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SUMMARY 

The problem of minimizing the drag of a three-dimensional, slender, flat-top 

wing of given span in hypersonic flow is considered under the assumptions that the 

pressure coefficient is modified Newtonian and the skin-friction coefficient is constant. 

The indirect methods of the calculus of variations in  two independent variables are 

employed, and the minimum drag problem is solved for (a) given lift and (b) given 

lift and volume. 

If the lift is the only given quantity, the optimum wing has a constant chordwise 

slope and a trailing edge thickness distribution similar to the chord distribution. 

While the planform area is uniquely determined, the chord distribution is not. In 
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other words, there exist an infinite number of chord distributions yielding the same 

maximum value of the lift-to-drag ratio. 

If the lift and the volume are given, two solutions are possible depending on the 

value of the volume-lift parameter, a parameter directly proportional to the volume 

and inversely proportional to the lift squared. If the volume-lift parameter is greater 

than a certain critical value, the optimum wing is identical with that of case (a). If the 

volume-lift parameter is smaller than the critical value, the optimum wing has a con- 

stant chord and a constant trailing edge thickness. Also, the chordwise slope is 

constant irl ?he spanwise sense but not in the chordwise sense. Finally, the maximum 

lift- to- drag ratio decreases as the volume- lift parameter decreases. 
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1 .  INTRODUCTION 

In previous papers (Refs. 1 through 3), the problem of minimizing the zero-lift 

drag of a three-dimensional wing in hypersonic flow was considered under the assumptions 

that the pressure distribution is Newtonian and the skin-friction coefficient is zero o r  

constant. Various conditions were imposed on the volume, the planform shape, and 

the thickness distribution on the periphery of the planform. 

In this paper, the problem investigated in  Refs. 1 through 3 is considered once 

more in connection with a wing designed to produce a specified lift. For simplicity, 

the analysis is limited to the class of flat-top wings whose upper surface is parallel to 

the undisturbed flow direction (Ref. 4). For these wings, the minimal problem consists 

of extremizing a surface integral with a variable boundary subjected to  several constraints 

of the isoperimetric type. 

In the following sections, the necessary conditions for the extremum are derived 

in general according t o  the mathematical treatment presented in Chapter 3 of Ref. 5. 

Then, several particular cases are studied and solved in detail. The hypotheses employed 

are as follows : (a) a plane of symmetry exists between the left- hand and right-hand 

par ts  of the wing; (b) the upper surface is flat; (c) the free-stream velocity is parallel 

t o  the line of intersection of the plane of symmetry and the flat top; (d) the wing is 

slender in both the chordwise and spanwise senses, that is, the squares of both the 

chordwise and spanwise slopes a re  small with respect to one; (e) the pressure coef- 

ficient is proportional to  the cosine squared of the angle formed by the free-stream 

velocity and the normal to  each surface element; (f) the skin-friction coefficient is con- 

stant and equal to  some suitahly chosen average value; (g) the base drag is neglected; 
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and (h) the contribution of the tangential forces to  the lift is negligible with respect to  

the contribution of the normal forces. 
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2 .  FUNDAMENTAL EQUATIONS 

In order to relate the drag and the lift of a wing to its geometry, we  consider the 

following Cartesian coordinate system OXYZ (Fig. 1): the origin 0 is the apex of the 

wing; the X-axis is the intersection of the plane of symmetry and the flat-top plane, 

positive toward the trailing edge; the Z-axis is contained in  the plane of symmetry, 

perpendicular to the X-axis, and positive downward; and the Y-axis is such that the 

XYZ-system is right-handed. We assume that the planform geometry and the thickness 

distribution on the periphery of the planform are given by (Fig. 2) 

Leading edge X=m(Y) , Z = O  

Trailing edge X=n(Y) , Z=t(Y)  

where the function m(Y) is arbitrarily prescribed and the functions n(Y), t(Y) are free. 

