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ABSTRACT % L\ IJC}7

This report employs the method of variation of parameters and the
method of averaging to obtain a second-order solution for the motion of a
satellite about an oblate earth, including the second, third, and fourth zonal
harmonics. The parameters used are: two orthogonal unit vectors in the
plane of the motion, one being in the direction of the initial-position vector;
two quantities which are products of the eccentricity and the sine and cosine
of the angle from the initial-position vector to the perigee vector, the magnitude
of the angular momentum vector, and the epoch. The solution is well-behaved
for negative energy, eccentricity less than one, and all inclinations with second-
order secular terms occurring for certain inclinations. The second-order,

) short-period terms are not calculated.
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SECTION I
INTRODUCTION

This report presents the details of the derivation of a second-order, ap-
proximate solution for the motion of an artificial satellite about the earth. The
earth is approximated by an oblate speroid with the oblateness specified by the
second, third, and fourth zonal harmonics. The differential equations upon which
the solution is based are obtained by the method of variation of parameters ap-
plied to the solution of the two-body problem. The parameters, in terms of
which the two~-body solution is expressed, are selected because of the relative
simplicity of the differential equations to which their variations lead, and
freedom from restrictions on initial conditions arising from circularity. The
technique adopted for obtaining the solution is a modification of the method of

averaging.

Section II contains an explanation of the method of averaging as it applies
to the problem at hand and of the modification introduced. The modification con-
sists of retaining some of the periodic terms in the averaged differential equations.
This, obviously, is quite contrary to the intent of the method, rendering the use
of the name, method of averaging, inappropriate. However, since the modification
is slight, it would not be fitting to disguise the method by any other designation.
Even though the incorporation of the periodic terms in the averaged, differential
equations does add measurably to the complexity of their solutions and does not re-
duce significantly the labor required to compute the second-order averaged
differential equations, it appears reasonable to expect an improvement in the basic,
approximate solutions if at least all the linear terms are accounted for in the
averaged equations. ’

The solutions contained in this report have one principal limitation which
is a consequence of the set of parameters employed. The approximate solutions
are not well-behaved in the region of rectilinear motion. It will be tacitly assumed,



| therefore, as is usually the case, that the energy is negative and the eccentricity

less than one. Important qualitative préperties of the solutions under these
restrictions are treated by Kyner. 1 The same author has derived a technique
for estimating the errors in the approximate solutions over a finite interval,
The availability of such estimates, obviously, is an invaluable asset for any
approximate procedure.

In Section III, the potential for the problem is given,and the perturbation

" equations resulting from the application of the method of variation of parameters

to the two-body elements are detailed. Section IV contains the first-order solution.
Section V describes the time-angle relation. In Section VI, the results of the cal-
culations of the mean-values required for the second-order, differential eqixations
are presented. In Section VII, the solutions of these equations are obtained.

The method of solution consists of solving the linearized equations. The
non-linear terms are incorporated into the solutions by the variation of para-
meters of the solutions of the linearized, differential equations, substitution of
the solutions, and integration.

It is of interest to note that the linearized, second-~order, averaged,
differential equations consist principally of two sets of four simultaneous equations.
One of these sets takes into account the interdependence of certain parameters

" caused by the addition of the third zonal harmonic. Also, the contributions from

the non-linear terms to the solutions introduce combinations of constants in the
denominators which appear to be a source of difficulty. This characteristic,
present in most solutions of the problem, is the small-divisor property and is
commented on briefly in Sections IV and VIII. Finally, it should be noted that the
second-order, short-period terms have not been computed.




SECTION II
- THE METHOD OF AVERAGES

The method of averages, 2 as employed in this report, offers a technique
for obtaining an approximate, closed form solution of differential equations
under certain conditions. The differential equations must be such that a zero-
order solution is already known, and the exact solution must be a small
variation of the zero-order solution. In order to obtain higher order solutions,
a second set of differential equations, derived by the application of the Method
of variation of parametersto the parameters of the zero-order solution, must
be developed. These equations determine the dependence of those parameters
on that part of the original differential equations not satisfied by the zero-order
solution. If the derived equations were amenable to exact solution, the total
solution would then take the form of the zero-order solution with the parameters .
expressed as functions of the dependent variable. In general, however, exact
expressions for the parameters cannot be found and approximate solutions must
suffice. The Method of Averages is applied to the derived set of differential

. equations to obtain these approximate solutions.

Let the derived set of differential equations be denoted by

A

(d/dt) (®) = € X (x.t, €) (@-1)

where
x is a vector whose components are the parameters of the
zero-order solution;
2 is a small quantity;
X is a vector whose components are trigonometric polynomials
of the independent variable, t, with coefficients which are
finite, rational functions of the x, and €.



Under these conditions, the existence of a scolution for all time is assured,
provided x is bounded. This latter condition will be met by the problem to
be treated in this report.

A first-order solution is assumed to have the form

XXyt €)=y Fut O+ HGt0), @-2)
where

y 0pets €) is the solution of

(d/dt) [g_ Goots E)] =eY Y,t,0) = E{Wt [_)g ¥t 0):] -+ Z(y,t, o)}, (I-3)
where

zo=l(zo,0,g) ’ and

XXX '0’2) .
Mt (. ..) is the averaging operator defined by

w[xero]-% ) [revo]a
ﬁm the ¥; held constant.

The vector H (z_, t,0) is defined by
Ho,t.0 = [[XG.t,0-X @.t',0) |at’ .

The addition of the vector Z (Z’ t,0) represents a modification of the
usual method of averages. It is included to allow for the possibility of in-
corporating more than simply the mean value terms in Equation II-3 without
adding significantly to the difficulty of solution. The choice of vector Z is
left to the discretion of each investigator. However, it must be selected from
the terms remaining in



e -M xeuol .

Finally, that Equation II-2 satisfies Equation II-1 to first order may be
verified by substitution. '

A second-order solution is now assumed to have the form

X et §) =L (7t + ¢ H @ 1,0 +¢2 3 @, ,0) @-4)

where

(/a9 [¥ (1ot 9] = ¢ X 6.0 + E2 X' @10 . (1-5)

In order to determine Y' and J, Equation II-4 is differentiated with
respect to time and substituted in the left hand side of Equation II-1; Equation
II-2 is substituted for vector x in the right hand side of Equation II-1, and -
vector - X is expanded to second order about ¢ =0, and x =y. The results are

Y (@60 + €X' (@40 + X (@) - ¥ (6.0 + (/39 [H (1401 Xt 0)

+e (¥/ot) [L@t0]=X (B0 +¢ (/3 [X (¥,t,01H (,t,0)
+e (/20 [X(wt,0)] . | (11-6)
Simplifying Equation II-6,we have
Y’ (@t 0+ (3/at) [I(w4,0) = (¥/23¢) [X (1t, 0)] (m-7)

+(/3y) (X @t 0] H (,t,0) - (/3 [H &t 0] Y @t,0) .

