PTAS/TR-66-6

ACKNOWLEDGEMENT

The authors wish to thank the National Aeronautics and Space Administration for financial support under Contract No. NGR-36-003-064.
Page
I. INTRODUCTION 1
II. DEVELOPMENT OF AN EQUITRIANGULAR INTEGRAL TRANSFORM- 5
A. General Theory of Finite Integral Transforms 5
B. An Equitriangular Integral Transform and Its
Properties 9
III. APPLICATIONS 15
A. A General Boundary Value Problem 15
B. Viscous Flow of an Incompressible Fluid 17
C. Steady Forced Convection of an Incompressible Fluid 21
D. Transient Natural Convection 25
E. Steady Combined Natural and Forced Convection-- 31
F. Transient Viscous Flow of an Incompressible
Fluid with Suspended Particles 37
G. Transient Conduction with Heat Generation 42
IV. CONCLUSIONS 46
∇. NOMENCLATURE 48
VI. REFERENCES 52
VII. APPENDIX 54
θ

LIST OF TABLES

Page
Table I 57
Table II 59
Table III 60
Table IV 61
Table ∇ 62

LIST OF FIGURES

Page
Figure (1) - The Equitriangular Region 63
Figure (2) - Dimensionless Velocity Profile Along $y=0$ forSteady Viscous Flow of an Incompressible Fluid 64
Figure (3) - Dimensionless Temperature Profiles along y $=0$ for Steady Laminar Forced Convection 65
Figure (4) - Dimensionless Temperature Profiles along $y=0$ for Transient Natural Convection 66
Figure (5) - Dimensionless Velocity Profiles along y $=0$ for Transient Natural Convection 67
Figure (6) - Mean Dimensionless Temperature and Velocity for Transient Natural Convection 68
Figure (7) - Nusselt Number for Combined Natural and Forced Convection- 69
Figure (8) - Dimensionless Mean Fluid and ParticleVelocities for Transient Flow with SuspendedParticles with $\varphi *=.01$70
Figure (9) - Dimensionless Mean Fluid and Particle
Velocities for Transient Flow with Suspended
Particles with $r *=.1$ 71
Figure (10) - Dimensionless Mean Fluid and Particle
Velocities for Transient Flow with Suspended Particles with b = .1 72

LIST OF FIGURES (contimed)PageFigure (11) - Dimensionless Mean Fluid and ParticleVelocities for Transient Flow with Suspended
Particles with b $=1.0$ 73
Figure (12) - Dimensionless Mean Fluid and Particle
Velocities for Transient Flow with SuspendedParticles with $b=5.0$ and $r^{*}=.1-\infty$

I. InTRODUCTION

The method of transforms is well known and widely used in solving the partial differential equations of engineering and physics. In mary cases, suitable transforms can be established especially for some finite regions. Finite Fourier and Hankel transforms are probably the most well-developed examples. In principle, the formalism of a finite integral transform has been developed by Kaplan and Sonnemann (ref. 1 and 2) for an arbitrary two- or three-dimensional region, using the eigenfunctions of a twoor three-dimensional counterpart of the Sturm-Liouville system. The explicit forms of the eigenfunctions are known only for a few simple regions, namely, the rectangle, the circle, the circular annulus (ref. 1), the circular sector and the circular-annulus sector (ref. 3) for boundary conditions of all three kinds. It is the purpose of this work to add to the above list the equilateral triangle with boundary condition of the first kind.

A set of the corresponding eigenfunctions has been discovered by Sen (ref. 4); he has also applied it to the problem of the deflection of thin plates (ref. 4 and 5). It has been recently applied to the transient viscous flow problems by Sen (ref. 6) and Crăciun (ref. 7). All these applications are in the form of the classical method of separation of variables, and without any numerical results.

In the process of establishing this "equitriangular" integral transform, it is found that Sen's eigenfunctions do not form a complete set. However, by narrowing down the type of boundary value problems to be treated, it is seen that a transform can, after all, be established with Sen's incomplete set. Thus, in this work, not only is a new transform established, but a format is also discovered which shows how an incomplete set of eigenfunctions can be systematically employed to the greatest advantage. The problems that can be treated happen to be physically the most interesting. It is only required that the boundary condition (of the first kind) be the vanishing of the functional values, and that the inhomogeneous terms and the initial conditions belong to a certain class of functions of which the constant is the most interesting member.

The detailed properties of the transform will be presented after a short summary of the general theory developed by Kaplan and Sonnemann (ref. 1).

The transform is then used to solve a very general boundary value problem whose special cases are later identified with the following, heretofore unsolved, physical problems:
(1) Transient natural convection heat transfer.

Theoretical investigation of this problem has been made by Izumi (ref. 8) for a vertical circular tube, A similar analysis is made here for a vertical equitriangular duct.
(2) Steady combined natural and forced convection flow.

This problem with linearly varying wall temperatures has been
solved for vertical ducts of various cross sections by Ostrach (ref. 9), Lu (ref. 3), Han (ref. 10) and Tao (ref. 11 and 12). Here, a solution in the vertical duct of equilateral triangular cross section is obtained by application of the equitriangular transform.
(3) Transient Viscous Flow with Suspended Particles.

The transient response of an incompressible fluid with suspended solid particles in a triangular duct, as a pressure gradient is applied, is investigated for the case of Stokes drag coupling. Although this is obviously the simplest example of the transient two-phase flow, its treatment, even in ducts of simple cross sections seems to be absent from the existing literature.
(4) Transient Heat Conduction with Heat Generation.

This problem is well documented (ref. 13) for various kinds of regions. The conduction in an equitriangular column is, however, never attempted. It is solved in this work with uniform heat generation as an example.

Before the results of these problems are analyzed numerically, the following problems, whose solutions are known in closed forms, are treated extensively using the present method of transform:
(I) Viscous Flow of an Incompressible Fluid.

The steady solution of this problem exists in a very simple form (ref. 14). The method of transform gields the solution in an alternative form, namely, a series. As a by-product, the transient solutions (ref. 6 and 7) are also rederived by the present method.
(2) Steady Forced Convection of an Incompressible Fluid.

This problem was solved by Tao (ref. 15) in a closed form. Its series form is obtained here again by the method of equitriangular transform.

The above two problems are then used to investigate the rate of convergence and the Gibbs' phenomenon, if any, of the series. The comparison shows that the general behavior of the series is no different from an ordinary Fourier series. The details of the comparison are presented in the Appendix.
II. DEVELOPMENT OF AN EQUITRIANGULAR INTEGRAL TRANSFORM
A. General Theory of Finite Integral Transforms

A general development of the finite integral transform theory (ref. 1) based on the Helmholtz equation is briefly reviewed in this section for the boundary condition of the first kind.

Consider the Helmholtz equation

$$
\begin{equation*}
\nabla^{2}+\lambda^{2} t=0 \tag{1}
\end{equation*}
$$

defined in a finite two-dimensional region \mathbb{R} together with the boundary condition

$$
\begin{equation*}
t=0 \quad \text { on } B \tag{2}
\end{equation*}
$$

where B is the boundary of R. This homogeneous problem has solutions only for a set of discrete values of λ, which are called the eigenvalues λ_{n} of the problem. The corresponding set of eigenfunctions associated with these eigenvalues is represented by \dagger_{n}. Thus,

$$
\begin{align*}
& \nabla^{2} \phi_{n}+\lambda_{n}^{2} \phi_{n}=0 \tag{3}\\
& \nabla^{2} \phi_{m}+\lambda_{m}^{2} \phi_{m}=0 \tag{4}
\end{align*}
$$

Multiplying (3) by ψ_{m} and (4) by ${ }_{n}$ and subtracting, one obtains

$$
\begin{equation*}
\left(\lambda_{m}^{2}-\lambda_{n}^{2}\right) t_{m} \phi_{n}=\phi_{m} \nabla^{2} \psi_{n}-\phi_{n} \nabla^{2} \phi_{m} \tag{5}
\end{equation*}
$$

Then, integrating over the region R, we have

$$
\begin{equation*}
\left(\lambda_{m}^{2}-\lambda_{n}^{2}\right) \int_{R} t_{m} t_{n} d \sigma=\int_{R}\left(t_{m} \nabla^{2} t_{n}-t_{n} \nabla^{2} t_{m}\right) d \sigma \tag{6}
\end{equation*}
$$

By an application of the Green's theorem, this becomes

$$
\begin{equation*}
\left(\lambda_{m}^{2}-\lambda_{n}^{2}\right) \int_{R} \phi_{m} \phi_{n} d \sigma=\int_{B}\left(\phi_{m} \nabla \phi_{n}-\phi_{n} \nabla \phi_{m}\right) \cdot \hat{N} d s \tag{7}
\end{equation*}
$$

But the boundary condition (2) demands that

$$
\begin{equation*}
t_{\mathrm{m}}=0 \text { anc } \mathrm{n}_{\mathrm{n}}=0 \text { on } \mathrm{B} \tag{8}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\int_{R} \phi_{n} d \sigma=0 \text { if } m \neq n \tag{9}
\end{equation*}
$$

And for $m=n$, the integral

$$
\begin{equation*}
\int_{R} t_{n}^{2} d \sigma=N_{n} \tag{10}
\end{equation*}
$$

is called the norm N_{n}. Equation (9) demonstrates the orthogonality of the eigenfunctions. If the set ϕ_{n} is complete, it is possible to express a large class of functions (ref. 16 and 17) as a series in h_{n} :

$$
\begin{equation*}
\phi=\sum_{n} c_{n} n_{n} \tag{11}
\end{equation*}
$$

Multiplying (11) by $\$_{m}$ and integrating over the region R gives

$$
\begin{equation*}
\int_{R} \phi \phi_{m} d \sigma=\int_{R} \sum_{n} C_{n} \phi_{n} \phi_{m} d \sigma \tag{12}
\end{equation*}
$$

Bat, by the previously established orthogonality of \rangle_{n}, the right-hand side of (12) vanishes for $m \neq n$. For $=n$, equation (12) givet C_{n} as

$$
\begin{equation*}
C_{n}=\frac{1}{B_{n}} \int_{R} \phi \phi_{n} d \sigma \tag{13}
\end{equation*}
$$

The finite integral transform of the function ϕ, with respect to ϕ_{n}, can now be defined as

$$
\begin{equation*}
\tilde{\varnothing}=\int_{R} \phi_{n} d \sigma \tag{14}
\end{equation*}
$$

And equation (11), which is the inversion formula for the transform takes the more convenient form

$$
\begin{equation*}
\phi=\sum_{n} \frac{\dot{\phi}_{\mathbf{n}}}{\eta_{\mathbf{n}}} \tag{15}
\end{equation*}
$$

The transform of the Laplacian of \varnothing may now be derived as follows. B the definition (14),

$$
\begin{equation*}
\nabla^{2} \emptyset=\int_{\mathrm{B}} \nabla_{\mathrm{n}} \nabla^{2} \emptyset \mathrm{~d} \sigma \tag{16}
\end{equation*}
$$

The right-hand side of (16) can be written as

$$
\int_{R} \nabla \cdot\left[\hbar_{n} \nabla \phi-\phi \nabla \hbar_{n}\right] d \sigma+\int_{R} \phi \nabla^{2} \dagger_{n} d \sigma
$$

Applying Green's theorem to the first integral and using the relation (3) in the second integral, this becomes

$$
\int_{B}\left[\psi_{n} \nabla \phi-\phi \nabla \psi_{n}\right] \cdot \hat{N} d s-\lambda_{n}^{2} \int \phi \psi_{n} d \sigma
$$

The second integral here is clearly the transform of \emptyset as given by (14).

Remembering that ${ }_{n}=0$ on B, one finally obtains the relation

$$
\begin{equation*}
\overline{\nabla^{2} \phi}=-\lambda_{n}^{2} \bar{\phi}-\int_{B} \phi\left(\nabla \phi_{n}\right) \cdot \hat{N} d s \tag{17}
\end{equation*}
$$

The importance of this relationship is that it relates the transform of the Laplacian of \varnothing to the transform of \varnothing itself. The line integral in (17) involves only the boundary condition of the problem; i.e., the value of \varnothing on B.

