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ABSTRACT

3.Y2 "/f

The subject of the present program (NAS8-20115) is laser and opti-

cal techniques applicable to future deep space optical communication systems.

Analysis and laboratory work have been conducted in the following areas:

stability of laser beam intensity distribution in the far field; remote bore-

sight alignment of receiving and transmitting optical channels; isolation of

the transmitter channel from the receiver channel; determination of a rota-

tional coordinate reference system about the line of sight; and ways of implement-

ing fine guidance tracking and pointing offset capabilities. Laboratory breadboard

equipment which was developed as building blocks for this program is described,

and a summary of project activities to date is presented. Fluctuations in the

far field of a He-Ne laser are shown to be of insufficient magnitude to be

detrimental to an optical communication link. Further_ it is shown that_ by

special dielectric multilayer filter techniques_ channel isolation of at least

115 db is readily achieved for the purpose of optical duplexing.

xv



PERKINELMER
Report No. 8387

SECTION I

INTRODUCTION

The Laser/Optics Techniques Program is directed towards the goal of

demonstrating the feasibility of high-channel-capacity deep space optical com-

munications by providing the key techniques which will lead from laser promise

to laser practice. The properties of lasers which substantiate this promise are

well known; the high degree of spatial coherence, which makes for potentially

tremendous antenna gain, and the extremely narrow optical bandwidth, which lends

itself to narrow-band signal detection techniques. The present program was

directed towards studying some of the principal factors influencing the design of

a future spaceworthy optical communications system. As defined by MSFC Contract

NAS8-20115 functioning hardware was developed while experimental and theoretical

studies were carried out in the following areas: stability of laser beam inten-

sity distribution in the far field; remote alignment of receiving and transmit-

ting optical channels; isolation of the transmitter channel from the receiver

channel; determination of a rotational coordinate reference system about the line

of sight; and ways of implementing fine guidance beacon tracking and transmitter

pointing offset capabilities.

The modus operandi of the laboratory work was to make direct measure-

ments and gain experience with critical components of an actual breadboard

I
optical communications system based on a 1/2 scale version of the OTS con-

figuration. The project breadboard was constructed from modular subsystems,

IDetermination of Optical Technology Experiments for a Satellite (OTS) Phase I

and II Reports, No. 7846 and 7924, Perkin-Elmer Corporation, 1964-1965, NASA

Contract NAS8-I1408.

i-i
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each of which was amenable in principle to eventual space qualification. As a

corollary_ the ground rule was imposed that the basic hardware shall be simple

in concept so as to minimize the complexity of the entire system and to enhance

its inherent reliability.

The breadboard employs a 16-inch aperture telescope which_ together

with other specially developed breadboard equipment_ is capable of tracking a

laser beacon and pointing a transmitted beam to within a fraction of its 0.3 arc-

second diffraction spread. A helium-neon laser functions as the spaceborne

transmitter. The guidance optics and detectors are designed with maximum sensi-

tivity for use with a distant argon-laser beacon.

As in the original OTS design_ the system employs the concept of

optical duplexing_ and requires an effective transmit channel to receive chan-

nel isolation of many decades. The required degree of isolation exceeds by a

large factor the isolation capabilities of conventional microwave duplexing

techniques. The question of whether it could be achieved in practice by optical

techniques was one of the most important areas of investigation of the present

program. Special dielectric multilayer techniques were developed which provided

an affirmative answer.

The basic layout of the system under study is illustrated in Figure

i-i. The current status of each component is listed in Table i-i. The tasks

specified by the contractual work statement and described in this report are

designated in Table i-I by an asterisk.

1-2



PERKIN-ELMER Report: No. 8.387

E

[-,

,..]

\

(11

"0

0

,,M

0
rj

0
..,-I
40

0

0

r_

_0

u_
0

4-;

0

I

O_

O0

1-3



PERKIN-ELMER Report No. 8387

=:

E-_

rJ3

E_
o3

<

om_

1-4



I:=ERKIINI-EL.IVIER Report No. 8387

SECTION II

THE SYSTEM

2.1 GENERAL

Figure i-i was previously used to illustrate the principal elements

of a 1/2 scale version of the OTS optical communications system. A 16-inch aper-

ture telescope acts as the front end of the system and is used for both trans-

mission of He-Ne laser light and reception of argon laser beacon light. A

four-quadrant fiber bundle with a central aperture is shown located at the f/15

focus of this telescope. Its purpose is to divide the field of view into a

2-arc-minute fine guidance field (transmitted through the aperture) and a l-

degree coarse acquisition field (accepted by the outer annulus). Although the

work to be described in this report mainly concerns the fine guidance field,

the coarse acquisition field was not excluded from our consideration in the

development of hardware for this project.

In Figure I-I the focal plane of the first lens, LI, beyond the

field dividing fiber bundle lies in the focal plane of the telescope. This

produces a region of collimated light to the right of L 1 with an axial bundle

diameter equal to the clear aperture of the telescope multiplied by the ratio

of the focal length of L 1 to the effective focal length of the telescope.

The next item in the optical chain is a dichroic beamsplitter,

o o

designed for maximum reflectance at 6328A and maximum transmission at 4880A,

o

and 5145A. It produces two conjugate light paths as illustrated. This

2-1
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arrangement is used to implement optical duplexing, although the details of

obtaining adequate channel separation are somewhat more complicated and will be

discussed in Section VI of this report.

Two additional lenses, L 2 and L3, shown in Figure I-i, form conju-

gate f/70 images at the apex of a fine-guidance image-divider prism and at an

equivalent image of the transmit laser, respectively. The required point ahead

function of the system is shown implemented by means of a pair of Risley prisms.

Relative and joint rotation of these prisms accomplishes two-coordinate angular

offset of the transmitted laser beam from the line of sight of the receive

channel. A lateral translation of either laser lens would have an identical

effect.

Telescope pointing errors are sensed by the fine-guldance image-

divider and associated photomultipliers illustrated in Figure i-i. The re-

sulting error signals are used to close a feedback loop that causes an x-y

servo drive to translate lens L 1 and reposition the beacon image on the apex

of the image-dividing prism."

In this way, the system can point at and track an earth beacon to

within the diffraction limit of the telescope. Since the transmit channel is

conjugate to the receive channel, the light transmitted back to earth is con-

strained to point and track to the same accuracy.

A rotational reference about the line of sight (RLOS reference) is

a required input for the transmit beam offset subsystem indicated in Figure i-i

Ways of obtaining this reference were investigated in the present program and

the results are discussed in detail in Section IV of this report.

2-2
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This completes a cursory view of the system. Details of the actual

breadboard hardware developed for this work are given in Section III, where

some specific system tolerances are dealt with in context. Other system tol-

erances enter into the discussion of aligr_ment and point ahead techniques given

in Section VII.

2-3
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SECTION III

LABORATORY PROCEDURES _ EQUIPMENT

3.1 INTRODUCTION

Because of the wide variety of laboratory investigations planned

for this program 3 it was necessary to have ready access to an entire bread-

board optical communication system_ to individual subsystems and even to

separate components. A modular approach was therefore adopted for equipment

design.

Firs_ the basic system parameters were established. These are

summarized in Table 3-1. The_ all of the hardware 3 including such major sub-

systems as the 16-inch aperture telescope_ was designed as a set of

detachable subassemblies_ each of which could be fastened anywhere on the

surface of a 3 foot by 6 foot steel optical bench. A typical arrangement is

illustrated in Figure 3-1.

Small components, such as filters and beamsplitters were attached

to magnetic Bases which could be slid into position and locked firmly in

place magnetlcally. Critical components such as transfer lenses were held

and adjusted by three-axls mlcropositioners bolted to the optical bench.

Examples of the former device are illustrated in Figure 3-2} an example of

the latter is illustrated.in Figure 3-3.

As a result of this approach t within wide latitude the equipment

could be positioned in any confi_rat/xmdlctated by the requirements of a

partlcular experiment. 3-1
4

.... ]
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TABLE 3- i

SYSTEM PARAMETERS

Clear Aperture of Main Telescope

f-number of Primary Mirror

Secondary Magnification

Location of f/15 Focal Plane

Field of View for Coarse Acquisition

Fine-Guidance Field of View

Mmgniflcation of Image Transfer Optics

(Resulting in Final f/70 Image)

Diameter of 2-Minute Field at f/15

Diameter of 2-Minute Field at f/70

Diameter of 1-degree Field at f/15

Operating Wavelengths

Image Quality

16 inches

f/3

5X

7 inches behind

vertex of primary

mirror.

I degree

2 minutes

4.67X

0.14 inch

0.65 inch

4-1/16 inches

O O

6328A_4880A_ and 5145A

Diffraction-limited

pointing and tracking

capability over centra]
2-minute field.

3-2



I PERKIN-ELMER R e p o r t  No. 8337 

3 - 3  

w 
0 



PERKIN-ELMER Report No. 8387 
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F i g u r e  3-2. Component F i x t u r e s  Held by 
Magnetic Clamps 
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F igure  3 - 3 .  Lens C e l l  Held i n  
Three-Axis Microposit  i o n e r  
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3.2 TELESCOPE OPTICS

The project breadboard uses a Cassegrain form of telescope with a

16-inch diameter f/3 paraboloidal primary mirror. This choice of form was

based on somewhat conflicting optical and manufacturing requirements. The

optical requirements are for i/i0 arc-second rms tracking accuracy over the

central 2-minute fine-guidance field_ and reasonably good imagery over a full

1-degree field. The manufacturing requirements are for mirror shapes that are

readily tested and are capable of being made scatter-free.

Computer-aided design calculations showed that diffraction-limited

performance is attainable over the fine-guidance field whether the main tele-

scope be an f/15 Dall-Kirkham (ellipsoidal primary_ spherical secondary)

Ritchey-Chretien (hyperboloid-hyperboloid) or classical Cassegrain (paraboloid-

hyperboloid). The Dall-Kirkham_ however_ could be ruled out for reasons of

having excessively bad wide-field performance for coarse acquisition_ despite

the manufacturing simplification inherent in a spheroidal secondary.

Assuming similar design parameters (i.e._ f-number of primary_

location of conjugates of secondary_ etc.)_ it turned out that the difference

between a Cassegrain and Ritchey-Chretien is almost academic. As shown in

Figure 3-4_ the hyperboloidal Ritchey-Chretien primary mirror is within X/8

of a true paraboloid over the central ll.2-inch aperture and is within about

_/2 over the full 16-inch aperture. This departure makes for somewhat better

off-axis performance of the Ritchey-Chretien design_ but the improvement is

not worth the additional manufacturing steps entailed.

3-6
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It was therefore decided to manufacture the Cassegralnian design 3

but to use system correction to optimize the figure of the secondary mirror

with respect to the primary.

System correction is the final manufacturing operation of the

telescope mirrors. Mounted in their correct supports_ the fused silica

primary and secondary mirrors are tested together as a working telescope.

To the extent indicated by these tests_ the secondary mirror is withdrawn

and its surface figure corrected until the mirrors perform to adequate pre-

cision in combination.

It was necessary to have a sufficiently large hole in the pri-

mary mirror to acco_odate the 1-degree coarse acquisition field. This had

the desirable consequence of conveniently allowing for center mounting of the

primary mirror 3 which_ for the dimensions used 3 is an ideal way of obtaining

rigid mirror support and maximum figure stability.

As part of the optical design_ it was important to bear in mind

that sky shields (light baffles) are needed to exclude light from outside the

1-degree field in the focal plane of the telescope. The sky shielding of

Cassegrain-type telescopes usually requires a compromise between the size of

the protected field and the size of the field unviEnetted by the baffles.

We were fortunate in that our particular design obtained a 4-1/16 inch diam-

eter (1 degree) shielded field and a 4 inch diameter completely unvignetted

field. The baffle at the secondary mirror blocks very little more of the

central area of the primary mirror than is required in any event by its hole

and mirror support.
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The design results in a total unobstructed area of 80 percent of

the primary mirror. A layout of the telescope optics is shown in Figure 3-5

which illustrates that the telescope is focused by an axial translation of

the secondary mirror.

Highly annealed mirror quality fused silica was decided on for

the telescope mirrors in order to ensure minimum surface scatter and maximum

figure accuracy.

3.3 TELESCOPE STRUCTURE

Center mounting of the primary mirror was accomplished by the

telescope structure illustrated in cross section in Figure 3-6. This struc-

ture was adapted for the project breadboard by Boller and Chivens, Inc.

(Astro-Optical Divisionj Perkin-Elmer) from a standard and very successful

design for an observatory telescope. The rear of the actual structure is

shown in the upper left of Figure 3-I. A front view is shown in Figure 3-7.

The secondary mirror is supported at the end of a remote focusing

drive assembly_ visible in the center foreground of Figure 3-7_ which is elec-

trically driven and imparts an extremely fine control over the telescope focus

without otherwise affecting the mirror alignment.

3.4 IMAGE TRANSFER OPTICS

The image transfer optics were designed in accordance with the

basic layout shown in Figure 2-1. It was specified that the design be

3-9
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achromatized for He-Ne laser light at 6328A and argon laser light at 4880A

and 5145_. It was further specified that the image transfer optics provide

a net magnification of 4.67X and result in an f/70 diffraction-limited image

of the main telescope's central 2-minute field. In addition, because these

optics were required for use with laser light, it was specified that a mini-

mum of surfaces be used and that parallel or concentric surfaces be avoided.

A computer-aided design was obtained which meets these criteria and consists

of a special doublet at LI3 with a focal length of about 6 cm_ and another

special doublet at L2 with a focal length of about 28 cm. Between these

lenses is a region of collimated light I0 to 20 cm long in which zero-power

beamsplitters> Risley prisma_ filters, etc._ can be located without introduc-

ing systematic aberrations into,the system.

These doublets resemble, and in a sense act as> telescope objec-

tives. The first_ which we have denoted the transfer lens, collimates an

image falling within the central 2-minute field of the telescope. The second

lens de-collimates light from the first and forms the f/70 image required for

fine-guidance purposes.

Lens L3, which works with a conjugate image formed by the trans-

mitter channel may be considered identical to L2.

An axial bundle of the relayed collimated light has a diameter of

about 4mm, which is a demagnification of 100X of the 16-inch (400mm) aperture

of the main telescope.
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Field angle considerations lead to a minimum clear aperture of

about 12mm for L I and a similar value or greater for L2_ depending on the

spacing between L I and L2.

But to standardize on cells for the lenses and to provide for

experimental flexibility 3 L I and L 2 were manufactured with a clear aperture

of about 22mm. One of these cells was previously illustrated in Figure 3-3.

3.5 SYSTEM FOCUS

By considering the depth of focus at each focal plane of the

project optical system 3 it becomes evident that only the spacing of the

secondary mirror to the primary is critical for correct system focus. At

f/703 for example_ the focus tolerance _Z is _ ±5nml as given by the usual

formula I (K/4 criterion)

i (f/a)2Kaz

where f/2a is the f-number and K is the wavelength ( _ 5000A ).

At f/15 the focus tolerance is _ ± 0.23n=n (± 0.009 inch)..But

at the f/3 prime focus of the telescope the tolerance is only _ ±9omicrons

(3X10 -4 inches). It therefore follows that all of the image transfer optics

can be mechanically positioned and fixed with respect to the primary mirror

if system focus is left to be accomplished by adjusting the position of the

secondary mirror. The motor drive shown in Figure 3-6 and incorporated into

the project breadboard is provided for this function. An automatic procedure

for achieving correct system focus in practice is discussed in Paragraph 3.11.

_.Born and E.Wolf: Principles of Optics, MacMillan_ New York (1964).
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3.6 OPTICAL TOLERANCES

The optical system of the Laser/Optics Techniques project must

be capable of pointing and tracking to within a fraction of the angular dif-

fraction spread of its 16-inch aperture telescopic front end. Optical toler-

ances must therefore be held to an extent which ensures that the final f/70

image• falling on the apex of the fine-guidance image divider_ contains an

adequate amount of energy symmetrically disposed within the focal spot.

This spot ideally corresponds to the area enclosed by the first dark ring of

the f/70 Airy pattern; a theoretical maximum of 84 percent of the total light

inte_sity in the image can be so enclosed.

If the theoretical peak intensity at the prime image of a tele-

scope mirror is I • then the ratio of the expected intensity peak I to I is
o o

given for high frequency figure errors by the expression

I/I = I -- 4_2_2_ --2
o

where _ is the wavelength of operation and _ is the rms (root mean square)

2
wavefront departure of the wavefront from a sphere centered on the image;

i.e._ A is twice the rms mirror figure error.

It follows this expression that_ to result in a peak intensity 3

I_ of 94 percent of theoretical_ the rms figure error cannot exceed X/50.

This exceedingly stringent tolerance was selected for the 36-inch aperture

primary mirror of Stratoscope II because its principal function is to carry

out celestial photography in such a way that resolution in the recorded image

is limited mainly by the finite primary mirror diameter.

2R.M. Scott: Optical Engineering_ Applied Optics_ Vol.l_ No. 4_ July 1962_ pp.387-397
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Diffraction-limited pointing and tracking functions_ where the need

is to locate and lock onto the centroid of an _mage_ is best accomplished with

optics made to a similar tolerance. This ensures the most efficient collection

of the beacon energy for tracking purposes and the most efficient transmission

of light from space to earth. An effective figure tolerance of _/20 rms (4 =_0)

leads to a peak intensity_ I_ of only 60 percent of theoretical and the tracking

S/N suffers accordingly. However_ for the breadboard system parameters this

tolerance is capable of leading to I/i0 arc-second rms tracking and pointing

accuracy.

Equal-path interferometer measurements were carried out on the

16-inch project telescope to show whether the combined figure tolerance of

the mirrors was within _/20 as required.

The telescope was arranged in autocollimation with a test flat in

a test-tunnel. The interferometer was set up on axis to measure variations in

the wavefront at the f/15 telescope focus. Photographs were taken of the

fringe patterns obtained_ from which it was estimated that the wavefront vari-

ations introduced by the telescope mirror were less than ± X/IO.

Taking into account the fact that telescope errors are doubled on

autocollimation and the rms of the wavefront errors must be considerably less

than X/10_ it is conservative to state that the & of the telescope system was

shown to be of order _/i0 or better at the f/15 focus. This corresponds to a

system figure tolerance of about X/20_ which is of significantly higher quality

than needed for ground-based applications.
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The image transfer optics used in the project breadboard were

designed so as not to add further degradation to the optical system perform-

ance. We recall that these optics consist essentially of two doublets. The

first operates at f/15 and collimates an image falling within the central

2-minute fine-guidance field of the telescope. The second operates at f/70,

de-collimates light from the first lens_ and produces a relayed image of the

fine-guidance field magnified by f/70 by the combination of the two lenses.

These lenses were tested individually on an optical bench equip-

ped with a collimator supplying point-source illumination at infinity. By

varying the orientation of the lens under test, images were made to fall

throughout the image plane corresponding to the 2-minute fine-guidance field.

The lenses were apertured so as to operate at their designed working f-numbers

of f/15 ( 6 cm f.l.) and f/70 (28 cm f.l.).

When the images were observed under high magnification_ both

lenses were found to produce essentially perfect Airy patterns over the full

designed field. The measured diameter of the first dark ring was approxi-

mately 19 microns for white-light illumination of the f/15 lens_ which is

close to the theoretical value of 20 microns for 5500A illumination. The

f/70 lens produced an approximately 90 micron diameter dark ring, which com-

pares equally favorably with the theoretical value of 92 microns.

Photographs of the magnified images showed that the great major-

ity of the energy appeared in the central spot of each image. The secondary

rings were sy_netrical and very much fainter, as would be expected from
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theory. This is illustrated by Figure 3-8_ which is a reproduction of photo-

graphs of the focal pattern of the 2S cm f.l. lens taken with increasing

exposure times.

