5435-6005-110-000

CHEMICAL SPECIES and CHEMICAL REACTIONS of importance in NONEQUILIBRIUM PERFORMANCE CALCULATIONS

ちょうかん かんかん かんかん かんかん ちょうかん かんかん かんかん かんかん かんかん なんかん なんかん

5435-6005-TU000

Prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER Under CONTRACT NAS9-4358 N66 33714 06 GPO PRICE s CFSTI PRICE(S) \$ SYSTEMS よいひ One Space Park . Redondo Beach, California Hard copy (HC) _ 4,50 Microfiche (MF) ff 653 July 65

KQT-37511

11 OCTOBER 1965

CHEMICAL SPECIES AND CHEMICAL REACTIONS OF IMPORTANCE IN NONEQUILIBRIUM PERFORMANCE CALCULATIONS

5435-6005-TU000

11 October 1965

Prepared by: 79. 8601

P. I. Gold Propellant Chemistry Section

Approved by: R. Kliegel

Program Manager

0

D. H. Lee, Manager Chemical Propulsion Technology Department

Prepared for

National Aeronautics and Space Administration Manned Spacecraft Center

Under Contract NAS9-4358

TRW SYSTEMS One Space Park Redondo Beach, California

CONTENTS

Page

1.	INTRODUCTION	1
2.	CHEMICAL SPECIES STUDY	2
3.	CHEMICAL REACTION STUDY	4
4.	CHEMICAL REACTION RATE STUDY	5

1. INTRODUCTION

This report contains the results of a study to determine the chemical species and chemical reactions of importance in nonequilibrium performance calculations. This study was performed by TRW Systems Group for NASA (MSC) under contract NAS 9-4358, <u>Development of Six (6) Computer Programs for Analytical Predictions of Delivered Specific Impulse</u>.

The objective of this contract is to develop a family of six computer programs to calculate inviscid, one-dimensional and axisymmetric nonequilibrium nozzle flow fields. Assuming that equilibrium conditions exist in the combustion chamber, these programs will calculate the nonequilibrium nozzle expansion of propellant exhaust mixtures containing the elements: carbon, hydrogen, oxygen, nitrogen, fluorine, chlorine; and one metal element, either aluminum, beryllium, boron or lithium. These computer programs will account for the nonequilibrium effects of finite rate chemical reactions between gaseous combustion products and velocity and thermal lags between gaseous and condensed combustion products.

The chemical study described in this report was performed to determine the significant chemical species and chemical reactions in typical propellant exhaust mixtures containing the above elements for consideration in nonequilibrium performance calculations. The significant chemical species are defined in contract NAS 9-4358 as those which must be considered to determine the equilibrium of the propellant systems under investigation to within 0.5 second of specific impulse at an area ratio of 40. The selection of the significant chemical species in typical propellant exhaust mixtures on the basis of equilibrium performance calculations does not, however, insure the validity of the selection for all nonequilibrium performance calculations. If the significant chemical species selection is valid for both equilibrium flow (infinite reaction rates) and frozen flow (zero reaction rates) however, the selection will also be valid for non-equilibrium flows having finite reaction rates. Thus, an additional restriction was imposed on the significant chemical species selection. The significant

-1-

chemical species were defined for the purpose of this study as those which must be considered to determine both the equilibrium and frozen specific impulse of the propellant systems considered in the study to within 0.5 second at an area ratio of 40.

After determining the significant species, all possible dissociationrecombination and binary exchange reactions between these species were studied. Those reactions, which while stoichiometrically possible were highly improbable due to structural or steric factors, were identified and eliminated from consideration. A literature rate survey was performed to determine the status of rate data for the chemical reactions of interest and those reactions having an energy barrier due to the fact that they cannot occur in the ground state (the so-called "spin forbidden" reactions) were identified.

These studies are described in the following sections.

2. CHEMICAL SPECIES STUDY

A number of propellant systems containing the six elements: carbon, hydrogen, oxygen, nitrogen, fluorine and chlorine, and one metal element, either aluminum, beryllium, boron or lithium, were selected as representative of typical liquid rocket cryogenic, space storable and prepackaged storable propellant systems, hybrid and solid rocket propellant. The propellant systems selected for study are given in Table I. These propellant systems are representative of current and projected operational propellant systems.

The number of chemical species in the exhaust mixtures of these propellants for which JANAF thermochemical data exists is over one hundred. The number of chemical reactions between these species which are stoichiometrically possible is naturally immense. It is clearly undesirable to attempt to account for all possible chemical species and chemical reactions in nonequilibrium performance calculations since it is known that relatively few of the total possible species and reactions are of engineering importance in nozzle and plume expansions.

The approach taken in this study to determine the minimum number of species which must be considered in nonequilibrium performance calculations was to consider equilibrium and frozen expansions as the limits

-2-

of nonequilibrium expansions. Thus, by determining the significant species which must be considered to accurately calculate the equilibrium and frozen performance of these typical propellant systems, the significant species which must be considered in calculating the nonequilibrium performance of these and similar propellant systems can be determined. For the purpose of this study, the significant chemical species were thus defined as those which must be considered to determine both the equilibrium and frozen specific impulse of the propellant systems considered in the study to within 0.5 second at an area ratio of 40.

Equilibrium and frozen performance calculations were performed for the propellant systems listed in Table I at two chamber pressures, 100 psia and 1000 psia, considering all species for which JANAF thermochemical data exist present in the exhaust mixtures. These calculations were used as the reference calculations for comparison with calculations performed considering fewer species. Those molecular species appearing in only trace amounts (less than approximately 10^{-2} mole percent) in the reference calculations were neglected and the calculations repeated to determine the effect of neglecting trace species on the calculated equilibrium and frozen performance of these propellant systems. After a series of such calculations considering different chemical species present in the various exhaust mixtures, it was determined that the significant species present in these exhaust mixtures are those given in Table II. Those significant species present in each propellant system studied are given in Table III. Comparisons of the equilibrium and frozen performance calculated considering all species present and only the significant species present is given in Tables IV through XVIII for all propellant systems studied.

Examination of Tables IV through XVIII shows that for the nonmetallized propellant systems the maximum performance difference between the calculations considering all species present and only the significant species present is 0.04 second of specific impulse at an area ratio of 40. This difference occurs in the frozen performance calculation of the monomethyl hydrazine-perchloryl fluoride system at a mixture ratio of 2.1 and 1000 psia chamber pressure. In the metallized systems, the maximum performance difference is 0.39 second of specific impulse at an area ratio of 40 which

-3-

occurs in the frozen performance calculation of the double base-berylliumammonium perchlorate system for 100 psia chamber pressure. It is seen that the neglected chemical species have little effect on the calculated performance of the propellant systems studied. Thus, performance calculations performed considering only the significant chemical species given in Table II present in the exhaust mixture will allow the accurate determination of the equilibrium, frozen and nonequilibrium performance of these and similar propellant systems.

Although the significant chemical species given in Table II were determined from studying specific propellant systems, the utility of nonequilibrium performance programs based on this species selection is not limited to these specific propellant systems, but is equally valid for chemically similar propellant systems. In studying similar propellant systems, the applicability of the significant species selection can be simply established by comparing equilibrium and frozen performance calculations considering all species present and only the significant species present. For chemically nonsimilar systems, the above methods can be readily utilized to determine the significant chemical species in these systems.

