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ABSTRACT

To ensure a high degree of confidence in calibrating a digitally coded
phase-modulated (PM) system, it is desirable to calibrate directly in
terms of the digital modulation. The complexity of the spectra resulting
from the single-tone case suggests that the spectra from a digitally
modulated PM system must be extremely complex and are, therefore,
not usable for direct calibration.

This Report demonstrates that the contrary is true, by investigating
the spectrum of a square-wave PM carrier. It is shown that the spectra
obey simple relationships which permit accurate calibration of a PM
system.

The geometric tolerances of the square- and trapezoidal-wave modu-
lation functions are investigated in terms of harmonic content. It is
shown that the symmetry and the rise-time of these functions provide
a sensitive indication of the performance of a PM system.

I. INTRODUCTION

Calibrating and establishing the performance criteria of a digitally coded PM
communication system is intimately related to a knowledge of the spectral char-
acteristics defining this class of modulation.

This Report derives the spectral characteristics of a square-wave phase-
modulated (PM) RF carrier and also demonstrates the geometric tolerances for
the modulation function in terms of harmonic content.

It is of particular interest to note the general simplicity of the square-wave
PM spectra in contrast to the relative complexity of the single-tone PM case. The
unique properties of the square-wave PM spectra provide a simple means of
accurately calibrating a digitally coded PM system in terms of the clocking
frequency of the digital system.
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Il. FOURIER ANALYSIS OF SQUARE-WAVE PHASE MODULATION

A PM function can be expanded into a Fourier series
such that (Ref. 1)

i=1 2 Cnej(mo+nw)1 (l)
where
» /0
C,=— elis(»)] g-jnwt dy (2)
n 271' S

The function ¢ (t) is a square wave and may be expressed
analytically as

$ .

s s()=p 0<t<T
= = ()= —8 -f<t<%}
w w

Bt ¢ (t + 27) = ¢ (t)

To avoid integrating through a finite discontinuity, C,
must be evaluated as the sum of two integrals:

/W0 2T/ w
QzK/ Pmm+K/
0

/@

Q()dt=A+B

Evaluating Part A by substituting for ¢ (¢) in Eq. (2)
its value of + 8, we have

/0 /
A== eiB-noty p = — & __l_ej(ﬁ—mut) e
2n J, 2r | fno 0

By Euler’s formula

e’"" = cosnr — jsinng = (— 1) for all n
Therefore
o8
A== (=1y]

Part B may be evaluated by substituting for ¢ (¢) in
Eq. (2) the value —8:

© 27/
e (B+nowt) dt —

T 2n

B :_2 _._1 e-j(ﬁmwt) e
2 ]nw

/W /0

e iB
- ]'21’171'

[e—imr — e—jzmr]

By Euler’s formula
C-i" = cosnm — fsinnr = (—1)" for all n
C-/=7 = cos 2nz — jsin2nr=1

Therefore

e‘jB

B=— o1 (-]
Since C, is the algebraic sum of the corresponding
values for A and B,

j -iB
Gy = gl = (=171 = o (1= (1))

C, = [1 —:;l)"][e"'“ ;iejﬁ] _ [1 *i;l)"] [sin A]

The spectral distribution of the square-wave PM wave
can now be obtained by substituting in Eq. (1) the derived
value of C,. Thus

j2n7r

. < . _1 n .
i= ISlnB E 1 Ez ) e](‘"o*"“’)' (3)

™

n=-00

Equation (3) can be evaluated for +n, ultimately leading
to

””:Iﬁnﬁ[l—(—lﬁ.dwﬁwn

T n

1- (_1)" j(wo-nw)t
+ n(—1) e

Isi © 1—-(=1)" .
il,,z STB ( )ll:el(mo+nw)t

1
—_— pilwe-nw)t
+ 1 el ) :| (4)
When n is even,
1— (=1
-——%—Lzo n+0
When n is odd,
1—(—=1) 2
n T n n-0
and
(=1 = -1
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When 7 is zero,
1—(—1)r

9
n 0

Equation (4) cannot be evaluated for C, =0, the RF
carrier, because the indeterminate 0/0 occurs. Also,
L’Hospital’s rule fails because of the appearance of the
In(—1) when 1 — (—1)" is differentiated. Therefore, it be-
comes necessary to revert to the exponential form of C,;
applying L'Hospital's rule we find

d [eiﬂ — eiB-nT) _ p-j(Br2mm) | e—i(8+mr>]

