»-—-------—-

@ https://ntrs.nasa.gov/search.jsp?R=19660025385 2020-03-16T20:13:31+00:00Z

A .

FTAS/TR-66-6

AN EQUITRIANGULAR INTEGRAL TRANSFORM
AND ITS APPLICATIORNS

by
Roy W, Miller and Pau-Chang Lu:

June 1966




*

Ny

. 1}4@‘( ABSTRACT

An integral transform is established to facilitate the solution
of boundary value problems of the first kind in an equilateral
triangular (equitriangular) region. The differential operator (of
order 2n) of the problem contains only powers of the Laplacian V2.
The boundary values are zero in terms of (V2)i , where 1 = 0, 1,
2,***(n-1). The inhomogeneous terms and the initial conditions, if
any, belong to a certain class of functions of which the constant
is the most interesting menber,

After some general discussions, this transform is applied to
a number of problems in viscous flow and heat transfer all inside
an equitriangular duct, Numerical work has been carried out for

these problems to show the roles played by various parameters.
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I, INTRODUCTION

The method of transforms is well known and widely used in
solving the partial differential equations of engineering and
physics. In many cases, suitable transforms can be established
especially for some finite regions, Finite Fourier and Hankel
transforms are probably the most well-developed examples, In
principle, the formalism of a finite integral transform has been
developed by Kaplan and Sonnemann (ref. 1 and 2) for an arbitrary
two- or three-dimensional region, using the eigenfunctions of a two-
or three-dimensional counterpart of the Sturm-Liouville system,
The explicit forms of the eigenfunctions are known only for a few
simple regions, namely, the rectangle, the circle, the circular
annulus (ref, 1), the circular sector and the circular-annulus
sector (ref, 3) for boundary conditions of all three kinds, It is
the purpose of this work to add to the above list the equilateral
triangle with boundary condition of the first kind,

A set of the corresponding eigenfunctions has been discovered
by Sen (ref. L); he has also applied it to the problem of the de-
flection of thin plates (ref. L and 5), It has been recently
applied to the transient viscous flow problems by Sen (ref. 6) and
Cr¥ciun (ref., 7). All these applications are in the form of the
classical method of separation of variables, and without any

numerical results,



In the process of establishing this "equitriangular" integral
transform, it is found that Sen's eigenfunctions do not form a com-
plete set, However, by narrowing down the type of boundary value
problems to be treated, it is seen that a transform can, after all,
be established with Sen's incomplete set. Thus, in this work,
not only is a new transform established, but a format is also dis-
covered which shows how an incomplete set of eigenfunctions can be
systematically employed to the greatest advantage. The problems
that can be treated happen to be physically the most interesting.
It is only required that the boundary condition (of the first kind)
be the vanishing of the functional values, and that the inhomogeneows
terms and the initial conditions belong to a2 certain class of func-
tions of which the constant is the most interesting member,

The detailed properties of the transform will be presented
after a short summary of the general theory developed by Kaplan and
Sonnemann (ref. 1).

The transform is then used to solve a very general boundary
value problem whose special cases are later identified with the
following, heretofore unsolved, physical problems:

(1) Transient natural convection heat transfer,

Theoretical investigation of this problem has been made by
Tzumi (ref. 8) for a vertical circular tube, A similar analysis is

made here for a vertical equitriangular duct.

(2) Steady combined natural and forced convection flow,

This problem with linearly varying wall temperatures has been



solved for vertical ducts of various cross sections by Ostrach (ref.
9), Lu (ref. 3), Han (ref, 10) and Tao (ref. 11 and 12). Here, a
solution in the vertical duct of equilateral triangular cross sec-
tion is obtained by application of the equitriangular transform,

(3) Transient Viscous Flow with Suspended Particles.

The transient response of an incompressible fluid with sus-
pended solid particles in a triangular duct, as a pressure gradient
is applied, is investigated for the case of Stokes drag coupling.
Although this is obviously the simplest example of the transient
two-phase flow, its treatment, even in ducts of simple cross sectiom
seems to be absent from the existing literature,

(L) Transient Heat Conduction with Heat Generation,

This problem is well documented (ref. 13) for various kinds of
regions, The conduction in an equitriangular column is, however,
never attempted, Iﬁ is solved in this work with uniform heat
generation as an example,

Before the results of these problems are analyzed numerically,
the following problems, whose solutions are known in closed forms,
are treated extensively using the present method of transform:

(1) Viscous Flow of an Incompressible Fluid.

The steady solution of this problem exists in a very simple
form (ref. 1i). The method of transform yields the solution in an
alternative form, namely, a series, As a by-product, the transient
solutions (ref. 6 and 7) are also rederived by the present method.

(2) Steady Forced Convection of an Incompressible Fluid,



This problem was solved by Tac (ref, 15) in a closed form., Its
series form is cbtained here again by the method of equitriangular
transform,

The above two problems are then used to investigate the rate of
convergence and the Gibbs' phenomenon, if any, of the series. The
comparison shows that the general behavior of the series is no diff-
erent from an ordinary Fourier series. The details of the compari-

son are presented in the Appendix,



II. DEVELOPMENT CF AN EQUTTRIANGULAR INTEGRAL TRANSFORM

General Theory of Finite Integral Transforms

A general development of the finite integral transform
theory (ref. 1) based on the Helmholtz equation is briefly
reviewed in this section for the boundary condition of the
first kind,

Consider the Helmholtz equation
2
v+ =0 (1)

defined in a finite two-dimensional region R together with
the boundary condition

v =0 on B (2)
where B is the boundary of R, This homogeneous problem
has solutions only for a set of discrete values of A\ ,
which are called the eigenvalues ln of the problem, The
corresponding set of eigenfunctions associated with these

eigenvalues is represented by 'n . Thus,

v+ Ay =0 (3)
vie, o+ 24 =0 (1)

Multiplying (3) by ¥, and (L) vy ¥  and subtracting, one
obtains

02 - = 9P v v, (5)

n



Then, integrating over the region R, we have

2 2 2 2
(xm-xn)j; ¢t do - ‘]1; (v v v tm)d o

By an aprlication of the Green's theorem, this becomes

z z .. A
“m'*n)J; t v do - J; (4, V4 -% Vv )Ras

But the boundary condition (2) demands that

# = 0 anc % = 0 onB
m n

Then,
ftmtndc = 0 if mfn
R

And for m = n, the integral

2
ftndo = N,
R

is called the norm N . Equation (9) demonstrates the
orthogonality of the eigenfunctions. If the set *n is

complete, it is possible to express a large class of

functions (ref, 16 and 17) as a series in ‘n :

= ch 'n

Multiplying (11) by *m and integrating over the region

R gives

f¢vmdo =fZCntn¢mdc
R R n

(6)

(7)

(8)

(9)

(10)

(11)

(12)



But, by the previously established orthogonality of Qn, the
right-hand side of (12) vanishes for m ¥ n, For m = n,

equation (12) gives Cn as
¢, = fora0 (13)
B n R

The finite integral transform of the function @, with re-

spect to 'n’ can now be defined as
- [ a0 o
R

And equation (11), which is the inversion formula for the
transform takes the more convenient form

