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An Evaluation of the Optical Maser Photon

Rate Gyroscope*

C.V. Heer

Department of Physies, Ohio State University, Columbus, Ohio

. INTRODUCTION /(/é L :53({“\

The measurement of absolute rotation with electromagnetic radiation
was suggested by Michelson! in 1904 on the basis of the "ether". Obser-
vations of subsequent :‘Lrnrestiga'l;ors2 confirmed the measurement of rotata-
tion by using an interference technique, and in 1925 Michelson and Gale3
succeeded in measuring the angular rotation of the earth with an optical
system approximately one kilometer in diameter. With the advent of
general relativity it was shown that problems related to the transmission
of electromagnetic radiation in accelerated frames of reference were more
properly treated within the framework of general relativity. Adopting
this viewpoint the author pointed out in 1961 that the degeneracy between
clockwise and counter-clockwise traveling waves in a resonant electro-
magnetic structure is removed by rotation and an angular frequency differ-
ence between the two modes of 2mfA would occur in a cylindrical cavityl".
The neme "Coriolis-Zeeman" effect for a photon was suggested during the
presentation of the paper, since for an electromagnetic cavity with

cylindrical symmetry or other suiteble shapes, the energy transformation

for a photon is given by hvx h¥, + L2 . L is the orbital angular -




momentum of the photon about the symmetry axis and (2 is the angular
velocity of the cavity. If m is the mumber of nodes, L, = md and

Aw=2mJ2.

In subséquent papers a formal development for the resonant fre-
guencies of an eléctromagnetic cavity in an accelerated frame of
reference was givenes’ 6 The results of these papers are summarized for
this paper. If a system rotates with angular velocity 2 =._(L@Z sbout
the z-axis, for cartesian ordering of the coordinates Maxwell's eqguations

have their convential appearance in the m.k.s. system of units,

curl E + 2B/2t =0 divB3 =0
‘ (1)
ecurl H - “2D/f2t =J div D =¢
” \
The constitutive equations are modified by rotation and are given to
first order inJ2 by
2o apor s (223 v 5] G a? (22)
c
- ‘ 3
2 = Keeog _ c‘lktizx£> X’*H}+ (9(_@ 2) (Zb)
c

In the short wave length limit these equations are equivalent to an index

of refraction
M= kg )? v Hpx R, 0(2D) (3)

where ? o is & unit vector in the direction of propagation. Rotation

has the effect of making even the vacuum appear anisotropic. Equations



2a and 2b are the constitutive equations relating the fields. The
currentiz is the source or detector term and is associated with the
source and detector attached to the cavity, that is the electromagnetic
cavity, source, and detector are all in the same rotating frame of
reference. The explicit dependence ofig on the magnetic dipole currents
and electric dipoles may be shown by writing J as J + curl M + "9P/2t.
If the source or detector current is of the ohmic type and proportional
to the electric field, that is O'E or €"E, then the correction due to
rotation is of 63(12_2). Thus the source and detector terms have their
conventional form for the first order approximations used in this paper.
If the fields are expanded in a set of orthonormal functions E, and H,
for .42= 0, the frequency splitting between the degenerate modes which

is introduced by rotation is

a

AV - (xech-2)‘%£L-fdv [z e mrx zra)} A2?
(1)

Although our initial interest was in the microwave cavities and the
enhancement of the Q of these cavities with maser media7, the advent of
optical masers provided an enhanced sensitivity and a Fabry-Perot square
resonator with an optical maser medium to provide oscillations at both
clockwise and counter-clockwise frequencies and with an output beat
frequency proportional the angular rotation was proposed9.. Such beats
due to rotation were first reported by Mack and Davislo, an subsequently

by Cheoll, and by many other investigators. Some schematic diagrams of



optical resonent cavities are shown in Figure 1. These are closed path
Fabry-Perot structures with all flat or with one or more curved mirrors.

Fox and Litt

have shown that structures with diffraction losses possess
normal modes. Equations for the resonators shown in Figure 1 have been
developed by Collin's and by other investigatorslz. These almost plane

wave expansions msy be used with equation 4 to determine the beat frequency.

EQUATIONS OF MOTION OF THE CAVITY MODES

The quasi-modes developed for the cavities with diffraction losses
shown in Figure 1 cannot be expressed in simple analytic form over the
cavity. Fox and Li have shown that there is a similarity between TE wave-
guide modes and the TEM modes which occure in these partially open struc-
tures. 1In order to simplify the calculations it is convenient to use a
waveguide bent into a circle as showmn in Figure 2 and for which a simple
approximate normal mode expansion exists. A cavity with lossless walls
could be regarded as the ideal cavity for the photon rate gyroscope. The
normal mode expansion of = waveguide bent into a circle of large radius
R is approximately given by

P iq, F3 . ~a j
Bmg & B cunUe 0 Fmg™ G/ < Rmg)

Wop<? = 2 + (/R)° (6)

Ly 18 the transverse mode of the guide and is given by the solution of

the boundry value problem for the guide cross-section. M mRY be derived



from a scalar wavefunction%n where%n is a solution of

Vey,mn«»kﬁn ¢m=o um=-® xgradfz})mb/g—'

