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A PRIMAL METHOD FOR MINIMAL COST FLOWS
WITH APPLICATIONS TO THE
ASSIGNMENT AND TRANSPORTATION PROBLEMS

by

Morton Klein

Columbia University

1. INTRODUCTION

Suppose we have a network with verticeas V= {1,...,n},
directed adges E = {(i,j) €VxV}, a non-negative integral valued

function k giving the maximum allowablz flow k j over every edge,

i

and a non-negative cost function a giving the cost ai j associated

with a unit of flow over any edge. A flow X of value v is an integral

valued function defined on E satisfying

(1.1) 0 <x. <k , (i,j) €E

This research is supported by the Army, Navy, Air Force, and N.A.S.
under a contract admin’stered by the Office of Naval Research;
contract Nonr 266(55). Reproduction in whole or in part is per-
mitted for any purpose of the United States Government.
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(1.2)

-v ., i=n.

Vertices 1 and n are, respectively, called the flow source and sink.

The minimal cost flow problam is to find, among all flows
X of value v, ona which minimizes

(1.3) k) = 3 X5 2y

(i,j) <E

The main computational procedurss dsvelopad to date for
solving this problem arz the primal-dual type algorithms of Ford
and Fulkarson {6], Busacker and Gowen (described in [3]), and
Jewell [91. These ara dual methods in which feasibls flows (those
satisfying (1.1) and (1.2)) become available when the computations
tarminata. A similar method for convex cost flow problems has
been given by Hu [8]. Fulkerson's "Out-of-Kilter" algorithm
(descrikted in [6]) is essentially a primal method in that it can
be started with a fzasible flow or on2 becomes available at an
early stage. Another primal approach for problems with convex
costs has also been suggested racently by Menon [11].

The assignment and transportation problems can be thought

of as special minimal cost flow problems in the sense that thzir




networks have a particular bipartite form. Kuhn's "Hungarian Method"
{10], a primal-dual type algorithm, and two variants: ([12] and

one given in [61]) provide the most popular methods for solving

these problems. Other methods are described by Flood [5a] and
Hoffman and Markowitz [7]. Primal methods are also available:
Dantzig's adaptation of the simplex method (described in [4]),

the methods given by Beale [2], Flood [5b], and, most recently,

by Balinski and Gomory [1].

The purpose of this paper is to suggest that one more
primal method can be added to the above arsenal for both minimal
cost flow and assignment-transportation problems. With slight
modification this method can also be used for problems involving
convex costs. It appears to be efficiant in small hand-calculated
examples, and has an appealing simplicity in explanation. Also,
it shares, with other primal methods, the property that it can be
started with a "good" solution and a better one is always avail-

able in case early termination of computations is required.

2. A MINIMAL COST FLOW ALGORITHM

In this section we give a procedure for solving the minimal



cost flow problem. We assume a familiarity with the maximal flow
and shortest route problems together with the Ford-Fulkerson [6]
methods for solving them.

The method suggested here is to first find a flow satisfy-
ing (1.1) and (1.2) by, say, the Ford and Fulkerson maximum flow
routine [67 {pp. 17-18). Given such a flow X, we then construct
an associated network G(X) which has the same vertices as the
original network and directed edgas, as follows:

)

(2.1) EX) : (i, i) if X, < kﬁ and x5 =0

j

3 I} >
G.4) if x,. 0,
with revisad capacities:

(2.2) k': k'..=k..-x,., ifx <k, andx, =0
i) ij i) ij ij ji

[} = >
kji xj}, \ ifxij 0

and with revised edge costs:

(2.3) a': a',.=a,, ifx . <k, andx, =0
ij ij ) ij ij i

a',, = -3, ifx..>0
ji ij ij
These ravised edgzs costs are simply thos2 associated with increas-

ing or cancelling the flow by one unit on these edges: The revisad




capacities indicate the extent to which this can be done.
Now, we use a result proved in Busacker and Saaty

(31 (pp. 256-257).

Theorem: X is a minimal cost flow if and only if there is no directed
cycle C in G(X) such that the sum of the costs around C's edges
are negative. (A directed cycle is a saquance of distinct directed
adgzs of the form {(io, il) (il, iz) - (ip,iq) (iq,io)} involving dis-
tinct vertices.)

