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An Evaluation of the Optical Maser Photon 

Rate Gyroscope* 

C.V. Heer 

Department of physics, Ohio State University, Columbus, Ohio 

The measurement of absolute rotation with electromagnetic radiation 

was suggested by Michelson' i n  1904 on the basis of the "ether". 

vations of subsequent investigators' confirmed the measurement of rotata- 

Obser- 

t i on  by using an interference technique, and i n  1925 Michelson and Gale3 

succeeded i n  measuring the angular rotation of the earth with an optical 

system approximately one kilometer i n  diameter. 

general relativity it was shownthat problems related t o  the transmission 

of electromsgnetic radiation i n  accelerated frames of reference were more 

properly treated within the fkamework of general re la t ivi ty .  

this viewpoint the author pointed aut i n  1961 that the degeneracy between 

clockwise and counter-clockwise traveling waves i n  a resonant electro- 

magnetic structure is  removed by rotation and an angular frequency differ- 

ence between the two  modes of 2ma would occur i n  a cylindrical cavity4. 

The name "Coriolis-Zeeman" effect for a photon was suggested during the 

presentation of the paper, since for an electromagnetic cavity with 

cylindrical. synnnetry or other suitable shapes, the enerQy transformation 

With the advent of 

Adopting 

fo r  a photon is  given by h y s  hvo + &=&. 2 is  the orb i ta l  angular - 
\ 
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mnentum of the  photon about the  symmetry axis and R is  the angular 

velocity of the cavity. If m is  the m b e r  of nodes, Lz = n# and 

d-J= aJ2. 

In  subsequent papers a formal development fo r  the resonant f’re- 

quencies of an electromagnetic cavity i n  an accelerated frame of 

reference was gtven, 5 p 6  TllP resxifs of these papers are w e i z e d  for 

t h i s  paper. 

the z-axis, for  Cartesian ordering of the coordinates Maxwell’s equations 

have the i r  convential appearance i n  the m. k. s. system of units, 

If a system rotates with angular velocity & =.R.$fi about 

div S = 0 curl  c E + 7 B / + 2 t  - = 0 

CUrl E - ap/?t = J div = p 

+- 

\ .-- 

The constitutive equations are modified by roL,ation and are given t o  

first order i n i 2  by 

I n  the short wave length linit these equations are equivalent t o  an index 

.of refract ion 

where 8, is  a unit  vector i n  t h e  direction of propagation. 

has the  effect  of making eventhe vacuum appear anisotropic. 

Rotation 

Equations 

2 



2a and 2b are the constitutive equations Telating the fields. 

current J i s  the source or detector term and is  associated with the 

source and detector attached to  the cavity, that i s  the electromagnetic 

cavity, source, and detector are all i n  the same rotating f h m e  of 

reference. The explicit  dependence of J on the magnetic dipole currents 

and electr ic  dipoles may be shown by writing J as J + curl M + a P / - E t .  

If the source o r  detector current i s  of the ohmic type and proportional 

t o  the electr ic  field, that  is @E or E"E, then the correction due t o  

rotation is of &(a2). 
conventional form for the f i r s t  order approximations used i n  t h i s  paper. 

If the  f ie lds  are expanded i n  a set of orthonormal f'unctionssa and$a 

for  a2= 0, the Frequency spl i t t ing between the degenerate modes which 

i s  introduced by rotation is 

The 

'r 

1c 

-.,- - - rlLl 

Thus the source and detector terms have the i r  

Although our i n i t i a l  interest was i n  the microwave cavities and the 

enhancement of the Q of these cavities with maser med ia7 ,  the advent of 

optical  masers provided an enhanced sensit ivity and a F'abry-Perot sQusre 

resonator with an optical maser medium t o  provide oscillations at both 

clockwise and counter-clockwise frequencies and with an output beat 

frequency proportional the angular rotation was proposed% 

due t o  rotation w e r e  first reported by !JI~& and Davis'', an 

by &eou, and by many other investigators. Some schematic 

Such beats 

subsequently 

diagrams of 
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optical resonant cavities are shown in Figure 1. These are closed path 

Fabry-PerOt structures with all flat or with one or mre curved mirrors. 

Fox and Li' have shown that structures with diffraction losses possess 

norm&l modes. EQuations for the resonators shown in Figure 1 have been 

developed by Collin's and by other investigators12. These almost plane 

wave expansions nmy be used with equation 4 to determine the beat frequency. 

