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TECHNICAL MEMORANDUM

Introduction

This memorandum is a preliminary report on one aspect
of an investigation into the geometrical properties of dynamical
systems. The numerical technique introduced below is derived
from the canonical transformation theory of conservative systemé.
For this reason, a succinct (and, hopefully, readable) account
of such transformation theory is included for reference and
review,

The technique is interesting in several ways. In the
fifst place, instead of solving the differential equations of
motion numerically, an approximation to an "infinitesimal trans-
formation" is used to map the state of the dynamical system -
time ti onto the state of the system at time ti+l = ti + At.
Secondly, these.transformations have the.group property. I:.
this connection, (and for conservative systems in general) t: .

means that time is reversible; i.e. the inverse transformation

maps the state of the system at time ti+1 onto the state of the

system at time ti = ti¥l - At. This is of obvious utility in
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the targetting problem where one desires the initial conditions
of a trajectory given arbitrary terminal conditions. However,
it should be remembered that the above does not apply to powered
flight nor to flighf in the atmosphere where-dissipative drag '
forces are present. Finally, considered only from the point of
view of numerical analysis the idea of approximating a trans-
formation which leaves invariant an appropriate function, func-
tional, or differential form would‘appear to be worthy of
further investigation.

A Brief Review of Transformation Theory

We restrict our attention to conservative, holonomic
systems. That is to say there are no dissipative forces acting
and that in a system of n position coordinates there are n
degrees of freedom. |

Let the dynamical system be Specified'by n position

coordinates (ql, Aos **° qn), where the qi_depend implicitly

upon time. The restriction to holonomic systems may be more
precisely stated as there shall be no functions ai(q) not

identically zero such that

Zai(cn da; = 0.

i
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This of course also precludes constraints of the form

f(ql, “e qn) = 0 since this implies
af
—— dq. = 0.
L %q; i
i .

In such a system the kinetic energy T is a positive semi-definite
dq.
quadratic form in the q; = Efi . It is homogeneous of degree 2

in the variables qi. That is:
(l) T( - . _ 2 . - . )
qls"'qna Sql:"',sqn) = 8 T(q1:°°'qna ql:"':qn

The potential energy V(ql,'--qn) is a function of the position

coordinates alone. The Lagrangian is by definition:

(2) L(ql"'°qn’ él’."’én) = L(qi, éi) = T-V

Hamilton's principle then says that the functional

(3) | A= L at
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shall be an extremal. That is, the first variation 6A = 0.
The necessary condition that (3) shall be extremal is that

the Euler's equations:

B\
(4) %5‘\31.‘)~3L—=0
. 3

shall hold. These n equations are the equations of motion

of the system. In general, they are not immediately integrable.

The object of transformation theory is to make a change of
variable in a systematic way which will simplify the equations
sufficiently so that a solntion can be effected.

"The first step is to put the equations into the
Hamiltonian or canonical form. The generalized momenta afe

defined by:

(5) p 8% = 3?
3q aq

In Hamiltonian theory the generalized momenta are treated as
independent coordinates.’ They have the same status as the
position coordinates. One now makes a change of variable
which converts the Lagrangian, L, to a new function H, the

Hamiltonian. Thus:

(6) H = Z p, 4 - L.
=
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Computing the differential dH from the defining equation (6)

one has

(7 @i = ) py a3y + ) 4 dp;
i

Substitution of the definition of pi into (7) leads to:

P ol aL_ :
A(8) dH = Z a; dp; - Z 5o da; -
3

: 1
1

Expressing H now as a function of only (ql,---qn, pl,---pn)
and computing the differential dH by the chain rule in the

usual manner

(9) dH=ZﬂIT dpi+Z3§-‘— dg. .

Since a differential is independent of the coordinate system

in which it is computed (8) and (9) are equivalent so that:

9H :

——— = q .

3p; i
8H  _ _ 3L
3G . 3q

1



‘BELLCCMM, INC. - 6 -

But from Euler's equsztion (4) we have

3L, _ 4 [BL -
qu ) gt 3a i
L

Thus, the equations of motion in the Hamiltonian form are

. 3H

(10) q; = o
i api
. - aH

P; 5 ~3q

In the case of a conservative system it is possible to give
a physical intefpretation of H so that equations (9) are
something more than a mere notational simplification.

