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ABSTRACT 

This report employs the method of variation of parameters and the 
method of averaging to obtain a second-order solution for the motion of a 
satellite about an oblate earth, including the second, third, and fourth zonal 
harmonics. The parameters wed are: two orthogonal unit vector6 in the 
plane of the motion, one being in the direction of the initial-position vector; 
two quantities which are products of the eccentricity and the sine and cosine 
of the angle from the initial-position vector to the perigee vector, the magnitude 
of the angular momentum vector, and the epoch. The solution is well-behaved 
for negative energy, eccentricity less than one, and all inclinations with second- 
order secular term occurring for certain inclinatione. The eecoad-order, 
short-period terms are not caloulated. 
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SECTION I 

INTRODUCTION 

This report presents the details of the derivation of a second-order, ap- 
proximate solution for the motion of an artificial satellite about the earth. The 
earth is approximated by an oblate spemid with the oblateness specified by the 
second, third, and fourth zonal harmonics, The differential equations upon which 
the solution is based are obtained by the method of variation of parameters ap- 
plied to the solution of the two-body problem. The parameters, in terms of 
which the two-body solution is expressed, are selected because of the relative 
simplicity of the differential equations to which their variations Lead, and 
freedom from restrictions on initial conditions arising from circularity. The 
technique adopted for obtaining the solution is a modification of the method of 
averaging. 

Section 11 contains an explanation of the method of averaging as it applies 
to the problem at hand and of the modification introduced. The modification con- 
sists of retaining some of the periodic terms in the averaged differential equations. 
This, obyiously, is quite contrary to the intent of the method, rendering the use 
of the name, method of averaging, inappropriate. However, since the modification 
is slight, it would not be fitting to disguise the method by any other designation. 
Even though the incorporation of the periodic terms in the averaged, differential 
equations does add measurably to the complexity of their solutions and does not re- 
duce 8ignificantl.y the labor required to compute the second-order averaged 
differential equations, it appears reasonable to expect an improvement in the basic, 
approximate Solutions if at least all the linear terms are accounted for in the 
averaged equations. 

The solutions contained in this report have one principal limitation which 
is a consequence of the set of parameters employed. The approximate solutions 
are not well-behaved in the region of rectilinear motion. It will be tacitly assumed, 
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therefore, 88 is usually the case, that the energy is negative and the eccentricity 
less than one. ltmportant qualitative properties of the solutions under these 
restrictions are treated by Kyner. 
for estimating the errors in the approximate solutions over a finite interval. 
The availability of such estimates, obviously, is an invaluable asset for any 

approximate procedure. 

I 

The same author has derived a technique 

In Section ISX, the potential for the problem is given,and the perturbation 
' equations resulting from the application of the method of variation of parameters 

to the two-body elements are detailed. Section IV contains the first-order solution. 
Section V describes the time-angle relation. In Section VI, the results of the cal- 
culations of the mean-values required for the second-order, differential equations 
are preeented. In Section VII, the solutions of these equations are obtained. 

The method of solution consists of solving the linearized equations. The 
non-linear terms are incorporated into the solutions by the variation of para- 
meters of the solutione of the linearized, differential equations, substitution of 
the  solution^, and integration. 

It is of interest to note that the linearized, second-order, averaged, 
differential equations consist principally of two sets of four simultaneous equations. 
One of these sets takes into account the interdependence of certain parameters 
caused by the addition of the third zonal harmonic. Also, the contributions from 
the non-linear terms to the solutione introduce combinations of constants in the 
denominators which appear to be a source of difficulty. This characteristic, 
present in most 801UtiOne of the problem, is the small-divisor property and is 
commented on briefly in Sections IV and MI, Finally, it should be noted that the 
eecond-order, short-period terms have not been computed. 

2 



I 
I .  
I 
8 
I 
8 
1 
8 
1 
8 
8 
8 
8 
8 
I 
8 
I 
8 
1 

SECTION ?I 

. THE METHOD OF AVERAGES 

The method of averages, 88 employed in this report, offers a tecwque 
for obtaining an approximate, closed form solution of differential equations 
under certain conditions. The differential equations must be such that a zero- 
order solution is already known, and the exact solution must be a small 
variation of the zero-order solution. In order to obtain higher order solutions, 
a second set of differential equations, derived by the application of the M e t h d  
of variation of parameters to the parameters of the zero-order solution, must 
be developed. These equations determine the dependence of those parameters 
on that part of the original differential equations not satisfied by the zero-order 
solution. If the derived equations were amenable to exact solution, the total 
601Uti011 would then take the form of the zero-order solution with the parameters 
expressed as functions of the dependent variable. In general, however, exact 
expressions for the parameters cannot be found and approximate solutions must 
suffice. The Method of Averages is applied to the derived set of differential 

. equations to obtain these approximate solutions. 