3. CHEMICAL REACTION STUDY

Having identified the significant chemical species in the above propellant systems, all possible recombination-dissociation and binary exchange reactions between the significant species present in each propellant system were studied. Those reactions which, although stoichiometrically possible, were highly improbable on the basis of structural or steric factors were eliminated resulting in the identification of those reactions given in Tables XIX through XXIII as those reactions of possible chemical significance in nonequilibrium expansions of the propellant systems studied.

Those reactions eliminated due to steric and structural arguments (listed in Table XXIV) involve the breaking and formation of a number of chemical bonds and molecular rearrangements which are highly improbable compared to other reactions which can occur between the same species.

-4-

Although arguments can be given that some of the reactions identified to be of possible chemical significance in the nonequilibrium expansion of the propellant systems studied can be of little significance due to concentration considerations or possible activation energy considerations, current lack of rate knowledge procludes their elimination at this time. This approach of retaining all possible chemical reactions in nonequilibrium calculations which cannot be eliminated due to steric consideration insures that future rate measurements which may change the relative importance of various chemical reactions will not affect the nonequilibrium computer program being developed by TRW for NASA.

4. CHEMICAL REACTION RATE STUDY

A literature survey was performed to determine the status of rate data for the chemical reactions given in Tables XIX through XXIII. Those reactions for which rates have been measured are given in Table XXVI. In addition, those reactions having an energy barrier due to the fact that they cannot occur in the ground state (the so-called "spin forbidden" reactions) were identified and are listed in Table XXV. Order of magnitude rate estimates can be obtained by statistical mechanics and kinetic theory for those reactions for which experimental rate data does not exist. The reaction rates for the "spin forbidden" reactions can be similarly estimated if the rate estimates are corrected by Boltzmann factors for the fact that these reactions do not occur in the ground state. TABLES

	Chemical Species	
	Fuel/Oxidizer	Mixture Ratios
1.	Hydrogen/Oxygen	$MR = 5.0 \pm 1.0$
2.	Hydrogen/Fluorine	$MR = 10.0 \pm 3.0$
3.	RP-1/Oxygen	$MR = 2.6 \pm 0.4$
4.	Hydrazine/Nitrogen Tetroxide	$MR = 1.1 \pm 0.2$
5.	Hydrazine/Compound "A"	$MR = 2.5 \pm 0.2$
6.	Monomethyl Hydrazine/Nitrogen Tetroxide	$MR = 1.8 \pm 0.3$
7.	Monomethyl Hydrazine/Oxygen Difluoride	$MR = 1.8 \pm 0.3$
8.	Monomethyl Hydrazine/Perchloryl Fluoride	$MR = 1.8 \pm 0.3$
9.	Diborane/Hydrazine	$MR = 1.25 \pm 0.1$
10.	Diborane/Oxygen Difluoride	$MR = 3.2 \pm 0.8$
11.	Lithium Hydride/Oxygen Difluoride	$MR = 3.0 \pm 0.5$
	Fuel/Oxidizer	Composition
12.	PBAA—Aluminum/Ammonium Perchlorate	14 percent PBAA, 16 percent Al, 70 percent NH ₄ ClO ₄
13.	PBAA—Beryllium/Ammonium Perchlorate	16 percent PBAA, 13 percent Be, 71 percent NH ₄ ClO ₄
14.	Double Base—Aluminum/Ammonium Perchlorate	28.8 percent NG, 21.6 percent NC, 10.8 percent HMX, 19.8 Al, 10.8 percent NH ₄ ClO ₄
15.	Double Base—Beryllium/Ammonium Perchlorate	32.4 percent NG, 15.0 percent NC, 29.0 percent HMX, 10.0 percent Be, 9.0 percent NH4ClO ₄ , 4.6 percent Additives

Table I. Propellant Systems Studied at Chamber Pressures of 100 and 1000 psia to Identify Significant Chemical Species

-6-

]	Non-Metallized Spe	ecies
С	F ₂	N
со	н	N ₂
coz	H ₂	NO
C1	н ₂ о	ο
C12	HF	o ₂
F	HC1	ОН

Table II.Species Selected for Use in the TRW/NASANonequilibrium Performance Programs

Metallized Species

A1	Be	В	Li
AlO	BeOH	B(1)	LiH
Al ₂ O	BeO ₂ H ₂	B(S)	LiOH
AlC1	BeO	BN	LiO
AIC12	BeO(1)	BN(S)	Li ₂ O
A1OC1	BeO(S)	во	LiF
Al ₂ O ₃	BeCl	во ₂	Li ₂ F ₂
A1 ₂ O ₃ (1)	BeCl2	BH ₂	
A1 ₂ 0 ₃ (S)	Be ₂ O	BF	
		BF ₂	
		BF ₃	

BOF

-7-

Propellan System (Table I)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Species											•				
С			х			х	х	х				х	х	х	Х
CO			х			х	х	х				х	х	х	х
co2			х			x	х	х				х	х	х	х
C1					x			x				х	х	х	Х
C1 ₂					х			х				x	х	х	Х
F		х			x		x	x		x	х				
F ₂		x			x		x	х		x	x				
н	х	x	х	x	x	x	x	X	x	x	х	x	x	x	x
H ₂	x	x	X	x	x	x	x	x	x	х	х	x	х	x	X
H ₂ O	X		x	x		х	x	X		х	x	x	x	x	x
HF		x			x		x	x		x	x				
HC1					x			x				x	х	х	x
N				х	x	x	x	x	х			x	x	x	х
N ₂				х	x	x	x	х	х			х	х	х	х
NO				x		х	x	х				х	х	х	х
0	x		х	х		X	х	х		X	х	. X	x	x	х
02	х		х	х		x	x	х		х	x	x	x	x	х
ОН	х		х	х		х	x	х		x	х	x	x	х	Х
Al												x		х	
AlO												х		х	
Al ₂ O												х		x	
A1C1												х		x	

Table III.Significant Species Consideredin Each Propellant System

-8-

Propellant System (Table I)	t 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Species															
A1C12												х		х	
A10C1												Х		x	
Al ₂ O ₃												x		х	
A1 ₂ O ₃ (1)												x		x	
A1 ₂ 0 ₃ (S)												x		х	
Be													х		x
BeOH													х		x
BeO ₂ H ₂													х		х
BeO													x		х
BeO(1)													x		х
BeO(S)													x		х
BeC1													x		х
BeC1 ₂													x		х
Be ₂ O													х		х
В									x	х					
B(1)									х	x		•			
B(S)									х	x					
BN									х						
BN(S)									x						
BO										х					
BO ₂										x			-		
BH ₂									x	x					

Table III. Significant Species Considered in Each Propellant System (Continued)

-9-

Propellant System (Table I)	t 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Species															
BF										х					
BF ₂										x					
BF ₃										х					
BOF										х					
Li											х				
LiH											х				
LiOH											x				
LiO											х				
Li ₂ O											х				
LiF											x				
Li ₂ F ₂											х				
Total Num Species Co in Each Sy	nber onsid ysten	of lere n	d												
	6	5	9	9	10	12	15	18	10	19	16	24	24	24	24

