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Nontechnical Summary

Let Xb, X be a sequence of non-negative integer valued

17 -

random variables with the property that

Pr(X =JlX. =x,... , X =xn_l,X=i)=p

n+l n ij

for al1 i, j, x cee 5y X, I The collection of random variables
{Xﬁ} is called a Markov chain and the pij are called transition
probabilities. We refer to Xn as the state of the process at time n.

Let LA be the cost incurred at time n if the process is in state 1

at that time. Consider the system of equations
©
+ v, = + i =
(l) g vi wi jgo Pijvj’ i 0) l’

in the unknown variables g, vy MEREEERE Such a system arises in
connectlon with constructing optimal rules for controlling Markovian
decision processes. Also the numbers g, Vor Vq» ec. arTe of interest
in their own right. Often g is the long run expected average cost
and vso- vj is the limit, as n - o, of the difference between
expected total cost during times 0, 1, ... , n given that the process
staris i stales 1 and j respecllively.

We show in this paper that one solution to the system (1) is given

by
- .00 - - { =
(2) g == and v, =c -@n ,i=0,1, ...
o]}
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provided that the expected time mio required to go from state i +to
state O 1is finite and that the expected cost io incurred during
that time is also finite, i =0, 1, ... . Notice that vy = 0.

As an illustration of the above ideas, consider a single item
inventory model in which the demands in periods 1, 2, ... are indepen-
dent. A demand of size one occurs with probability p, 0 <p <1, and
a demand of size zero occurs with probability 1 - p. Let Xn denote
the stock on hand at the beginning of period n. An order for one unit
is placed in period n with immediate delivery if Xn = 0; otherwise,
no order is placed in period n. There is a unit cost h for each unit
of stock on hand after ordering in a period. There is a cost K for
placing an order in a period. Under these assumptions the nonzero
transition probabilities are p__ = p, pol =1 -p, p.. =1 - p, and

(e]e] il

P =p, 1=1,2, «o. . Also W= K+ h and W= hi, 1 = 1,2,...

i,i-1

Thus the system (1) becomes

g tv

o K+ h+ pvy + (1 - p)vl

it

gt v,

g =ib+pv, o+ (1 - p)vi, i=1, 2, too »

The solution given in (2) is
g=pK+h,

_ hi(i-1)

v, 2o - KL, 1=0, 1, oo .

ii



Thus g 1is here the long run expected average cost under the indicated
ordering policy. Also v, is the 1limit, as n —» =, of the amount by
which the expected cost in periods 0, 1, ... , n ctarting with i

units of stock on hand exceeds that starting with no stock on hand.
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A SOLUTION TO A COUNTABLE SYSTEM OF EQUATIONS

ARISING IN MARKOVIAN DECISION PROCESSES

by
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and
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Let {Xn}, n=20,1, ... , be a Markov chain having a state space
consisting of the non-negative integers and having stationary transition
probabilities {pij}. let (wi}, i=0,1, ... , be a sequence of real

numbers. Consider the system of equations

o0
(1) g+vi=w.i+_2 PV 1501, en
J=o
in the unknown variables {g, Vor Vi e }. In [2], the system (1)

arises in connection with conditions for the existence and construction
of optimal rules for controlling a Markovian decision process. For a

finite state space existence of solutions to (;) is guaranteed by the

condition that the Markov chain have at most one ergodic class of states.

(See [3].) In this note we give conditions ensuring the existence

(Theorem 1) and uniqueness (Theorem 2) of solutions to (1).

Let

1, if X =Jj and if X #0 for 0<m<n
. n m -

z (3) =
0, otherwise
Jy,n=0,1, ...,
[ ]

Opi:'fj = E(n-_-o Zn(j)ixo =i, 1, § =0, 1, ...,




and

[+¢]

= X i =
m; .z: opij’ i 0, 1, ... .
J=0

If the last series converges absolutely, then m is the mean first
passage time from i to O and we say mio is finite. If the m,
are all finite, as we assume throughout, then state O is positive
recurrent and there is only one recurrent class.
o0 / )
Let Yn = z: w.Zn(j) and ¢, =E \ z: Y [X =1

:j:o J o \I’l=0

By an obvious generalization of Theorem 5 in [1, p. 81] we get
o]

Cig = z: Op*i*jwj provided the series is absolutely convergent. If the
J=o

series is absolutely convergent we say i is finite., In applications
LA is often the cost incurred when in state 1 so i is then the
expected cost during a first passage from 1 to o.
Theorem 1 (Existence)