An immediate conseguanca of this theorem is that a test
of the optimality of the flow X is at hand if G(X) can be checked
for the existence of a negative cost directed cycle. Further, if
the method also locates such a cycle, one gets an improved flow
by simply sending a positive unit flow around this cycle. Sucha
flow alteration obviously leads to a lower total cost and also leaves
the flow valuz v unchanged..

Fortunately, there are known methods for locating negative
cost directed cycles. The Fulkerson “Out-of-Kilter” procedure
[6] (pp. 162-169) is one. Various shortest route algorithms may
also be used; of these, we shall use the index reduction procedure
(with which we are most familiar) described by Ford and Fulkarson

[6] (pp. 131-132). As these a -*hors have pointed out, this method



requires the assumption of non-negative directed cycle costs. It

is easy to show that it breaks down at precissly the point at which

such a cycle is encountered; we take advantage of this property.
We need only put the above assortment of results together

to obtain the following.

Algorithm for Minimal Cost Flows

1. Use the Ford-Fulkerson maximal flow routine to find
a flow X of value v.

2. Form the associated network G(X) according to (2.1),
(2.2), and (2.3).

3. Test for the existence of a negative cost cycle C
by using, say, the index reduction shortest-route algorithm to find
a least cost route from the source to every vertex in GX). Then,
we get either

Case a: there are no negative cost directed cycles

in G(X) and the flow X is optimal,

or

‘1~ Case b: ~anegative .costrdirectedrcycle:€ is.loeated

and a new flow X' can be determined according to



X, . ifG,j)£ C

1)
xij= xi].—b ) if (G.,1) € Candajiso
x,,+6 _ if(i,jJe Canda' >0
1) : 1) -
where § = min {k'i_}, i.e., & is the largest
(i, )eC )

amount of flow which can be sent around C.

Return to Step 2.

Example: Suppose a minimal cost flow of value 4 is to be imposed

on the following network from vertex s to vertex t. Costs and

capacities are indicated according to the legend {cost, capacity}

on each edge.

source {4,101 >@ {1,21 %\@ sink
N
{2,5} {2,4}

4@) {3,10} ;@

We start with an arbitrary flow X of value 4, indicated below,

(omitting Step 1 for a problem of this size).




Steps 2-3: G(X) is then

3d 4b
—24 (s {4,101 _;\(@ {1,21 S(t
/ = A
Stop: case b {2,5} | {~2,4}

l
I

<_&L_3-,6}.~__—-Zé

-lc {-3,4) 2t

where negative cost edges are indicated by dashed lines and the
vertex index reduction shortest-route procedure has yielded the
sequence 0" labels = adjoining each vertex. A negative cycle is
indicated as soon as the source s receives a negative

label . {Case b).

A path is then traced backwards from s to locate the

cycle; e.g., s,"d, c, t, b, d. Thus,




c = {@d.,b), b,1), {t,c), c.,d)} .

8 =min {5, 2, 4, 4} =2 ,

and the new flow X' is

x'db= 0+2 = 2
xlbt = 0+2 = 2
x'ct = 4-2 =2
x'dc= 4-2 = 2.

All other 2dge flow values are unchanged. The new flow is shown

below.

Now G(X'), with vertex labéls, is



[
D

6¢c
{"112}

Since the source s has a non-negative label, Case a has been at-

tained and X' is optimal.

3. APPLICATION TO THE ASSIGNMENT PROBLEM

In this section we show how the method described above
specializes for solving the assignmant problem.

The assignment problem is to fill n jobs by as many men
at least total cost. If aij represents the cost of using man i in
job j, then a mathematical statement of the problem is to find a
permutation matrix X = (xij) of ordar n, which minimizes the total

cost GX)=x. .a...
1] 1

{2,1} 2.2} {-2,2}
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The equivalent minimum cost flow problem (following

Ford and Fulkerson) is illustrated for the case v = n = 3 below in

Figure 1.
Men obs
(a11'°°) @O
a,,.=] fay, =}
{0,1} fa 5= 0,1}
0.1 @ ,j{O,l} I sink
{a_ , o
23D
/632'6)}
X )
fa =}
33°

Figure 1: Network Representation of an Assignment Problem

As before, we arbitrarily designate one vertex of the

network as the point, called the initial point, from which all least

cost routes are computed. Because of the special "bipartite" form

-
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of the network (the source and sink can be dropped, since their
associated edges have zero cost and unit capacity) calculations
are more conveniently made using a matrix.