3.7 FINE-GUIDANCE IMAGE POSITION SENSOR

The Laser/Optics Techniques breadboard is designed to incorporate

an image position sensor subsystem at the f/70 flne-guldance image plane.

One such subsystem was previously illustrated schematically in Figure i-i by

a pyramid-shaped prism and four photomultipliers. Basically the same func-

tion can be carried out by a variety of techniques which for our purposes may

be classified according to whether or not image division is accomplished opti-

cally somewhere along the llne. A brief comparison of the different tech-

niques suited to the needs of the project breadboard is given in Table 3-2.

Only the most irmnediately relevant properties of each are highlighted.

The technique adopted for the Laser/Optics Techniques breadboard

appears near the end of the table and consists of an optical image divider in

conjunction with four photomultipliers. This is a particularly versatile

technique as different image stops can be employed for field reduction, and

different photodetectors can be substituted for a variety of spectral

responses.

For the optical image divider_ we employed a modified version of

the design employed in Stratoscope II.

The original design consists of a modified cube-corner retro-

reflector. A star image is divided four ways on retro-reflection from a

3-18
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cube-corner prism whose three reflective surfaces depart by a calculated

amount from mutual orthogonality. The design results in the ability to dis-

criminate against image motions that are small compared with the size of the

diffraction-limited star image. Image division occurs at the point of inter-

section of three planes of one glass element_ and as this point can be made

to have a blunt region of very small extent only a correspondingly small

fraction of light in the image fails to reach the four photomultipliers which

subsequently sense the image division.

Because of space restrictions 3 an image divider of this type was

employed in the project breadboard on transmission--not on reflection as is

more usually the case. This modification carries the divided image out to a

region behind the divider where photomultipliers can be mounted conveniently_

and is easily accomplished with the Stratoscope divider by leaving uncoated

one of its three reflecting surfaces.

3.8 PROJECT PHOTOMULTIPLIERS

The prime function of the photomultipliers employed in the image

position sensor subsystem is to detect argon laser beacon light at 4880A

O

and/or 5145A. And they must carry out this function in the presence of what-

ever residual red light at 6328A is incompletely blocked from the transmitter

channel. The subject of channel separation is discussed much more fully in

Section Vl. We note here only that because of the channel separation problem

it is desirable to choose receive-channel photomultipliers that not only have

maximum blue response but also minimum red response.

I

I

I
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We settled on EMI photomultipliers for this application as they

were both readily available and suited to the requirements. More

over 3 photomultipliers of this general kind can be ruggedized and space-

qualified.

The main characteristics of the EMI 9514S photomultipllers are

summarized in Table 3-3. The spectral response characteristics of the type-S

photocathodeswhichare employed are shown in Figure 3-9 where the characteris-

tics of S-II and S-20 surfaces are also shown for comparison. A selected set

of four of these photomultipliers_ matched for maximum photocathode sensitiv-

ity and minimum dark current_ was obtained for the image position sensor sub-

system.

In addition_ a selected pair of slmilar_ but red sensitive_

EMI 9558A photomultipliers having S-20 pbotocathodes was obtalned. These

were employed 3 as discussed in Section VI_ in our investigation of channel

separation techniques.

A photograph of the complete image position sensor subsystem is

shown in Figure 3-10. The tube on the left contains the de-collimating lens

previously denoted in Figure 2-1 as L2 and the image divider at the apex of

which is formed the f/70 fine-guidance image plane. The four quadrants of

the divided image plane fall on the photocathodes of four respective photo-

multipliers. These are housed in the cylinders visible in the right-hand

side of the photograph.
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TABLE 3-3

TYPICAL CHARACTERISTICS OF EMI 9514S PHOTOMIYLTIPLIER

Photocathode Sensitivity

Useful Photocathode Diameter

Number of Dynodes

Spectral Response

Dark Current (at 2000 a/_m)

Tube Temperature for Dark Current
within a Factor of 2 of Ultimate

Minimum

40 _a/_m

1.75 inches

13

S (special blue response with

reduced red sensitivity)

0.02 _a at 25°C

-I0 °C

2O

_J
c

O

p.,
:_ 15

g4

_ 10

=

5

I I

I I I I

2.0_ Long Wave Length

| _ 1.5_ Detail of -

_ _ $20 Cathodes

Ol I_l I I
0.7 0.8 0.9 1.0 I.I 1.2

Wavelength in Microns

Sll

0

0.i 0.2

Figure 3-9.
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F i g u r e  3-10. Image-Posi t ion Sensor Subsystem 
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3.9 LASER DESIGN

To meet the needs of the basic project breadboard as well as those

of the experimental investigation of laser beam fluctuation the He-Ne laser

illustrated in Figure 3-11 was constructed. The plasma tube was of conven-

tional design with Brewster-angle windows and oxide-coated cathode filaments_

but the supporting structure was made especially rigid so as to avoid micro-

phonic effects. Provision was made for easy substitution of different laser

mirrors as well as for varying the mirror spacing. This facilitated obtain-

ing stable operation in the fundamental transverse mode using a hemispherical

mirror configuration.

Both the filament and the gas discharge were powered by highly

regulated DC supplies which avoided introducing hum and noise modulation of

the resulting laser light output.

At various times_ plasma tubes with either a 3mm or 2mm bore were

employed. The active length of the gas discharge was about 24 inches (60 cm)

in each case and an output of from 5 to i0 milliwatts at 6328A was generally

obtained.

For some of the later experiments_ when it was no longer useful

to have the laser mirrors exposed_ a Perkin-Elmer Model 5300 laser was incor-

porated into the breadboard. This laser is illustrated in Figure 3-1 as part

of a typical experimental setup.
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F i g u r e  3-11. He-Ne  Laser 
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3.10 PREVIEW OF THE TRANSFER LENS SERVO SUBSYSTEM

As indicated in Figure i-i, fine-guidance is carried out not by

maneuvering the entire optical system_ but by two-axis electromechanical

translations of the transfer lens L I alone. The major resulting benefits are

system simplicity and fast transmit beam pointing correction.

A transfer lens servo subsystem was designed_ constructed_ tested

and incorporated into the project breadboard. A full description forms

Section IX of this report. Some salient points are as follows:

(a) The transfer lens servo subsystem com-

prises I) the transfer lens in its cell

2) supported by flexure bearings that

are so arranged as to allow motion only

in an x-y plane when 3) the lens is driven

by x-y magnetic drives in response to

signals from 4) the image position sensor

subsystem_ shown in Figure 3-10. These

signals are processed by an electronics

control box and an auxiliary hold-mode and

electronics control unit. A i Kc/s square-

wave modulated f/15 point-source was em-

ployed in tests on the transfer-lens servo

subsystem independently of the main tele-

scope.

3-28
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(b)

(c)

(d)

The transfer lens servo subsystem is illus-

trated in Figure 3-12. Seen from left to

right in the photograph are: the f/15 test

light source and chopper blade, the transfer

lens mechanism, the electronics control boxes

(the hold-mode and electronics control unit

is on the bottom)_ and finally the image posi-

tion sensor subsystem.

A top view of the transfer lens mechanism

situated in place behind the main telescope

is shown in Figure 3-13. The photograph is

a time exposure and shows graphically how

focused light from the i0 milliwatt He-Ne

laser is collimated by one lens (L3 of

Figure i-I)_ deflected at right angles by

the dichroic beamsplitter and then is focused

to a spot in the f/15 focal plane of the sys-

tem after which it diverges to "fill" the

telescope.

The hold-mode and electronics control unit

(HMECU) facilitates testing of the complete

subsystem and has three primary functions:

(i) To meter the transfer lens position in

the fine-guidance image plane. The

3.29
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F i g u r e  3-12 ,  T r a n s f e r  Lens Servo Subsystem 
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panel meters are calibrated in equivalent

pointing error of the 16-inch aperture

f/15 telescope.

(2) To provide_ by means of a two-axis hold-

mode servo_ a stable central lens position

for rapid and dependable acquisition_ and

to provide a means of precisely locating

the transfer lens for alignment and test

purposes.

(3) To provide test points and signal injection

for measurement of servo parameters and

tracking stability.

(e) The servo has approximately the response we would

expect to be needed by a spaceborne beacon tracker.

The 3 db bandwidth is approximately 40 cps_ and

the response is very stiff at low frequencies.

(f) Newly developed two-axis capacitance-operated position-

pickoff sensors are utilized for velocity feedback

and they work simply and reliably. A previous need

for tachometer motor coils and large associated magnets

has been effectively dispensed with.
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(g) The transfer lens servo subsystem is capable of

detecting optimum system focus and forms a nat-

ural link in a remote focusing procedure.

3.11 REMOTE FOCUS P_J)CEDURE

Brief mention was made in Paragraph 3.5 of system focus consid-

erations. It was shown that_ with the exception of the secondary mirror_

all of the optical elements can be permanently spaced with respect to the

primary mirror. This leaves the axial spacing of the secondary mirror as

the one parameter to vary to readjust the system focus. The motor drive

mechanism_ which is provided in the project breadboard for this purpose_ was

previously illustrated in Figure 3-6. The motor drive is manually operated

by two pushbuttons (one for each direction of travel) which are shown attached

to the rear of the telescope structure (lower left-hand corner) in

Figure 3-13.

The motor drive_ then 3 is the system focus controller. Detection

of focus errors is accomplished by the transfer lens servo subsystem. The

focusing procedure is carried out while the complete system is tracking the

earth beacon or its equivalent. An electrical dither signal is injected

into one axis of the transfer lens servo drive. The response of the closed

loop is to exactly compensate for the electrical dither by moving the trans-

fer lens. This motion produces an equal and opposite error signal in the

image position sensor subsystem 3 since the dither acts on the servo drive

the same as would a sinusoidal torque disturbance on the telescope. The

motion of the transfer lens is then monitored while the secondary mirror is
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moved in and out of focus by the motor drive. At optimum focus the f/70

beacon image has a minimum diameter and the transfer lens experience mini-

mum dither induced displacement. In practice this is a rather broad minimum.

On either side of focus, the beacon image is broadened and the transfer lens

has to move further to produce the same compensation. This relationship is

illustrated in Figure 3-14.

Position pickoff sensors are incorporated into the transfer lens

servo subsystem and may be used to monitor the optimum focus condition. In

practice it is preferable to determine a position of the secondary mirror on

either side of focus both of which result in the same dither-induced lens

motion. Then the secondary mirror is moved to the half-way position, which

is taken to be optimum. It also turns out to be preferable, for reasons of

accuracy in the presence of spacecraft disturbances, to measure dither-

induced velocity of the transfer lens rather than position.

This remote focus procedure originates in the Stratoscope II

design and has also been adapted for OAO-C (Princeton Experiment Package).

The HMECU supplied with the transfer lens servo subsystem pro-

vides convenient access points to the electronics for this focusing procedure

to be carried out.
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SECTION IV

ROTATION ABOUT LINE OF SIGHT (RLOS)

4.1 GENERAL

If a diffraction-limited laser beam is to intercept a given

earth station 108 miles or more away, then, as discussed in the Phase II OTS

Report, it must be biased forward from the apparent llne of sight of an

earth beacon by, for example, 36 arc-seconds. The correct aim of the trans-

mitter may be specified by two coordinates, one describing the magnitude of

the forward bias angle, and the other describing the rotational orientation

about the llne of sight. A reference, from which rotation about the line of

sight (RLOS) may be determined, must somehow be obtained by the space vehicle.

A polarization scheme that relies upon sensing the plane of

polarization of the incoming beacon light_ and which originally looked llke a

promising approach, was analyzed in the Phase II OTS Report and was shown to

have inadequate signal-to-noise ratio for what were then reasonable deep-space

parameters based on GaAs laser beacons.

Because powerful argon lasers operating at more favorable wave-

lengths have subsequently been developed, and because the polarization tech-

nique is appealingly simple to implement, this technique was re-investigated

as called for in the present program. A summary of this investigation is given

in Paragraph 4.2 where it is shown that, within the present state of the art, the

polarization technique is unsuitable for RLOS determination over ranges beyond

about 10 7 miles.
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An interesting alternative approach to the RLOS problem is dis-

cussed in Paragraph 4.3. It employs two coherent earth beacons in such a way

that the beams are superimposed at the spaceborne receiver and form parallel

interference fringes. The orientation of the fringes is detected optically thus

yielding an RLOS reference. This interference fringe method turns out to be an

extremely powerful technique for RLOS or twist angle measurement at close and

intermediate ranges of less than a few million miles. Its practical limit is

less than 50 million miles and is set mainly by the required baseline separation

of the beacons.

Another alternate approach to the RLOS problem makes use of an

auxiliary star tracker and is discussed briefly in the OTS Phase II Report.

We have analyzed this method vis-a-vis the capahilities of the polarization

method. This work is described in Paragraph 4.3. It is concluded that, with

an auxiliary star tracker of modest size and performance, the required RLOS

accuracy of i arc-mlnute can easily be obtained at the requisite distances with

an adequate signal-to-nolse ratio. The disadvantage of the approach is the

increase in system complexity due to the addition of a star-tracker subsystem.

It is probably safe to conclude from these calculations that over

ranges of 108 miles the required signal-to-noise ratio for the required RLOS

accuracy cannot in fact be met conveniently without resorting to an auxiliary

subsystem. We are therefore led to reconTnend that for a deep space optical

communications system based on an argon laser beacon on the earth surface,

RLOS determination in the spacecraft should be implemented by the auxiliary

star-tracker method.
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t ., PERKIN-ELMER  eport No. 8387Irrespective of the RLOS technique, an integratlon-time or servo-

bandwidth parameter always enters into calculations of attainable signal-to-

noise ratios. An investigation was carried out to provide a fundamental basis

for choosing a value for this parameter. The results are summarized in Pera-

graph 4.5. The analysis is valid in general for any spaceborne servo that

must operate in the presence of vehicle-induced torque disturbances,

4.2 PERFORMANCE OF ARGON LASER EARTH BEACON FOR DETERMINATION OF RLOS

The determination of RLOS by the polarization technique described

in the Phase II OTS Report has been re-evaluated for an argon laser earth

beacon. Plots of RLOS signal-to-noise ratio versus range with low-pass

filter bandwidths (0.i, 1.0 and i0 cps) as a parameter are presented in

Figures 4-1 through.4-6. The RLOS uncertainty 6_ is taken as I arc-minute and

diameter of the satellite receiver aperture is set at 32 inches. The cw earth

transmitter power is taken at i00 and i000 watts. The parameter of earth

transmitter beam divergence varies over the range 3_ 5, and i0 arc-seconds.

The quantum efficiency is set at 0.i.

Table 4-i lists the values of range for which signal-to-noise ratio

is unity for the various cases considered. The RLOS determination by the polar-

O

ization technique for the argon earth beacon case at 5145A, appears marginal

at best at the Martian range (108 miles) even with the I000 watt laser.

If one compares RLOS performance of the argon beacon with the gallium

arsenide beacon, it is evident that the argon beacon provides more photons per

watt, and a transmitter power capability that is potentially greater. The de-

tector quantum efficiency attainable for operating at 5145A is also substantially

o

greater than that at 8400A. However, the atmospheric attenuation is somewhat

o o

greater at 5145A than at 8400A.
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TABLE 4-i

RLOS P__.AR!Z_ATION PERFORMANCE - ARGON EARTH BEACON

Low Pass Filter Bandwidth

(cps)

Range in Millions of

Statute Miles for Which

S/N = I

Transmitter Beam Divergence

(arc-seconds)

3 5 I0

0.I 1 i0

45 18 6.2

0.i I i0

27 ii 3.7

O.l i I0

13.5 5.6 1.85

Average Transmitted Earth Beacon Power = i00 watts

Diameter of Satellite Receiver = 32 inches

Quantum Efficiency = O.i

RLOS Uncertainty = l_arc-minute

Ca)

Low Pass Filter Bandwidth

(cps)

Range in Millions of

Statute Miles for Which

s/N : i

Transmitter Beam Divergence

(arc-seconds)

0.i i i0

150 58 19.5

0.I i i0

86 35 12

i0

O. i I i0

43 17.5 6

Average Transmitted Earth Beacon Power = i000 watts

Diameter of Satellite Receiver = 32 inches

Quantum Efficiency = 0.i

RLOS Uncertainty = 1 arc-minute

(b)
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We may therefore conclude that the polarization technique, although

highly attractive from an equipment implementation point of view (i.e. simple

spacecraft equipment), does not meet the requirements for determining a rota-

tional reference to an accuracy of I arc-minute. For this reason_ emphasis

must revert to alternate schemes for RLOS determination.

4.3 AN INTERFERENCE FRINGE TECHNIQUE FOR RLOS OR TWIST ANGLE DETERMINATION

The interference fringe technique is based on measuring the orien-

tation of a fringe system formed in space by the superposition of two coherent

beacons. As will be shown, this approach is an improvement in performance over

the polarization approach. Despite the improved signal-to-noise ratio of this

approach for predictably practical argon lasers_ servo bandwidths of interest,

and 100-million mile ranges, the signal-to-noise ratio is less than necessary.

It does, however, represent a new and interesting means for twist or RLOS

measurement at intermediate distances. Where background light is the limiting

source of noise, this technique will extend the range for RLOS from i0 million

miles (for polarization sensing) to 50 million miles.

The interference fringe approach is illustrated in Figure 4-7. Two

coherent beacons are projected at an angle, _, with respect to each other so as

to overlap in a region where RLOS or twist angle is to be measured. In this

region, the intensity of the light falling on any plane perpendicular to the

symmetry axis is the coherent product of two coherent wavefronts titled with

respect to each other by the same angle, 5. Interference fringes are formed

whose spacing is established solely by angle _ and whose axis is normal to the

plane of the figure.

4-11



PERKIN-ELMER

1
4-12

Report No. 8387

,-4

4-I _3
•-4 _O

_O _'_

_og

0 C
•,4 _

I::= 0., ¢

I_ o
co r,j

_r._ o

0

0

C
-1-1

0

C
o o

C •

o c

_ o

,Z
!

"4"

¢1
l-t



PERKIN-ELMER Report No. 8387

In practice, both beacons may be derived from a common laser source

and one beacon may be offset in frequency from the other by a frequency modu-

lator. This will impart a continuous lateral motion to the fringe pattern

which will look in fact like an endless, moving sinusoidal grating. Ana-

lytically 3 this is equivalent to the case of stationary fringes. The reason

for arranging to have moving fringes is that this might have certain practical

advantages in a working RLOS or twist measurement system since this motion

permits AC detection without any moving parts on the spacecraft. °(AC de-

tection is generally preferred when the limiting noise of a system is other

than "white" and is peaked at zero cps.)

The RLOS or twist angle reference may be obtained from the orienta-

tion of the fringe pattern as follows. A telescope in the region of overlapping

beams accepts N fringes which are transferred at correspondingly diminished

spacing to the exit pupil where an arrangement of analyzer gratings and photo-

multipliers are located. The analyzer gratings function much like the polarizing

analyzers of conventional polarization techniques for twist angle measurement.

In combination with the luminous fringe pattern, the analyzers form moire fringes.

As will be shown in the next section _ the light intensity within these moire

fringes is a sensitive function of the angular orientation of the analyzers

with respect to the interference fringe pattern. This relationship leads to

output signals from the photomultipllers which can be used to locate the axis

of the interference fringe pattern to a correspondingly high accuracy.