As in the first approximation, we take



Y wt0) =M, {0 [X ©t0]+ @/ [X@t0IH @t0
- /oy [H @601 Y @40} +2' @50 - (11-8)

The vector 2Z' 1is, again, some suitably chosen vector of functions selected
from the right hand side of Equation II-7 after the mean value has been sub-
tracted. The remaining periodic terms define the vector J, i.e.,

1@60 = [{@30 (X@t'01+@/ X @t 01E @10

- (32 [Hw,t\ 01X @t 0 - X' (wt',0)dt". @-9)
holding vector y, constant.

To obtain a particular solution, use is made of a given set of initial
conditions, X i.e.,

X, =¥+ €H (¥ 0,0) + €23 x,,0,0) . (-10)

A second-order solution for the vector Y, can be found by substituting the

first-order solution of vector Y, from Equation II-2 in vector H. This

first-order solution for Y, is

Io=50'2§ (’_Kooovo) '

so that the second-order expression for ¥, is

Yo =X - € H (x,0,0) - & Jd (x,,0,0) + e (a/az)[_r_l (%, 0,0) ]r_l (%40, 0) .




SECTION II
EQUATIONS OF MOTION

The purpose of this report is to derive an approximate, closed form solution
to the equations of motion of a body subject to the gravitational attraction of a mass
centered at the origin of an inertial coordinate system, X,Y, Z, symmetric about
the Z-axis, having the potential

4
= -(#/1)[1 —Z Jn/rn P (z/r) ]

n=2

with the radius of the mass in the X, Y-plane taken as unit length. Since it is
intended that the solution to be derived ghall hold for a satellite about the earth,
the quantity 4 is the universal gravitational constant times the mass of the earth,
and the J,, n=2,3,4, are empirically determined, given quantities. (Appro-
priate replacements should be introduced for attracting centers other than the
earth; e.g., the moon.) Taking into account the relations between the magnitudes
of this J, and substituting for the P, (z/r), the potential, V, may be rewritten,
adopting Kyner's notation, as

V(e = -(I.L/r){1+(€'/3r2)[1— 3 (z/r)2] -2 By/219 (/1) [5 @/)? - 3]

He'?B, 3/81-")[1- 10 (z/1)2 + (35/3) (z/r)4]} (I-1)

where

€' =33,/2

2
By = (4/9) (33/7,7)
B, = - (4/9) (1,/3,%)

The most recent values for the Jn' 8 should be obtained so that €', B3. and B4
may be kept up to dm:e.3




For the ensuing development, it is necessary to have available the gradient
of the potential, V.

- grad (V) = ~@/r)R +F

F=F,+Fa+F, .

Fy = - ¢w/ey {@/m[1-5 @/n?] + 2k @/n) (m-2)
Ry = ¢’ Ba(y/er){(B_/r)S /) [7 /)% - 3:]-53 [5(z/r)2 - 1:]} (II-3)

F, =~ <2 B, (15/8) (u/1% {(g/r) [1- 14 (z/1)2 + 21 (z/r)‘*]'

+ 4K @/n) [1- e/m¥/s) )} (I-4)

where K is a unit vector in the direction of the Z-coordinate.

The equations of motion for the problem as specified at the beginning of this

section may then be expressed as

@/at?) ®) = - @/P) R+ F (1m-5)

gince the vector F has the small quantity ¢ as a common factor, the zero-order

solution will be taken to be the solution of the two-body problem, '

@%/at?) (®) = - W) R

Of the numerous sets of parameters in terms of which this solution may be formu-~
lated, the following has been select:ed4 g,U, V,e cos 0, and e gin 6. The parameter
g is the magnitude of the angular momentum vector, U and V are unit orthogonal
vectors which specify the plane of the motion. The parameters e and 6 are the
eccentricity and the angle measured from U to the perigee vector,respectively.

The vector G/g=U x V is the unit angular momentum vector.




The state variables for the motion of the body may then be expressed as

follows:
R =4 (cos U + sin @ V)
(d/dt) (R) = -(u/g).[(sin <p_.+ e sin @) U - (cos ¢+ e cos 6) 2]
t= 7+ [/ (1-05>2 (2 {arctan [(1-6%"2 tan (¢/2)/(14¢)]
+ arotan [ (1-¢% 2 tan (8/2)/(14) | }
- (1-¢32 {[¢ gin £/(1+¢ cos f)] + e 8in 6/(1+e cos e)D
r=g?/u (1 +e cos f)

f=<p-'6‘

(d/aty (@) = g/r°

(1II-6)

(II-7)

(II-8)

(II-9)

(I-10)

(IIx-11)

In order to determine the perturbation equations for these parameters most

conveniently, they should first be expressed as functions of the state variables, R

and (d/dt) (R). (The term T is the time of U - passage. It will be treated ina

separate section.)
&=[Rx @i ®]
U= (co8 ) B/r - sin o[G/g X B/ ]
V = (sin ) R/r + cos w[g/g x li/r]
e cos 8= cos ¢ (gz/ur - 1) + sin @ g/pr (R (d/dt) (R))

e sin 6= 8in ¢ (gz/yr- 1) - cos @ g/ur (R- (d/dt) (R))

(III-12)
(III-13)
(II-14)
(m;15)

(III- 16)




The perturbation equations are then obtained by taking the time-derivatives
of Equations ITI-12 through III-16 and substituting for (dz/ dtz) (R) from Equation
III-6 wherever it occurs. After cancelling like terms and simplifying, we have

(d/dt) (g) = (G/gxR) - F (IF-17)
(d/dt) (G/&) = - (E - G/8) (G/8 x R/8) : (II-18)
(d/dt) (U) = - (E- G/g) r/g (G/g) sin ¢ (III-19)
(d/dt) (V) = (F - G/&) (r/g) (G/g) cos ¢ (III-20)

(d/dt) (e cos 6) = 2[(d/dt) (g)/g:l(1+e cos f) cos @

+ gin ¢1|(d/dt) (s)/g] esinf +(g/ur) R- 1«_*); (II-21)

(d/dt) (e sin ) = 2 [(d/dt) (g)/g] (1+e cos f) sin ¢

- cose{[(d/dt) (@)/&] e sint + (g/ur) @ B} - (m-22)

Equations III-17 through III-22 correspond to Equation II-1

(d/dt) x)=¢€¢ X (x, t, €)

with the components of x being g, U, V, e cos 6, and e sin 6.

It is appropriate at this juncture to point out that there are two constants of
the motion for the problem. The two constants are the energy, E, and the third
component of the angular momentum, B3 The equation for the energy is E=v2/2+V.
This equation follows from the integration of Equation II-6 after dotting with the
vector (d/dt) (R),

2,..2 - 3

@/dy ®)- @/at) ®) = - u[R- @/dy ® ]/ + @/ay ® - F.