Let X be a trial solution (e.g., x

ii= 1, i=1,....n;

xij = 0, i#j) and let A*'(X) be an associatad matrix with elements

-a,. if x,.>0

(3.1) a', . =

The index reduction proczadure can be carried out by means
of a series of alternate row and column labelings on A with each
successive row (column) label giving the cost associated with
following a traczable route from the initial point to the column
(row) from which the current cost is measured.

Let (Mi’di) be a label assigned to column j of A. Then
the implication is that there is a directed route from the initial
point to Mi and a directed edge to (job) column j such that the total
cost is di' The row labels Uj'dj) are definad similarly.

Details of the proposed computational procedure are
given below. A numerical example is carried along for illustrative

purposes.



A convenient notational device we employ is to write

a  ifa'  <0andx. . >0.
i) ij - 1}

Initial Labels

Let Ml be the initial point. Label row 1 (-, 0).

1)

1. Label each column (M1 . ]a'lj

2. Label each row i#1, (Ij ,dj + a;j)

Example [1]: Let the first trial solution be xii=l ,
i=1,...,4, Xij=0' i#j, then A'(X) is shown below

with the initial labels indicated in the margins.

Jobs

Il I2 I3 I4
T T
Initial Ml -2 3 1 1 - =,0
point ——t
[
5 -8 -5 |
MZ 3 2 ]2, 5 )

Men [ 1T 1 — 1T —1 "~~~ Step 2

M - ~a |
3 4 9 5 1 I,.-4 |
T
_ _ |
M, 8 7 8 4 I3 )
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Label Reductions

3. Label each column (M_i_’ min (di + |a'ij 1), where
i is any index at which the minim:.tm is attained
4. Llabel each row (Ij, dj + a;j)
5. Continue Steps 3 and 4 until obtaining, either
Case a: Two successive sets of row or column
labels are the same, or

Case b: The initial points label becomes

negative.

In Case a the trial solution is optimal and the procedure
terminates.

If Case b occurs, a negative cost cycle, C, can be found
by tracing a path, P, backwards from the initial point according
to the succession of adjacent row and column labels until a label
is encountered for the second time. Then, an improved trial
solution X' is given by

xij ‘ if (Mi,]j) ZC

(3.2) x',

]
o

if |[M,,J.|e Candx =1
i’ ij

1 if lMi,Ij{G Candxij=0}




[
[#3]
.

where the notation lMi,Ijl indicates that either (Mi'Ij) of (Ij, M,)

is an element of C.

»Example Con't:

5 I2 I3 I4
—-2% * , .
_ _ _ V7 _ caseb
M 5% -g* -
) 8 3 2 J,. =5 |
M 4 9 -5
[
M, 8 7 8 -4 J,.-3
. —— —— ___| o — —_—
i ‘ ! ! ~
M | Step 4
L Mye2 M3 Myl Myl
t - == - Ty -~
Step 3-1 ,0 ! - -
ep 31 M, 0! M,,3 | M,.=2 | M,,-3

! l
— - S

P= (Ml,Il,Mz,Iz,Ml) and tha elements of C are (Ml,]l),

. . . s
GI'MZ)' (MZ,IZ), (]2,M1), these are marked with asterisks (*) in

A'. The new trial solution is, from (3.2)
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¥~
X4q= 1)
x'lz"l \
x'21"'1 )

2i! othall other x'i]. =0

)

with total cost 17.
The example is continuad. The new A' matrix together

with the successive row and column labels is |

ol I g
~—T - -
i ]
2 "3 1 1 =~ ’ e = - .
1 ___0 .I.Z..L_IZ__B & Stop: Case b
M -Gk * - -
M, |-5 8 | 3| 2 |1, 3|Jl,§
] N W DR
M. 4% -G —al7 s
AR S
M 8 7 8 | -4 |1,,-3l1 ,-7]
4 ’ ’
N I S
} i i I i
M, .2 1M, 3 M, 1ML
T S A U S
'M_,0'M ,3iM_,0' M, -3
e ;
| | t y
M_,-1'M ,0 M_ -3 -4 )
K I U Bt | !
IR R N I |
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/ -
P= (Ml,IZ,M4.I4.\1\43.I3,M2.11.M31)

and

C= {(My.T,). Uy My), (My.1), 0. M)} .