We observe that, because of hypotheses (a) through (h), the drag D and the lift L can be 

written as (Ref. 4) 

where 

K = C f / n  

In the above equations, q is the free-stream dynamic pressure, b the given wing span, 
cn 

n a factor modifying the Newtonian pressure distribution(*), C the skin-friction 
f 

(*) The pressure coefficient employed in Eqs. (2) is C = 2 2 .  
P 
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coefficient, Z(X, Y) the function describing the geometry of the lower surface, and 

P 5 aZ/aX the chordwise slope. The associated volume is given by 
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3 .  COORDINATE TRANSFORMATION 

We introduce the coordinate transformation 

x = X - m ( Y ) ,  y = Y ,  z = Z  

AAR- 26 

i n  which x denotes a modified abscissa measured from the leading edge along the 

line defined by y = Const and z = 0. In this new coordinate system, the planform 

geometry and the thickness distribution on the periphery of the planform are given 

by (Fig. 2) 

Leading edge 

Trailing edge 

where 

x = o  , z = o  

x = c(y) 7 z = t(y) 

denotes the chord distribution and where the functions COT), t(y) are free. Furthermore, 

the drag, the lift, and the volume become 

where b is the given wing span, ~(x, y) the function describing the geometry of the 

lower surface, and p = &/ax the chordwise slope. 
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4. MINIMUM DRAG PROBLEM 

At this point, we formulate the following problem: "In the class of functions 

z(x, y) which satisfy the isoperimetric constraints (8-2) and (8-3) as well as the boundary 

conditions (6) ,  find that particular function which minimizes the integral (8- 1). " This is 

a problem of the isoperimetric type with a variable boundary and involves the independent 

variables x,  y and the dependent variable z.  According to Lagrange multiplier theory 

(see, for instance, Chapter 3 of Ref. 5 ) ,  we study the minimization of the functional 

form 

subject to the constrains (8-2) and (8-3) as well as the boundary conditions (6)  with the 

understanding that the fundamental function is defined as 

where X and X denote constant Lagrange multipliers. This fundamental function is 

characterized by the first partial derivatives 

1 2 

2 F = 3 p  -2h lp  , F = O  , F = X  P q z 2  

and the second partial derivatives 

F = O  zz , F  = O , F  = O  
ZP zq 

in  which p = az/ax and q = az/ay denote the chordwise slope and the spanwise slope 

of the extrema1 surface. 
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5. NECESSARY CONDITIONS 11 
The function z(x, y) extremizing the integral (9) must be a solution of the Euler 

equation 
I 

aF /aX - Fz=O 
P 

which, i n  the light of Eqs . (11), can be rewritten as 

Therefore, upon integrating in the x-direction, we see that the following first  integral 

is valid: 
c) 

3ph - 2i1p - x x =f(y) 2 

where f(y) is an  arbitrary function of the spanwise coordinate. 

The boundary conditions for the Euler equation are partly of the prescribed type 

and partly of the natural type. The latter are to be determined from the transversality 

condition 

( F - p F  ) 6 x - ( i F + q F ) b y + F  6 z = o  
P P P 

(i denotes the derivative dx/dy evaluated on the boundary) which must be satLfied for 

every set of variations consistent with the conditions imposed on the planform shape 

and the th i chess  distribution on the periphery of the planform. For the leading edge, 

the following relations hold: 
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(2 denotes the derivative dz/dy evaluated on the boundary) so that Eq. (16) is satisfied. 

For the trailing edge, Eq. (16) is satisfied for every set of variations providing 

F - p F  = O  , XF+qF = O  , F = O  
P P P 

that i s ,  providing 

F=O , F = O  (19) 
P 

Because of Eqs. (10) and ( l l ) ,  the conditions (19) take the form 

Trailing edge (20) 
3 2 2 

2 p + K -  Alp + A  t (y)=O , 3p - 2h lp=0  

Once the solution of the Euler equation is obtained, it is necessary to verify that 

it minimizes the functional (9). In this connection, the Legendre condition 

F 2 0  
PP 

must be satisfied and ensures a relative minimum with respect to  weak variations. 