For the TE modes of a rectangular wave guide %mn is given by

‘ymn 2(1.xL) 3 cos(m_/]_‘_)% cos(_u) = (m 77'/Lx) + (n ;r'/L )2

6

q is an integer of the order of 10-, R the order of a meter, m and n in-
tegers of the order of unity, and Lx and 15, the order of millimeters.
ﬁ/)mn may be determined for other cross-sections. The cross-sections for
the open structures shown in Figure 1 can be approximated by using simple
harmonic osclillator wavefunctions for the transverse mode and this implies
that the transverse equation is of the form VYV 'f)mn + (k k y )fmn
O. A proper choice of k2 and ky based on the curvature of the mirrors
and the distance between the mirrors yields an expression for the oscilla-
tion frequency in good agreement with the integral equation development.
This similarity appears since the solution of the simple harmonic oscil-
lator equation yields (m + 1) and (n + 3) corrections to the resonant

frequency of the oscillator.

Using the three index notation for a normal mode the general equations

given by Heer5 »6 for the time dependent coefficients may be written as

ﬁ:'?:’%q" HHE = Hlmng’ ﬁlEg'P'q (7
7

ﬁ'ﬁ“}{m’*o E'mngs ﬁ'pg'_‘Ke €6 Bung - &R H'mnq




For small .2 the equation of motion for the time dependent coefficient of

motion for the time dependent coeffieicent of the normal mode Emnq is

given by
os ) P -] ¢ : 2
1 } 1 - 1 = - t - 1
Sung
The terms on the left are for a lossless cavity undergoing rotetion about

the z-axis at angular velocitydl . On the right hand side the first temm

is the macroscopic polarization or source term and the second term in-
cludes the cavity losses and other loads. If anq_ is chosen as a function
of frequency and complex, the frequency vulling by a load as well as load
losses may included in this single term. In the absence of a source or

loss term the resonant frequency of the cavity is given by
2 2 =
w [(}mnq + 2.0q/ =0

or to first order by

Wang 5 U/ - 2.9 )

This is in accord wiht the earlier expression for the frequency difference
between clockwise traveling waves, positive q, and counter-clockwise travel-

ing waves, negative gq,

A,/q:: (2rq/21r) = R42/ }q (10)

If the cavity axis and the axis of rotation are not parallel then the

beat frequency should be obtained using equation k. Por simple structures



with an angle )/ between the two axes, equation 10 is multiplied by

cos J/.

Only the g or peripheral dependence of the mode is effected by rota-
tion. Regarding this as a first order effect, the transverse waves are

effected in second or higher orders by rotation.

Single Mode Excitation

The general case is much too complex for ready analysis and the
excitation of the cavity in an almost degenerate single clockwise and
counter-clockwise mode is considered. This is the simplest and most
important case. If the losses of the system are small or the Q is
sufficiently large that the freguency separation between modes is large
compared to the bandwidth of the cavity, it is always possible to
tune the cavity for oscillation at a single mode. If this mode is

denoted as q with linear polarization, then

1 .
B M) 7w (11)

vwhere u is the linear polarization of the transverse mode and q is a

positive number. The electric field in the cavity is given by

Het) =mg®) ue™  vs (6) w9 (12)
(er )z (om)z

where in accordance with the earlier development




5, - favp-(em = a ctor)” (132)

Accdrding to equation 8 the source for mode (mng) or for E+qﬂt) is

P+q(t), where P+qﬁt) is given by
P, () = |av g-((aw)'% u etaf)* (13b)

The fields and polarization are real vectors and thi

[]
H
0
'8
o
M
]
(2]

E g(t) = Bx () 5 P_ (%) = Py (¢) (13¢)

Using equation 8, the equation of motion for this single may be re-

written as
av 2

. [ _ <1 ¢ ; &
Byq "Wy Big - 12R0E, = -€_ Py - dg Eq (14)

where d&g is the resonant frequency of the non-rotating lossless cavity.

The time dependence of the field in a cavity without losses or

gources, that is the right hand side of equation 1% is zero, is

E+q(t) = A' e"i( %'QQ)t + B e+i(a/o +-ﬂQ)t (15a)

The term with the A coefficient corresponds to the counter-clockwise
traveling wave and the term with the B coefficient to the clockwise
traveling wave. This notation will be used in the remainder of the

paper. Since &/, is large compared to the other effects, equation 14
will be examined for fields

Beg(t) = Alg)e " B(t)e 4o (15b)




where A(t) and B(t) are slowly varying functions of time. Further re-
duction requires an expression for P+q(1:) in terms of the election field

E+q(t) .

This is not the most general developement for single mode operation.
Linear polarization is used. If the canonical states of polarization

2 and Ei are used, then four terms are needed in equation 12. The space

modes are 3‘1_1 etiq(f a.ndgi e:th(f.