Applying (3.2), the next trial solution is

127
x'44"1 ,
Tl
*3= 1

all other x'ij =0 ,
with total cost 14.

The associated A' matrix is

3 Iy
| T
M, 2% 3% | 1 |-,0 '12 0 l; -1 ¢« Stop: Case b
...-L.._'_.._
| i
M, | 5 8 |-3 2 |I3-25-2
——’-———-
My f-ax | o |5 | ax|n.-2l1,-2,
- - -+
* —4% - -cl
M4_ 8 7 8 4 14, 3114, 5
-l L
{ { | {
(M2 M, 31M, 1 M, T
e B I B
| I ’
1My 2 M3 M1 My
T —-——
iM..2 M, 2'M,1IM,, 4l

1 4’ 1 3
I R B N
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P = (MIIIZIM4II4IM3II].IM1)
and

C= {M,.T,), 0y M,), (M.T,), G M), (M), ). M)

Again, applying (3.2) the new trial solution is

x‘23=1 ,
Tt
X34 =1,
x'42“1)
all otherx'1j=0 )

with total cost 13.

The assoc{ated matrix A' is

hW o B,
"
M|-2 | 3|1 {1 }01.0,
e
- T -
1\/12 5 8 3 2 ]3, 2 ]3, Z;
S T,
M3 4 9 5 -1 ]4,0 ']4,-1‘
- —l=
M4 8 -7 8 4 ]2—,—4 Iz_l—‘i_l
i l | i
==+ = —7
|
|M1,2iM1,3 Ml'llM‘l'Oj
(RO it K
'M,le,B'M,l‘M,Ol < Stop: Case a
re Ve Mt Ve
N I S I

Since Case a has occurred, this trial solution is optimal.
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4. AN ALGORITHM FOR THE TRANSPORTATION PROBLEM

The method given here for the transportation problem is,
with slight alteration, the same as that suggested for the assign-
ment problem. The reason for this computational similarity is,
of course, the well-known relationship between the two problems:
each is a special case of the other.

We suppose that the transportation problem involves
shipments of a single commodity from n plants P1 fe e ’Pn’ with
capacities ¢

peseaCp to m warehouses W_, ... ’Wm with require-

1 1
ments rl, eeea ,rm. If aij represents the cost of shipping a unit
from Pi to Wj, and xij the quantity shipped from Pi to W],, the

problem is to minimize the total cost

(4.1) QX) = i 3

=

R~
%
[e]}

constrained by



20.

[n,

Y OX., =T, , =1,....m ;
PR §
i=1

{442)
m

(4.2) / Y X, =c, , i=1,...,n ;
P § i
=1

where we assume that the ci's and r]_'s are positive integers, and
Xc, =12r,.
i ]
We omit the network formulation of the problem and go
directly to the computational procedure. The terminology is the

same as that used for the assignment problem except that we speak

of plants and warehouses instead of men and jobs.

Trial Solutions: Although the computational procedure can be written

so that one can work with any trial solution satisfying (4.2), it is
convenient to restrict ourselves to the “basic feasible solutions”,
possibly degenerate, which are used in Dantzig's adaptation of
the simplex method for transportation problems. These solutions

contain, at most, m+n-1 positive entries. They also have the




property that no cycles can be formad by their positive entries.
These two properties may also be justified by simple combinatorial
arguments [5b].

Suppose X is a trial solution (i.e., it satisfies (4.2)

and the above). We again define the associated matrix A'(X) by

-a if x..,>0
1)

a if x,.=0
1}

and write a._ ifa',. <0 and x,, > 0.
ij ij - 1}

Initial Labels
Let P, be the initial point. Label its row (-, 0)

1
1. Label column j (Pl' |alj 1

2. Labe: eachrow i#l (ij min {djf_@—ﬁ}) whare j is
U :
the column at which the minimum is attained.

Example: Consider the following transportation array [1]and a

first trial solution:

P1 3 6 3 1 1 4

l’2 2 4 3 2 7 S

P3 1 1 1 7 2 1 2 6
2 +2 - 3 4 4

Transportation Array




[\
[\&]
.