YR | 15)

A n
The transform of the Laplacian of @ may now be derived

as follows. By the definition (1k),
| e}
2 2
v¢=‘£'nv # do (26)

The right-hand side of (16) can be written as

fvatth¢ - ¢V¢n] do +] ¢ V2 *n do
R R

" Applying Green's theorem to the first integral and using

‘the relation (3) in the second integral, this becomes

J‘: [~*nV¢-¢V*nl‘ﬁds- 12nj;¢ ¢+ do



The second integral here is clearly the transform of @ as
given by (1L).
Remembering that 'n = 0 on B, one finally obtains the

relation
Qo
AL ERE N BN W ACTRS P an

The importance of this relationship is that it relates the
transform of the Laplacian of @ to the transform of @ it-
self. The line integral in (17) involves only the boundary
condition of the problem; i.e., the value of @ on B,

The task of establishing an integral transform reduces
then to the search for the set of eigenvalues and eigen-
functions which satisfies the homogeneous differential
equation (1) with boundary condition (2). The transform
and inversion formulas are given by equations (1k) and (15).
The norm and transform of the Laplacian operator are found
by direct calculations, The difficulty of course lies in
the determination of the complete set of eigenfunctions.
Just a set of eigenfunctions obtained by inspection, for
example, is not enough, Beside the cases where the two-
dimensional problem degenerates into two one-dimensional
problems (e.g., the cases inside a rectangle, or a circular
sector), there is no established method of getting a com-
plete set of eigenfunctions. The only general method is
that of an approximate nature based on the variational prin-

ciple., However, it will be shown in the next section that




even an incomplete set can be systematically employed for a

large class of boundary-value problems.

B. An Equitriangular Integral Transform and Its Properties

An integral transform will be developed in this section
for the region bounded by an equilateral triangle of side
2a, following the general procedure set out in the previous
section., It is convenient to introduce here the trilinear
coordinates (ref. L), The region R under consideration and
the coordinate system used are shown in Figure (1).

Sen (ref. L) has shown that the system

v2y+X4 =0, in R (18)
¥=0 on py, Py Py =0 (19)

has a set of eigenfunctions

*n = sin ln p, + sin ln P, * sin ln Py 5

where Py =.‘f§.a - Py - Pp (20)

together with the set of eigenvalues

)\ = 2nl n= 1,2’3,... (21)
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The norm of the set is
2
N = f ' do
n R B
ﬁa ﬁa.pl
= —Ein an1+sin \np ,~Sin ln(p1+p2po1dp2

o el

‘3/3'a2
2

n

(22)

With respect to this set, one can define an equi-

triangular transform

w E a ﬁa °p1

¢(n) = g ¢(P1:p2)[sin lnpl + sinlnpz

o Y% V3

- sin ln(pl + p2)] dp,dp, (23)

Although the eigenfunctions given by (20) are orthogonal
with the eigenvalues (21), there is no assurance that *n is
a complete set., To have a complete set of orthogonal eigen-
functions, 'n as given by (20), with eigenvalues ln given
by (21), is joined by the unknown complementary eigen-
functions Q n with associated eigenvalues gm.

A functicn of a suitable class can now be expressed

in terms of this complete set of eigenfunctions as

" g B
popsry) = ) K4 oyumy) QL Ba e, @)




n
where
f(n) = L‘ #(p,5p,) ¥ (pysp,)do (25)
B(m) =fR #(py5p,) & (py5p,)d0 (26)
Nn 'L 'Zn(pl,Pz)dU (27)
M- J; sz(pl,pz)do (28)

are two integral transforms and their norms, The transforms
of the Laplacian operator in terms of the complete set of

eigenvalues and eigenfunctions are

) 2 ¥ A
Vf(n) = - 2" #(n) -‘g B(VY )N ds (29)
vog(m) = - §2m B(m) -,IB‘ g(v nm)-'r} ds (30) |

Transforms of higher power of V2¢, if needed, can be ob-
tained by repeated use of (29) and (30).

In order to obtain a transform of functions having any
prescribed value on the three sides, the eigenfunctions
Qm must be known in detail. Then the integrations given by
(26),(28), and (30) could be performed, However, if the
functional value is zero on the boundary, the equations (29)

and (30) bec’éme
2 2 v
Vo g@) = - 27 f(n) (31)



v? g(m) = - ¢2m‘¢7(m) (32)

Furthermore, Sen (ref. 6) has shown that a constant C can

be expanded as

o) @
2C 2C
C= Z E;[sin anl + s8in knpz + sin ln p3]=z E#n(pl, pz)

n=l n=1
(33)
Comparing this with (24) reveals that
v 2 343 a°
C = ﬁ;nn"——nn c (3L)
C= 0 (35)

(Note that C is a member of a class of functions whose
mparred transforms" vanish, Another obviocus member of this
class is sin AS Py ¢ sin ls P, * sin }‘5 p3 » But in this
work, we will only deal with the constant function).

Now consider the following problem:

r g% T V2 g +C , in the triangle R (36)
< ¢ = 0 on B (37)
| f - g, at t=0 (38)

where ¢° is a constant.




13

Applying (31) and (3lL), one obtains

- “ 2

gg = - <V p. 3______ga c (39)

2

W

g = ——3"2-: B, at t =0 (Lo)
The solution for E is then

2 2
we 2 -t -0t
¢.3n£:—[¢oe " +—9-2—(1-e n)] (k1)
<X n

Now, applying (32) and (35) to the original system yields

S (k2)

Qe
sy

g=0 at t=0 (L3)

The solution here is obviously

g = o0 (Lk)
Applying the inversion (2L), tke solution to the original

problem is seen to be

-..dzt

¢ =z 2. (sinmx + sin) +sim p.)|pe © +£ 1 e-.dnt
7 On nf1 nP2 nP3’ |0 FA

L
n

s
Thus, solutions to this class of boundary value pi-oble
are obtained without a detailed knowledge of the eigen-
functions Qm at all,
This is then the systematic way of utilizing an incom-
plete set of eigenfunctions in solving a class of boundary-
value problems, By employing the method of integral trans-

forms, it is possible to state clearly what class of prob-

lems one can treat by using the "tilde transform" alone
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without the necessity of knowing the complementary set
O . The problems must: (1) invélve only powersof the
Laplacian operator, say up to the nth order; (2) be of
the first kind with zero boundary values. of (Vz)i, where
1=0,1y 2..0. , (n-1); and (3) involve only constant in-

homogeneous terms and initial conditions, The last require-

ment can be relaxed somewhat to admit function like

sin ‘o Py o+ sin ls pé + sin ls Py But this is not of

great practical interest,
The third general conclusion cuoted above is obvious
from the simple example., The first two can be seen easily

by successive application cf the transform on ( Vz)l.




