the nucleus. The increase in the value of the screening parameter

for higher powers of «r decreases the rate of decay of the wave

1
function and increases the contribution from regions farther from
the nucleus. For the obsepvables '/t* and 8(T.), on the other hand,
the best screening constants are less than the energy-optimized
value, indicating that the amplitude of the approximate function
starts out too small at the origim and falls off too slowly.

For H , variation of the expectation value. Eq. (80) did not
yield physically reasonable results. The maximization procedure
led to the condition s = 1 , corresponding to complete shielding,
Dalgarno's method still produces marked improvement, as may be seen
from Table 1V, but the optimum screened values are appreciably
smaller than the Scherr and Knight values. Moreover, the 1/Z
expansion converges slowly when Z = 1, especially for the higher

powers of r and the errors involved in truncating at sixth order

1 °
are probably quite‘large.

Coefficients of the 1/Z expansions of expectation values in
the Dalgarno approximation, Eqs. (53) and (54), are given in Table V.
The corresponding values obtained by Scherr and Knight are included
for comparison. The screening constants are given by Eq. (51).
Total expectation values obtained by Dalgarno's method for the case
Z = 2 are listed in the third column, together with the values

correct through sixth order. In general, the best results are

obtained for operators involving only the radial coordinate r, ,
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but there are some surprising exceptions. In particular, the 1/Z
expansions of the expectation values of ry; and ni are reproduced
very well by Dalgarno's method. It is interesting to note that,
because of the wide variation of the importance of the higher terms,
there is relatively little correlation between the overall accuracy
of Dalgarno's method and its success in reproducing the individual
coefficients of the 1/Z expansions. The poorest results are
obtained for the operators containing the factor T&‘COSS,i,
Here the screening constants obtained by Dalgarno's criterion are
negative and the expectation values are significantly different
from those calculated by Scherr and Knight. The inadequacy of the
method in this case is probably due to the spherical symmetry of
the zeroth order function. For operators whose only angular dependence
is in the factor co0s9,, , the coefficient {W, vanishes and

Dalgarno's method cannot be used at all. On the basis of our

results, therefore, it seems clear that Dalgarno's criterion should only

be applied to the calculation of properties associated with

positive definite operators.

In general, the screening constants determined by the
Dalgarno criterion differ appreciably from the energy-optimized
value. Therefore, the improvements in the expectation values of
the various observables are obtained at the expense of the total
energy of the atom. The magnitude of this energy sacrifice is a
matter of interest. Energies calcylated through first ord;r with

the values of S determined from Dalgarno's criterion by optimizing

{%\> through (Y() are listed in Table VI, together with the results




81°0 692L6°E1
91°0 786LG°ET
%1°0 1¢6LG°€E1
11°0 08¢8s°t1
280°0 £698G°¢€1
%50°0 8C066°¢t1
6¢0°0 GLE6S°ET
T 99.6%°¢1
a8ueyo
Jjuad JI9g (s)a-
++94
.1

.Hl

Ge 0
0E"0
9z °0
1¢°0
¢1°0
01°0

¥50°0

a3ueyo
ju9d 19d

69L61°L
%8002 "L
12%0¢C "L
08L0¢C°L
€ST1C L
8¢S1C L
SL8TC L

99¢¢c L

(s)a-

88°0
LL°0
$9°0
¢6°0
6t °0
9¢°0

71°0

a8ueyo
juao asg

69¢28°¢C
%86¢8°¢
12628°¢
08¢€8°¢C
£69E8°C
8c0%8°¢
GLEY8 T

99.(%8"¢C

(s)d-

1 ¥0d SV EWVS FHL JYV SINVISNOD ONINZHYDS ADUENT HHL
SINVISNOD ONINAHYOS HIIM CILOJWOD SV ¥HQY0 LSYId HONOY¥HI dIVANDOV SIIDWINA TVIOL

IA J149VL

BC'S 69L%%°0
(AN %7805%°0
06°¢ 1ewsy°0
71°t 08L5%°0
9t "¢ €ST9%°0
9¢°1 8C59%°0
£8°0 SL89%°0

T 99¢.%°0
a8ueyo
Jusd I8g (s)3-

H

v

S0L%°0
209%°0
£8%7%7°0
ew°0
ow~¢ro
%86£°0
0SLE°0

YRR

s

*QoHIAW S,0NUVYTVA A9 QINIWIAIAQ

~ ~

H

HON AN S N~ O~
= ~ 2]

-

%7




42
obtained by minimizing the expectation value of the Hamiltonian.
The minimum energies in the screening approximation differ from

(1a)

the most exact values by 10.4 per cent for H-, 1.9 per cent for
-+ ++ -
He, 0.8 per cent for Li , and 0.4 per cent for Be . Except for H ,
the energy loss due to the variations of S is less than one per
cent in all cases. As Z increases, of course, changes in the R
screening constant become less important. It should be noted that
the energy loss in the most unfavorable case shown in Table VI is

only about one-half the error of the best energy in the screening

approximation.
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