The task of establishing an integral transform reduces then to the search for the set of eigenvalues and eigenfunctions which satisfies the homogeneous differential equation (1) with boundary condition (2). The transform and inversion formulas are given by equations (14) and (15). The norm and transform of the Laplacian operator are found by direct calculations. The difficulty of course lies in the determination of the complete set of eigenfunctions. Just a set of eigenfunctions obtained by inspection, for example, is not enough. Beside the cases where the twodimensional problem degenerates into two one-dimensional problems (e.g., the cases inside a rectangle, or a circular sector), there is no established method of getting a complete set of eigenfunctions. The only general method is that of an approximate nature based on the variational principle. However, it will be shown in the next section that
even an incomplete set can be systematically employed for a large class of boundary-value problems.
B. An Equitriangular Integral Transform and Its Properties

An integral transform will be developed in this section for the region bounded by an equilateral triangle of side 2a, following the general procedure set out in the previous section. It is convenient to introduce here the trilinear coordinates (ref. 4). The region R under consideration and the coordinate system used are shown in Figure (1).

Sen (ref. 4) has shown that the system

$$
\left\{\begin{array}{l}
\nabla^{2} \dagger+\lambda^{2} \neq 0, \text { in } R \tag{18}\\
\phi=0 \text { on } p_{1}, p_{2}, p_{3}=0
\end{array}\right.
$$

has a set of eigenfunctions
${ }^{{ }_{n}}=\sin \lambda_{n} p_{1}+\sin \lambda_{n} p_{2}+\sin \lambda_{n} p_{3}$,

$$
\begin{equation*}
\text { where } p_{3}=\sqrt{3} a-p_{1}-p_{2} \tag{20}
\end{equation*}
$$

together with the set of eigenvalues

$$
\begin{equation*}
\lambda_{n}=\frac{2 n}{\sqrt{3 a}} \quad n=1,2,3, \ldots \tag{21}
\end{equation*}
$$

The norm of the set is

$$
\begin{align*}
N_{n} & =\int_{R}{ }_{n}^{2} d \sigma \\
& =\int_{0}^{\sqrt{3} a} \int_{0}^{\sqrt{3} a-p_{1}} \frac{2}{\sqrt{3}}\left[\sin \lambda_{n} p_{1}+\sin \lambda_{n} p_{2}-\sin \lambda_{n}\left(p_{1}+p_{2}\right)\right]^{2} d p_{1} d p_{2} \\
& =\frac{3 \sqrt{3} a^{2}}{2} \tag{22}
\end{align*}
$$

With respect to this set, one can define an equi-

triangular transform

$$
\begin{align*}
\tilde{\phi}^{\prime}(n) & =\int_{0}^{\sqrt{3} a} \int_{0}^{\sqrt{3} a-p_{1}} \frac{2}{\sqrt{3}} \phi\left(p_{1}, p_{2}\right)\left[\sin \lambda_{n} p_{1}+\sin \lambda_{n} p_{2}\right. \\
& \left.-\sin \lambda_{n}\left(p_{1}+p_{2}\right)\right] d p_{1} d p_{2} \tag{23}
\end{align*}
$$

Although the eigenfunctions given by (20) are orthogonal with the eigenvalues (21), there is no assurance that ϕ_{n} is a complete set. To have a complete set of orthogonal eigenfunctions, ϕ_{n} as given by (20), with eigenvalues λ_{n} given by (21), is joined by the unknown complementary eigenfunctions Ω_{m} with associated eigenvalues ξ_{m}.

A function of a suitable class can now be expressed
in terms of this complete set of eigenfunctions as
$\left.\phi\left(p_{1}, p_{2}\right)=\sum_{n} \frac{\tilde{\phi}(n)}{N_{n}}+p_{n}, p_{2}\right)+\sum_{m} \frac{\bar{\phi}(m)}{M_{m}} \Omega_{m}\left(p_{1}, p_{2}\right)$
where

$$
\begin{align*}
& \ddot{\phi}(n)=\int_{R} \phi\left(p_{1}, p_{2}\right) \phi_{n}\left(p_{1}, p_{2}\right) d \sigma \tag{25}\\
& \bar{\phi}(m)=\int_{R} \phi\left(p_{1}, p_{2}\right) \Omega_{m}\left(p_{1}, p_{2}\right) d \sigma \tag{26}\\
& N_{n}=\int_{R} \phi_{n}^{2}\left(p_{1}, p_{2}\right) d \sigma \tag{27}\\
& M_{m}=\int_{R} \Omega_{m}^{2}\left(p_{1}, p_{2}\right) d \sigma \tag{28}
\end{align*}
$$

are two integral transforms and their norms. The transforms of the Laplacian operator in terms of the complete set of eigenvalues and eigenfunctions are

$$
\begin{align*}
& \overline{\nabla^{2} \phi(n)}=-\lambda_{n}^{2} \tilde{\phi}(n)-\int_{B} \phi\left(\nabla \phi_{n}\right) \cdot \hat{N} d s \tag{29}\\
& \overline{\nabla^{2} \phi(m)}=-s_{m}^{2} \bar{\phi}(m)-\int_{B} \phi\left(\nabla \Omega_{m}\right) \cdot \hat{N} d s \tag{30}
\end{align*}
$$

Transforms of higher power of $\nabla^{2} \phi$, if needed, can be obtained by repeated use of (29) and (30).

In order to obtain a transform of functions having any prescribed value on the three sides, the eigenfunctions Ω_{m} must be known in detail. Then the integrations given by (26), (28), and (30) could be performed. However, if the functional value is zero on the boundary, the equations (29) and (30) become

$$
\begin{equation*}
\nabla^{2} \phi(n)=-\lambda_{n}^{2} \hat{\phi(n)} \tag{3I}
\end{equation*}
$$

$$
\begin{equation*}
\overline{\nabla^{2} \phi(m)}=-\xi_{m}^{2} \bar{\phi}(m) \tag{32}
\end{equation*}
$$

Furthermore, Sen (ref. 6) has shown that a constant C can be expanded as

$$
\begin{equation*}
c=\sum_{n=1}^{\infty} \frac{2 C}{n \pi}\left[\sin \lambda_{n} p_{1}+\sin \lambda_{n} p_{2}+\sin \lambda_{n} p_{3}\right]=\sum_{n=1}^{\infty} \frac{2 C}{n \pi} \phi_{n}\left(p_{1}, p_{2}\right) \tag{33}
\end{equation*}
$$

Comparing this with (24) reveals that

$$
\begin{align*}
& \tilde{\mathrm{C}}=\frac{2 \mathrm{C}}{\mathrm{n} \pi} N_{\mathrm{n}}=\frac{3 \sqrt{3} a^{2}}{\mathrm{n} \mathrm{\pi}} \mathrm{C} \tag{34}\\
& \overline{\mathrm{C}}=0 \tag{35}
\end{align*}
$$

(Note that C is a member of a class of functions whose "barred transforms" vanish. Another obvious member of this class is $\sin \lambda_{5} p_{1}+\sin \lambda_{5} p_{2}+\sin \lambda_{5} p_{3}$. But in this work, we will only deal with the constant function). Now consider the following problem:

$$
\left\{\begin{array}{l}
\frac{\partial \phi}{\partial t}=\alpha \nabla^{2} \emptyset+C \quad, \text { in the triangle } R \tag{36}\\
\emptyset=0 \text { on } B \\
\varnothing=\phi_{0} \text { at } t=0
\end{array}\right.
$$

where \varnothing_{0} is a constant.

$$
\begin{align*}
& \text { Applying (31) and (3L), one obtains } \\
& \left\{\begin{array}{l}
\frac{d}{\phi} \\
d t \\
\alpha^{2} \\
\tilde{\phi}=\frac{3 \sqrt{3 a}}{n \pi} \phi_{0}^{2} \text { at } t=0
\end{array}\right. \tag{39}
\end{align*}
$$

The solution for $\bar{\phi}$ is then

$$
\begin{equation*}
\tilde{\phi}=\frac{3 \sqrt{3} a^{2}}{n \pi}\left[\phi_{0} e^{-\alpha \lambda^{2}} n^{t}+\frac{c}{\alpha \lambda_{n}^{2}}\left(1-e^{-\alpha \lambda^{2}} n{ }^{t}\right)\right] \tag{41}
\end{equation*}
$$

Now, applying (32) and (35) to the original system yields

$$
\left\{\begin{array}{l}
\frac{d \bar{\phi}}{d t}=-\alpha s_{m}^{2} \bar{\phi} \tag{42}\\
\bar{\phi}=0 \text { at } t=0
\end{array}\right.
$$

The solution here is obviously

$$
\begin{equation*}
\bar{\varnothing}=0 \tag{44}
\end{equation*}
$$

Applying the inversion (24), the solution to the original problem is seen to be
$\phi=\sum_{n} \frac{2}{n \pi}\left(\sin \lambda_{n} p_{1}+\sin \lambda_{n} p_{2}+\sin \lambda_{n} p_{3}\right)\left[\phi_{0} e^{-\alpha \lambda_{n}^{2} t}+\frac{c}{\alpha \lambda_{n}^{2}}\left(1-e^{-\alpha \lambda_{n}^{2}}\right)\right]$

Thus, solutions to this class of boundary value problems are obtained without a detailed knowledge of the eigenfunctions Ω_{m} at all.

This is then the systematic way of utilizing an incomplete set of eigenfunctions in solving a class of boundaryvalue problems. By employing the method of integraltransforms, it is possible to state clearly what class of problems one can treat by using the "tilde transform" alone
without the necessity of knowing the complementary set Ω_{m}. The problems must: (1) involve only powers of the Laplacian operator, say up to the nth order; (2) be of the first kind with zero boundery values of $\left(\nabla^{2}\right)^{i}$, where $i=0,1,2 \ldots,(n-1)$; and (3) involve only constant inhomogeneous terms and initial conditions. The last require ment can be relaxed somewhat to admit function like $\sin \lambda_{5} p_{1}+\sin \lambda_{5} p_{2}+\sin \lambda_{5} p_{3}$. But this is not of great practical interest.

The third general conclusion auoted above is obvious from the simple example. The first two can be seen easily by successive application of the transform on $\left(\nabla^{2}\right)^{i}$.

A. A General Boundary Value Problem

A general boundary value problem is solved in this section by the equitriangular transform method. The viscous flow and heat transfer applications of the following sections are special cases of this general problem.

Consider the following problem:

$$
\left\{\begin{array}{l}
a_{1} \frac{\partial f}{\partial t}=a_{2} \nabla^{2} f+a_{3} f+a_{4} g+A(t), \\
b_{1} \frac{\partial g}{\partial t}=b_{2} \nabla^{2} g+b_{3} g+b_{4} f+B(t)
\end{array}\right\} \begin{aligned}
& f=0 \text { on } p_{1}, p_{2}, p_{3}=0 \\
& g=0 \text { on } p_{1}, p_{2}, p_{3}=0 \\
& f=F\left(p_{1}, p_{2}\right) \text { at } t=0 \tag{50}\\
& g=G\left(p_{1}, p_{2}\right) \text { at } t=0
\end{aligned}
$$

where $a_{1}, a_{2}, a_{3}, a_{4}, b_{1}, b_{2}, b_{3}, b_{4}$ are constants; $A(t), B(t)$ are functions of time; $F\left(p_{1}, p_{2}\right) G\left(p_{1}, p_{2}\right)$ are functions of the admissable class (e.g., constants or functions like $\sin \lambda_{5} p_{1}+\sin \lambda_{5} p_{2}$ $+\sin \lambda_{5} p_{3}$.