4.3.1 Analysis

The detection system is illustrated in Figure 4-8. If we ignore for

the moment the translational effect on the incoming interference bar pattern,
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Figure 4-8. Fringe Orlentation Measurement System
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then the intensity per unit area of the bars received from the earth beams

may be represented as a biased coslnusoidal function.

reX"I + cos (4-1)I(X",Y") = I0 _ _--

where I
o

system of the bazs received, and 8 is the interference fringe bar width. We

will assume for simplicity that all the light collected by the vehicle tele-

scope system will be detected.

is a maximum intensity per unit area, (X",Y") represents the coordinate

We wish to determine the intensity in a rectangular aperture whose

sides are parallel and perpendicular to the set of "sharp" bars fixed in the

detector. By "sharp" we mean that the transition from a dark bar to a light

bar is discontinuous; the intensity goes from some nominal value to zero

abruptly.

We will further assume the ideal situation, that the optical system

does not change the intensity I(X",Y") from the given by Equation (4-1).

Since the incoming interference fringe pattern is superposed on

the detector's sharp bar reference gratings, a system of moire fringes will be

set up at each detector. As can be seen in Figure 4-9, XY represents the co-

ordinate system of the moire fringes; XtY r represents the coordinate system of

the sharp bars (those fixed on the detector); and as indicated earlier, X'_"

represents the coordinate system of the incoming fringe pattern.

Let @ be the angle between two sets of bars making up the fringes.

Let g denote the width of the bars making an angle, _, with the moire fringes

(i.e., the sharp bars)1 as well as the width of the bars, making an angle,

P = _ + @, with the moire frlnges (i.e._ the received bar pattern).
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From Figure 4-9 we can see that

X" = X' cos @ - Y' sin @

Y" = X' sin @ + Y' cos @

(4-2)

The case of interest is when A << I. Then

X" = X' - @Y' (4-3)

So in the (X', Y') coordinate system, the intensity per unit area of the bars

received from the two interfering beams is

I(X', Y') = I [ i + cos _ (X' - @Y')7 (4-4)
J

Consider the resultant intensity from both sets of bars. The

resultant intensity in a slit perpendicular to the bars fixed in the detectors

is periodic in the X' direction. The period is equal to 2g. From o to g the

intensity per unit area is given by

Io [ I + cos--x (X'_. g - OY') _

From g to 2g the intensity is zero. In general we need only consider the dis-

tribution across half a fringe as the pattern is periodic and symmetric about

the center. Also, we should expect that many periods would be contained in a

slit of height h, (h >> 2g). Therefore, neglecting edge effects, the resul-

tant intensity in a slit of h, in the X' direction, is given by,

I(Y') = W I i + cos -- (X' - @Y') (4-5)
o go
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where W = h/2g. Thus, neglecting edge effects, the height of a slit can be

arbitrarily chosen to equal one vertical period. The intensity of a slit of

arbitrary size then would equal W times the intensity in the unit slit where

W equals the number of vertical periods in the height of the slit.

Performing the indicated integration in Equation (4-5), we obtain

I(Y') = Wlog [ 1 + 2. sln< _") .--J (4-6)

Now the set of bars received from the earth beacon will be trans-

lated perpendicular to the direction in which they run. We are ignoring any

random jitter in the translational motion of the fringe pattern caused by dy-

namic atmospheric refractive effects. Any translation along the bars does not

effect the pattern. When the bars received from the earth beacon are trans-

lated an amount, Xo" 3 the fringe pattern in the detector aperture shifts an

amount, -X "/8 (see Figure 4-10). If the aperture width is equal to 2D, theo

total intensity in the aperture is then given by,

l(Xo",e) =

D--X i!

9

o _ 8
(4-7)

Integrating we obtain

_ _X !!

=2W'ogD['l- sinc( -'m)sin(  ,, , , .,. (4-8)

where :

g /
(4-9)
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Figure 4-10. Translational Shift of Moire Fringes Due to a

Translational Shift of the Received Interference Pattern
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Recalling that W = h/2g, the constant 2WlogD is then equal to lohD which is

the maximum input intensity per unit area times the half area of the detector

aperture. Since two laser beams are required to generate the interference

fringe pattern at the vehicle, the average signal photon arrival rate at the

vehicle receiver is 2n S where ns is the average signal photon arrival rate

from a single beam. Therefore, 2WlogD = ns, and Equation (4-8) can be ex-

pressed as

I
I

I

i

T,..X "

I(Xo"' @) = ns[1 " 2-" sinc < _D_sin<_ g TO "_ -I.i (4-10)

The background earth shine radiation is independent of @ and there-

fore can be written as

IB = 2WIBgD = nB/2 (4-11)

Now at the output of each sharp bar grating we have intensities

and

where

E C ) c_X " >] nB
ns _D(8-_) e
-_ I 2 sinc sin + + for channel,- _ g -_'-- _'-- n D one

_X " nB

ns [i 2 sinc< _D(@+B)_ sin < go__.___] + + for the other-7 g %
channel,

nS =

nB =

% =

average signal photon arrival rate at vehicle

average background photon arrival rate

equivalent dark current arrival rate

Refer to Figure 4-8 for the angles @ and _.
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A small rotation about the line of sight 88 of the incident laser

beacon signal is detected by intensity changes of the two exit beams. Forming

the difference A of the two intensities, we obtain
(4-12)

2gnssin _X°'---_ ) F_ sin< _) < _D_ 8 < _g_ sin< _D__)_= g cos - cos

_2D(82 -[32) - g g g

Making use of the fact that % < _ the intensity change 8A is then equal to

64 -
2ns68

_[3 sin<_)cos<__._,,)Fsinc< _D_._.). cos_ _DB,,__g g .. __ g g /" -_ (4-13)

To convert the intensity changes into number of photons, we multiply

the intensity changes by 1/2 Af where Af is an electrical narrowband filter band-

width in cycles per second. This quantity is further multiplied by the quantum

efficiency ¢ of the photodetector to obtain the number of photoelectrons. There

will be

<='') < >F ) 72Af_p sin . 0 cos _ sinc (r _ - cos _ _D_g g __ ',,.g \ g .

signal photoelectrons at the output of the difference amplifier. The signal shot

noise, the background noise contribution and the two detectors dark current noise

produce an overall photoelectron uncertainty at the output of the difference amp!_-

fier of

- I+ "_" =Dfe-_) nB

[nS _ sin<--> sinc < ) + + ,"_ - --f g g q %_,
e

2--_ ns ns gXo" _D(@+B) nB

1/2

..,, _" I
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which is equal to

[ { E ( ) (,,X") ( nB n_ }nS I + 2 slnc _DB sin , .0 _D_ _] + + 2 ]2Af _ g "_ cos g .-._' "_ ..

1/2

The slgnal-to-nolse ratlo 3 S/N, at the output of the difference

amplifier is therefore:

S

]Diff =

(4-14)

mX ',

n,68¢ ( • o ) (_D___) f (_ _ (_]_8 A---_ sin g cos sinc -_ g ,.. g .,) cos .,

+ nB I/2
+ _" _D _Xo") cos (_De) ] __ + 2nD }][2A--_{nsFI 2 sinc(_ sin( g g

The angle _ must be chosen to maximize S/NDiff. For the case of interest where

the background radiation and dark current are sufficiently greater than the signal,

we can ignore the _ dependence in the denominator of Equation (4-14) for the de-

termination of an optimum _. A solution of a transcendental equation will be

required to determine the exact angle of operation of angle _. However,

_=_¢_ i
2D = _ , where N is the number of fringes in the aperture, will provide

a sufficiently convenient operating point.

¢-- !

Subsituting _ _ _D - N into Equation (4-14), and setting the

translation factor, slnf____._° ), and cos (_D8)factor equal to unity_ yieldsk .g g

ns6@¢ [
s _a__f

]Diff = nB 1/2

[2A--_ { ns I1 + 4 ] + __ + 2_D ]

(4-15)

Simplifying, we obtain

S ] 2ns6@N

Dif_ 2 [ Af(l.4 nS + .5 nB + 2riD) ]1/2, (4-16)
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In terms of the respective incident powers, S/NDiff may be expressed as

_S 7 2 PsS@N

J = r 1/2N
Diff

Lh_Af(l.4 PS + .5 PB + 2 PD ) ]

(4-17)

In order to compare the above signal-to-noise ratio for the interference RLOS

method, employing two laser beams with the polarization technique described in

the Phase II OTS Report, it is necessary to modify the expression for polariza-

tion signal-to-noise ratio. The receivedsignal power level will be taken as

2 PS instead of PS in the polarization signal-to-noise ratio expression.

Therefore,

S _ = _ 2 PS68 2_

Dividing the S/N for the interference method by the S/N for the polarization

method yields

s!
N" "-Int = N.N..-

Pol

2 PS + PB + 2 PD

1.4 PS + .5 PB + 2 PD

For the case where PB > 2 PS and PD is sufficiently samll, we obtain

(4-19)

S]Int

ol

0. i N (4-20)

Hence, the improvement afforded by the interference system over the polarization

system is directly _roport_onal to the number of fringes in the detecting aperture.

4-23



PERKIN-ELMER Report No. 8387

4.3.2 Beacon Requirements for Remote Formation of
Sultable Interference FrinRes

The pointing requirements of each of the transmission optics in

Figure 4-7 can be shown to be the same as for the single beacon of the con-

ventional deep space system.

The necessary baseline separation, dj depends on the range, R, and

the requisite number of fringes, N3 following within the entrance pupil of the

detection telescope. N is related to the fringe spacing, 2g, and the telescope

aperture, A, by the expression

A
N -

2g

It then follows that the baseline separation, d, is related to the

other parameters as follows:

d = RAN _ Rk for R >> d
A 2g

This relationship is plotted in Figure 4-11. Suppose, for example,

that we wish to produce 50 fringes across a 1-meter aperture in the region of a

space vehicle 108 miles ( _ 1.6 x 108 km) away using 0.5_ light. As may be seen

from Figure 4-11, a baseline separation of about 5000 km is required; i.e., for

interplanetary ranges. The 5000 km separation is _ 1/2 the earth's diameter and

the system becomes impractical since the beacons must be mutually coherent.

Over shorter distances, however, the requisite baseline separation

becomes much easier to manage. For example, a separation of only 20 meters is

sufficient to produce i00 fringes across a 1-meter aperture at lunar distances.
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To produce a like number of fringes within a 20 cm (8-inch) aperture

in the vicinity of the moon_ the separation of the two earth beacons need be

only i00 meters.

4.4 DETERMINATION OF ROTATION ABOUT LINE OF SIGHT BY

AUXILIARY STAR TRACKER METHOD*

An RLOS angle change A_ may be measured by means of an onboard star

tracker working in conjunction with the vehicle telescope viewing the earth

beacon. This provides an alternate to the polarization and interference

fringe techniques previously discussed.

The vehicle telescope can determine the direction of the earth bea-

con to an angular uncertainty of A_ R. We will assume that the vehicle telescope

has a circular aperture of diameter D R and that a detection arrangement system

of the type shown in Figure 4-12 is utilized. The detection scheme is placed at

the focal plane of the circular diffraction-limited objective imaging the earth

laser beacon source.
Photomultiplier

inciden__

Beam__

Prism

Figure 4-12. Detection Arrangement

*The type of star tracker considered in this section is described in context and

is linear only over a narrow field.
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In the Phase I OTS Report it was shown that the rms pointing error

;_ S E _ ;-1

of the telescope, A@R, is approximately equal to .61 _R _ N_ 9 where

kE = wavelength of laser earth beacon

and

SE

NI
- at the spacecraft, the earth beacon signal-to-noise ratio.

The angular uncertainty contribution to RLOS, ABE , as determined by

the telescope assuming that the star source is stationary with respect to the

spacecraft is

SE -i
(4-21)

where 7 is the separation angle between the star tracker and telescope viewing

the earth laser beacon. The cot _ term is the projection factor for the vector

into the correct plane. Similarly the rms pointing error of the star tracker_

k S SS )-i (for a single axis) where

A_ , is approximately equal to .61 _S ( _2

kS = average star_ wavele_th

SS
= star tracking signal-to-noise ratio.

Then the magnitude of the angular uncertainty of RLOS as determined

by the star tracker, A_S , assuming that the earth beacon is stationary with re-

spect to the spacecraft, is:

SS _-1 1 (4-22)

In general the factor 0.61 in the above expression is theoretical. In practice

this constant is always somewhat less favorable.
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If both sources of light move, then the rms RLOS uncertainty,

A_ , as determined by both detectors, is

Substituting the values of A_E and A_S from Equations (4-21) and (4-22) into

Equation (4-23) yields

kE 2 cot2_{

A_ = .61 [ DR 2

1/2

SE >-2 + kS 2 <_22_SS -2
<_i DS2 sln2 7

(4-23)

(4-24)

I

I

I

I

I

Solving Equation (4-24) for the star tracker signal-to-nolse ratio

necessary to obtain an rms RLOS uncertainty of A_ gives

Ss [<
N2

DS A_ sin 7)2 _ DS___ )2_ SE -2 -I/2 (4-25)

The following example for this RLOS determination method gives an

indication of performance. Refer to Table 4-2 for the vehicle telescope and

laser earth beacon parameters. Table 4-3 lists the pertinent star tracker para-

meters. The star tracker slgnal-to-noise ratio required to obtain i arc-minute

RLOS angular uncertainty is computed from Equation (4-25) on the basis that the

distance between earth terminal and vehicle is 108 miles (daytime operation is

assumed). The choice of the star Canopus for stellar tracking has been used

since Canopus is a bright star out of the galactic plane which provides large

separation angle between earth beacon and star. The minimum angular separation,

_, between Canopus and earth is typically 30 degrees.

Ss

The star tracker slgnal-to-nolse ratio _ required to obtain the
I.

I arc-minute:_KLOS angular uncertainty is appreciablylegs than unity. This is an
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TABLE 4-2

TYPICAL PARAMETERS FOR ARGON EARTH BEACON

AND VEHICLE RECEIVER

Input Parameter Symbol

Range (statute miles) R

o

Wavelength Received (A) kE

Transmitted Power (watts) P

Transmitted Beam Divergence (arc-sec) _t

Diameter of Receiving Aperture (cm) DR

Receiver Field of View (arc-sec) _R

Atmospheric Transmission (60" from _A
the zenith)

Optical System Transmission (_) 7
O

Pre-Detection Filter Transmission (_) 7
f

@

Pre-Detectlon Filter Bandpass (A) _k

Received Background Earth_hinePower (watts) PB

Dark Current Radiant Input Power PD
Equivalent

PMT Quantum Efficiency (%) ¢

Post Detection Low Pass Filter Bandwidth Af

(cps)

Received Signal Power at Vehicle (watts) PS

Earth Beacon Tracking Signal-to-Nolse SE

Ratio NI

Reception in space of

Earth Transmission

Day Operation

108

5145 (argon)

i00

5

i00

3

0.6

50

50

1.0

4.08 x 10 -12

Negligible in comparison

with signal shot noise

and background

0.I0

i0

3.13 x 10-13 watts

90
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TABLE 4-3

TYPICAL STAR TRACKER PARAMETERS

Parameter

Effective Aperture of Star Tracker

Collector (cm)

Cone Angle (degrees)

Field of View (steradians)

Stellar Tracker Optical Efficiency (%)

Post Detection Filter Bandwidth (cps)

S-20 Photocathode Quantum Efficiency

Night Sky Spectral Radiance @ 4000_

(watt s/cm2/star/_)

Star

Declination

Right Ascension

Visual Magnitude

Spectral Class

Photoelectric Magnitudes

Symbo i

D S

e

Af

Value

10.16 (4 inches)

5

6 x 10 .3

50

i0

0.2

1.3 x 10 "14

Canopus

-52 ° 40' 03.67"

0.6 hr. 22 min. 50.501 sec.

-0o86

Fo

S-20-0o55

sillcon 1.00

S-17-0.59

S-4 -0.45
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extremely modest requirement as can be seen from considering the star tracker

slgnal-to-noise ratio determined from_e parameters in Table 4-3. The tracker

signal-to-nolse ratio is equal to

SS ¢

Where PS is the receiver stellar signal power in watts,

PB " is the background power in watts

PD - is the detector dark noise power in watts

¢ - is the detector quantum efficiency

h - is Planck's constant = 6.6256 x 10 -34 joules-sec

Af - is the post-detectlon filter bandwidth in cps.

A star of zero (visual) magnitude < mv = 0 ) yields a luminous

2 10-13 2flux density I of 2.1 x i0 -I0 lumens per cm or 3.1 x watts per cm at
o

a point outside of the atmosphere of the earth. The relationship between the

flux density, I, received from a star of visual magnitude m
v

star is given by,

and a zero magnitude

_/_ = 2.5.
o

v

For a star tracker collector of effective aperture diameter D S

inches, the power, P, in watts available at the collector is given by,

1.57 x 10 "12 DS 2

P = watts.
m

2.51 v
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Therefore PS is equal to P_o K where _o is the tracker system

optical efficiency (_ 50_) and K is a multiplicative constant determined by

star spectral class and responsivlty of detector (_ 0.33). For the tracker

-12
parameters given in Table 4-3, PS = 9 x i watts. The collected background

= i0-II
power is 1.27 x I0 "II watts. Therefore, PB 1.27 x x (.33) = 6.35 x 10 -12

watts. The detector dark current contribution is negligible in comparison with

PS and PB" For a I0 cps post-detection low pass filter bandwidth the tracker

signal-to-noise ratio is 346! A comparison of this result with what is re-

quired to perform 1 arc-minute RLOS determination clearly indicates the

adequacy of performance of this type of RLOS system.

No attempt has been made to optimize parameters but merely to indi-

cate the capability of this type of RLOS determination system, and the freedom

of choice in design paramters. It is evident that RLOS determination by this

star tracker technique is superior to the polarization and interference fringe

methods.

However, this conclusion only applies to the argon laser beacon,

He-Ne transmitter case. With the advent of the infrared lasers (CO 2 laser

operating at i0.6_), the requirement for the i arc-minute RLOS determination

is relaxed considerably_ and the question of RLOS determination must again be

re-examined.

4.5 TORQUE INDUCED LINE-OF-SIGHT ERROR AS A FUNCTION

OF POINTING SERVO INTEGRATION TIME

4.5.1 Introduction

In our discussions of RLOS techniques_ bandwidths of from 0.i to

I0 cps were used for illustrative calculations. The only source of pointing
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error considered was that due to the fluctuation components of the photocathode

current in the pointing error sensors. It was evident from the calculations

that the error could always be reduced by bandwidth reduction. But as a result

the system would become increasingly susceptible to direct torque disturbances

which introduce additional error components.

The following discussion summarizes the relationship between the

bandwidth of a servo and its ability to resist torque disturbances. Given the

specific torque disturbances of a space optical communications system, this

discussion will provide a basis for choosing a servo bandwidth to match.

4.5.2 Analysis

In the frequency range where the pointing servo open loop gain,

KG(jw)_ is much larger than unity_ the pointing error, Ec, of the servo

controlled telescope is related to the error_ Eu_ of the uncontrolled

telescope by the relation

E - Eu (4-26)
c KG(j_)

where EI:,u = I T° sin w° tl '
2

J _o

J is telescope inertia, and To is the peak

magnitude of sinusoidal disturbance torque.

Furthermore, the equivalent noise bandwidth of the pointing

servo can be established from a knowledge of the open loop gain characteristics.

Hence, for a general type of control characteristic, it is possible to determine
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the minimum bandwidth required to produce a given low frequency open loop

gain characteristic. In the following open loop plot, unit loop gain occurs

at a point on the -6 db/oct slope.