POLARTIZATION OF THE OPTICAL MASER MEDIUM

The polarization of the optical maser medium is investigated using
a procedure similar to that introduced by Lam%3 For convenience it is
assumed that the dominant interaction of a perturbing field with an
atom is between two energy levels a and b as shown in Figure 3. If
the hamiltonian of the interasction is of the form H = Ho + Hl(t) with

a time dependent matrix element
AV(t) = (a|Hy|b) = (v{Hja)” (16)

the phenomenslogical equations of motion for the bpilinear form of an

atom are given by,

- ('Xab - i%b)(aab + i (Ca.a. - ('bb) (17)
(’ba =fab
R R

fbb 'bebb - 1[v*fab '(aba V]* )‘b

The 7‘ 's and )\ 's are introduced in a phenomenlogical manner to cor-

o
&
|

+

respond to excitation and damping. This set of differential equations
may be placed in integral form by noting that the general solution to

the equation
= -Yx+ £(t)+ A

is x (t) = {x (¢,)- )«/xj V(o) Ay f avre T e

t
o]




Since only the steady state solution is of interest, t o is chosen at

- ©9 and the quantities of physical interest are described by the integral

equation,

oo

x(t) = 1/i + Ids e Ys £(t-s) (18)

The physical observables of interest are described by the integral form

of the density matrix,

o0
rab(t) = ifo ds' exp -( Yabﬁwab)s‘ V(t-s*) [(aaa(t-s')-(abb(t-s')]

. o _Ys'
raa(t) = Ra/ Ya+i[d5'e a® El*(t—s') rab(t-s‘)-{’ba(t-s') V(t-s')+}la(t-s']

(19)

ete.

)l contains the time dependent part of 1 and this is neglected in the

following. The experimental quantity of interest is rab and direct sub-
stitution yields

fab(t) = if?;s' exp -( Y i V(t-s'){( )WATED WA S

"

+fds"(e- Yas + e sz")(iv*(t-s'-s") rab(t-s'-s")-fc.c.)}

(o]
= ()S) (t) +r§,’) () + -~ - - - - - (20)

An interation solution yields the following first order and third order

terms




/(1) e
(sab (t) = 1( A/ ¥, - A/ ¥y) f 35" [exp -( Wopta )5 ] (t-5")
) o (21a)
(3) 0
fag (t) = -i( la/l(a- Ab/ b’b)c/’dS'dS"ds"' [exp -(xab+iwab)s] V(t-s')
o]

(e.. as +e- szn) {[exp -( ‘Ya-b"'i wab)sujv.x_(t_sy_sn) V(t-S'-s"-sm )_,_c.c:}
(21p)

Doppler Effect

Cab(t) is determined by the perturbation V(t) as seen by the atom.
Since equationsfor the classical fields and polarization are referred to
a frame of reference attached to the cavity, it is desirable to have
rab(_z_',t) in the same reference frame. If an atom enters state "a" at

time t, at position Je With velocity v, it contributes to (0 (3',t;y) if

Te =X - ¥(t-te)

The perturbation experienced by the atom with an electric dipole moment

(’ab is of the form
-1
V() = 5 e Eyponl®?) (22)

where_g(t') is the field determined by the moving atom. If §(_;',t) is the

cavity field at position r at time t, then
E(t") = Efrerult'-te),t7) = B(r-v(t-t'),t) (23)

is the relation ship between the electric field at the atom and the cavity

electric field E. Equation 2la and 21b for fab(t) give {"ab(_l_',t ;j{)

12




when V(t-8) —> V(r-vs;t-s) (2ha)

(oab(t) — (aab(f’t;l’) (2kb)

Only the component of the velocity in the direction of the traveling
wave is important for the doppler effect. In the circular cavity,
¥y=R z;P ﬁ} . The velocity distribution is given by the one-dimensional

Maxwell-Boltzman distribution,

H(y)ay —> W(§ )ag =(2ill'nk'l‘)% =P ‘gﬁﬁ i R (&)

For subsequent calculations the average of exps( iqrf s) over the velocity

distribution is needed. This is given by

(o] - 2
LT g) enbiage) - & MO (26)
where D2 = 2q2kT = Qgng - /7 2 Aj/pl-
mR2 m)a /_ZZ/ (261)

and m is the mass and ) the wavelength of the radiation.

Polarization

The macroscopic polarization _.13('1:,1:) is a statistical average over
the atoms in the vicinity of position r at time t. La.mbl3 has given a
detailed expression for the polarization. In this paper /\ is assumed
constant, the number of atoms per cubic meter or N is assumed constant,
and the distribution of velocities is given by equation 25 . With these
assumptions the polarization of a medium with atoms with two energy levels

a and b and with an electric dipole moment matrix element

13



Fha = Glerla) = gt (1)

is given by '

Plr,t)e N | ayw(y) [‘Oab(g,tsy)/gba+c-c-] (28)
This can be evaluated by direct substitution of 2ha into 2la and 21b to
obtain a‘b(:c',t,'v) to third order. The remzining terms are given by
equation 25 and 27. These will be discussed for important simple ex-

amples.