EQUATIOl?S OF MO'I'ION OF TBE CAVITY mDES 

The quasi-modes developed for the cavities with diffraction losses 

shown in Figure 1 cannot be expressed in simple analytic form over the 

cavity. 

guide modes and the TJN modes which occure in these partially open struc- 

tures. 

waveguide bent into a circle as shown in Figure 2 and for which a simple 

approximate normal mode expansion exists. 

could be regarded as the ideal cavity for the photon rate gyroscope. 

normal mode expansion of a waveguide bent into a circle of large radius 

R is approximately given by 

Fox and Li have shown that there is a similarity between TE wave- 

In order to simplifi the calculations it is convenient to use a 

A cavity with lossless walls 

The 

-% is the transverse mode ofthe guide and is given by the solution of 

the boundry value problem for the guide cross-section. -5 nay be derived 

4 



f r o m  a scalar wavefunction% where% is a solution of 

For the TE modes of a r e c t w  wave guide pmn is given by 

1 
= 2(L& cos Y mn 

6 qis an integer of the order of 10 , R the order of a meter, m and n in- 

tegers of the order of unity, and Lx and the order of millimeters. Ly 
?+, may be determined for other cross-sections. The cross-sections for 

the open structures shown in Egure 1 can be approximated by using simple 

hanoonic oscillator wavefunctions for the transverse mode and this implies 
2 2  2 2  

+ (k, x + ky y vm= 
based on the curvature of the mirrors 

that the transverse equation is of the form 7 Ym 
0. A proper choice of 

and the distance between the mirrors yields an expression for the oscilla- 

tion frequency in good agreement with the intern equation development. 

This similarity appears since the solution of the simple harmnic osci l -  

lator equation yields (m + 3) and (n + +) corrections to the resonant 

frequency of the oscillator. 

Using the three index notation for a normal mode the general eqyations 

given by Heeg'6 for the tine dependent coefficients may be written as 

5 



. 
For SmSIlQ the  equation of motion fo r  the time dependent coefficient of 

motion for the t i m e  dependent coeffleicent of the normal mode L q i s  

given by 

!&e term on the left  m e  for a_ l~sslesc cavity m3erming m%et%m abwt 

the  z-axis at angular velocity&. On the right hand side the f i rs t  term 

i s  the macroscopic polarization o r  source term and the second term in- 

cludes the cavity losses and other loads. 

of frequency and complex, the f’requency pELing by a load as w e l l  as load 

losses may included i n  t h i s  single tern. 

loss term the resonant frequency of the cavity i s  given by 

If kq is  chosen as a f’unction 

I n  the absence of a source OF 

or  t o  first order by 

This is  i n  accord wiht the earlier expression for  the frequency difference 

between clockwise traveling waves, positive % and counter-clockwise travel- 

ing waves, negative q, 

If the cavity axis and the  axis of rotation are not parallel then the 

beat frequency should be obtained using equation 4. For simple structures 

6 
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with an angle d between the two axes, equation 10 is  multiplied by 

cos 3'. 

Only the  q or  peripheral dependence of the =ode is effected by rota- 

t ion.  

effected i n  second or  higher orders by rotation. 

Regarding t h i s  as a first order effect, the  transverse waves are 

Single ?lode Excitation 

The general case i s  muchtoo complex for  ready analysis and the 

excitation of the cavity i n  an almost degenerate single clockwise and 

counter-clockwise mode is  considered. This i s  the simplest and most 

inportant case. 

sufficiently large that the frequency separation between modes i s  large 

compared t o  the bandwidth o f t h e  cavity, it i s  always possible t o  

tune the cavity fo r  oscil lation at  a single mode. 

denoted as q with l inear  polarization, then 

I f  the losses of the system are small o r  the Q i s  

If t h i s  mode is  

where u is  the l inear  polarization of t h e  transverse mode and q i s  a 

positive Ilumber. 

- 
The electric f ie ld  i n  the cavity i s  given by 

There i n  accordance wi th  the earlier development 

7 



. 
Accdrding t o  equation 8 t h e  source fo r  mode (mnq) o r  f o r  E (t) is  

P ( t ) ,  &ere P+q(t) i s  given by 
+P 

+Q 

The fields and polarization are real vectors m2 this requires 

Using equation 8, the equation of motion for  t h i s  single may be re- 

w i t t e n  as 

b' E 2 -1 .. a- 

p+q - 0 +q E+q +Wo E+q - i 2 R  qE+s = - eo 
Q 

where W is  the  resonant frequency of the non-rotating lossless  cavity. 
0 

The time dependence of the f i e l d  i n  a cavity without losses o r  

sources, that i s  the right hand side of equation 14 is zero, is  

The term with the  A coefficient corresponds t o  the counter-clockwise 

traveling wave and the term with the B coefficient t o  the  clockvise 

traveling wave. This notation w i l l  be used i n  the remainder of the 

paper. 

w i l l  be exmined for  fields 

Since W0 i s  large compared t o  the other effects,  eqyation 14 



. where A ( t )  and B ( t )  are slowly varying functions of t i m e .  

duction requires an expression f o r  P 

Fbrther re- 

( t )  i n  terms of the election f i e ld  +q 

E+qW 

"his is not the most general developement for single mode operation. 

Linear polarization i s  used. 