If the numbers m; and ¢, , 1=0,1, ... , are finite, then

10

the numbers

00 .
(2) g = E;; and v, =c, - em ., 1=0, 1, ...

oo

satisfy (1) and PsjYs converges absolutely, i =0, 1, ... .
Jj=o

Proof':

oo
et w*=w, - g and Y* = ) w*Z (3). Then for i =0, 1, ...
i 1 n j=o Jn




<
Il

; = E (Eo Y;]XO = i)

o0 o
= w¥ + S_\ (Y*] = 3 = j
v ; L E(yEX, =1, % 3P, 5
n=1 j=o

|
I

o ]
=wr+ ) Y E(BX_ =1, X = 3)p,
j=o0 n=1

so (1) holds. The interchange of expectation and summation is justified
since the finiteness of the mio and Cio imply that

00
Y E(]Y;I’Xo = i) < o, This in turn implies that the series above are
n=o0

absolutely convergent so the interchange of summations is also justified.
Theorem 2 (Uniqueness)
If the numbers mio and ¢, , 1i=0,1, ..., are finite, if

it c
Z: ¥, (c., - -0 m.\\ s, 1 =0, 1, ... converges absolutely, and if
5o o 1] Jjo  m . Jo,

o0

{g, Vs V ..} is a sequence with ) op% v,, 1=0,1, ...,

) Vs
1 S 01d )
converging absolutely, then (g, Vs Vs ...} satisfies (1) if and only

if there is a real number r such that

00 .

(3) g=g— amd v, =c, -egn +71,1=0,1, ... .
00

Proof':

It is immediate from the hypotheses and Theorem 1 that

[o o]
- . . . *
{g, Vs Vs ...} defined in (3) Sitlsfles (1) and ;Zg oP13;
J=
converges absolutely as well as ) PiVy Let {g', Vi, Vi, ...} be

J=0




T e o —

S b

oo

any other solution to (1) with z: Op?,v[ converging absclutely for

3=0 d J
oo
i=0,1, ... . Hence Z: pikvé is absclutely convergent. Now pre-
k=0
pX.
. . . = o ci . .
multiplying both sides of (1) by 1, =, summing over i =0, 1, ...
00

o [+ o]
using the relations Z: n, =1 and W, = Z: ., J=0,1, ... , and
i=o T J oy, TRIE

&£

the fact that the interchange of summations is Justified, we get

o -

g' = z: niwi which is independent of {vé, Vi’ ...}. Thus since
i=o

{g, Vo; Vl; ...J) satisfies (1) we must have g = g'.

Letting Ai =v{-v,1=0,1, ... , we get from (1) on subtrac-

ting one system from the other that
0
(&) A= Y p.l, i=0, 1, ...
=0
Let p,. = Pr(X = j]XO = i). Evidently for N =1, 2, ... ,

N
o * + - * i =
ngi Diy S Pyt (W-1) ok, 3 =0, 1, o

SO

(5)

n i i
A * 4+ * TIA i = v ee

=i
ot
i
,_,Mz

Since the series on the right side of (5) converges absolutely by hypoth-

esis, and lim % Z: p?. = 7,, we get from the dominated convergence
N o n=1 J J

theorem that




(6) lin Y

o0
n
LA, = )
N > ® j=0 +d j

A, .
J 3=0 Jd Jd

=l
[
I

[

Since from (5), z: p?jAj converges absclutely we can iterate (4),
J=o

ylelding

2]
. n .
(7) A, = z: p..A,, 1i=0,1, ..o ;3 n=1,2, ... .
=0

Thus Ai is independent of i, which completes the proof.

Example:

If the sequences {mio} and {wi}, i=0,1, ... , are bounded,
then so is the sequence {cio), i=0,1, ... , s5ince
lcio,-f sup mkole . Thus Theorem 1 applies and in addition the solution

k,J
to (1) given in (2) is bounded. This result is used in [2].

We remark that since

“ws ~

jzé opgjlul E’Ofok jzg opﬁjluj!

where

) \
=pr| ¥ 2(x) >olxo=o)>o ,

ofok
n=0




o0
Z: pij[ujl is absolutely convergent for every recurrent state k
J=o

oo

provided that Z: Opgj]ujl is absolutely convergent. Thus the hypoth-
J=o

eses of Theorems 1 and 2 could have been stated only for state 0 and

the transient states.
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