Table III.Significant Species Considered in EachPropellant System (Continued)

			I _{sp} (VAC)							
Chamber Pressure (psia)			Equilib	rium Flow	Frozen Flow					
	Mixture Ratio	Area Ratio	All Species	6 Significant Species	All Species	o Significant Species				
100	4.0	10.0	425.99	425.99	415.04	415. 04				
		20.0	442.84	442.84	430.36	430.36				
		30.0	450.70	450.70	437.48	437.48				
		40.0	455.55	455.55	441.87	441.87				
	5.0	10.0	421.42	421.42	402.37	402.37				
		20.0	440.51	440.51	418.04	418.04				
		30.0	449.67	449.67	425.39	425.39				
		40.0	455.40	455.40	429.93	429.93				
	6.0	10.0	412.08	412.08	387.58	387.58				
		20.0	433.09	433.09	403.10	403.10				
		30.0	443.41	443.41	410.43	410.43				
		40. 0	449.98	449.98	414.97	414.98				
1000	4.0	10.0	427.01	427.01	422.02	422.02				
		20.0	443.60	443.60	437.95	437.95				
		30.0	451.35	451.35	445.37	445.37				
		40.0	456.13	456.13	449.95	449.95				
	5.0	10.0	424.36	424.36	413.55	413.55				
		20.0	442.80	442.81	430.25	430.25				
		30.0	451.66	451.66	438.15	438.15				
		40.0	457.19	457.19	443.06	443.06				
	6.0	10.0	417.72	417.72	401.19	401.19				
		20.0	437.68	437.68	417.96	417.97				
		30.0	447.46	447.46	425.99	426.00				
		40.0	453.68	453.68	431.01	431.02				

Table IV. Theoretical Performance of H_2/O_2 System

-11-

			Isp (VAC)							
			Equilib	rium Flow	Frozen Flow					
Chamber Pressure (psia)	Mixture Ratio	Area Ratio	All Species	5 Significant Species	All Species	5 Significant Species				
100	7.0	10.0	443, 93	443.93	410.49	410.49				
		20.0	460.76	460.76	421.97	421.97				
		30.0	468.33	468.33	427.10	427.10				
		40.0	472.87	472.87	430.22	430.22				
	10.0	10.0	439.15	439.15	397.12	397.12				
		20.0	458.94	458.94	407.91	407.91				
		30.0	468.23	468.23	412.68	412.68				
		40.0	473.92	473.92	415.56	415.56				
	13.0	10.0	433.94	433.94	387.44	387.44				
		20.0	454.89	454.89	397.75	397.75				
		30.0	465.13	465.13	402.28	402.28				
		40.0	471.57	471.57	405.00	405.00				
1000	7.0	10.0	448.06	448.06	426.87	426.87				
		20.0	463.74	463.74	439.46	439.46				
		30.0	470.78	470.78	445.06	445.06				
		40.0	475.01	475.01	448.45	448.45				
	10.0	10.0	447.25	447.25	416.27	416.27				
		20.0	465.21	465.21	428.40	428.40				
		30.0	473.51	473.51	433.75	433.76				
		40.0	478.57	478.57	436.97	436.97				
	13.0	10.0	444.18	444.18	407.19	407.19				
		20.0	463.58	463.58	418.88	418.88				
		30.0	472.74	472.74	424.01	424.02				
		40.0	478.41	478.41	427.08	427.10				

Table V. Theoretical Performance of H_2/F_2 System

-12-

				I _{sp} (VAC)						
			Equilib	rium Flow	Froz	en Flow				
Chamber Pressure (psia)	Mixture Ratio	Area Ratio	All Species	9 Significant Species	All Species	9 Significant Species				
100	2.2	10.0	320.10	320.10	301.61	301.62				
		20.0	335.14	335.14	313.17	313.18				
		30.0	342.49	342.49	318.61	318.62				
		40.0	347.17	347.17	321.98	321.99				
	2.6	10.0	320.65	320.65	297.29	297.30				
		20.0	338.29	338.29	309.03	309.04				
		30.0	347.17	347.18	314.60	314.60				
		40.0	352.91	352.91	318.06	318.07				
	3.0	10.0	315.06	315.07	291.40	291.40				
		20.0	333. 32	333.32	303.08	303.08				
		30.0	342.84	342.84	308.65	308.65				
		40.0	349.15	349.16	312.11	312.12				
1000	2.2	10.0	323.22	323.22	311.55	311.57				
		20.0	337.63	337.63	323.94	323.96				
		30.0	344.68	344.69	329.83	329.85				
		40.0	349.18	349.18	333.49	333.52				
	2.6	10.0	327.31	327.32	309.12	309.14				
		20.0	344.08	344.09	321.85	321.88				
		30.0	352.41	352.41	327.97	328.00				
•		40.0	357.75	357.76	331.82	331.84				
	3.0	10.0	323.21	323.22	303.46	303.48				
		20.0	341.38	341.39	316.16	316.18				
		30.0	350.77	350.77	322.29	322 . 32				
		40.0	356.94	356.94	326.16	326.18				

Table VI. Theoretical Performance of RP-1/O₂ System

-13-

			Isp (VAC)							
			Equilib	rium Flow	Frozen Flow					
Chamber Pressure (psia)	Mixture Ratio	Area <u>Ratio</u>	All Species	9 Significant Species	All Species	Significant Species				
100	0.9	10.0	310.06	310.06	303.11	303.12				
		20.0	321, 77	321.77	314.00	314.00				
		30.0	327.22	327.22	319.05	319.05				
		40.0	330.58	330.58	322.16	322.17				
	1.1	10.0	314.68	314.68	302.44	302.44				
		20.0	327.65	327.65	313.68	313.68				
		30.0	333.76	333.76	318,91	318.92				
		40.0	337.55	337.55	322.15	322.15				
	1.3	10.0	315.95	315.95	298.38	298.38				
		20.0	330.24	330.24	309.65	309.65				
		30.0	337.08	337.08	314.92	314.92				
		40.0	341.35	341.35	318.18	318.18				
1000	0.9	10.0	310. 57	310.58	307.54	307.55				
		20.0	322.16	322.16	318.78	318,78				
		30.0	327.55	327.55	324.00	324,00				
		40.0	330.87	330,87	327.22	327.23				
	1.1	10.0	315.96	315.96	309.48	309.49				
		20.0	328.62	328.62	321.31	321.31				
		30.0	334.59	334.59	326.84	326.85				
		40.0	338.29	338.29	330.27	330.28				
	1.3	10.0	318.45	318.44	307.01	307.01				
		20.0	332.18	332.19	319.01	319.02				
		30.0	338.75	338.75	324.66	324.67				
		40.0	342.85	342.85	328.17	328.18				

