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1. INTRODUCTION 

Suppose we have a network with verticas V = {l ,  . . . ,n] ,  

directed edges E = {(i, j )  f V x V ) ,  a non-negative integral valued 

function k giving the maximum allowabls flow k . over every edge, 

and a non-negative cost function a giving the cost a associated 

with a unit of flow over any edga. A flow X of value v is a n  integral 

valued function defined on E satisfying 

i J  

il 

O C x  < k  - i j  - i j  (1.1) 
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i = 2 , .  . . ,n-1 
i j  11 J 

(1.2) 

j=1 1-v I i =  n. 

Vertices 1 and n a re ,  respectively, called the flow source and sink. 

The minimal cos t  flow problem is to find, among all flows 

X of value v,  on2 which m i n i m i L s s  

The main computational proceduras developed to date for 

solving this problem ar2 the primal-dual type algorithms of Ford 

and Fulkerson [6], Busacker and Gowen (described in [3]), and 

Jewel1 [9]. These ars dual methods in  which feasiblz flows (those 

satisfying (1.1) and (1.2)) become available when the computations 

tarminats. A similar method for convex cos t  flow problsms has  

been given by Hu [ 8 ) .  Fulkerson's "Out-of-Kiltar" algorithm 

(descriked in  [6]) is sssentially a primal method in  that i t  can  

be started with a fsasible flow or one becomes available at a n  

early s tage.  Another primal approach for problems with convex 

c o s t s  has also been suggested recently by Menon [ll].  

Tha assignmmt and transportation problems can be thought 

of as  special  minimal cos t  flow problems in  th? sense  that thsir 



networks have a particular bipartite form. Kuhn's "Hungarian Method" 

[ l o ]  8 a primal-dual type algorithm, and two variants: ([12] and 

one given in [ 6 ) )  provide the most popular methods for solving 

these problems. Other methods are described by Flood [Sa] and 

Hoffman and Markowitz [7 J . Primal methods are also available: 

Dantzig's adaptation of the simplex method (described in [4]), 

the methods given by Beale [ Z ] ,  Flood [Sb], and, mos t  recently, 

by Balinski and Gomory [l 3 .  

The purpose of this paper is to suggest that one more 

primal method can be added to the above arsenal for both minimal 

cost  flow and assignment-transportation problems. With slight 

modification this method can also be used for problems involving 

convex cos ts .  I t  appears to be efficiznt in small hand-calculated 

examples, and has a n  appealing simplicity in explanation. Also, 

i t  shares, with other primal methods, the property that i t  can be 

started with a "good" solution and a better one is always avail- 

able in case early termination of computations is required. 

2. A MINIMAL COST FLOW ALGORITHM 

In this section we give a procedure for solving the minimal  

I 



cost flow problem. We assume a familiarity with the maximal flow 

and shortest route problems together with the Ford-Fulkerson [6] 

methods for solving them. 

The method suggested here is to first find a flow satisfy- 

ing (1.1) and (1.2) by, say,  the Ford and Fulkerson maximum flow 

routine [63 (pp. 17-18). Given such a flow X, we then construct 

a n  associated network G(X) which has  the s a m e  vertices as the 

original network and directed edges, as follows: 

(2.3) 

with reviscd capacities: 

k' : k' = k . . - x . .  , i f x  C k . . a n d x  = O  

k' = x if  x.. > 0 

i j  i j  11 iJ 1J i i  

ji i j  I 13 

and with revised edge costs: 

a' : a'. .  = a.. i f  x.. (= k . and x.. = 0 
11 il 12. 11 11 ' 

a' = -a,.  i f  x,. 0 . 
j i  11 11 

These revised edge cos t s  are simply those associated with increas- 

ing or cancelling the flow by one unit on these edges: The revisad 



5 .  

capacit ies indicate the extent to which this can be done. 

Now, we use a result proved in  Busackrlr and Saaty 

[3] (pp. 256-257). 