Let the derived set of differential equations be denoted lg 

(d/dt) (xJ = 3 (x,t,;) 

where 
5 is a vector whose components are the parameters of the 
zero-order solution; 
c is a small quanti@; 
- X is a vector whose components are trigonometric polynomials 
of the independent variable, t, with coefficients which are 
finite, rational function8 of the xi and 2 . 

A 
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Under these oonditions, the existence of 8 eolutiun f u r  a l l  time is assured, 
provided 5 is bounded. This latter condition will be met 
be treated in this report. 

the problem to 

A firslmrder solution is assumed to have the form 

where 

y - (Y_o, t, ;) is the solution of 

Mt (. . .) is the averaging operator defined by 

2n 1 

with the yi held constant. 

The vector (y, t, 0) is defined by - 

The addition of the vector ,Z (y, t, 0) 
usual method of averages. It is included to allow for the possibility of in- 
corporating more than simply the mean value terms in Equation It-3 without 
adding significantly to the difficulty of solution. The choice of vector is 
left to the discretion of each investigator. However, it must be selected from 
the terms remaining in 

represents a modification of the 
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Finally, that Equation 11-2 satiefies Equation a-1 to first order may be 
verified by  substitution^ 

A sectmhrder eolution is now aseumed to have the form 

In order to determine y' and 2, Equation 11-4 is differentiated with 

respect to time and substituted in the left hand side of Equation 11-1; Equation 
II-2 ie substituted for vector 5 in the right hand side of Equation II-1, and - 
vector H is expanded to second order about c = 0, and x_ = ye The reeulte are 

Simplifying Equation II=&we have 
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The vector ,Z' 
from the right hand side of Equation 11-7 after the mean value has been sub- 
tracted, The remaining periodic term6 define the vector g, i. e., 

is, again, some suitably chosen vector of functions selected 

- (day) (y , t ' ,O) J  (JLt ' ,O)  - ,P' bt',O)}dt'. @-9) 

holding vector yv constant. 

To OM a particular solution, use is made of a given set of initial 
conditions, x+ Le., 

=yo + 2.H (q) ,O*O) +;2-gyo,o*o) . @-lo) 

A second-order solution for the vector 
first-rder solution of vector yo from Equation II-2 in vector E. This 
fireborder solution for yo is 

can be found by substituting the 

80 that the eecond-order expreseion for yo is 



SECTION IlI 

EQUATIONS OF MOTION 

The purpose of this report is to derive a,n approximate, closed form solution 
to the equations of motion of a body subject to the gravitational attraction of a mas8 
centered at the origin of an inertial coordinate system, X, Y, Z, symmetric about 
the Z-axis, having the potential 

n=2 
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with the radius of the mass in the X,Y-plane taken as  unit length. Since it is 
intended that the solution to be derived shall hold for a satellite about the earth, 

the quantity p is the universal gravitational constant times the mass of the earth, 
and the Jn, n = 2,3,4, are empirically determined, given quantities, (Appro- 
priate replacements should be introduced for attracting centers other than the 
earth; e. g., the moon. ) Taking into account the relations between the magnitudes 
of this Jn and substituting for the Pn (dr), the potential, V, may be rewritten, 
adopting Kyner's notation, as 

V(a') = -(p/r)(l+(F'/3r~~-3(~/r)~]-(e'~B~/2r~(m/r)[5 (z/r)2 - 31 

+(ar2 B4 3/8r4[1- 10 (m/r)2 + (35/3) (~ /r )~]}  

where 

C' = M 2 / 2  

Bg = (4/9) 

B4 = - (4/9) (J4/J22) 

The most recent values for 
3 -  may be kept up to date. 

the JnIS should be obtained 80 that i', B3, and B4 
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For tihe ensuing development, it is necessary to have available the gradient 
of the potential, V. 

g3 = € r2 B3UL/2P){@/r)5 ( d r )  [7 - 3 1 - 5 3  [5(z/d2 - 11) (III-3) 

Q = - d2 B4 (15/8) (k/r6) {(g/r) [l- 14 (e/$ + 21 (~ / r )~ ] '  

where K - is a unit vector in the direction of the Z-coordinate. 