As noted before the kinetic énergy, T, is a positive
definite quadratic form in the velocities_éi which is homog-
enious of degree 2. Hence, by Euler's theoren ;:

(11) 27T +

I
Ne 3
e
(=34 [+
o-le
I
(e}
"
Ne )
™
]
fa o]
=

1

‘Taylor, A. E. Advanced Calculus, Ginn and Co., 1955, p 184
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From which:
(12) H=2T-1=2T-(T-V) = T+ V.

Thus, the Hamiltonian is the total energy of the system, and
since the only systems under consideration are conservative,
by definition the total energy, the Hamiltonian, must be a

constant.

First Order Transformations
The canonical equations of motion (10) are imme-
diately suggestive of an algorithm for their numerical solution.
’Thus, by approximating the derivative with the difference
quotient equations (10) become:
aH o By 9300 - a(ty)

93 % 3p. T 2t T 7

i k+1 k

3 S apy Pyt q) - Py (ty)

i aqi AL tk+1 - tk

e

" which lead to:

n . aH
a3 (tpyq) = ay(Ty) + D |v - ¢
- K
(14)
~ 3H
Py (tyqn) = Ps(B) = 88 57 1 _ L
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where tk+l = tk + At. Equations (11b)

change of variable, and the numerical
by iteration of the change. However,

variables will change the form of the

may. be regarded as a
solution as obtained
in general, changing

Hamiltonian, H, and

computation will therefore be more compiicated. It will

now be shown that the particular trans

formation (14) leaves

the Hamiltonian invariant to first order terms'ih At. In

evaluating the variation of thé Hamilt
to use matrix notation. From Taylor's

for H(g. + 8q, p + Ap) one has:

oH

onian it is convenient

formula with remainder

, - 3H 3 . 3H I[. O
(15) H(q+Aq, p+ap) = H(g,p) + 5a;° " "sa_® 3py° apn] A?l
Aq,
Ap,
Ap
n
o > > > >
1 3 H 3°H 3°H 3°H H
+—[Aq ,o-.,Aq s Ap ’ton,Ap] .. e .
2 1 n 1 n 5q 2 3q. 3q aqlaqn aqlapl 3q43p
1 1952
a2H 32H - 9 8 ® & * & ®
aq2ag1 3q22
2°H . 2% . 2%
9p49qy ap12 904 3D
aZH - & > o o a2H
op, 3q 2
+ R n *1 9P,
|




oH 3H
i g . -_— _— £y
TR At ,hc 3 4t

where R is the remainder. Substitution of Api = -
i i

into (26) shows after a trivial computation that the variation of
the Hamiltonian under this transformation consists only of terms
propoftional to powers of At higher than the first, which 1s as
desired. |

Some very difficult problems have relatively simple
Hamiltonians; viz. the three body problem. Thus, the algorithm
will be computationélly practical since the functional evaluation
of the partials at = tk will usually be quite simple. The pro-
blem of determining a transformation which leaves the Hamiltonian
in#ariant to higher orders of At is considered below. The first
order transformation just introduced which is not a really good
approximation will be seen to play a key role in the derivation
of a more accurate method.

Group Theoretic Aspects

Without giving a2 formal definition of an abstract
algebraic group, we shall describe its properties in terms of
the transformation (14). Thus, if p and g are such that:

where E is the total energy, then (15) shows that for
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and
i aqy

H(a,g) = E to within first order terms in At. Hence, the set
of a5, Py such that (16) holds is closed under the transformation
(14). Now, for simplicity, let At = 1 and let TT be the trans-

formation defined by (14).  That is:

]
e

(17) To:ogy(E) > qg(ty, + 1)

]
'Te

Tiopy(E) > Pyt + 1)

‘Since the effect of TT on py is obvious once its effect on
a5 has been given we will only consider the ay for the present.

The product of two transformations TT R TT is their composition.