Table VII. Theoretical Performance of N_2H_4/N_2O_4 System

Table VIII.	Theoretical Performance of N_2H_4 /Compound A System

			Isp (VAC)						
Chamber Pressure (psia)			Equilib	rium Flow	Frozen Flow				
	Mixture Ratio	Area <u>Ratio</u>	All Species	10 Significant Species	All Species	10 Significant Species			
100	2.3	10.0	340. 94	340.94	311.55	311.56			
		20.0	355.27	355.27	320.42	320.43			
		30.0	361.89	361.89	324.37	324.38			
		40.0	365.92	365.92	326.76	326.77			
	2.5	10.0	341.63	341.63	312.42	312.43			
		20.0	356.48	356.48	321.37	321.38			
		30.0	363.42	363.42	325.36	325.37			
		40.0	367.65	367.65	327.78	327.79			
	2.7	10.0	341.59	341.60	310.25	310.26			
		20.0	356.86	356.86	319.02	319.04			
		30.0	364.12	364.12	322.93	322.94			
		40.0	368.60	368.60	325.29	325.30			
1000	2.3	10.0	345.52	345.53	325.22	325.24			
·		20.0	358.71	358.71	335.06	335.08			
		30.0	364.77	364.77	339.45	339.48			
		40.0	368.46	368.46	342.11	342.14			
	2.5	10.0	346.79	346.79	324.51	324.53			
		20.0	360.43	360.43	334.27	334.30			
		30.0	366.73	366.74	338.63	338.66			
		40.0	370.58	370.58	341.26	341.29			
	2.7	10.0	347.16	347.17	323.22	323.25			
		20.0	361.31	361.31	332.87	332.91			
		30.0	367.92	367.92	337.18	337.21			
		40.0	371.96	371.97	339.78	339.81			

			I (VAC)					
			Equilib	rium Flow	Frozen Flow			
Chamber Pressure (psia)	Mixtur e <u>Ratio</u>	Area <u>Ratio</u>	All Species	12 Significant Species	All Species	12 Significant Species		
100	1.5	10.0	304.66	304.66	295.75	295.76		
		20.0	316.84	316.84	306.45	306.45		
		30.0	322.68	322.68	311.42	311.43		
		ure Area Ratio Si 10.0 30 20.0 31 30.0 31 40.0 31 20.0 31 40.0 31 20.0 32 40.0 31 20.0 32 30.0 32 40.0 32 30.0 32 40.0 32 30.0 32 30.0 32 30.0 32 30.0 32 30.0 32 30.0 33 40.0 33 30.0 33 30.0 33 30.0 33 30.0 33 30.0 33 30.0 33 30.0 33 30.0 33 30.0 33 30.0 33 30.0 33 30.0 33 30.0 33 30.0 33	326.36	326.36	314.49	314.50		
	1.8	10.0	309.86	309.86	294.84	294.85		
		20.0	323.42	323.42	305.92	305.92		
		30.0	329 . 95	329.95	311.10	311.11		
		40.0	334.07	334.07	314.31	314.31		
	2.1	10.0	310.76	310.76	290.57	290.57		
		20.0	325.85	325.85	301.70	301.70		
		30.0	333.18	333.18	306.92	306.93		
		40.0	337.83	337.83	310.16	310.17		
1000	1.5	10.0	305.38	305.38	300.95	300.96		
		20.0	317.40	317.40	312.06	312.07		
		30.0	323.17	323.17	317.24	317.25		
		40.0	326.81	326.81	320.44	320.45		
	1.8	10.0	311.71	311.71	302.90	302.91		
		20.0	324.86	324.87	314.64	314.66		
		30.0	331.21	331.21	320.17	320.19		
		40.0	335.21	335.21	323.60	323.62		
	2.1	10.0	314.28	314.28	300.03	300.04		
		20.0	328.64	328.64	311.95	311.97		
		30.0	335.63	335.63	317.61	317.62		
		40.0	340.06	340.06	321.13	321.14		

Table IX. Theoretical Performance of MMH/N_2O_4 System

				I _{sp} (VAC)	ozen Flow 15 Significant					
			Equilib	rium Flow	Froz	en Flow					
Chamber Pressure (psia)	Mixture Ratio	Area Ratio	All Species	15 Significant Species	All Species	15 Significant Species					
100	1.5	10.0	357.82	357.82	333.68	333.68					
		20.0	371.75	371.75	343.74	343.75					
		30.0	378.16	378.16	348.27	348.28					
		40.0	382.07	382.07	351.03	351.03					
	1.8	10.0	364.08	364.08	333.69	333.70					
		20.0	379 . 97	379.98	343.78	343.79					
		30.C	387.43	387.43	348.32	348. 32					
		40.0	392.03	392.03	351.07	351.07					
	2.1	10.0	366.18	366.19	331.65	331.65					
		20.0	383.86	383.86	341.63	341.64					
		30.0	392.34	392.34	346.10	346.11					
		40.0	397.62	397.62	348.82	348.83					
1000	1.5	10.0	360.88	360.88	345.85	345.88					
		20.0	374.01	374.02	356.83	356.83					
		30.0	380.06	380.06	361.76	361.76					
		40.0	383.76	383.76	364.75	364.75					
	1.8	10.0	369.15	369.15	347.86	347.89					
		20.0	383.83	383.84	359.00	359.03					
		30.0	390.71	390.72	364.03	364.06					
		4 0.0	39 4.95	394.96	367.08	367.11					
	2.1	10.0	373. 37	373.38	346.71	346.74					
		20.0	389.59	389.59	357.82	357.85					
		30.0	397.28	397.28	362.84	362.87					
		40.0	402.06	402.07	365.88	365 . 91					

Table X. Theoretical Performance of MMH/OF₂ System

			I (VAC)				
			Equilib	rium Flow	Frozen Flow		
Chamber Pressure (psia)	Mixture Ratio	Area <u>Ratio</u>	All Species	18 Significant Species	All Species	18 Significant _Species	
100	1.5	10.0	306.02	306.03	294.32	294.32	
		20.0	317.54	317.55	304.06	304.07	
		30.0	322.99	322.99	308.52	308.51	
		40.0	326.41	326.41	311.26	311.25	
	1.8	10.0	311.90	311.91	293.77	293.78	
		20.0	324.93	324.93	303.77	303.78	
		30.0	331.10	331.11	308.35	308.36	
		40.0	334.96	334.97	311.17	311.18	
	2.1	10.0	313.63	313,63	290.35	290.36	
		20.0	328.24	328.24	300.35	300.36	
		30.0	335.25	335.25	304.95	304.96	
		40.0	339.65	339.65	307.77	307.78	
1000	1.5	10.0	307.02	307.03	300.92	300.94	
		20.0	318.29	318.31	311.15	311.17	
		30.0	323.65	323.65	315.84	315.86	
		40.0	327.01	327.00	318.72	318.74	
	1.8	10.0	314.18	314.19	303.09	303.12	
		20.0	326.67	326.68	313.81	313.84	
		30.0	332.61	332.61	318.76	318.79	
		40.0	336. 32	336.32	321.80	321.82	
	2.1	10.0	317.63	317.63	301.18	301.22	
		20.0	331.37	331.38	312.05	312.09	
		30.0	337.97	337.97	317.10	317.13	
		40.0	342.10	342.10	320.19	320.2 3	

