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LIFTING BODIES O F  MINLMUM DRAG 

IN HYPERSONIC FLOW ("1 

by 

ARTHURH. LUSTY, JR. (*"I 
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The problem of minimizing the drag of a slender , flat-top , homothetic body in 

1 
I 

hypersonic flow is considered under the assumptions that the pressure coefficient is 

Newtonian and the skin-friction coefficient is constant. The indirect methods of the 

calculus of variations are employed, and the necessary conditions to be satisfied by an I 
I 
1 
I 

optimum body are derived for  arbitrary conditions imposed on the lift, the wetted area, 

the volume , the length , and the thickness. The particular cases treated are the following: 

(a) given lift, (b) given lift and thickness, (c) given lift and wetted area, (d) given lift 
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1 .  INTRODUCTION 

Currently, it is of interest to develop a vehicle which can cruise at moderate 

hypersonic speeds. Since the lift must be equal to the weight at every point of the cruise 

trajectory, it is of interest to  find the vehicle shape which minimizes the drag for a 

given lift, for example, the average lift between the end points of the cruise. In addition 

to this aerodynamic constraint, several constraints of a geometric nature may be of 

interest. For instance, one may choose to specify the wetted area, the volume, the 

length, or the thickness of the configuration. 

In this paper, the above problem is treated for a particular class of bodies, that 

of slender, flat-top, homothetic bodies (Ref. 1). For these bodies, the optimum longi- 

tudinal contour is determined under the assumption that the transversal contour is 

semicircular. Whi le  a semicircular contour is not necessarily the best, the extension 

of the results to  the case of a body of arbitrary transversal contour is immediate if 

one applies the similarity law derived in Ref. 2.  

The complete list of hypotheses is as follows: (a) a plane of symmetry exists between 

the left-hand and right-hand sides of the body; (b) the upper surface of the body is a plane 
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2 .  AERODYNAMIC AND GEOMETRIC QUANTITIES 

AAR-21 

In order to relate the aerodynamic and geometric quantities of a flat-top, homothetic 

body to its geometry, it is necessary to define two coordinate systems: a Cartesian system 

Oxyz and a cylindrical system Oxre. For the Cartesian coordinate system, the origin 0 

is the apex of the body; the x-axis is the intersection of the plane of symmetry with the 

flat top and is positive toward the base; the z-axis is contained in the plane of symmetry, 

perpendicular to the x-axis, and positive downward; and the y-axis is such that the 

xyz-system is right-handed. For the cylindrical coordinate system, r is the distance of 

any point from the x-axis, and 8 measures the angular position of the vector with respect 

to the xy-plane . 

If hypotheses (a) through (11) a r e  considered and if the lower surface is represented 

by the relationship r = r(x), the drag D, the lift L, the wetted area S ,  and the volume V 

are given by (Ref. 2) 
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3 .  MINIMAL PROBLEM 
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The problem of minimizing the drag for arbitrary values imposed on the lift, the 

wetted area, the volume, the length, and the thickness is now formulated as follows: "In 

the class of functions r(x) which satisfy the integral constraints (1-2) through (1-4) and the 

prescribed boundary conditions, find that particular function which minimizes the integral 

( 1 - l ) . "  According to  standard variational procedures (see, for instance, Chapter 1 of 

Ref. 3), this  problem is equivalent to  that of minimizing the functional 

subject to the constraints (1-2) through (1-4) and the prescribed boundary conditions with 

the understanding that the fundamental function F is defined as 

F = r r  - 3  + A  rr .2 + ( h 2 + n C f ) r + h  r 2 
1 3 

where X X , X denote constant Lagrange multipliers. 1' 2 3 



ti- (32 + P A 1 )  = 0 
f f  

li if the length is free and 

11 

if the thickness is free.  

Once the solution of the Euler equation is obtained, it is necessary to verify that 

it actually minimizes the functional (4). In this connection, the Legendre necessary 

condition 
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35+A 20 1 

must be satisfied at every point of the optimum shape. 
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For this case, the first integral (7) in  conjunction wit. the natural boundary condition 

(9) and the conditions A = A = 0 leads to the following differential equation to be satisfied 2 3  

by the optimum shape: 

.3  .2 
f 

2r  + A  r = n C  1 

Since the multiplier A and the friction coefficient C are constant, this equation has 
1 f 

the solution 

i- = Const 

Hence, the optimum flat-top body is the semicone 

r = r x  

which, in  the nondimensional system (12), becomes 

P = <  

The evaluation of the integrals (1) yields the relationships 

2 3  D=rrq& ?(+ + n C )  f 

2 . 3  L = 2q-t r 

S = (1 +.ri./2)P, 2 .  r 

3 . 2  V = (ri/6)& r 
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-1/3 - E, = (4/3rr) (2n) = 0.360 

- 5/6 V, = (n/lZ,/?) (2n) Y 0.123 

A m - 2 1  

Equation (23-1) represents the highest lift-to-drag ratio which can be obtained with a 

flat-top body of semicircular cross section subjected to a flow parallel to  the flat top 

(Ref. 1). Should the body be required to satisfy a certain number of geometric con- 

straints, a decrease in  the lift-to-drag ratio would occur with respect to that predicted 

by Eq. (23-1). 