1 2
That is first apply TT and then.apply‘TT to the result.
' 1 2
Formally:
(18) T T : qi(t) = TT : qi(t+rl) > qi(t+rl+12)

2 1 2
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Ciearly,
(19) T (T_ T )= (T_T )T
T3 12 Tl 13 12_ Tl
If Tt = 0 one has
- (20) ' - T g; () » g, (t+0) = g, (%)

and T_ is the identity transformation, I. From (18) one has:

‘hence

(21) T =T

or the inverse of TT is T_T. Now the above holds true for the
transformation given by (14) only when 1 is very small so that
the error resulting from the dropping of higher order terms is

negligible. Thus for 1 sufficiently small we may write:

= _____3H - = m .
pi(t+T) - pi(t) - T aq. - J-T(pi)
i t
- ! -
qi(t+T) - qi(t’) + T ap 't - TT(Qi)
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The group TT depends continucusly upon the parameter © and is
a one parameter continuous group or Lie Group. The problem
now is to derive a continuous one parameter group so that the
group relations hold for finite 1 instead of only for an

infinitesimal.

- Infinitesimal Transformations Associated with a Continuocus

One Parameter Group

Below we shall use the notational convention that ay
shall stand for the 2n variables Py and ay - Thus, a function

f(g) shall be understood to be a function of 2n variables
f(qls q23"'3 qna pl:"'pn)'

Furthermore, the function f shall be understood to be analytic
at the point gq. This means that we have placed restrictions
upon allowable g. Howefer, these_restrictions for the problems
of interest will generally occur naturally such as, for instance
the Kepler problem being restricted to orbits with non-zero
radii. Thus, on the set of analytic functions one can define2

: *
a tangent vector at the point g = q as an operator of the form

_ i, ¥ 3
xq* = ZE: £ (a ) 355

i

?‘Cohen, P. M., Lie groups, Cambridge University Press,

1961, p. 11 ff.
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. . i N .
where since the functions £ (g) are evaluated at point g = ¢
they are real constants. It is readily seen that for functions

of one variable y = f(ql) one has as a tangent vector

X e[ = —
q¥

the usual definition. One now has the following definition3:

Definition: An infinitesimal transformation is a collection

of tangent vectors Xq* one at each allowable point g = q ; i.e.

X = e1q) 2
Z "9

i

These transformations are ciosely related to the first order
transformation groups discussed above. Their relationship
to these groups will be discussed in terms of a particular
transformation arising in dynamics. The approach is admittedly -
heuristic and justified only by the desire for brevity since
a full treatment would require the development of fhe inter-
relations between a Lie Group and its Lie ‘Algebra.

Let us first consider the infinitestimal transformation

associated with a first order transformation, remembering that

3-Tbid p. 16.
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we will neglect terms 1in Aqg higher than the first. Thus,

rewriting (15) &nd dropping the remainder term one has:

W

(22)‘ £(g+hg) = £(q) + j{: ar

8q;

1 4
But allowing q in (22) to vary is precisely an infinitesimal
transformation as defined, since Aq; as givén by (14) is in
general a function and may be considered to be the gk(q) of
the definition and if we define X as E: Aq:.L 5%; one may

' i

write (22) (to first order terms) as
(23) ' ' fgtag) = (I + X) f

where I is the identity operator. Now supposing f = Q- Thus,

3q,
(24)  q;(a+sa) = (T4X) a; = q; + ZAqi TR
i
But for Aqi = 1 gg this is just the first order transformation
j_ .

group which we derived as an approximation to the equations of
motion of a dynamical system. In regard to the function f in
(23), if Xf = 0, then (24) is the transformation group which

leaves f invariant to the first order.




]
1]
r
r
0)
0
z
Z
)
I
b
\w
!

Returning now to the 2n variebles Py> 9y the

infinitesimal transformetions will be applied to the original

problem. First (22) becomes:

1 8qy
1 1

(25) f(q+aqg,p+ap) = f(p,q) + j{:Aq. ar j;ﬁApi A, R

From (14) one has (letting t = 1) for bg, and Ap.

Aqi = —33; T
. 9H
Api = - .—-—aqi 1

Furthermore, it is obvious that XH H = 0. Hence, for first

order terms (15) may be written:

(27) H(g,p) = (I + Xy) H(q,p) = H(g+aq, p+ap)
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and the transformation group (14) becomes:

Q2
!