Table XI. Theoretical Performance of MMH/ClO₃F System

				I (VAC)	2n Flow 10 Significant Species 363. 32 379. 84 387. 96 393. 15 362. 85 379. 21 387. 24 392. 37 359. 93 375. 94 383. 77 388. 76 366. 71 383. 52 391. 80 397. 10 364. 78 381. 29 389. 40			
Chamber Pressure (psia)			Equilib	rium Flow	Frozen Flow				
	Mixture Ratio	Area Ratio	All Species	10 Significant Species	All Species	10 Significant Species			
ye.									
100	1.15	10.0	368.47	368.48	363.30	363.32			
		20.0	385.60	385.60	379.82	379.84			
		30.0	394.03	394.04	387.95	387.96			
		40.0	399.43	399.43	393.14	393.15			
	1.25	10.0	365.63	365.63	362.80	362.85			
		20.0	382.32	382.31	379.15	379.21			
		30.0	390.50	390.50	387, 18	387.24			
		40.0	395.74	395.73	392.31	392.37			
	1.35	10.0	362.02	362.02	359.90	359.93			
		20.0	378.26	378.26	375.90	375.94			
		30.0	386.21	386.22	383.73	383.77			
		40.0	391.28	391.28	388,72	388.76			
1000	1.15	10.0	368.81	368.84	366.59	366.71			
		20.0	385.87	385.89	383, 39	383, 52			
		30.0	394.28	394.29	391.67	391.80			
		40.0	399.65	399.67	396.96	397.10			
	1.25	10.0	365.84	365.85	364.70	364.78			
		20.0	382.48	382.48	381.21	381.29			
		30.0	390.65	390.66	389.32	389.40			
		40.0	3 95. 87	395.87	394.50	394.58			
	1.35	10.0	362.18	362.18	361.38	361.42			
		20.0	378.39	378.39	377.50	377.54			
		30.0	386.33	386.33	385.39	385.44			
		40.0	391.38	391.39	390.42	390.47			

Table XII. Theoretical Performance of B_2H_6/N_2H_4 System

-19-

				I (VAC)	
			Equilib	rium Flow	Frozen Flow	
Chamber Pressure (psia)	Mixture Ratio	Area <u>Ratio</u>	All Species	19 Significant Species	All Species	19 Significant Species
100	2.4	10.0	380. 05	380.16	351.00	351.13
		20.0	399.82	399, 91	363.42	363.54
		30.0	409.90	409.98	369.21	369. 32
		40.0	416.49	416.57	372.78	372.88
	3.2	10.0	388.09	388.17	355.80	355.87
		20.0	408.71	408.78	368.17	368.24
		30.0	419.32	419.39	373.92	373.98
		40.0	426. 31	426.37	377.46	377.52
	4.0	10.0	39 0. 36	390. 37	355.15	355.12
		20.0	411.28	411.29	367.31	367.26
		30.0	422.03	422.04	372.94	372.89
		40.0	429.10	429.11	376.40	376.35
1000	2.4	10.0	387.64	387.87	364.44	364.76
		20.0	407.03	407.21	378.00	378.28
		30.0	416.96	417.14	384.38	384.65
		40.0	423.54	423.71	388.33	388.60
	3.2	10.0	397.86	398.06	371.29	371.47
		20.0	418.35	418.52	384.94	385.10
		30.0	428.84	429.01	391.38	391.54
		40.0	435.75	435.90	395.38	395.52
	4.0	10.0	400.50	400.57	371.13	371,10
		20.0	421.26	421.34	384.58	384.54
		30.0	431.81	431.89	390.93	390.87
		40.0	438.70	438.76	394.86	394.79

Table XIII. Theoretical Performance of B_2H_6/OF_2 System

-20-

			I _{sp} (VAC)					
		Area Ratio	Equilib	rium Flow	Frozen Flow			
Chamber Pressure (psia)	Mixture <u>Ratio</u>		All Species	16 Significant Species	All Species	16 Significant Species		
100	2.5	10.0	346.73	346.76	322.10	322.19		
		20.0	364.06	364.09	333.44	333.54		
		30.0	372.91	373.93	338.72	338.82		
		40.0	378.72	378.74	341.99	342.09		
	3.0	10.0	35Ż.67	352.72	322.46	322.58		
		20.0	371.27	371.32	333.66	333.79		
		30.0	380.68	380.72	338.86	338.99		
		40.0	386.79	386.83	342.07	342.19		
	3.5	10.0	351.84	351.89	320.09	320.23		
		20.0	370.89	370.94	330.97	331.12		
		30.0	380.66	380.70	336.00	336.15		
		40.0	387.06	387.10	339.09	339.24		
1000	2.5	10.0	354.00	354.04	335.21	335.35		
		20.0	371.48	371.52	347.82	347.97		
		30.0	380.41	380.45	353.78	353.93		
		40.0	386.30	386.33	357.49	357.64		
	3.0	10.0	361.04	361.10	337.48	337.65		
		20.0	379.22	379.26	350.01	350.18		
		30.0	388.41	388.46	355.91	356.09		
		40.0	394.42	394.47	359.58	359.76		
	3.5	10.0	361.02	361.09	335.49	335.67		
		20.0	379.67	379.73	347.67	347.87		
		30. 0	389.14	389.20	353.40	353.60		
		40.0	395.33	395.38	356.94	357.14		

Table XIV. Theoretical Performance of LiH/OF_2 System

				AC)	ozen Flow				
Chamber Pressure (psia)		Equilib	rium Flow	Froz	en Flow				
	Area <u>Ratio</u>	All Species	24 Significant Species	All Species	24 Significant Specie s				
100	10.0	283.70	283. 67	270.33	270.35				
	20.0	299.29	299. 30	282.14	282.16				
	30.0	307.05	307.04	287.89	287.91				
	40.0	312.03	312.03	291.52	291.55				
1000	10.0	286.52	286.56	277.34	277.38				
	20.0	301.70	301.71	289.74	289.78				
	30.0	309.22	309.23	295.82	295.87				
	40.0	314.04	314.05	299.70	299.75				

Table XV. Theoretical Performance of PBAA/A1/AP System

Table XVI. Theoretical Performance of PBAA/Be/AP System

		I _{SD} (VAC)					
		Equilib	rium Flow	Frozen Flow			
Chamber Pressure (psia)	Area Ratio	All Species	24 Significant Species	All Species	24 Significant Species		
100	10.0	305.71	305.74	289. 32	289.46		
	20.0	324.00	324.03	303.10	303.24		
	30, 0	333.39	333.42	309.93	310.09		
	40.0	339.56	339.58	314.32	314.48		
1000	10.0	308.84	308.88	296.54	296.68		
	20.0	327.15	327.18	311.01	311.16		
	30.0	336.46	336 . 48	318.25	318.40		
	40.0	342.53	342.56	322.91	323.07		

		I (VAC)					
		Equilib	rium Flow	Froz	Frozen Flow		
Chamber Pressure (psia)	Area <u>Ratio</u>	All Species	24 Significant Species	All Species	24 Significant Species		
100	10.0	284.61	284. 67	272.41	272.47		
	20.0	300.70	300.71	284.76	284.82		
	30.0	309.26	309.20	290.86	290.93		
	40.0	314.82	314.81	294.76	294.83		
1000	10.0	288.46	288. 54	280.52	280.65		
	20.0	304.20	304.19	293.53	293.67		
	30.0	312.50	312.47	300.01	300.15		
	40.0	317.87	317.92	304.18	304.32		