Because of Eq. (12-1), its explicit form is 

3 p - x  2 0  
1 

If strong variations of the slope are considered, the Legendre condition is to be 

replaced by the Weierstrass condition 

where z and p are the ordinate and the slope of the extremal surface and p is the slope 
C 
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of the comparison surface. The explicit form of this inequality 

2 bc - P) bC + 2P - X1) 2 0 

must hold for every comparison slope consistent with the constraint 

P, 20 

which expresses the limit of validity of the Newtonian pressure law. Consequently, 

the following inequality must be satisfied at each point of the extremal surface: 

2p - x1 2 0 

and is more restrictive than Ineq. (22). 
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6 .  - NONDIMENSIONAL QUANTITIES 

In order to simpllfy the representation of the results for the particular 

cases, it is convenient to introduce the nondimensional coordinates 

and the nondimensional chord distribution 

Also, we define the thickness ratio of the root airfoil and the lift-to-drag ratio 

7 =t(O)/c(O) , E = L/D 

as well as the parameters 
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'i 
1 .  GIVENLIFT 

If the lift is prescribed while the volume is free, the relationship X = 0 holds 
2 

s o  that the extremal surface is described by the first integral 

2 
3p - 2x1p =f(y) 

the fixed end conditions (6-1), and the natural boundary conditions 

3 2 2 
Trailing edge p f K - 1 ~  1 G O ,  3p -2X1p=0 

Equations (32) admit the solutions 

and 

Trailing edge 

3- X1 = 3 dK/4 

3- 
p = d2K 

AAR- 26 
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(33) 

(34) 

indicating that the chordwise slope is constant over the trailing edge. E@ combining 

Eqs. (31) and (32-2), we see that 

meaning that the chordwise slope is also constant over the entire extremal surface. As 

a consequence, the optimum wing is described by the partial differential equation 

3 -  
P '  I h K  
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which, in the light of the conditions (6-l), admits the particular integral 

3- 
z = J 2 K x  

Next, the conditions (6-2) are applied to obtain the relationship 

(3  7) 

meaning that the trailing edge thickness distribution and the chord distribution are 

similar. Then, by forming the ratio of the above equations and introducing the 

dimensionl, - 5  coordinates (27), we conclude that the optimum wing surface is given by 

c = 5  (3  9)  

Finally, the evaluation of the integrals (8) leads to  

D = 6nKq bc(o) 
m 

1 

0 
2 / 3  L = 2n(2K) q bc(o) ydq 

co 

s o  that, because of Eqs . (30) and (38), the optimum wing is characterized by the 

parameters 

7, = 3Jz 
3 -  E, = ./4 / 3  

1 
c* =[2 $2 Jo Ydrl] - l  

rl 2 
JO 
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1 -  Equations (41-1) and (41-2) show that the thickness ratio and the lift-to-drag ratio 

of the extrema1 solution a re  uniquely determined. On the other hand, Eqs. (41-3) and 

(41-4) show that the chord distribution and the volume a re  not uniquely determined; 

in other words, there exist an infinite number of wings having the same maximum 

value of the lift-to-drag ratio (41-2). 
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8 .  GIVEN LIFT AND VOLUME 

If the lift and the volume are 

first integral 

given, the extremal solution is governed by the 

0 

3pL - 2x1p - x x = f(y) 2 

the fixed end conditions (6-l), and the natural boundary conditions 

3 2 2 
2 p +K-X1p + x t ( y ) = O  , 3p - 2 h l p = 0  Trailing edge 

The analysis shows that these equations admit the following classes of solutions: 

Class I x = o  
2 

Class I1 x 2  2 0  

(43) 

(44) 

Solutions of Class I. For these solutions, which are characterized by X = 0, 2 

Eqs. (42) and (43) reduce to Eqs. (31) and (32). A s  a consequence, Eqs. (33) through 

(41) are valid here. Once more, the thickness ratio and the lift-to-drag ratio are 

uniquely determined while the chord distribution is not. 