KG(j_)

(db)

-12 dbloct KG(j0_) - o 2 "

(jw) 1 + JnW'_lJ

jnwl

I
jw (log)

Jw I w o -12 db/oct

Here m is the value of KG(jw) at 0_I and n is defined by the diagram. The

noise bandwidth of the system can be shown to be

_+m _ _
t,_eq = 0_

o ! 2/m
n

(°ofThe low frequency loop gain is expressible as ,j-_ . Assuming now that

unity loop gain occurs at the center of the line with the -6 db/oct slope, to

(4-27)

obtain greatest phase margin 3 then m = /n and

weq = Wo
_ l+m _I i 2_m

2
m

(4-28)

which attains a minimum value of 4.07 C')owhen m = 3 (or n = 9).

the low frequency loop gain has a magnitude of

4.07w 4-34

For this case

(4-29)



PERKIN-ELMER Report No. 8387

The expression is extremely useful since it gives the value of open loop gain

(or equivalently the torque disturbance attenuation factor) as a function of

bandwidth _eq , for the assumed type of system.

Another expression would apply if the goal is simply to obtain maxi-

mum low frequency torque level and minimum equivalent noise bandwidth (i.e., with

m not restricted equal to fn ). In this case minimum noise bandwidth is obtained

when m = i, regardless of the value of n; hence,

0mmq . =mln i (4-30)
1 - --

n

For the previous value of n = 93 weq is now 3.53 Wo instead of 4.07 _'
O

low frequency loop gain expression becomes

and the

r i2
3.53 _o

(4-31)

Other types of system characteristics can be so analyzed to obtain

similar results. One such alternate, which is shown following, has proportional

plus integral control to increase low frequency loop gain without significant

effect on noise bandwidth.

l_(j_)

m

1,

-18

Jmx Jml mo

no_I

",,K12

4-35



PERKIN-ELMER Report No. 8387

For X >> m_ the noise bandwidth will be nearly

(4-32)

but as X approaches n, the bandwidth increases and is more accurately given by

the expression

weq = w o

(4-33)

m+ m + i + i (/m )( i )-- -- -- +£'x i ---
,/'x m x n

(i _ i)+ m (i 2) m ix n x mx

The expression for open loop gain at frequencies w_ w is
X

_o)3 i = KG(jw) (4-34)-$- x

These equations could be utilized to obtain results imilar to

Equations (4-30) and (4-31) preceding. However_ this is unnecessary in

order to obtain approximate yet representative results. One procedure is

to sketch particular open loop gain characteristics (making sure that a

stable system will be thus provided) and use the preceding equations to

evaluate weq.

Systems which resort to slopes even steeper than -18 db/oct at

low frequency are possible and may be advantageous. However, expressions

for weq and KG(jw) have not yet been derived for such cases.
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EXAMPLE: A telescope (J = i00 slug ft2) shall be positioned by

torquers in a loop that is lead-lag stabilized. A single sinusoidal torque

disturbance of To = 0.0011b-ft and at mo = 0.01 rad/sec is acting on the tele-

scope. The peak uncompensated error which results (see Equation 4-26) is

Eu I = .001
(i00) (.01) 2

= .I rad = 5.7 °

and it is desired that this be reduced to I arc-minute rms or 1.4 arc-

minute peak. This requires an open loop gain of

IKG(ju_) [rain _ 5.7 x 60 - 244

1.4

This can be obtained with an equivalent noise bandwidth of

Weq = 4.07 (.01) vr244 = 0.635 rad/sec from Equation (4-29)

weq = 3.53 (.01) _244 = 0.550 rad/sec from Equation (4-31).
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SECTION V

MEASUREMENTS OF INTENSITY STABILITY

IN THE FAR FIELD _ A GAS LASER

5.1 INTRODUCTION

Calculations of signal power received on earth from an optical

co_nunicatlons sytem located in deep space generally assume diffraction-

limited concentration of light in the transmitted beam. The practical extent

to which this degree of concentration can be stably achieved has been investi-

gated by measuring the beam intensity distribution and fluctuation character-

istics in the far field of a typlcal_ hlgh quality gas laser.

5.2 CAUSES OF FLUCTUATIONS

Anything influencing the structure of laser cavity modes is capa-

ble in principle of influencing the phase and amplitude distributions of an

emerging laser beam. As a result_ the intensity distribution of the laser

beam in its far field may exhibit time-dependent fluctuations and correspond-

ing tlme-varlatlons of the received slgnal power. The laser cavity modes

(and hence the far field distributions) can be disturbed by (a) an effect

which tends to alter the transverse distribution of the optical path between

the laser mirrors and (b) an effect which tends to change the transverse gain

distribution within the plasma tube and hence alter the amplitude distribution

with each pass through the active medium. Such disturbances may be producedj

for example 3 by mechanlcal changes of the mirror alignment or by random changes
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of the gas density distribution within the plasma tube. The subject of in-

homogeneous gain distributions has previously been studied theoretically by

i
Statz and Tang.

5.3 EXPERIMENTAL PROCEDURE

Experiments were devised to assess the beam properties and to meas-

ure the intensity fluctuations in the far field of the Hellum-Neon laser pre-

viously illustrated in Figure 3-11.

The plasma tube was designed for a nominal output power of I0 milli-

watts in a single transverse mode. The structure supporting the plasma tube

and the laser mirror was made extremely rigid so as to play a neutral role in

the experiments. The laser was operated in the lowest order transverse mode 2

o

(TEMoo) at 6328A.

The experimental arrangement was as shown in Figure 5-1. The laser

beam was focused to its diffraction limited spot (its far field pattern) which

was then magnified by a short focal length lens and imaged onto a distant screen.

This arrangement produced a conveniently large image of the far field pattern

and facilitated the subsequent measurements.

Photoelectric measurements were made with the four photomultlpllers

shown in the figure. Three were used to measure the intensity fluctuation at

different points in the far field using the fiber optics light pipes as probes.

One was used to monitor the direct laser output at the low output end of the laser I

IH. Statz and C.L. Tang: Problem of Mode Deformation in Optical Masers.

J.Appl.Phys., Voi.36, No.6, June 1965, pp. 1816-1819.

2As shown in Figure 5-1, a near-hemispherical mirror configuration was used

to ensure stable single transverse mode operation.
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All photomultipliers were powered from the same supply with a voltage setting

that produced a maximum anode current of 50 _a; i.e. 3 half the maximum rating

of the IP21's that were used. Variations in sensitivity among the photomulti-

pliers were balanced out by varying the load resistors so as to produce identi-

cal responses to the same light input.

5.4 RESULTS

The principal results were as follows:

(a) The diameter of the far field pattern was found to

be in agreement with diffraction theory. Measure-

ments of the diffraction spread of the laser beam

(shown in Figure 5-2) corresponded with the limit-

ing aperture which in this case was the 3 mm bore

3
diameter of the plasma tube.

(b) Neither intensity fluctuations within the far field

pattern nor gross lateral motions of the entire far

field pattern were found to be observable visually.

(c) By means of the photoelectric measurements 3 the

relative magnitude of far-field intensity fluctua-

tions was shown to be approximately constant across

the whole far field pattern and to have an rms value of

between 0.5% and 17. of the maximum intensity in the

center of the pattern. This was only slightly more

3cf. 3 for example 3 D. Dutton 3 M.P. Givens 3 R.K. Hopkins: Some Demonstration

Experiments in Optics Using a Gas Laser. Am.J.Phys.3 VoI.323 No.53 May 19643

pp. 355-361.
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Figure 5-2. Intensity Across Magnified Far Field Pattern of laser.

d = Diameter of Airy Disc for Homogeneously Illuminated

Circular Aperture of Same Diameter as laser Tube.
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than the relative magnitude of fluctuations appearing

in the entire laser output measured in the near field.

(d) There was close cross-correlation of the intensity

fluctuations at different points of the far field

pattern with respect to each other and with respect

to the intensity of the entire laser beam. When the

laser output power was reduced (by increasing the

mirror spacing of the near-hemispherical resonator_

which produces higher diffraction losses) the inten-

sity fluctuations increased considerably.

(e) When the output of the photomultipliers was observed

with an increased bandwidth of 0 to 104 cps_ the

intensity fluctuations in the far field were found

to be only slightly increased. The effect of further

increasing the bandwidth to 105 cps was merely to raise

the level of the shot noise to a comparable magnitude.

Some of the more interesting fluctuation recordings are repro-

duced in Figures 5-3 through 5-6. In making these measurements the usual

initial procedure was to completely block the laser and to trace out the

reference baseline for about a minute. Then I direct readings of the inten-

sity fluctuations were recorded_ the values of which were established by

the initial reference traces. When inGreased resolution was wanted_

the recorder was switched toe more sensitive scale without regard to

the baseline. At the end of certain recordings, the basellne and the

5-6
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Figure 5-5. Recordings Used to Measure Relative RMS
Fluctuations at Various Distances of the

Sampling Points from the Center of the

Far Field Pattern.
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absolute value of the fluctuations were reestablished to provide a check on

the consistency of the measurements.

In the figures 2 r denotes the radial distance of a given light

pipe from the centroid of illumination in the far field pattern and _ denotes

its azimuth position.

Estimates were made of the rms values of the recorded intensity

fluctuations based on the process being Gaussian. In a Gaussian process the

peak-to-peak value of the fluctuating intensitiesj during 95% of the obser-

vation time, is four times the rms value.

Figure 5-3 illustrates portions of the recorded long-term behavior

of intensity fluctuations. The traces are seen to decline at an equal rate

which indicates a continuous decrease in laser output during the observation

period. This decrease was evidently caused by dust particles settling onto

the resonator mirrors and onto the Brewster-angle windows of the plasma tube.

The relative intensity fluctuations were estimated to be 0.9% rms.

Figure 5-4 illustrates portions of the recorded short-term behavior.

Simultaneous recordings are shown of the intensity fluctuations at three points

in the far field pattern positioned the same as for Figure 5-3. In addition_

a recording of the entire laser output is shown. This figure illustrates the

high degree of cross correlation between the fluctuations at the different

points in the far field_ and between these points and the full beam cross

section. Minor deviations from unity cross correlation do occur but only at

a comparatively slow rate of up to a few cycles/sec. These deviations are

likely due to local atmospheric effects.
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Figure 5-5 is meant to illustrate the dependence of the relative

rms intensity fluctuations on the distance of the sampling point from the

center of the far field pattern. The relative rms fluctuation in the center

amounted to about 0.5% 3 which was about the same value as for the total laser

output. For the traces illustrated in the figure 3 the respective rms values

are as follows:

Trace No. Conditions rms Fluctuations

i Full beam cross section 0.4?.

2 r = 0 cm (center of pattern) 0.5?.

3 r = 1.5 cm 0.7"/o

4 r = 3.0 cm 1.2%

5 r = 4.5 cm 1.8%

6 r = 6.0 cm 2.5%

To a good approximation the fluctuations do not exceed about 1%

across the majority of the far field pattern as may be seen by comparing the

above,values with the intensity distribution shown in Figure 5-2 and obtained

with the same setup.

Figure 5-6 illustrates the considerable increase in the intensity

fluctuations that results when the laser power is reduced by increasing the

mirror spacing so as to increase the diffraction loss of the resonator. The

first trace corresponds to a mirror spacing of 83 cm which produced a total

output of 5 mw. The second is for a spacing of 86 cm_ for which the output

was 2 mw. The third is for a spacing of 87 cm and a total output of 0.5 mw.

At the exact hemispherical spacing of 88 cm the output dropped to zero.
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5.5 CONCLUSIONS

From the nature of the fluctuation recordings we may infer that

the sources of the fluctuations were predominantly smaller than the width of

the cavity mode and statistically independent. Thus it is likely that the

majority of the observed fluctuations stem from dust particles floating into

the resonant path between the Brewster-angle windows and the laser mirror and

floating also into the near-field region of the laser beam.

As the fluctuations in the far field turned out to be relatively

small_ the possibility of troublesome Inhomogeneities in the gain distribution

within the plasma tube could be ruled out. This is in agreement with the cal-

l
culations by Statz and Tang.

Based on the intensity stability data abovej and provided the laser

operates in a fundamental transverse mod% the following conclusions are war-

ranted:

(a) The laser beam does not exhibit intensity fluctua-

tlons of sufficient magnitude to be detrimental to

a deep-space optical communications system. As was

shown by sampling various regions in the far field

of the laser beam_ the fluctuations are typically

about l_and this_am0unt will not degrade the

signal-to-noise ratio of a communications channel.

(b) Discernible intrinsic angular fluctuations of the

laser beam were absent; i.e. I there was no tendency

Istatz and Tang 30_.Cit.
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of the centroid of illumination in the far field

to fluctuate spatially. Positive indication of

such "beam wander" would have been as follows:

(1) The time average distribution of light

in the far field _s larger than can be

accounted for by diffraction theory.

(2) Appreciable negative cross correlation

exists between records of the intensity

fluctuations taken at opposite sampling

points across a diameter of the far field

pattern.

Both of these effects were absent to within the sensitivity of

our measurements which we estimate to be at least within a few percent of

the basic beam spread angle. And since any fractional variation of the

laser beam spread angle is unaffected by the telescope of an optical com-

municator 3 it is therefore demonstrated that a mechanically stable He-Ne

laser 3 as far as beam-angle fluctuations are concerned 3 is suitable for a

deep-space optical communications system.

"_ 5-14
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SECTION VI

CHANNEL SEPARATION

6.1 INTRODUCTION

Development of effective techniques for adequate channel separation

is the key to using common telescope optics for both the receiving (beacon

tracking) function and the transmitting function of a spaceborne optical com-

munications system. This problem can be stated as follows: How can we arrange

for the fine guidance photomultipliers to be signal quantum noise limited at

4880_ and 5145_ in the presence of scattered light at 632_ from the neigh-

borlnghlgh-power He-Ne laser transmitter? More partlcularly_ how can we

accomplish optical duplexing without resort to time sharing techniques?

6.2 SOURCES 0_ UNWANTED LIGHT

Any transmit light incident on the receive detectors is derived

from reflection and scattering from the surfaces of the optical elements common

to both the transmit and receive channels. Referring back to Figure 2-I_ the

main sources are evidently_

(a) Scattering at the beamsplitter

(b) Subsequent scattering of residual collimated light

transmitted through the beamsplltter

(c) Reflection from the transfer lens L 1

(d) Reflection from the central dead zone of the

telescope secondary mlrror

6-1
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The amount of light back-reflected from the transfer lens L 1 and

the telescope can be expected to be small although not necessarily negligible,

compared with the transmit light diffusely scattered from the beamsplitter on

reflection of the transmit beam.

6.3 CHANNEL SEPARATION REQUIREMENTS

The magnitude of channel separation needed in the Laser/Optics

Techniques type of optical system may be established by considering the signal

requirements of the tracking servo detectors as follows.

The most difficult case (i.e., when maximum exclusion of transmit

light from the receive channel is required) is when, with negligible background

light, the amount of incoming beam light is barely sufficient for the tracking

function to be carried Out. Suppose, for example, that the integration time

-2
of the tracking servos is of the order of i0 seconds. Then, for reasonable

servo performance with abandwldt_ of some tens of cycles per second, a mini-

mum of about 104 signal photoelectrons are needed per second. Given a de-

tector quantum efficiency of 10% and an optical efficiency of 33% leading to

the detectors, it follows that a minimum of 3 x 105 photons per second of

signal light (provided by the beacon) are needed by the tracking channel.

Therefore, the channel separation problem reduces to ensuring that the track-

ing channel detects fewer than 3 x 105 photons per second of the hlgh-power

laser light present in the neighboring transmit channel.

As a specific example, let the transmit laser power be i00 milli-

1017watts (3 x photons/second). What the tracking channel detects of this
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must be small compared with 3 x 105 photons per second. Thus, the required

12

channel separation must exceed the ratio of these numbers, which is about I0 .

Twelve decades of channel separation are a worst case number for

the He-Ne coD_nunicator considered in the OTS Reports. The actual needs may

vary by several orders of magnitude one way or the other. With such consider-

ations in mind our efforts were directed towards demonstrating approximately

12 decades of channel separation (120 db) by techniques that can be extrap-

olated to more or less separation as dictated by exact requirements of future

systems.

A reduction in receive-channel sensitivity to beacon light may

result from the methods used to suppress unwanted transmit beam light. More-

over, the receive channel detectors will in general have different sensitivities

at the receive and transmit laser wavelengths.

An appropriate figure of merit M for channel separation which

takes these considerations into account can be defined as follows:

P
t

M (in db) = i0 log Pd

where Pt is the power of the transmit laser 3 and Pd is the response of the

receive channel photodetectors to light originating from the transmit laser

put in terms of equivalent signal power (i.e._ referred to detector sensitivity

at the received signal wavelength).

If the transmit laser power is Pt then

mt ct

Pd = -- PT ¢ t
r r
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where T is the optical transmission at the receive wavelength_ _t is the
r

optical transmission at the transmitter wavelength_ e t is the detector quantum

efficiency at the transmit wavelength and er is the detector quantum efficiency

at the receive wavelength.

6.4 APPROACH

From the outset it appeared feasible to achieve adequate channel

separation mainly by the use of conventional all-dielectric filters and lens

coatings. Our subsequent investigations showed that indeed this was the case.

The approach taken was based on the following reasoning:

(I) Any red laser light incident in the direction of the de-

tector will be derived from back-scatter and reflection from the surface of

the transfer lens and from the beamsplitter surfaces. There will also be a

component reflected back by the telescope's secondary mirror. Scattered light

will be attenuated by an amount proportional to the square of the distance

away_ so it is advisable to make the spacing of optical components as large as

possible. Reflected light from the lenses will be attenuated to a higher degree

if the surface curvatures are as small as possible_ provided that multiple

imaging does not produce bright focused "ghosts". Each lens surface should

therefore be coated with a VLR (very low reflectance) coating tuned to the laser

wavelength. This will tend to reduce each surface reflectivity by about a

factor of 103 .

The central area of the secondary mirror will reflect axial rays back

through the hole in the primary mirror. The extent of this area is easily computed
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and_ if necessary_ to prevent the axial rays from returning in the direction

of their source_ this portion of the secondary mlrror can be occulted.

(2) It is feasible to make a dlchrolc beamsplitter_ with spe-

cial design but using conventional dielectric multilayer techniques_ that re-

o

flects almost completely the 6329A band (997.) and transmits about 80% of the
o o

4880A - 5145A band.

(3) The receiver photomultipliers can be protected from residual

6328A light by the provision of one_ or more_ filters having high reflectance

O O

for 6328A and good transmission for the 4880A - 5145A band. A figure of 99.9%

reflection and 80% transmission for these two reglons_ for each filter_ should

be achievable. If more than one such filter is needed_ a slight wedge should

be provided between them to avoid interaction of the coherent light.

(4) To pursue the all-dielectrlc approach the above filters

should be designed_ fabricated_ and their spectral response measured_ especially

the value of transmission where this is very low. Special test gear is neces-

sary to measure the resulting channel separation and must be set up accordingly.

When a dichroic beamsplitter and say two rejection filters are used_

attenuation of the 6328A light by a factor of at least 109 can be expected with a

transmission of 50% of the shorter wavelengths. With the further precautions

cited ahove_ an additionally large factor of attenuation can be expected by mini-

mizing scatter and reflections and additionally by use of a non-red-sensitive

photomultiplier.

6.5 MEASUREMENT TECHNIQUES

A tremendous range of light levels is encountered in the develop-

ment of channel separation techniques. As we have already discussed_ the ratio

of direct transmit laser power to what ultimately can be tolerated by the receive

6-5



PERKIN-ELMER Report No. 8387

channel detectors is about twelve decades. It is necessary to have an accurate,

reproducible technique that is capable of assessing the attenuation of He-Ne

laser light within a range of at least this magnitude.