Theorem: X is a minimal cost  flow i f  and only if there is no directed 

cycle C in G@) such that the sum of ths cos t s  around C ' s  edgzs 

are negative. (A directed cycle is a sayuence of distinct directed 

edgzs of the form {(i , i ) (i , i ) . . . (i , i ) (i , i  ) ] involving dis- 0 0 1  1 2  P q  9 

t inct  vertices .) 

An immediate consuoquenca of this  theorem is that a tes t  

of the optimality of the flow X is at hand i f  G@) can be checked 

for tha existence of a negative cost directed cycle. Further, if 

the method also locates such a cycle, one ge ts  an  improved flow 

by simply sending a positive unit flow around this cycle. Such a 

flow alteration obviously lsads to a lower total cos t  and also leaves 

the flow value v unchaned  . 
Fortunately, there are known mgthods for locating negative 

cost directed cycles. The Fulkerson "Out-of-Kilter" procedure 

[SI (pp. 162-169) is one. Various shortest route algorithms may 

also be used; of these, we shall use the index reduction procedure 

(with which we are most familiar) described by Ford and Fulk- arson 

[6] (pp. 131-132). As these a ,?hers have pointed out,  this method 



6. 

requires the assumption of non-negative directed cycle costs .  I t  

is easy to show that it breaks down at precisely the point at  which 

such a cycle is encountered; we take advantage of this property. 

‘We need only put the above assortment of results together 

to obtain the following. 

Aluorithm for Minimal Cost Flows 

1. Use thz Ford-Fulkerson maximal flow rouLine to find 

a flow X of value v. 

2. Form the associated network G(X) according to (2.1) , 

(2.2), and (2.3). 

3. Test for the existence of a negative cos t  cycle C 

by using, say,  the index reduction shortest-route algorithm to find 

a least cos t  route from the source to every vertex in  GR). Then, 

we get  either 

Case  a: there are no negative cost directed cycles  

in  GR) and the flow X is optimal, 

or 

: Case b.: ‘-a..~gative..cos~.directedrcyck;(;3 Ss4bsated 

and a new flow X’ can be determined according to 



?. 

source 

if (j,i) f C and a' < 0 XI.. = 11 xij - 6 1 j i  - 
if ( i , j )  f C and a' > 0 i j  - ( x..  + 6 . 

11 

min 
(i,j)EC 

{ k'  . ), i .e. ,  6 is the largest 
i l  

where 6 = 

amount of flow which can be sent around C. 

Return to Step 2.  

Example: Suppose a minimal cos t  flow of value 4 is to be imposed 

on the following network from vertex s to vertex t. Costs  and 

capacit ies are indicated according to the legend {cost , capacity ) 

on each edge. 

sink 

# 4 1  

We start with an arbitrary flow X of value 4 ,  indicated below, 

(omitting Step 1 for a problem of this s ize) .  



Steps 2-3: G(X) is then 

3d 4b 
4 , l O  C l A  

EL53 I ( - 2 , 4 I  

I 
I 

3 , 6 )  

2t E-3 I 4 1  

1 ~ 4 3  

( -1 ,43  \ 

\ 
\ 

Stop: case b 

\ 

\ 

- I C  

where negative cost edges are indicated by dashed l ines  and the 

vertex index reduction shorte st-route procedure has yielded the 

sequence of labels 

indicated as soon as the source g receives a negative 

adjoining each  vertex. A negative cycle is 

label . !Sase b) . 
A path is then traced backwards from s to locate the 

cycle; e . g . ,  s ,  ‘d, c, t ,  b, d: r Thus, 
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and the new flow X' is 

x' = 0 + 2  = 2 

x' = 0 + 2  = 2 

= 4 - 2  = 2 

db 

bt 

X' ct 

x' = 4 - 2  = 2 .  
d c  

All other zdge flow values are unchanged. The new flow is shown 

below. 