First Order Polarization for Single Mode Operation
Using the previous results the first order contribution to the

polarization is
-1 -1g®¢ , w’ ; i
PE}!) B Neﬁ_ WL NA fmf e~ taf [df Wy )ilﬁba

fis exp -( Y tiddy)s [(/g*ba- R)E, (t-s) exp +iaf -a¢s)

[&

+(}g~b -u)E* t-s) exp -i(qg -q¢ s) ]+C-C- (29)

This equation may be reduced by the following sequence of operations:
(a) Integrate over ?’ and use the orthogonality of expxiq{ to reduce
the number of terms; (b) Integrate over f and use equation 26a to in-
troduce the term exp(— 1/4 D2s2)into the integrand; (c) Write E+q(t-s)
in the f¥m introduced in equation 15b, integrate over s and omit all

non-resonant terms. Then the poleization may be written as

14




L),y - -1 / : -1 -1t +1 st
Prg (8) = - NETHA /Y - A/ ¥y et DT | 200 + 7¥Be
(30)
where Z is an abbreviation for the well known function used in the theory

of doppler broe.deninglh

oo
. . . . 2
Z( w - :{Ab, xab’D) = 1D‘£ds exp (i(wo- wab)s - Yabs -1/ D s2)

o« is the coefficient
o = fdA \3 .#ba\e (32)

Third Order Polarization for Single Mode Operation

(27

co N
(3) =3 -3 2 - 18"3c 1" o™ Y- "
Pig = N?»r;r{ Ao/ ¥y-do/%,) f dAdy ye q'f‘ :T W) -{1 ﬂ*bafds as"as'"(e" %5 4o Tos")
exp-(Y i, X 23)E+q(t-S')erp 1(aq -qfs’) %gu)Eiq(t-S')exp-i(qy-q«fS’)]
[exp-( LS} wab)é"(ﬁ,ag B4 (£-sts")exp-1(ag-af(s+s")) Yzu By o(t-s>E)exp i(ay -af( S"+s")>
(%g u ;;;Efq(t-S‘-S"-'S")exp i(qp-qf(s+s+s”) */é’;ca u Eiq(t-S'-S'LS“)exp-i(qf-q?( s+sts” )>
+ c.cC. + c.c. , 33

This equation simplifies for no atomic motion or for large doppler

broadening. These cases are considered seperstely.

15




A. TWo Atomic Motion

For no atomic motion, that is?= 0, equation 33 may be reduced by
the following sequence of operations: (a) Complete the integration
over c/’ . (b) Write E 1q in the form introduced by equation 15b ,
integrate the resonant terms over s"', s", and s'. Then the

. polarization may be written as

p(3) _ ;g3 2y
= Ao/Eo-ho/¥) (1/a+ 1/4,) ab
1+q —2? a b k =
F (W - w)2+¥2
(aa* + 2BB%)  Aet%%t 4+ (mer + 2aax) B e*lWot
ey, - &) +%y ey -ap) =¥,

where is given by £ .
2
. Large Doppler Motion
Far large doppler motion eguation 33 may be reduced by the following

procedure: (a) Ccmpjete the ¢ integration. (b) Perform the 50' integration,

note that the integrals are of the form 00
o

1
fds'ds" 6(s',d")exp-1D7(8"62)2 =~ 20°lys [ as' o(s"'s') §(s" =s')
o

[+]
or o

-2
fds‘ds" G(s',d") exp- 1,D‘?(s"' ‘)2 < ‘G(OO)\ L7 D
and that the dominant contribution is from integrals of the first type.
(c) Write E+q in the form introduced in equation 15b, integrate over

s' and s" and omit all non-resonant terms. Then the polarization is

(3) -7§- (A T¥e - ) (/Y41 /Yy) i BB* A e t¥% +  aax B e“’i“’o;
é Ia D b 1(wab- (,UO)+ {ab iTwab_ wo)'-_~¥ab
+ AA¥ A e-i &jot - BR¥ B+i wot
Yoo %o

35
16



Equation 34 gives the third order conmtribution to the polarization
for atoms at rest and equation 36 for atoms with large doppler motion.
It is expected that all other cases may be found between these two

extremes anﬁ that the polarization may be expressed as

t

~ 2 2y, ~1dbt 2 2, +iwt
€ P, (0, +C3lBl9A e + (cai+ce3em +cyB|%)B e “o
(37
For atoms at rest the C coefficients have the form
cj = c;j + iC" = const ( &gp- L) -i Yab
J 2 2
( Wp- ) + ¥y (38)

as
and Cl, Con, C3 differ in the choice of the constant term%indicated by

equation 30 and 34.

C, is given by equation 30 for the first order polarization and the
frequency dependence is given by the doppler broadening function
Z( & - Wy, yab,D). For large doppler broadening C; ~ 0 and Cj is of
the doppler form

1" yl . 2 2
C] o const exp -( &gy~ «wl)</o (39)

C2 and C3 are complex constants which range between the values‘given

by equation 34 for atoms at rest to those given by equation 36 for atoms
with larger doppler motion. For large doppler motion CLa O, Cé-ﬂs B/a;}
and Cg has theisame frequency dependence as given by equation 38. In third
order the saturation in the polarization of the ccw traveling wave is due
to both the ccw and ew traveling waves. This is apparent in equation 34
and 36 in which both AA* and BB* are coefficients of A ei‘uot. For large
doppler broadening Cg is almost frequency independent and Cg has the
frequency response given by equation 38. This is apparent in equation

36-in which BB* is the 27




coefficient of A e'iwot. Although this may seem surprising, it was

recognized Ily I.za.mb13 in his paper and is too & large extent responsible
for hole burning. The frequency dependence of the Cl coefficient is
comparable to the doppler width of the line while the frequency dependence
of the C3 coefficient is comparable to the natural width of the line as
indicated by equation 38. Thus the gain for &/, =W}, may be less than
for &/, #4/pp, @5 shown in Figure 4. The cause of the effect can be seen

by examining the following array.