That the component g3 is constant follows from

k- [Rx@/ad) ®)]-k" ®RxE)

Since the vector F consists only of the vectors R and K, the right hand side of the
equation is clearly zero.

10




SECTION IV
FIRST-ORDER SOLUTION

As is evident from Equation II-2, it is necessary to distinguish between the
vectors x and y. The components of the vector x. are the parameters for which a
solution is sought. The components of the vector y are an auxiliary set of
"smoothing' parameters. Since, in the following development, the same basic
symbols will be used to denote the components of the vectors x and y ~ so that one
does not lose sight of their significance ~ their distinction will be observed by
affixing an asterisk to the components of the vector x.

The basic set of equations to be solved in obtaining the first-order solution is

(d/dt) (x) = € X (x, t, 0) (IV-1)

This set of equations corresponds to the set III-17 through III-22, where the vector
F is limited to the vector F,. Making a substitution for the vector F, from Equa-
tion II-2 yields the following set:

(@/dt) g) = - €'Y (/g x R/n)- K 2 @&/1) v
(@/dt) (U = 2 € (Wr)(g,/p) (r/8) (G/8) (2/7) sin @ (IV-3)
(@/at) (D = - 2¢ (w'r*) (g,/8) (v/8) (G/B) (2/T)cos @ (Iv-4)

The parameters e cos 8 and e sin 6 will be treated in more detail shortly.

It now becomes evident that, since the equation

(d/dt) () = g/

holds, even for the perturbed problem, a change of variable may be effected.
The general form of the set of differential equations is transformed from Equa-
tions IV-1 to

(d/do) x)=¢eX(x, 0, 0) (IV-5)

11



Also, to simplify the equations somewhat and to make them, superficially
at least, appear more meaningful, Equation IT-2 will be written as

XX, @0 €)=Yy @ €) *Yg (X0 ) 0) : (IV-6)

Along with these changes, the appropriate substitutions will be introduced into
Equations IV-2 through IV-4 so that the equations are expressed in terms of the
parameters and ¢. In addition, let

wle'sgt=e |

The equations then take the form
(d/de) (g*) = {- 2 eg(1+e cosf) (Vg co8 ¢ ~ Uy 8in @) (ug cos +vy simp)}* (IV-7)
(d/d ) (U*) = {2 € (1+e cos) (ugcos @ + v, sinp)(G/g)sin (p}f (IV-8)
(d/d @) (V*) = {- 2 €(1+ecosf) (3 cos @ + Vg sin)(G/g)cos <p}* | (IV-9)

The equations are now in suitable form for applying the averaging technique.
Equations IV-7 through IV-9 correspond to the ¢ - derivative of Equation IV-6, i.e.,

/de) @) = (@/de) (1) + (@/de) ) (IV-10)
where

(@/do) (1) = €M, [ @, 0] + €2 (3. @, 0 | (IV-11)
and

@/de)(z) = Xz 0 O~ L (1 0, 0)] (v-12)

The differential equation for the parameter g*, Equation IV-7, has zero
mean value. Although the terms (v3 cos ¢ - ug sin @) (u3 cos +vg sin¢) can be
integrated exactly and appear to make an interesting choice for the Z expression,
experience indicates that such a choice introduces complications in the second-
order development. For this reason, it is preferred to take Z = 0. The results
are

12




(d/do) (g) = 0

or
g=§, | (IV-13)

It follows that (d/d @) (gé) equals the right hand side of Equation IV-7, unstarred.
Integrating Equation IV-7, holding the parameters constant, we have

g, = - ce(la/m?- [@/ag) @/m12V2 - @/3){(e/0)@/ag) @/ esint

- La/n® - (@/d) (e/r)Ple cost }) | (Iv-14)

The first-order solution g* is

g* = go + gB (N' 15)

The differential equations for the vectors U* and V* are Equations IV-8 and
IV-9. The equations corresponding to Equation IV-11 are chosen to be

(d/de) (U)=2¢ (85/8) (2/1) (G/8) sin @ (IV-18)
and

(d/de) (V) = - 2 € (g4/8) (z/7) (G/E) cos g (IV-17)

One may observe that in these equations the Z-terms are not taken to be zero.
These equations are divided into two sub-sets: those for ug and Vo and those for
Uy, Uy, Vi, and V.

The equations for ug and Vg are
(4/d ) (ug) = 2 € (8/p)" (&/7) sing (IV-18)

and

(d/d@) (V) = - 2€ (85/8)° (2/7) cos o (IV-19)

These two equations are solved simultaneously, making use of the results of
Equation IV-13, and setting '

13



€(g3/8)2 = ¢,

the regults are

ug = [“30 cosp - V3, 3‘“*"] cos [«/1”2 €0 ‘P]

+ gin ,/1+2€20¢]{u30 1+2€20 sin¢p+(v30/ 1+2€20)cos<p} (IvV--20)

V3 = [“30 sing + V30 °°°¢’] "°9[~/1+2 €:zo“’:] _

- gin ,/1+2 ‘20‘”] [u30J1+2 €50 COB O - (v30/~/1 +2¢,) sintp] (Iv-21)

The equations for Uy, Uy, Vo, and vy must be modified before the solution may
be derived because the first two components of the vector G are not constants of the
motion. These equations are re-expressed as

(d/d) (u,) = 2€(284/8) sino[u, sing - v, cose

+ (g3/8) () cosp + v, sing)] o (v-22)
(d/dop) (u,) = 2€(g5/8) sing [~ (u; sine- v, cosp)

+ (83/8) (u, cos@ +v, sing)] | (TV-23)
(d/dop) (vl) =-2¢€ (g3/g) CcosQ [u2 sing - v, cos@

+ (gs/g) (u; cos@ +v, sing)] (IV-24)
(d/dp) (vy) = - 2 € (8/k) cos@ [- (u; sing - v, cos )

+ (83/8) (uy 08 +V, sing)] (1V-25)

This set of equations is solved by standard methods. The solution is:

14




uy & 8 by -b, Y10
Y2 1 . By bc bs Y20
v = R e c. -c d d v
1 4 J dz "‘?B 1 8 c c 8 10
Va ¢ ¢ 43 4, V20| (1v-26)
L - — - p— - p
where

8o == (IAy]+28) cos [A; |p+(Ih; |+ 28 cos Ayle- (I1,|-28) cos g ko

+([Ag] - 28) cos A, o

ag == (|A;]+28) sin A [@+ (A [+28) sin [A, |- (|2 |- 2B) sin [A;]0

+(Rgl-28) sin b, jo

by = ([A5] - 20) sin [A;|@-([A;]- 20} sin [A,]@- (|1, |- 20) sin [Ag e

+(IAg]- 2a) sin |2, |0

b, = (1A, |- 2a) cos A |@- (|A;| - 20) cos A, @~ (|2, |- 2c) cos [Agle

+(IAg] - 2a) cos Py lo

Ce ™" (hzl"' 2B) cos p‘ll‘P"' (\All"'zﬁ) cos IA2|¢+(|>‘4I‘ZB)COB P‘31‘P

- (gl- 28) cos |l

oy == (1Ag |+ 28) sin [A @+ (IA,|+28) sin [\, @+ (I, |- 28) sinAglo

- (Ixg]-2B) sin|r | @

d, = - (1A ] -20) cos |2, [0+ (1A, | ~2a) cos ], |- (1A, |- 200) cosAgle

+(|Ag1-20) cos|r |

15




o=~ (1= 2008in A [ + (I |~ 200y sin Ay |- (I |- 20) sinrg [

+ (g - 200 sin A o

and
g
o0 = € -2
gy
832
B = G(E;)

Al=a +1+Ja2+2ﬁ+1

|)\2| =0 +1- J a2 +28+1 The absolute value signs used here
indicate that a factor i is omitted _
3 ~ from the A's which are the charac-
ll3| =(a-1)+ ,/oz +28+1 teristic roots for the system of Egs..