I& andxf  are used, then four terms are needed i n  equation 12. 

modes are efiqf and $iqY'. 

If' the canonical states of polarization 

The space 

3 
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POLARIZAlTON OF TME OPTICAL MASJ3R MEDIUM 

The polarization of the optical maser medium i s  investigated using 

a procedure similar t o  t h a t  introduced by d? For convenience it is  

assumed that the dominant interaction of a perturbing f i e ld  with an 

atom is  between two energy levels a and b as shown i n  Figure 3. If 

the hamiltonian of the  interaction is  of the form H = Ho + 3(t) with 

a time dependent matrix element 

the phenomenalogical equations of motion for the b i l i n e a r  form of an 

atom are given by, 

The d ' s  and 

respond t o  excitation and damping. 

may be placed in integral form by noting that the general solution t o  

' s  are introduced i n  a phenomenlogical manner t o  cor- 

This set of differential  equations 

the equation 

a 
X =  

is  x (t) = [x 

-'dx + f ( t )+X 



. 
Since only the steady state solution is  of interest ,  to i s  chosen at  

- and the quantities of physical interest are described by the integral  

, equation, c- 

x( t>  = A/$ + $as e - d s  f(t-s) 

The physical obsemables of interest are described by the integral form 

of the  density matrix, 

(19) 
etc.  

Al contains the time dependent part of ), and t h i s  i s  neglected i n  the 

following. The experinental Quantity of interest  i s  rab and direct sub- 

s t i t u t ion  yields 

An interation solution yields the following first order and th i rd  order 

terms 



Doppler Effect 

( t )  is determined by the perturbation V ( t )  as seen by the atom. e ab 
Since eqpationsfor the classical  f ields and polarization axe referred t o  

a fYame of reference attached t o  the cavity, it is  desirable t o  have 

e,b(i,t) i n  the same reference frame. I f  an atom enters state "a" at 

time te at posi t ionze with velocity J ,  it contributes t o  

The perturbation experienced by t h e  atom with an electr ic  dipole raoment 

tab i s  of the  form 

(22) 
-1 

v(t ') = -;k &b8zatom(t1) 

where E( t ' )  i s  the field determined by the moving atom. 

cavity f ie ld  at position r at time t, then 

If E ( r , t )  is  the * .t- 

- 

5 s  the  relation ship between the electric f i e ld  a t  the atom and the cavity 

e lectr lc  f i e l d  E. Equation 2la and 2lb for  fab(t) give (?ab(z,t;z) 

12 



when 

Only t'ne component of the velocity i n  the direction of the traveling 

wave is important for the  doppler effect. 

v = R?f$ . The velocity distribution is given by the one-dimensional 

Maxwell -Bolt zman di str ibut ion, 

I n  the circular cavity, 

2- 

For subsequent calculations the average of expa(iqfj s) over the velocity 

distribution i s  needed. This is given by 

where 

and m i s  the  mass and the wavelength of the radiation. 

Polarization 

The macroscopic polarization P( r , t )  i s  a s t a t i s t i c a l  average over 
C r  

t h e  atoms i n  the vicini ty  of position f at t i m e  t. Lamb13 has given a 

detailed expression f o r  the polarization. I n  t h i s  paper a is  assumed 

constant, the  number of atoms per cubic meter o r  11 is  assumed constant, 

and the  distribution of velocit ies i s  given by equation 25 

assumptions the polarization of a medium with atoms with two  energy levels 

a and b and with an e lec t r ic  dipole moment matrix element 

. !Eth these 



is  given by 
( 28) I [p(_r.t ;qgba+c.C' * I C  p(r,t)c= NJ- d-JT\r(X:) ). 

This can be evaluated by direct substitction of 24a into 2la and 2lb t o  

obtain rab(r, t ;v) t o  third order. The remzining terms are given by 

eqyation 25 and 8. 

amples. 

These w i l l  be d-iscixssed for izrt.anfr. s-le ex- 

First Order Polarization f o r  Single Mode Operation 

Using the previous results the f i rs t  order contribution t o  the 

polarization is  

+ ( f i22 )qq( t - s )  exp -i( 97 -qf s) +c.c. 1 1  
This equation may be reduced by the following sequence of operations: 

(a) Integrate over and use  the orthogonality of exp+iqtf t o  reduce 

the  number of terms; (b) Integrate over and use equation 26a t o  in -  

troduce the term exp(- 1/4 $,*)into t h e  integrand; (c)  Write E (t-s) 

i n  the fe, introduced i n  equation 15b, integrate over s and omit all 

non-resonant terms. 

+9 

Then the poleization may be written as 

14 



( 30) 

where 2 is  an abbreviation for the w e l l  known f'unction used i n  the theory 

of doppler broadening 14 

o( is the coefficient 

Third Order Polarization for Single Mode Operation 

c 

+ C . C .  ] + C . C . )  33 

This equation simplifies for no atomic motion or for  large doppler 

broadening. These cases are considered separetely. 