s™ s! s" [(t-s'-s8"-s" Y(t-s'-5")| (t-s') e
(1) | +ieys™] +itgs'| os" - + - (AA*+EBB*)Ae-iw°t
(2)f{- " 1+ " " + - - "
3)- " |- "1 + - +  (BBrr2anx)cti%"
W+ " |- ] - + + "

First oniy rescaant terms are kept and this restricts the coefficients of

exp (ios) for s™,s", and s' to the values shown. The remaining signs

are for the sign of exp (i - -) in the product E(t-s')E(t-s‘s")B(tis'ss"-s"')
shown explicitly in equation 33. The use of the full array gives equation

34 for atoms at rest. For atoms in motion a rapidly varying phase term

exp(-t iq¢ s) must be considered. The dominant terms which survive the

average over the random phase rate ¢ are those for which s™ = s' and
equericy sensitive_ Wt
the 12 terms are reduced to k. Thepcoefficient of Ae 0" is givent

by one of the 33% terms of in row 1. Thus the first interaction with

18




the field at (t-s'-s"-s™ ) occurs with the B¥ coefficient of the c.w. wave,

the second interaction at {(t-s'-s") with the B coefficient of the c.w.

wave, and the interaction at (t-s') with the A coefficient of the c.c.w.

[ )
wave. The phase of this term is exp iq f(s"’-s'), and for s™ = s' sur-

vives the average over the random phase (}J ;®similar argument may be made

for the AA¥A term.

OSCILLATIONS FOR THE AIMOST DEGENERATE MODE

Ideal System

Equation 1% for the equation of motion of the field and equation 37

for the polarization of the optical maser medium may be used for the dis-

cussion of the ideal system. For this purpose it is convenient to use the

following notation.

Alt) =U e B(t) =v eV

Cp=Cf +iC] ; Cp=Ch+iCy ; Cg=Cy+iCq

(10)

The frequency dependence of the C's is given by equations 3k, 36, 38 and

39. If terms of the type U and u are regarded as small, and exp +i(u- &t),

is assumed almost orthogonal to exp i(v+ wot) , then equation 14 and 37 may

be written as

. 2 2
= 1
u=10q+3 “"o(ci + CéU + c:j;v )
v=Qq-3 wc+ cro® + c've)
o — -1 1" 11 2 11, 2
X = - wo(Q +Cy+CU +C3V)U
bl ‘l " " 11"
= - Wy(Q +Cl+c3 +02v2)v

19
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[ J L
A steady state constant amplitude requires U = O = V and an obvious

solution for the amplitude is
2 - 1 " ”"
v = V¥ - (@) /(cprey) (42a)

The two frequencies of oscillation are ﬂ/ccw = Wo-ﬁ and 11/°+ v = .,

and the beat frequency is

AW = @~ &, =u+v=2Q2q (haw)

To this degree of approximation the c.w. and c.c.w. modes are equally
excited, the frequency of each mode is shifted an equal amount in the
same direction by the frequency sensitive C' terms and the amplitude

terms. The differercein frequency between the two modes is 2./2q and is

not sensitive to the effects of saturation for the ideal system.

Equation 42a gives the stored energy energy, and the power output

of each mode is

P, = Poow = WWQ= w €°U2/Q = - &, w/a)(q‘l+c‘l’)/(cg+cg) (Lk)

For extreme doppler motion C{ has the doppler frequency response given

3 has the

response given by equation 38 and the frequency response of the power

by equation 39 and for (Q,'1+C£)< O the system oscillates. C

output is of the form

2/m2
(-Q'1+const o~ “hp-eb) /D )[( Wean- Wo) + 'Xa;qaj Xah
[( “an %)2 ta Yib]

(45)

. 13
and shows the dip in power ocutput discussed by Lamb ~. A typical power
output curve is shown in Figure 4. "Frequency pulling” occurs as shown

by equation 43 and for (2= 0



( G )] W = Hch + chv® (462)

vhere &/, 1s the frequency of oscillation for the ..c.w traveling wave
and 4/, the center frequency of the cavity. (Q71+C}) is the linear gain
of the oscillator. This is in agreement with the expression introduced

by Tounes'* when (Q"l'l'Ci'_) ~Qql- AWy /o) and 2 b/a. = Aw g

V= v (Ve ) A7/ AV o
Equation 42a gives the obviocus and desireable solution to the

problen. The stability of the solution is now examined. In order to

simplify the discussion of the problem the following notation is in-

troduced,
2
X=U Y = v2 (472)
- " " - 1 -1 " - " -1
h= - wo(Qle]) g = -C(Qeey) £= -cy(eH+ey)

(47v)

and equation 4lc and 414 may be written as
X = h(1 - &X - fY)& (k1c')
Y = h(1 - £X - g¥)Y | (k1a")