I 

2 

2 

Now G(X'), with vertex IaBels, is 



3d 

Since the source s has  a non-negativz label ,  Case  a h a s  besn at-  

tained and X' is optimal. 

3 .  AFPLICATION TO THE ASSIGNMENT PROBLEM 

In this section we show how ths method described above 

special izes  for solving the assignmant problem. 

The assignment problem is to f i l l  n jobs by as many men 

at l ea s t  total cost .  If a . .  represents the cos t  of using man i in  

job j ,  then a mathematical statement of th? problem is to find a 

permutation matrix X = (x. ,) of ordsr n,  which minimizes the  total 

11 

11 

cos t  ON) = E x  a 
i j  i j '  



The equivalent minimum cos t  flow problem (following 

33 

Figure 1: Network Representation of a n  Assiqnment Problem 

As before, we  arbitrarily designate one vertex of the 

network as the point, called the initial point, from which all l ea s t  

cost routes are computed. Because of the special  "bipartite" form 



, 

I 
1 2 .  

of the network (the source and sink can be dropped, since their 

associated edges have zero cost and unit capacity) calculations 

are more conveniently made using a matrix. 

Let X be a trial solution (e.g. ,  xii = 1, i = l ,  . . . , n; 

x = 0,  ifj) and let A'&) be an associated matrix with elements 
ii 

f -a*.  
11 

i f  x.. > 0 
11 

The index reduction procedure can  be carried out by means  

of a ser ies  of alternate row and column labelings on A with each 

successive row (column) label giving the cos t  associated with 

following a tracsable route from the initial point to the column 

(row) from which the current cost is measured. 

Let (M., d.) be a label assigned to column j of A. Then 
1 1  

the implication is that there is a directed route from tha initial 

point to M. and a directed edge to (job) column j such that the total 

cos t  is d . The row labels  (J. , d . )  are defined similarly. 

1 

i 1 1  

De tails of the proposed computational procedure are 

given below. A numerical example is carried along for illustrative 

purpose s . 
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-2 

5 

4 

8 

A convenient notational device we employ is to write 
- 

a i f  a' < O a n d x . .  > 0. 
ii  i j  - 11 

3 1 

-8 3 

9 -5 

7 8 

Initial Labels 

Let M be the initial point. Label row 1 ( - I  0). 1 

1 .  Label each column (M1, la' , I  ) 
2 .  Label each row is1, (T., d. + a:.) 

11 

J J 11 

Example i l l :  Let the first trial solution be xii=l 

i=l , . . . I 4 I xij=O I i f j ,  then A' (X) is shown below 

with the initial labels indicated in the margins. 

Jobs 

Initial 
point 

Men 

M1 

M2 

M3 

M4 
I i I 



Label Reductions 

3 .  Label each column (Mi , min (di + 1 a ' .  . 1 8 where 
11 i 

- i is any index a t  which the minimum is attained 

4.  Label each  row (r., d .  + a:.) 

5. Continue Steps 3 and 4 until obtaining, either 

J I 11 

Case a: Two successive se t s  of row or column 

labels are the same, or 

Case b: The initial points label becomes 

negative. 

In Case a the trial solution is optimal and the procedure 

terminate s . 
If Case b occurs, a negative cost  cycle,  C ,  can be found 

by tracing a path, P , backwards from the initial point according 

to the succession of adjacent row and column labels  until a label 

is encountered for the second time. Then, a n  improved trial 

solution X' is given by 

if (M. ,J . )  a' C 
1 1  

i f  lM, , J .  1 f C and x. .  = 1 
1 1  11 

i f  l M . , J ,  I g C and xij = 0 
I 1 1  



where the notation 1 M. , J ,  1 indicates that either (M. , J , )  of (J. , Mi) 

is a n  element of C .  