A. IVo Atomic Motion 

For no atomic motion, tha t  i s  = 0, equation 33 may be reduced by 9 
the  folloKing sequence of operations: 

over 9 . (b) Write E i n  the form introduced by equation 15b , 
integrate the resonant terms over s'", s", and 6 ' .  

(a) Complete the  integration 

+Q 

Then the  

- - polarization may be written as 

B. Large Doppler Motion 

Fcr large doppler motion e-tion 33 may be reduced by the  fo1lowi:lg 

procedure: (a) Ccnrpbete the qintegration. (b) Perform the 4 integration, 

note that the integrals are of the form 

l d s ' d s "  G(s',$")exp-~D2(e"l-e3)2 fr 

00 bo 

fdsl G(s":s ' )  g s l '  = s ' )  

0 0 

ds'ds'' G( s ' , ~ ? ' )  exp-iiD 12 (s% ')* .< b(OO)\ 4 P O - *  
Or le 
and that the dominant contributinn i s  from integrals of the  f irst  type. 

( c )  

s '  and s" and omit all non-resonant terms. 

Write E+q i n  the form introauced i n  equation 1%, integrate over 

Then the polarization i s  



Eqyation 34 gives the third order contribution t o  the polarization 

for atoms at rest and equation 36 for  atoms with large doppler motion. 

It is  expected that a l l  other cases may be found between these two 

extremes and that  the polarization may be expressed as 

For atoms at rest the C coefficients have the form 

(Bbr and C1, C2, C3 differ i n  the choice of the constant termp,indicated by 

equation 30 and 34. 

C1 is given by equation 30 for the  first order polarization and the 

frequency dependence is given by the doppler broadening function 

Z(  w0- Yab,D). For large doppler broadening C; o and CY i s  of 

the doppler form 

(39) Cy ," const exp -( b i b -  U.o) 1 2  /D 2 

C2 and C 

by equation 34 for atoms a t  rest t o  those given by equation 36 fo r  atoms 

with larger doppler motion. 

and C" has the  same frequency dependence as given by equation 38. 

order the  saturation i n  the polarization of the ccw traveling wave is  due 

t o  both the ccw and cw traveling waves. 

and 36 i n  which both AA* and BB* are coefficients of A e i l"/ot . 
doppler broadening Cz i s  almost frequency independent and C; has the 

frequency response given by equation 38. 

36 i n  which W is  the 

are complex constants which range between the values given 3 

-1 
0, C; * d,, 2- For large doppler motion C' 

I n  third 3 

This i s  apparent i n  equation 34 

For large 

This i s  apparent i n  equation 

17 
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coefficient of A e -iwOt. Although this may seem surprising, it was 

recognized by Lamb13 i n  his paper and is too a large extent responsible 

for  hole burning. 

comparable t o  the doppler width of the l ine  while the fhquency dependence 

t 

The frequency dependence of the C1 coefficient is 

of the C3 coefficient is comparable t o  the natural width of the l ine  as 

indicated by equation 38. Thus the gain for  Wo =Wab may be less than 

for  Wo #-dab as sbwn i n  Figure 4. The cause of the effect can be seen 

by examining the folloKing m y .  

S'  

+iWos ' 
+ 'l 

It  - 
I t  - 

~ - iW0t 
AA*+zBB") Ae 

I1 

Erst c?.n-q resoawt terms are kept and t h i s  r e s t r i c t s  the coefficients of 

exp (ius) for sm ,s", and S I  t o  the values shown. 

are  for the sign of exp ( i  - -) i n  the product E ( t - s ' ) E ( t - s ~ s " ~ P ( t l s ' - s " - s " ' )  

shown explicit* i n  equation 33. 

The remaining signs 

The use of the full array gives equation 

34 for atoms at rest .  For atoms i n  motion a rapidly varying phase tern 

exp (k iq f  s) must be considered. The dominant terms which survive the 

average over the random phase rate are thoie for  which s"' -2 S I  and 

iwot i s  gtz+ent the 12 terms are reduced t o  b. The coefficient of Ae- 

by one of the 3 3  terms of i n  row 1. Thus the first interaction with 

equeacy' sensitive f?? 

A 

18 



t he  field at (t-s'-s"-s"' ) occurs with the P coefficient of the  C.W. wave, 

the  second interaction at (t-s'-s'') with the B coefficient of the C.W. 

wave, and the interaction at  ( t - s ' )  with the A coefficient of the C.C.W. 

wave. The phase of t h i s  term is exp i q  sm-s'), and f o r  s"' = s' ;UT- 

vives the ave rqe  over the random phase f ;'similar argument may be made 

for the AA*A term. 

?( 

OSCILLATIONS FOR THE AMOST DEGEEJWATE MODE 

Ideal System 

Equation 14 for  the  equation of motion of the f ie ld  and ecpation 37 

f o r  the polarization of the optical maser medium may be used for  t h e  dis-  

cussion of the ideal system. 

following notation. 