Stable solutions with X = O = Y are desired. Following the standard

procedure15 in phase trajectories the equation

ar = (1 - X - g¥)Y = P{X,Y) (48)
ax (1-@-%}‘( c‘z’é'ff?f

Q. The

W

is examined. The singularities of interest occur at P = O

singularities are shown in Figure 5 and occur at (X = 0, Y = 0),

H
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(Xx=0,Y=1/g), (X=1/g, Y=0) and (X =Y = (g+f)'l). This latter
singularity is of primary interest. The lines (1-fX-g¥ = 0) and
(1-gX-fY = 0) are shown in Figure 5a and 5b and the path of the phase
trajectory is horizontal as it crosses the one line and vertical as it
crosses the other. The phase trajectories may be sketched as shown in
Figure 5 or the stability may be examined near (g+f)~l = X, =Y, by ex-
panding about the singularity with the substitution X = Xo +xand Y =

Yo + y. Either technique indicates that the singularity is stable if

f<g and unstable if £ > g.

From this discussion it is apparent that stable oscillation at two

frequencies ¢, and oy _Tequires
Cy > cg (48b)

This occurs for large doppler broadening. For atoms at rest C§< C'3'

and oscillations at two frequencies is not stable. Even for large

doppler broadening Cé' is frequency sensitive and as the cavity frequency
7, is tuned near Vabs C's',z Cs and the two lines coincide and this

is very near an unstable point for the system.

In this ideal case and for large doppler broadening, Cp > Cg and
U2 = Ve is a stable singular point and stable oscillations at the two
frequencies 7/cw and 7/(:(:w occur. Equations 42a and 42b are appro-
priate. Beats due to rotation are expected as the cavity frequency 7 o
is tuned over the entire doppler width. Only near 37, = 7/ab does the

system approach an unstable point.




Bias Beats

Equation 14 is now extended to include an external source which
couples into the cavity through a unidirectional coupler. Figure 5
shows a unidirectional coupler which feeds the energy of the c.c.w. mode

into the c.w. mode, but not in the opposite sense. Equation 14 may be

written as

s o . - _ 2 -1 . e +iwot
Biq ¥ Wo Byq - 32Ra Eq = U, €, RQ""—%/ Brq * ‘iQw’ * (49)
B

QB is a measure of the coupling or power transfered and is regarded as
small compared to Q in this calculation. Equation 4Oa, 4Ob, 40Oc remain

unchanged for real Qg and 404 is modified to read

N = - /l/o(Q-l+Ci'_+C§U2+C:éV2)V+ WOQB'IU (50)

Steady state conditions require I.J = \'I = 0. U2 and V2 are related by
2 2 1 " -l
UT -V = (Qgle-cR)) U/ (51)

and the beat fregquency between the two waves is

[‘/cw- {‘écw =utv=282q+ A u/bias (518')
1 | 2 |
4 w‘bias =3 00(02-03)(02# ) (51p)

For small coupling, QB>> Q, the shift in U is small and U/Vf_\_vl, and

the bias beats are approximately given from equations 5la and 51c by
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~f
A fopopliogen,~ 3 wgft w - w o,

ias

(51c)
This equation is only valid for the cavity frequency 7/0 well away
from the atomic frequency 7/ab 3

creases as the cavity is tuned awsy from the atomic frequency. Mr.

but does indicate that the bias de-

Little, a graduate student in our laboratory, has observed this effect

as the cavity is tuned through the stomic frequency Vab‘

In order to examine this problem in some detail the notation in-
troduced by equations 47a and 47b and 4lc' and 41d' is used. The

equations of interest may be written as

X = h(1 - X - f1)X - Q(%,Y) (522)
» 1
Y = h(1l - fX - g¥)Y + m(XY)® = P(X,Y) (52v)
py
and dY = h(1 - X - g¥)Y + m(XY)® = P(X,Y)
ax h{1l - gX - fY)X UX,Y
is the slope of the phase trajectory.
m = WO/QB n = a/o/QA (52¢)

Some of the singularities are shown in Figure 6a. Again the singularity
near X = Y or 02 = V2 is of primary interest. The effect of the coupl-
ing term is to change the point of intersection such that U2 - V2;£- o,
and as indicated by equation 51b a bias beat frequency is observed in

the absence of rotation. The system is more sensitive to tuning the

2k




cavity near the atomic frequency 7/ab » and it is apparent from Figure
6b that the two lines may no longer intersect at any point. Thus as the
cavity is tuned from a frequency lower than 7/a.b or higher than 7/ab
Figure 6a applies and bias beats are given by equation 51d. As ’)/o
approaches 7/ab , Figure 6b is more appropriate and a stable singularity
does not occur. The position of the singularity is quite dependent on
QB or the coupled power. As m/h increases the two singularities rapidly
approach each other. Q’B may be estimated from the coupled power P]3 =
(b
Q = Q P/Pp = @/ (53)

where PL is the power in the maser beam.

If power is scattered from each traveling wave into the other, then
equation 4lc is 21s0 modified and contains a term similar to equation

52a. The equations of interest are of the form,

X

t
1]

h(1-gX-fY)X + n(XY)% P(XY)

(54)

1
2

Y = h(1-fX-g¥)Y + m(XY)2 = Q(XY)

and the singularities formed by the intersections of the curves P(X,Y) =
0 and Q(X,Y) = O are of interest. Figure 7a, and Tb are sketches of cases
which occur as the cavity freqency #, is tuned through 77, . If the
coupling is large intersection may not occur and stable oscillation at

two frequencies is not possible.