1 1  1 1  1 

Example Con' t: 

Step 4 

p = (M , J , M , J ,M1) and ths elements of c are (Mlf  J1), 
1 1  2 2  

M ), (M , J ),  (J , M ), these are marked with astzr isks  (*) in  (Jlt 2 2 2  2 1 

A' .  The new trial solution is, from (3.2) 

c 
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x' = 1 ,  
33 

x' = 1 ,  44 

x' = 1 ,  

x' = 1 ~  

12 

21 

.. : . -..-. ' 

zll  hall other x' = 0 
i j  1 

with total cost  1 7 .  

The example i s  continued. The new A' matrix together 

with t h e  successive row and column labels is 
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and 

Applying (3.2), the next trial solution is 

x' = 1 ,  1 2  

x' = 1 ,  44 

x' = 1 ,  31 

x' = 1 ,  23 
all other x' = 0 , 

i j  
with total cos t  14.  

The associated A' matrix is 

M1 

M3 

M4 

I lMl ,2  IM , 3  I M ,1  , M 3 , i (  
I 1 1  I 1  

3- 1 - - 4  I*-- - I - 

f- Stop: Case b 
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5 8 -3 2 

4 9 5 -1 

8 -7 8 4 

and 

- - " - - I  

- - L - 7  

. - -  -I- 1 

J3, -21J3, -Zl  

T4,0 lJ4,-l I 

J21-4'J2,-4_L 
L, J - 

Again, applying (3.2) the new trial solution is 

-2 3 1 

x' = 1 ,  

x' = 1 ,  

x' = 1 ,  

23  

11  

34  

- - r - T  
1 -,O I J l , O  1 

x' = 1 ,  4 2  
all other x' = 0 , 

ii 
with total c o s t  13 .  

The associated matrix A' is 

M1 

M2 

M3 

M4 

Since Case a has occurred, this trial solution is optimal. 



4. AN ALGORITHM FOR THE TRANSPORTATION PROBLEM 

The method given here for the transportation problem is, 

with slight alteration, the same as that suggested for the assign- 

ment problem. The reason for this computational similarity is, 

of course , the well-known relationship between the two problems: 

each is a special case of the other. 

Wz suppose that the transportation problem involves 

shipments of  a single commodity from n plants P 1 , . . . , Pn, with 

capacit ies c , . . . , c to m warehouses W , . . . , W 1 n 1 m 

ments rl ,  . . . . , r  . If a . .  represents the cos t  of shipping a unit 

from P to W , and x.. the quantity shipped from Pi to W. , the i 11 I 

problem is to minimize the total cost 

with require- 

m 11 

constrained by 
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I 

f n  1 

) x = r  
-1 i j  j 

i=l 

, j = l , . , . , m  ; 

, i=1, ..., n ; 

where we assume that the c . ’s  and r . ’ s  are positive integers, and 
1 1 

C c i =  Cr . 
j 

We omit tha network formulation of tha problem and go 

directly to the computational procedure. The terminology is the 

same as that used for the assignment problem except that we speak 

of plants and warehouses instead of men and jobs. 

Trial Solutions: Although the computational procedure can be written 

so that one can work with any trial solution satisfying (4. Z),  i t  is 

convenient to restrict ourselves to the “basic feasible solutions”, 

possibly degenerate, which are used in Dantzig’s adaptation of 

t h e  simplex method for transportation problems. 

contain, a t  most, m+n-1 positive entries. They also have the 

These  solutions 



Li 

property that no cycles can be formed by their positive entries. 

These two properties may also be justified by simple combinatorial 

arguments [Sb 3 .  

Suppose x is a trial solution (i.e., it satisfies (4.2) 

and the above). We again define the  associated matrix A’@) by 

aaij = { 
( a.. 

lJ 1 

i f  x., > 0 
11 

i f  x.. = 0 
11 

and write a- i f  a’ < 0 and x., > 0. 
i j  i j  - 11 

Initial Labels 

Let P be the initial point. Label its row (- , 0) 
1 

1. Lauel column j (pl, lalj 1)  
2.  Labei eachrow i$l (w min {d.+a-..)) whore - j is 

, j ’  : I  I 1 1  .. 
- 1  

the column a t  which the minimum is attained. 