The equations of motion for the problem as  apecified at the beginning of this 

section may then be expressed as  

(ID-5) 

since the vector F, has the small quantity c' as  a common factor, the zero-order 

solution will be taken to be the solution of the two-body problem, 

2 2  (d /dt ) (RJ = - Wr3) R, 

Of the numeroue seta of parametere In terms of which this solution may be formu- 

lated, the following has been selected* g, TJ, v, e COB 8, and e sin 8. The parameter 

g is the magnitude of the angular momentum vector, V_ and V_ are unit orthogonal 

vectors which specify the plane of the motion. The parameters e and 8 are the 

eccentricity and the angle measured from V_ to the perigee vector,respectively. 

The vector G/g=U I -  x V ie the unit angular momentum vector. 
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The state variables for the motion of the body may then be expressed as 

fdows:  

(d/dt) (RJ - -(B/g)[(sin cp.+ e sin 8 ) U_ - (cos cp+ e COB 6) x] 

In order to determine the perturbation equations for these parameters most 

conveniently, they should first be expressed as functions of the state variables, R, 

and (d/dt) (R) .  - (The term 7 is the time of V_ - passage. It will be treated in a 

separate section. ) 

2 e COS 8 = COB cp (g /pr - 1) + sin r,o g/pr (E* (d/dt) (3) 

8 ein 8s sin Q (g2/pr- 1) - cos (b g/pr (E- (d/dt) (9) 
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The perturbation equations are then obtained by taking the time-derivatives 
of Equations III-12 through Ill-16 and substituting for (d2/dt2) ( R )  - from Equation 
III-S wherever it occurs, After cancelling like term8 and Rimplifying, we have 

(In-20) 

(In-21) 

(m-22) 

Equations IU-17 through XI-22 correspond to Equation E-1 

(d/dt) & ) = c' X_ (II, t, a') 

with the components of x being g, g, V, e cos 8, and e ein 8.  - 
It is appropriate at this juncture to point out that there are two constants of 

the motion for the problem. The two constants are the energy, E, and the third 
component of the angular momentum, g3. The equation for the energy ie E =2/2 + V. 
This equation fOlhw6 from the integration of Equation II-6 after dotting with the 

vector (d/dt) (E), 
2 2  (d/at) @) (d /dt ) (R,) = - p[R (d/dt) (R)] /r3 + (d/dt) (3 pa 

That the component g3 ie constant follow6 from 

Since the vector F, consists only of the vectors R, and K, - the right hand side of the 

equation is clearly zero. 
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SECTION IV 

FIHST-ORDER SOLUTION 

As is evident from Equation It-2, it is necessary to distinguish between the 
vectors g and z. The components of the vector - x. are the parameters for which a 
solution is mug% The components of the vector y are an auxiliary set of 
"smoothing" parameters. Since, in the following development, the same basic 
symbols will be used to denote the components of the vectors 5 and y - so that one 
does not lose sight of their significance - their distinction will be observed by 
affixing an asterisk to the components of the vector - x. 

The basic set of equations to be solved in obtaining the first-order solution is 

(d/dt) e) = c X_ (x, t, 0)  (N-1) 

This set of equations corresponds to the set IIt-17 through If]-22, where the vector 
F - is limited to the vector g2. Making a substitution for the vector 5 from Equa- 
tion If]-2 yields the following set: 

The parameters e cos 8 and e sin 8 will be treated in more detail shortly. 

It now becomes evident that, since the equation 

(d/dt) (9) = dr2 

holds, even for the perturbed problem, a change of variable may be effected. 
The general form of the set of differential equations is traneformed from Equa- 
tions lV-1 to 

(d/dP) 4) = ex_ & P,O) (W-5) 
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Also, to simplify the equations somewhat and to make them, superficially 
a t  least, appear more meaningful, Equation II-2 will be writtien as  

Along with these changes, the appropriate substitutions will be introduced into 
Equations N-2 through N-4 so that the equations are expressed in terms of the 

parameters and cp. In addition, let 

The equations then take the form 
(d/&p)(g*) ={- 2 ~ g ( l *  cosf) (v3 ~0scp-3  sincp)(u3coscp+v3sinrp)} * (N-7) 

* 
(d/d cp) (E*) = {2 a (1 +e COB f )  (u3 COB Q + v3 sincp)(s/g)sin cp} ' (N-8) 

The equations are now in suitable form for applying the averaging technique. 
Equations N-7 through N-9 correspond to the cp - derivative of Equation N-6, i. e . ,  

(N-  11) 

The differential equation for the parameter g*, Equation W-7, has zero 
mean value. Although the terms (v3 cos cp - u3 sincp) (u3 cos cp + v3 sincp) can be 
integrated exactly and appear to make an interesting choice for the Z_ expression, 
experience indicate8 that such a choice introduces complications in the second- 
order development. For this reason, it is preferred to take 2 - = 0. The meults 
are 