For t h i s  purpose it is convenient t o  use the  

(40) i v  A(t) = U eiu ; B(t) = V e 

The frequency dependence of the  C's  is  given by equations 34, 36, 38 and 

39. 

is assumed almost orthogonal t o  exp i(v+ &Jot), then equation 14 and 37 may 

be written as 

If terms of the type U and u are regarded as small, and exp +i(u- &&t), 

2 ; = L2q + 4 w 0 1  (C' + c;u2 + c;v ) ( 4 1 4  

( 4 W  ; =fiq - 3 u'.(c; + C'U2 + C'V 2 ) 
3 2 



A steady state constant amplitude requires U = 0 = V and an obvious 

solution for the amplitude is  

The two frequencies of osciUation are UcCw = u/ 4 ana do+ + = q,,, 
and the beat f'requency is 

0 

To t h i s  degree of approximation the  C.W. and C.C.W. modes are equally 

excited, the frequency of each mode is shifted aa equal amount i n  the 

same direction by the  frequency sensitive C '  terms and the amplitude 

terms. 

not sensitive t o  the effects of saturation for  t he  ideal system. 

The differexcein frequency between the two modes is  2 a q  and i s  

EQuation 42a gives the stored energy energy, and the power output 

of each mode is 

For extreme doppler motion Ci has the  doppler frequency response given 

by equstion 39 and for  (Q-l+C;) < 0 the  system oscil lates.  C; has the  

response given by equation 38 and the f'requency response of the power 

output is  of the form 

and shows the  di3 i n  power output discussed by 

output curve is shown i n  Figure 4. 

A typical power 

"Frequency pulling" occurs as shown 

by equation 43 and for  A= o 
20 



where 

and u0 t he  center frequency of t he  cavity. 

of the osci l la tor .  

by Townes14 when (Q-~+c;)  - Q-' = 

Wcw is  the frequency of osci l la t ion for  the . ~ .  c.w traveling wave 

(Q-l+C:) is the l inear  gain 

This is i n  sgreement with the expression introduced 

, w J - J - ~  and 2 dab = A dab 

-tion 4% gives the  obvious and ilesireable solution t o  the 

problen. The s t ab i l i t y  of the solution is  now examined. I n  order t o  

simplify the  discussion of the problem the  following notation is  in- 

troduced, 
2 2 x = u  Y = v  

e 
X = h(1 - gX - fY)Z 

i = h(1 - fX - gY)Y 

( 4 1 ~ ' )  

(41d') 

e c 

Stable solutions with X = 0 = Y we desired. 

pr~cedure'~ i n  phase t ra jector ies  the  equation 

Following the  standard 

dy = 1 - fx - gY)Y = P X Y )  
- dx f l -  gx - fY)X -h 

is examined. 

singularities axe shown i n  F'igure 5 and occur at (X = 0, Y = O), 

The singularit ies of interest occur at P = 0 = Q. The 



(X = 0, Y = 1/g), (X = l/g, Y = 0) and (X = Y = (g+f)'l). 

singularity is  of primary interest. 

(1-gX-fY = 0) are shown i n  Figure 5a and 5% and the path of the phase 

trajectory i s  horizontal as it crosses the one l i n e  and ver t ical  as it 

crosses the other. The phase trajectories m y  be sketched as shown i n  

Figure 5 or  the stability may be examined near (g+f)-' = Xo = Yo by ex- 

This l a t t e r  

The l ines  (1-fX-gY = 0) and 

pndmlg  sbmzt the niP@&!J-ity xs,tfi the s&stitrrtizrt. x = y -!- x and Y = " 0  

Yo + y. 

f c g  and unstable if f > g. 

Either technique indicates that the singularity is stable i f  

From t h i s  discussion it is apparent that stable oscil lation a t  two 

frequencies a& and && requires 

c ! p  c; ( 4 W  

This occws for  large doppler broadening. 

and oscillations at two frequencies is not stable. 

doppler broadening C" is frequency sensitive and as the cavity frequency 

For atoms at rest C 2  C C" 3 
&en for  large 

3 
Vab, C i . V  C; and the two  l ines  coincide and th i s  yo is  tuned near 

i s  very near an unstable point for the system 

In t h i s  ideal case and for large doppler broadening, C; >. C$ and 

3 = ? i s  a stable singular point and stable oscillations at  the two 

frequencies Equations 4% and 42b are appro- 

priate. 

is  tuned over the  ent i re  doppler width. 

system approach an unstable point. 

7'& and vccw occur. 

Beats due t o  rotation are expected as the cavity f'requency 3/ 

O n l y  near yo e ?'& does the  

22 



B i a s  Beats 

Equation 14 is  now extended t o  include an external source which 

Figure 5 couples into the cavity through a unidirectional coupler. 

shows a unidirectional coupler which feeds the energy of the  C.C.W. mode 

in to  the C.W. node, but not i n  t he  opposite sense. 