Applying the equitriangular transform, one obtains

$$
\begin{equation*}
\int a_{1} \frac{d \stackrel{\tilde{f}}{d t}}{d t}=-a_{2} \lambda_{n}^{2} \tilde{f}+a_{3} \tilde{f}+a_{4} \tilde{g}+\frac{6 a}{\lambda_{n}} A(t) \tag{52}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
b_{1} \frac{d \hat{g}}{d t}=-b_{2} \lambda_{n}^{2} \tilde{g}+b_{3} \tilde{g}+b_{4} \tilde{f}+\frac{6 a}{\lambda_{n}} B(t) \tag{53}\\
\tilde{f}=\tilde{F}\left(p_{1}, p_{2}\right) \text { at } t=0 \\
\tilde{g}=\tilde{G}\left(p_{1}, p_{2}\right) \text { at } t=0
\end{array}\right.
$$

The transformed functions \mathbf{f} and $\tilde{\mathbf{g}}$ can be determined by solving the ordinary differential equations (52) and (53) simultaneously with the conditions (54) and (55). The functions f and g are then given as

$$
\begin{align*}
& f=\frac{2}{3 \sqrt{3} a^{2}} \sum_{n=1}^{\infty} \underline{f}\left[\sin \lambda_{n} p_{1}+\sin \lambda_{n} p_{2}+\sin \lambda_{n} p_{3}\right] \tag{56}\\
& g=\frac{2}{3 \sqrt{3 a^{2}}} \sum_{n=1}^{\infty} \hat{g}\left[\sin \lambda_{n} p_{1}+\sin \lambda_{n} p_{2}+\sin \lambda_{n} p_{3}\right] \tag{57}
\end{align*}
$$

or, in Cartesian coordinates,

$$
\begin{align*}
& f=\frac{2}{3 \sqrt{3}^{2}} \sum_{n=1}^{\infty} \tilde{f}\left[\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}-\frac{\sqrt{3} \Psi}{2}+\frac{x}{2}\right)+\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}+\frac{\sqrt{3} \Psi}{2}+\frac{x}{2}\right)\right. \\
&\left.+\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}-x\right)\right] \tag{58}\\
& g=\frac{2}{3 \sqrt{3}^{2}} \sum_{n=1}^{\infty} \tilde{g}\left[\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}-\frac{\sqrt{3} \Psi}{2}+\frac{x}{2}\right)+\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}+\frac{\sqrt{3} \Psi}{2}+\frac{x}{2}\right)\right. \\
&\left.+\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}-x\right)\right] \tag{59}
\end{align*}
$$

B. Viscous Flow of an Incompressible Fluid

The equation of motion for the fully developed flow of an incompressible viscous fluid in an equitriangular duct is (ref. 6 and 7)

$$
\begin{equation*}
\frac{\partial W}{\partial t}=v \nabla^{2} W-\frac{1}{\rho} \frac{\partial P}{\partial Z}, \text { in the triangle } R \tag{60}
\end{equation*}
$$

where: W is the velocity; v the kinematic viscosity; ρ the density; and $\frac{\partial P}{\partial Z}$ the pressure gradient which is a function of t only. The no-slip viscous boundary condition at the walls is

$$
\begin{equation*}
W=0 \quad \text { on } p_{1}, p_{2}, p_{3}=0 \tag{61}
\end{equation*}
$$

The initial condition is

$$
\begin{equation*}
W=W_{0}\left(p_{1}, p_{2}\right) \text { at } t=0 \tag{62}
\end{equation*}
$$

This corresponds to the previous general boundary value problem with

$$
\begin{array}{ll}
f=W & g=0 \\
a_{1}=1 & b_{1}=0 \\
a_{2}=v & b_{2}=0 \\
a_{3}=0 & b_{3}=0 \\
a_{4}=0 & b_{4}=0 \\
A(t)=-\frac{1}{\rho} \frac{\partial P}{\partial Z} & B(t)=0 \\
F\left(p_{1}, P_{2}\right)=W_{0} & G\left(p_{1}, p_{2}\right)=0
\end{array}
$$

Using these values in equations (52) through (55), one obtains,

$$
\left\{\begin{array}{l}
\frac{d W}{d t}=-v \lambda_{n}^{2} \tilde{W}+\frac{6 a}{\lambda_{n}}\left(-\frac{1}{\rho} \frac{\partial P}{\partial Z}\right) \tag{63}\\
\tilde{W}=\tilde{W}_{0} \text { at } t=0
\end{array}\right.
$$

The following two initial conditions are considered:

1. Fluid at rest for $t<0$. At $t=0$ an exponential pressure gradient is applied.
2. Fluid in steady motion with constant pressure gradient for $t<0$. At $t=0$, the pressure gradient is exponentially dampened.
3. Fluid initially at rest.

For fluid initially at rest, the initial velocity condition is

$$
\begin{equation*}
W=W_{0}=0 \quad \text { at } \quad t=0 \tag{65}
\end{equation*}
$$

The exponential pressure gradient is applied at $t=0$ and is

$$
\begin{equation*}
-\frac{1}{\rho} \frac{\partial P}{\partial Z}=C e^{-\delta t} \text { for } t \geqslant 0 \tag{66}
\end{equation*}
$$

The solution to equations (63) and (64) with this initial condition and pressure gradient is

$$
\begin{equation*}
w=\frac{6 a c}{\lambda_{n}\left(v \lambda_{n}^{2}-\delta\right)}\left(e^{-\delta t}-e^{-v \lambda_{n}^{2} t}\right) \tag{67}
\end{equation*}
$$

Substituting this into equation (56), we have

$$
\begin{equation*}
W=\frac{4 C}{\sqrt{3} a} \sum_{n=1}^{\infty} \frac{1}{\lambda_{n}\left(v \lambda_{n}^{2}-\delta\right)}\left(e^{-\delta t}-e^{-v \lambda_{n}^{2} t}\right)\left[\sin \lambda_{n} p_{1}+\sin \lambda_{n} p_{2}+\sin \lambda_{n} p_{3}\right] \tag{68}
\end{equation*}
$$

This is the solution obtained by Sen (ref. 6), here rederived by the method of transform.
2. Fluid initially in steady motion.

For fluid initially in steady notion with constant pressure gradient for $t<0$ and exponential pressure damping applied at $t=0$
the pressure gradient is

$$
-\frac{1}{\rho} \frac{\partial P}{\partial Z}= \begin{cases}c & \text { for } t<0 \\ C e^{-\delta t} & \text { for } t \geqslant 0\end{cases}
$$

The initial velocity is the solution to the problem of steady viscous flow with a constant pressure gradient. This problem is

$$
\left\{\begin{array}{l}
v \nabla^{2} w_{0}+c=0 \tag{69}\\
w_{0}=0 \quad \text { on } p_{1}, p_{2}, p_{3}=0
\end{array}\right.
$$

This corresponds to the general boundary value problem with

$$
\begin{aligned}
& f=W_{0} \\
& a_{2}=v \\
& A(t)=C
\end{aligned}
$$

as the only non-zero quantities.
Using these values in equations (52) through (55), one obtains

$$
\begin{equation*}
\tilde{w}_{0}=\frac{6 \mathrm{aC}}{v x_{n}^{3}} \tag{71}
\end{equation*}
$$

Note that W_{0} is an admissible initial condition as the inversion of (71) yields a series expansion in \boldsymbol{n}°

The solution to equations (63) and (64) with the initial condition (71) and the stated pressure gradient is

$$
\begin{equation*}
\tilde{W}=\frac{6 a C}{\lambda_{n}\left(v \lambda_{n}^{2}-\delta\right)}\left(e^{-\delta t}-\frac{\delta}{v \lambda_{n}^{2}} e^{-v \lambda_{n}^{2} t}\right) \tag{72}
\end{equation*}
$$

Substituting this into equation (56), we have
$W=\frac{4 C}{\sqrt{3 a}} \sum_{n=1}^{\infty} \frac{1}{\lambda_{n}\left(\nu \lambda_{n}{ }^{2}-\delta\right)}\left(e^{-\delta t}-\frac{\delta}{\nu \lambda_{n}{ }^{2}} e^{-\nu \lambda_{n}{ }^{2} t}\right)\left[\sin \lambda_{n} F_{1}+\sin \lambda_{n} p_{2}+\sin \lambda_{n} p_{3}\right]$

This is the solution given by Crăciun (ref. 7), again rederived by the method of transform.

The solution to the problem of steady viscous flow with a constant pressure gradient is obtained by substituting (71) into equation (58). Replacing W_{0} by W to emphasize that the solution is for the steady flow, we have
$W=\frac{4 \pi}{\sqrt{3 a}} \sum_{n=1}^{\infty} \frac{1}{\lambda_{n}^{3}}\left[\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}-\frac{\sqrt{3 I}}{2}+\frac{x}{2}\right)+\sin \lambda_{n}\left(\frac{a}{3}+\frac{\sqrt{3 x}}{2}+\frac{x}{2}\right)+\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}-x\right)\right]$
where $K=c / \nu=-\frac{I}{\mu} \frac{\partial P}{\partial Z}$
Equation (74) can be nondimensionalized by letting

$$
x=\frac{x}{2 a / \sqrt{3}} \quad\left(-1 \leqslant x \leqslant+\frac{1}{2}\right)
$$

$$
w=\frac{W}{K a^{2}} \quad y=\frac{Y}{a} \quad(-1 \leqslant y \leqslant+1)
$$

Then, the nondimensional velocity distribution is.

$$
\begin{equation*}
w=\frac{3}{2 \pi^{3}} \sum_{n=1}^{\infty} \frac{1}{n^{3}}\left[\sin \frac{2 n \pi}{3}\left(1-\frac{3}{2} y+x\right)+\sin \frac{2 n \pi}{3}\left(1+\frac{3}{2} y+x\right)+\sin \frac{2 n \pi}{3}(1-2 x)\right] \tag{75}
\end{equation*}
$$

The mean nondimensional velocity is

$$
\begin{equation*}
w_{M}=\frac{\int_{R} w d \sigma}{\int_{R} d \sigma}=\frac{9}{2 \pi^{4}} \quad \sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{1}{20} \tag{76}
\end{equation*}
$$

The nondimensional form of the closed form solntion to this problem (ref. 14) is

$$
\begin{equation*}
w=\frac{1}{9}(1-2 x)\left[(x+1)^{2}-\frac{9}{4} y^{2}\right] \tag{77}
\end{equation*}
$$

The corresponding w_{M} is exactly $1 / 20$.
Velocity profiles along the line $y=0(-1 \leqslant x \leqslant+.5)$ were computed according to both equations (75) and (77), and plotted in Figure (2). These profiles, together with the rate of convergence of the s eries, are examined in detail in the Appendix.

C. Steady Forced Convection of an Incompressible Fluid

Consider the steady, full developed, laminar flow of an incompressible fluid with heat sources in an equitriangular duct. With constant axial pressure and temperature gradients, and with negligible energy dissipation, the momentum and energy equations are as follows:

$$
\left.\begin{array}{l}
\nabla^{2} W=-K \tag{78}\\
\nabla^{2} \theta=K_{1} W-K_{2},
\end{array}\right\} \text { in the triangle } R
$$

where W stands for the axial velocity; θ for the difference between T and T_{w} taken at the same axial position; and

$$
K=-\frac{1}{\mu} \frac{\partial P}{\partial Z}
$$

$$
\begin{aligned}
& K_{1}=\frac{\rho c}{k} \frac{\partial T}{\partial Z} \\
& K_{2}=\frac{Q}{k}
\end{aligned}
$$

For other symbols, see Nomenclature.
The viscous and thermal boundary conditions at the wall are

$$
\left.\begin{array}{l}
W=0 \tag{80}\\
\theta=0
\end{array}\right\} \text { on } B
$$

This corresponds to the general boundary value problem with

$$
\begin{array}{ll}
f=W & g=\theta \\
a_{2}=1 & b_{2}=1 \\
A(t)=K & b_{4}=-K_{1} \\
& B(t)=K_{2}
\end{array}
$$

as the only non-zero quantities.
Using these in equations (52) through (55), one obtains

$$
\begin{align*}
& \tilde{W}=\frac{6 a}{\lambda_{n}^{3}} K \tag{82}\\
& \tilde{\theta}=-\frac{K_{1}}{\lambda_{n}^{2}} \tilde{W}+\frac{6 a}{\lambda_{n}^{3}} K_{2} \tag{83}
\end{align*}
$$

Then, the transformed temperature difference is

$$
\begin{equation*}
\tilde{\theta}=6 a\left(\frac{K_{2}}{\lambda_{n}^{3}}-\frac{K K_{1}}{\lambda_{n}^{5}}\right) \tag{84}
\end{equation*}
$$

Substituting this into equation (58), we have
$\theta=\frac{4}{\sqrt{3 a}} \sum_{n=1}^{\infty}\left(\frac{K_{2}}{\lambda_{n}{ }^{3}}-\frac{K K_{1}}{\lambda_{n}^{5}}\right)\left[\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}-\frac{\sqrt{3 Y}}{2}+\frac{X}{2}\right)+\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}+\frac{\sqrt{3 Y}}{2}+\frac{X}{2}\right)\right.$

$$
\begin{equation*}
\left.+\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}-x\right)\right] \tag{85}
\end{equation*}
$$

The velocity distribution given by the inversion of (82) was obtained in the previous section.