(28) (1T + Xy) Qs

‘ge
n

(1 + XH) Py

In the next section we will consider the problem of obtaining
a transformation group which leaves the Hamiltonian invariant
for finite 1 rather than truly infinitesimal .

The Exponential Map

The development below is essentially due to Cohnu

What is desired is to find the group 'I‘T mapping q(t) onto

g(t+t) which leaves the Hamiltonian invariant. Again, for the

moment, let Qj stand for both a; and Py - The action of TT on

a(t) can be written.

(29) T (q(t)) = q(t+1)

Now the group TT not only depends continuously upon 1t but is
also a Lie Group. In the case under consideration here this

means that there is an analytic function T such that

Y 1via., p. 79 fr.
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or as a vector alt+r) = T(g(t),t) = T(1). From the definition
of the group TT one has that TO is the identity, hence

q(t) = T(q,0) = T(0)

For £ an analytic function of g it is desired to evaluate.
(31) | £(T(q,1)) = £(T(x))
Now by the chain rule:

(32) r o= 3L - L

|

where X is thHe infinitesimal transformation corresponding to

5

TT. - It can be shown” that given an X there corresponds to it
a unique TT. Therefore since ve already have an infinitesimal

transformation X,, and a translation group T% which is valid

H
for t truly infinitesimal the problem is to extend the method
for a finite .

Since f in (31) is analytic, Taylor's series may be

applied in the following way. Let

f(Tl(q,T),-.. s Tn(g,T)) = F(T).

*1bid, Theorem 3.5.1 p. 70
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e F(1) is ag.in analytic and hence expending about t = 0
~ has:
1 T2 Tt T3 1t
(33) F(T) = F(O) + 1F (O) + *é-T F (O) + 73-—" F (D) + v
By (32) one has for F (0) = f (T(g,0))
' ' '
F (0) = £ (T(qg,0)) = Xf
=0
Thus, (33) becomes
2 2
(34  F(1) = £(T(g,t)) = f(q) + Xf + 5y X°f
: =0 : =0
3
+ X X3f + e
31
Tt =0

The series on the right of (34) may be taken as the definition
of the exponential of the transformation X. (34) may therefore,

be written concisely as

(35) £(T(q,1))

]

[exp(rX)f]TzO

i

Remembering that T(g,1) q(t+t), T(q,0) = g(t) one has for (35)

(36)  £(m(q,1)) = rlaltn)) = exp(xX) £(a(t))
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It is now possible to evaluate T(g,t) and thus obtain TT

First one considers that Gy itself is an analytic function of

all the qj. That is,

q; () = q;(qq(t),--,q, (¢))

and

a3 (T(a,1)) = q;(Ty(a, 1), Tyla,t),««+,T (q,1)) = g, (t+1).

Substitution of this q; for f in (36) therefore leads to
(37) q; (t+1) = g, (T(q,1)) = exp(rX)q; (a(t)) = exp(tX)q,(t)

which is the desired formula. An example is now in order.

Consider the case of two variables s Q5 with

9 P
Tao + 52(q) —

X = el(q) N 7,

Then, including only 2nd order terms,
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2 : 3 12 351 2
q;(t+1) = [g; + 1(g,(q) 3a; + £5(q) Bqn) a; * 57(¢(a 75- g
Z 1 1
2 AL 2
. 2 3 2 8 3
aql 1 2 1772
3L : 2 2
1 3 2 3
+ £5(Q) == =+ £,(q) £.(q) + £,(q)
2 302 Bql 2 1 aq28q1 2 3G, 3q2
2
+6,°(a) 2— ) q.+ +--]
2 5 2 i
9p
Thus:
12 8£l aE1
qy(t+1) = [ay +7£,(q) + 57 (£,(q) 3q, £,(q) 55;)+ 0]
or
, .2
qy(t+1) = Loy + 1g.(a) + 57 (X g9) + ---]
L2
Q(t+1) = [g, + 18,(q) + 57 (X 52} +oeee]

Specializing now (and returning to the p, g, notation) for

the case % as given by (26) one has from (36) when f = H

Hlq(t+t), p(t+1)) = H(4,p) = exp(1Xy) H(a,p) = H(g(t),p(t))

since XH 4= 0.
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Suppose now one applies (36) twice in succession.