Co= li

"= m d (2n)

7'7‘_ [ej(ﬁ—mr) + 2¢-iB+emm) e—i(ﬁ+mr)]

C, =

0T 2

efﬁ e—iﬁ eiB + e—jB
= ee— 'jﬂ — = =

C, B +e ) B cos B

The complete square-wave PM wave can be precisely
stated as follows:

oc

21 1. ) )
i =—sin/3 E __[ej(wwnw)r ._ez(wo-’wnt] + Icos,Be"”"‘
™

n=1.3.5 (5)

If Eq. (5) is viewed on a spectrum analyzer, the absolute
magnitude of the nth term will appear as:

2Isin B

lin] = I cosB + g

(nis odd)

Equations (4) and (5) establish several facts, each of
which has been substantiated experimentally:

1. When n is an even integer, all even sidebands dis-
appear because of the term 1 — (—1)"

2. When 8 is an odd multiple of =/2, the carrier ampli-
tude is zero. The spectrum envelope of the sidebands
describes the hyperbola K/'n

3. When g is an even multiple of =,/2, all sidebands
are zero and the carrier is a maximum

4. Energy in the carrier is transferred to the sidebands
as a cosinusoidal function of 8 and the total energy
remains constant

It is interesting to note that there is a unique cor-
respondence between the spectrum of a square-wave

balanced modulated carrier and a square-wave PM carrier
for values of the modulation index 8 equal to odd multi-
ples of = /2.

The surprising simplicity of the square-wave PM carrier
can be appreciated by comparing Eq. (5) to the expression
for single-tone PM:

i=1 3 LL(B)ei o ©

where [, (B) is an nth-order Bessel function. It is im-
mediately evident from Eq. (6) that to calibrate a PM
system using sinusoids involves the uncertainty inherent
in equating sidebands and determining zeros in accord-
ance with J, (8). Also, the bandwidth required for a con-
stant 8 depends upon the modulation frequency and, if
inadequate, may introduce subtle calibration errors.
Figure 1 is a typical sinusoidal PM system calibration
curve which illustrates the technique.

In calibrating a digitally coded PM system, it is
desirable to calibrate in terms of a square-wave, Only in
this manner can the system performance be established
with a high degree of certainty.

Equation (5) indicates that the modulus of the unit
carrier vector, e/, varies cosinusoidally with the modu-
lation index. Thus, 8 can be accurately calculated from
trigonometric tables by simply noting the ratio of the
unmodulated carrier to its modulated value. A cross-check
can be obtained by multiplying the value of the un-
modulated carrier by 2/= and the sine of the modulation
index, and comparing this number with the amplitude
of the first sideband.

Figure 2 is a plot of Eq. (5) for modulation indices
n/2, =/6, and =/18. Although the sideband spectra are
discrete, the envelope contour has been shown for
clarity. It should be noted that for symmetrical square-
wave modulation, the sidebands are composed of odd
harmonics.

The two essential conditions that a communication
system must satisfy in order that the modulation shall be
geometrically similar to the demodulated product are
that the system must be linear and nonselective with
regard to frequency (Ref. 2). Equation (5) uniquely
describes a square-wave PM waveform. This uniqueness
is predicated on the preservation of amplitude and phase-
angle components. Square-wave modulation is a partic-
ularly good method of investigating the characteristics of
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Fig. 1. Typical PM calibration curve, sinusoidal modulation

a PM channel, For example, any asymmetry in the sys-
tem will cause the appearance of even harmonics. If
this asymmetry is caused by nonuniform phase-shift,
then the total RF power will not change because the
effect of phase distortion is to remove part of the energy
from the beginning of the signal and replace it later in
the signal. Thus phase distortion cannot modify the en-
ergy in the signal. If the RF power changes with an in-
crease of the modulation index without introducing
appreciable even-harmonic distortion, the bandwidth of

the system is symmetrical yet inadequate. In this case the
demodulated waveform will be trapezoidal.