Equation (85) can be nondimensionalized by letting

$$
\begin{array}{ll}
\theta^{*}=\frac{\theta}{-K K_{1} a^{4}} & x=\frac{X}{2 a / \sqrt{3}}(-1 \leqslant x \leqslant+1 / 2) \\
K_{2}^{*}=\frac{K_{2}}{-K K_{1} a^{2}} & y=\frac{Y}{a} \quad(-1 \leqslant y \leqslant+1)
\end{array}
$$

Then, the dimensionless temperature distribation is

$$
\begin{align*}
\theta^{*}=\sum_{n=1}^{\infty}\left(\frac{9}{8 n^{5} \pi^{5}}+\frac{3 K_{2}^{*}}{2 n^{3} \pi^{3}}\right)\left[\sin \frac{2 n \pi}{3}\left(1-\frac{3}{2} y+x\right)\right. & +\sin \frac{2 n \pi}{3}\left(1+\frac{3}{2} y+x\right) \\
& \left.+\sin \frac{2 n \pi}{3}(1-2 x)\right] \tag{86}
\end{align*}
$$

The closed form solution to this problem obtained by Tao (ref. 15) is $\theta^{*}=\frac{1}{108}(2 x-1)\left[(x+1)^{2}-\frac{9}{4} y^{2}\right]\left[\left(x^{2}+\frac{3}{4} y^{2}-1\right)+12 K_{2}^{*}\right]$

Dimensionless temperature profiles along the line $y=0(-1 \leqslant x \leqslant+.5)$ were computed according to both equations (86) and (87). The results are shown in Figure (3). These profiles are examined in detail in the Appendix.

Various heat transfer parameters are easily obtained using the velocity and temperature distributions. The mean temperature is given by

$$
\begin{equation*}
\theta_{M}^{*}=\int_{R} \theta^{*} d \sigma / \int_{R} d \sigma=\frac{1}{\sqrt{3 a^{2}}} \int_{-R} \theta^{*} d \sigma \tag{88}
\end{equation*}
$$

The mean mixed temperature may also be calculated:

$$
\begin{equation*}
\theta_{M M}^{*}=\int_{R} \theta^{*} w d \sigma / \int_{R} w d \sigma=\frac{1}{\sqrt{3} a^{2} w_{M}} \int_{R} \theta^{*} w d \sigma \tag{89}
\end{equation*}
$$

The average Nusselt number may be defined as

$$
\begin{equation*}
N u=\frac{d}{k \theta_{M M}^{*}} \int_{B} q d s / \int_{B} d s=\frac{\left(k_{2}^{*}+w_{M}\right)}{3 \theta_{M M}^{*}} \tag{90}
\end{equation*}
$$

Using the series form of the velocity, equation (75), and temperature, equation (86), we have

$$
\begin{equation*}
\theta_{M}^{*}=\sum_{n=1}^{\infty}\left(\frac{27}{8 n_{\pi}^{6}}+\frac{9 K_{2}^{*}}{2 n^{4}{ }^{4}}\right)=\frac{1}{280}+\frac{1}{20} K_{2}^{*} \tag{91}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{M M}^{*}=\frac{\sum_{n=1}^{\infty}\left(\frac{9}{16 n_{n}^{8} n^{4}}+\frac{3 K_{2}^{*}}{4 n^{6} n^{2}}\right)}{\sum_{n=1}^{\infty} \frac{1}{n^{4}}}=\frac{3}{560}+\frac{1}{14} K_{2}^{*} \tag{92}
\end{equation*}
$$

$$
\begin{align*}
& N u=\left(\frac{9}{2 \pi^{4}} \sum_{n=1}^{\infty} 1 / n^{4}\right)+K_{2}^{*} \\
&\left(\frac{27}{16 \pi^{4}} \sum_{n=1}^{\infty} 1 / n^{8} / \sum_{n=1}^{\infty} 1 / n^{4}\right)+\left(\frac{9}{4 \pi^{2}} \sum_{n=1}^{\infty} K_{2}^{*} / n^{6} / \sum_{n=1}^{\infty} 1 / n^{4}\right) \tag{93}
\end{align*}
$$

which are exactly the values given by Tao (ref. 15).

D. Transient Natural Convection

In this section, we treat the case of transient laminar natural heat convection in an equitriangular duct of infinite length. The axis of the duct is orientated parallel to the direction of the generating body force. Initially the fluid is at rest with constant temperature T_{0}. The duct wall is maintained at a constant temperature T_{w} for $t \geqslant 0$. The ends of the duct are open to fluid at constant temperature T_{0} and the flow is thermally and hydrodynamically fully developed. Assuming negligible energy dissipation, and quasiincompressible fluid (i.e., the density changes only with the temperature variation), the momentum and energy equations can be written as:

$$
\left.\begin{array}{l}
\frac{\partial W}{\partial t}=v \nabla^{2} W+\beta f_{z} \theta-\beta f_{Z} \theta_{0}, \tag{94}\\
\frac{\partial \theta}{\partial t}=\alpha \nabla^{2} \theta,
\end{array}\right\} \text { in the triangle } R
$$

where

$$
\begin{aligned}
& \theta=T-T_{W} \\
& \theta_{0}=T_{0}-T_{W}
\end{aligned}
$$

The boundary conditions at the wall are

$$
\left.\begin{array}{l}
W=0 \tag{96}\\
\theta=0
\end{array}\right\} \quad \text { on } B
$$

and the initial conditions are

$$
\begin{array}{ll}
W=0 & \text { at } t=0 \\
\theta=\theta_{0} & \text { at } t=0 \tag{99}
\end{array}
$$

This is a special case of the general boundary value problew with

$$
\begin{array}{ll}
f=W & g=\theta \\
a_{1}=1 & b_{1}=1 \\
a_{2}=v & b_{2}=\alpha \\
a_{3}=0 & b_{3}=0 \\
a_{4}=\beta f_{Z} & b_{4}=0 \\
A(t)=-\beta f_{2} 0_{0} & A(t)=0 \\
F\left(p_{1}, p_{2}\right)=0 & G\left(p_{1}, p_{2}\right)=\theta_{0}
\end{array}
$$

Substituting these values into equations (52) through (55), and using the previously obtained equitriangular transform of a constant,
one obtains

$$
\left\{\begin{array}{l}
\frac{d \tilde{W}}{d t}=-v \lambda_{n}^{2} \tilde{W}+\beta f_{z} \tilde{\theta}-\frac{6 a}{\lambda_{n}} \beta f_{z}^{\theta} \theta_{0} \tag{100}\\
\frac{d O}{d t}=-\alpha \lambda_{n}^{2} \tilde{\theta} \\
\tilde{W}=0 \quad \text { at } t=0 \\
\tilde{\theta}=\frac{6 a}{\lambda_{n}} \theta_{0} \text { at } t=0
\end{array}\right.
$$

The solution to equation (101) with the initial condition
(103) is

$$
\begin{equation*}
\check{\theta}=\frac{6 a}{\lambda_{n}} \theta_{0} e^{-\alpha \lambda_{n}^{2} t} \tag{104}
\end{equation*}
$$

Substituting this into equation (59), we have

$$
\begin{align*}
& \theta=\frac{4 \theta_{0}}{\sqrt{3} a} \sum_{n=1}^{\infty} \frac{1}{\lambda_{n}} e^{-\alpha \lambda_{n}^{2} t}\left[\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}-\frac{\sqrt{3 I}}{2}+\frac{X}{2}\right)\right. \\
&\left.+\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}+\frac{\sqrt{3 Y}}{2}+\frac{X}{2}\right)+\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}-X\right)\right] \tag{105}
\end{align*}
$$

Using the transformed temperature solution (104) in equation (100) gives

$$
\begin{equation*}
\frac{d w_{w}}{d t}+v \lambda_{n}^{2} w=\frac{6 a}{\lambda_{n}}\left(e^{-\alpha \lambda_{n}^{2} t}-1\right) \beta f_{z} \theta_{0} \tag{106}
\end{equation*}
$$

The solution to equation (106) with the initial condition (102) is

$$
\begin{equation*}
\tilde{W}=\frac{6 a}{\lambda_{n}^{3}} \frac{\beta f_{2} \theta_{0}}{v(\operatorname{Pr}-1)}\left[\left(1-e^{-v \lambda_{n}^{2} t}\right)-\operatorname{Pr}\left(1-e^{-\alpha \lambda_{n}^{2}}{ }^{2}\right)\right] \text {, if } \operatorname{Pr} \neq 1 \tag{107}
\end{equation*}
$$

and,

$$
\begin{equation*}
\stackrel{w}{w}=\frac{6 a^{3}}{\lambda_{n}^{3}} \frac{\beta f_{2} \theta}{v}\left[\lambda_{n}^{2} v t-\left(1-e^{-\alpha \lambda_{n}^{2} t}\right)\right] \text {, if } \operatorname{Pr}=1 \tag{108}
\end{equation*}
$$

where, $\operatorname{Pr}=\mathrm{v} / \alpha$ is the Prandtl number.
Substituting these into equation (58), we have

$$
\begin{equation*}
w=\frac{4 \beta f_{2} \theta_{0}}{\sqrt{3 a v(\operatorname{Pr}-1)}} \sum_{n=1}^{\infty} \frac{1}{\lambda_{n}^{3}}\left[\left(1-e^{-v \lambda_{n}{ }^{2} t}\right)-\operatorname{Pr}\left(1-e^{-\alpha \lambda_{n}{ }^{2} t}\right)\right] \tag{109}
\end{equation*}
$$

$x\left[\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}-\frac{\sqrt{3} I}{2}+\frac{X}{2}\right)+\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}+\frac{\sqrt{3} Y}{2}+\frac{X}{2}\right)+\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}-X\right)\right]$, if $\operatorname{Pr} \neq 1$
and,
$W=\frac{4 \beta f_{z_{0}}}{\sqrt{3} a . v} \sum_{n=1}^{\infty} \frac{1}{\lambda_{n}^{3}}\left[\lambda_{n}{ }^{2} v t-\left(1-e^{-\alpha \lambda_{n}{ }^{2} t}\right)\right]$
$X\left[\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}-\frac{\sqrt{3} I}{2}+\frac{X}{2}\right)+\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}+\frac{\sqrt{3} Y}{2}+\frac{X}{2}\right)+\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}-X\right)\right]$, if $\operatorname{Pr}=1$

Equations (105), (109), and (110) can be nondimensionalized
by letting

$$
\begin{array}{ll}
\theta^{*}=\frac{\theta}{\theta_{0}}=\frac{T-T_{W}}{T_{0}-T_{w}} & x=\frac{X}{2 a / \sqrt{3}}\left(-1 \leqslant x \leqslant+\frac{1}{2}\right) \\
w=\frac{W}{\beta I_{Z}\left(T_{W}-T_{0}\right) a^{2} / v} & y=\frac{Y}{a}(-1 \leqslant y \leqslant+1)
\end{array}
$$

Then, the dimensionless temperature and velocity distributions are

$$
\begin{align*}
\theta^{*}=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} e^{-\omega_{n} F_{0}} & {\left[\sin \frac{2 n \pi}{3}\left(1-\frac{3}{2} y+x\right)+\sin \frac{2 n \pi}{3}\left(1+\frac{3}{2} y+x\right)\right.} \\
& \left.+\sin \frac{2 n \pi}{3}(1-2 x)\right] \tag{111}
\end{align*}
$$

$$
\begin{equation*}
w=\frac{3}{2 \pi^{3}(1-\operatorname{Pr})} \sum_{n=1}^{\infty} \frac{1}{n^{3}}\left[\left(1-e^{-\omega_{n} F O P r}\right)-\operatorname{Pr}\left(1-e^{-\omega_{n} F \circ}\right)\right] \tag{112}
\end{equation*}
$$

$$
x\left[\sin \frac{2 n \pi}{3}\left(1-\frac{3}{2} y+x\right)+\sin \frac{2 n \pi}{3}\left(1+\frac{3}{2} y+x\right)+\sin \frac{2 n \pi}{3}(1-2 x)\right],
$$

if $\operatorname{Pr} \neq 1$ -

$$
\begin{equation*}
w=\frac{3}{2 \pi^{3}} \sum_{n=1}^{\infty} \frac{1}{n^{3}}\left[\left(1-e^{-\omega_{n} F_{0}}\right)-\omega_{n} F_{0} e^{-\omega_{n} F_{0}}\right] \tag{113}
\end{equation*}
$$

$$
\left[\sin \frac{2 n \pi}{3}\left(1-\frac{3}{2} y+x\right)+\sin \frac{2 n \pi}{3}\left(1+\frac{3}{2} y+x\right)+\sin \frac{2 n \pi}{3}(1-2 x)\right] \text {, if } \operatorname{Pr}=1
$$

where $F_{0}=\alpha t / a^{2}$ is the Fourier number; and $\omega_{n}=4 n^{2} \pi^{2} / 3$.