Table XVII. Theoretical Performance of DB/A1/AP System

Table XVIII. Theoretical Performance of DBB/AP System

		I (VAC)					
		Equilib	rium Flow	Froz	en Flow		
Chamber Pressure (psia)	Area <u>Ratio</u>	All Species	24 Significant Species	All Species	24 Significant Species		
100	10.0	303.45	303.55	289.55	289.84		
	20.0	321.74	321.86	303.34	303.68		
	30.0	331.19	331.25	310.20	310.37		
	40.0	337.37	337.42	314.61	315.00		
1000	10.0	307.31	307.40	298.09	298.27		
	20.0	325.69	325.71	312.67	312.87		
	30.0	335.01	335.04	320.00	320.20		
	40.0	341.09	341.12	324.74	324.95		

Table XIX. Chemical Reactions of Importance in Nonmetallized Propellant Systems Containing Carbon, Hydrogen, Oxygen, Nitrogen, Fluorine and Chlorine

Chemical Reaction $CO_2 + M = CO + O + M$ $H_2O + M = OH + H + M$ CO + M = C + O + MC1, + M = 2C1 + M $F_2 + M = 2F + M$ HC1 + M = H + C1 + MHF + M = H + F + M $H_2 + M = 2H + M$ $N_2 + M = 2N + M$ $NO + M \implies N + O + M$ OH + M = O + H + M $0_{2} + M = 20 + M$ CO, + H **=**CO + OH co, +o = co + o,H,0 + C1 == OH + HC1 $H_{,O} + H \implies OH + H_{,}$ H₂O + O == 2OH $CO + CO = CO_2 + C$ CO + H **→** C + OH $CO + N \rightleftharpoons C + NO$

Chemical Reaction $CO + NO = CO_2 + N$ $CO + O = C + O_{2}$ HC1 + C1 = H + C1, $HC1 + HC1 \implies H_2 + C1_2$ HC1 + O **→** OH + C1 HF + Cl = HCl + F $HF + F = H + F_{2}$ $HF + H = H_2 + F$ $HF + HF \Longrightarrow H_2 + F_2$ HF + O = OH + F $HF + OH \Longrightarrow H_0 + F$ H, + C1 = HC1 + H H₂ + O **⇒** OH + H $H_{2} + O_{2} = 2OH$ $N_2 + O = NO + N$ $N_2 + O_2 = 2NO$ NO + H 🖛 N + OH $NO + O \implies N + O_{2}$ 0₂ + H **■** OH + O

Table XX.	Additional	Chemical	Reactions	of	Importance	in	Aluminum
	Containing	Propellar	nt Systems				

Chemical Reaction	Chemical Reaction
CO + A1 A1O + C	$O + A1_2 O = 2A1O$
$CO_2 + A1$ Alo + CO	$A1_2O + M$ $A1 + A1O + M$
A1C1 + M = C1 + A1 + M	CO + A1C1 Aloc1 + C
$A1C1 + C1 = A1 + C1_2$	$CO + AlOCI $ AlCl + CO_2
A1C1 + H HC1 + A1	$A1C1_2 + M$ $C1 + A1C1 + M$
NO + A1 $A1O + N$	$C1 + A1C1_2$ A1C1 + $C1_2$
A10 + M = 0 + A1 + M	$HC1 + A1C1 = A1C1_2 + H$
$O_2 + A1$ A10 + O	NO + A1C1 = A1OC1 + N
A10 + HA1 + OH	Aloc1 + M = 0 + Alc1 + M
A1C1 + 0A10 + C1	$O + AlOCI $ AlCl + O_2
A10C1 + M = C1 + A10 + M	H + A1OC1 $A1C1 + OH$
$C1 + A10C1 = A10 + C1_2$	C1 + Aloci = Alci + O
AIC1 + OH AIO + HC1	HCI + AlOCI
H + A10C1 A10 + HC1	$2A1C1 = A1 + A1C1_2$
$A1 + A10C1 = C1 + A1_20$	Al + Aloci Alo + Alci
$C1 + A1_2O$ A1O + A1C1	$A1 + A1OC1$ $A1O + A1C1_2$
$A1C1 + A1OC1 = C1_2 + A1_2O$	

Table XXI.	Additional Chemical Reactions of Importance in Beryllium	
	Containing Propellant Systems	

Chemical Reactions		
C + BeO Be + CO		
$CO + BeO = Be + CO_2$		
BeCl + M = Cl + Be + M		
$C1 + BeC1 = Be + C1_2$		
$H + BeOH = Be + H_2O$		
H + BeCl = Be + HCl		
N + BeO = Be + NO		
BeO + M = Be + O + M		
$O + BeO = Be + O_2$		
BeOH + M = OH + Be + M		
H + BeO Be + OH		
Be ₂ O + H E BeOH + Be		
$2BeOH = BeO_2H_2 + Be$		
$Be_2O + M = BeO + Be + M$		
Cl + BeOH BeO + HCl		
Cl + BeOH == BeCl + OH		
HCl + BeOBeCl + OH		

Chemical Reactions $H + BeOH = BeO + H_2$ $H + BeO_2H_2 = BeOH + H_2O$ H₂O + BeCl = BeOH + HCl O + BeOH = BeO + OH $BeO_2H_2 + M = BeOH + OH + M$ $H_2O + BeO = BeOH + OH$ $Be_2O + H_2O = 2BeOH$ Be₂O + OH BeO + BeOH Be₂O + HCl = BeCl + BeOH BeOH + M = BeO + H + M Be₂O + Cl = BeCl + BeO Be, 0 + 0 = 2BeO Cl + BeO == BeCl + O $HC1 + BeC1 = BeC1_2 + H$ $2BeCl = BeCl_2 + Be$ BeCl₂ + M = Cl + BeCl + M $BeO + HF \longrightarrow F + BeOH$

-26-

Table XXII.	Additional Chemical Reactions, of Importance in Be	oron
	Containing Propellant Systems	

Chemical Reaction	Chemical Reaction
$BF + M \longrightarrow F + B + M$	$F + BF_2 = BF + F_2$
$F + BF = B + F_2$	$HF + BF = BF_2 + H$
$BF + H \longrightarrow HF + B$	$BOF + M \longrightarrow O + BF + M$
BN + M = B + N + M	BOF + H = BF + OH
$N_2 + B = BN + N$	$BF_3 + M = F + BF_2 + M$
BO + M = B + O	$F + BF_3 = BF_2 + F_2$
$BO + O = O_2 + B$	$H + BF_3 = BF_2 + HF$
BO + H - OH + B	$BOF + F = O + BF_2$
$BF + N \longrightarrow F + BN$	$HF + BOF \longrightarrow OH + BF_2$
N + BO = BN + O	2BO BO ₂ + B
$NO + BO = BN + O_2$	$2BF = BF_2 + B$
F + BO BF + O	$BF_2 + BF = B + BF_3$
$BOF + M \longrightarrow F + BO + M$	BO + BF BOF + B
$F + BOF = BO + F_2$	$BF + BOF = BO + F_2$
HF + BO BF + OH	$BO + BF_3 \longrightarrow BF_2 + BOF$
H + BOF BO + HF	$BO + BOF = BO_2 + BF$
HF + BO = BF + OH	$2BOF = BO_2 + BF_2$
$BO_2 + M = O + BO + M$	BO + C CO + B
$O + BO_2 = BO + O_2$	$BO + CO - CO_2 + B$
$H + BO_2 = BO + OH$	NO + B = BO + N
$O + BOF = BO_2 + F$	NO + B = BN + O
H + BO ₂ BO + OH	$NO + BN = BO + N_2$
$HF + BO_2 = BOF + OH$	$CO + BO = BO_2 + C$
$BO + NO = BO_2 + N$	$CO_2 + BO \longrightarrow BO_2 + CO$
$O + BO_2 = BO + O_2$	CO + BF BOF + C
$BF_2 + M \longrightarrow F + BF + M$	$CO_2 + BF = BOF + CO$

