View metadata, citation and similar papers at core.ac.uk

<
brought to you by .{ CORE

provided by NASA Technical Reports Server

SU-181

Technical Report No. 5

B
¥
o' g
A General Method for the Calculation
= (
\ ~=4 of Axis-Crossing Moments
i (
- C‘D by

M. R. Leadbetter GPO PRICE $

&)
£ CEST! PRICE(S) $
<q

#
Hard copy (HC) ,' OO

——D ‘
June 1966 Microfiche (MF) D (

f1 863 Julv 65

This research was supported by the Army, Navy, Air Force

and NASA under a contract administered by the Office of

Naval Research. Reproduction in whole or in part is

permitted for any purpose of the United States Government.
Contract Number Nonr 4565(00)

Task NR 042-246

N66 34674
(AGCESSION;UW / ('rmu.u Acquis":‘%rgg‘ Documeit

7PAGE 7 < ) .
7 .aned Documaih
(NASA cn OR T AD NUMEER) «cATEGORD) : SQT P

CADG 35’/57 - - ’

. 45;[ ‘RESEARCH TRIANGLE INSTITUTE * DURHAM, NORTH CAROLINA

FACILITY FORM 602

—

—



https://core.ac.uk/display/85250386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A General Method for the Calculation

of Axis-Crossing Moments

by

M. R. Leadbetter

Summary. A formula for the moments of the number of crossings of a level by a
stationary normal process in a given time was obtained by Cramér and Leadbetter [3].
Ylvisaker [l4] has weakened the conditions for the validity of this result to the
minimal possible, by a proof which includes non stationary normal cases. In this
report we give an alternative derivation applicable to normal processes. Non normal

processes are also discussed in a manner analogous to that given in [7] for the mean.

1. Introduction. There is a long history of interest in the problem of obtaining
the mean number of crossings of a level by normal, and other types of stochastic
processes in a given time. References [6] 0O0] [5] [2] [4] (3] [7] contain much of
the development of this theory. Until recently there has been less interest in
moments of higher order than the first. This is due in part to the fact that the
simple results available for the mean are undoubtedly the most useful and afe of
paramount importance in applications, whereas the difficulty of making practical use
of the higher moments increases greatly with the order of these moments. Further,
the difficulty of obtaining rigorous results is certainly somewhat greater for moments
of higher order than the first, in view of singularities of the probability densities
involved "at diagonal points", as will be seen below. |

However there are excellent reasons for studying moments of higher order than the
first. Certainly the second moment plays an important role in applications of vari-
ous sorts - for example in deciding on the length of "counting periods" to give very
accurate time measurements by means of "noisy" standard frequency transmissions.

The problem of obtaining the variance of the number of crossings of a level by a




(particular type of) stationary normal process was first considered by Steinberg,
Schultheiss,Worgrin,and Zweig [12], using somewhat heuristic methods. Rozanov and
Volkonski [1l1] point out precise sufficient (though by no means necessary) conditions
for the validity of this formula, and Leadbetter and Cryer [8] weaken these restric-
tions to give a result under conditions which are close to being minimal. This
latter result includes also a rather sharp condition for finiteness of the variance.
There are also important applications for results concerning moments of higher
order, as, for example, in connection with one method of discussing the asymptotic
distribution of the maximum of a stationary normal process in a given time (cf. [1]).
A partial result concerning moments of higher order than the second was indicated by

Ivanov at the end of his paper [5]. For stationary normal processes the moments of

all orders were obtained by Craﬁé; and Leadbetter [3] under mild restrictions. One
of the conditions there assumed is that E(t) should possess a continuous sample
derivative, with probability one. Belayev [1] derives this result under slightly
more restrictive conditions, but including non stationary (normal) cases also. It
is also shown there that the k-th moment is finite if E(t) possesses k (q.m.)
derivatives. However, as can be seen from [8 ] (and as noted by Belayev) this
sufficient condition for finiteness is not by any means necessary. Finally,
Ylvisaker [I#] has shown that it is possible to slightly further weaken the conditions
for the validity of the formula for the moments, to avoid explicit reference to the
existence of the sample derivative. Ylvisaker's derivation hinges on an interesting
application of the martingale convergence theorem. It refers to stationary normal
processes, but may also be adapted to cover non stationary cases.

It will be our purpose here to give an alternative derivation of the moments
for the normal case under the (minimal) conditions assumed by Ylvisaker, but without
appealing to martingale theory. We shall then give explicit results (in terms of
convergence of certain densities) for processes which may be non normal as well as

non stationary. These results are analagous to those of [7] for the mean. The




method of proof to be given uses, in part, ideas from each of the available works on

this subject.

2. A general result. We shall consider a process E(t) possessing, a.s., continuous

sample functions and, for a given integer k, absolutely continuous 2k-dimensional

(x Our

distributions with corresponding densities of the form ft
2k

ceeXn ).
1 1 2k

...t

discussion will be in terms of the k-th factorial moment of the number N of
upcrossings of zero by £(t) in 0 < t < 1. Certainly (as in [7])N is a well defined
random variable. The modifications required to deal with downcrossings, the total
number of crossings, crossings of other levels and curves, more general time inter-
vals, and ordinary moments will be clear.

