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A General Method for the Calculation 

of Axis-Crossing Moments 

by 

M. R. Leadbetter 

Sunnnary. 

stationary normal process in a given time was obtained by Cramer and Leadbetter 131. 

Ylvisaker p4] has weakened the conditions €or the validity of this result to the 

minimal possible, by a proof which includes non stationary normal cases. 

report we give an alternative derivation applicable to normal processes. 

processes are also discussed in a manner analogous to that given in [7] for the mean. 

A formula for the moments of the number of crossings of a level by a 
/ 

In this 

Non normal 

1. 

the mean number of crossings of a level by normal, and other types of stochastic 

processes in a given time. References 161 PO] [5] [2 ]  141 MI [7] contain much of 

the development of this theory. 

moments of higher order than the first. This is due in part to the fact that the 

simple results available for the mean are undoubtedly the most useful and are of 

paramount importance in applications, whereas the difficulty of making practical use 

of the higher moments increases greatly with the order of these moments. 

the difficulty of obtaining rigorous results is certainly somewhat greater for moments 

of higher order than the first, in view of singularities of the probability densities 

involved "at diagonal points", as w i l l  be seen below. 

Introduction. There is a long history of interest in the problem of obtaining 

Until recently there has been less interest in 

Further, 

However there are excellent reasons for studying moments of higher order than the 

first. Certainly the second moment plays an important role in applications of vari- 

ous sorts - for example in deciding on the length of "counting periods" to give very 
accurate time measurements by means of "noisy" standard frequency transmissions. 

The problem of obtaining the variance of the number of crossings of a level by a 



t 

(particular type of) stationary normal process was first considered by Steinberg, 

Schultheiss,Worgrin,and Zweig 1221, using somewhat heuristic methods. Rozanov and 

Volkonski [Ill point out precise sufficient (though by no means necessary) conditions 

for the validity of this formula, and Leadbetter and Cryer [8] weaken these restric- 
I 
I tions to give a result under conditions which are close to being minimal. This 
I 

latter result includes also a rather sharp condition for finiteness of the variance. 

There are also important applications for results concerning moments of higher 

order, as, for example, in connection with one method of discussing the asymptotic 

distribution of the maximum of a stationary normal process in a given time (cf. [l]). 

A partial result concerning moments of higher order than the second was indicated by 

Ivanov at the end of his paper [5]. 

all orders were obtained by Cramer and Leadbetter 131 under mild restrictions. 

of the conditions there assumed is that E(t) should possess a continuous sample 

derivative, with probability one. 

more restrictive conditions, but including non stationary (normal) cases also. 

is also shown there that the k-th moment is finite if E(t) possesses k (q.m.) 

derivatives. 

sufficient condition for finiteness is not by any means necessary. 

Ylvisaker [IC] has shown that it is possible to slightly further weaken the conditions 

for the validity of the formula for the moments, to avoid explicit reference to the 

existence of the sample derivative. 

application of the martingale convergence theorem. 

processes, but may also be adapted t o  cover non stationary cases. 

For stationary normal processes the moments of 

One 
0 

Belayev [I] derives this result under slightly 

It 

However, as can be seen from [8] (and as noted by Belayev) this 

Finally, 

Ylvisaker's derivation hinges on an interesting 

It refers to stationary normal 

It wi l l  be our purpose here to give an alternative derivation of the moments 

for the normal case under the (minimal) conditions assumed by Ylvisaker, but without 

appealing to martingale theory. 

convergence of certain densities) for processes which may be non normal as well as 

non stationary. 

We shall then give explicit results (in terms of 

These results are analagous to those of [ 7 ]  for the mean. The 
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. 
method of proof to be given uses, in part, ideas from each of the available works on 

this subject. 

~ 

. 

2. A general result. 

sample functions and, for a given integer k, absolutely continuous 2k-dimensional 

We shall consider a process E(t) possessing, a.s., continuous 

distributions with corresponding densities of the form f tl.. .t2k (xl.. .x~~). Our 

discussion will be in terms of the k-th factorial moment of the number N of 

upcrossings of zero by s(t) in 0 5 t 5 1. 

random variable. 

number of crossings, crossings of other levels and curves, more general time inter- 

vals, and ordinary moments will be clear. 

Certainly (as in [7])N is a well defined 

The modifications required to deal with downcrossings, the total 

For t = (t l...t ) lying in the k-dimensional unit cube, let m denote the unique k r 

integer such that mr/2" 5 tr < (mr+l)/zn. Write En(t) for the k-dimensional cube 

cube of side 2-" containing L". 

in the unit cube such that for all 2 = (sl.. .S ) E En(L), we have Isi-s. I > E 

whenever i # j, and write A (L) for the characteristic function of the set A nE nE 

For E > 0, let AnE denote the set of all points t 

k J 

. 

Finally let the random variable X. = 1 if E(i/2") < 0 < s[(i+1)/2"], X. = 0 
1 ¶n 1 sn 

otherwise. 

The main results concerning the factorial moments of N will be relatively 

straightforward consequences of the following lemma. 