{

III, APPLICATIONS

A, A General Boundary Value Problem

A general boundary value problem is solved in this section by
the equitriangular transform method, The viscous flow and heat trams-
fer applications of the following sections are special cases of this
general problem,

Consider the following problem:

alf?a{_ -2, v2f+33f+ahg+A(t), (L6)
in the triangle R

b1§§ - b, v2g+b3g+bhf+B(t), (L7)

] f=0 on py; Pyy Py =0 (L8)

g=0 on py, Py Py =0 (L9)

f =F(py, pp,) at t=0 (50)

| g = G(pl, p2) at t =0 (51)

where a,, 8,, a3, a), bl’ b2, b3, bb are constants; A(t), B(t) are
functions of time; F(pi, péL,(Kpl, p2) are functions of the admiss-
able class (e.g., constants or functions like sin xspl + sin XS P,
+ sin 15 p3).

Applying the equitriangular transform, one obtains
2V\
["‘1 2 My T2

=-a ?+ abE+ %A(t) (52)

n

HEs

3
15
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by g . _b2)n2g+b32+bbf+ -:iia(t) (53)
n
\
f =F(pyp pp) 2t £t =0 (5L)
- we
Ch G(p;» P,) at t =0 (55)

[
The transformed functions f and 'é' can be determined by solving the
ordinary differential equations (52) and (53) simultaneously with
the conditions (54) and (55). The functions f and g are then given

as

®
2 ww
fe — Zf[sinXp+sinlp+sinl p] (56)
2 n'l n 2 n-3
3/3a e
o
2 “
g = g[sinlp+sinlp+sinl p] (57)
3]3-a§ ] n-1 n- 2 n 3

or, in Cartesian coordinates,

®
-2 ¥ a Jf3r. 1 . ( a BY, X
f —373_;-2- Zf [sin)‘n -5+ 5 + s:mln +'5 + >

n=1
+ Sinln (]aBP- )] (58)
2 i“sil(a @4 -E)-@sin), - +J-§—Y+'x
g=—> 8[ o\ T 2 2 JI T2 T2
3’53 n=1
*sin‘n(é‘ _ x)] (59)
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B. Viscous Flow of an Incompressible Fluid

The equation of motion for the fully developed flow of an incom-
pressible viscous fluid in an equitriangular duct is (ref. 6 and 7)

EL

Si-:“’vz"'%g;’ in the triangle R (60)

where: W is the velocity; v the kinematic viscosity; p the density;
and -g;- the pressure gradient which is a function of t only.

The no-slip viscous boundary condition at the walls is

W=0 on pj; py Py =0 (61)
The initial condition is

W= Ho(pl, p2) att =0 (62)

This corresponds to the previous general boundary value problem with

f=W g=0
a1==l b1=0
a2=v b2=0
a3=0 b3=0

a =0 b, =0
A(t)a-%’- %— B(t) = 0
F(pys pp) = W, G(pys Pp) = 0

Using these values in equations (52) through (55), one obtains,
W,z 5, 8 (L (63)
dt o]

n A
Y o
W=W at t =0 ' (6h)

o))
*d

Q
o3

n
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The following two initial conditions are considered:

1, Fluid at rest for t < 0., At t = O an exponential pressure
gradient is applied.

2, Fluid in steady motion with constant pressure gradient for

t <0, At t = 0, the pressure gradient is exponentially dampened,

1. Fluid initially at rest.

For fluid initially at rest, the initial velocity condition is

W=W =0 at t=0 (65)

The expcnential pressure gradient is applied at ¢+ = O and is

=5t

= Ce for t 2 0 (66)

1
i
eV 7]
<

The solution to equations (63) and (6L) with this initial condition

and pressure gradient is

“ 2

W= __é_é_g___ (e'ﬁt-e-vln t) (67)
A_(vx_“-8)
n' 'n

Substituting this into eguation (56), we have
®

2
LC E 1 ( -5t v t)[
W= _ e -e n sin\_p,+sink_p,+sin) p
,/;a 1 )\n(vln2—5) n l n 2 n 3

n=

(68)

This is the solution obtained by Sen (ref. 6), here rederived by
the method of transform.

2. Fluid initially in steady motion.

For fluid initially in steady motion with constant pressure

gradient for t < O and exponential pressure damping applied at t = Q
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the pressure gradient is
<
1 2p _ c for t <O
“p 32
e fort3o

The initial velocity is the solution to the problem of steady viscous

flow with a constant pressure gradient. This problem is
vUN +e=0 (69)

W, =0 onp), pyy py=0 (70)

This corresponds to the general boundary value problem with

A(t) = C
as the only non-zerc quantities,

Using these values in equatioms (52) through (55), one obtains

17 ]
v - 930—3 (71)
vln

Note that Wb is an admissible initial condition as the inversion of
(71) yields a series expansion in X
The solution to equations (63) and (6L) with the initial con-

dition (71) and the stated pressure gradient is
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Substituting this into equation (56), we have

n=1

2
L f S N A B
w =ﬁ; o 2‘5) (e - > > € N )[sinlnp1+sinxnp2+sinlnp3]
n n n

(73)
This is the solution given by Criciun (ref. 7), again rederived by

the method of transform,
The solution to the protlem of steady viscous flow with a con-
stant pressure gradient is obtained by substituting (71) into equa-

tion (58), Replacing W by W to emphacize that the solution is for

the steady flow, we have

J‘%‘; Z ,%_[mxn(/;-g!+ %) +sin).n@-+62—!~+§2-) +smuo;-)]

(7L)
where K =C/v = - %- g;
Equation (7L) can be nondimensionalized by letting
X 1
W x=-2—a7‘73-(-1$x$+?)
weE—3
K a 1
Y= 3 (-lgys+1)
Then, the nondimensional velocity distribution is
o
X 3 1 . 2nn
w2 ..n_3._ sin == (- 2-y+x)+s:u'1 -———(l+ y+x) +sin --- (1-2%)
2n =l
(75)
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The mean nondimensiocnal velocity is

fﬁdo

W,

n=]1

The nondimensional form of the closed form solution to this problem

(ref. 1k) is

w=%-(1-2x)[(x+1)2-%y2] (77)

The corresponding w, is exactly 1/20.