(IV-22) - (IV 25).
Myl=@-1- Jo+28+1
The vectors U, and v, are easily obtained.
U = 2(61/3) (G/g) {e sin f [2vg -‘(z/r) ging]- e cos f {[(d/dp) (z/r)sine
+ (z/T) cosw}j | (Iv-27)
vV, =2 (51/3) (G/B) {e gin f [(z/1)cos¢ - 2\13] +e cos f {{[(d/dp) (z/r)cos¢]
- (/1) sinp } } (Iv-28)

The complete first-order solutions for the vector U* and V* are obtained by
making the appropriate substitutions from Equations IV-20, IV-26, IV-27 and ‘
IV-28 into

Ur=U+U, (IV-29)

and
V=V +V, (IV-30)

16




Since the parameters e cos 6 and e sin 6 will be treated in this reportina
slightly different form from that in Reference 4, a more detailed development will
be given here. Beginning with Equations III-21 and III-22, two substitutions may
be introduced which, at least superficially, lead to some gimplification. The first
substitution is ' "

(@/at) (2)/g = [ld/dty ® - EJ*/d®) - ®-B) [R- (/dy R) )/
Second, if we set

4
V= z Vn'
n=2
then

» 4
[@/d®) - E1= ) @/dt) (v,

n=2

4
® B=-) @+1)V,"

n=2
Making these substitutions and carrying out some reductions, we have

4
.(d/d(o) (e cos 6) = Z(d/d:p) {Vn [2 coso(x/u) + (rz/gz) sin¢ e sin f]}

n=2

- v_ p®/gh [@n-1)(1+ecosDesind + @1 (1- e?)sinp]  (IV-31)
4
(d/de) (e sin 6) = z (d/do) {Vn (2(x/u) sing - (rz/gz)e sinf cosfp]}

n=2

+V u(e3/gY [(@n- 1) (1+e cos f) ecos § + (1-e%) (- 1) cos ¢ ]}*(N-az)

17




In those parts of the above equations subject to differentiation with respect to ¢,
the parameters are assumed to be constant, In this form it is an easy matter to
pick out the mean values. For n = 2 and including selected non-zero Z-terms,
the differential equations for e cos 6 and e gin 6 are

(d/dp) ( © cos 6) = g [e sin 6 + (1 +2¢2/3) sing ] . (Iv-33)

(d/dep) (e sinf) = - €g [e cos 6+ (1 + 2e2/3) cos ) (IV-34)
where
€5 = € [(3/2) (u? +v%) - 1]
since
u? + v = 1~ (g5/p)°
and since
g= 8o
to first order, one may set
€3 = €30

Also, it is well known that the eccentricity e contains no secular terms to first
order. Consequently,we may put

Equations IV-33 and IV~-34 may then be integrated as a system by making use of
the variation of parameters method. The solution is

ecos 0= ‘(e cos G)o cos (630¢) + (e sin 6)0 sin (c3o¢)
+ €5, (OB €5, 0 - cOB @) (1 + 2e°2/3) / (1+€g0) (IV-35)

e gin 6 = - [(e cos 6), sin€gq @ ~ (e 8inbB), €5, 0

+ €, (sin€g - sing) (1+20,2/3) / (1+€50) ] (IV-36)

18



Incorporating the short-period terms in these solutions allows for a variation in
(e cos 6)* and (e sin 6)* even when the initial conditions are for a circular orbit.

From Equations IV-31 and IV-32, it appears that at least a major part of
(e cos 6) s‘ and (e sin 6) '~ are immediately available. However, since atraight-
forward integration gives rise to constants, and since second-order theory as~
sumes that thege terms have zero mean, the constants must be explicitly found
and eliminated. The expressions for thoge terms are

(e cos st = (63/3)@@ cos f)2 cos¢ +2 (e cos f) (e sin f) sin¢
- (3/2) [le cos f) (cos¢)- (¢ sin f) sin<p]} (¢/3) {(z/r)2
- [(@/dg) &/r)12}H{- 3 (e c088) (e cos) - (9/4) cos (e cost)
- (5/2) cos @ + ¢ cosg - (21/8) e cos 8}
- (€/3) (z/r) (d/dp) (z/7) [6 esin® ecosf + (9/2) (sing(e cosf)-

+ (e sin 6) /2) +2 (1-e2) sine] . (Iv-37)
(e sin 6)_ = - €,/3 [2cos¢ (e cosf) (esinf) - sin @ (e cos )2

+ (3/2) (e sinf) cos¢ + (ecosf) singp ] + (e/:a){(z/r)2 k

- [(d/d o) (z/r)]z} {-3 ecosf (e sin8) - (9/4) sing (e cosf) - (5/2) sing
+ (%) sing - (21/8) esinb} + ¢/3 (z/7)(d/dp) (z/r) [6 ecosd(ecos)
+(9/2) (cos @ (e cosf) + (ecos 6)/ 2) + 2 (1- e%) cos ¢ ] (IV-38)

The complete first-order solutions for (e cos 8)* and (e sin 6)* are given by
(e cos 6)* =e cos § + (e cos 6)s (IV-39)

and
(e sin 6)* =e 8in 6 + (e sin 9)s (IV-40)

with the appropriate substitutions from Equations IV-35, IV-36, IV-37 and IV-38,
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It is useful for two reasons, at this point, to examine the first-order solu~
tions of the auxiliary parameters, '

p=u, ecosf +vg eginf
=-uj esinf + v; ecosh

In more familiar terminology, these two quantities are, respectively, the product
of the eccentricity and the third component of the unit, perigee vector, and the
product of the eccentricity and the third component of the unit vector perpendicular
to the perigee vector and lying in the plane of the motion. These quantities appear
in the second-order, averaged, differential equations and must be integrated.
Integration of these terms yields, in some developments, quantities which, at

the critical angle of inclination, are undefined.