It follows that (d/dcp) (g,) equals the right hand side of Equation N-7, unstarred. 
Xnbgrattng Equation IV-7, holding the parameters conetant, we have 

ge = - g (b/rl2 - 9) ( d r )  l2 3/2 - (2/3) { (dr)  (d/d cp) (dr) e sin f 

The first-order solution g* is 

g* = go + g, 

The differential equatione for the vectors U* - and V* - are Equations IV-8 and 
N-9. The equations corresponding to Equation AT-11 are chosen to be 

(d/do) (E) = 2 (g3/g) ( d r )  (G/g) sin cp (IV- 16) 

and 

(d/d(b) (1) = - 2 (g , /g)  ( d r )  (G/g) coscp (IV- 17) 

One may observe that in these equations the Z_.-terms are not taken to be zero. 
These equations are divided into two sub-sets: those for and v3, and those for 
~ 1 ’  ~ 2 ’  mdv2* 

The equations for and v3 are 

(N- 18) 

These two equations are solved simultaneously, making use of the resulk of 
Equation TV-13, and setting 

13 

(N- 19) 



the results are 

I 1 

The equations for ul, %, vl, and v2 must be modified before the solution may 
be derived because the first two components of the vector 9 are not constants of the 
motion. These equations are re-expressed as 

(Udg) (ul) = 2c (g&) sing Cu2 sincp - v2 COB cp 

+ (g3/g) coecp + v1 sincp)l (rv-22) 

( rV- 23) 

(IV-24) 
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r I:: C C 

S -bC 

dc 

cS -dS 

a b 
S 

S 

S 

*C bC b 

d -C 
C 

dC - 

ulo  il: (N-26) 
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, I  
II 

and 

g3 
g0 

dl = € -  

IA21 = a + l -  dl +2)9+1 The absolute value signs used here 
indicate that a factor i is omitted 
from the X's which are the charac- 

IA3 I = (a - 1) + ,/- teristic mota for the eyetern of Eqe. . 

J 2  
(ZV-22)- (N 25). 

The vectors U and ye are easily obtained. 
-8 

= 2 (a1/3) (s/g) {e sin f [2v3 - (e/r) sincp1- e co6 f {[(d/dcp) (e/r)]eincp 3 
(IV-27) + (z/r) cos 91 j 

The complete first-order solutions for the vector V j  and V+ - are obtained by 
making the appropriate eubstitutione from Equation6 IV-20, IV-26, IV-27 and 
IV-28 into 

u * = u + u  (IV-29) 
-S - - 

and 
v * = v + q  - - (IV-30) 

16 
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Since the parameters e cos 6 and e sin 8 will be treated in this report in a 
slightly different form from tbat in Reference 4, a more detailed development will 
be given here. Beginning with Equations m-21 and III-22, two ENbstitutions may 
be introduced which, at least superficially, lead to some simplification. The first 
subetitution is 

second, if we eet 

4 

v - 1  vn, 
w 2  

then 

Making these substitutions and carrying out some reductions, we have 

3 4  2 
= V p(r /g ) [ ( 2 n - l ) ( l + e ~ 0 s f ) e d n 8  +(n-l) (1-e )sin91 (IV-31) n 

17 
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In those parts of the above equations subject to differentiation with respect to 9, 
the parameters are assumed to‘be COMtant, In this form it is an easy matter to 
pick out the mean values. For n - 2 and including selected non-eero E-terms, 
the differential equations for e cog 8 and e sin 8 are 

(d/d@) ( e cos 8) = c3 [e ein 6 + (1 + 2e2/3) sinq 3 (N-33) 

(N-34) 

where 

C3 = Q [(3/2) ( ~ 3 ~  +vt) - 13 
since 

and since 

g = go 

to first order, one may set 

€3 = ‘30 

Also, it is well known that the eccentricity e contains no secular terms to first 
order. Coneequently,we may put 

2 2  e = e o  

Equations W-33 and N-34 may then be integrated as a system by making use of 
the variation of parameters method. The solution is 

18 
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(N-36) 



Incorporating the short-period terms in these solutions allows for a variation in 
(e cos e)* and (e sin e)* even when the initial conditions are for a circular orbit, 

From Equations W-31 and IV-32, it appears that at least a major part of 
(e cos and (e sin QS' are immediately available. However, &me etraight- 
forward integration gives rise to co~tants ,  and since second-order theory 88- 

sumes that them terms have zero mean, the constants must be explicitly found 
and eliminated, The expressions for those terms are 

- (c/3) (z/r) (d/@) (e/r) [S e sin8 e cosf + (9/2) (sinrp(e cosf). 