For t = (tl...tk) lying in the k-dimensional unit cube, let m denote the unique
integer such that mr/2n <t < (mf+1)/2n. Write En(E) for the k-dimensional cube
whose sides are the intervals [mr/Zn, (mr+1)/2n). We shall refer to En(E) as "the

cube of side 2 " containing t". For € > 0, let A denote the set of all points t
in the unit cube such that for all s = (Sl"'sk) € En(£>’ we have |si-sj| > e

whenever i # j, and write Xne(g) for the characteristic function of the set Ane'

Finally let the random variable X, = 1 if £(i/2™) < 0 < g[(i+1)/2"], X, =0
9 3

otherwise.
The main results concerning the factorial moments of N will be relatively

straightforward consequences of the following lemma.
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1 k -
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LEMMA, Let M c z Xil,n" i, €(2n X ), where the summation is extended over

all ordered sets of distinct integers ij-.eips 0< ir < 2" - 1. Then

i) Mne is non decreasing as n increases for fixed ¢, and as € decreases
for fixed n.

(ii) 1lim lim Mhe = N(N-1)...(N-kt+1), with probability one.
n—>o0 €—>0

To prove the first statement of (i) we note that each term of the sum for Mne

i i
corresponds to a cube of side 2 n (viz. En(—%...—ﬁ])). For fixed € > 0, the typical
2 2

term is unity if (a) every point s = (sl...sk) in the cube is such that lsi-sjl > €

for i # j, and (b) Xil,n = Xiz,n = ... = Xik,n = 1., When n is increased by unity,

k
the cube divides into 2 subcubes, in each of which property (a) still holds. Corre-

spondingly, the typical term of the sum divides into 2k terms formed by replacing n

by (o+l), and each ij by either Zij or Zij+1. Since if Xi n = 1 we must have either
29

]

XZij,n+1 =1 or x2ij+1,n+1 = 1 (with probability one), it follows that at least one

of these 2k terms is unity, and hence the first statement of (i) follows. The second
statement of (i) is obvious.

To prove (ii) we note first that if the typical term in the sum of Mhe is non

zero it follows that lir-isl > 1 for r # s, since it is impossible to have

Xi,n = Xi+1,n = 1 for any i. It is easy to see from this that, for such a term,
1, 4 21
lim A ([-=...==]) = 1. Further if N = = X, it follows easily as in [3]
e—>0 BE 07T T,m n i< 0



. - _ _ . . s
that = Xﬁfn ceo Xﬁgn Nn(Nn D ... (Nn k+1). But Nn > N with probability one

(cf. [7]). From these facts (ii) follows at once, and the proof of the lemma is
complete.

From the monotonicity properties proved in (i) of the lemma it follows that the
order of the € and n-limits in (ii) may be interchanged. Hence, writing

Mk = & N(N-1)...(N-ktl1), it follows by two applications of monotone convergence that

Mk = lim 1lim £ Mﬁe' From the definition of Mne and a simple transformation of
e—>0 n—>o00

variables it now follows at once that

ry

i i
1 k -n
lim lim Z* A (—=...) P{E, <0<, +2 q,,r=1,2.,.k}
e—>0 n—>o0 mE pn of ir r r ’

CVN Y

in which §r §(r/2n) and N, = 2n(§r+1-§r). As noted earlier, the only non zero

terms in the sum on the right correspond to integers il...ik satisfying Iir-i

for r # s. Thus we can (and do now) regard &' as indicating summation only over such

| >1
s

sets of integers. For such integer sets, the random variables gi -

L My

k 1 k
clearly possess a joint density. Let us write Yngg(xl"°xk’ yl...yk) to be equal

R . _ A n . n
to this joint density for all t = (tl"’tk) in A.ne such that ir/2 <t < (1f+1)/2 ,

i i
r=1,..k, i.e. for all £t of A lying in the cube E (—l...—k), and ¥ = 0 other-
= ne n',n’"t,n nte
wise. Then from (1),
K 1 fe o] 0 0
M = lim lim 2 “fdae S S o0 oY (xpdx
€—>0 n—>o0 0 ] - -

-n
-2 y1 -2 yk

By a simple change of variable we may now obtain the following general result.



THEOREM 1. For the process E(t) defined at the beginning of this section,

@®

1
(2) M = lim lim f...fd_f_:_f.é.fdx

0 0
-n on
e—>0 n—>00 0 / "'_f Ynge(z Xyeee2 Ky Y-y ).

41 N

3. Normal processes. In this section £(t) will denote a (separable) stationary

normal process. It will be shown how the result given by Cramér and Leadbetter for
the k-th factorial moment Mk(u) of the number of upcrossings of the level u by &(t)
in 0 € t £ 1, can be obtained from Theorem 1. The less restrictive (in fact minimal)
conditions assumed by Ylvisaker [14] will be used for this calculation. Specifically
we shall assume that E(t) has zero mean, and spectrum F()) which is not purely

00
2
discrete and possesses a finite second moment kz = [ A"dF(A). Under these conditions
o

it follows that

1 ®
(3) M (w) = f.(.).f dt f.o..f ¥pee Yy P (6 DdE

where t = (t1'°'tk) and pt(u,x) is obtained from the joint density pt(g,x) for

§(t1)...§(tk) together with the (q.m.) derivatives g'(tl)...g'(tk), by putting all

the components of x equal to u.