Neglecting the short-period terms and retaining only the first-order, long-
period terms, the first-order expressions for the terms p and q are

P=pycos €, 0 +4q, sin e46
=~ (p0 sin €49 - 4, cos £4<p)

It may be noted that, if the differential equations for the parameters ug and Vg
had not incorporated some short-period terms, namely, those denoted by the
vector Z, the argument of the.trigonometric functions in the solutions for those
parameters would have contained the factor ‘2' In that case, the quantity € 4

would have had the form

€G=€%" ¢
Since

€, =€ (g /g)2

2 3
- 2 _ 2 -

€ = el:(u3 +vg) 3/2 1]

it follows that

€G-€= ‘[5/2 (85/8)" - 1/2]
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The term (gs/g) is the cosine of the inclination. Thus,

-, =0

€y €3

when the inclination satisfies the equation
cosi = /5/5

However, in the present treatment, the quantity €4 has a slightly different
form,

This quantity assumes the value zero when the inclination satisfies
sin i = (2/9¢) (3¢ -~ 5 + 5 JIT(6¢/25) )

This solution gives a slightly higher value for the critical angle of inclination.

It is possible that other values can be found for this critical angle. For instance,
somewhat more complicated solutions for the parameters involved are given in a
previous report, 4_ and it appears that the argument of perigee would be constant
even for a different angle of inclination. It is evident that, at the critical inclina-~

tion both quantities, p and q, are constants. There are other similar combinations,
such as

U P-vaq and p ecos8 +gesinf

which embody differences of constants as a factor in the arguments of trigono-.
metric functions, and which vanish for certain other inclinations. A rather large
number - about twenty - occurs in the second-order, averaged differential equa-
tions and must be integrated. Therefore, it is pointed out that, at the inclination
proper to each, the combination is a constant. Integration under such a condition
leads to secular terms. While this is not a particularly desirable result, consider-
ing the nature of the parameters, at least thesge differences are not a source of
initial gingularities.
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SECTION V
THE TIME-ANGLE RELATION

In order to complete the first-order solution, a relation must be derived
which determines the interdependence of the time, t, and the angle variable,
®. From the zero-order solution, Kepler's equation is available. It is Equation
m"so

t =T+ [g3/u2 (1-¢%)3/2 ] (2 tarctan [ (1-¢%)® tan (£/2)/(1%¢)
+ arctan [(1-e2)% tan (6/2)/(1+e)] } (V-1)

- (l-ez)% {[ e sin f/(1+e cos ) 1 + e sin 6 /(1+e cos 9)}>*

where T is the time of U- passage. This equation is valid only for elliptic motion.
A similar equation is easily obtained for hyperbolic motion. The parabolic case,
on the other hand, is somewhat more troublesome. Since most problems of prac-
tical interest regarding the perturbation force produced by the polar oblateness

of the earth relate to near-earth-satellite orbits, and since for trajectories of
this type all of the parameters are bounded, which guarantees a solution to Equa-
tion II- 1**, consideration, from this point on, will be restricted to those sets of
initial conditions which allow values for the quantities E and g, saﬁsfying

E< 0
and

g>0

* All parameters in this section are to be understood to be starred.
**  See Section I
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As a consequence, the equation for elliptic motion (Equation V-1) will be dis-
cussed here. "

It is possible to derive a perturbation equation for the parameter 7 having
the form qf Equation II-1; however, because of the very complicated structure
of thig equation - and especially the second-order perturbation equation - the
following approximation is suggested as an alternative.

Let the osculating Kepler equation (Equation V-1) be written in the form

t=T+F[§(<P),<P] (V-2)

where K has components, g, e cos 6, and e sin 6 , and the variable ¢ is the differ-
ential true anomaly, f+ 8. For a given value of the variable ¢ , namely, ¢;,the
parameters represented by the vector K and the parameter T, along with the corre-
sponding vectors U and V, determine a unique osculating ellipse. If the motion
were strictly elliptical, the time-history of the satellite would be given by '

t =T, +F &, ) v-3)

In this equation, ¢ is the angle from the vector U, to the position vector R. Equa-
tion V-3 may now be evaluated att =7 o which is the time at which the satellite's
position would have been in the direction QO' . The vector go’ is the image of the
vector _I_Jo produced by the perturbation force, including not only the change of the
osculating plane of the motion, but also the rotation about the osculating angular
momentum vector G. In other words, the vector I_Jo'lies in the plane determined

by vectors U, and V,, and differs from the vector U, by the angle 6-0 o Equation

V-3, evaluated att=‘ro, is then

t=rT +F[_Igl, (6-60)] (V-4)

0

Subtracting Equation V-4 from V-3 after evaluating att = t1 yields the desired
time-angle relationship. The function F is replaced by its specific form given in
Equation V-2, The resulis are
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t=T g+ [g3/u2 (1-32)3/2] Q arotan { (1-e2)¥ sin (f+60)/[[ 1+cos (£+6) ] [1+e cos (9-6)]

+sin (_ﬂ—eo)esin(lp —90)] }- (l-ez)é lesinf/(1+ecosf) +e sin90/(1+ecos 90)] )
(V-5)

In this equation the parameters are replaced by their explicit solutions, first order,
second order, etc. If the independent variable is the variable ¢, the time t is easily
calculated by evaluating the right hand side of Equation V-5 at specific values of the
variable ¢ . On the other hand, if the time t is taken as the independent variable, an
iterative procedure must be employed to obtain the corresponding value of the variable
P.
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SECTION VI
THE SECOND-ORDER, AVERAGED DIFFERENTIAL EQUATIONS

The procedure to be followed in deriving the second-order, averaged, dif-
ferential equations is contained in Section II. For purposes of convenience, the
requisite equations are reproduced here.

According to Equation II-4, the complete second-order solution should have
the form '

X (Xt €) =Yoot ) + EH(LL0) + E23 (7,1, 0) (VI-1)

The vector y is the solution of

@) 3zt ] = EX(@.t0+ €Y .0 (1)

Before Equation VI-2 can be solved, however, the explicit form of the vector Y
must be computed. The equation for this vector is given by

Y (11,0 = MJ /20X (.t 0]+ /3y [X(x.t, 0] Bt 0

(VI-3)
- /3 [H@t, 0 1Y@t 0} + 2/ (7,1, 0)

In these equations the vectors Y and H are identical in form with those
derived in the first-order prdcedure. The vector Z’' consists of short-period
terms which are selected in a manner similar for determining the vector Z, as
described in the first-order theory. In this section, however, the components
of that vector will, in most cases, be taken to be zero. Finally, the vector J,
which appears in Equation VI-1, is defined by Equation II-9. This vector has as
a common factor the second-order small quantity ez, and its components consist
of short-period terms. This vector will not be computed in this report.
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In Equation VI-3, the components of the vector