In summary, the use of a square-wave to calibrate a
PM system provides an accurate method of calibration
through the linear measurement of line spectra which
behave according to simple relationships. A high degree
of confidence can be achieved by observing the constancy
of the RF power level and the absence of even-harmonic
or sideband components.
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Fig. 2. Square-wave PM line spectra (parameter: modulation index 3)

ll. EVEN-HARMONIC ENERGY VERSUS SYMMETRY OF A SQUARE-WAVE

In order to calibrate a PM system using a square-wave,
it is necessary to estimate the effect of waveform sym-
metry in terms of even-harmonic components. The follow-
ing derivation provides this information.

A rectangular wave of unit amplitude can be defined
as (see Fig. 3):

f@) = é § [% sin ’";,t"]sin (not + )

where the absolute magnitude of the nth harmonic as
displayed by a spectrum analyzer is

C,=

—*sin

4 7Tnt0
n T

The voltage ratio of the nth to the (n + 1)th harmonic,
expressed in db, is

C,
db = 20log,, ' C..
where
4 . ant,
C,= l-;sm T |
and
_ 4 . w(n+ 1)t
Cris = | =(n+1) s T |
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Fig. 3. Voltage ratio of fundamental to second harmonic
in db as a function of percentage deviation
from semiperiod

Therefore L)
sin
n+1 T
db = 20 logm [ :| _—W_(Tm
sin T

Of particular interest is the voltage ratio of the funda-
mental to the second harmonic (n = 1):

7ty
c. C 2 sin
C,H,l _E‘T— . 27Tt0
sin T
. 77t0
2 sin T oty
= 7Tt0 Tl't() = sec T
2 sin T cos T
t(l
db = 20log,, sec%‘ (7

Formula (7) was evaluated for a unit period T within
the interval 0="¢,=<T/2, Tabulated values may be
found in Appendix A,

Figure 3 is a graph of the voltage ratio, in db, of the
fundamental to the second harmonic as a function of
the percentage deviation from the semiperiod T/2. It
should be noted that the fundamental frequency in this
case will appear as the first sideband of the PM carrier.
Figure 3 indicates that 2% asymmetry will result in a
second-harmonic component which is 30 db down from
the fundamental.

IV. EVEN HARMONIC ENERGY VERSUS SYMMETRY AND
RISE TIME OF A TRAPEZOIDAL WAVE

Although the rectangular wave represents the design
goal of a digital system, it very often happens that the
best approximation that can be achieved is in the form
of a trapezoid. The following analysis investigates the
effect of symmetry and rise time of a trapezoidal wave
in terms of harmonic content.

The nth harmonic of a trapezoidal wave is given by

(see Fig. 4)

C. = 2T . wnd Lmn(te + t)
n I:(n—n)‘-'tl ][ s T sin __T

The ratio of the nth to the (n + 1) th harmonic is

nt, .own(t, + t,)
n T Sin T

Sin

C. _(n+l : <Si
C,,+1~ n ( . n—(n+l)t1

) < sin =(n + 1’}‘(t0 + t,))
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Fig. 4. Voltage ratio of fundamental to second harmonic
in db

As with the rectangular wave, the ratio of the funda-
mental to the second harmonic (n =1) is of primary
value. Thus

R s ol i

Cﬂ+\ Cz [ . 2m't1 [ 271' (to + tl) ]
sin

where
0=, +t,)=T/2

The voltage ratio of the fundamental to the second
harmonic, expressed in db, is

db = 20log,, [ sec -th‘j“: sec —T&Tf—tl—)—] (8)

A plot of 100 [(T,/2) — (¢, + t;)]1/(T/2) versus Eq. (8),
with T taken as unity, is given by Fig. 4. The parameter
t,/T is a measure of the rise-and-fall time of the trapezoid.
Figure 4 indicates that less than 2% asymmetry is per-
mitted before the ratio of the fundamental to the second
harmonic exceeds 30 db when the rise time is zero (the
rectangular case). When the rise-time is 20% of the period
(t./T = 0.2), asymmetry of 2.5% is permitted before the
above ratio is exceeded.

Appendix B contains tabulated values giving the ratio
of the fundamental to the second harmonic in db as a
function of the percentage deviation from the semiperiod
100 [(T/2) — (to + t:)]/(T/2) in terms of the parameters
t,, and ¢,. It should be noted that (¢, + ¢,) are restricted
to the range 0=(¢, + t,) = T/2. Figure B-1 illustrates
the table; t, was not extended beyond 0.2 because, in
general, digital systems will seldom exhibit values of
t,/T exceeding 0.06.