The coupling between the cw and ccw traveling waves which is due to
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scattering may be estimated in the following manner. Suppose the
fraction of the power scattered is Py = ?PL or Py = ; P . In order
to be effective the radiation must fall within the angular spread of

the maser beam Aﬂ- ~ (spot size)/lrrLe. The spot size is of the order

of LA and the coupling Qg or Q, may be estimated from
Py/R, = U= FAR ~ F ) s (55)

-6
For ?: 0.01, >\ 10 m, L~1 a coupling QB of the order of 109Q,

is expected. This may be used with equation 51lc to estimate the bias.




Entrainment of Frequency

A large class of oscillator problems are of the form
L X . ” 2
y+ wﬁv = & - byd + W, Y cos( tt+e) (58)

vhere a is the linear gain term, b;'ra the saturation term, and the final
term on the left hand side the effect of an external source. This
problem has been examined in detail by Andronow and Wittls. In the ab-
sence of the external source, self oscillation occurs for a>0, and
then y(t) = A cos( Wyt f) The smplitude of oscillation A° = loa/3w§b.
If the external source term is included the frequency of the oscillator

is entrained or "locked" to the frequency of the source if

- o) < [ (aw/a)e /2] 2 (5%2)

Since a is comparable or less than &/Q, an estimate for entraimment
can be made by ma.klng this substitution. Then the upper limit for the
bandwidth for entrainment is approximately related to the cavity width
by
AV cing < A¥(P/7)? (590)

For AV ~ 10° ana P /P~ 107® locking is expected in the kilocycle
range. Smaller coupling and operation at lower povwer levels, smaller

a, reduce the bandwidth for entrainment. If a = -#/(Q1+C}) is used
in equation 5Ja and then equation bk is used, a more exact determination

of the locking frequency can be made. An approximate alternate form of

&



Ll
|- w] < 330, P /P)? (58¢c)

and 3b is associated with 3b = w(c; + Cp)

This anaylsis does not constitute a proof that entraimment occurs
for the ideal oscillator, but does indicate that coupling between modes
by external objects can introduce a condition similar to that for the
entraimment of an oscillator by an external source. An estimate of
(Pe/PL) for the unidirectional effect permits an estimate of the

frequency region in which a more exact analysis is needed.

EVALUATION OF THE OPTICAL MASER PHOTON RATE GYROSCOPE

Cavity Resonator Design

Some of the cavity designs which are being used for the photon rate
gyroscope in the infra-red and in the sotical maser spectral region are
shown in Figure 1. Although four mirrors were used in the initial de-
signs, the three mirror ca.vity has many advantages. Figure 8 shows the
square Fabry-Perot resonator which was used by Cheo and which is now
modified into a three mirror system by Little. In the plane of the os- l
cillator the three mirror cavity has closure properties for the rays
in this plane and the mirror adjustments for tuning are sbout 1/10 less
sensitive than for the mirror adjustments perpendicular to the plane of
the oscillator. Figure 9 shows a more symmetric three mirror system
with a two mirror recombiner being used .by Bupp in our laboratory. Cavi-

ties with 8ll flat mirrors or with one curved mirror to reduce diffraction
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losses are used. The mirrors may have either a metallic reflecting
coating in the infra-red region or a multi-layer dielectric coating in
the 0.5 to 1 micron spectral region. Internsl reflecting prisms are

being used rather than mirrors in some designsls.

The cavity is of course subject to external noise vibrations and
thermal noise vibrations. The dominent effect on the shift in frequency
is the change in peripheral length and AV/¥ 2 AL/L. The eleastic
energy associated with this deformation is 3 Ey V(A 1./L)2 and this is of
the order of kT for thermal noise. Thus the cavity frequency is subject

t0 noise fluctuations of the order of
— 1 1
(AV%)* =y (21/E¥)? (58)

This is of the order of lcps for most materials and reasonable volumes,
and does not introduce problems in the present designs. The individual
mirror mounts must be reasonably rigid against displacement. In one

design an angular adjustment of 10‘1‘ radians is sufficient to tune

through the region of b; s beats}f ZE:C::e;:a.l noise may be considered as
raising the thermel noise effect and can by considered by changing T to
a higher effective temperature in equation 58 The various mirror mounts
and mounting tables may have troublesome resonant frequencies, but these

are not analysed here since each system is a special case.

If £ is the fractional loss per pass around the path, then the cavity

bandwidth or Q is

z9




AV _ < e/t = vQt (59)

where L is the cavity length, 4 7] the bandwidth of the cavity, and
c the velocity of light. Since £~ 0.01 and L ~ 1 meter for most

i 6 12
designs, 4 7/L "~ 10" for the cavities under consideration. Collins

has given a formula of the type
anq = (¢/L) | a+ 1/2 (n+}) arc cos (1-L/R cos@ )

+ 1/2 (m+3) arc cos (1-L cos & /R)+: g(n= odd)]
(60)
for the resonant frequency of a triangulsr mirror system similar to that
shown in Figure §. R is the radius of curvature of the curved mirror
and L the path length. The frequency separation of adjacent modes of

the same q and even or odd n is ¢/2L and is of the order of 100 Mc for

typical cavities. The transverse modes are separated by approximately
15 Mc for ﬂ= 30o and L/R ~ 1, and the mode separation is large com-

pared to the cavity width.