Velocity profiles along the liney = 0 (-1 £ x  +.5) were
computed according to both equations (75) and (77), and plotted in
Figure (2). These profiles, together with the rate of convergence
of the series, are examined in detail in the Appendix. |

C. Steady Forced Convection of an Incompressible Fluid

Consider the steady, full developed, laminar flow of am in-
compressible fluid with heat scurces in an equitriangular duct.
With constant axial pressure and temperature gradients, and with
negligible energy dissipation, the momentum and energy equations
are as follows: | |

2

in the triangle R

vie-K W-K, (79)

where W stands for the axial velocity; © for the difference between

T and Tw taken at the same axial positicn; and

{1 3
- 7 - 2 Z L% (76)
M J;do 2nh ;1-5 20

V- W=_.K, . | (78)
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For other symbols, see Nomenclature,

The viscous and thermal boundary conditions at the wall are

W=20 (80)
}onB
=0 :

This corresponds to the general boundary value problem with

f =W g=6

a, =1 b2-=1

A(t) = K b = -k .
B(t) =K

2

as the only non-zero quantities,

Using these in equations (52) through (55), one obtains
= K 82
W 3 (82)

ve
‘5‘8- K-!'-W'Péa;

K, (83)
2 2 2 3
n n

Then, the transformed temperature difference is

K KK
n

n
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Substituting this into equation (58), we have

©
Osﬁ-;(& E—S,)[sinx(‘,T.@!+§)+sinxn(§—+'/§¥-+§)

v st (Ao )] (85)

The velocity distribution given by the inversion of (82) was obtainad
in the previous section,

Equation (85) can be nondimensionalized by letting

X
o* - —-———E—g X = ((lgxg+1/2)
-KK,a 2a/f3
K
K *= xic: yeI (dsyg+1)
-KK.a

Then, the dimensionless temperature distribution is

- k¥

n=l nn
+ sin -—— (1-2x)] (86)
The closed form solution to this problem obtained by Tao (ref. 15)is
¢* = 555 (2x - 1) [(x + 1) -%y"’] [(:c"’ 22 SRRV x;] (87)
Dimensionless temperature profiles along the line y = 0(-1 € x < +.5)
were computed according to both equaticns (86) and (87). The results

are shown in Figure (3), These profiles are examined in detail in

the Appendix,
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Various heat transfer parameters are easily obtained using

the velocity and temperature distributions, The mean temperature is

given by
0y = f 0" do/ \( do = L f 6*do (88)
R J3a° ‘R
The mean mixed temperature may also be calculated:
Q;{-fe*wda/‘gwdcxs—%——‘é‘e*wdo (89)
R f3- aw,

The average Nusselt number may be defined as

d (K™ + )
Nu = = q ds/f ds = p (90)
k6 B 38
MM : MM

Using the series form of the velocity, equation (75), and tempera-

ture, equation (B86), we have

*
9K
3t 27 2 1 1 3
eH ) n=1(8n6n6 ) 2}111‘) - WO EEKZ 1)
(2 - %)
+
16n"n kn n2
3 n=1 3 1 * 2)
Gy - f N =% ‘% (9
T
n=1 2




25

Nu = T n=l
® fos) o o0
_—1_27 Z l/n8 1/1'1)'1 + i ZK */ 6 Zl/nh
16n =1 =] =]
n=1 n n n
1 *
+ K
- za 3" (53)
3
5% * I K2

which are exactly the values given by Tao (ref. 15).

D, Transient Natural Convection

In this section, we treat the case of transient laminar nat-
vral heat convection in an equitriangular duct of infinite length,
The axis of the duct is orientated parallel to the direction of the
generating body force, Initially the fluid is at rest with constant
temperature To. The duct wall is maintained at a constant tempera-
ture T' for t 3 O, The ends of the duct are open to fluid at con-
stant temperature 'I‘O and the flow is thermally and hydrodynamically
fully developed. Assuming negligible energy dissipation, and quasi-
incompressible fluid (i.e., the density changes only with the tem-

perature variation), the momentum and energy equations can be

written as:
M.y vW.ps 6-8£ 6 , (9L)
at P 1, Z o
in the triangle R
a6
5€= o & 9, (95)
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where
@ =T_-1T
w
@ =T T
[ o |

The boundary conditions at the wall are

W=0 (96)
on B
=0 (97)
and the initial conditions are

W=0 att =0 (98)
©=0 att =0 (99)

This is a special case of the general boundary value problem

with
f =W g =48
a = 1 bl =1
a, = v b2 =«
a3 =0 b3 =0
ah = ﬂfz bb =0

At) = - 2,0 A(t) =0

F(pl,pz) = 0 G(pl,Pz) = go

Substituting these values into equations (52) through (55), and

using the previously obtained equitriangular transform of a constant,
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one obtains
( d‘; 2V v 6a
@ =-VvA Wepf,® 'i;“zgo (100)
by -
4
we
W=0 att=0 (102)
“  6a
=s—0 att=0 103
L ln (] ( )

The solution to equation (101) with the initial condition

(103) is

Ecg‘; e e (104)
n

Substituting

this into equation (59), we have

Le - %
6= =2 Z L 7 n [sinxn(/g-.@+§)

+ sin xn(% +@£ + g) + sin )‘n(é_ - x)] (105)

Using the transformed temperature solution (10L4) in equation (100)

gives

-t
+v12‘;=-{‘§- (e n -1)5.{'290 (106)
n
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The solution to equation (106) with the initial condition (102) is

- B0 2
W 633 m{(l.e"’" ¥) - pr (e ~M 1")] if Pr f 1
n
(107)
and,
Bz © )2
w-i‘-‘;B Z [xzvt-u-e"“n")] , if Pr=1 (108)
x n

where, Pr = v/« is the Prandtl number.

Substituting these into equation (58), we have

hﬁf Zgo 1

2 2
fav (Pr-1) n=1 A, 23 [(l-e "o t)- Pr (1™ t)] (109)

x[sinxn(a.fé.\‘ )+sinl(l§ ‘,_Y+-)+sin)(5 x)] if Prf1

and,

(o 0]
Lpf. o 2
W= fi’_fii’_ }-3 [)‘nz vt - (l-e"‘ )‘n 1")] (110)
3 av A
n

n=1

X[sin xn(/;.ﬁY+£ +sinx("+‘5—+2) + sin *,,‘ﬁ X)],:Lf Pr=1

Equations (105), (109), and (110) can be nondimensionalized
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by letting
T-T
o* -g—-= T?I': X = X (-1\<x<+%)
o o W 2a/ﬁ
W
- > y= 2 (1€ys+1)
gfz(’rw-‘l‘o)a /v

Then, the dimensionless temperature and velocity distributions are

e%=g -l-e'mnF" sing-r-lll-(l-}-y+x)+sin?ﬂ(l+§-y+x)
nisyn , 3 2 3 2

+ sin 2—"1‘- (a-2 x)] (111)
®

w s —— Z (1_ Fo Pr) - Pr(i-e -« Fo)] (112)
2n (1-P!‘) |

X[sin %13(1- %y + x) + sin 2—??(1% y+x)+sin-2-£311(1-2x)] s

if Pr 1
w = ___3_3_ i: Zl.3 [(l-e'm ey _ v Fo o Fo] (113)
2w n

[sin g—gl!-(l_ -g-y + X)+ sin 2nu(l 4?+x)+sin 2n“(1-2x)] if Pr =1

2
where Fg = .('b/az is the Fourier number; and « = ltn2n /3 .
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The mean temperature and velocity are

2 - Fo
. & 1 n (11k
Hs —E -2’ e )
n n

n=1

o]

9 1 -mnFoPr -conFo ]
= 1. - 1l
L m {; ;’I [( e )-Pr(l1-e Y ifpPrf

(115)
[00]
9 1 -mnFo -mnFo]
HH= :h— nzl ;E[(l-e )-conFoe ,ifPI‘=1
(116)