That is one computes T(q,rl) and then extrapolates on this

’ #
: (¢ Form =
point by T(q(u+11), 12). Formally, one has for q; = qi(t+rl)

(38) q;(t+12) = exp(TZX)'qz = exp(rzx)[exp(rlx)qi] = qi(t+Tl+12)

Now X is an operator not a number, and the usual rules of
manipulation for exponentials do not necessarily hold. That
is to say (exp X) (exp Y) for X and Y operators dces not in
general equal exp(X+Y). However, in the case of interest
above TlX and 1,X commute; i.e. TZX(TlX f) = TlX(12X ).

It can be shown that for commuting operators.

(39) exp(rzx) exp(rlX)f = exp(Tlx) eXp(12X)f = eXp(TlX+T2X)f.

Now all the group properties given by equations (17) through
(21) follow from (39) and well known properties of the
exponential. For instance the inverse is obtained by setting

T, = - 1y in (39) leading to:

exp(—rlx) exp(rlX)f = exp(0)f = If = T,
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As a more detailed example of the above let us consider

the 1

]._,l-

near cscillator in one dimensicn; a simple spring and mass.
For g the displacement of the mass, p its momentum, the

Hamiltonian is

| ' p2 k q2 p2 q2
oY H =7 = i = £ P SN  m = =
: (Lo) H T+V 50 + 5 5 + 3 for k 1.
Obvicusly
x =oH 3 8H 3 _ 3 3
H 3p 9g 3g 23p p 3q q 3p

Qur first order transformation is for At = 1

p(t+r) = (I+Xy) p(t) = p(t) - 22 | = p(t) - Tq(t)
1 Ip(t),a(t)

a(t+t) = (I+X;) a(t) = q(t) + ron = q(t) + (%)
P {p(t),q(t)

as before.
Now we wish to correct our procedure at least to

the second order by applying (37). Thus, we wish

1

q(t+t) = T(g,p,t)

i

p(t+t) = T(g,p,1)




BELLCOMM, INC. - 23 -

Now

2

1 2( > 3% 3 3 2
°oq

exp(t¥y) p(t) = [THipgy - afx) + 5+

a

. 2 :
+ .02+ p(t) = p(t) - 1a(t) = 5 p(t) = p(t+1)

no

Similarly:
T2
q(t+t) = q(t) + p(t) - 5 q(t)

Substitution into (15) leads to the following upon neglecting

" terms higher than the second:

pr = [28 2y fpY Lo aql [1 o] [2P] -
ap’ °g AQ 2

Substitution of ap = - 1q(t) - %— p(t), Aq

i
~
o)
-\
<t
N
I
nﬂa
Q
~~
¢t
g

into the above gives:

Tp2 Tq2 T2 2 2 '
H=1l-pqg - =5+ ap - -1 + 5 [q" + pg + — p" + p” - pq +

Foee

2 2 b
T 2, 2 T 2, 2 T 2, 2.
- §~(p +q7) + E‘(p +g7) + H—(p tq )

+

)_Ir
ﬁ—(p2+q2) + e

so that AH = 0 to second order at least.

PP —= - P3z — A3z t a7 —=
. °q D



Conclusion

The above numerical technigue 1s now being programmned

to evaluate whether it is indeed as good in practice as the

above theory would indicate. Results will be reported in a

later memorandum.

the following advéntages:

a)

b)

c)

Truncation error can be made as small as desired.
This allows a programmer to trade off step size
versus function evaluation to minimize running time.
The method applies to a clearly defined reasonably»
large class of problems. Although the partial
derivatives must be recomputed if the problem changes
the trﬁncation erfor is aiways a function of the

highest power of X, used-not the problem.

H

Since the transformation used is a group it possesses

an inverse. Hence, given the Hamiltonian and the

ferminal position and momenta, it is possible to

work the problem backwards to obtain the initial

cohditions of the trajectory. This is of obvious
utility in targetting-broblems. However, it must
be remembered that this does not apply to powered

trajectories or to trajectories in the atmosphere.

However, the technique does in theory offer




a3

The concepts involved open up a new approach to the

d)
fundamental understanding of the geometry of dynamics
problems themselves. This aspect will be explored in
subsequent memoranda.
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