-27-

Table XXIII. Additional Chemical Reactions of Importance in Lithium Containing Propellant Systems

Chemical Reaction	Chemical Reaction
LiF + M = F + Li + M	H ₂ O + LiF LiOH + HF
$LiF + F = Li + F_2$	O + LiOH LiO + OH
LiH + M = H + Li + M	$OH + LiOH$ LiO + H_2O
$H_2 + Li = LiH + H$	0 + LiF LiO + F
H ₂ O + Li LiH + OH	$LiOH + M \longrightarrow H + LiO + M$
H ₂ O + Li LiOH + H	OH + LIF LIO + HF
HF + Li LiH + F	$LiF + LiO Li_2O + F$
LiF + H	Li + LiOH H + Li ₂ O
LiO + M = O + Li + M	H + Li ₂ O LiH + LiO
$O_2 + Li$ LiO + O	$H_2 + Li_2O$ LiH + LiOH
OH + Li_LiH + O	$H_2O + Li_2O = 2LiOH$
$LiOH + M \longrightarrow OH + Li + M$	$HF + Li_2O$ LiOH + LiF
OH + Li_LiO + H	$O + Li_2 O_{2LiO}$
H + LiF F + LiH	$LiO + LiOH$ $Li_2O + OH$
$HF + LiF F_2 + LiH$	Li + LiOH LiH + LiO
$LiOH + H_2 - H_2O + LiH$	Li + LiOH Li ₂ O + H
$H_2 + LiF_HF + LiH$	$Li_2O + M$ Li + LiO + M
$OH + LiO_{LiH} + O_{2}$	$Li_2O + H_2$ LiH + LiOH
LiOH + HLiH + OH	CO + Li LiO + C
$H_2 + LiO$ LiH + OH	$LiO + CO CO_2 + Li$
HF + LiOLiOH + F	LiH + Cl HCl + Li
OH + LiFLiOH + F	LiO + N NO + Li
H + LiOH LiO + H ₂	LiO + HCl

-28-

Table XXIV.Chemical Reactions EliminatedDue to Steric Considerations

Chemical Reactions Involving No Metallized Species

$$C + H_{2}O = CO + H_{2}$$

$$C + O_{2} + M = CO_{2} + M$$

$$CO + H_{2}O = CO_{2} + H_{2}$$

$$H_{2} + NO = H_{2}O + N$$

$$H_{2} + O + M = H_{2}O + M$$

$$H_{2} + O_{2} = H_{2}O + O$$

$$H_{2}O + N = H_{2} + NO$$

Chemical Reactions Involving Aluminum Species

$$Cl_{2} + Al + M = AlCl_{2} + M$$

$$H_{2}O + Al = AlO + H_{2}$$

$$Cl_{2} + AlO = AlCl_{2} + O$$

$$CO_{2} + Al_{2}O = Al_{2}O_{3} + C$$

$$Cl_{2} + Al_{2}O = AlO + AlCl_{2}$$

$$O_{2} + Al_{2}O = AlO + AlCl_{2}$$

$$O_{2} + Al_{2}O + M = Al_{2}O_{3} + M$$

$$H_{2}O + AlCl = AlOCl + H_{2}$$

Chemical Reactions Involving Beryllium Species

$$Cl_{2} + Be + M = BeCl_{2} + M$$

$$H_{2}O + Be = BeO + H_{2}$$

$$BeO_{2}H_{2} + Be = Be_{2}O + H_{2}O$$

$$Cl_{2} + BeOH = BeCl_{2} + OH$$

$$Cl_{2} + BeO = BeCl_{2} + O$$

$$H_{2}O + BeO + M = BeO_{2}H_{2} + M$$

$$BeCl_{2} + BeO = Be_{2}O + Cl_{2}$$

Chemical Reactions Involving Boron Species

 $CO_{2} + B = BO_{2} + C$ $F_{2} + B + M = BF_{2} + M$ $H_{2} + B + M = BH_{2} + M$ $H_{2}O + B = BO + H_{2}$ $H_{2}O + B = BH_{2} + O$

Chemical Reactions Involving Boron Species (Continued) $O_{2} + B + M = BO_{2} + M$ $F_2 + BN = BF_2 + N$ $H_2 + BN = BH_2 + N$ H,0 + BN _____ BH, + NO $O_2 + BN = BO_2 + N$ F, + BO = BF, + OH, + BO ____ BH, + O H,0 + BO ____ BO, + H, H,0 + BO = BH, + O, $F + BO_{,} = BF + O_{,}$ $F_{2} + BO_{2} = BF_{2} + O_{2}$ H, + BO, == BO + H,O H, + BO, = BH, + O, $N + BO_2 = BN + O_2$ F + BH, $\blacksquare BF + H$, $F_2 + BH_2 = BF_2 + H_2$ N + BH, $\blacksquare BN + H$, NO + BH, = BN + H,O $F_2 + BF + M \longrightarrow BF_3 + M$ $H_0 + BF = BOF + H_1$ $O + BF_3 = BOF + F_2$ **Chemical Reactions Involving** Lithium Species $H_0 + Li$ LiO + H, CO + LiH LiOH + C CO, + LiH LiOH + CO NO + LiH LiOH + N O + LiH + M LiOH + M $O_2 + LiH = LiOH + O$ C + LiOH LiH + CO

 $F_{2} + Li_{2}O = Li_{2}F_{2} + O$

-29-

Table XXV. Spin Forbidden Chemical Reaction Which do no Occur in the Ground State

> Chemical Reaction $CO_2 + M = CO + O + M$ BOF + M = O + BF + M BF + BOF = BO + F₂ CO + A1C1 = A1OC1 + C NO + A1C1 = A1OC1 + N A1OC1 + M = O + A1C1 + M C + BeO = Be + CO N + BeO = Be + NO BeO + M = Be + O + M Be₂O + O = 2BeO