(Iv-37) 

+ (3/2) (esinf) cos+ + (ecosf) s inq ]  + (~/3){(z/r)~ 

- [(d/dq)(e/r)l2} (-3 ecosf (esine) - (9/4) sincp(ecosf) - (5/2)sinrp 

+ (e2) sing - (21/8) e sin61 + a/3 (%/r) (d/@) (dr) [6 e cos6 (e cos f )  

The complete first-order solutions for (e cos e)* and (e sin 6)* are given by 

(e cos e)* = e  COB 8 + (e eo8 (Iv-39) 

and 
(e sin e)* = e  ein 8 + (e sin Ws (Iv-40) 

with the appropriate eubstitutions from Equations Iv-35, IV-36, Iv-37 and Iv-38 
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It is useful for two reasons, at this point, to examine the first-order solu- 
tions of the auxiliary parameters, 

In more familiar terminology, these two quantities are, respectively, the product 
of the eccentricity and the third component of the unit, perigee vector, and the 
product of the eccentricity and the third component of the unit vector perpendicular 
to the perigee vector and lying in the plane of the motion, These quantities appear 
in the second-order, averaged, differential equations and must be integrated. 
Integration of these terms yields, in some developments, quantities which, at 
the critical angle of inclination, are undefined, 

Neglecting the short-period terms and retaining only the first-order, long- 
period terms, the first-order expressions for the tern16 p and q are 

' q=-@oSfn€4Q-qoCOSC4Q) 

It may be noted that, if the differential equations for the parameters u3 and v3 
had not incorporated ~ o m e  short-period terms, namely, those denoted by the 
vector z, the argument of the.trigonometric functions in the solutions for thoee 
parameters would have contained the factor c2. In that case, the quantity C4 

would have had the form 

C4 = F2 - €3 

42 = ' @3/g) 

Since 
2 

= '[(ut +v3 2 ) 3/2 - 11 
'3 

it follows that 

20 
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The term (g,/g) is the cosins of the inclination. Thus, 

- = 0 

when the inclination eatisfie8 the equation 

cosi = &/5 

However, in the present treatment, the quantity f4 has a slightly different 
form, 

This quantity assumes the value zero when the inclination satisfies 

Bin2 i = (2/96) (3c - 5 + 5 41 +(66/25) ) 

This solution gives a slightly higher value for the critical angle of inclination. 
It is possible that Other d u e s  can be found for this critical angle. For instance, 
somewhat more compUcaW solutions for the parameters involved are given in a 
previous report,4 and it appears that the argument of perigee would be constant 
even for a different angle of inclination. It is evident that, at the critical inclina- 
tion both quantities, p and q, are constants. There are other similar combinations, 
such as 

~3 p -v3q andpecos8 +qesin8 

which embody differences of constants as a factor in the arguments of trigona-_ 

metric functions, and which vanish for certain other inclinations. A rather large 
number - about twenty - occurs in the second-order, averaged differential equa- 
tions and must be integrated. Therefore, it is pointed out that, at the inclination 
proper to each, the combination ie a constant. Integration under such a condition 
leads to secular terms. wk;ile this ia not a particularly desirable result, consider- 
ing the nature of the parameters, at least these differences are not a source of 
initial singuladtiee. 
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SEC'I'ION V 

THE TIME-ANGLE RELATION 

In order to complete the first-order solution, a relation must be derived 
which determines the interdependence of the time, t, and the angle variable, 
9. From the sero-order solutim, Kepler's equation is available. It is -on 
m-8. 

- (l-e2)* c [ e sin f/(l+e cos r) 1 + e sin 6/(i+e cos 8)  3 ) * 
where 7 is the time of - U- passage. This equation is valid only for elliptic m o t h .  
A similar equation is easily obtained for hyperbolic motion. The parabolic case, 
on the d e r  hand, is somewhat more troublesome. Since most problems of prac- 
tical interest regarding the perturbation force produced by the polar oblateness 
of the earth relate to near-earth-satellite orbits, and since for trajectories of 
this type all of the parameters are bounded, which guarantees a solution to Equa- 
tion II-1 , coneideration, from this point on, will be restricted to those sets of 
initial conditions which allow values for the quantities E and g, satisljring 

** 

and 

@ ; -  

* 
** 8eesectionn 

All parameters in this section are to be understood to be starred. 

22 
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As a comequence, the equation for elliptic motion (Equation V-1) will be dis- 
cussed here. 

It is possible to derive a perturbation equation for the parameter T having 
the form of Equation II-1; however, because of the very complicated structure 
of this equation - and especially the second-order perturbation equation - the 
following approximation ie suggested as an alternative. 