In principal_ this requirement is straightforward. In practice_

it is accompanied by many difficulties. For one thing a given photodetector

has a linear response only over a relatively few decades. For another_ it is

necessary to make measurements at very low light levels where results may be

suspect on account of spurious laser reflections and interference effects.

We employed a measurement technique that tends to avoid the serious

pitfalls and readily enables one to make systematic radiometric measurements

over a range of more than 13 decades.

A low noise_ highly red-sensitive photomultiplier is used as the

sensor. Specially constructed stacks of neutral density filters are used as

input attenuators. A measurement procedure is followed using the photomultl-

plier-filter combination which ensures that the photomultiplier always works

in its calibrated linear range.

The linear range of the photomultiplier was established as follows.

The test Setup was as shown in Figure 6-1. The method of calibration was to

measure the anode current of the photomultiplier when the laser power falling on

the photocathode was increased by exactly equal steps.

Light from the test laser was attenuated by a continuously variable

neutral density wedge followed by one or more neutral density filters of the

desired step value. Each filter was demountable from an exactly reproducible

position. A typical measurement sequence for an attenuator consisting of the

wedge and one step filter was as follows:

6-6
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The wedge was set to nearmlnimum transmission such that, without

the step filter in place, the anode current of the photomultlplier was Just

above the dark-current level. Next the step filter was inserted and the wedge

was backed off to exactly compensate for the increased attenuation. Then the

step filter was removed and the anode current was measured. Following this,

/

the step filter was replaced, the wedge was backed off to produce the pre-

vious anode current reading, the step filter was removed again, and another

reading of the anode current was taken. This last sequence of events was re-

peated until, as shown by a semilog plot of the anode current readings vs in-

creasing light intensity, it was seen that the photomultlplier was saturating.

The varlable-density wedge (illustrated in Figure 6-2) could be varied over

a range of abou£ four decades. By preceding the wedge with additional step

filters and by following a similar procedure, it was possible to calibrate

the photomultlplier over a much larger range. A typical experimental setup for

making radiometrlc measurements over many decades is illustrated in Figure 6-3.,

Inevitable reflection and scattering from the neutral filter pro-

duces a certain amount of stray light which may cause measuring errors. It

was possible to make this effect negligible by locating the photomultipller

about i meter away from the neutral filters and by inserting a diaphragm in

front of the photomultlplier. In addition, all neutral filterg were_tilted

slightly so as to deviate spurious reflections safely out of the field of view

of the detector_
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F i g u r e  6-2 .  F ron t  View of Cont inuous ly-  
Var i ab le  N e u t r a l  Dens i ty  
Wedge F i l t e r  
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F i g u r e  6-3. View of O p t i c a l  Bench Showing 
Equipment f o r  Measuring I s o l a t i o n  
P r o p e r t i e s  of Tes t  D ich ro ic  Coa t ings  
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It will be noted that this technique of evaluating the linear

range of a photomultiplier does not require exact knowledge of the densities

of the neutral filters. In fact the density of each filter is automatically

calibrated along the linear part of the anode current plot. These cali-

brations then serve, in turn s to calibrate the adjoining non-linear range.

6.5.1 Precautionary Measures in Stackir_ Neutral Filters

The amount of attenuation introduced by the addition of a neutral

density filter to a given stack may be different from the value measured for the

filter alone. This is due to stray light arising within the stack. However_

the method adopted does not rely on the specific attenuation for the single

filters. It establishes the attenuation of each filter after its insertion

into the path of the laser beam with the aid of the variable neutral density

wedge filter.

As a variant to the above procedure a component of variable high

attenuation may first be used to reduce the output of the He-Ne laser to a

level within the linear range of the photomultiplier. Then a filter stack

can be built up by inserting one filter after another into the light path and

by measuring the contribution of each filter to the overall attenuation with

each step. At the same time the variable component is step-wise reduced to

keep the power of the laser beam within a convenient linear measuring range of

the photomultiplier, Here also, slightly tilting the neutral filters relative

to the light path and reducing the field of view of the photomultiplier help

in obtaining reproducible results.

The neutral density filters used to build up highly attenuating

stacks had values of attenuation of I0 to 80 db and were either metal films
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(inconel) produced by Perkin-Elmer or gelatin films from Kodak. Gelatin

filters could only be exposed to light levels up to about 0.i mw in order

not to suffer deformation by local heating effects of the laser beam.

It was previously mentioned that EMI type 9558A photomultipliers

were selected for the channel separation measurements. A semilo8 plot of one

of these tubes 3 obtained by the procedure described abovet is shown in Figure 6-4.

The nominal tube characteristics are; 184 _a/lumen luminous sensitivity,

3 x 104 ampere/watt radiant sensitivity at 6328_, 1.8 x 10-9 ampere dark

current at room temperature, and 2 x i0 -II ampere dark current at -10°C.

As may be seen from Figure 6-4_ this tube exhibits a flve-decade linear range

at room temperature and an additional two decades are gained by refrigerating

to -10°C. The onset of non-linearlty at hlgh levels was probably due to

saturation effects at the last dynode. It was not due to saturation of the

photocathode_ since widening the incident laser beam did not significantly

affect the anode current.

An interesting feature of the dark current was noted when the

photomultipller was refrigerated to -10°C. The dark current exhibited a

burst-like character with a standard deviation of about three tlmes the value

attributable to a Polsson sequence of independent current pulses of the same

average value. Figure 6-5 shows typical recordings of the dark current, measure-

ments hlvlngbeen taken with the setup shown in Figure 6-6. A thermoelectrlcally

cooled housing was used to stabilize the temperature of the photomultiplier at

-IO"C for these and related laboratory experiments.
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The observed non-Poisson behavior of the refrigerated photomultiplier

agrees with reports by others I and seems to be a common feature of this type of

photomultiplier with an S-20 cathode. This point should be borne in mind when

dark current is an important parameter influencing system signal-to-noise ratio.

6.5.2 Measurin_ Procedure and Range

The following procedure was followed to evaluate the amount of red

transmit light leaking into the receive channel of our breadboard optical com-

munications system. First the photomultiplier anode current was related to the

output of the He-Ne laser by building up an attenuator comprising a stack of neu-

tral density filters as indicated in Figure 6-7. The red spike filter was

placed in front of the photomultiplier to block the fluorescence light of the

He-Ne gas discharge. The direct power of the laser was measured by a cali-

brated radiometer. A typical scale factor was 300 _a anode current per 5 x 10 -8

watt of laser output. Then the photomultiplier was installed into the breadboard

as shown in Figure 6-7 to measure the fraction of laser light detectable via the

receive channel. The procedure is susceptible to a systematic error as the

sensitivity of a photocathode fluctuates significantly across its surface and

calibration of the photomultiplier and subsequent measurements will_ in general_

not use the same portion of the photocathode. This defect_ however_ is clearly

negligible for our application of measuring attenuations of i00 db and more.

The overall measuring range of this method is determined by the

output of the He-Ne laser on the one hand and by the sensitivity of the photo-

multiplier on the other. By using the same photomultiplier for which recordings

Ij. p. Rodman_ and J. J. Smith: Applied Optics_ 2_ 287 (1963)
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the dark current at -10°C are shown in Figure 6-5, a light-induced increase of

-II
the anode current of this tube by as little as I0 ampere may be well estab-

lished according to Figure 6-4. This corresponds to an input light power of

-12
0.3 x i0 mw at 6328A. Used in conjunction with a He-Ne laser of about I0 mw

output this photomultiplier calibration allows us to measure the attenuation

at 63281 of a given optical arrangement over more than 13 decades_ as needed

for the transmit-receive channel separation experiments.

6.6 CHANNEL SEPARATION TECHNIQUES

The all-dielectric approach to the channel separation problem has

led to the development of some remarkable dielectric multilayer coatings. A

summary description of the different designs now at our disposal follows, pre-

ceded by a discussion of a number of precautions which were followed in the

mechanical design of the breadboard optical system. Finally_ the results of

channel separation measurements on the complete breadboard optical communica-

tions system are presented to show the combined effectiveness of the various

techniques.

6.6.1 Mechanical Considerations

Scattering from a dielectric multilayer coating on a conventional

substrate is partly caused by minute scattering centers in the coating itself

and partly by small cracks in the surface of the substrate. These cracks

develop during a conventional grinding process. They may be avoided to some

degree by following an assiduous grinding and polishing procedure. Evaporating

a low-scatter dielectric coating on such a "control ground" substrate helps in

obtaining a beamsplitter with the least attainable scattering, and for this

reason we used substrates prepared in this way wherever appropriate.
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A circular diaphragm of 2 cm in diameter was introduced at the f/70

focal plane as an aperture for the scattered light. It reduces the solid angle

of light rays from a scattering center of the beamsplitter which reach the re-

ceiver light detectors, to _/25 steradlan. The converging lens system L 2 in

front of the fine guidance beam divider has an entrance pupil of order 1.4 cm.

As it cannot be located too far away from the beamsplitter for mechanical

stability, it will not reduce the received bundle of scattered light rays any

further than the 2 cm diaphragm in the f/70 focal plane.

The central area of the secondary mirror will ordinarily reflect

axial transmit light rays back towards the receive light detector. Although

it turned out not to be necessary, we were prepared either to leave this area

blank when coating the mirror or to obstruct it mechanically with a light-

absorbing disc.

6.6.2 Dielectric Hultilayer Coatings

Reference is made in this discussion to Figures I-I and 6-7 which

illustrate the location in the breadboard of the following coating designs:

(a) Dichroic Beamsplitter: This is the central element of

the optical system. It has the properties of a color-

sensitive mirror. Its requirements are for high trans-

mission at the argon laser wavelengths and high reflectiv-

ity at the He-Ne laser wavelength. The current state of

development of dielectric multilayers for the dichroic

beamsplitter is illustrated in Figure 6-8. Designed for

45 ° incidence, this beamsplltter is seen to transmit about
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80% at 4880_ and 5145_ and only about 0.1% at 6328_ .

Although this is notable performance for a dichroic

beamsplitter at such oblique incidence, it is ex-

pected that further refinements in design and tech-

nique can improve this performance another step.

(b)

(c)

Very-Low-Reflectance Coatings (VLR Coatings): A

very-low-reflectance coating design tuned to 6328_,

is required for minimizing reflection from the surfaces

of the elements of the transfer lens L I. These re-

flections consist in general of slightly divergent

beams tending to propagate at small angles toward

the receive channel photomultlpller. We employed

a special design that was also tuned to the argon

wavelength so as to maxlmize the amount of argon

beacon light reaching the fine-guidance detectors.

A reflectance plot is reproduced in Figure 6-9.

and shows that the reflectance of an uncoated surface

becomes reduced from about 0.04 to about 5 x i0"4

at 6328_ and to about 5 x 10 -3 at the argon wavelengths.

Short-Wavelength Pass Filter (SWPF): This kind of filter

is located between the beamsplltter and receive channel

detectors, and in practice is best located as shown in

Figure 6-_immedlately in front of lens L2. It functions

as a final blocking filter to prevent surviving zransmit:

light from entering the receive channel. Its required

properties are similar to those of the beamsplitter as

6-21
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(d)

it must reject red transmit light by reflection and

pass blue beacon light. A special coating design was

worked out for the SWPF requirement_ and filters with

the transmittance characteristics shown in Figure 6-10

resulted. The transmittance at 6328A is on the order

of I part in 105 (as measured with the radiometric

O O

procedure described previously.) At 4880A and 5145A

the transmittance is seen to exceed 0.94. Some of

the incident blue light is lost on reflection from the

uncoated surface of the substrate. Thus_ by putting

antireflection coatings on this surface one can expect

to improve the transmission by an additional few percent.

The SWPF design is additionally useful as a long-wave

blocking filter in conjunction with a Fabry-Perot

type spike filter such as may be employed for predetection

filtering in the project breadboard.

Spike Filter With Enhanced Red Suppression: The receive

channel of the project breadboard is designed to in-

corporate a narrowband spike filter centered on one

or both of the argon laser lines. This filter may be

located immediately in front of the decollimating lens

L 2 and either be a substitute for or be used in con-

junction with the SWPF shown in Figure 6-7.
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Dielectric spike filters of conventional design

employ colored glass elements as blocking filters.

As a result of the sandwiching of absorbent filters

and dielectric substrates 3 optical quality and peak

transmission tend to suffer.

We therefore investigated the possibility of con-

structing a spike filter from purely dielectric

stacks. This approach was successful_ and the

transmittance plot shown in Figure 6-11.was obtained

by a design comprising four separate dielectric multi-

layer stacks_ a Fabry-Perot type multilayer to produce

the principal narrow spike 3 a bandpass filter centered

on the spike wavelength to block the immediate side

maxima of the spike 3 a long-wavelength blocking filter

and a short-wavelength blocking filter. The remaining

leakage of unwanted light in the wings and 3 in particular 3

the leakage at 632_ is determined by the blocking filters_

By incorporating the SWPF design for the long-wavelength

blocking filter I the transmittance of the compound spike

o

was reduced to less than 10 -7 at 6328A_ As shown by

Figure 6-111 the half-width of the all-dielectric spike

O o

filter is about 25A and the peak transmission at 4880A is 5870.

6.7 MEASUREMENTS OF SYSTEM CHANNEL SEPARATION

The setup shown in Figure 6-7 was used to evaluate the net channel

separation that resulted from using a miniu_m of optical elements bearing a

combination of the above coatings in the project breadboard.
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One set of measurements was made under the following set of

conditions: the surfaces of the transfer lens were coated with VLR coatings

having the transmittance shown in Figure 6-9 3 the beamsplitter corresponded

to Figure 6-83 the compound spike filter of Figure 6-11 was used in place of the

SWPF shown in Figure 6-73 the telescope was not yet incorporated into the setup_

and the outgoing He-Ne laser besm was terminated by a black_ absorbing surface

about 5 meters away from the besmsplitter.

This arrangement_ which mainly relied on only two components for

channel separation (the beamsplitter and the spike filter) attenuated the red

light of the He-Ne laser reaching the detector by 95 db. Furthermore 2 all

background radiation was blacked outside the 25_ passband of the spike filter

centered on 488_whare the net transm_sslon was about 58_.

According to our previous definition_ the figure of merit for

channel separation becomes 95 db less 3 db (for the transmission term) plus

15 db (as_ substitution of S-cathode photomultiplier for the S-20 with

which the measuremBnts were taken) for a total of approximately if0 _.

These measurementswere repeated for the entlre optical system

including the 16-inch aperture telescope. Inclusion of the telescope clearly

had an important bearing on the channel separation problem because part of the

transmit light incident on the central region of the secondary mirror is re-

flected directly back into the receive channel. The optical arrangement was

essentially the samo as for the previous measurements except that the

was used rather Chanthe spikefiltm.r. 1_no q_asuremsnt8 _a_ealed .tha_,_addlnE

theteleacopl, tot _- breidboazd colT.aclmmCed £or abmxt lO_re light

reaching the photmnultlpller. The other 90_ stud almost entirely from
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reflections off the four surfaces of the transfer lens L I. Scattering from

the beamsplitter and from the absorber behind the beamsplltter contributed less

than 1%.

The overall attenuation of the red laser light detected by the photo-

multiplier in the breadboard setup amounted to about I00 db. This does not in-

clude the additional attenuation of 15 db to be expected by using receive photo-

multipliers with reduced red response.

The blue spike filter with enhanced red suppression of the type

described was not used for these last measurements. It was found with this

O

filter that suppression of 6328A light was virtually complete except for a

minute amount which was transmitted diffusely through pinholes in the four

sets of dielectric coatings on its four constituent substrates. Since_ as

described in SectlonVII the post-launch alignment scheme requires a finite

amount of collimated red light to be transmitted by such a filter_ the original

one was ruled out for this use. A modified design was later manufactured and its

properties are described in connection with the investigation of remote alignment

techniques discussed in Section VII.

The blue glow from the He-Ne laser turned out to be an unexpected

source of background light reaching the photomultiplier detector in these

measurements. It was necessary to exclude this light by 3 for example_ inserting

red filters directly after the laser or in front of the photomultlplier_ and

this is the reason for its inclusion in Figure 6-7.
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6.8 DISCUSSION

The all-dielectric approach has now been shown to be capable of

achieving channel isolation very effectively. It should be emphasized that

the figure of i00 db quoted above results mainly from two treated surfaces_ one

of which is the beamsplitter and the other must be provided anyway as part of

the predetection filter. Future refinements can be expected to yield greater

separation without additional optical elements and we are still free to add

additlonal SWPF'a to increase arbltarily the smm/nt of separation obtained.

It has been suggested previously that channel separation can also

be affected with the help of dispersing elements. However_ st best this

approach would complicate the problem of post-launch aligmnent techniques.

Further difficulties might arise due to the fact that the received earth-beacon

light consists of several wavelengths which would be subject to differing dis-

persions. By contrast 3 the all-dielectric approach features noteworthy versa-

tility in that future changes in operating wavelengths can be acco-=nodated by

straightforward redeaigm of the dielectric multilayers.

A number of general conclusions appear to be warranted:

(a) The dielectric techniques used in the laboratory

experiments and described in the preceding paragraphs

can readily provide more than 110 db of channel

separation between a helium-neon transmitter and an

argon beacon-recelver.

(b) This approach is simple to Implement. Most of ii0 db

separation is produced by two optical elm-ants that have

to be provided anyway: the beamsplitter and the spike filter.
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(c) This approach can be modified for more or less channel

separation as wanted. For example at least 20 db of

in_rovement is feasible as a result of improving the

dlchrolc beamsplltter. Alternatively 3 another SWPF

can be inserted in the optical system for an increased

channel separation of _ 50 db.

(d) This dielectric technique permits an attractively

simple approach for boresighting the transmit channel

with respect to the receive channel. For example_

let us arrange for the amount of channel separation

to be no more than necessary for the tracking function.

Then_ by inserting a cube corner prism between the beam-

splitter and the transfer lens 3 a certain additional

amount of collimated light from the transmit laser will

be reflected back into the receive channel where an

image will be formed in red light. The additional in-

tensity can be enough for the receive channel detectors

to tell where the image is located. Alignment can then

be accomplished by adjusting the transmit channel optics

until the red image falls exactly on the apex of the

image divider. This subject is discussed more fully in

the next section.

An appendix that accompanies this section contains a discussion of

polarization aspects of dlchroic mirrors of the type used extensively in our
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laboratory experiments. This study was carried out as technical background

for building PCH/PL capability into a given transmitting or receiving optical

system. The principal conclusion is that polarizatlon-dependent effects will

not significantly influence the current breadboard optical system when it

functions as a PCH/PL transmitterj and that PCH/PL is fully compatible with

our channel separation techniques.
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APPENDIX VI-A

POLARIZATION EFFECTS OF DICHROIC MIRRORS

IN A PCM/PL TRANSCEIVER

SUMMARY

This Appendix analyzes the polarization effects of dichroic mirrors

in a PCM/PL transceiver. Equations are derived which state the effect on the

communication link of introducing a dichroic mirror into the optical path. The

PCM/PL binary digital optical signal may be either right- and left-hand circu-

lar polarized or two-perpendicular-plane polarized signals. The derived bit-

error-rate equations show that the dichroics insert a smaller error into the

system if the PCM/PL system using circularly polarized light is used. With a

poor dichroic (transmission in the "p" and "s" planes of 0.6 and 0.45_ re-

spectively)3 a PCM/PL transceiver_ using circular and plane polarizations in-

cident on the dichroic_ required signal increases of 2.8 db and 3.5 db_ re-

spectively, to make up for signal deterioration. Better dichroics_ which in

practice are readily obtained, cause correspondingly smaller signal deterior-

ation. Several methods for reducing the effect of the errors introduced by

dichroics are also discussed.