The mean temperature and velocity are

$$
\begin{gather*}
\theta_{M}^{*}=\frac{6}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} e^{-\omega_{n} F o} \tag{114}\\
w_{M}=\frac{9}{2 \pi^{4}(1-\operatorname{Pr})} \sum_{n=1}^{\infty} \frac{1}{n^{4}}\left[\left(1-e^{-\omega_{n} F o P r}\right)-\operatorname{Pr}\left(1-e^{-\omega_{n} F o}\right)\right] \text { if } \operatorname{Pr} \neq 1 \\
w_{M}=\frac{9}{2 \pi^{4}} \sum_{n=1}^{\infty} \frac{1}{n^{4}}\left[\left(1-e^{-\omega_{n} F o}\right)-\omega_{n} F o e^{-\omega_{n} F o}\right], \text { if } \operatorname{Pr}=1 \tag{116}
\end{gather*}
$$

Dimensionless temperature profiles along the line $y=0$
$(-1 \leqslant x \leqslant+.5)$ were calculated from equation (111). The profiles are shown in Figure (4). The temperature gradient near the duct walls decreases with increasing time; and, at all times, the value near the base is larger than the value near the tip.

Nondimensional velocity distributions along the line $y=0$ $(-1 \leqslant x \leqslant+.5)$ were computed according to equation (112) for $\operatorname{Pr}=.7$ and $\operatorname{Pr}=3$. with results shown in Figure (5). With increasing time, the flow evolves from an initial local fluid acceleration near the walls with the fluid near the duct center at rest, to the final acceleration of the fluid core to steady flow. The steady flow is due to the density difference of the fluid in the duct at T_{w} and the fluid at the open ends at T_{0}.

The dimensicnless mean temperature and velocity were calculated from equations (114), (115), and (116); with results given in Figure (6). The mean temperature increases faster than the mean velocity. This time lag is reduced as the Prandtl number is increased.

E. Steady Combined Natural and Forced Convection

Consider the steady laminar fully-developed flow with heat sources, constant axial pressure and temperature gradients, in an equitriangular duct. The duct is orientated in a direction parallel to the generating body force. We again assume that the energy dissipation is negligible and the fluid is quasi-incompressible. Then, the momentum and energy equations are

$$
\left.\begin{array}{l}
\mu \nabla^{2} W+\rho \beta f_{Z} \theta=\Pi, \tag{117}\\
k \nabla^{2} \theta-\rho c A W=-Q,
\end{array}\right\} \text { in the triangle } R
$$

where θ is defined the same way as in section $C . \Pi$, the pressure gradient parameter, is introduced according to the established theory of semi- or quasi-incompressible fluids (ref. 9 and 3). The boundary conditions at the wall are again

$$
\left.\begin{array}{rl}
W & =0 \tag{119}\\
\theta & =0
\end{array}\right\} \quad \text { on } B
$$

The general boundary value problem reduces to this set if we take

$$
\begin{array}{ll}
f=W & g=\theta \\
a_{1}=0 & b_{1}=0 \\
a_{2}=\mu & b_{2}=k \\
a_{3}=0 & b_{3}=0 \\
a_{4}=\rho \beta f_{Z} & b_{4}=-\rho c A \\
A(t)=-\| & B(t)=Q \\
F\left(p_{1}, p_{2}\right)=0 & G\left(p_{1}, p_{2}\right)=0
\end{array}
$$

Using these values in equations (52) through (55), we have

$$
\begin{align*}
& \mu \lambda_{n}^{2} \tilde{W}-\rho \beta f_{z} \tilde{\theta}=-\frac{6 a}{\lambda_{n}} \Pi \tag{121}\\
& \rho c \hat{n}+k \lambda_{n}^{2} \hat{\theta}=\frac{6 a}{\lambda_{n}} Q \tag{122}
\end{align*}
$$

Solving these simultaneously, one obtains

$$
\begin{align*}
& \hat{\theta}=\frac{6 a}{\lambda_{n}}\left(\frac{\mu Q \lambda_{n}^{2}+\rho c A \Pi}{\mu k \lambda_{n}^{4}+\rho c A \beta f_{Z}}\right) \tag{123}\\
& \omega=\frac{6 a}{\lambda_{n}}\left(\frac{\beta \rho f_{Z} Q-k \Pi \lambda_{n}^{2}}{u k \lambda_{n}^{4}+\rho^{2} c A \beta f_{Z}}\right) \tag{124}
\end{align*}
$$

Substituting these into equations (58) and (59), we have

$$
\begin{aligned}
& \theta=\frac{4}{\sqrt{3} a} \sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}\left(\frac{\mu Q \lambda_{n}^{2}+\rho c A \Pi}{\mu k \lambda_{n}^{4}+\rho c A \beta I_{Z}^{2}}\right) \\
& x\left[\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}-\frac{\sqrt{3} Y}{2}+\frac{X}{2}\right)+\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}+\frac{\sqrt{3} Y}{2}+\frac{X}{2}\right)+\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}-\frac{\lambda}{1}\right)\right]
\end{aligned}
$$

and $W=\frac{4}{3 a} \sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}\left(\frac{\beta \rho f_{Z} Q-k \| \lambda_{n}^{2}}{\mu k \lambda_{n}^{4}+\rho^{2} c A \beta f_{Z}}\right)$

$$
x\left[\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}-\frac{\sqrt{3} Y}{2}+\frac{X}{2}\right)+\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}+\frac{\sqrt{3} Y}{2}+\frac{X}{2}\right)+\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}-X\right)\right]
$$

In order to nondimensionalize the velocity and temperature distributions, the hydraulic diameter of the duct is used as the characteristic length. When $A \neq 0,\left(c E_{A} A d / P r\right)^{1 / 2}$ and $A d$ are used as the characteristic velocity and temperature, respectively, For $A=0$, (c ETTW Pr $)^{I / 2}$ and T_{w} are used. Then, the dimensionless temperature and velocity distributions are

$$
\begin{align*}
& \theta_{A}^{*}=\frac{8}{3} \sum_{n=1}^{\infty} \frac{1}{\varphi_{n}}\left(\frac{\zeta_{n}^{2} F_{A}+L_{A} R_{a_{A}}}{\zeta_{n}^{4}+R_{a_{A}}}\right)\left[\sin \frac{\zeta_{n}}{2}(1-\sqrt{3} y+x)\right. \\
&\left.+\sin \frac{\zeta_{n}}{2}(1+\sqrt{3 y}+x)+\sin \frac{\zeta_{n}}{2}(1-2 x)\right] \tag{127}
\end{align*}
$$

if $A \neq 0$

$$
\begin{aligned}
w_{A}= & \frac{8}{3} \sum_{n=1}^{\infty} \frac{1}{\zeta_{n}}\left(\frac{F_{A}-\zeta_{n}^{2} I_{A}}{\zeta_{n}^{4}+R_{a_{A}}}\right)\left[\sin \frac{\zeta_{n}}{2}(1-\sqrt{3 y}+x)\right. \\
& \left.+\sin \frac{\zeta_{n}}{2}(1+\sqrt{3 y}+x)+\sin \frac{\zeta_{n}}{2}(1-2 x)\right]
\end{aligned}
$$

(128)
and,

$$
\theta^{*}=\frac{8}{3} \sum_{n=1}^{\infty} \frac{F}{\varphi_{n}^{3}}\left[\sin \frac{\zeta_{n}}{2}(1-\sqrt{3 y}+x)+\sin \frac{\zeta_{n}}{2}(1+\sqrt{3 y}+x)\right.
$$

$$
\begin{align*}
& \left.+\sin \frac{\varphi_{n}}{2}(1-2 x)\right] \tag{129}\\
w= & \frac{8}{3} \sum_{n=1}^{\infty} \frac{1}{\zeta_{n}}\left(\frac{F}{\zeta_{n}^{2}}-1\right)\left[\sin \frac{\zeta_{n}}{2}(1-\sqrt{3 y}+x)+\sin \frac{\zeta_{n}}{2}(1+\sqrt{3 y}+x)\right. \\
& \left.+\sin \frac{\zeta_{n}}{2}(1-2 x)\right] \tag{130}\\
& \text { for } A=0
\end{align*}
$$

where:

$$
\begin{array}{ll}
\theta_{A}^{*}=\frac{\theta}{A d} & \theta^{*}=\frac{\theta}{T_{W}} \\
W_{A}=\frac{W}{\left(\frac{c E_{A} A d}{P r}\right)^{I} / 2} & w=\frac{W}{\left(\frac{c E T_{W}}{1 / 2}\right.} \\
X=\frac{X}{d}=\frac{\sqrt{3 X}}{2 a}\left(-1 \leqslant x \leqslant+\frac{1}{2}\right) & Y=\frac{Y}{d}=\frac{\sqrt{3 Y}}{2 a}\left(\frac{\sqrt{3}}{2} \leqslant y \leqslant \frac{\sqrt{3}}{2}\right) \\
E_{A}=\operatorname{Ra}_{A}\left(\frac{\beta f_{Z}}{c}\right) & E=R a\left(\frac{\beta f_{Z} d}{c}\right)
\end{array}
$$

$$
\begin{aligned}
& F_{A}=\frac{Q d}{k A} \\
& F=\frac{Q d^{2}}{\mathrm{KI}_{\mathrm{w}}} \\
& I_{A}=\left(\frac{\operatorname{Pr} d^{3}}{c E_{A} A}\right)^{1 / 2} \frac{\Pi}{\mu} \\
& L=\left(\frac{\operatorname{Pr}}{C E_{A} T_{W}}\right)^{1 / 2} \frac{\Pi_{d}^{2}}{H} \\
& \underset{A}{\operatorname{Ra}}=\operatorname{Pr} G r_{A} \\
& \operatorname{Pr}=\frac{\mu c}{k} \\
& G r_{A}=\frac{\rho^{2} \beta f_{Z^{A d}}{ }^{4}}{\mu^{2}} \\
& \mathrm{Ra}=\mathrm{Pr} \mathrm{Gr} \\
& \zeta_{n}=\frac{4 n \pi}{3} \\
& G r=\frac{\rho^{2} \beta f_{Z} T_{w} d^{3}}{\mu^{2}}
\end{aligned}
$$

The mass through -flow is

$$
V=\rho \int_{R} W d \sigma
$$

Then, the dimensionless mass through-flow is

$$
\begin{equation*}
v_{A}=8 \sqrt{3} \sum_{n=1}^{\infty} \frac{1}{\zeta_{n}^{2}}\left(\frac{F_{A}-\zeta_{n}^{2} I_{A}}{\zeta_{n}^{4}+R_{a}}\right) \quad \text { if } A \neq 0 \tag{131}
\end{equation*}
$$

and,

$$
\begin{equation*}
\nabla=8 \sqrt{3} \sum_{n=1}^{\infty} \frac{1}{\zeta_{n}^{4}}\left(\frac{F}{\zeta_{n}^{2}}-L\right) \quad \text { for } A=0 \tag{132}
\end{equation*}
$$

where

$$
v_{\mathrm{A}}=\frac{1}{\mathrm{E}_{\mathrm{A}}} \frac{\beta f_{Z}}{k} \nabla \quad v=\frac{1}{\mathrm{E}} \frac{\beta f_{Z}}{k} \nabla
$$

The mean mixed temperature is

$$
\theta_{M M}=\int_{R} \theta W d \sigma / \int_{R} w d \sigma
$$

Then the dimensionless mean mixed temperature is

$$
\begin{equation*}
\theta^{*}=\frac{8, \sqrt{3}}{v_{A}} \sum_{n=1}^{\infty} \frac{1}{\zeta_{n}^{2}}\left[\frac{\left(\zeta_{n}^{2} \mathrm{~F}_{\mathrm{A}}+\mathrm{L}_{A} \mathrm{R}_{\mathrm{a}_{A}}\right)\left(F_{A}-\zeta_{\mathrm{n}}^{2} \mathrm{~L}_{A}\right)}{\left(\zeta_{n}^{4}+R_{a_{A}}\right)^{2}}\right] \text { if } A \neq 0 \tag{133}
\end{equation*}
$$

and,

$$
\begin{equation*}
\theta^{*}{ }_{M M}=\frac{8 \sqrt{3}}{\nabla} \sum_{n=1}^{\infty} \frac{F}{\zeta_{n}{ }^{6}}\left(\frac{F}{\zeta_{n}{ }^{2}}-L\right) \quad \text { for } A=0 \tag{134}
\end{equation*}
$$