. 
3 



k = ,px. ...x, x (-...-), where t h e  sunrmation i s  extended over 
il i 

2n LmMA. E M n E  i l , n  ik,n n E  2n 

a l l  ordered sets of d i s t i n c t  integers  il.. .i 0 5 ir 5 2" - 1. Then ky 

(i) MnE i s  non decreasing as n increases f o r  fixed E ,  and as E decreases 

f o r  fixed n. 

( i i )  l i m  l i m  MnE = N(N-l ) . .  .(N-Hl), with probabi l i ty  one. 
n->m E->O 

To prove the f i r s t  statement of ( i )  we note t h a t  each term of the  sum f o r  M ne 

k i i  
corresponds t o  a cube of s i d e  2-" (viz. En(1.. .-I)). For fixed E > 0, 

2" 2" 

term i s  uni ty  i f  (a) every point 5 = (s l...s ) i n  t he  cube i s  such t h a t  k 

= 1. When n i s  increased - - - 
" *  - Xikyn 

f o r  i # j ,  and (b) X. = 
i l , n  'i2,n 

the typ ica l  

s -s. I > E 
i J  

by unity,  

k 
the  cube divides i n t o  2 subcubes, i n  each of which property (a) s t i l l  holds. Corre- 

spondingly, the typical term of t h e  sum divides i n t o  pk terms formed by replacing n 

by (ni-l), and each i by e i t h e r  2 i  o r  2i.+l. Since i f  X. = 1 we must have e i t h e r  
j j J r j , n  

= 1 (with probabi l i ty  one), it follows t h a t  a t  l e a s t  one '2i ,n+l = or %.+1,n+1 
J 

k of these 2 terms i s  unity,  and hence the  f i rs t  statement of ( i )  follows. The second 

statement of (i) i s  obvious. 

To prove (ii) we note f i r s t  that  i f  t he  typ ica l  term i n  t h e  sum of M i s  non nE 

zero i t  follows t h a t  lir-isl > 1 for r # s, since i t  i s  impossible t o  have 

x. = = 1 f o r  any i. It i s  easy t o  see from t h i s  t h a t ,  f o r  such a term, i , n  'i+l,n 

2"- 1 

2n i= 8 
il ik l i m  A ([-. . .-I) = 1. Further i f  Nn = C X. it follows e a s i l y  as i n  [3] 

1,n nE 2n E->O 

4 



I -  that C'X. ... x = N (N -1) ... (Nn-ktl). But Nn -> N with probability one ip n n  k" 
(cf. [7]). From these facts (ii) follows at once, and the proof of the lemma is 

complete. 

From the monotonicity properties proved in (i) of the lemma it follows that the 

order of the E and n-limits in (ii) may be interchanged. Hence, writing 

% = & N(N-1). . . (N-lctl), 
% = lim lim & MnE. 

F>O n->oo 

variables it now follows 

it follows by two applications of monotone convergence that 

From the definition of MnE and a simple transformation of 

at once that 

i i  
(1) F$ = lim lim c' Xn,(l...A) PEEi < 0 < Si + 2-"qi , r = 1,2 ... k) 

r > O  n->a3 2 2n r r r 

n in which E, = S(r/2") and qr = 2 (EHl-Er). 
terms in the sum on the right correspond to integers il...ik satisfying li -i I > 1 

for r # s. 

As noted earlier, the only non zero 

r s  
Thus we can (and do now) regard C' as indicating summation only over such 

sets of integers. For such integer sets, the random variables 6 . . . E  , vi ...vi 
1 ik 1 k i 

...\, yl...y ) to be equal k clearly possess a joint density. 

to this joint density for all t = (t l...tk) in Ane such that ir/2n 5 tr < (ir+l)/2n, 

Let us write Y nLE(xl 

and YngE = 0 other- lying in the cube E (-...-), k 
il i 

r = l...k, i.e. for all t of A 
2" 2" nE 

wise. Then from (I), 

1 00 0 0 
% = lim lim Pkn /.../ dt /.../ dx / ... 1 Ynte(x,~)dx_ 

E->O n-->oo 0 0 -2-ny1 -2- 
'k 

By a simple change of variable we may now obtain the following general result. 
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THEOREM 1. For the process ((t) defined a t  the beginninp of t h i s  sect ion,  

3. Normal processes. 

normal process. 

I n  t h i s  sect ion E ( t )  w i l l  denote a (separable) s ta t ionary  

It w i l l  be shown how the r e s u l t  given by Crauk'r and Leadbetter fo r  

the  k-th f a c t o r i a l  moment s ( u )  of the number of upcrossings of the leve l  u by e ( t )  

i n  0 5 t 5 1, can be obtained from Theorem 1. 

conditions assumed by Ylvisaker [14] w i l l  be used fo r  t h i s  calculat ion.  

The less r e s t r i c t i v e  ( i n  f a c t  minimal) 

Specif ical ly  

we s h a l l  assume t ha t  ( ( t )  has zero mean, and spectrum F(X) which i s  not purely 

d i sc re t e  and possesses a f i n i t e  second moment X = 1 X dF(X). Under these conditions 

it follows t h a t  

O 0 2  

0 
2 

where 

((tl) ...E( tk) together with the  (q.m.) der ivat ives  g r ( t  ) . . . ( ' ( tk) ,  by putting a l l  

= (t l...t ) and p ( u , ~ )  is obtained from the  jo in t  densi ty  p t ( ~ , y )  for  - t - k 

1 

the  components of equal t o  u. 