-mitten as 

Equation 14 may be 

&B 
small compared t o  Q i n  t h i s  calculation. 

unchanged fo r  real QB and 4@d i s  modified to read 

i s  a measure of the  coupling or  power transfered and i s  regarded as 

Equation b a ,  hob, hoc remain 

(50) 
2V 0 = - &(Q-l+CpC;U2+C:V2)V+ HoQB -1 U 

2 2 * *  
Steady state condit3ons require U = V = 0. U and V are related by 

2 -1 u2 - v = ($(Ci-C2))  u/v 

and the beat frequency between the  two  waves i s  

For small coupling, %>> Q, the sh i f t  i n  U is small and U/Ve1, and 

the bias beats are approximately given A.om equations 518 and 5lc by 

23 
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. 

This equation i s  only valid for the cavity frequency z/, w e l l  away 

from the atomic frequency Tab, but does indicate that the bias de- 

creases as the  cavity is tuned away from the  atomic frequency. 

Li t t le ,  a m u a t e  student i n  our  laboratory, has observed this effect 

as the  cavity is tuned through the etomic frequency Xb. 

Mr. 

I n  order t o  examine t h i s  problem i n  some detai l  the notation in- 

troduced by equations 47a and 4’7% and 41c’ and 41d’ is  used. 

equations of interest  may be written as 

The 

0 

X = h(1 - @ - fY)X = Q(X,Y) 

4 1 
Y = h ( l  - fX - gY)Y + m(XY)” = P(X,Y) 

and 
1 - 

dY = h(1 - fX - gY)Y + m(XY)“ - P(X Y) 
- , e s  - 

dx h(1 - e - fY)X 

i s  the slope of the phase 

* =  ”b/$ 

Some of the singularities 

n e a z X = Y  orU = V  is 
2 2  

ing 

and 

the  

term is  t o  change the 

trajectory . 

are shown i n  Figure 6a. 

of primary interest .  

point of intersection such that 3 - V # 0, 

Again the singularity 

The effect of the coupl- 
2 

as indicated by equation 5lb 

absence of rotation. 

a bias beat freqpency is  observed in  

The s y s t e m  is more sensitive t o  tuning the 

24 



cavity near the atomic frequency 

6b that the two l i n e s  may no longer intersect at any point. 

cavity i s  tuned f r o m  a frequency lower than r' ab or higher than &, 
Figure 6a applies and bias beats are given by equation sld. 

approaches 

and it is apparent f r o m  Figure 

Thus as the 

As yo 
<b, Figure 6b i s  more appropriate and a stable singula.rity 

does not occur. The position of the singularity i s  qyite dependent on 

approach each other. m y  be estimated f h m t h e  coupled power PB = 

= Q PI/PB = Q/T (53) 

where P i s  the power i n  the maser beam. L 

If power is scattered f r o m  each traveling wave into the other, then 

equation 41c is d s o  modified and contains a term simihr t o  equation 

52a. The equations of interest are  of the form, 

1 
= h(1-gX-fY)X + n(XY)' = P(XY) 

(54) 
1 

? = h(1-fX-gY)Y + m(XY)' = Q(XY) 

and the singularities formed by the intersections of the curves P(X,Y) = 

0 and Q(X,Y) = 0 are of interest. 

which occur as the  cavity f'reqyency f o  is tuned through vab. 
coupling is large intersection may not occur and stable osciUation at 

two frequencies is not possible. 

Figure 7a, and 7b are sketches of cases 

If the 

The coupling between the cw and ccw traveling waves which is  due t o  



scattering q be estimated in the following manner. 

f’raction of the power scattered i s  PB = r P L  or PA = FPL. 

to be effective the radiation must fall within the angular spread of 

the maser beam d A  
of L and the coupling 

Suppose the 

In order 

2 
(spot size)/4’8Z . The spot size i s  of the order 

or QA mey be estimated from 

-6 9 For p =  0.01, 
is  expected. 

-U 10 m, L a 1 a coupling of the order of 10 Q 

This may be used with equation 51c t o  estimate the bias. 