The average Nusselt number may be defined as

$$
\begin{equation*}
N u_{A}=\frac{d}{k(A d)} \int_{B} q d s / \int_{B}^{d s}=\frac{R_{a_{A}} \nabla_{A}}{3 \sqrt{3}}-\frac{F_{A}}{4} \text { if } A \neq 0 \tag{135}
\end{equation*}
$$

and,

$$
\begin{equation*}
N u=\frac{d}{\mathrm{KT}_{W}} \int_{B} q d s / \int_{B} d s=-\frac{1}{4} F \quad \text { for } A=0 \tag{136}
\end{equation*}
$$

The relationship between the dimensionless mass through-flow and the dimensionless heat source and pressure gradient parameters is, if $A \neq 0$,

$$
\begin{array}{ll}
\nabla_{A}=.002601 F_{A}-.04856 L_{A} & \text { for } R a_{A}=1 \\
v_{A}=.002529 F_{A}-.04729 L_{A} & \text { for } R a_{A}=10 \\
\nabla_{A}=.001980 F_{A}-.03762 L_{A} & \text { for } R a_{A}=100
\end{array}
$$

$$
\begin{array}{ll}
\nabla_{A}=.000614 F_{A}-.01380 L_{A} & \text { for } \mathrm{Ra}_{A}=1000 \\
\nabla_{A}=.000093 \mathrm{~F}_{A}-.00298 \mathrm{I}_{\mathrm{A}} & \text { for } \mathrm{Ra}_{A}=10000
\end{array}
$$

Nusselt numbers were calculated according to equation (135) using these relationships. The results are given in Figure (7). When the pressure gradient parameter is positive and the Rayleigh number is high enough, large values of the heat source parameter will change the direction of the overall heat transfer. A comparison with the results (light curves in Figure 7) obtained by Lu for a duct with a cross section of 60° circular sector (ref. 3), shows that the difference between the two shapes, althcugh small at small values of the Rayleigh number, increases as the Rayleigh number increases. It is also seen that the Nusselt number approaches its final asymptotic value sooner in the case of the equitriangular cross section, $\mathrm{L}_{\mathrm{A}}=0$. F. Transient Viscous Flow of an Incompressible Fluid with Suspended

Particles

The equation of motion for the transient laminar flow of an incompressible fluid with a uniform suspension of solid particles, for the case of Stokes drag coupling, is (ref. 18 and 19)

$$
\begin{equation*}
\frac{\partial W}{\partial t}=v \nabla^{2} W+\frac{b}{\tau}\left(W_{P}-W\right)+K v \text {, in the triangle } R \tag{137}
\end{equation*}
$$

where W is the fluid velocity; h_{P}, the particle velocity; v, the kinematic viscosity; b, the ratio of the particle concentration density to the fluid density; τ, the momentum equilibrium time (ref. 18 and 19); and K, the axial pressure gradient parameter $-\frac{1}{\mu} \frac{\partial P}{\partial Z}$. The rate of
change of particle velocity due to the Stokes drag force is

$$
\begin{equation*}
\frac{\partial W_{P}}{\partial t}=-\frac{1}{\tau} \quad\left(W_{P}-W\right) \tag{138}
\end{equation*}
$$

The no-slip boundary condition for the fluid is

$$
\begin{equation*}
W=0 \quad \text { on } B \tag{139}
\end{equation*}
$$

For the fluid originally at rest, with the particles suspended also at rest, the initial conditions are

$$
\left.\begin{array}{l}
W=0 \tag{140}\\
W_{P}=0
\end{array}\right\} \quad \text { at } t=0
$$

This corresponds to the general boundary value problem with

$$
\begin{array}{ll}
f=W & g=W_{P} \\
a_{1}=1 & b_{1}=1 \\
a_{2}=\nu & b_{2}=0 \\
a_{3}=-b / \tau & b_{3}=-1 / \tau \\
a_{4}=b / \tau & b_{4}=1 / \tau \\
A(t)=K v & B(t)=0 \\
F\left(p_{1}, P_{2}\right)=0 & G\left(p_{1}, p_{2}\right)=0
\end{array}
$$

Using these values in equations (52) through (55), one obtains,

$$
\begin{equation*}
\int \frac{d \tilde{W}}{d t}=-v \lambda_{n}^{2} \tilde{W}-\frac{b}{\tau} \tilde{W}+\frac{b}{\tau} \tilde{W}_{P}+\frac{6 a}{\lambda_{n}} K v \tag{142}
\end{equation*}
$$

$$
\begin{cases}\frac{\tilde{W}_{P}}{d t}=\frac{1}{\tau} \tilde{W}-\frac{1}{\tau} \tilde{W}_{P} \\ \tilde{W}=0 & \text { at } t=0 \\ \tilde{W}_{P}=0 & \text { at } t=0\end{cases}
$$

Solving equations (142) and (143) simultaneously with the initial conditions (144) and (145), we have

$$
\begin{align*}
& \sim_{W}=\frac{6 a K}{\lambda_{n}^{3}}\left[1+\frac{D_{1}}{D_{2}-D_{1}}\left(1+\tau D_{2}\right) e^{D_{2} t}-\frac{D_{2}}{D_{2}-D_{1}}\left(1+\tau D_{1} e^{D_{1} t}\right]\right. \tag{14,6}\\
& \tilde{W}_{P}=\frac{6 a K}{\lambda_{n}^{3}}\left[1+\frac{D_{1}}{D_{2}-D_{1}} e^{D_{2} t}-\frac{D_{2}}{D_{2}-D_{1}} e^{\left.D_{1} l^{t}\right]}\right.
\end{align*}
$$

where

$$
\begin{align*}
& D_{1}=-\left(\frac{v \lambda_{n}^{2}}{2}+\frac{b+1}{2 \tau}\right)+\frac{1}{2} \sqrt{v^{2} \lambda_{n}^{4}+\frac{2 v \lambda_{n}^{2}(b-1)}{\tau}+\frac{(b+1)^{2}}{\tau^{2}}} \\
& D_{2}=-\left(\frac{v \lambda_{n}^{2}}{2}+\frac{b+1}{2 \tau}\right)-\frac{1}{2} \sqrt{v^{2} \lambda_{n}^{4}+\frac{2 v \lambda_{n}^{2}(b-1)}{\tau}+\frac{(b+1)^{2}}{\tau^{2}}} \tag{1,8}
\end{align*}
$$

Substituting equations (146) and (147) into the inversion formulas (58) and (59) gives

$$
\begin{aligned}
& W=\frac{4 K}{\sqrt{3} a} \sum_{n=1}^{\infty} \frac{1}{\lambda_{n}^{3}}\left[1+\frac{D_{1}}{D_{2}-D_{1}}\left(1+\tau D_{2}\right) e^{D_{2} t}-\frac{D_{2}}{D_{2}-D_{1}}\left(1+\tau D_{1}\right) e^{D_{1} t}\right]_{(15} \\
& X\left[\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}-\frac{\sqrt{3} Y}{2}+\frac{X}{2}\right)+\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}+\frac{\sqrt{3} I}{2}+\frac{X}{2}\right)+\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}-X\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& W_{P}=\frac{4 K}{\sqrt{3 a}} \sum_{n=1}^{\infty} \frac{1}{\lambda_{n}^{3}}\left[1+\frac{D_{1}}{D_{2}-D_{1}} e^{D_{2} t}-\frac{D_{2}}{D_{2}-D_{1}} e^{D_{1} t}\right] \\
& x\left[\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}-\frac{\sqrt{3 Y}}{2}+\frac{x}{2}\right)+\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}+\frac{\sqrt{3 I}}{2}+\frac{X}{2}\right)+\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}-x\right)\right]
\end{aligned}
$$

The fluid and particle velocity distributions can be nondimensionalized by letting

$$
\begin{array}{lll}
W=\frac{W}{K a^{2}} & x=\frac{X}{2 a / \sqrt{3}} & \left(-1 \leqslant x \leqslant+\frac{1}{2}\right) \\
W_{P}=\frac{W_{P}}{K a^{2}} & y=\frac{Y}{a} & (-1 \leqslant y \leqslant+1)
\end{array}
$$

Then, equations (150) and (151) become

$$
\begin{align*}
& w=\frac{3}{2 \pi^{3}} \sum_{n=1}^{\infty} \frac{1}{n^{3}}\left[1-\frac{D_{2}^{*}}{D_{2}^{*}-D_{1}^{*}}\left(1+\tau^{*} D_{1}^{*}\right) e^{D_{1}^{*} t^{*}}+\frac{D_{1}^{*}}{D_{2}^{*}-D_{1}^{*}}\left(1+\tau^{*} D_{2}^{*}\right) e^{D_{2}^{*} t^{*}}\right] \\
& X\left[\sin \frac{2 n \pi}{3}\left(1-\frac{3}{2} y+x\right)+\sin \frac{2 n \pi}{3}\left(1+\frac{3}{2} y+x\right)+\sin \frac{2 n \pi}{3}(1-2 x)\right] \tag{152}\\
& { }^{W_{P}}=\frac{3}{2 \pi^{3}} \sum_{n=1}^{\infty} \frac{1}{n^{3}}\left[1-\frac{D_{2}^{*}}{D_{2}^{*}-D_{1}^{*}} e^{\left.D_{1}^{*} t^{*}+\frac{D_{1}^{*}}{D_{2}^{*}-D_{1}^{*}} e^{D_{2}^{*} t^{*}}\right]}\right. \\
& X\left[\sin \frac{2 n \pi}{3}\left(1-\frac{3}{2} y+x\right)+\sin \frac{2 n_{\pi}}{3}\left(1+\frac{3}{2} y+x\right)+\sin \frac{2 n_{\pi}}{3}(1-2 x)\right] \tag{153}
\end{align*}
$$

Here

$$
\begin{aligned}
& t^{*}=\frac{t}{a^{2} / v} \\
& D_{1}^{*}=-\left(\frac{\tau n^{2} n^{2}}{3}+\frac{b+1}{2 \tau^{*} / v}\right)+\sqrt{\frac{4 n^{4} \pi^{4}}{9}+\frac{2 n^{2} \pi^{2}(b-1)}{3 \tau^{*}}+\frac{(b+1)^{2}}{4 \tau^{* 2}}} \\
& D_{2}^{*}=-\left(\frac{2 n^{2} \pi^{2}}{3}+\frac{b+1}{2 \tau^{*}}\right)-\sqrt{\frac{4 n^{4} \pi^{4}}{9} \frac{2 n^{2} \pi^{2}(b-1)}{3 \tau^{*}}+\frac{(b+1)^{2}}{4 \tau^{* 2}}}
\end{aligned}
$$

The dimensionless mean velocities are:

$$
\begin{align*}
W_{H}= & \frac{\int_{R} w d \sigma}{\int_{R} d \sigma}=\frac{9}{2 \pi^{4}} \sum_{n=1}^{\infty} \frac{1}{n^{4}}\left[1-\frac{D_{2}^{*}}{D_{2}^{*}-D_{1}^{*}}\left(1+\tau^{*} D_{1}{ }^{*}\right) e^{D_{1}{ }^{*} t^{*}}\right. \\
& +\frac{D_{1}^{*}}{D_{2}^{*}-D_{1}^{*}}\left(1+\tau D_{2}^{*}\right) e^{\left.D_{2}^{*} t^{*}\right]} \tag{154}\\
W_{P M}= & \frac{R}{\int_{R} d \sigma}=\frac{9}{2 \pi^{4}} \sum_{n=1}^{\infty} \frac{1}{n^{4}}\left[1-\frac{D_{2}^{*}}{D_{2}^{*}-D_{1}^{*}} e^{D_{1}^{*} t^{*}}+\frac{D_{1}^{*}}{D_{2}^{*}-D_{1}^{*}} e^{\left.D_{2}^{*} t^{*}\right]}\right. \tag{155}
\end{align*}
$$