Mt{(a/af)[g (3.t 0)]}

are obtained by substituting the vector éum E3 +F 4 from Equations III-3 and III4
into Equations III-17 through III-22 and expanding the results in a manner similar
to that detailed in the derivation of the first-order, differential equations. The
mean values are then extracted. The presence of the contributions of the third and
fourth harmonics in the subsequent equations is evidenced by the respective factors,
B3 and B 4 The remaining vectors in Equations VI-3 are obtained by carrying out
the indicated operations. The procedure is straightforward, requiring only care
and patience. The results are

(d/d¢)(ua) = {E(g3/g)2 [ 8in ¢ (z/r) - cos ¢ (d/dqb)(Az/r)]}1 :

v (VI-4)
+ {7vg+ vo oin 9}2 +{gpg - Py + YaP5,
(d/do)(vg) = -{e(g:,/g)2 L (z/r) cos ¢ + sin ¢ (d/dqs)(z/ryj}l
_ (VI-5)
; {”1“3 + 7@ cos 9}2 B {7’3"3 Tyt 78"5}3
(d/de)(e cos 6) = {e [(3/2)(u3)2+ (v3)2 -1](1+ 232/3) sin ¢ }
| 1 (VI-6)
+ {Gle sin @ + 62v3}2 + {Gsps -6 4Py Gsps}s
(@/d¢)(e sin 8) = - { € [(3/2)ug) (vg)° - 1] (L + 2¢2/3) cos ¢ }1
(VI-T)

- { 6, e cos 6+ 62u3}2 - {631'3 + 6,7, + 551'6}
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) |
(d/a0)(®) =1 pa+ cpq J, (VI-8)

(@/a®)u;) = { 2L 2/r) (g, /&), + (x/r)Hy ] sin ¢ b

(VI-9)
+ (/e gy/a) + 7y, 07~ )
(4/0)ag) = {20 &/7)(g,/e) B, + 7/r)Hy ] sin o }
- | 2 (VI-10)
+ {vl(gz/g)/(g3/z) AN qz)}3
(4/d0)(v))= ~R{(2/1)g, /&) Hy + (/) Hy J cos ¢} |
2 (VI-11)
= { Vz(g]_/g)/(g3/g) + ")’Gul(pz = q2) }3
(d/d¢) Vo == «[2[(z/r)(g2/g)H1 + (y/r)H2] cos ¢}
2 (VI-12)

- {vz(gz/g)/ €3/8) + 76“2(92 B qz)} 3

where

¢, = €g{(1/6) - (5/4)(ug” + v,7) - (45B /9 (1-(1/6) g2+ v D) 1} vi-1y)

C, = ezg333(3/2u) [(5/4)(:132 + v32) -1] av¢14)
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v, = c@g/m>{1+ e[l + (e2/6) + (u + v,?) [130%/12 - (11/12)

‘ (VI-15)

+ (15B,/8)(2 + 3¢%) {1 - (1/4)(uy? + vwill]}
v, = g/e By /mE/a [s0g? + v, F) - 2] (VI-16)
Y3 = 62(23/8)2 B, 15g%/84 (VI-17)

Y = ez(g3/g)2{(7/8)(u32+ Vy2) - (1/12)+ (45B 4/16)[1 - /4y v )|} (vi-18)

¥s = 3 (85/0)°[ /4 - 105B,/64] (VI-19)
Ye = 62(33/3)2/8 (VI-20)
Yy = cz(ga/g)z{(uaz +vg%) - (1/12)+ (45B 4/16) [1 -(7/4)0132+ v32]} (VI-21)
Yg = ez(g.‘,‘/g)2 [(3/8) - 105 134/64)] (VI-22)

. 2
6, = € B/2)ug >+ vgd) -1+ e[(2/3)(u32+ v32) -(5/6) - (55/48) (u2+ v.2)
2 2 22 2. 2
+ (€°/12) {51(u3 +V3") +83(uy” + v, - 37] (VI-23)

2
+ (15B/16)(4+30%) {1 -5(ug™+ v;2)+ @5/8) a2+ v, ) 1]}
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b, = & By3g%/4p)@ + 36 [(5/4)(u32 +v5%) - 1]

by = {2y’ + v - 1/0)+ /0[5’ + v - 1379y }

5,= By (15g2/4u)[(5/4)(n32 +vg?) - 1]

6 = € {(7/16)(1132 +vy7) - (23/24) + (315B 4/64)[(7/6)(11:+v32)-1] }

H, = [ 1/(gy/e)] (v, - Hy)

2 2
H, = € (g5/8)° (¢°/6) (uy” + v;1)
Py =€ sin 6
P3 = ugQ+Vgp
p4=-pesin9+qeoose
Ps = Va° - ) + 2u3 py

p6=-(p2-q2)eain9+2pqecose
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(VI-24)
(VI-25)
(VI-26)

(V1-27)

(VI-28)

(VI-29)
(VI-30)
{Iv-31)
(V1-32)

(V1-33)

(V1i-34)



1'2=ecose

T3 =UgP = Vgd

T4=pecoss +qesin§
- 2_ 2 _

75 =ug(P -q’) -2 v, pq

76=(pz-q2)ecose +2pqe 8in 6

V] = YgPp + YgPy ~ Y4By + Y5 P5

Vo = YaTa * Y3Tg + V4T + ¥5Tg
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(VI-39)

(VI~40)

(VI-41)



SECTION VI

SOLUTION OF THE SECOND-ORDER, DIFFERENTIAL EQUATIONS

The group of equations, Equations VI-4 through VI-12, constitutes the basis for
the second-order solution. Once a solution has been derived, it is substituted into
Equation VI-1, yielding the complete, second-order solution. The next step, therefore,
is to solve the set (Equations VI-4 through VI-12).

A cursory examination of these equations makes it evident that the best one can
expect are approximate solutions. In general, the method of approximation adopted for
deriving the solutions may be outlined as follows.

1)

2)

3)

%)

Those quantities which, in the first-order solution, were shown to be
constants -- except for short-period terms -- are taken as constants on
the right hand sides of Equations VI-4 through VI-12. They are, es-
sentially, the quantities g, u32 + v32, and ez. Thus, the ferms defined
by Equations VI-13 through VI-29 are constants.

The right hand sides of Equations VI-4 through VI-12 are divided into three
parts: short-period, linear, and non-linear. The three types of terms are
enclosed in subscripted brackets. The short-period terms are present in
these equations through the vector Y, which, it may be recalled, contains
the vector Z. The non-linear terms must be carefully examined to ensure
that no linear quantities - such as ezua. or (u32 + v32) ecosf - are’
implicitly contained. The set of Equations VI-4 through VI-12 incorporates
the first two steps.