Ehtrainment of Frequency 

A large class of oscillator problems are of the form 

+ w$ = a$ - bi3 + uz Y cos( & + f )  ( 56) 

where a is  the l inear gain term, G2 the s a t m t i o n  term, and the f ina l  

term on the lef't hand side the effect  of an external source. This 

problem has been examined i n  de t a i l  by Andronow and WittPS. 

sence of the external source, self oscil lation occurs fo r  a > O ,  and 

then y( t )  = A cos( Wot- 4). 
If the externa.l source term is included the frequency of t he  oscil lator 

is errtrained or  "locked" t o  t h e  frequency of the source if  

In  the ab- 

The amplitude of oscillation A2 = 4a/3@%. 
0 

Since a is  comparable or less  than &YQ, an estimate for entrainment 

can be made by making this  substitution. Then the upper l i m i t  fo r  the 

bandwidth for entrainment is approximately related t o  the cavity width 

by 

6 -6 For dvL /Y 10 and Pe/PL 

range. W e r  coupling and operation a t  hwer power levels, smaller 

10 locking is  expected i n  the kilocycle 

a, reduce the bandwidth for  entrainment. If a = -#(Q-'+C;) i s  used 

i n  

of 

equation Y$a and then equation 4-4 i s  used, a more exact determination 

the locking frequency can be made. An approximate alternate form of 
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and 3b is  associated with 3b = W ( C i  + C;) 

This anaylsis does not constitute a proof that entraimnent occurs 

for the  ideal oscil lator,  but does indicate that coupling between modes 

by external objects can introduce a condition similar t o  that  for  the 

entrainment of an oscillator by an external source. 

(Pe/PL) for the unidirectional effect permits an estimate of the 

f’requency region i n  which a more exact analysis is needed. 

An estimate of 

EVATLJATION OF THE OPTICAL EWER PHOTON RATE OYROSCOPE 

Cavity Resonator Design 

Some of the cavity designs which are being used for  the photon rate 

gyroscope i n  the infra-red and i n  the .::-tical maser spectral region are 

shown i n  Figure 1. Although four  mirrors were used i n  the i n i t i a l  de- 

signs, the three mirror cavity has many advantages. 

sqpare F’abry-Perot resonator which was used by Cheo and which i s  now 

modified into a three mirror system by L i t t l e .  

c i l l a to r  the three mirror cavity has closure properties for  the rays 

i n  this plane and the mirror adjustments for  tuning are about 1/10 l e s s  

sensitive than f o r  the mirror adjustments perpendicular t o  the plane of 

the oscil lator.  

Figure 8 shows the 

In  the plane of the os- 

Figure 9 shows a more symmetric three mirror system 

with a two mirror recombiner being used by Bupp i n  our laboratory. 

t ies  with all flst mirrors or with one curved mirror t o  reduce diffraction 

Cavi- 
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losses are used. The mirrors have either a metallic reflecting 

coating i n  the inf'ra-red region o r  a multi-layer dielectric coating i n  

the 0.5 t o  1 micron spectral region. 

being used rather than nirrors i n  some designs15. 

Internal reflecting prisms are 

The csvity is of course subject t o  external mise vibrations and 

t'nermal noise vibrations. 

is the change i n  peripheral length and AT/V 2 AL/L. 

enerQy associated with this  deformation is  4 Ey V(AL/L)2 and this is of 

the  order of kT for thermal noise. Thus the cavity frequency is  subject 

t o  noise fluctuations o f t h e  order of 

The bminat4t effect on the ski€% i n  Frequency 

The eleastic 

This i s  of the order of lcps for most materials and reasonable volumes, 

and does not introduce problems i n  the present designs. The individual 

mirror mounts must be reasonably r ig id  against displacement. 

design an angular adjustment 

through the region of b i  s beat& External noise may be considered as 

raising the thermal noise effect and can by considered by changing T t o  

a higher effective temperature in equation 5$ 

and maurrting tables may have troublesome resonant frequencies, but these 

In one 

w4 radians is  sufficient t o  tune 
2 2 0  K c .  

The various mirror mounts 

are not analysed here since each system is a special case. 

If f is the f'ractional loss per pass around the path, then the cavity 

bandwidth or  Q i s  



where L is the cavity length, d y'L the bandwidth of the cavity, and 

c the velocity of light. Since fa0.01 and L-1 meter for  most 
6 3 2  designs, d'v', r\, 10 for the cavtties under consideration. Collins 

has given a formnrls of the type 

= (c/L) q+ 1/27r (n+) arc cos ( ~ - L / R  case ) yms c 
for the resonant frequency of a triangular mirror system similar to that 

shown in Figure 8.  R is the radius of curvature of the curved mirror 

and L the path length. 

the same q and even or odd n is c/2L and i s  of the order of 100 Mc for  

The frequency separation of adjacent modes of 

typical cavities. The transverse modes are separated by approximately 

15 Mc for d =  30' and L/R - 1, and the =de separation is large com- 

pared to the cavity width. 