Pl 2 2
P2 3 2
P3 2 2 2

Trial Solution

(Here we have attempted to find a "good" trial solution by trying to

ship as much as possible along the cheapest routes.)

Initial Labels:

Iniial point P | 3 | 6 | 3 |-1 |-1 |-0

-

Pl 2 a | -3} 2 -7 W.§
.

P,| -1 | -1 2 | -1 2 w,o0!

Label Changes:

3. Label each column (Pi' min (di+ }a'ij))
S |
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4. Label each row (Wj. min (dj + a-ij)>
=

5. Continue steps 3 and 4 until either
a. two successive sets of row or column

labels are the same {in which case the trial

solution is optimal), or

b. the initial point's label becomes
negative (indicating the existence of a

negative cost directed cycle C).

Example Con't:

1 2 3 4 5
l
P1 3 5 3 -1* | -1* | -,0 (W4,—5 &Stop: Case b
-— .1_____
- * -7%
P2 2 4 3 2 7 Ws.—G'
- - - l
: P3 1 1 2 1 2 W4,0 |
) C | L
i i A
P ,-4p_ -2AP 3P ~-44P .1 |
L2 r g rr

If case b occurs (as in the above) C is located by tracing a path
P back from the initial point until a row or column label is en-

countered for the second time; e.g.,



24,

P= (Pl,W4,P W 'Pl)

2° 5

and

C= {(Pl,w4) (W4,P2) (PZ,WS) (ws,Pl)} (asterisked above)

C is more conveniently written with the subscripts in the usual row,

columr. order. Thus, we write

C= [(Pl,wq), (PZ,W4), (PZ,WS), (Pl,ws)} .

Let X(C) be the entries of X whose subscripts correspond
to those of C, i.e., if 'Pi'wjl €C then X €X(C), and index these
entries (with superscripts) as follows: assign the index 1 to any
entry whose value is zero. (There is at least one such entry by
virtue of our use of "basic feasible" trial solutions.) Now, following
the cycle (in either direction) continue with successive positive
integers: 2,3,...,k until all elements in X(C) have been indexed.
Note that the index k is an even number.

A new improved trial solution X' is defined by

X, if x,. Z X(C)
1) ) 1)
X' = X .+ if x(,t,) € X(C) and t is odd
ij ij ) i)
X,. -8 if x,(',:) € X(C) and t is even

ij N ij J



(3
W
.

where § is the value of the smallest even indexed element of X(C).

It is easy to see that X' is also a "basic feasible” solution.

Example Con't: 6 =2 andX'is

W ,
1 WZ W3 W4 WS
P, 2-2=0 ) 242=40)
P Q) 4)
2 3 fo+2=2 f2-2=0
2 2 2
P3

with the index numbers shown. The total cost is 23.

The remaining calculations are given below.

o e
P | 3 6 3] 1| -1 |~.0 w0,
—-rsg
P,| 2 4| -3] -2 7 Wy 1|w,-1'
--p- T
Py -1 | -1 2| -1 2 w4,0‘w4.0
{ | ! | ! I‘—- ;
}
P)/31P).61P,,31P) . 1P, 1 Stop: Case a
= + - =
|P2,11P3,11P3,z Pyl P1
R R T I R

Since case a has occurred, the trial solution is optimal.
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5. CONVEX COST FLOWS

As indicated by Hu [81, the primal-dual type algorithms
for minimal (linear) cost flow problems can be adapted to handle
cases in which the edge cost functions are positive, non-decreasing,
and convex. The basic notion, used here also, is to use the (chang-
ing) marginal costs associated with possible unit flow alterations in
the associated graph. In our case, this means that cyclical flow
changes will involve only one unit of flow (i.e., § = 1) and the
edge costs for the associated graph will depend somewhat more on
the current flow values on each edge than they did in the linear
cost problem.

If we represent each edge cost function by bij' the

problem is to find the minimum of

constrained by (1.1) and (1.2).

All we need to do is to note that the network G(X)
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associated with a feasible flow X, is defined as before, except
that the revised (marginal) edge costs b'ij are given by
t = + -
B [bij(xij D bij(xij)] if x.. <k,, and x_=0;
ij ij ji
and

[I— - - i >
by =y by - by b D ] i x>0

This, plus our previous observation that §= 1, enables the use of
the minimal cost flow routine. Similar alterations. can be made

to handle the transportation problem with convex costs.
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