Examole: Consider the following transportation array [ 1 } and a 

first trial solution: 

2 t 2  3 4 . 4  

Transportation Array 



Trial Solution 

(Here we have attempted to find a "good" trial solution by trying to 

ship as much as possible along the cheapest routes.) 

Initial Labels: 

Initial point p1 

p2 

p3 
I I I I I I 

--I 
I 

'1 
"I 
-I 
0' 

I - 

Label Chancres: 

3 .  Label each colLmn (Pi, min (d.+ 1 \at i j))  
i - 



4. Label each row (Wj, min (dj i- aij))  
j - 

5. Continue s teps  3 and 4 until either 

a. two successive s e t s  of row or column 

labels are the same (in which case the trial 

solution is optimal), or 

b. the initial point's label becomes 

negative (indicating the zxistence of a 

negative cost directed cycle C). 

Example C o n k  

p1 

p2 

p3 

Case b 

If case b occurs (as in the above) C is located by tracing a path 

P back from the initial point unt i l  a row or column label is en- 

countered for the second time; e .g. , 
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and 

C = {(P1,W4) W4,P,) (P2,W,) &V5,Pl)] (asterisked above) 

C is more conveniently written with the subscripts in the uscia1 row, 

colurnr, order. Thus, we write 

Let X(C) be the entries of X whose subscripts correspond 

to those of C ,  i .e. ,  i f  IPi,W. 1 fC then x . .  EX(C), and index these 

entries (with superscripts) as follows: ass ign the index 1 to any 

entry whose value is zero. 

virtue of our use of "'basic feasible" trial solutions.) Now, following 

the cycle (in either direction) continue with successive positive 

integers: 2,3, . . . , k until all elements in X(C) have been indexed. 

Note that the index k is a n  even number. 

I 11 

(There is at l ea s t  one such entry by 

A new improved trial solution X' is defined by 

if x.. B X(C) 

i f  x?,) E X(C) and t is odd 

i f  x!f' E X(C) and t is even 

11 

11 

f 11 



where 6 is the value of the smallest even indexed element of X(C). 

I 2-2=0(2) 2+2=4 (3 1 

(1 1 (4 1 
p2 3 0+2=2 2-2=0 

2 2 2 

It is easy  to see that X' is also a "basic feasible" solution. 

Example Con't: 6 = 2 and X' is 

with the index numbers shown. The total cost  is 23. 

The remaining calculations are given below. 

W 
5 

W w w4 
2 3 

I 1 I 1 

Stop: Case  a 

Since case a has occurred, the trial solution is optimal. 
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5. CONVEX COST FLOWS 

A s  indicated by Hu [81, the primal-dual type algorithms 

for minimal (linear) cost flow problems can be adapted to handle 

cases in  which the edge cos t  functions are positive, non-decreasing, 

and convex. The basic notion, used here also, is to use the (chang- 

ing) marginal c o s t s  associated with possible unit flow alterations in  

the associated graph. In our case, this  means that cyclical  flow 

changes will involve only one unit of flow (i . e.  , 6 = 1) and the 

edge costs for the associated graph will depend somewhat more on 

the current flow values on each edge than they did in  the  linear 

c o s t  problem . 
If we represent each  edge cos t  function by b the 

i j  ' 

problem is to find the minimum of 

constrained by (1.1) and (1 .2) .  

Al l  we need to do is to note that the network G(X) 
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associated with a feasible flow X, is defined as before, except 

that the revised (marginal) edge costs bIij are given by 

and 

b ' . .  =-[b..k..) - b..k,.-l)] i f  x , .  11 > 0 . 
I1 11 13 13 11 

This, plus our previous observation that 6 =  1, enables the  use of 

the minimal cost flow routine. Similar a l t s r a thns  . can be made 

to handle the transportation problem with convex costs. 
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