8. GIVEN LIFT AND WETTED AREA 
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For this case, the relationships C = h = 0 are valid and, as a consequence, the 3 

first integral (7) reduces to 

. 3  2 
f 

2r  + A  i- = A  +nC 
1 2 

and C are constant, this equation has the solution (16) so that Eqs. (17) 
1 7  ‘2 f Since X 

througb (20) are valid. Since the lift and the wetted area are prescribed, the parameter 

S, +,. is known a priori. Hence, because of Eq. (20-2), the optimum thickness ratio is 

given by (Fig. 4) 

The corresponding length can be written as (Fig. 5) 

-3/4 3/4 
4, = 2(2 +n) S, 

Finally, the lift- to- drag ratio becomes (Fig. 6 )  

and achieves the maximum value (23-1) for the value of S, defined by Eq. (23-2). 
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After the  nondimensional coordinates (12) are employed in combination with the definitions 

- 1/3 a = (l/E)Cf 1 /3 , x =AICf (3 4) 

where 

3 3 -1 
B(a,h) = a (2 + Aa - na ) 

and where, because of Eq. (32), 

ur = - 3/21 (3 7) 

The next step consists of relating the quantity X to the prescribed values of the lift 

and the length as well as calculating the maximum lift- to- drag ratio. By combining 

Eqs. (35) with the integrals (1) and the definitions (13), (14), and (34), we obtain the 

relationships 
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Solutions of Class U. For these solutions, the first  integral (30) is solved by - 

(43) 

If the corner conditions (see Chapter 1 of Ref. 3) and the natural boundary condition (10) 

a r e  combined with Eqs . (43), we see that the optimum body is a spike of zero thickness 

followed by a semicone of apex angle identical with that of Section 6 .  If the nondimensional 

coordinates (12) a re  used, the shape is given by (Fig. 7) 

where the dimensionless abcissa of the transition point satisfies the relationship 

-1/2 -1 - c = 1 - (l/2)n .e,, 
-0 

(44) 

(45) 

The thickness ratio and the lift-to-drag ratio of this body are given by (Figs. 8 and 9) 

(46) 
-1/6 - 1  -1/3 

T% = (1/~5) (211.1 , E, = (WIT) (2n) 

These solutions occur in the range 

5 .e;.+ 2 m (4 7) 
-1/2 

(1/2)n 

and are characterized by a lift-to-drag ratio identical with that obtained in the case where 
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10. GIVEN LIFT AND VOLUME 

For this case, the f i r s t  integral (7) in conjunction with the conditions C = h = 0 
2 

leads to  the following differential equation of the optimum shape: 

.3 .2 - 2 r  -Xr  +nC + X r = O  
1 f 3  

which, at the initial point, becomes 

.3 2 
2r .  + A l i i  - nC = O  

1 f (49) 

Furthermore, by applying the natural boundary condition (lo), we see that two classes 

of solutions are possible 

Class I if = - (2/3) X1 

i- = o  
f Class II 

As a first step, we solve Eq. (48) in parametric form as follows: 

i; 

"0 3 Jj-- x = ?(l/?)dr = (2/X ) 1 (3r + $)d? 

. 3  .2 r = (1/X3) (2r + X l r  - nCf) 
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The next step consists of relating the quantity 8. to the prescribed values of the lift 
1 

and the volume as well as calculating the unknown values of the length, the thickness ratio, 

and the lift-to-drag ratio. By combining Eqs . (53) with the integrals (1) and the definitions 

where 

H(B,B~)  = ,  r 3 8  -u +-xu 5 7 +--A 1 2 6  u +-nu 3 5 +xnu 4 +-x 1 2 3  nu - -n 3 2 2  u - Xn 2 u I B  B 

i 1.4 7 6 5 3 2 

The final step consists of eliminating the quantities 8. and B from Eqs . (53) 
1 f 

through (57). If this is done, one obtains the functional relationships 
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11. CONCLUSIONS 

In the previous sections, the problem of minimizing the drag of a slender, flat-top, 

homothetic body of semicircular cross section in hypersonic flow is investigated under 

the assumptions that the pressure coefficient is Newtonian and the skin-friction coef- 

ficient is constant. The indirect methods of the calculus of variations are employed, and 

the necessary conditions to be satisfied by an optimum body are derived for arbitrary 

conditions imposed on the lift, the wetted area,  the volume, the length, and the thickness. 

The particular problems treated a r e  the following: (a) given lift, (b) given lift and 

thickness, (c) given lift and wetted area, (d) given lift and length, and (e) given lift and 

volume. 

1 /3 
f For case (a), the optimum body is a semicone of thickness ratio T = 1.18 C 

-1’3. For each of the cases (b) and (c), the optimum and lift-to-drag ratio E = 0.360 C f 

body is a semicone but the thickness ratio and lift-to-drag ratio are generally different 

from those pertaining to case (a). For case (d), two solutions a r e  possible depending 

on whether the length is smaller of larger than that associated with the optimum semicone 

of case (a). If the length is smaller, a blunt-nosed body is obtained while, if the length is 
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Fig. 2 Optimum thickness ratio. 
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Fig. 3 Maximum lift-to-drag ratio. 
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Fig. 5 Optimum length. 
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Fig. 6 Maximum lift-to- drag ratio. 
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Fig. 8 Optimum thickness ratio. 
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Fig. 9 Maximum lift-to-drag ratio. 
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Fig. 12 Optimum thickness ratio. 
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