These values were calculated and the results are given in Figures
(8) through (12). For spherical particles of radius $\boldsymbol{\epsilon}$, the momentum equilibrium time according to Stokes drag law, is (ref. 14)

$$
\tau=\frac{2}{9} \frac{\rho_{\mathrm{P}} \Theta^{2}}{\rho_{\mathrm{L}}}
$$

or, in dimensionless form

$$
\tau^{*}=\frac{2}{9} \frac{\rho_{P}}{\rho_{L}}\left(\frac{E}{a}\right)^{2}
$$

Figure (8) shows that the fluid-particle velocity difference is small when the particles are small in size. For large particles, however, the fluid-particle velocity difference is large as shown by Figure (9). Increasing the number of particles increases the time needed to reach steady flow, although the time when the fluid and the particles start accelerating seems to be the same for all concentrations. At low particle concentrations, Figure (10), the fluid moves the particles with it at all times when the particle size is small. With large particles, the fluid flow is unaffected but large fluidparticle velocity differences result. When large particle concentrations are present, Figure (11), lower particle and fluid accelerations result. For large particle sizes, the fluid starts accelerating sooner but the particles start later. The time to reach steady flow is also increased as particle size is increased. The limiting case of very large b, with very small τ, is shown in Figure (12). Here, as the particles begin to accelerate, the fluid velccity approaches the intermediate value of a flow past staticnary particles. Then the fluid and particles accelerate to the same final steady value of velocity.
G. Transient Conduction with Heat Generation

The governing equation for transient heat conduction with uniform heat generation in an equitriangular column is

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}=\alpha \nabla^{2} \theta+\frac{Q}{\rho c} \quad \text {, in the triangle } R \tag{156}
\end{equation*}
$$

where θ stands for $T-T_{W}$. The column is initially at temperature T_{0} and the wall surfaces are maintained at temperature T_{w} for $t \geqslant 0$. Then, the initial and boundary conditions are

$$
\begin{array}{ll}
\theta=0 & \text { on } B \\
\theta=T_{0}-T_{w}=\theta_{0} & \text { at } t=0 \tag{158}
\end{array}
$$

This belongs to the general boundary value problem with

$$
\begin{aligned}
& f=\theta \\
& a_{1}=1 \\
& a_{2}=\alpha \\
& A(t)=Q / p c \\
& F\left(p_{1}, p_{2}\right)=\theta_{0}
\end{aligned}
$$

as the only non-zero quantities.
Substituting these into equations (51) through (55), and using the previously obtained equitriangular transform of a constant, one obtains,

$$
\left\{\begin{array}{l}
\frac{d \tilde{\theta}}{d t}=-\alpha \lambda_{n}^{2} \tilde{\theta}+\frac{6 a}{\lambda_{n}} \frac{Q}{\rho c} \tag{159}\\
\tilde{\theta}=\frac{6 a}{\lambda_{n}} \theta_{0} \quad \text { at } t=0
\end{array}\right.
$$

44

The solution to this initial value problem is

$$
\begin{equation*}
\tilde{\theta}=\frac{6 a}{\lambda_{n}}\left[\theta_{0} e^{-\alpha \lambda_{n}^{2} t}+\frac{1}{\alpha \lambda_{n}^{2}} \frac{Q}{p c}\left(1-e^{-\alpha \lambda_{n}^{2} t_{1}}\right)\right] \tag{161}
\end{equation*}
$$

Substituting this into equation (58), we have

$$
\begin{aligned}
\theta & =\frac{4}{\sqrt{3 a}} \sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}\left[\theta_{0} e^{-\alpha \lambda_{n}^{2} t}+\frac{1}{\alpha \lambda_{n}{ }^{2}} \frac{Q}{\rho c}\left(1-e^{-\alpha \lambda_{n}{ }^{2} t}\right)\right] \\
& X\left[\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}-\frac{\sqrt{3 I}}{2}+\frac{x}{2}\right)+\sin \lambda_{n}\left(\frac{a}{\sqrt{3}}+\frac{\sqrt{3} Y}{2}+\frac{X}{2}\right)+\sin \lambda_{n}\left(\begin{array}{c}
a \\
3
\end{array}-x\right)\right]
\end{aligned}
$$

Equation (162) can be nondimensicnalized by letting

$$
\begin{array}{ll}
\theta^{*}=\frac{\theta}{\theta_{0}} & x=\frac{X}{2 a / \sqrt{3}} \\
Q^{*}=\frac{Q a^{2}}{k \theta_{0}} & y=\frac{Y}{a} \quad(-1 \leqslant y \leqslant+1) .
\end{array}
$$

Then, the dimensionless temperature distribution is

$$
\begin{aligned}
\theta^{*} & =\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n}\left[e^{-\omega_{n} F o}+\frac{Q^{*}}{\omega_{n}}\left(1-e^{-\omega_{n} F o}\right)\right] \\
& \times\left[\sin \frac{2 n \pi}{3}\left(1-\frac{3}{2} y+x\right)+\sin \frac{2 n \pi}{3}\left(1+\frac{3}{2} \pi+x\right)+\sin \frac{2 n \pi}{3}(1-2 x)\right]
\end{aligned}
$$

where FO is the Fourier number:, and $\omega_{n}=\frac{4 n^{2} \pi^{2}}{3}$.

The sustained temperature distribution (i.e., Fo $\rightarrow \infty$) corresponds to the steady viscous flow velocity distribution with w replaced by θ^{*} / Q^{*}. Thus, the profiles shown in Figure (2) also describe the distribution of θ^{*} / Q^{*}.

Equation (163) reduces to equation (111) for $Q^{*}=0$. That is, the temperature profiles along the line $y=0$ for transient heat conduction with no heat generation are also shown in Figure (4).

An integral transform has been established for solving a class of boundary value problems of the first kind in an equitriangular region. The transform of the Laplacian of a function was shown to be related to the transform of the function itself. This fact also relates the transform of $\nabla^{2 n}$ to that of $\nabla^{2(n-1)}$. Thus, by successive use of this property, partial differential equations involving powers of the Laplacian operator can be reduced to ordinary differential equations or algebraic equations.

The set of eigenfunctions used to establish this transform is not a complete set; however, by narrowing down the type of boundary value problems to be treated, the known set has been used to the greatest advantage. The procedure employed consisted of first joining the known set of eigenfunctions with an unknown complementary set of eigenfunctions to form the complete set. Then, the admissible type of boundary value problems becomes the class of problems which can be solved by the method of transform without any knowledge of the complementary eigenfunctions. This requires that the inhomogeneous terms and initial conditions be constants or functions like $\sin \lambda_{5} \mathrm{p}_{1}+\sin \lambda_{5} \mathrm{P}_{2}+\sin \lambda_{5} \mathrm{p}_{3}$. Also, the problem must have zero boundary values of $\left(\nabla^{2}\right)^{i} ; i=0,1,2, \ldots(n-1)$.

The above format could be followed in establishing integral transforms for other regions in which an incomplete set of eigenfunctions is known.

A general time dependent boundary value problem, in an equitriangular region, with position dependent initial conditions of the admissible class, was solved by the transform method. The case of a coupled system of two dependent variables, with differential operators $\left(\nabla^{2}\right)^{1}$ and $\left(\nabla^{2}\right)^{0}$, and zero functional value on the boundary, was considered. Boundary value problems corresponding to this general problem can be solved by direct substitution into the given transformed equations. It shculd be noted, however, that this is not the most general boundary value problem solvable by the method of equitriangular transform. The admissible class of problems includes the time dependent coupled system of m equations with m dependent variables, with higher powers of ∇^{2} operating on each of the variables.

The velocity distribution for steady viscous incompressible fluid flow, and the temperature distribution for steady laminar forced convection, wereobtained as special cases of the general boundary value problem. These series solutions were numerically compared with previously obtained closed form solutions to investigate the rate of convergence and the Gibbs' phenomenon of the series. The analysis showed the general series behavior to be similar to that of an ordinary Fourier series.

The previously unsolved problems of transient natural convection, steady combined natural and forced convection, transient viscous flow with suspended particles, a nd transient conduction with heat generation were solved also as special cases of the general boundary value problem. Some numerical results were also worked out which should prove to be of practical value.

V. NOMENCLATURE

A	$=\partial T / \partial Z$
$A(t)$	$=$ function of time
a	$=$ half side of the equilateral triangle
$a_{1}, a_{2}, a_{3}, a_{4}$	$=$ constants
B	= boundary of R
$B(t)$	= function of time
b	= ratio of particle concentration density to fluid density
$b_{1}, b_{2}, b_{3}, b_{4}$	= constants
C	$=$ constant
c	= specific heat of an incompressible medium
D_{1}, D_{2}	= damping factors
$\mathrm{D}_{1}^{*}, \mathrm{D}_{2}{ }^{*}$	= dimensionless damping factors
d	$=2 a / \sqrt{3}$, hydraulic diameter
E	$=\operatorname{Ra}\left(\beta f_{z} d / c\right)$
E_{A}	$=\operatorname{Ra}_{A}\left(\beta f_{z} d / c\right)$
e	= exponential base
F	$=Q d^{2} / \mathrm{kT} T_{w}$, dimensionless heat source paramter
$F_{\text {A }}$	= Qd/kA, dimensionless heat source parameter
$\mathrm{F}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)$	= function of position
Fo	$=\alpha / a^{2}$, Fourier number
1	= a dependent variable
f_{2}	= body force per unit mass, positive in -2 direction
$G\left(p_{1}, p_{2}\right)$	$=$ function of position

G r	$=\left(p^{2} \beta_{z}{ }_{2}{ }_{w} d^{3} / \mu^{2}\right)$, Grashof number
Gr_{A}	$=\left(\rho^{2} \mathrm{\beta f}_{\mathrm{z}} \mathrm{Ad}^{4} / \mu^{2}\right)$, modified Grashof number
g	= a dependent variable
K	$=-\frac{1}{\mu} \frac{\partial P}{\partial Z}$, pressure gradient parameter
K_{2}	$=\rho c / k \quad \partial T / \partial Z$
K_{2}	$=\mathrm{Q} / \mathrm{k}$
$\mathrm{K}_{2}{ }^{*}$	$=K_{2} /-K_{1} a^{2}$
k	= thermal conductivity
L	$\begin{aligned} = & \left(\operatorname{Pr} / \mathrm{c} \in \mathrm{~T}_{\mathrm{W}}\right)^{1 / 2} \prod_{\mathrm{d}}{ }^{2} / \mu, \text { dimensionless pressure } \\ & \text { gradient parameter } \end{aligned}$
L_{A}	$=\left(\operatorname{Prd}^{3} / \mathrm{cEA}\right)^{1 / 2} \Pi / \mu$, dimensionless pressure gradient parameter
M_{m}	$=$ norm of Ω_{m}
m	$=1,2,3$, etc.
ヘ	$=$ outward unit normal vector (two-dimensional) of B
N_{n}	= norm of ϕ_{n}
Nu	= average Nusselt number
Nu_{A}	= average Nusselt number
n	$=1,2,3$, etc.
P	= pressure
Pr	$=\nu / \alpha$, Prandtl number
$\mathrm{p}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$	= trilinear coordinates
Q	= heat source term
Q*	= dimensionless heat source term
q	= normal wall heat flux, positive inward

R	$=$ the two dimensional region under investigation
Ra	$=\operatorname{Pr} \mathrm{Gr}$, Rayleigh number
Ra_{A}	$=\operatorname{Pr} \mathrm{Gr}_{\mathrm{A}}$, modified Rayleigh number
ds	$=$ Iine element along B
T	$=$ temperature
t	$=$ time
t^{*}	$=v t / a^{2}$, dimensionles time
V	$=$ mass through-flow
v	$=(1 / E)\left(B f_{z} / k\right) \nabla \text {, dimensionless mass-through flow }$
${ }^{\text {® }}$ A	$=\left(1 / E_{A}\right)\left(\beta f_{z} / k\right) V \text {, dimensionless mass-through flow }$
W	= axial velocity
W_{P}	= particle axial velocity
w	= dimensionless axial velocity
${ }^{W}$	= dimensionless particle axial velocity
X, Y, Z,	= Cartesian coordinates
x	= dimensionless x-coordinate
y	= dimensionless y-coordinate
α	$=\mathrm{k} / \mathrm{pc}$, thermal diffusivity
β	= thermal coefficient of volumetric expansion
∇	$=$ gradient
∇^{2}	$=\frac{\partial^{2}}{\partial X^{2}}+\frac{\partial^{2}}{\partial Y^{2}}=\frac{\partial^{2}}{\partial p_{7}^{2}}+\frac{\partial^{2}}{\partial p_{2}^{2}}+\frac{\partial^{2}}{\partial p_{3}^{2}}-\frac{\partial^{2}}{\partial p_{1} \partial p_{2}}-\frac{\partial^{2}}{\partial p_{1} \partial p_{3}}-\frac{\partial^{2}}{\partial p_{2} \partial p_{3}}$
6	= damping factor
c	= particle radius
ζ_{n}	$=4 \mathrm{n} \pi / 3$
θ	$=T-T_{W}$