Dimensionless temperature profiles along the liney = O
(-1€ x € + .5) were calculated from equation (111). The profiles
are shown in Figure (k). The temperature gradient near the duct
walls decreases with increasing time; and, at all times, the value
near the base is larger than the value near the tip,

Nondimensional velocity distributions along the line y = O
(-1€ x € + .5) were computed according to equation (112) for Pr =,7
and Pr = 3, with results shown in Figure (5). With increasing time,
the flow evolves from an initial local fluid acceleration near the
walls with the fluid near the duoct center at rest, to the final
acceleration of the fluid core tc steady flow. The steady flow is
due to the density difference of the fluid in the duct at Tw and

the fluid at the open ends at To.
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The dimensicnless mean temperature and velocity were calcu-
lated from equations (114), (115), and (116); with results given in
Figure (6). The mean temperature increases faster than the mean
velocity. This time lag is reduced as the Prandtl number is in-

creased,

E., Steady Combined Natural and Forced Convection

Consider the steady laminar fully-developed flow with heat
sources, constant axial pressure and temperature gradients, in an
equitriangular duct. The duct is orientated in a direction parallel
to the generating body force, We again assume that the energy
dissipation is negligible and the fluid is quasi-incompressible,

Then, the momentum and energy equations are

B Vzw *p ﬁfze N, (117)

in the triangle R
kV29-pcAW=-Q, (118)

where © is defined the same way as in section C, “ s the pressure

gradient parameter, is introduced according to the established

theory of semi. or quasi-incompressible fluids (ref. 9 amnd 3).
The boundary conditions at the wall are again

W=0 } (119)
on B
©=0 (120)
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The general boundary value problem reduces to this set if we

take

Using these values in equations (52) through (55), we have

a, =u
83 = 0
2), = PRIy
A(t) = =N

F(pl,p2) =0

2\/\

BA W-pp

w 2
pCAW + k )\
n

v

g=90
b, =0

b,

b3=0

bh= —pCA
B(t) = Q

= k

Yy 6a
2o

e = Q

Cg i)

Solving these simultaneously, one obtains

(B 1
#
|8

%S

uQ1n2+pcAn

kb

L 2
kln +pcAﬁfZ

2
Bpf,0- kI

]
w8

L2
u.k‘).n +p cAﬁfz

(121)

(122)

(123)

(12k)
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Substituting these into equations (58) and (59), we have

C Q12 A
B + c
0.} X 1 n PNl (225)
S *n L2
n=1 ukln+pcAﬁfZ
xsinl.( )+sinx(ﬁ_f3'x £)+Sinl(a_é]
n 2 nﬁ

L 2
kA +pcApf,

1) 0 “ 2
L) L (fene- kM
and Wsﬁ; Ly i; (u 0

(126)
In order to nondimensionalize the velocity and temperature

distributions, the hydraulic diameter of the duct is used as the char-

1/ 2 and Ad are used as the

acteristic length, When A £ O, (c EAAd/Pr)
characteristic velccity and temperature, respectively, For A =
(c ET “/Pr)l/ 2 and T, are used. Then, the dimensionless temperature

and velocity distributions are

o0
ot 8 Z 1 z ) +LRaA\[sinz':§(l-l§y+X)
3 n=1 tn ;b

(127)

!

+sin-—(1+\/_3y+x)+sinrn (I-ZX)]
ifA¥£0




3k
= F ;‘2 L
PR o [EE IS
n=1 n o ay if A £O
1
(128)
£ In_
+ sin 5~ 1 ¢qf§y + x) + 8in 5 (1 - 2x)
and,
®
G*zg Z FB[SinL(l ﬁy+x)+sintn(1+,/§y+x)
n=1 n
(129)
¥n
+ sin _;_ (1- 2x)]
a0 for A=0

W=§ _— - sn-§1-— +X)+8 In +
- tB( L) 1 (1 -/3y + x) + sin (1437 +3)

(130)
.+sin.§§_(l-2x)] for A =0
where:
) % ]
" = — ¥ .- o
A Ad T
w, = L W= w
A (c E, Ad)1/2 (c ET )1/2
Pr Pr
Bfd
E, = Ra ( Z) E= Ra (5fzd)
A ¢ c
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2
Qod _ o
b= F= o
w
1/2
Pr &3 e V2 Na?
Ly = g L=lsE T =
cE, A b A ‘w w
Ra = Pr Gr Ra = Pr Gr
A
A
C hnﬂ
Pr=51;- ;'“= 3
2 L
£, Ad 2
A ?
m 2

The mass through-flow is

v=p£wd6

Then, the dimensionless mass through-flow is

S 1 Fy ';f Ly
vA=BﬁZ—~z * . .

L T L RaA
and, ©
o5 ) g (B
n=1 n n
vwhere
pt,

)

ifA£0 (131)

for A = 0 (132)
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The mean mixed temperature is

6}m=f6w%%ldc
R

Then the dimensionless mean mixed temperature is

(e o) 2 2
o* . g@ _1_5 (Z; li*LAbRaA )(FA2° b L“) ifA£O (133)
A A n=1 ;'n (;.n +RaA)
and,

@
88 \ F F
e*m . _v__ Z *C_G (ff - L> for A =0 (13L)

The average Nusselt number may be defined as

Ry V4. F

d .

e )] ’qd/ dee A L AfAfO
B 3B (139)

and,

w

Nu = -%r——fqd/‘[ds:-%F for A =0 (136)
B

The relationship between the dimensionless mass through-flow
and the dimensionless heat source and pressure gradient parameters

is, if A 40,

vA = 002601 FA - 04856 LA for RaA =1
v, = .002529 F, - .0L729 L, for Ra, = 10
v, = .001580 F, - .03762 L, for Ra, = 100
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v, = .00061L FA - .01380 L, for Ra, = 1000
vA = 000093 FA - 00298 LA for RaA = 10000

Nusselt numbers were calculated according to equation (135) using
these relationships, The results are given in Figure (7). When the
pressure gradient parameter is positive and the Rayleigh number is
high enough, large values of the heat source parameter will change
the direction of the overall heat transfer, A comparison with the
results (light curves in Figure 7) obtained by Lu for a duct with a
cross section of & 60° circular sector (ref. 3), shows that the
difference between the two shapes, althcugh small at smsll values of
the Rayleigh number, increases as the Rayleigh number increases, It
is also seen that the Nusselt number approaches its final asymptotic

value socner in the case of the equitriangular cross section, Ly = 0.