V. CONCLUSION

The Fourier analysis of a square-wave PM RF carrier leads to a

remarkably simple expression in which the carrier and sideband

energy vary mutually as the cosine and sine of the modulation index.

The resultant line spectra are indistinguishable from that of a square-

wave function. This is in contrast to the multiplicity of line spectra

resulting from single-tone modulation.

The fact that the spectra of the square-wave PM carrier are the
same as that of the square-wave modulation modified by the sine of
the modulation index provides an easy method of calibrating and
confirming the operation of the PM system.
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The existence of even-harmonic components indicates that the

modulation is asymmetrical. A tolerance for symmetry can be estab-

lished in terms of the ratio of the fundamental to the second harmonic.
If 30 db is arbitrarily established, 2% asymmetry can be tolerated for
the square-wave. The tolerance for the trapezoidal case appears to

be less critical because 2.5% asymmetry is possible for a trapezoid

whose rise-time is 20% of its period.

NOMENCLATURE

Amplitude of nth Fourier term (harmonic)
Decibel

Base to napierian logarithms, 2.71828
Instantaneous value of RF spectra
Maximum amplitude of RF carrier
Complex operator: j* = —1

nth-order Bessel function

An integer

Time, sec

Time duration of flat-top region of a waveform

REFERENCES

(]

o

Rise-and-fall time of a trapezoidal wave
Repetition period
Maximum phase excursion expressed in radians

(commonly referred to as modulation index:
[3 = Al = Aw/m]

3.14
A phase constant

2rf: angular frequency of fundamental com-
ponent of a square-wave modulating function,
rad/sec

Angular frequency of RF carrier, rad/sec

1. Cuccia, G. L., Harmonics, Sidebands and Transients in Communication Engineering,
New York: McGraw-Hill Book Company, Inc., 1952, p. 308.

2. Cherry, C., Pulses and Transients in Communication Circuits, New York: Dover

Publications, Inc., 1950, p. 147.




APPENDIX A

Square-Wave

db = 20 logs Isec T#,/T]

(2A1/7T1 (100), %
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0.500 infinity 0.0

0.499 49.897 0.2

0.490 30.056 2.0

0.480 24.038 4.0

0.460 18.037 8.0

0.440 14.544 120

0.420 12.086 16.0

0.400 10.200 20.0

0.300 04.614 40.0

0.200 01.840 60.0

0.100 00.432 80.0

0.000 00.000 100.0

A=T/2— 1

T=1.00

APPENDIX B
I. Trapezoidal-Wave
to t
0.00 0.04 0.06 0.08 0.10 0.12 0.20
db % db % db % db % db % db % db %

0.00 00.00 100 00.13 92 00.31 88 00.55 84 00.87 80 01.26 76 03.68 60
0.02 00.01 96 00.22 88 00.43 84 00.71 80 01.06 76 01.50 72 04.10 56
0.04 00.06 92 00.34 84 00.59 80 00.91 76 01.30 72 01.78 68 04.58 52
0.06 00.15 88 00.50 80 00.78 76 01.14 72 01.58 68 02.10 64 05.13 48
0.08 00.27 84 00.70 76 01.02 72 01.42 68 01.90 64 02.47 60 0575 44
0.10 00.43 80 00.93 72 01.30 68 01.74 64 02.27 60 02.89 56 06.45 40
0.12 00.63 76 01.21 68 01.62 64 oz 60 02.70 56 03.37 52 07.26 36
0.14 00.86 72 01.53 64 01.99 60 02.54 56 03.18 52 03.92 48 08.18 32
0.16 01.14 68 01.91 60 02.42 56 03.02 52 03.72 48 04.54 44 09.25 28
0.18 01.46 64 02.33 56 02.90 52 03.57 48 04.34 44 05.24 40 10.52 24
0.20 01.84 60 02.81 52 03.44 48 04.18 44 05.05 40 06.05 36 12.04 20
0.22 02.26 56 03.36 48 04.06 44 04.89 40 05.85 36 06.97 32 13.92 16
0.24 02.74 52 03.98 44 04.77 40 05.69 36 06.77 32 08.04 28 16.38 12
0.26 03.29 48 04.68 40 05.57 36 06.62 32 07.85 28 09.31 24 19.88 08
0.28 03.91 44 05.48 36 06.49 32 07.69 28 o9 24 10.83 20 25.88 04
0.30 04.61 40 06.41 32 07.57 28 08.95 24 10.63 20 1272 16 infin 00
Parameter: t;
Independent variable: 1,
% = 100 [(T/2) — {to + 1)) /{T/2)
T = 100
db = 20 log:s [sec TH/T) [sec T (to + H}/T}
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APPENDIX B (Cont'd)