Iii order to determine the range of applicability of these solutions, we observe 

that the volume-lift parameter V, is a known quantity. On the other hand, we can 

formulate an auxiliary extremal problem, that of minimizing the right-hand side of 

Eq. (41 -4) conceived as a product of powers of integrals subjected to the initial con- 

dition y(0) = 1. If this is done and if the theory of Ref. 6 is applied, we see that the 

extremum occurs for y = 1 and that the minimum value of the volume-lift parameter is 

V, = 1/16. In the  light of this result, we conclude that the solutions of Class I are 
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valid prodding 

V, 2 1/16 (45) 

Solutions of Class II. For these solutions, the natural boudary conditions (43) 

can be solved in the form 

Trailing edge P = (2/3)Xl tb) = (1/X2)(4X:/27 - K) 

indicating that the chordwise slope and the thickness are constant along the trailing 

edge. 

If the first integral (42) is applied at the trailing edge and is combined with 

Eq. (46-l), it is seen that 

and that 

2 
3p - 2x1p 3. x (c - x) = 0 2 

This is an algebraic equation of the second degree in p which--in the light of the Legendre 

condition (22)--admits the solution 

p = X1/3 + (1/3) [x: - 31 (c - x ) ] ~ ’ ~  
2 

If this partial differential equation is integrated in the x-direction and the conditions 

(6-  1) are imposed, we obtain the relationship 

(49) 
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which, at the trailing edge, becomes 

3/2 - 3- 
I1 1 t = (A1/3)c - (2/27X 2 ) r ( A  L -  1 - 3X2c) 

Since the trailing edge thickness is constant, Eq. (51) implies that the optimum wing 

has a constant chord. Therefore, if the following definitions are introduced: 

2 a =  31 C / h l  
2 

Eqs. (50) and (51) can be rewritten as 

(54) 
3 

t = (A1 /27h2) G(1, a) 

Consequently, in nondimensional form, the optimum shape is described by 

1 The next step is to relate the quantity a to the prescribed values of the lift and 

i the volume as well as to determine the scaling factors t and c .  To do this, we combine 

Eqs. (46-2) and (54-2) to obtain the relations 

(53) 
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Furthermore, upon combining the shape equation (55) with the expressions (8) for 

the drag, the lift, and the volume and introducing the following definitions: 

A(u) = 2[4 - G(l,u)I-' (4 - 3a/2 + (2/5a) [ 6  - (6 - a)(l  - 

Nu) = 2[4 - G ( l , c ~ ) ] - ~ / ~  {2 - a/2 + (4/3u) [1 - (1 - 

C(u) = [4 - G(1, a)] 

+ 2 

-1/3 - 
{1/2 - (2/15a2) [(2 +3u)(l - - 21) 

we deduce that 

D/nq bcK = A(u) 
(D 

L/nq bcK2l3 = B(a) 

V/bc K = C(u) 

OD 

2 1/3 

so that 

(57) 
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The final step consists of eliminating the quantity cx between Eqs . (55), (56-2), 

and (59) to obtain the relationships 

c = f,(L V,) 

and 

T,: = f2(V,) , c,: = f,(V,) , E ,  = f (V,) -- 4 

which a r e  plotted in Figs. 3 through 6 and are valid providing 

v,: < - 1/16 

Remark. In the previous analysis, it has been assumed that the span b is 

prescribed. Should the span be free, all of the solutions would be of Class I and 

would be characterized by the thickness ratio (41-1) and the lift-to-drag ratio (41-2). 

AAR- 26 
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Coordinate system. 
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Optimum shape. 

Optimum thickness ratio. 

Optimum chord. 

Maximum lift-to-drag ratio. 
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Fig. 6 Maximum lift-to-drag ratio. 