F. Transient Viscous Flow of an Incompressible Fluid with Suspended
Particles ‘
The equation of motion for the transient laminar flow of an
incompressible fluid with a uniform suspension of solid particles,

for the case of Stokes drag coupling, is (ref., 18 and 19)
oW b _
LA VW » 2 (W, - W) + Kv, 1in the triangle R (137)

where W is the fluid velocity; WP s the particle velocity; v, the

kinematic viscosity; b, the ratio of the particle concentration

density to the fluid density; t,the momentum eguilibrium time (ref. 18 and 19);

oP

and K, the axial pressure gradient parameter - % 3 ¢ The rate of
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change of particle velocity due to the Stokes drag force is

g
A

(W, - W) (138)
The no-slip boundary condition for the fluid is
W=0 on B (139)

For the fluid originally at rest, with the particles suspended also

at rest, the initial conditions are

W=0 (140)
at t = 0

W, =0 (1)

This corresponds to the general boundary value problem with

P
a = 1 bl =1
a, = v b2 =0
ay = - b/t b3 = -1/ «
a) = b/t b, = - /<
A(t) =K v B(t) =0
F(pyspp) = O G(pys Pp) = O

Using these values in equations (52) through (55), one obtains,

b b ¥ 6a
= -V W-;Wa,;blpq-i-; Ev (1112)
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P 1% 1 %
] ®=F¥-3 % (1k3)
W=0 att=0 (kL)
4 fpgo at t =0 (1k5)

Solving equations (142) and (1L3) simultaneously with the initial
conditions (1hh) and (145), we have

- D D‘t D Dt
W= 62K [1 + D—-‘}—I—)- (l+'rD2)e 2" _ —— (1+'rD ) ]
2" "1

xn3 D,-Dy
(146)
D Dt D D.t
“w  6aK 1 2 2 1 (147)
W = ——— 1 «+ e - e
L n3 [ D, - Dy D,-0, ]
where 2 N 2( ) >
v 2v b-1
b+l 1 f2,. L (b+1)
Dl‘-(—?-* F)*f/*nf = * g
(148)
v 2 2v), 2(b-1) 2
D = - n_, b+l 1 2 b n . (b+1)
2 2 ot 2 LS T <
(1kL9)

Substituting equations (1L6) and (147) into the inversion formulas
(58) and (59) gives

& D t D D.t
W= ;—E z -]-‘—3 [ F—-ﬁl(l'*'tnz)e 2‘ - 1.)2—2_-51 (1+1:Dl)e 1]
" (150)

[sm)\(ﬁ-—+§)+sinln(l§+é%+§ +sinan§.—-xﬂ




(151)
X[sin ln(‘B-— '/;— 5) + 8in ln(ﬁ +‘CY- + g) + sin kn(é-— - X)]

The fluid and particle velocity distributions can be nondimension-

alized by letting

W o= w2 X = X (- sxs+%)
Ka 2a/f3
W
% Y
wp = E-a'g— y= 3 (-1 gy <+1)

Then, equations (150) and (151) become

%* % 3 x * ¥
D D7t D D .t
W= 3 Z L ___.(*2 = 1+™D *)e 1,1 (1+1™ *)e 2
on3 | 0. *Db 1 p. *p.* 2
n:l 2 1 2 1
(152)
x[sin -2-1311(1- y+x)+ sin 2n—“(1 + 2‘7 + X)+ sin == 2nﬂ (1-2x )]
© % * % %* %*, %
w:.é_z_l_?[l_nz eD1t+D1 enzt]
P 3 * % * _ %
S Dy =Dy D, -Dy
(153)

X[sin 2nn (1- & y+x)+ sin nﬂ(1+ y+x)+ sin —(1—2 )]




Here
* t 3* T

t =
32/\) a2/v

D.* . (2n n b+1) hnh L 2n n (b-l) . (b-n»l)2
1 ¥ 1™

D* (ﬁ . z&) i /hn“n“ 2r2n?(b-1) (m)

The dimensionless mean velocities are:

wdo oo D %* *t*
2 *
HH = = —9h Z lE [1 - ) *(1W*D1 )e 1
£ do on ol B D2 -Dl
3 * %
D D_ "¢
s ==, (1D, e 2 (15L)
D, -y

(155)

These values were calculated and the results are given in Figures
(8) through (12). For spherical particles of radius € , the momentum
equilibrium time according to Stokes drag law, is (ref. 1h)
2
Pp €
e Vv

w=2
9
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or, in dimensionless form
Sl (e_)z
fL a

Figure (8) shows that the fluid-particle velocity difference
is small when the particles are small in size. For large particles,
however, the fluid-particle velocity difference is large as shown by
Figure (9). Increasing the number of particles increases the time
needed to reach steady flow, although the time when the fluid and the
particles start accelerating seems to be the same for all concentra-
tions, At low particle concentrations, Figure (10), the fluid moves
the particles with it at all times when the particle size is small,
With large particles, the fluid flow is unaffected but large fluid-
particle velocity differences result. When large particle concentra-
tions are present, Figure (11), lower particle and fluid acceleratias
result, For large particle sizes, the fluid starts accelerating
sooner but the particles start later, The time to reach steady flow
is also increased as particle size is increased. The limiting case
of very large b, with very small T, is shown in Figure (12). Here,
as the particles begin to accelerate, the fluid velccity approaches
the intermediate value of a flow past staticnary particles. Then
the fluid and particles accelerate to the same final steady value of
velocity,

G. Transient Conduction with Heat Generation

The governing equation for transient heat conduction with

uniform heat generation in an equitriangular column is




L3
20 2 Q
il L 96 + o in the triangle R (156)

where € stands for T.Tw . The colum is initially at temperature To
and the wall surfaces are maintained at temperature '1‘w for t 2 O,

Then, the initial and boundary conditions are

8=0 on B (157)
6=T -T_ =86 at t =0 (158)

This belongs to the genersl boundary value problem with

f=6

A(t) = Q/pc

as the only non-zero quantities,
Substituting these into equations (51) through (55), and using the

previously obtained equitriangular transform of a constant, one ob-

tains,
v
de 2w 6a Q
EE E . .(ln 9 + i; E (159)
v 6a
9=Eeo att =0 (160)

-‘----------
o]
n
]
"
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The solution to this initial value problem is

- ~A "t ~“t,
6= -f:-"i [eo e 0 , 1 8 (., @ )] (161)
n

o) 2 2
LN - Tt
L 1 [ ~“"n 1 Q n
T ) e e s3> L e )
2 n1 nt © )\nz pc

(162)
X[sin xn(i-"%-z+§) + sin xn(z- ﬁY+ %) + sin xn(i--x)]

Equation (162) can be nondimensicnalized by letting

o¥ - g- X = D S (-lsxs+%-)
o 2a/f3

3 Q32 Y i

Q--q y = Y (-lsy s+ 1)

Then, the dimensionless temperature distribution is

o)
-»_Fo * - Fo
9*=gzl[en +9-(l-en)]
(163)
x[sin 2nm 1 - 2 ¥y + Xx)+ sin 1;“(1+%y + X)+ sin geg—’l—(l-Zx)]
hn2 2
where Fo is the Fourier number:, and w, = 3" .
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The sustained temperature distribution (i.e., Fo » @ corres-
ponds to the steady viscous flow velocity distribution with w re-
placed by 0*/Q*, Thus, the profiles shown in Figure (2) also describe
the distribution of 6%/Q%,

Equation (163) reduces to equation (111) for Q* = 0, That is,
the temperature profiles along the line y = O for transient heat con-

duction with no heat generation are also shown in Figure (L).