INTRODUCTION

Dichroic mirrors introduce amplitude losses and phase errors in

both transmitted and reflected signals. These errors change linearly polarized

light into elliptically polarized light. The performance of PCM/PL (Pulsed Code

Modulation with Polarized Light) and optical heterodyne demodulation techniques
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will be degraded by these errors in polarlzatlon. I Introduction of compensators

and proper allgmaent of the plane of polarization for the local oscillator laser

will correct any ellipticlty introduced in the optical heterodyne receiver. The

effect of polarization errors in a PCM/PL system is more complicated. This

Appendix examines the relation between polarization errors and blt-error-rate

of the PCM/PL system. Several techniques for reduci_ the effect of polarization

errors are discussed.

The Laser/Optics breadboard is a functional transceiver for an

optical co_nunlcatlons llnk. A dichrolc mirror is located "behind the mirror"

to produce two conjugate optical paths. One of these paths contains a PCM/PL

transmitter laser and modulator (Figure 6-12). The second path contains the

fine tracking sensor andj posslbly_ a receiver for the optical communication

llnk. Although a PCM/PL receiver is not envisioned as part of the Laser/Optlcs

breadboard_ we have added such a receiver to the breadboard optlcal configur-

ation shown in Fisure 6-12 for illustrative purposes in the following dis-

cussion. The receiver components are typical of what are needed in general for

PCM/PL detection.

POLARIZATION-DEPENDENT EFFECTS OF DICHROIC MIRRORS

• o

The transmittance T (at 4880A and 5145A) and reflectance R (at

O

6328A) characteristics of a typical dichrolc are given in Figure 6-13. The sub-

scripts "s" and "p" in the identities below denote the polarization perpendicular

_. N. Peters: Incoherent optical Polarization Pulse Code Modulation Communica-

tion System_ National Electronics Conferencej Chlcago 3 October 1955.
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to_ and parallel to the plane of Incidence_ respectively. That is I in

Figure 6-12 the "s" vector is perpendicular to the paper and the ,p,, vector

is parallel to the paper. We may define the following general parameters as

follows:

_T = Max { Tp, Ts_ _R = Max _ Rp, Rs}

TR - RI
_T 13R

(6=i)

Let 8 denote the phase difference between the "s" and "p" vectors at the entrance

face of the Wollaston prism resulting from uncorrected system errors and random

fluctuations of the transmission medium.

When several mirrors are placed in the optical path) the polariza-

tion errors are cumulative. For example, the parameters describing the polar-

2
ization of the optical signal at:the Wollaston prism in Figure 6-12 are:

= iT
P

iT
_ P

x 3R
P

3 IT 3R- X
x Rp s s (6-2)

6 = 18 + 36 + 6c , -_/2 _ 6 < _/2

where

residual phase error

phase introduced by phase correction plate

2This example assumes that the "s" and "p" components have the relative magni-

tudes shown in Figure 6-13.
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The superscripts 1 and 3 in Equation (6-2) denote the dichroics

D1 and D 3 o£ Figure 6-12. Thus, the parameter 1T is the transmission of
P

dichroic number 1 in the "p" plane.

Sources of Bolarization-Dependent Errors:

Since the received optical signals wlll be circularly polarized,

a phase correction of 6 = _/4 must be inserted to obtain the required plane
C

polarized orthogonal signals at the Wollaston prism. Phase errors introduced

by the dlchroics may also be corrected. For example, if the dlchroics intro-

duce a 15 ° phase errorj the phase correction 8 = 45 ±15" will make the "0"
C

and "1" signals plane and orthogonal at the Wollaston prism. The choice be-

tween the plus or minus sisns is determined by the orientation of the dichroics

and phase correction plate.

The phase errors created in the atmosphere and received optics

will give a statistical distribution to the phase error 8. Since the value

of 6 becomes time varying, it is impossible to insert a constant phase correc-

tion 6 which will compensate for atmospheric phase errors.
c

An additional source of phase error is the PCM/PLmodulator. If

the voltage impressed on the electro-optlc modulator is in error, phase errors

are introduced in the transmitted optical signal. If the phase errors of the

"0" and "l" signals have the same sign, and are equal_ the errors may be call-

brated and compensated at the receiver. No compensation is possible when the

phase errors have different signs.
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Receiver-Optlcal Considerations:

Since the maximum obtainable _R is greater than the maximum ob-

tainable _T _ the isolation requirements between the transmitter and receiver

dictate the basic arrangement of Figure 6-12. The advantages of changing the

angles _i ' _2 and the insertion of additional phase compensators will be dis-

cussed later.

The two orthogonal polarizations whlch are transmitted and re-

ceived by the telescope should be rlght-hand (RH) and left-hand (LH) circular

polarization. A PCM/PL communication system operating against a plane polar-

ized noise source (e.g., blue sky) has a minimum blt-error-rate when circular

polarization is utilized (Reference i). This has the added advantage that the

receiver optics operate with arbitrary rotational orientation. They do not

need an RLOS (Rotation about Line of Sight) determination to decode the re-

ceived optical signal because the plane of polarization of the light incident

on the Wollaston prism will be determined solely by the orientation of the

quarter-wave plate.

The output of the He-Ne laser is plane polarized. Thus, if the

modulator is operated at the ± quarter-wave voltages, the light passing through

L4 will be circularly polarized as required for PCM/PL.

DERIVATION OF PCM/PL ERROR RATES

Case i: ¢ = 0, _ = i, 6 = 0

The blt-error-rate of PCM/PL system is, under these conditions,

PB = i/2 K=I_ PK <S + N/2 ) [ QK (N/2) QK+I(N/2) ] (6-3)

I

I

I
I
I
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The derivation of Equation (6-2) is treated in Reference i, and

the variables are defined as follows:

PK (S + N/2) = K:

exp (-S - N/2) (S + N/2) K

K-I

QK (N/2) = _ PK (N/2)
K=0

The derivation of Equation (6-3) assumes that the signal and noise

photoelectrons detected during the sampling interval are Poisson distributed

and have expectations of S and N3 respectively. Equation (6-3) is plotted in

Figure 6-14.

Case 2: ¢ = 0, p _ 1A,' 6 = 0

The above conditions occur when the optical signal is normal to

the multilayer film. By inspectlon_ the blt-error-rate becomes

(6-4)

CO

Figure 6-14may again be used to graphically determine the required

operating parameters by substituting _S and _N for S and N, respectively. S and

N are the signal and noise counts with the dichroics removed.

In the above sample_ the signal-to-noise ratio (S/N) remains con-

stant during the transformation (i.e. 3 S/N = _S/pN). However_ the decrease in

the signal count per decision increases the relative contribution of the quantum

noise. Thus_ it is important to maintain bot____hthe maximum possible S/N and

average signal counter decision.
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The general solution of the bit-error-rate for a PCM/PL receiver

with both phase and amplitude polarization errors will now be derived. The

relative intensity of elliptically polarized light passing through an analyzer

3
at azimuth angle _ is:

I = _" cos 20_ + a 2 sin 2 o_ + ala 2.sin 2C_.cds 8 (6-5)

The variables are defined in Figure 6-15.

The expected phase error 5 is assumed to be small. Using the

cosine expansion for small angles, Equation (6-5) becomes

1 _ 2 2 sin2 + a2 sircz cos_( 1 . 52)]L el2 cos _ + a 2 2a 1 21
1

counts per second.

a 1 a 2 82 sin 2_ (6-6)

The optimum PCM/PL receiver will have plane, orthogonal and equal

intensity optical signals at the Wollaston prism for the "0" and "l" signals.

However 3 the dichroic mirrors will insert both phase and amplitude errors. Re-

ferring to Figure 6-152 suppose the original signal has an intensity S and was

plane polarized in a plane of = = x/4. The intensity of this original signal

is

2

3W. Budde,:FamCe41ectricA_uly_£s of_olertsed Light.

no. 3, Ksr. 1962p pp 201-205.
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Figure 6-15.*Geometry of Elliptically Polarized Light

With Respect to Optical System
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Assuming _hattha.x and y planls cotmci_awithehe s and p. planes of the d_-

chroi% respectively, the transmitted intensity:at the ou_ut of the. dichroic

is

sin _/2 _.1

_Ts'Tp+T p

s V Ts"r,:,+T,_ ,/"T_ 82=+ +{[oo+,++ ,_ ,,.,,.,,,]+?_-. -,,,,,,_]+}

If T >T
p s _

the variables may be relabeled

•,-,,.,+= _ {I-._co,,,+]++_ ..,,.,,_]+_+- _, 2+_'+:""'`]+'' }

¢ 62=_ _-_+ v_ C_- -_)_

This is the signal count received in the correct photodetector.

Note that if _ = Is ¢ = 0 = 8, Equation (6-7) reduces to S, as expected. When

polarlzatlon errors are introduced into a PCM/PL signal, the "0" and "I" pol-

arizations are not orthogonal. That is, it is impossible to select a proper

azimuth angle for the analyzer at which all the "0" energy enters one photo-

multiplier and all the "l" energy enters the opposite photomultiplier. The

amount of energy entering the incorrect detector (i.e., noise) is:

: +.+.C[co.C-.+.) +,-" _.,oC:+)? _ '_-+°+,,:,-,,C_-)+,-_I N

(6-8)

(6-7)
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Since the background noise is assumed to have random polarization

and the angle of the analyzer is _ = ± _/4, both detectors will have a modified

average background noise count per decision of

T +T

ackground 2 _. 2

The modified average count of the "signal" photomultiplier when

the circularly polarized optical signal is incident upon the dlchroic is

(S + N/2)' = Islg - IN + (N/2)'backgroun d

• N s p"_
J

(6-9)

The modified count of the "noise" photomultipller is

(N/2)' = IN + (N/2)backgroun d

N< T+T
J

(6-10)

Equations (6-9) and (6-10) may be explained by referring to

Figure 6-16. Part (a) shows the partition of the received energy between the

two detectors where there is no polarization error (i.e., ¢ = 0 = 6). Parts (b)

and (c) show the received energy partition with phase and amplitude polarization

errors and the redefined signal and noise levels, respectively.

Case 4: p = i, ¢ = O r 6 _ 0

If _ = i, ¢ = O, 6 _ 0, Equations (6-9) and (6-10) substituted into

Equation (6-3) give the expression for the blt-error-rate with polarization phase
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errors. The resulting equation is plotted in Figure 6-17. This graph demon-

strates that the residual phase errors expected from the system are not detri-

mental to a PCM/PL communication link.

Case 5: $ = O. 8 _ I (Zero Phase Error, Appreciable Amplitude Error)

The error rate equation can be simplified if the following assump-

tion is made_

< Ts+TP2 " 2
(6-11)

The above approximation is appropriate since the system is assumed to be operat-

ing at high S/N and ¢ < 0.25. The bit-error-rate equation for amplitude polar-

ization errors is obtained by substituting Equation (6-11) in Equations (6-9)

and (6-i0)_ which in turn are substituted in Equation (6-3). The resulting

expression is plotted in Figure 6-18.

As a typical example of the transmissibility for poor dichroic

let T = 0.60, T = 0.45, 6 = O, _ = 0.6, and e = 0.25.
p s

The quantum limit with the dichroic removed (e = O, _ = I) is 6.22

signal photons per decision (from Figure 6-15). By inserting the dichroic into

the optical path, the new quantum limit becomes (Figure 6-18):

7.1

SqL - 0.6 = 11.8 counts

This increased quantum limit can be overcome by increasing the

transmitter power by 2.8 db. The required increase in power reduces to approx-

imately 2.6 db for higher signal and noise powers (also from Figure 6-15).
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PLANE POLARIZATION INCIDENT ON DICHROIC

The foregoir_ discussion assumed circular polarization incident

on the dichroic as illustrated in Figure 6-12. But if the phase correction

plate in Figure 6-12 is moved to a position between L 1 and D1 as shown in

Figure 6-19, plane polarized blue light will be incident on the dichroic mirror

and the effect on a PCN/PL receiver 4 will be changed in general.

Two axial orientations of the quarter-wave plate are of interest.

If the axis is placed at _/4 to the "stv and ,Vp,V planes of the dichroic, the

optical intensities of Equations (6-7) and (6-6) result. Thus, there is no

advantage to placing the quarter-wave plate axis at _/4 to the plane of incidence

for the dlchrolc mirror.

However, a different result occurs when the quarter-wave plate and

dlchroic "s" or "p" axes are parallel (5 = 0). In this special case, we no

longer have a symmetric channel. That is, the bit having its polarization in

the "p" plane (say, "0") will have a larger average energy than the other bit

representing the "s m plane ("I"). Thus, the bit error contributions of the two

channels must be considered separately.

4Since both the optical thickness and index of refraction of the phase cor-

rection plate are functions of wavelength, additional phase compensation

is needed in the transmit optical signal. This phase correction may be
accomplished simply by adding a DC bias voltage to the optical modulator.
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Assuming random data 7 the bit-error-rate for a plane polarized

PCM/PL signal incident upon a dichroic mirror when U = 03 8 = 03 is

Z = FE (ps + ptq/2) r" 7

K=0 QK (pN/2) + QK+I(PN/2) JE

1 = PK (C S+ _N/2)

K=0 2 QK+I (CN/2)

(6-13)

where

C = P(z-c)

= }o.,,°{,. ,}
!

Equation (6-13) is plotted in Figure 6-20. Assuming the values of the previous

example dichroic, namely; _ = 0.6, ¢ = 0.25 and 8 = 0, the power increase re-

quired to have the system operated at the quantum limit at the original bit-

error-rate is 3.5 db. This is somewhat worse than the 2.8 db previously cal-

culated for circular polarization incident on the dichroic.

CONCLUSIONS

i. Comparison of Figures 6-18 and 6-19 shows that if ¢ > 0.25, it

is best to have the PCM/PL signal clrcularly polarized at the dichrolc.

2. The PCM/PL signal _s not significantly degraded even with

residual phase errors of 10 ° to 20 ° (from Figure 6-17). Since errors exceeding

this magnitude can be avoided by proper dichrolc design, polarization phase

errors will not be a significant design problem.
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3. The amplitude losses considered will affect both the signal and

the noise. Thus, in the special condition_ _ _ 12 8 = 0 and ¢ = 0g the signal-

to-noise ratio will remain constant (S/N = _S/_N). However, the reduction of

increases the relative contribution of quantum noise. Thus, for example, in

a system operating near the quantum limit 3 both the transmlssibility of 0.51_

signal and reflectivlty of 0.63_ signal should be as large as possible.

4. The optical arrangement shown in Figure 6-12 may be used if

the dichroic complies with the following specifications: ST, 8R < 15"; CT, o

e R < 0.I0; _1 = x/4; _R _> 99.9; and _T correapondingly is Ia • _ 8 r Unity _ S possible.

5. The prime requirement of the dichroic D I is that the reflectivity

of the red light should be close to 1.0. This insures proper isolation between

the transmit and receive signals. Figure 6-13 demonstrates that the transmit

He-Ne laser signal suffers insignificant polarization errors. Thus, PCH/PL is

an allowable choice for the transmit modulation technique.

6. PCM/PL is susceptible to polarization errors. However, the

detection of a received amplitude modulated optical signal is nearly independent

of the polarization. Thus, the AM signal will suffer only a normalized power

loss betmen I-_ and I-_ + _¢. The use of AM modulation also significantly

simplifies the receiver, illustrated for example in Figure 6-21. This arrange-

ment uses the received optical energy for both telemetry and the fine guidance

of the transfer lens. By using the subcarrier amplitude modulation on a carrier

frequency greater than lO Ec_ ¢_he lEelamttry Spectrum can be indepeldent of the:

amplitude variations of the fine guidance for e low-data-rate channel.
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7. The angles _1 ,and _2 may be reduced to reduce the polarization

errors of the received PCM/PL blue light (Figure 6-13). However, severe space

allocation problems may occur for angles _1 < 30" because of focal-length

limitations of L2, L33 and L4. The optimu_ angle of Dl' may be found by ana-

lyzing the transmtssibility of available dichroic mirrors and the PCM/PL error

rate curves.

8. A comparison between Figures 6-18 and 6-19 demonstrates that

circularly polarized light incident upon the dichrolc provides only a marginal

advantage.
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SECTION VII

cm,,mom,,a.icms 
CONSn)B  XOSS

7 .i INTRODUCTION

In this section we shall assume that system focus has been taken

care of by the procedure outlined in Section IlZ. To relterat% the axial

location of each lens behind the main telescope is assumed to be permanently

fixed after initial mechanical adjustments have been made to within the ap-

propriate tolerances. The spacing of the secondary mirror with respect to

the primary is left as the only remaining adjustment. To refocus the system an

electrical dither signal is applied to the transfer lens while the system is

tracking a beacon. (In the case of our laboratory experiments_ a 16-1nch

collimator furnishes collimated light as if from a beacon at infinity. In

the spacehorne cas% the beacon light originates from an argon laser on the

ground.) The resulting motion of the transfer lens is then monitored while

the secondary mirror is moved in the direction of or away from improved focus.

Optimum focus then is found by searching for the point at which the transfer

lens experiences a minimum of motion induced by the dither signal.

When the complete system is focused 2 the problem remains as to how

alignment of the transmit channnl with respect to the receive channel can be

simply and accurately determined. Also_ once mutual boresIght has been es-

tabllshed2 it is necessary to provide a mechanism to point the transmit channel

away from this reference. In particular the transmit beam must be offset from
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the receive llne of sight by as much as 36 arc-seconds to make up for the

transit time and Bradley effects over interplanetary ranges.

This section is concerned with our investigation into ways of

building alignment and beam offset capabilities into the project breadboard.

7.2 ALIGNMENT REQUIREMENTS

The best approach to the problem of ensuring that the transmit

channel is accurately aligned with the receive channel is the one that uses

the least number of components to do the job. What exactly is this job?

Consider Figure 7-1 which illustrates the layout of the two channels and imagine

that we are looking into the beamsplitter in the direction shown. The condition

of mutual channel alignment is when_ from this point of view_ an image of the

equivalent f/70 laser source appears to be exactly coincident with an imaginary

f/70 diffraction image centered on the apex of the image divider. Note that

this is completely independent of the rest of the optical system. The tele-

scope and transfer lens merely serve to magnify the diameter of a collimated

axial bundleoin the region of the beamsplitter i00 times_ from about 4 mm to

400mm (16 inches)3 and to demagnify ray angles in that region by the same amount.

There are two possible kinds of mlsalignment between the two channels;

parallel displacement of the optical axes and angular misorientation of the axes.

The first of these is illustrated in Figure 7_2 and _esults when the axes of the cone

of diverging laser light in the transmit channel is not coincident with the axis of

the cone of converging light with the receive channel. Since the receive channel

axis co_mci_a_s with the telescope axis 3 then in the presence of this defect some

marginal rays of the transmit laser light are vignetted.
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Figure 7-2. lllustration of Parallel Displacement

of Channel Axes.
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A nominal amount of vignetting can be tolerated by the system.

For example_ if when merged by the beamsplitter the axes of the two channels

depart by say 5_ of the 4-- axial bundle diameter_ then approximately 6_

of the transmitted light power will be lost through vi_Dett£_ which is not

too serious. Related back to a positioning tolerance on the laser t thts means

that the axis of the laser must be located to within a suitable fraction_

say _+5%3 of the output beam diameter. Typical He-Ne lasers have an output

beam diameter of a few millimeters. Taking 3ram as an exsmplej an appropriate

positioning tolerance for the laser axis is +0.15mm. (+°006 In_h). .This is

a llberal mechanical tolerance and shows there should be no need for post-launch

reposltioning of the laser axis in a spaceborne optical communications system.