Let the osculating Kepler equation (Equation V-1) be written in the form 

where ,K has components, g, e cos 8, and e sin 8 , and the variable Cp is the differ- 
ential true a n o d y ,  f + 8. For a given vdue of the variahle 9 ,  namely, q1,the 
parameters represented by the vector - K and the parameter 7 ,  along with the corm- 
spending vectors - U and - V, determine a unique osculating ellipse. If the motion 
were strictly elliptical, the time-hist.org of the satellite would be given by 

In this equation, Cp is the angle from the vector - U1 to the position vector - R. Equa- 
tion V-3 may now be evaluated at t = To,  which is the time at which the satellite's 
position would have been m the direction go . The vector - Uo' is the image of the 

vector - Uo produoed by the perturbation force, including not only the change of the 
osculating plane of the motion, but also the rotation about the osculating angular 
momentum vector - G. In ather words, the vector - U d l i e s  in the plane determjned 
by vectors 

I 

and yl, and differs from the vector - U1 by the angle 8 - 8 o. Equation 
V-3, evaluated&t=T0, hthm 

Subtracting Equation V-4 from V-3 after evaluating at t = tl yields the desired 
time-angle rela#onehip. The function F is replaced by its specific form given in 
Equation V-2. The results are 
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In this equatim the paraxnebre are replaced by their explicit solutions, first order, 
second order, etc. If the independent vastable is the variable cp , the time t is easily 
calculated by evaluating the right hand side of Equation V-5 at specific values of the 

variable Cp . On the other hand, if the time t is taken as the independent variable, an 
iterative procedure must be employed to obtain the corresponding value of the v81Ti8hle 
(6. 
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SECTION M 

TEE SECOND-ORDER, AVEBAGED DIFFERENTIAL EQUATIONS 

The procedure to be followed in deriving the second-order, averaged, dif- 
ferential equation6 is contained in Section 11. For purposes of convenience, the 
requisite equations are reproduced here. 

According to Equation II-4, the complete seconkrder SOlUtian should have 
the form 

(VI-1) 

Before Equation VI-2 can be solved, however, the explicit form of the vector Y' 
must be computed. The equation for this vector is given by 

- 

In these equations the vectors Y and H are identical in form with those - - 
derived in the first-order procedure. The vector 2' consists of short-period 
terms which are selected in a manner similar for determining the vector Z, as 
described in the first-order theory. In this section, however, the components , 

of that vector will, fn most cases, be taken to be zero. Finally, the vector J 
which appears in Equation VI-1, ie defined by Equation It-9. This vector has as 
a common factor the second-order small quantity 2,and its components coneist 
of short-period terms. This vector will not be computed in this report. 

- 
- 

- #  
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In Equation VI-3, the components of the vector 

are obtaimd by substituting the vector sum g3 + - F4 from Equations III-3 and m-4 
info Equations III-17 through III-22 and expanding the results Ln a manner similar 
to that detailed in the derivation of tbe first-order, differential equatiOne. The 
mean values m tben extracted. The presence of the contributions of the third and 
fourth harmonics in #e su-t equations is evidenced by the respective factors, 
B3 and B4. The remaining VBCtom in Equations VI-3 are obtained oarryhg out 
the indicated operations. The procedure is straightforward, requiring only care 
and patience. Tbe results are 
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(VI-15) 

(VI-16) 

(VI-20) 

2 2 2 2  + (e /72) &l(u3 + v3 ) + 33('s2 + v t )  - 37) 

+ (15 B4/16)(4+ 3e2) (1 - 5('s2+ vt) + (35/8)(u;+ v t )  2 I]} 
(vr -23) 

' I  
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62 = €2 B3(3g2/e()(2 + 30’) [(5/4)(u,2 + v3’) - 11 (VI-24) 

(VI-25) 

(VI-26) 

65 = c2 {(7/16)(~: + v:) - (23/24) + (315B4/64)[(’7/6)(u~+~~)-i] 1 (VI-27) 

(VI-28) 

(VI729) 

p2 Sfn 6 (VI-30) 

p3 = U3Q + V3P 

(VI-33) 

(VI-34) 
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(VI-35) 

(VI-36) 

(VI-37) 

(vI-38) 

w-39) 
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SECTION W: 

SOLUTION OF THE SECOND-ORDER, DIFFERENTIAL EQUATIONS 

The group of equations, Equations V I 4  through VI-E?, constitutes the basis for 
the second-order solution. Once a solution has been derived, it is substituted into 
Equation M-1, yielding the complete, second-order solution. The next step, therefore, 
is to solve the set (Equaticms VI4 through VI-12). 