Maser Media
The gain or maser media is now considered. The doppler width

from equation 26b,

1 i
2 2

AV = (0/7)(1n 2)7 = k.3 x 109/ \ (mass mumber) (1))

where >\ i1s in microns. Typical values are given in Table I. At the
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line center, 77, = Vap» the linear gain term for a plane wave is re-

lated to c{ by

and C{ is given by equation 30

(1linear gain) = 27 Ci’_/ A

€04 =N A of ¥ o - A/ V) r3(1/3 ‘M Ry

(69)

63)

Wwith N( )‘a/); - Ab/yb) = (I‘Ie/g2 - l/gl) equation 62 may be placed in

a form similar to that used by Faust and Mc Fa.rlanel .

T

the lines of primary interest that the linear gain is

They find for

1
(1inear gain) = 1.76 x 1077 S(mass mzmber)z(l\le/g2 - 1/31)

(6M)
Mok e }z S is the line strength and appears to be related to the electric dipole
[(atipt L)” - matric element by »“Ffm‘e - _s(eeaﬁ) - 0.72 x 10705, Table T contains
some typical values measured or used by Faust and M;:Fa:rla.ne. For extreme
doppler
, ‘ Table T
Line ; Lin;g.i Ga.in‘N( )a/ Ya - 1b/ Xb) S A"’g ci ;
Ne 1.152 | 0.12 1.5 x 10t* 10 {8.3x10 | 2x 1078
Ne 3.392 L 9 " 56 2.8 " j2s0 "
Ne 0.632 | 0.053 i3 " .52 | 15 " | o.5
Xe 2.026 | 0.76 2.6 " 5 1.8 " (a» "
Xe 3.508 16 1 " 73 |11 " 900 "

3/



broadening the ratio of C%/C_{ is given for 3 = 25, by

G/Ci = “h,a\ 2/31)12 72~ 0% (68)

% is the decay rate of the energy levels and is relsted to the ndjral
width by 2 b’ = A7;. 117;1 ~ 70 Mc for the 1.15 micron Ne linell.
The matrix element and ¥ are interdependent and a simpler form for
equation 6% should be possible.

The spectral purity of the maser oscillation is limited by
spontaneous emission. The ultimate theoretical 1limit is given bylh

Ayosc & 8rh7 (A'/L)z/ P (66)

Equation 66 yields at 1 micron
A _Vosc ~ 1073 cps

1
Javan, Ballik and Bond 4 estimated the linewidth at 2 cpg. Since

the beats are between two modes in the same cavity, first order
dimensional changes are not important }a.nd this high spectral purity
should permit the observation of beats of ¥ the order of this width.
Mechanical vibrations are the most important limitation on the lower
limit of the ideal system and this of course assumes that 1ock§lng

can be reduced in the ideal system to an arbijrarily small value.
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Optimm Design Considerations

Stable oscillation at two frequencies occurs in the ideal system for
Cﬁé‘) Cg and therefore a maser medium with large doppler broadening is
necessary. Since the non-linear problem posed by equations 4O has not
been solved in detail, it cannot be stated with certainty that for
frequency separation below a certain level that entraimment will occur
between the ccw and cw modes and that oscillation occurs at a single
frequency. If freguency entrainment ocours due to whaidirectional coupl-
ing of the power of one beam into the other the pheomena of blas beats
occurs and a problem similar to the entraimment of an oscillator by an
external source occurs. Equation YJc suggests that the bandwidth for
entrainment may be reduced by selecting a small value for the (C§+C§)
coefficient and a low level for the oscillator power. The cavity Q
should be as large as possible or the reflecting properties of the mirrors
of the best quality. Furthermore any properties of the mirrors, Brewster
angle windows, or other objects in the maser beam path which cause uni-
directional coupling of power should be minimized. In order to avoid
objects in the path the design shown in Figure 9 does not have Brewster
angle windows, etc., but is entirely enclosed. The maser beam path is
free from foreign objects, dust, moisture, etc. and the only sprfaces are

the mirrors.

Some recent research by Little indicates that even the maser tube

may be effective. In the apparatus shown in Figure 8 and operating at
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' 3.39 microns, it was found that the insertion of an ordinary quartz
tube in the beam path enhanced the power level of oscillation. The
increase was proportional to the tube length. This was interpreted

as small angle refiection, and for these very small angles the interior
walls of the tube form very high quality surfaces. Further research by
Little indicated that pyrex gave the largest effect and inconel metal
tubes were éompuable with quartz. PFor tubes 4.5 mm in diameter the
power level of oscillation was attemuated, at 6 mm the power level
could be increased by a factor of 3 with sufficimnt length of tubing,
and at 7.5 mm the effect of the tube was negligble on the power level

of oscillation. A 6 mm tube with a rough internal surface reduced the signal.

EXPERIMENTAL APPARATUS
A series of slides will be shown of the experimental apparatus.
Tuning procedures, apparatus construction, and overall operation

will be discussed with these slides.
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(See equation l&8§
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