51

θ^{*}	= dimensionless temperature difference
λ_{n}	= eigenvalues of m_{n},
μ	$=$ absolute viscosity coefficient
v	$=\mu / \rho$, kinematic viscosity coefficient
5 m	$=$ eigenvalues of Ω_{m}
11	$=\mathrm{dP} / \mathrm{dZ}+\rho_{\mathrm{w}} \mathrm{f}_{\mathrm{Z}}, \text { pressure gradient parameter }$
π	$=3.14159$
ρ	$=$ density
P_{w}	$=$ reference density evaluated at temperature $\mathrm{T}_{\mathbf{w}}$
$\sum_{\substack{\text { d }}}$	$=$ sumation over $n=1,2,3, \ldots$ $=$ area element of R
t	= momentam equilibrium time
τ^{*}	$=v \tau / a^{2}$, dimensionless momentum equilibrium time
\emptyset	= a dependent variable
${ }_{1}$	$=$ eigenfunctions
Ω	= eigenfunctions
ω_{n}	$=4 n^{2} n^{2} / 3$

Subscripts

0	$=$ initial value
M	$=$ mean value
MM	$=$ mean mixed
m	$=1,2,3$, etc.
n	$=1,2,3$, etc.
W	$=$ wall value
Z	$=$ axial direction

1. Kaplan, S. and Sonnemann, G.; A Generalization of the Finite Integral Transform Technique and Tables of Special Cases, Proceedings of the Lth Midwestern Conference on Solid Mechanics (University of Texas, Austin, Texas, 1959), 497-513.
2. Kaplan, S. and Sonnemann, G.; The Method of Finite Integral Transforms in Heat Transfer Problems, Proceedings of the International Heat Transfer Conference (ASME, New York, 1963), 1-6.
3. Lu, P.C.; Combined Free and Forced-Convection Heat-Generating Laminar Flow Inside Vertical Pipes with Circular Sector Cross Sections, Journal of Heat Transfer, 82C, 227-232 (1960).
4. Sen, B.; Note on Some Two Dimensional Problems of Elasticity Connected with Plates Having Triangular Boundaries, Bulletin of the Calcutta Mathematical Society, 26, 65-72 (1934).
5. Sen, B.; Note on the Bending of a Thin Equilateral Plate under Tension, ZAMM, 40, 276-277 (1960).
6. Sen, B.; Note on the Flow of Viscous Liquid Through a Channel of Eouilateral Triangular Section under Exponential Pressure Gradient, Revue Roumaine des Sciences Techniçues, Serie de Méchanique Applicuée, 9, 307-310 (1964).
7. Crăciun, C.; Note on the Unsteady Motion of a Viscous Fluid in a Triangular Pipe, Revue Roumaine des Sciences Technique, Serie de Méchanique Appliquée, 2, 767-769 (1964).
8. Izumi, R.; Natural Heat Convection Inside the Vertical Tube, Proceedings of the Sixth Japan National Congress for Applied Mechanics (Science Council of Japan, Tokyo, Japan, 1957) 393-396.
9. Ostrach, S.; Combined Natural- and Forced-Convection Laminar Flow and Heat Transfer of Fluids with and without Heat Sources in Channels with Linearly Varying Wall Temperatures, NACA TN 3141 (1954).
10. Han, L. S.; Laminar Heat Transfer in Rectangular Channels, Journal of Heat Transfer, 81C, 121-128 (1959).
11. Tao, L. N.; On Combined Free and Forced Convection in Channels, Journal of Heat Transfer, 82C, 233-238 (1960).
12. Tao, L. N.; Heat Transfer of Combined Free and Forced Convection in Circular and Sector Tubes, Applied Scientific Research, 9A, 357-368 (1960).
13. Carslaw, H. S. and Jaeger, J.C.; Conduction of Heat in Solids (Oxford University Press, London, 1959).
14. Langlois, W.E.; Slow Viscous Flow (Macmillan, New York, 1964).
15. Tao, L. N.; On Some Laminar Forced-Convection Problem, Journal of Heat Transfer, 83C, 467-472 (1961).
16. Courant, R. and Hilbert, D.; Methods of Mathematical Physics, 1, (Interscience Publishers, New York, 1953).
17. Page, C. H.; Physical Mathematics (Van Nostrand, Princeton, 1955)
18. Singleton, R. E.; The Compressible Gas-Solid Particle Flow Over a Semi-Infinite Flat Plate, ZAMP, Vol. 16, $421-448$ (1965).
19. Marble, F.E.; Dynamics of a Gas Containing Small Solid Particles, 5th AGARDograph Colloquium on Combustion and Propulsion, 175-213 (1963).

In this Appendix, numerical solutions to the steady viscous flow problem and the steady laminar forced convection problem are analyzed in detail. The solutions obtained by the equitriangalar transform method are compared with the closed form solutions.

The dimensionless velocity distribution for the steady viscous flow of an incompressible fluid is given in series form by equetion (75), and in closed form by equation (77). Along the line $y=0$, these are

$$
w=\frac{3}{2 \pi^{3}} \sum_{n=1}^{\infty} \frac{1}{n^{3}}\left[2 \sin \frac{2 n \pi}{3}(1+x)+\sin \frac{2 n \pi}{3}(1-2 x)\right]
$$

and,

$$
w=\frac{1}{9}(1-2 x)(x+1)^{2}
$$

where

$$
-1 \leqslant x \leqslant+\frac{1}{2}
$$

The percent changes in the value of w according to the series, due to the addition of each of the first 16 terms, are given for various values of x in Table II. These results show that a term contributing a small amount to the series value is of followed by a term making a substantial change. Thus, testing for convergence is better made on the change due to the addition of a group of terms. All numerical values calculated in this work are terminated when a
three-term group changes the current series value by an amount smaller than 0.01 percent.

Velocity profiles given by the closed form and the series form are shown in Figure (2). No distinguishment can be made between the series and closed form profiles because of the minuteness of the difference between these values. The number of terms required for convergence within .01 percent, and the percent error as compared with the closed form solution are given in Table III for increments in x of 0.1. The table shows that the error is largest near the boundaries; and that, in general, large numbers of terms are required near the boundaries.

The number of terms required for convergence and the percent error between the series and closed form solutions are given in Table IV for values of x very close to the boundaries. The behavior of the series near the base is better than near the tip of the triangle. As the boundary is approached, the error increases. Thus, Gibbs' phenomenon seems to occur for $-1.000<x<-.998$ or $.498<x<.500$.

The dimensionless temperature distribution for steady laminar forced convection is given by equation (86) in the series form, and equation (87) in the closed form. Along the line $y=0$, these are

$$
\theta^{*}=\sum_{n=1}^{\infty}\left(\frac{9}{8 n^{5} \pi^{5}}+\frac{3 K_{2}^{*}}{2 n^{3} \pi^{3}}\right)\left[2 \sin \frac{2 n \pi}{3}(1+x)+\sin \frac{2 n \pi}{3}(1-2 x)\right]
$$

and,

$$
\theta^{*}=\frac{1}{108}(1-2 x)(x+1)^{2}\left(1-x^{2}-12 K_{2}^{*}\right)
$$

where

$$
-1 \leqslant x \leqslant+\frac{1}{2}
$$

Temperature profiles calculated according to these equations are shown in Figure (3). Again, no distinguishment can be made between the series and closed form profiles. The number of terms required for convergence within .01 percent, and the error referred to the closed form are given in Table ∇ for the case of $K_{2}{ }^{*}=3.0$. Similar results were obtained in the range $-3.0 \leqslant K^{*}<+3.0$. The behavior of the series is poorest near the tip.

The above results seem to indicate a behavior similar to that of a Fourier series. The series seem to converge throughoat the region; however, a large number of terms might be required near the boundary. The series would converge to the correct value except near the boundaries, where Gibbs' phenomenon could occur.

Eigenfunctions (Cortesian form)
Eigenvalues

$$
\begin{aligned}
& \text { Transform of the Laplacian of } \phi^{(1)} \\
& \text { Transform of a constant } c
\end{aligned}
$$

Inversion of $\phi^{(2)}$
table I continued

(1) \varnothing here must vanish on the sides of the triangle
(2) \varnothing here must be the solution of a boundary value

[^0](2) here must be the solution of a boundary value problem satisfying the three requirements

Term	Percent Change Due to the Addition of Term			
1	100.00	100.00	100.00	100.00
2	49.18	27.27	-14.29	-6.16
3	31.75	<. 01	<. 01	4.04
4	22.69	-3.53	1.75	-2.27
5	17.98	-. 61	-. 91	. 06
6	13.98	<. 01	<. 01	<. 01
7	9.97	. 22	. 33	-. 02
8	7.61	. 44	. 22	. 28
9	5.71	<. 01	<. 01	-. 15
10	4.16	-. 23	. 11	. 05
11	2.90	-. 06	-. 09	-. 08
12	1.88	<. 01	<. 01	<. 01
13	1.07	. 03	. 05	. 05
14	. 45	. 08	-. 04	-. 02
15	<. 01	<.01	$\bigcirc .01$. 03
16	-. 30	-. 06	. 03	-. 04

\mathbf{x}	Number of Terms for Convergence within.01\%	\% Error Compared With Closed Form
-.95	54	-.347
-.90	27	-.324
-.8	42	-.017
-.7	18	-.050
-.6	36	$<.001$
-.5	30	4.005
-.4	18	-.001
-.3	18	-.005
-.2	15	-.006
-.1	15	+.012
0.0	15	-.006
.1	15	-.005
.2	12	-.014
.3	18	-.001
.40	27	-.009
.45	27	-.038

TABLE IV
(a) x near -1.0
x
.- .998
-.996
-.994
-.990
-.986
-.982
-.978
-.974
-.970
-.966
-.962
-.958
-.954
.454
.458
. 462
.466
.470
.474
.478
.482
.486
.490
.494
. 496 .498
x
-.998
-.996
-.994
-.990
-.986
-.982
-.978
-.974
-.970
-.966
-.962
-.958
-.954
(b) x near +.5

Number of Terms for Series
Convergence within . 01%
18
30
36
15
30
21
36
33
39
51
63
75
87
735
369
246
261
105
150
123
105
48
81
72
66
60

\% Error from Closed Form
-28.80
- 4.78
- . 29
- 1.42
+2.59
- . 67
- . 54
- . 47
+3.08
- . 40
- . 38
- . 37
- . 36

- . 36

8
30
3
1
3
3

TABLE V

Number of Terms for
Convergence within .01\%
\% Error Compared with Closed Form
-.95
-.90
57
30
45
21
39
33
21
21
18
18
15
18
15
21
30
30
$-.347$
-. 322
-. 017
$-.050$
-. 001
$+.005$
<. 001
$-.005$
-. 006
$+.011$
-. 010
-. 050
$-.014$
-. 001
-. 009
$-.027$
8

$$
p_{1}=\frac{a}{\sqrt{3}}-\frac{\sqrt{3} Y}{2}+\frac{X}{2}
$$

$$
p_{2}=\frac{a}{\sqrt{3}}+\frac{\sqrt{3} I}{2}+\frac{X}{2}
$$

$$
p_{3}=\frac{a}{\sqrt{3}}-X=\sqrt{3} a-\left(p_{1}+p_{2}\right)
$$

$$
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial Y^{2}}=\frac{\partial^{2}}{\partial p_{1}^{2}}+\frac{\partial^{2}}{\partial p_{2}^{2}}+\frac{\partial^{2}}{\partial p_{3}^{2}}-\frac{\partial^{2}}{\partial p_{1} \partial p_{2}}-\frac{\partial^{2}}{\partial p_{1} \partial p_{3}}-\frac{\partial^{2}}{\partial p_{2} \partial p_{3}}
$$

$$
\text { B: } p_{1}=0, p_{2}=0, p_{3}=0
$$

Figure (1) - The Equitriangular Region

Figure (2) - Dimensionless velocity profile along $y=0$ for steady viscous flow of an incompressible fluid.

Figure (3) - Dimensionless temperature profiles along $y=0$ for steady leminar forced convection

Figure (4) - Dimensionless temperature profiles along y $=0$ for transient natural convection.

Figure (5) - Dimensionless velocity profiles along $y=0$ for transient natural convection

Figure (6) - Mean dimensionless temperature and velocity for transient natural convection.

Figure (7) - Nusselt number for combined natural and forced convection

Figure (10) - Dimensionless mean fluid and particle velccities for transient flow with

Figure (11) - Dimensionless mean fluid and narticlo velocities for transjent flow with

[^0]: stated on page 14
 (3) From equation (74) and ref. 14
 (4) From equation (85) and ref. 15 ,