Maser Media 

The gain or maser media is now considered. The doppler width 

from equation 26b, 

1 1 
dvD = ( D / T ) ( l n  2)' = 4.3 x log/ (mass number)' (6'1) 

where > is in microns. Typical values are given in Table I. At the 
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l i ne  center, Yo = vab, the l inear  gain term for  a plane wave is  re- 

la ted t o  C;I by 

( l inear  gain) = WC;/ A (6@ 

and C; is given by equation 30 

With M Xa/s/, - Ab/,,%) = (N2/g2 - Nl/gl) equation 6% msy be placed i n  

a form simi~ar t o  tha t  used by a u s t  and MC ~ a r ~ e ’ 7 .  

the l i n e s  of primary interest  that the l inear  gain is 

 hey find for  

( l inear  gain) = 1.76 x S(mass number)$(I?$g2 - Nl/gl) 

(Qo 
S i s  the l i ne  strength and appears t o  be related t o  the  e lec t r ic  dipole 

2 2  -58- matric element by = S(e ao) = 0.72 x 10 3.. Table I contains 

sane typical values measured or  used by Faust and McFarlane. 

doppler 

Table I 

N e  1.152 

N e  3.392 

Ne 0.632 

e 2.026 

L i n e 2  Gain 
m 

0.12 

4 

0.053 

0.76 

16 

56 

52 

15 

73 

8 8.3 x i o  
2.8 

15 11 

1.8 

1.1 ” 

For extreme 

c:’ 

2 x 



bmadenhg the ratio of s/Ci is given for  3/, = fab by 

d is the dew rate of the energy levels and is related t o  the nsk;lral 
width by 2 f =  As. 
The mtrk elememt -8 

18 A f  c\r 70 Mc for the 1.15 micron Me l i n e  

y 83ce hterdepeodent a d  a sbpXer f u m  for 
n 

equation 6Sshould be possible. 

The spectral purity of the m e r  oscil lation is  limlted by 
14 

spontaneous embsion. The ultimate theoretical l i m i t  is given by 

EQustion 66yields at 1 micron 

AVosc 2 10-3 cps 

Javan, Bal l ik  and Bond 

the beats are between two mdes i n  the same cavity, first order 

dimensional changes are not imporbant,and th i s  high spectral purity 

should permit the observation of beats of a the order of th i s  width. 

Mechanical vibrations are the most important limitation on the lower 

limit of the ideal system and this of course assumes that locking 

can be reduced i n  the ideal system t o  an arbwrarily small value. 

estimated the linewidth at  2 cps. Since 



Optimum Design Considerations 

Stable oscil lation a t  two frequencies occurs i n  the ideal system f o r  

Cz> C” and therefore a maser medium with large doppler broadening i s  

necessaq. 

been solved i n  detai l ,  it cannot be stated with certainty that fo r  

f’reqyency sepsration below a c e r t a i n  level that entrainment will occur 

between the ccw and cw modes and that ~ ~ c i b l ~ t t i ~ n  occurs at. a single 

Trequency . 
ing of the pwer of one beam into the other the pheomena of bias beats 

occurs and a problem similar t o  the entrainment of an oscil lator by an 

external source occurs. Equation s c  suggests that the bandwidth fo r  

entrainment may be reduced by selecting a s m a l l  value for the (CPC;) 

coefficient and a low level for the  oscil lator power. 

should be as large as possible o r  the reflecting properties of the mirrors 

of the  best W i t y .  Furthermore any properties of the mirrors, Brewster 

angle windows, o r  other objects i n  the maser beam path which cause mi- 

directional coupling of power should be minimized. 

objects i n  the path the design shown i n  F’igurey does not have Brewster 

angle windows, etc., but is e n t i r e l y  enclosed. The maser beam path is 

f ree  From foreign objects, dust, moisture, etc. and the only surfaces are 

the mirrors. 

3 
Since the non-linear problem posed by equations 40 has not 

if fk.t?q.,-enq: e;:-: I’E k x n t  oc I) due to uhidirectional coupl- 

The cavity Q 

In  order t o  avoid 

Some recent research by L i t t l e  indicates that even the maser tube 

may be effective. I n  the apparatus shown in  Figure 8 and operating at 

3 3  
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3.39 microns, it was found tha-t the insertion of an ordinary quartz 

tube i n  the beam path enhanced the power level of oscillation. The 

increase was proportional t o  the tube length. This was interpreted 

as smaU angle refikection, and for these very mKLl angles the inter ior  

wal ls  of the tube form very hi& quslity surfaces. Further research by 

L i t t l e  indicated that pyrex gave the largest effect  and inconel metal 

tubes were compassble x i th  quartz. 

power level of oscil lation was attenuated, at 6 mm the power level 

could be i n c e g l d  by a factor of 3 with sufficiaslt length of tubing, 

and at 7.5 muthe effect of the tube was negligble on the power level 

of oscillation. 

. 

For tubes 4.5 mp i n  diameter the 

A 6 nm tube with a rough internal surface reduced the si-. 

A series of slides will be shown of t,e experimental apparatus. 

Tuning procedures, apparatus cnnstruction, and werU operation 

will be discussed with these slides. 
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Figure 1 
Typical Cavity Designs 

Figure 2 
Ideal Cavity 
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Unidirectional Coupler 
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Photon Rate -scope 
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Figure 5 
(see equation 48) 

Figure 6 
(see eqyation 52) 
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