The linearized equations are solved exactly, subject to the restrictions of
the first step and are denoted by primes. ‘

The non-linear parts of the equations are taken into account by the method of
variation of parameters, substitution of the solutions of the linearized equa-
tions, followed by direct integration, retaining only terms of the second order.
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A. SOLUTIONS FOR THE PARAMETERS ug, v, , e cos §, AND e sin 8

Consideration of Equations VI—4 through VI-7 shows the interdependence of the
parameters (u3, Vgs © CO8 6, e sin §). The terms in the first set of brackets
[ ......... ] are the short-period, first-order terms which were included in the
1

first-order, averaged differential equations. However, because of the added com-

plications in the second-order equations, they will be shifted, after integration, to the

vector H. The terms in the second brackets [ ......... ] are linear in the parameters
2

Uy, Vg, © cos 6, and,esin 6 and constitute the linearized, differential equations which
will be solved exactly. The equations are:

d/dd(ug) = y, v3+ y, e sin B (VII-1)
d/d¢(v3) ==y, Uz -y, € cos 0  (VII-2)
d/d¢(e cos 6)= 6, vé +§,esing (VII-3)
d/dg (e sin 8) = -62u3 -6, e cos 0 ' (VII-4)

The solutions for the auxiliary parameters p and q are obtained relatively quickly and,
since they are of some interest, are given here. '

p'= P, C08 (C5¢) + [qo('y1 - 61)/c3] sin (¢g¢) + (1 - cos cy¢)

2 2 .2 2 (VI-5)
[45272"0 - '51){7’2 ey ~Olugo+ "30’}] /eq
Q' = = (810 (050)/0,) [ ~61)Po*+ 725" - 6505 + Vao)| 1, 008 (Gy0)
where: (VII-6)
og =/ (1-67)° + 4750,

The solutions for Equations VII-1 through VII-4 may be written as:
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< =
W~ eo~

ecos @

e sing’

To implement the fourth step, let Equations VII-7 be represented by

C3 C08 (C3¢) (y1~6;) 8in(c5¢) 0
Y ~(y,-6q)8incgg g cos (c49) -2, sin (c5¢)
3 0 252 8in (c3¢) c3 cos (c3¢)
-25,, 8in (cyp) 0 (7,-6,) 6in (049

P

u30 cos ()‘1 - 61)¢+ v30 sin (71 - 61)¢

g0 8in () =~ 0)) @ + V5,008 (3 - 5)) g

wW=M]¥,

(e cos B), cos (y, - 6,)¢ + (e sin g)  sin (y; - §)8
-(e cos e)o sin g - 61)¢ + (e sin 6), co8 (7 - 51)¢

ol

2y, sin (c59) d
0
=(y,~ 6,) 8in(cg9)
Ccg CO8 (03¢)

(VI-7)

Then, by the method of variation of parameters, the vector y_vo must satisfy

(M](d/dg W) =T

where the components of the vector T are the non-linear terms of Equations VI-4
through VI-7 or the third set of brackets ]: ......... ] . Since only terms of the second
3

order are being retained, the matrix M is reduced to the identity matrix by setting the
small quantity ¢ equal to zero. The vector T is then integrated. For this purpose, the
first-order derivatives of the involved parameters are required. They are:

d/dg (ug) =y,vy

d/d¢ (v3) ==7%,Y3

d/dg (e cos 6) =6, e sin 8
d/d¢ (e sin 6)=-6, e cos 6
d/d¢ (@) = (v, - 6,4
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With these approximations, the required integrals are easily obtained. They are

listed below.

[rga0'= @y - 8
I13d¢'=.p3/(271 - 6,)
[o,80'=1,/0y, -26))
jqdcb ‘= ;04/(71 - 26))
[pae=1/3% - 28
j75d¢' =-p5/ (37, - 26))
f Ped¢'="T./ @Y, - 88)
frsdqs’= - pg/ (27, - 36))
The solutions to Equations VI-4 through VI-7 may now be written as:
uy = (7.7 + 75(7.8) - v (1.10) "+ (1.1
va = (1.7 - 73(7.9)’-7;,(7.11)’- y8(7.13)'

- ’ ’_ 4 ’
ecos 8= (7.T)g + 64(7.8) "= 6,(7.10) + 65(7.14)

e sin 6 =(7.7), - 85(7.9)' - ,(7.11)" - §;(7.15)

(VII-8)

(VII-9)
(VII-10)
(VII-11)
(VII-12)
(VII-13)
Wﬁ-w

(VII-15)

(VII-16)
(VII-17)
(VI-18)
(VII-19)

where subscripts refer to components of the vector equation (Equation VII-7), and
equation numbers are to be replaced by the right hand sides of the equations to which

they refer.

B. SOLUTION FOR THE PARAMETER g

Now that the solutions for linearized equations for the auxiliary parameters p and q
and their first-order derivatives are available, Equation VI-8 is easily solved. The

solution is:
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3

g=g,+ ["1 1)'2/2()'1 - 61)].+ e,p/ly; - 6)) (VII-20)

C. SOLUTIONS FOR THE PARAMETERS up, Uy, vy, AND v

2

To obtain solutions for the parameters u;, u,, v;, V, , the terms in brackets sub-
scripted 2 in Equations VI-9 through VI-12, i.e., the linearized equations, must first be
rewritten in a manner similarto the procedure followed in Section IV for Equations IV-22
through IV-25. The equations then take the form

d/detu,) ={H1(uz sin ¢ ~v, cos @ + [:Hl(g3/g) " H2](u1 cos ¢+v, sin ¢)} 2 sin ¢
d/d¢(u2) ={H1(-u1 sin ¢ +v, cos ® +[H1(g3/g) +I-12:](u2 cos ¢+v, 5in, ¢)}2 sin @
d/d¢(v1) = -{Hl(u2 sf,n ¢-v,cos ¢) + [Hl(gs/g)+ H2] @y cos ¢ + v, sin q}z cos ¢

d/d¢(v2) = - {Hl('ul sin ¢+v, cos 9 +E’{1 (g3/g)+ }12](u2 cos ¢+\%2 sin ¢)} 2¢o8 ¢

The solution to this set of equations is obviously identical in form with that given in Section

IV (Equation IV-26) with the appropriate replacements for the constants. The substitutions

are =
a = H

B = "
To carry out the fourth step, the following first-order derivatives are required:

d/dg(u;) =Hyu, +y;vy
d/d¢ @g) =-Hyu +yv,
d/dg(v;) = H,v, - 7%

d/dg(vy) == Hyvy - ¥,
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Pursuing the same reasoning as explained in subsection A, it is found that the ap-
propriate integrais are:

[teeroa = /o] fyey/oc, 101 |+ g/ o) ]- [ypy/acf-xh ]

| + By a/act-xd ]} -y e/ - ey

1) S

Jieaery a¢ =k, er{loey/ 0 ) Je e/ 0150 - [rppy -5
b o-m ]} - e/ { ey - b/

(VII-22)
*E{M'&/ ®, " - K42)~] + [Ks% p5/ “‘12'1(52)] } C

j@1/g) Vg d¢'='K1(gz/g)‘{[’2"2/“(12'1‘22)]*[’éﬁ/mf'xsz’]{yﬂ/mf'xf)]
+ g/ el -xD] e/ { s/ E -k ¢ Ry 0cE- K3
- [1{474%/ - K42)] * [Ks"s"s/ <, - Ksz)]} (vI=23)
[ie3/) vy a0 =k, & /e { g/ -k ) [/ - 1+ [/ “‘12'K42)J |
* [75"5/ (Klz-_Ksz)J }+ @y g){[Kz?’zpz/ &2k 3]+ E‘s’&%/ (Klz'Kaz)]