To obtain this result from Theorem 1 we note first that the conditions of that
theorem are clearly satisfied by &(t) (cf. [7]). It follows by considering the
process E(t) - u that

0

1 @ 0
lim 1lim f...fdt f...[dy [ ... [ ¥ _ (ut2 o2 % 3Y, .. .Y, )dX.
nte 1 k71 k
€e—>0 m>00 0 Y Vi Ve T

&) M (W)




Let D(e) = {t = (t;...t,): |t.-t. | > e for all i # j} = 1lim A__. Then it follows
1 k i7j ne
nm>00

simply (cf. [9]) that for any given t ¢ D(€), the covariances occurring in the normal

distribution described by \ynte converge to those of pt(i_:,l); in fact this occurs

uniformly for t € D(e). In particular this implies that the integrand in (4) converges
to pt(u,z) in D(e), as n —> oo. If we can show that the n limit may be taken inside

all the integral signs it would then follow that

®
= lim [...fdt [...[y....y, p (u,y)dy
Mk e—>0 D(¢e) 0 1 k't

from which the final result follows by monotonme convergence.

To demonstrate that the order of the n limit and the integral signs may be inter-
changed, it is sufficient to show that the integrand in (4) is, for each fixed ¢ > 0,
dominated by a function which is independent of n and integrable over the indicated
X, ¥, t region.

Let Ant denote the covariance matrix appearing in the density Ynte’ and Bnt its

lower right hand k x k submatrix. That is Bnt is the covariance matrix for L PERERY PR
= 1 k

with the above notation. A simple minimization over the first k variables shows that

[x', y'] A;P]: [’;‘] > ¥ B;; y. Now the elements of Bnt converge (uniformly in D(e))

to those of Bt’ the covariance matrix for g'(tl)...g’(tk). But min X'Bt-nl: y / y_'ftlz

is simply the smallest characteristic root of B;']:' Bt’ and this tends to unity as

n —> oo (uniformly for t € D(¢)). Hence we may take n independent of t and such
that I'Bn£1 >3 I'Bl-:_ll for all y when n > n_.

Similarly by using the continuity of the smallest characteristic root of

-1 . . -1 -1
B = B, , (for any fixed E € D(e)), it can be seen that X'B.E Yy > ocy_'Bt y for some

B
= ~o -o




a> 0, all t € D(e) and all y. Further since Aht is non singular it follows by

continuity and uniform convergence that Iﬁﬁtl is uniformly bounded away from zero

in this region. Hence, for some constant K,

-1
Yn£€(§,z) < K exp(- OI.I'B%I/A)

from which the desired conclusion follows.

4. Generalizations. The above prodf carries through for a non stationary normal

process subject to a non degeneracy assumption (cf. [7]). The condition 12 < oo is
replaced by the requirement that the covariance function r(t,s) should possess a
continuous mixed second partial derivative Bzrlatas.

For non normal processes we may obtain a result for higher moments, similar to
that for the mean given in [7]. Specifically suppose E(t) satisfies the conditions
stated early in Section 2 and write for t = (tl...tk)

_ k
=y = 7 ftl"'tk’ £+ .tk+'r(x1" Ko EFY xR AT

B,
That is 8¢ 1 is the joint density for the random variables gt ...gt and the incre-
=? 1 k

mentary ratios (& £, Y/t. 1t then follows that
i

t.+T-
i

T, e®Y = Em  m ;&
i)’

at points t for which the left hand side is non zero, when mr/2n < tr < (mf+1)/2n.)

The following result holds for Mk as defined in Section 2.




THEOREM 2. Consider pointst = (tl"'tk) such that ti 4 tj for i # j and suppose that,

with the above notation,

(i) gtT(g,z) is continuous in (t,x) for each y,T
(ii) For each € > 0, gtT(g,z) — pt(z,z) as T —> 0 uniformly in (t,x) for
t € D(e) and each y.

(iii) For each € > 0, there is a function he(z) such that for t € D(e),

[0 0]
35,1(5’1) < h_(y) and f-é-f Yy-+- Y B (Ddy < o0.

Then
@®

1
M= f-(.)-f at f-(.)-f ViV P(0:1)dy < oo

To prove this result we note that by (i) and (ii) it follows that

-n -n
wn,;’e(z xl...Z X yl...yk) > pE(O,z) as n —> oo. Hence as for the normal

case the result follows once it is established that the n-limit in (2) may be taken
inside the integral signs, for each fixed € > 0. But this latter property follows
at once from (iii) by dominated convergence.

Finally we repeat that these results can be modified to refer to downcrossings,
arbitrary time intervals, crossings of curves, and so on. The appropriate modifi-
cations are completely analogous to those given in [7] for the mean and hence will

not be considered further here.
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