What about angular mlsallgnment of the channels? Assuming the

receive channel to be the reference once sEaln 2 to an _bamrver looklng into the

beamsplltter as in Figure 7-I this defect causes the image of the tramamlt laser

source to form off center wlth respect to the apex of the fine Euldance image

divider. If thls relative image displacement equals the diameter of an f/70

diffraction dlsc 3 then the transmitted beam will be mlspolnted by an amount

equal to the diffraction cone angle of the primary mirror if the system is dlf-

fraction limited. Back on the earth the center of the beam will miss its mark

be one full beam diameter. Smaller mlsellgmnents will have correspondingly

smaller effects and leas important conmequences.

As s reasonable tolerance for this form of misalig_ent, let us

demand that the transmitted cone of light shall be pointed with an absolute

accuracy of +10_ of the cone angle.
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To the observer of Figure 7-1 this means that the center of the

equivalent f/70 transmit laser image must be in a circle centered on the apex

of the image divider and having a radius of 10% of an f/70 diffraction-limited

image. Assuming the image diameter to be equal to the dlamter, D_ of the first

dark ring of the Airy pattern_ which is given by the formula

D = 2.44 kf

where k is the wavelength of operation and f is the final f-number of the system_

the image position tolerance amounts to ±.011 (_ ±.0004 inches). This is also

the lateral positioning tolerance of lens L3 shown in Figure 7-1 and previously

in Figure 2-1. An equivalent statement is that the axis of the transmit laser

beam must be oriented with an angular accuracy given by the ratio of ±.011mm to

the focal length of L3_ which in our case is 250mm. The angular tolerance is

therefore 4.4 x 10 -5 radians (9.5 arc-seconds). (Note that this corresponds to

about i/i0 arc-second on demagnification by the 16-inch aperture project

telescope.)

The post-launch alignment tolerance of ±9.5 arc-seconds in the

general region of the transmit channel possibly can be met by rigorous mechanical

design alone. However, fairly long optical pathlengths are involved as are com-

ponents of substantial mass (such as the laser itself).

These factors may unduely complicate the problem of space qualification

of the system and are likely to necessitate some form of backup post-launch align-

ment equipment. The same equipment is needed in any event to perform the im-

portant diagnostic function of measuring_ on ground cormnand, whether the channels

are aligned correctly.
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7.3 ALIGNMENT TECHNIQUE

An attractively simple technique to measure, and therefore to read-

just_ the relative angular alignment of the two channels becomes feasible as a

fortunate consequence of using the channel separation _hniques discussed in

Section IV. Only one additional optical element is required - in this case a

cube-corner prism - and advantage is taken of the residual sensitivity of the

receive channel to light originating from the transmit channel. This technique

is illustrated in Figure 7-3 and was built into the project breadboard.

The cube-corner prism is located in the unused region behind the

dlchrolc besmsplltter and is ordinarily blocked by a retractable shutter. When

the shutter is withdrawn 3 the small amount of collimated transmit laser light

passed by the beamsplltter is reflected directly into the receive channel. This

light is further attenuated by the pre-detectlon spike and/or SWPF and the

remainder converges to a focus at or near the apex of the image divider. If the

additional attenuation is only as much as dictated by the channel separation

requlrements_ then the image will be bright enough for its positon to be measured

by the flne-guldance photomultlpller. To the extent indicated by such a measure-

ment, the _-_age oan then be centered b_ a leterel_trenslatlon of lens L 3 or alter-

r_tively by means of the Risley prisms.

Alternative approaches were complicated by comparison and therefore

were less_ desirable. .For example _ Figure 7_. illuatre_es one of the dlacarded_

but nevertheless feasible, al/_nent techniques.

A dichroic mirror is used to pass blue light from an auxiliary source

and form an image that is conJngate to the equivalent transmit laser source. A

shutter retracts from in front of a cube-corner prism that retroreflects light
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passing through the main dichrolc mirror (which we recall is not perfectly

transparent to blue light). An image of the auxiliary light source is sub-

sequently formed near the nose of the fine-guidance beam dividing prism. This

image is in blue light which is passed by the "spike" predetection filter. It

is detected by the photomultipliers Just as for incoming beacon light. To

accomplish channel alignment_ the laser collimating lens L3 (or a Risley prism)

is adjusted to make this image divide equally into four quadrants at the image

divider (as measured by the four flne-guidance photomultlpliers). This technique

assumes that the auxiliary light source and associated optics can be accurately

afixed with respect to the laser and thus be able to serve as an accurate post-

launch alignment reference. On the other hand_ the prior technique references

the transmit channel directly to the receive channel and clearly is preferable

for this reason alone.

7.4 METHODS FOR OFFSETTING THE TRANSMIT BEAM

The same optical or mechanical elements that are used to make the

axis of the transmit channel colllnear with the receive channel can also be used

to offset the transmit beam and compensate for Bradley and transit time effects.

The amount and direction of forward bias can be controlled by either

(a)

(b)

translating the transmit laser collimating

lens L3 in its plane or,

manipulating a pair of Risley prisms situated

between this lens and the dichroic beamsplitter.
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The lateral motion required in the current breadboard system by (a) is about

0.0004 inches per I/i0 arc-second of post-telescope beam offset. The angular

deflection required by (b) amounts to about I0 arc-seconds at the Risley prisms

to offset the beam transmitted by the telescope by i/I0 arc-second. The trans-

mitted beam can be offset 30 arc-seconds by translating L3 0.12 inches, or

by wed_in8 the optical path with the Risley prismsl by 50 arc-minutes.

By either method, the zero bias reference is the lens position or

the Risley prism adjustment determined by the initial channel alignment

procuedure.

7.5 OPERATIONAL DEMONSTRATIONS

The complete project breadboard was set up as illustrated in

Figure 7-5 to demonstrate qualitatively the main features of the channel

separation, alignmen_ and point ahead functions in a working system. A

16-inch aperture collimator in the rear of the view shown in Figure 7-5,

functioned as an argon-beacon simulator.

7.5.1 Channel Separation

The entire project breadboard was set up to show visually whether

any traces of transmit laser light appeared in the receive channel. The arrange-

ment behind the telescope was as illustrated in Figure 7-6 with the observer

substituting for the image divider and photomultipllers. In the presence of

about 7 milliwatts of power from the transmit laser at 6328_ impinging on the

dichrolc beamsplltter and subsequently leaving the telescope_ no traces of

scattered or directly reflected red light were visible to the eye in the re-

ceive channel. At the same time the artifical beacon, which in reality was a
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tungsten filament source illuminating a pinhole and seen through a 25_ wide

spike filter at 4880_ was brightly visible in the receive channel. This

demonstration illustrated qualitatively the effectiveness of the channel

separation techniques described in Section VI.

7.5.2

region shown in Figure 7-6.

ment shown in Figure 7-3.

established at M _ 115 db.

AliKnment and Point Ahead

For alignment purposes a cube corner prism was inserted into the

This location is an alternative to the arrange-

The channel separation figure of merit was previously

The alignment technique of Paragraph 7.4 relies on the fact that with

ii decades of separation between transmit and receive channels_ an adequate

o

amount of light at 6328A is reflected into the receive channel to use for

system alignment when the auxiliary prism is put in place. By this means the

equivalent f/70 laser source is imaged in the image-dividing prism. The apex_

it should be noted_ defines the axis as well as the f/70 focal plane of the

entire optical system.

The laser collimating lens was translated manually to bring the 6328_

image exactly onto the apex of the image divider. This caused the image to be

divided into equally intense quadrants_ which demonstrated visually (correspond-

ing to an electronic measurement at the intensities with the fine-guidance

photomultipliers) that the channels were aligned. Hence_ the transmit laser

beam (outgoing) and the beacon laser beam (incoming) were made precisely coaxial.

That this was the case was easily seen by removing the alignment prism and

noting that an image was formed in red light back at the test collimator's

source pinhole.
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From this boreslght reference the transmit beam was offset from 0

to various polnt-ahead angles of tens of arc-seconds by translating the laser

collimating lens shown in Figure 7-6.

7.6 INFLUENCE OF SYSTEM COMPONENTS ON CHANNEL ALIGNMENT

7.6.1 Relative Spectral Response of Receive Channel Photomultipliers

The design of the Laser/Optics Techniques optical system calls

for receive channel photomultipliers selected for minimum red response com-

mensurate with near-maximum blue response. We discussed in Section VI how

this helps to prevent transmit light from disturbing the proper functioning

of the receive channel (beacon tracker). On the other hand we discussed in

Paragraph 7.3 how, after adequate channel separation is obtained by the

various dielectric multilayer techniques at our disposal, the residual red

response can be utilized for sensing mutual alignment of the two channels.

The subsystem of the project breadboard, which senses beacon image

position or channel alignment, employs four photomultipliers and a four-

quadrant optical image divider. This scheme necessitates using photomultipliers

with nominally identical Dlue and red responses. Otherwise, if the photomulti-

pliers are balanced when beacon light is imaged at the apex of the image divider,

they can, nevertheless, register imbalance to an identical image in red trans-

mitter light and result in a corresponding alignment error.

It turned out in practice that when the four EMI 9514S fine-guldance

o

photomultlpllers were balanced in response to light at 4880A_ a 2 to i spread

was measured in their relative responses to light at 6328_. This result is in

keeping wi_h the fact that 6328_ is well into the tall of this kind of photo-

multiplier response curves.
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To avoid this possible source of alignment error, such photo-

multipliers can be carefully selected for matching spectral responses. Alter-

natively, unequal responses can be corrected for by the alignment and/or

tracking circuitry. In either case, it must be determined whether the

spectral response of a given photomultiplier is subject to variations during

the operating life of the spaceborne subsystem in which it is to be used.

7.6.2 Characteristics of Short-Wave-Pass Filter

As discussed in Section VI_ more than i00 db of channel separation

was achieved in the project breadboard by taking advantage of a special kind

of short-wave-pass filter (SWPF) which is highly reflective at 6328A and

which typically transmits less than i part in 105 of incident light at this

wavelength. To be able to carry out remote alignment with such a filter in

place_ it is necessary that this residual amount of light remains collimated

and not be due primarily to scattering through coating imperfections.

We evaluated our existing SWPF's in this regard and have found

that, while some samples are freer of imperfections than others, this is an

area where improvements are needed.

Much of the residual transmittance of SWPF's with maximum re-

jection of red transmit light stems from tiny holes occurring at random over

the dielectric multilayer. This is illustrated by Figure 7-7 which shows a

magnified image of a typical SWPF illuminated from behind by a He-Ne laser.

These holes are as small as I0 microns in diameter and are, therefore, re-

sponsible for light being diffracted into the entire acceptance angle of the

flne-guldance subsystem.
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To evaluate the influence of these imperfections on the alignment

scheme_ measurements were taken with the arrangement illustrated in Figure 7-8.

In effect_ the receive channel was separated from behind the beamsplitter of

the breadboard setup_ and its clear aperture of 1.2 cm was illuminated by a

He-Ne laser.

The image in the focal plane of lens L 2 consisted of a bright spot

in the center embedded in a diffraction pattern resulting from the numerous

holes of the SWPF. Figure 7-9 shows a magnified photo of the central area of

the image plane° The structure of the background diffraction pattern is due

to ghost reflections by the imaging optics and its detail is irrelevant in this

context. The center spot consists of an Airy pattern of diffraction-limited

size - not resolved on the photo - and its relative intensity is determined

by the amount of laser light that passes the SWPF without change in wavefront.

Clearly_ only this portion of transmitted red light can be utilized for remote

alignment_ and it has to be detected against the diffraction-pattern background

resulting from coating imperfections.

Measurements on a number of SWPF's showed that the intensity of

the central spot amounts variously to 507o_ 20% 3 or even very much less of the

total red light received by the fine guidance system. This renders them not

completely satisfactory for the remote alignment scheme in their present

form.

However_ we believe that SWPF's that are essentially pinhole-free

can be prepared in the future by special deposition techniques. This develop-

ment is desirable both for enhanced isolation properties and for simplicity
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of the alignment technique. In regard to the latter, it would eliminate any

need for a filter-removal mechanism which otherwise might be required while

alignment is being carried out.

7°6°3 Single Substrate Spike Filter

Towards the end of the contract period a spike filter was manu-

factured consisting of four dielectric stacks deposited serially on a single

substrate. Its characteristics are nominally the same as those of the spike

filter with enhanced red suppression described previously. The latter was

built up from four individual coating stacks on separate substrates, suffered

from multiple ghost reflections and relatively poor optical quality_ and im-

paired the image quality in the fine-guidance channel. The new filter has

neither of these defects. However, in common with some of the SWPF's dis-

cussed earlier (which comprises one of the four stacks) this one sample ex-

hibits an unsatisfactorily large ratio of scattered to collimated residual

red transmission. This is not expected to be a fundamental limitation on the

use of this device.

It is noteworthy that the newly developed single substrate spike

filter replaces a cemented assembly of dielectric coatings and colored glass

filters. The benefits that accrue are:

(a) higher peak transmission

(b) improved optical quallty.

7.7 DISCUSSION

As we have shown in Paragraph 7.2, it cannot be stated categorically

that post-laun=h channel realignment will be absolutely necessary and that
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equipment should be provided as part of the optical communications system

for this purpose. Such a need can only be proven in the course of develop-

ing a space-qualified version of the project breadboard. However_ a strong

case can be made for providing a way of monitoring channel alignment purely

for diagnostic and backup purposes.

The technique we implemented in the project breadboard and in-

vestigated in close association with the work on channel separation is fool-

proof in this sense. But it is not foolproof if the pre-detection filters or

any other element must be removed to obtain enough red sensitivity in the re-

ceive channel.

We are certain that the technique can_ in fact_ be employed with

an arbitrary amount of attenuation as dictated by channel separation require-

ments. But it should be understood that the residual transmission of transmit

light into the receive channel must be a result of coherent transmission by the

dielectric multilayers_ not because of transmission by minute surface imper-

fections. This criterion should be borne in mind when extremely narrowband

pre-detection filters and improved dichroic mirrors are developed in the future

for similar systems.

I

I

I

I

I
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SECTION VIII

TRANSFER LENS SERVO SUBSYSTEM

8.1 INTRODUCTION

A brief description of the transfer lens servo subsystem was

given in Section III of this report. Here we shall go into considerably

more detail to provide a better understanding of how it functions in the

project breadboard. This section is also intended to illustrate the tech-

nology involved in developing this subsystem for the current needs of the

breadboard and for future spaceborne optical communications systems.

Small "cross-line of sight" pointing errors in an optical tele-

scope can be removed by introducing compensating motions to a transfer lens

within the optics. The basic technique, shown in Figure 8-13 was designed

into the project breadboard to obtain automatic laser tracking capability.

The arrangement originated in the Stratoscope II Astronomical-Telescope

(Figure 8-2).

The mechanical assembly (Figures 8-33 8-43 and 8-5) consists of

two magnetic drives 3 optical elements housed in a movable lens cell, a counter-

weighted lens cell support device utilizing flexure bearings (and allowing only

lens translations perpendicular to the optical axis)3 mechanical stops to pro-

vide both soft and hard limiting action plus collars convenient for lens cell

centering, and capacitive type position pickoffs whose outputs are differen-

tiated to obtain velocity feedback signals. The construction features
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mechanical design changes from that of Stratoscope to obtain compatibility

with a long term hard vacuum environment and, additionally, to avoid where-

ever possible potential problem areas as revealed by previous work. A prime

example of the latter type change, which also allowed placement of the op-

tlcal axis at a nominal 3 inches off the support table (refer to the original

design specification of Table 8-i)_ involved replacement of bulky and heavy

magnetic velocity sensors by small and light capacitive position sensors.

This alternate approach avoided electrical feedback difficulties associated

with magnetic field coupling between motor and tachometer coils.

The electronics associated with the mechanical assembly is

packaged on two circuit cards (visible in Figures 8-3_ 8-4_ and 8-5) and

in the separate enclosure shown in Figure 8-6. The phototubes and image

splitter are contained in a separate subassembly.
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TABLE 8-1

ORIGINAL SPECIFICATIONS FOR TRANSFER LENS ASSEMBLY

Nominal Range of Translational Motion

Type of Motor

Allowed Motion in Lens Axis Direction

Nominal Height of Optical Axis

Type of Support

3db Bandwidth

±0.07 in., two axis

Free-coil magnetic drive

0.005 in. maximum

3 in. above table (desired);

any (acceptable)

Counterweighted (design

compatible with zero-gravity

hard vacuum environment_

but counterweighted for use

with non-zero gravity)

50 cps

Weight of Lens (Glass Elements)

• Light Level

Wavelength

Photosensors

Image Splitter Location

Ratio of Image Motion to Transfer

Lens Motion

20 gm

>i0 I0 P/S

O

5148 or 4880A

Four EMI 9514S

photomultiplier tubes

f/70 image plane

4.7/1
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8.2 PRINCIPLES OF OPERATION (See Figure 8-7)

An image of a modulated point source is relayed by the transfer

lens to the image splitting prism where it is divided into four parts and

sent to a brace of four phototubes. Since each tube receives any light fal-

ling on its associated prism face or quadrant, the phototube output signals

(el, e2_ e3_ e4) are preamplified and sunlned to obtain a signal (_e) which

at all times indicates total received light level. Sums and differences be-

tween the preamplifier output signals, moreover, are taken to obtain AC signals

and _E ) indicating transfer lens position errors. Conversion of these(_x y

signals to DC is performed via chopper demodulators which use the amplified

sum _e as a reference. The drive motor amplifiers, receiving these signals,

excite their associated motors which produce lens motions that tend to re-

duce the error signals to zero; i.e._ to return the optical image to the apex

of the splitting prism.

AC exited capacitance bridges are used to detect the position of

the lens. Each bridge is arranged as shown in Figure 8-8 to sense translational

motion along one axis while being insensitive to motions in the other two di-

rections. This is accomplished through use of both high input impedance pre-

amplifiers (for Z axis insensitivity) and proper choice of geometry. Subse-

quent to demodulation and filtering, the position signals are differentiated

to obtain lens velocity feedback signals which are used to servo stabilize the

two axis control loops.
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Figure 8-9, a servo block diagram, indicates the system scale factors

(to be discussed later) and a few of the electronic features of the subsystem.

A shorting type phone jack allows monitoring of total phototube output current

and is convenient for checking tube dark current and detecting excessive back-

ground light levels. While the phototube gains are nominally equalized within

a factor of two by separately trimming bleeder string values, the preamplifiers

are adjusted by screwdriver over a five to one range for vernier capability.

Separate jacks for monitoring the preamplifier output signals are located on the

front panel. A front panel meter (see Figure 8-6) facilitates rapid setting of

light level and high voltage, to obtain proper electronics scale factors which

i
prevail only with a 300 _a reading provided the optical imagery is correct.

Lag-lead compensation networks to accentuate low frequency servo

loop gain are incorporated following the differencing amplifiers and demodulators.

The static gain of the system is increased even more by an integrating type servo

amplifier, which also increases the low frequency gain of the velocity (minor)

loop. The system was nominally designed to have a unity (position or major)

loop gain at approximately 20 cps which corresponds to a 3 db closed loop re-

sponse of nearly 40 cps.