Table XXVI. Chemical Reactions for Which Rate Constants Have Been Determined

Chemical Reaction	Exothermic Rate Constant	Refe rence
$CO_2 + M_{\rightarrow} CO + O + M$	$3 \times 10^{20} T^{-1.0} \exp \left(\frac{11393}{T}\right)$	Avramenko, L.I. and Kolesnikova, R.V., Izvest. Akad. Navk. S.S.S.R., Otdel. Khim. Navk., 1562 (1959).
H ₂ O + M==OH + H + M	$3 \times 10^{19} \mathrm{T}^{-1.0}$	Mayer, S.W., Cook, E.A., Schieler, L., "Non- equilibrium Recombination in Nozzles," SSD- TDR-64-139, Aerospace Corporation, Los Angeles, California, 18 Sept. 1964.
CO + M C + O + M	$2 \times 10^{18} \mathrm{T}^{-1.0}$	Wray, K.L., Avco Research Report 95 (1961).
HF + MH + F + M	$1 \times 10^{19} \times 10^{-0.5}$	S.W. Mayer, E.A. Cook, and L. Schieler, "Nonequilibrium Recombination in Nozzles," SSD-TDR-64-139, Aerospace Corporation, Los Angeles, California, 19 Sept. 1964.
H ₂ + M 2H + M	10 ¹⁹ T ^{-1.0}	W.E. Kaskan and W.G. Browne, "Kinetics of the H ₂ /CO/O ₂ System," General Electric Docu- ment No. 63SD848, 14 February 1964.
$N_2 + M = 2N + M$	$2 \times 10^{18} \mathrm{T}^{-1.0}$	K.L. Wray, Avco Research Report 104 (1961).
NO + M $N + O + M$	$2 \times 10^{18} \mathrm{T}^{-1.0}$	K.L. Wray, Avco Research Report 95 (1961).
OH + M O + H + M	$2 \times 10^{18} \mathrm{T}^{-1.0}$	S.W. Mayer, E.A. Cook, and L. Schieler, "Nonequilibrium Recombination in Nozzles," SSD-TDR-64-139, Aerospace Corporation, Los Angeles, California, 19 Sept. 1964.
0 ₂ + M 20 + M	$1 \times 10^{16} T^{-0.5}$	S.W. Mayer, E.A. Cook, and L. Schieler, "Nonequilibrium Recombination in Nozzles," SSD-TDR-64-139, Aerospace Corporation, Los Angeles, California, 19 Sept. 1964.
со ₂ + нсо + он	3.2 x 10 ¹² exp $-\left(\frac{6300}{RT}\right)$	W.E. Kaskan and W.G. Browne, "Kinetics of the H ₂ /CO/O ₂ System," General Electric Docu- ment No. 63SD848, 14 Feb. 1964.
$co_2 + o_2 = co + o_2$	3.58 x $10^{15} \mathrm{T}^{-1.0}$	L.I. Avramenko and R.V. Kilesnikova, Izvest. Akad. Navk. S.S.S.R., Otdel. Khim. Navk., 1562 (1959).
н ₂ 0 + нон + н ₂	$7 \times 10^{13} \exp -\left(\frac{6100}{RT}\right)$	S.W. Mayer, E.A. Cook, and L. Schieler, "Nonequilibrium Recombination in Nozzles," SSD-TDR-64-139, Aerospace Corporation, Los Angeles, California, 19 Sept. 1964.
н ₂ 0 + 0 <u>-</u> 20н	2.5 x $10^{14} \exp \left(\frac{10000}{RT}\right)$	S.W. Mayer, E.A. Cook, and L. Schieler, "Nonequilibrium Recombination in Nozzles," SSD-TDR-64-139, Aerospace Corporation, Los Angeles, California, 19 Sept. 1964.

Table XXVI. Chemical Reactions for Which Rate Constants Have Been Determined (Continued)

Chemical Reaction	Exothermic Rate Constant	Reference
2COCO_2 + C	2.11 x $10^{16} \mathrm{T}^{-1.0}$	L.I. Avramenko, R.V. Lorentso, Zhur. Fiz. Khim., <u>24</u> , 207 (1950).
CO + Har C + OH	$1 \times 10^{14} \exp -\left(\frac{13000}{T}\right)$	F. Kaufman and J. P. Kelso, J. Chem. Phys., 23, 1072 (1955).
CO + N C + NO	$1.44 \times 10^{16} \mathrm{T}^{-1.0}$	L.I. Avramenki and R.V. Lorentso, Zhur. FIZ. Khim., <u>24</u> , 207 (1950).
$co + NO = co_2 + N$	2.47 x $10^{15} \text{T}^{-1.0}$	L.I. Avramenko and R.V. Kilesnikova, Izvest. Akad. Navk. S.S.S.R., Otdel. Khim. Navk., 1562 (1959).
$co + o_{a} c + o_{2}$	2.48 x 10 ¹³ exp $-\left(\frac{990}{T}\right)$	L.I. Avramenko and R.V. Lorentso, Zhur, Fiz, Khim., 24, 207 (1950).
$HF + H_{\bullet} H_2 + F$	$5 \times 10^{12} \exp -\left(\frac{5700}{RT}\right)$	S.W. Mayer, E.A. Cook, and L. Schieler, "Nonequilibrium Recombination in Nozales," SSD-TDR-64-139, Aerospace Corporation, Los Angeles, California, 18 Sept. 1964.
HF + QOH + F	$5 \times 10^{11} T^{0.5} exp - \left(\frac{6000}{RT}\right)$	S.W. Mayer, E.A. Cook, and L. Schieler, "Nonequilibrium Recombination in Nozzles," SSD-TDR-\$p-139, Aerospace Corporation, Los Angeles, California, 18 Sept. 1964.
HF + OH e H 20 + F	$5 \times 10^{11} T^{0.5} \exp -\left(\frac{7000}{RT}\right)$	S.W. Mayer, E.A. Cook, and L. Schieler, "Nonequilibrium Recombination in Nozzles," SSD-TDR-64-139, Aerospace Corporation, Los Angeles, California, 18 Sept. 1964.
н ₂ + о ⊒= он + н	$1.4 \ge 10^{12} \exp -\frac{(5190)}{RT}$	W.E. Kaskan and W.G. Browne, "Kinetics of the H ₂ /CO/O ₂ System," General Electric Docu- ment No. 63SD848, 14 February 1964.
H ₂ + 02 20H	2.7 x 10 ¹⁶ exp $-\left(\frac{53000}{T}\right)$	F. Kaufman and J. P. Kelso, J. Chem. Phys., 23, 1072 (1955).
N ₂ + ONO + N	$1.5 \times 10^{16} \mathrm{T}^{-1}$	L.E. Phillips and H.I. Schiff, J. Chem. Phys., 36, 1509 (1962).
N ₂ + O ₂ 2NO	2.7 x 10 ¹³ exp $-\left(\frac{53800}{T}\right)$	A. Ralston and H.S. Wilf, "Mathematical Method for Digital Computers," 1960.
NO + H N + OH	4.01 x 10^{23} T ⁻¹	F. Kaufman and F.P. Del Greco, Ninth Int. Symposium on Combustion (1963).
$NO + O = N + O_2$	1.011 x 10 ¹¹ T ^{-0.5} exp $-\left(\frac{3120}{T}\right)$	W.G. Vincenti, Stanford Univ. Dept. Aeronaut. Engr. Rept. 101 (1961).
0 ₂ + HOH + O	$3.2 \times 10^{11} \text{T}^{-0.47} \exp \left(\frac{100}{\text{RT}}\right)$	W.E. Kaskan and W.G. Browne, "Kinetics of the $H_2/CO/O_2$ System," General Electric Document No. 63SD848, 14 Feb. 1964.