IV, CONCLUSICNS

An integral transform has been established for solving a class
of boundary value problems of the first kind in an equitriangular
region, The transform of the lLaplacian of a function was shown to be
related to the transform of the function itself, This fact also re-
lates the transform of v2n to that of V2(n-1). Thus, by success-
ive use of this property, partial differential equations involving
powers of the Laplacian operator can be reduced tc ordinary differen-
tial equations or algebraic equations,

The set of eigenfunctions used to establish this transform is
not a complete set; however, by narrowing down the type of boundary
value problems to be treated, the known set has been used to the
greatest advantage., The procedure employed consisted of first join-
ing the known set of eigenfunctions with an unknown complementary set
of eigenfunctions to form the complete set. Then, the admissible
type of boundary value problems becomes the class of problems which
can be solved by the method of transform without any knowledge of
the complementary eigenfunctions. This requires that the inhomogen-
eous terms and injtial conditions be constants or functions like
sin lspl + sin Xspz + sin lspB. Also, the problem must have zero
boundary values of ( 92) ; 1=0, 1, 2, ... (n-1).

The above format could be followed in establishing integral
transforms for other regions in which an incomplete set of eigen-

functions is known,

L6
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A general time dependent boundary value problem, in an egui-
triangular region, with positicn dependent initial conditions of the
admissible class, was solved by the transfcrm method., The case of a
coupled system of two dependeﬁt variables, with differential operators
( v2)1 and ( VZ)O, and zero functional value on the boundary, was
considered, Boundary value problems corresponding to this general
problem can be solved by direct substitution into the given trans-
formed equations, It shculd be noted, however, that this is not the
most general boundary value procblem solvable by the method of equi-~
triangular transform, The admissible class of problems includes the
time dependent coupled system of m equations with m dependent var-
iables, with higher powers of v2 cperating on each of the variables,

The velocity distribution for steady viscous incompressible
fluid flow, and the temperature distribution for steady laminar
forced convection, wereobtained as special cases of the general bound-
ary value problem, These series solutions were numerically compared
witﬁ-previously obtained closed form solutions to investigate the rate
of convergence and the Gitbs! phenomenon of the series, The analysis
showed the general series behavior to be similar to that of an ordin-
ary Fourier series,

The previously unsolved problems of transient natural convec-
tion, steady combined natural and forced convection, transient vis-
cous flow with suspended particles, and transient conduction with hest
generation were solved also as special cases of the general boundary

value problem, Some numerical results were also worked out which

should prove to be of practical value,
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V. NCMENCLATURE

dT/d2Z

function of time

half side of the equilateral triangle
constants

boundary of R

function of time

ratio cf particle ccncentration denmsity to fluid
density

constants

constant

specific heat of an incompressible medium
damping factors

dimensionless damping factors

2a/J/3 , hydraulic diameter

Ra (szd/c)

Ra (szd/c)
A

exponential base

de/kTw, dimensionless heat source paramter
Qd/kA, dimensionless heat source parameter
function of position

xt/az, Fourier number

a dependent variable

body force per unit mass, positive in -z direction
function of position

48
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2 3,2
(p ﬁszHd /u”), Grashof number
(pzﬁfzﬁdh uz), modified Grashof number

a dependent variable
1 aP

- B 82
pc/k 3T/3Z
Q/k

K2/-KKla
thermal conductivity

» pressure gradient parameter

2

(pr/c E T@)l/z fldz/u , dimensionless pressure
gradient parameter

(Prd3/c EA)l/z /. , dimensionless pressure
gradient parameter

norm of Qm

1, 2, 3, etc.

outward unit normal vector (two-dimensional)ef B
norm of ’n

average Nusselt number

average Nusselt number

1, 2, 3, etc,

pressure

v/«, Prandtl number

trilinear coordinates

heat source term

dimensionless heat source term

normal wall heat flux, positive inward
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the two dimensional region under investigation

Pr Gr, Rayleigh number
Pr GrA
line element along B
temperature

time

vt/az, dimensionles time

mass through-flow

s modified Rayleigh number

(1/E) (sz/k)V, dimensionless mass-through flow

(l/EA)(sz/k)V, dimensionless mass-through flow

axial velocity

particle axial velocity

dimensionless axial velocity

dimensionless particle axial velocity

Cartesian coordinates

dimensionless x-coordinate

dimensionless y-coordinate

k/pc , thermal diffusivity

thermal coefficient of volumetric expansion

gradient 5 5
2 2 e . E . _»
7' ok ol ompm, ap,2p
aX® 3T ap)” 3P, 3py 3pPR, 3PPy PPy

damping factor
particle radius
Inn/3

T - Ty
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dimensionless temperature difference

eigenvalues of ¥p ;
absolute viscosity coefficient

u/p, kinematic viscosity coefficient
eigenvalues of Q m

dpr/dZ «+ pLys pressure gradient parameter
3.1159

density

reference density evaluated at temperature '1‘w

sumuation over n = 1, 2, 3, <.

area element of R

momentum equilibrium time

VT/az, dimensionless momentum equilibrium time
a dependent variable

eigenfunctions

eigenfunctions

Ln’e?/3

initial value
mean value
mean mixed
1,2,3, etc.
1,2,3, etc,
wall value

axial direction
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VII, APPENDIX

In this Appendix, numerical solutions to the steady viscous
flow problem and the steady laminesr forced convection protlem are
analyzed in detail, The solutions obtained by the equitriangular
transform method 2re compared with the closed form solutions.

The dimensionless velocity distribution for the steady viscous
flow of 2n incompressitle fluid is given in series form by equation

(75), and in closed form by equation (77). Along the line y = O,

these are
[o.0)
W= —33- 2—_ % [2 sin — Zn“ (1+x)+ gin 228 T (1-2x )]
2n | n
and,

W= % (1-2x) (x+1)°

where

-1Lx g+

N -

The percent changes in the value of w according to the series,
due to the addition of each of the first 16 terms, are given for
various values of x in Table I1. These results show that a term con-
tributing a small amount to the series value is often followed by a
term making a substantial change. Thus, testing for convergence is
better made on the change due tc the addition of a group of terms,

A]11 numerical values czlculated in this work are terminated when a

sk
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three-term group changes the current series value by an amount smaller
than 0,01 percent,

Velocity profiles given by the closed form and the series form
are shown in Figure (2). No distinguishment can be made between the
series and closed form profiles because of the minuteness of the diff-
erence between these values. The number of terms required for con-
vergence within .0l percent, and the percent error as compared with
the closed form solution are given in Table III for increments in
x of 0,1, The table shows that the error is largestnear the bound-
aries; and that, in general, large numbers of terms are required near
the boundaries.