To obtain t h i s  r e s u l t  from Theorem 1 we note f i r s t  t ha t  the conditions of t ha t  

theorem a r e  c l ea r ly  s a t i s f i e d  by ( ( t )  (c f .  [7]). It follows by considering the 

process ((t) - u t ha t  

6 



Let ~ ( € 1  = (t= (t l...tk): It.-t.I > E for all i # j) = lim Then it follows 
F > W  1 3  

simply (cf. [9]) that for any given t E D(E), the covariances occurring in the normal 

distribution described by y 

uniformly for t E D(E). 

to pt(u,y) in D(E), as n -> 00.  

all the integral signs it would then follow that 

converge to those of pt(&,y); in fact this occurs 
nLc - 

In particular this implies that the integrand in ( 4 )  converges 

If we can show that the n limit may be taken inside - 

from which the final result follows by monotone convergence. 

To demonstrate that the order of the n limit and the integral signs may be inter- 

changed, it is sufficient to show that the integrand in ( 4 )  is, for each fixed E > 0, 

dominated by a function which is independent of n and integrable over the indicated 

5, E, region. 

Let Ant denote the covariance matrix appearing in the density Y! and B its 
ntc ' nt 

lower right hand k x k submatrix. That is B is the covariance matrix for q 
nt il'. .vik' 

with the above notation. A simple minimization over the first k variables shows that 

-1 '1  A-l >, y' Bnt p. Now the elements of B converge (uniformly in D(E)) 
[ E  9 nt y - nt 

-1 
to those of Bt, the covariance matrix for E'(tl).. .gc(tk). But min ylBnt p. / y'f:y - Y - 

-1 is simply the smallest characteristic root of B nt $* and this tends to unity as 

n -> a, (uniformly for t E D(E)). Hence we may take n independent of & and such 
0 

Similarly by using the 

-1 
Bt Bt , (for any fixed t 

-0 
-0 - 

all y when n >, no. 

continuity of the smallest characteristic root of 

E D(E)), it can be seen that yfBt y >, a ytBily for some -1 
-0 - 

7 



a >  0 ,  all t E D(E)  and all y. 

continuity and uniform convergence that IA 

in this region. Hence, for some constant K, 

Further since A is non singular it follows by nt 
I is uniformly bounded away from zero 

nt 

-1 $.&,X) <, K exP(- CYP'Bt PI41 
-0 - 

from which the desired conclusion follows. 

4 .  Generalizations. The above proof carries through for a non stationary normal 

process subject to a non degeneracy assumption (cf. [7]). The condition X < 00 is 

replaced by the requirement that the covariance function r(t,s) should possess a 

2 

n 
L continuous mixed second partial derivative a ./atas. 

For non normal processes we may obtain a result for higher moments, similar to 

that for the mean given in [ T I .  Specifically suppose E(t) satisfies the conditions 

stated early in Section 2 and write for t = (t l...tk) 

That is g is the joint density for the random variables 6 . . . E  and the incre- 
t, 7 tk 

mentary ratios (f,-+,-Et )/T. It then follows that 
1 i 

at points &, for which the left hand side is non zero, when mr/2" 5 tr < (mr+l)/2".) 

The following result holds for % as defined in Section 2. 

8 



THEOREM 2.  

with the above notation, 

Consider p o i n t s t  = (t l...t ) such t h a t  ti # t .  f o r  i # j and suppose t h a t ,  
k J 

(i) 

(ii) 

gtT(x,y) i s  continuous i n  ( t ,~)  f o r  each y,'r 

For each E > 0, gt,(x,y) -> pt(E,y) as 7 --> 0 uniformlJr i n  (t,~) f o r  

t E D(E) and each y. 

- 

- - 
- 

( i i i )  For each E > 0, there  i s  a function hE(y) such t h a t  f o r  t E D ( E ) ,  

W 
(x 1 I and !...I yl...yk h,(y)dy < 00.  %$7 -a 0 

1 W 
M = /...I d t  !...I yl...y P (O$y)dy <, 00. 

k 0 0 k t  

To prove t h i s  r e s u l t  we note tha t  by (i) and (ii) it  follows tha t  

case the  r e s u l t  follows once it is  established tha t  the n-limit  i n  (2) may be taken 

ins ide  the in t eg ra l  s igns,  for  each fixed E > 0. 

a t  once from ( i i i )  by dominated convergence. 

But t h i s  l a t t e r  property follows 

Fina l ly  w e  repeat t ha t  these r e su l t s  can be modified t o  r e fe r  t o  downcrossings, 

a r b i t r a r y  t i m e  i n t e rva l s ,  crossings of curves, and so on. The appropriate modifi- 

cat ions are completely analogous t o  those given i n  [7 ]  f o r  the mean and hence will 

not be considered fur ther  here. 

9 
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