A cursory examination of these equations makes it evident that the best one can 
expect are approximate solutions. In general, the method of approximation adopted for 
deriving the solutions m y  be outlined as follows. 

1) Those quantities which, in the first-order solution, were shown to be 
oonstants -- except for short-period terms -- are taken as constants on 
the right hand side6 of Equations VI-4 through VI-E?. They are, es- 
sentially, the quantities g, u3 + v t ,  and e'. Thus, the terms'defined 
by Equations VI-13 through VI-29 are constants. 

2 

2) The right hand sides of Equations V I 4  through VI-12 are divided into three 
parts: short-period, linear, and non-linear. The three types of terms are 
enclosed in subscripted brackets. The short-period terms are present in 

these equations through the vector ,Y , which, it may be recalled, contains 
the vector Z . The non-linear terms must be carefully examined to ensure 
that m m a r  quantities - such as e u3, or (u3 + v32)ecose - are 
implioitly contained. The set of Equations V I 4  through VI-12 incorporates 
the first two steps. 

2 2 
- 

3) The linearized equations are solved exactly, subject to the restrictions of 
tbe first step and are denoted by primes. 

4) The non-linear parts of the equations are taken into account by the method of 
variation of  parameter^, eubstitution of the solutions of the linearized equa- 
tfons, followed by dire& integration, retaining only terms of the second order. 
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A. SOLUTIONS FOR THE PARAMETERS u3, v3 ,' e cos 8: AND e sin 8 

Consideration of Equations VI-4 through VI-7 shows the interdependence of the 
parameters (%, v3, e cos 8 , e sin 8). The terms in the first set of brackets 
c - . . . . . . . . , are the short-period, first-order terms which were included in the 

first-order, averaged differential equations. However, because of the added com- 
1 4 
plications in ths eecond-order equatiow, they will be shifted, after integration, to the 
vector H. The terms in the second brackets [ , . . . . . , . , ] are linear in the parameters 

0 
- 

Y 

, v , e cos 8 ,  and,a ein 8 and constitute the linearized, differential equations which u3 3 
will be solved exactly. Tbe equation8 are: 

d/d@(u3) = yl v3 + y2 e sin 8 P -1) 

The solutions for the auxiliary parameters p and q are obtained relatively Quickly and, 
since they are of some interest, are given here. 

2 
~ 3 = J ( a - 6 1 )  + e y ~ 6 2  

The solutions for Equations VII-1 through VII-4 may be written as: 
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To implement the fourth step, let Equatione VII-7 be represented by 

Then, by the method of variation of parameters, the vector yo must satisfy 

where the components of the vector - T are the non-linear terms of Equations V I 4  
through VI-7 or the third set of brackets [ . . . . . . . . . 
order are being retained, the matrix M is reduced to the identity matrix by setting the 
small quantity c equal to eero. The vector T is then integrated. For this purpose, the 
first-order derivatives of the involved parameters are required. T b y  are: 

. Since only terms of the second 3, 



With these approximations, the required integrals are easily obtained. They are 
listed below. 

Jpsd"'= %/(2% - 61) m - 8 )  

m-9) 

v3 = (7. % - ~ ~ ( 7 . 9 ) '  - %(7.11) ' - y8(7. 13)' (VIX-17) 

e cos 8 = (7.713' + 63P. 8) ' - 6*(7.10) '+ 65(7. 14) ' (VIX-18) 

e sin 8 = (7.7); - 4(7.9) ' - 6*(7.11) ' - 65(7. 15) ' (VII-19) 

where subscripts refer to components of the vector equation (Equation VII-7), and 
equation numbers are to be replaced by the right hand sides of the equatione to which 
they refer. 

B. SOLUTION FOR THE PARAMETER g 

Now that the solutions for linearized equations for the auxibry  parametere p and q 
and their first-order derivatives are available, Equation VI-8 is easily solved. The 
solution is: 
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C. SOLUTIONS FOR THE PARAMETERS ul, u2, vl, AND vz 

To obtain solutions for the parameters 3, u2, vl, v2 , the term8 in brackets sub- 
scripted 2 in Equationrr VI-9 through VI-12, i. e., the linearized equstions, must Eirst be 
rewritten in a manner similarto the procedure followed in Section IV for Equations IV-22 
through IV-25. The equations then take the form 

c . 