l. Trapezoidal-Wave (Cont’d)

t t
0.00 0.04 0.06 0.08 0.10 0.12 0.20
db % db % db % db % db % db % db %
0.32 05.41 36 07.48 28 08.83 24 10.47 20 12.52 6 1517 12
0.34 06.34 32 08.74 24 10.35 20 12.36 16 14.98 12 18.67 08
0.36 07.41 28 10.27 20 12.24 16 14.82 12 18.47 08 24.67 04
0.38 08.68 24 12.15 16 14.70 12 18.31 08 24.47 04 infin 00
0.40 10.20 20 14.61 12 18.19 08 24.32 04 infin 00
0.42 12.08 16 18.10 08 24.19 04 infin 00
0.44 14.54 12 24.11 04 infin 00
0.46 18.03 08 infin 00
0.48 24.04 04
0.49 30.05 02
0.50 infin 00
Parameter: t,
Independent variable: 1
% = 100 [(T/2) — (b + $)1/(T/2)
T=1.00
db — 20 logi [sec Mt,/T] [sec T {t. + #)/T]
Il. Trapezoidal-Wave Intermediate Values
t = 0.00 t = 0.04 t = 0.06

t db % to db % o db %
0.4825 25.20 35 0.4425 25.27 35 0.4225 25.35 35
0.4850 26.53 3.0 0.4450 26.60 3.0 0.4250 26.69 3.0
0.4855 26.83 2.9 0.4455 26.90 2.9 0.4255 26.99 2.9
0.4875 28.12 2.5 0.4475 28.19 2.5 0.4275 28.27 2.5
0.4900 30.05 2.0 0.4500 30.13 2.0 0.4300 30.21 2.0
0.4925 32.55 1.5 0.4525 32.62 1.5 0.4325 32.71 1.5
0.4950 36.07 1.0 0.4550 36.14 1.0 0.4350 36.23 1.0
0.4975 42.09 0.5 0.4575 42,16 0.5 0.4375 52.25 0.5
0.4985 46.54 0.3
0.4995 56.10 0.1

th =2 0.08 t, = 0.10 h = 012

L db % to db % t, db %
0.4025 25.48 3.5 0.3825 25.63 35 0.3625 25.83 3.5
0.4050 26.81 3.0 0.3850 26.97 3.0 0.3650 277 3.0
0.4055 27.11 2.9 0.3855 27.27 2.9 0.3655 27.46 2.9
0.4075 28.39 2.5 0.3875 28.55 2.5 0.3675 28.75 2.5
0.4100 30.33 2.0 0.3900 30.49 2.0 0.3700 30.69 2.0
0.4125 32.83 1.5 0.3925 32.99 1.5 0.3725 33.19 1.5
0.4150 36.35 1.0 0.3950 36.51 1.0 0.3750 36.71 1.0
0.4175 42.37 0.5 0.3975 42.53 0.5 0.3775 4273 0.5

10




JPL TECHNICAL REPORT NO. 32-893

APPENDIX B (Cont’d)

Il. Trapezoidal-Wave Intermediate Values (Cont’d)

H = 0.20

t db %
0.2825 27.04 3.5
0.2850 28.38 3.0
0.2855 28.67 29
0.2875 29.94 2.5
0.2900 31.89 2.0
0.2925 34.39 1.5
0.2950 37.92 1.0
0.2975 43.93 0.5
0.2985 48.38 0.3
0.2995 57.92 0.1
0.2999 71.87 0.02

v 100 tr/z- (ro+f.j At=T/2= (o +1)

T/2

172 T

[ [
ot

)

£=020 60%

16=000 3684db
At

)
|

=020 20%
102020 1204 db
A—"‘<—

|
|

1,020 002%
10=0299 71.8 db

. L
#2000 60%
to=020 184 db
[AY 0
=000 00%
t0=050 infinity

Fig. B-1. Waveform geometry vs second-harmonic
distortion
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