] (VI-24)
g [K474 o/ @, 2K, ] * [Ks7’5‘°5/ ®,%-x5 _l}
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where

where

H,

A R OA
"
K

1
2
3

it
[

% =8 )
4 = 71”26

5 371 - 251

R A
N

IV]_(Pz' Aydg’ = K {8(71 -6 H, [(71- 5) v2(p2 -d) + Palfia®y - ﬁuz)](\m 25)

§ 3
- [0~ 6 % - 2+, 2] [ 1, v, +opupe® e patr) - 8 ]}

[ra0®-aae'= e {ooq- 8, B, oy, - ) vy 0% ~Pa(H, vy +yyuy) ] o
(VII-26)
- [4(71- 61)2 - 712 +H12] ,:(Hivl- -)iuz) (pz-'qz)'- 4PQ(71‘ 61)"2]}

fulmz‘qz)d¢’éK6{8()i- 61) HIE'yl- Gl)uz(pz-qz) +pq(H1u1+ y1v2)]
(VI-27)

- E‘"’f 61)2-712+ le ] Eﬂl‘lz* v_lvl)(pz-qz) «;pq(‘ﬁ) 40 - 61]}

[ua™ ayao=-K {801 -6 By g - 6w 0 a®) -pacEyu, -y vy) |
‘ (VII-28)
- 40g- 8" - 1] [0y + 2 0% aP)-pateg) 401 6 ]}

_ 2, . .2 2 2 . 272
Kg =-1/16H,"(r;-8)) 'E‘("l'ﬁﬁ "N +H1]
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The solutions for the four parameters ugs Up, Vi and v, are:

u = (4.26); + [1/(g3/g)] (7.21)’ + ¥5(7.25) | (VII-29)
u, = (4.26), *‘[1/(53/9] a.éz)' + 76(7; 26)’ (VII-30)
v = .20y~ [1/gy/0) |29 - 520" - (vVO-31)
vy = (4.26), - [1/(gy/0) |(7.20) " - 7,(7.28)" (VII-32)

It is clear from the foregoing that the general structure of the solutions of Equations
VI—4 through VI-12 is of the form

y=y'+e’L(¥) |
where the vector y’is the vector of solutions of the linearized equations, and vector
L(y") is the contribution to the solutions by the non-linear terms. The coinplete second-
order solution has the form

X =y +eH(y)

To determine the constants in these solutions, we make use of the initial conditions and
the first-order approximations to the vector Yo+ The required constants are:

35 =%, ~e Bz meH(x ) |- € L(x

Once the constants have been obtained, the solutions for the parameters for a
given value of the independent variable ¢ are computed by the following procedure.

1) The vector y’is calculated from Equation VII-7, the equation g =g o and
Equation IV-26. ’

2) The vector y is derived by substituting vector y’in Equations VII-5, -6,
-16, ~17, -18, -19, -20, -29, -30, -31, and -32.
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The final (starred) values for the parameters ‘are obtained by substituting
vector y into the general equation.

x=y+eHy

where the componehts of vector H are the short-period terms derived in
Section IV. As was noted in subsection A of Section VII, there are certain
additions to be made to the components of vector H belonging to the param-
eters. .

Uy, Vg © CO8 6, esin 6
These additions are, respectively,

- €(gy/)” (@/r) cos ¢, -€ g,/)° (/1) sin ¢

- eEu:+ v2)@/2)- 1](1+ 2¢2/3)cos g, - eEu32+ v2)(3/2)- 1] 1 +2€2/3) sin ¢
The position and velocity vectors, R and d/dt(R), are given by Equations.

III-6 and III-7. The equation for the time-angle relation is contained in
Section V' (Equation V-5).
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SECTION VIII
CONCLUSION

The original purpose of the investigation which has culminated in this report
was to derive a second-order solution to the polar oblateness problem that would
be free of indeterminacies occasioned by particular initial angles of inclination and
that would not introduce singularities of an equally constricting nature. This study
has indicated that parameters too closely connected with the conventional elements
should be avoided because of the difficulties associated with circular initial con-
ditions, As a consequence, the initial vectors Ry and (d/dt) (Ry) were considered
as candidates for parameters. A decision then had to be made whether to use
differential, eccentric, or true anomaly as the independent variable, Unfortunately,
the time-derivatives of both variables for the perturbed problem are quite complicated.
This undesirable characteristic adds.significantly to the calculations involved m solv-
ing the second-order differential equations. It was observed, however, that, if the
vectors R, and (d/dt) (Rg) are replaced by the equivalent set used in this report,
the time-derivative of the differential true anomaly has the same mathematical
structure as in the unperturbed case. The time-derivative of the differential eccen-
tric anomaly, on the other hand, remains complex. The dissimilarity arises from

_the difference in the origin about which the two anomalies are measured. Finally,

in order to avoid singularities in the perturbation equations themselves, the elements
e cos 6 and e sin @ were selected in preference to e and 8 because the time-derivative
of 6 contains the eccentricity in its denominator.

A source of much concern has been the time~angle relationship, because not
only is the equation (Equation V-1) relating the two complicated, but it also involves
the parameter T. Besides being complex, the perturbation equation for this para-
meter--and it does have one, because the osculating vectors U and ’Bo/rD, are not
identical--has its own distinctive difficulties. An alternative approximation fqr de-
riving the relation between the time and the differential true anomaly has been
suggested.




Regarding the method of solution of the perturbation equations, it is evident
that the Von Zeipel technique was not applicable, since the parameters used in
this study do not form a canonical set. The method of averaging was therefore
adopted. It is interesting in this respect to note that recent si:udies5 ind icate
the equivalence of the two methods, provided the constants of integration are
properly chosen.

In solving the averaged, differential equations, two principal criteria
dictated, insofar as possible, the nature of acceptable solutions. These guide-
lines were that no secular terms should occur in the solutions and that no terms
ai)pearing in the denominators should vanish for any inclinations. The reason for
the first condition is evident: all the parameters except g are bounded between
plus and minus one. This condition, at least in structure, has been met. The
second condition is, apparently, far from being satisfied. The solutions contain
numerous factors which, for an inclination proper to each, are undefined.
Paradoxically, however, it is the first condition which is not fulfilled, while the
second is.

As was mentioned at the end of Section IV, certain combinations of para-
meters occur in the second-order, averaged differential equations. These terms
are frigonometric functions whose arguments involve factors which are differences
of constants. When these differences vanish, the particular combination is a
constant. Integration leads to a quantity which, instead of being undefined, is
secular. Under such circumstances, it follows that the solution tends to deteriorate
in time.
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