The solution to this set of equations is obviously identical in form with that given in Section 
IV (Equation IV-26) with the appropriate replacements for the constants. The substitutions 
are a = H1 

To carry out the fourth step, &e following first-order derivatives are required 



Pursuing the same reasoning 88 explained in subsection A, it is found that the ap- 
propriate integrd~ are: 
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where 
R1 =Hl  

where 

I 
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The Bolutions for the four parameters ul, u2, vl, and v2 are: 

I- 

t- T 

It is. clear from the foregoing that the general structure of the solutions of Equations 
V I 4  through VI-12 is of the form 

2 x=y' + - L(d) 
where the vectory'is tbe vector of solutions of the linearized equations, and vector 
- L (y') is the contribution to the solutione by the non-linear terms. The complete second- 
order solution has the form 

To determine the constants in these solutions, we make use of the initial conditions and 
the first-order approximations to the vectoryo. The required constants are: 

Onoe the conetants have been obtained, the solutions for the parameters for a 
given value of the independent variable 9 are computed by the following procedure. 

1) The vector y ' is calcul-d from Equation VIX-7, the equation g = go, and 
Equation IV-26. 

2) The vectory l e  derived by substituting vector y ' in Equations VII-S, -6, 

-16, -17, -18, -19, ,-2O, -29, -30, 91, and 9 2 .  
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3) The final (starred) values for the parameters are obtained by sub&ituting 

vector y into the general equation 

where the components of vector H are the short-period terms derived in 
Section IV. As was noted in subsection A of Section VII, there are certain 
additions to be made to the components of vector €I belonging to the param- 
eters 

- 

- 

u3, v3 e C 0 8  8 ,  e sin 8 

These additions are, respectively, 

4) The position and velocity vectors, 
III-6 and XII-7. The equation for the time-angle relation is contained in 
Section V (Equation V-5). 

and d/dt(RJ, are given by Equations 
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SECTION Vm 

CONCLUSION 

The original purpose of the investigation which has culminated in this report 
was to derive a eecond-order solution to the polar oblateness problem that would 
be free of indeterminacies occasioned by particular initial angles of inclination and 
that would not introduce singularities of an equally constricting nature. This study 
has indicated that parameters too closely connected with the conventional elements 
should be avoided because of the difficulties associated with circular initial con- 
ditions. As a consequence, the initial vectors Ro and (d/dt) @to) were considered 
as candidates for parameters. A decision then had to be made whether to use 
differential, eccentric, or true anomaly 88 the independent variable. Unfortunately, 
the time-derivatives of both variables for the perturbed problem are quite complicated. 
This undesirable characteristic adds.eignificantly to the calculations involved in solv- 
ing the eecond-order differential equations. It was observed, however, that, if the 
vectors Ro and (d/dt) (Rd are replaced by the equivalent set used in this report, 
the time-derivative of the differential true anomaly has the same mathematical 
structure as in the unperturbed case. The time-derivative of the differential eccen- 
tric anomaly, on the other hand, remains complex. The dissimilarity arises from 
the difference in the origin about which the two anomalies are measured. Finally, 
in order to avoid singularities in the perturbation equations themselves, the elements 
e cos 8 and e sin 8 were selected in preference to e and 8 because the time-derivative 
of 6 contains the eccentricity in ite denominator. 

A source of much concern has been the time-angle relationship, because not 
only ie the equation (Equation V-1) relating the two complicated, but it also involves 
the parameter 7 Besides being complex, the perturbation equation for thie para- 
meter-and it does have one, because the osculating vectors ,U and'130/rD, are not 
identical--has its own distinctive difficulties. An alternative approximation for de- 

riving the relation between the time and the differential true anomaly has been 
Suggested. 

40 



Regarding the method of solution of the perturbation equations, it is evident 
that the Von Zeipel technique was not applicable, since the parameters used in 
this study do not form a canonical set. The method of averaging waa therefore 
adopted. ~t is interesting in this respect to note that reoent studies5 indicate 
the equivalence of the hko methods, provided the constants of integration are 

properly chosen. 

In solving the averaged, differential equations, two principal criteria 
dictated, insofar as possible, the nature of acceptable solutions. These guide- 
lines were that no secular terms should occur in the solutions and that no terms 
appearing in the denomhators should vanish for any inclinations. The reason for 
the first condition is evident: all the parameters except g are bounded between 
plus and minus one. This condition, at least in structure, has been met. The 
second condition is, apparently, far from being satisfied. The solutions contain 
numerous factors which, for an inclination proper to each, are undefined. 
Paradoxically, however, it is the f i r s t  condition which is not fulfilled, while the 

As was mentioned at the end of Section IV, certain combinations of para- 
meters occur in the second-order, averaged differential equations. These terms 
are trigonometric functions whose arguments involve factors which are differences 
of c o ~ t a n t s .  When these differences vanish, the particular combination is a 
constant. Integration leads to a quantity which, instead of being undefined, is 
secular. Under such circumstances, it follows that the solution tends to deteriorate 
in time. 
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