The number of terms reguired for convergence and the percent
error between the series and closed form solutions are given in Table
IV for values of x very close to the boundaries, The behav‘ior of the
series near the base is better than near the tip of the triz'angle. As
the boundary is approached, the error increases, Thus, Gibbs!' phenom-
enon seems to occur for -1,000 < x < -,998 or ,L98 < x < ,500,

The dimensionless temperature distribution for steady laminar
forced convection is given by equation (86) in the series form, ahd

equation (87) in the closed form. Along the line y = O, these are

< 3K, 2 2
3% 9 nn nn .
e = Z —% * 33 [2 sin —— (1+x)+ sin -——-(l-2x)]
(Bn n 2n’ uB) 3 3
n=1
and,
o* - & (1-2x) (x+1)? (1-%° - 12K,%)
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whers

-1gxg+ %A

Temperature profiles calculated according to these equations
are shown in Figure (3). Again, no distinguishment can be made
between the series and closed form profiles. The number of terms re-
quired for convergence within .01 percent, and the error referred to
the closed fcrm are given in Table V for the case of Kz* = 3,0,
Similar results were obtained in the range -3.0 < K<+ 3.0. The
behavior of the series is poorest near the tip.

The above results seem to indicate a behavior similar to that
of a Fourier series, The series seem to converge throughout the
region; however, a large number of terms might be required near the
boundary. The series would converge tc the correct value except near

the boundaries, where Gibbs' phenomenon could occur,
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-,90
-.8
-7
"06
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-olt
-3
"02
‘.1
0.0
1
02
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TABIE IIT

Number of Terms for
Convergence within .01%

% Error Compared
with Closed Form

5k
27
L2
18
36
30
18
18
15
15
15
15
12

18
27
27

=347
".32h
-.017
-0050
<.001
+.005
<.001
-.005
—.006
+.012
"CO%
-.005
-.01L
-.001
-.009
-.038
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TABLE IV

(a) x near -1.0

Number of Terms for Series % Error from
x Convergence within .0l% Closed Form
-.998 735 -28.80
-.996 369 - L.78
-.99)4 2)-16 bt 029
--990 261 - 10)-]2
-.986 105 + 2.59
-.982 150 - .67
'-978 123 - -5)4
'-9711 105 - -,47
-0970 )_[8 + 3'08
-0966 81 - 0)40
-'962 72 - 038
-.958 66 - .37
-.95h 60 - 036

(b) x near +.5

Number of Terms for Series ¢ Error from

X Convergence within .01% Closed Form
NN 18 +.10
158 30 -.02
oh62 36 - 002
JLi66 15 +.03
170 30 +.06
LTh 21 +.04
478 36 +.07
482 33 +.0}
186 39 +.01
0h9o 51 -.Ol
oh9h 63 -.01
oh% 75 - 012
oh98 87 "020
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TABIE V

Number of Terms for
Convergence within .01%

57
30
LS
21
39
33
21
21
18
18
15
18
15
21
30
30

¢ Error Compared
with Closed Form

-.3L7
-.322
-.017
-OOSO
"0001
+,005
<.001
-.005
-.0%
+.011
-.010
-.050
-.014
-.001
-.009
-.027
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6L

.50

25

0.0

-.25

x =f3 X/2a

"-50

"075

.04

o o
o

P12 SN
M

Figure (2) - Dimensionless velocity profile 2long y = O for
viscous flow of an incompressible fluid.

-1,00

0.0

steady



65
6% . o
KKla'
L
=] ,A;T:-B.o
.2 /
/
.1 / /—}'O\
L
o / D.0
é \ ¢
-1 \ \\ _ o
\ £1.0
iy N\ v
-.3 \\ -3,0 /
\_/
RS R .50 -.29 0.0 25

x = f3%/2a

Figure (3) - Dimensionless temperature profiles along y = O for
steady leaminar forced convection




1.0

\\

—

9z

[
[

N

N\

/ e
/ 5/ o/ g //

N
~
T

P,

.8

.6

N

*1-°1/ M1 - e

0.0

.50
base

.25

--75 "'050 -.25 0.0
x =f3X/2a

"1.0
tip

Figure (4) - Dimensionless temperature profiles along y = 0

for transient natural convection.



]

€7
I- A.I.)Z.IQ/M

e(o

&/
Figure (5) - Dimensionless velocity rrofiles along y = O for
transient natural convection

0L*0 = af ===




mm\.t. = Joquny JOFJNOJ

oot 0°T T 10° 100° 1000°,
00 o B
00 &
8
'?
) >
10 g g
3}
2§
23
20 n° N O
o 5
EE
o .. s
O mo. N\ 0. w o
| 8 8
N\ 3 4
~ o m
~ o
) N N, g €
:O A T~ ‘/ we m .m
o |7~ 0~ £ 3
aqnj JeTNOJIEO _ TNl T~ -
“Q M g *rox wumzr 4| - | T T g 4
L — - . = h
&1~ 2 f n o )01 -
N..Aac!!.!vol.l - M - ...BHLHJY e g
M I SRR - O
| NP A ~
] o
5
)
[al
ey




v
ey Olgor
0
oll
£-
[
€
SATNSOT == -
quesaad ==
€ *3exny T~
9

nN ‘asqumpy 3ToSSUN
Figure (7) - Nusselt number for combined natural and forced convection



10* = #¥ UITM seTofjaed pepuedsns yqpm
MOTJ QUSTSURI] JOJ SO[3100T6A 3T0T3Jed pur PINTJ ursW SSOTUOTSUSWEQ - (g) sandty
mu\fr = .3

0'1 T 10° 100* 1000°

0°0T
0°0

70

co*




T = 2 Y3 seo(opqaed papuadgng

U3 MOLF qU8LSULI) J0F SUL§.00[0A OTDqdeu PUE PLUTY Ussll $38TUO [SUBWET = (6) eandyy

e =
/A0 =4
TO0* TO00*

00T
— T
0'0

T0*

c0*

71

10y




T° = q Yjis seToLgsed pepusdsns

YaTM MOTJ jUOTSUBIY JOF SO [3100T8A 970FqJted pue pIn(j uesw ssafuotsuswiqg -~ (OT) 8andiJ

mw\p? T u?

TO00"

0.0t
0°0

20°*

72

(10}

Oa




D' = 4 e SOTOLPAud papususns
Yj LM MOTJ JUQLSUEIY JOJ SO[3LO0[oA &TO44JEd PUe PIN[J ukow sseTuofsusutq = (TT) 8an3td

Nm\p? = .3
el 01 1° 10° 100* T000"
\\‘!1\\-‘“ I¥G.O
\ \\-
\Q \‘\
< TO
/
W 0 - 0 —
. = D\ o —
2 ~ 2"
8-
O.
KO
e 3
Pﬁﬂ' = M




T* = Y 0ue 0'S = q ym seTo(qaed pepusdsns
UITM MOTJ qUSTSUBIY JOF SO[3TO0T8A 510T3aed pue PINTJ UReWw SSATUOTSUSWT( - (2T) eandty
E/A & =

001 0°1 T To* TOO* T000*
—_— 0°0

\\ \

74

M 20°

/4 _ 4 €0*

y 0