8.3 SERVOANALYSIS

The nominal scale factors of Figure 8-9 were obtained from the follow-

ing analyses:

Image must be diffraction limited and focused at the apex of the prism_ and

must correspond in size to f/70

8-12
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863,1 Velocity ,(_inor) Loop Anplysis

Open loop gain O.L.G. = A T

(i+_ SCF) Ts

sop _T (1+%)

17.8xi03 q

250S2+35.4x103

Assume CF is tentatively infinite to obtain

RF _'s 17.8xl0 3 q

OLG =AT _ l+--_s250s2+354xlO3

Assume now that minor loop unity gain will occur at 60 cps and that

can therefore be i/(2_120) which leads to

2

ATRF 250(S2 = 2_60 _ x 2 = 200
- 17.8xQxl03

Hence, if Q = 20 and AT = I0, then _must be 20; or, if _ = 240 K,

then _ = 12 K. Figure 8-10 indicates that a CF value of 0.033 uf_ corresponding to

a low frequency break of 12db/oct at 20 cps, can be incorporated to obtain in-

creased minor loop gain at lower frequencies.

8.3.2 Position (Ma_or) Loop Analysis

With the foregoing minor loop parameter values, the closed mirror

loop gain, for cases where O.L.G. >> i, is given by

C.L.G. =
(l+_s)

Q RinAT Ts

For cases where T << I, this equation reduces tos

C.L.G.
q Rin AT *s

8-14
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To obtain unity major loop gain crossover at 20 cps, a gain of K is required

of the sensor where

Q Rln AT _s
K = = 667 V/cm

s=2_20

Since the DC error signal scale factor is 104 V/cm, a loss of 104/667 or 15

can be tolerated. This can be implemented with a lag-lead circuit to produce

the loss only at higher frequencies (near and above 20 cps) for stability without

sacrifice of lower frequency gain. One choice would be a circuit which produced

a 6db falloff between 0.466 and 7 cps.

8.3.3 Expected Frequency Rasponsa

The transfer lens servo will act to reduce the low frequency motions

of the optical image with respect to the apex of the image divider. The ratio of

the motion with the transfer lens operative (Mo) to that with the lens inoperative

(Mi) is called the error response which is determinable from the expression:

Error Response-

M
o 1

M i I+GH

i

I+G

where

GH is the open loop gain of the major loop and

H is the feedback factor which is unity for the major loop.

It should be clear that3at low frequencies where the loop gain greatly

exceeds unity, the error response is closely equal to I/G. At high frequency, on

the other hand, where the loop gain is much less than one, the error response is

closely equal to unity. The nominal error response expected of the transfer lens

servo system is shown in Figure 8-11 along with the major open loop gain function

8-16
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(G and GH) and its associated phase shift characteristic. The figure also includes

measured results (for both the X and Y axis channels) taken to verify predicted

performance.

Figure 8-12 shows the closed loop respons%

e
o G G

e. I+GH I+G
1

of the system as obtained from a Nichol's chart plot of the open loop gain and

phase characteristics.

Figures 8-13 and 8,14 are derived in fashion identical t© Figures 8-II

and 8-12_ respectivelyj but utilize m Nichol's chart derived minor loop transfer

function instead!of _s-aumlng the straight line characteristic (minus 6 to minus

12 db/oct). _s such_ the .latter two figures take into account the steady state

response over-shootsT of _he minor loop.

8.4 CIRCUIT DETAILS AND CALCULATIONS

8,4,1 Optical Sca!e Factor

The photosensor scale factor_ when operating in the linear rang%

corresponds to full change of error signal (from its positive to negative maximum)

for an image motion of 1.22 _ (f/#) or approximately 43 x 10 -4 cm. Since the

ratio of image to transfer lens motion is 4.7:1, then full signal change occurs

for 9.2 x 10 -4 cm of lens motion.

8-18
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8,4.2 Photptube 'Respopse

The photocathode current expected with i0 I0 photons/sec is 0.6 x 109

electrons/sec or about i00 pa. Since a dynode string gain of 106 is possible,

a total output current variation due to chopped signal light could be 0.i ma p-p

(or about 25 ua/tube) while DC dark current may be in the order of 0.02 ua.

The signal-to-noise ratio corresponding to a i00 cps equivalent noise bandwidth

(neglecting background light) will be over 2000 which indicates that noise in

signal should not be troublesome.

8.4.3 Preamplifier (see Figures 8-15 and 8-16)

The 25 ua p-p phototube signals are reduced to 15 ua, by the current

division action of the 100K and 68K ohm resistors, and fed to the SQB-I summing

junction. Since the transresistances of the SQB-I operation amplifer circuits

are variable from 47K to 247K ohms, the output rms signal levels will be in the

order of 0.35 to 1.75V rms, a range which encompasses the desired 0.6V rms

level indicated in Figure 8v9. The circuit design features a.0.1 uf input DC

blocking capacitor to avoid preamplifier saturation on background light induced

anode currents. The two IN914 diodes connected to this capacitor are included

to avoid excessive SQB-I input current transients generated by high voltage

transients. The other two diodes plus two transistors and the 33K and 68K ohm

resistors operate to avoid excessive output signals. The clipping level for the

arrangement shown is given by the expression

V = 33K
c 68--_ (VD + VBE + VS) + (VD + VBE) _ 7.3V

8-22
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where

and

VD is diode drop ( _ 0.5V)

VBE is the base emitter drop of a conducting transistor
o.5v)

Vs is the supply voltage (_+I2V)

8.4.4 Meter and Demodulator Reference Amplifiers (see Figures 8-17 and 8-18)

The four preamplifier signal levels are both summed and amplified by

the meter amplifier to provide a nominal output signal level of 4.8V rms. The

AC component of the meter amplifier is diode routed through the front panel

meter to the parallel combination of the 20K and 82K ohm resistors, thus causing

a 300 ua indication free of amplifier DC drift effects. The DC feedback path,

provided through the 39K ohm resistors and the 0.1 uf capacitor, together with

the AC path are nearly equivalent to an 80K ohm feedback resistor. The meter

amplifier output is AC coupled to the following amplifier circuit which provides

high gain, clipping action, and power output sufficient to drive two Airpax 6025

chopper reference windings. It is noteworthy that slow frequency variations of

the light modulating mechanism over the design range of 1.0 to 2.5 Kc are

perfectly acceptable.

8.4.5 Demodulator Amplifier (see Figures 8-17 and 8-19)

This amplifier takes the difference between sums of slgnal pairs,

provides a gain of two, incorporates an output buffer amplifier (2N3391 and

2N3638 cathode follower arrangement), as well as a clipper, and drives a con-

ventional demodulator-filter combination at the output. The 20K ohm trimpot

8-25
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is an adjustment for common mode rejection and is accessible only after the

outer metal case is removed from the electronics container. While the amplifier

was designed with an output llmiter circuit, similar to that of the preamplifier

but with a 5.2V clipping level, it was later discovered that the clipping level

varies depending upon the inputs applied to the "plus" terminal of the SQB-I.

The zener diode was included as a quick fix to avoid SQB-I internal saturation

under large signal conditions, a circumstance which fortunately should never

occur under nominal operating conditions.

The demodulator filter is a 3.0 hy - 0.5 uf combination loaded with

a shunt resistance of about 23.5K ohms. This combination (Fr _ 125 cps, _ = .05)

introduces only very small phase lag near the 20 cps major loop gain crossover

frequency and has, therefore, been neglected in the previous analysis. Since

the demodulator input AC error signals are nearly squarewave in shape, filtering

requirements are at a minimum. The 82K ohm resistor on the H-13 secondary avoids

transformer output signal transients associated with stray capacitance.

8.4.6 Tach_.=ter and ServgAlw!if_ers (see Figures 8-20 and 8-21)

The tachometer amplifier furnishes an output signal which is the

derivative of its input signal and uncorrupted by erroneous outputs due to DC

amplifier offset voltages. The transfer function is of the form

and the value of T is (2_120) "I.

8=29
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The servo amplifier is straight forward in design as is the servo

error signal compensation network (22K ohms, 240K ohms, 1.5K ohms, 15 _f). The

IN456 diodes, however, have been incorporated across the capacitor to limit energy

storage action which might otherwise give rise to intolerable image acquisition

transients. The 50K ohm trimmers were included for obtaining minimum operation

amplifier DC unbalance which is important only for the servo amplifier. The

adjustment, made after shorting from the 22K, 240K, 1.5K ohm junction to ground

and removing the tachometer amplifier SQB-I, is simply to obtain the least

amplifier output voltage integration rate with the tachometer amplifier summing

junction grounded.

Input test points have been provided for use during servo response

measurements.

8°4°7 25 Kc psc,i!lator,(aee Figures 8-22 and. 8-23)

The design consists of a conventional astable multivibrator re-

sistively coupled to two 2N2905 transistors whose collectors drive an output

transformer in push-pull fashion.

The half-period of oscillation is given by the expression

t = .693 RC = .693 (56K) (500 _Bf)

and the nominal frequency is therefore

i .722
F - =

2t RC
- 25.75 Kc

It should be noted that the amplitude of the AC ouput signal depends

upon the ±12 VDC power supply settings.

8-32
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8.4.8 Position Sensor Amplifier and Demodulator (see Figures 8-22 and 8-24)

8.4.9 Mechanical Configuration

Each servo drive motor basically consists of two 7,000 Gauss magnetic

fields in which a 328 turn (nominal) No. 36 wire coil is free to move in trans-

lation as a result of coil current. The coil resistance is approximately 50 ohms

and the inductance is near I0 mhy, both when in and out of the gap. The ±0.15

inch motor motional range was selected in excess of the required ±0.065 inch in

order to provide for a soft stop range, and thereby avoiding the excessive

flexure bearing load possible when hitting hard stops.

The stop permits a measured ±0.073 inch range of unrestricted motion

and an additional radial motion of nearly 0.077 inch with soft stop action. Two

collars are fitted over the soft stop housings and can be gently engaged with

mating pieces on the movable lens coil to accomplish centering.

The weight of the moving mass excluding counterweight is estimated

as 120 gms (4.2 oz). The bearings (Bendix type 6004-600 and 5004-800) are very

fragile and can be damaged by misapplying small loads either axially or radially

(viz: force levels under one pound). The breadboard unit should therefore be

handled very carefully and only when absolutely necessary. Launch vibration and

shock can be applied only when the assembly is caged. For the project breadboard,

there is no caging mechanism at present so that care must be exerted in shipping

and handling. Future work should be devoted to a space qualifiable assembly.

8.5 OPERATING PRECAUTIONS FOR THE BREADBOARD APPARATUS

(a) Do not handle the mechanical unit except with the

utmost of care. The flexure bearings can be ruined

by introducing even modest static and/or dynamic loads.
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(b) The external _mSnetlc fields of the drive motors

are very high. _q_etlc _oola w_ll be subJect.ed

to strong forces and may therefore cause unin-

t_ttonal _8_ upon _act.. E_ep watches and

other sensitive items _11 clear of the motors.

Extreme care should also be exercised to avoid small

magnetic particles which will be attracted into the

magnetic gaps and will be extremely difficult to

remove without mechanical disassembly.

(c) The Nexus amplifiers are rated for maximum applied

voltages of ± 15VDC. The values should never be

exceeded even momentarily. Power supply settings

(± 12VDC) should be checked prior to turning the

equipment on. Power should always be controlled by

means of the on-off switch on the mechanical assembly

to avoid power supply turn-on and turn-off transients.
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8.6 MEASURED RESULTS

The various measurements performed on the transfer lens servo

subsystem are described in the following subparagraphs.

8.6.1 Position Pickoff Scale Factors

With ±12 VDC applied to the electronics, the output from the 25 Kc

oscillator transformer secondary was measured as 19.25 VAC. Next the transfer

lens was placed in a hold mode controlled by adjustable potentiometers, and

moved to several positions within its motional range. The position (determined

by optical equipment), the command potentiometer setting, and the position

pickoff voltage were recorded at each position. The results obtained are

given in Table 8-2. Figures 8-25 and 8-26 show the results graphically to

better indicate linearity characteristics.

8.6.2 Motor "Force Current" Relationship

A 20 gm weight was placed onto the lens cell to produce a nominal

load change of 14.14 gms on each axis. The result obtained for the Y axis was

2.781 pounds per ampere as compared to an expected value of 2.93. The result

for the X axis, 3.15 pounds per ampere, is believed to be in error on the high

side since the current reversed direction and the assembly was later observed

to exhibit hysteresis. The result is nevertheless_in reasonably good agree-

ment with the 2.93 expected value. It was noted that both motors produced

forces in the positive directions when positive motor coil voltages were present.
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700

600

500

400

300

Command

Potentiometer

Setting

Nominal Operating

Region (±.065")

I. 800 1.900

Note: Scale Factor

I
2.000

Lens Y Position in

Centimeters

4.65 VDC

.0148 cm
- 31.4 V/cm

Figure 8-25. • Y Position Sensor Characteristic
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Setting /- ,

- t
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i I _ i ' I

/ .09 .03_i
L " f Nominal Operatin- _I

I Region _ --
+. 065") I

Note: Scale Factor _ = 28.6 VEC4.63

.0162 cm

Figure 8-26.. X Position Sensor Characteristic
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8,6.3 Tachom_tarAmpllflerCharactaristlcs

The small signal transfer functions of both tachometer amplifiers

were measured and found to be in remarkably good agreement with expected re-

sults (see Figure 8-27).

TABLE 8-2

DATA ON POSITION PICKOFF

X Position

Pickot£

Voltage

(VOC)

-4.33

-3.54

-2.4

-1.23

0

+i. 17

+2.34

+3.46

+4.63

0

0

0

0

0

0

0

0

0

0

Y Position

Pickoff

Voltage

(VDC)

-2.33

0

+2.35

+4.65

X Command Pot

685

650

600

550

500

450

4O0

350

300

0

0

0

0

0

0

0

0

0

0

Y Command Pot

710

700

650

600

550

500

450

400

350

300

X Pos Y Pos

(cm) (cm)

0.080 0

0.0865 0

0.0901 0

0.0943 0

0.0981 0

0.i017 0

0.1058 0

0.1099 0

0.1143 0

....

0 2.092

0 2.048

0 2.009

0 1.972

0 1.939

0 1.900

0 i. 868

0 1.825

0 1.791

NOTES: i) The position pickoff voltages were measured at the demodulator outputs.

2) As the transfer lens was moved in the positive directions, the pickoff

voltages became more positive.
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8.6.4 Minor Loop Transfer Characteristi_

Both loops were spot checked to determine whether the minor closed

loop responses were in agreement with the design value. It was anticipated 3

since the position pickoff scale factors were measured as 30V/cm rather than

20V/cm, that the servo input resistors (Rin = 240K ohms) would have to be re-

duced to about 160K ohms to compensate. The units were placed in a hold mode_

with positional dither electrically induced 3 and the required input resistors

were experimentally determined to be 150K ohms, a value in good agreement with

theory Figure 8-28 indicates the nature o£ the mmasuremant approach.

Major Loop Closure
V2

R
I m

49.9K

Dither _ L ___I . _ 30 V/cm-_

Inpu_

z V
Feedback _ q

Figure 8-28° Minor Loop Test

The response to an input applied to Rin with R i removed should be

such that the major loop gain is unity at 20 cps.

the major loop is 6623 then

and

G I V

R_ x _- x 30 = 2-9 " V_22

1 G1

-- x x (G2=662)
Rin (f-20)

Since the value of G2 for

; measured at Icps

1; at 20 cps
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Hence the required Rin can be shown to be 150K ohms. The results

were essentially identical for both axes as shown by inspection of Table 8-3.

8.6.5 Major 'Loop Response

The error response of each transfer lens servo axis was measured

at five frequencies. The data are shown in Table 8-4 and are also compared with

theoretical response curves in Paragraph 8.3.3.

TABLE 8-3

MINOR LOOP RESPONSE DATA

Axis

X

X

X

Y

V2*

(Volts P-P)

2

5

5.5

2

W

V I

(Volts P-P)

5.8

f

cps

3.2

0.7

5.6

5

25

i

G.i/f

2.9

0.64

0.127

2.8

o* Reading accuracy estimated as ±5%.
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TABLE 8-4

MAJOR LOOP RESPONSE DATA

Frequency (cps)

Axis

Input P-P (volts)

Output P-P (volts)

Error Response (db)

X

6.6

0.8

-18.3

4

Y

6.6

0.76

-18.8

X

3.5

i.i

-I0.0

8

3.5

i.I 2.3

-i0.i -3.5

16

Y

3.5

X

2.7

2.3

-i .4

64

Y

2.7

2.3

-I .4

NOTES : i) Input applied in series with error demodulator output.

2) Output is the total of applied input and error demodulator output

signals.

3) The average noise level was 0.5 and 0.6 V P-P for the X and Y axes 3

respectively.

4) The preamplifier output voltages were adjusted to yield an output

voltage of 5 V P-P for condition of maximum light to the associated

PTM.. The high voltage was 1640 VDC for tubes I, 23 and 3, and

1176 VDC for tube 4. The total DC current observed was 25 _a.
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8.7 TEST AND CONTROL ELECTRONICS

8.7.1 Functions

A hold-mode and electronics control unit (ILMECU) illustrated

in Figure 8-29 was developed for use in conjunction with thetransfer lens

servo subsystem.

The HMECU has the following functions:

(a) A two-axls hold-mode servo provides a stable central

lens position for acqulsltion 3 or allows precise

location of the lens for alignment and test purposes.

The lens position is controlled in both X and Y axes

by lO-turn calibrated potentlometers on the panel.

A two-position panel switch selects hold-mode or

tracking operation. The hold-mode function is

provided by disconnecting the error demodulator and

substituting the position pickoff output for each

axis. The circuit utilizes a unity-gain summing amp-

lifier to provide a phase reversal and allow extra

inputs.

(b) Two panel meters monitor the demodulated outputs of

the capacitive position plckoffs. They are calibrated

in arc-seconds of equivalent pointing error of the

primary optics. The meters operate independently of

any control functions.
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A selector switch and a pair of binding posts are located

on the panel to provide a means of injecting disturbance

signals or offsets into either axis of the hold-mode or

tracking servos. These inputs may be used to facilitate

dynamic response measurements of the servos_ or to aid in

evaluating the optical performance of the system.

(d) Two test point selector switches and pairs of binding posts

allow simultaneous measurements of two voltages in either

or both axes of the servos. Scale factors at the test

points are determined with precision resistors and unity

gain amplifiers so that gain can be measured directly with-

out awkward coefficients. The switches also provide

measurement of the plus and minus IX] power supply inputs.

(el Four color-coded wires carry the system DC power from two

external 12 volt regulated power supplies to the HMECU.

EColor coding: Positive supply: (plus),Red Black (minus).

Negative supply: Black (plus), Violet (minus).J The incoming

power is controlled by a double-pole switch on the panel.

(f> Six large capacitors associated with the servo electronics

are remotely located in the HMECU because of lack of room

on the transfer lens assembly.

Figure 8-30 illustrates the internal components of the HMECU.

The circuit of the HMECU is given in Figure 8-31. A slmplifled block dlagram 3

from which the various functions of the H]_ECU are self-evident, is given in

Figure 8-32.
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F i g u r e  8-30. Hold-Mode and E l e c t r o n i c s  Con t ro l  Unit ,  Rear V i e w  
w i t h  Case Removed 
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8.7.2 Measurements and Tests

The following are examples of typical measurements that can be

made using the I_MECU. The block diagram_ Figure 8-32j is referenced.

(a) The overall closed loop transfer function in the tracking

mode can be measured by inserting a signal into "B" (via the

input binding post and with the input selector in the X MAJ

or Y MAJ position)_ and measuring the output voltage differ-

entially between '_" and "D" (with the TPI selector in the

XE MAJ or YE MAJ position). The scaling is unity gain.

This test is most useful near or above the unity loop-gain

frequency.

(b) The tracking loop error function can be measured by inserting

a signal into "B" and measuring the output at "D". This is

the simplest test and the most pertinent to system performance.

(c_ The open loop transfer function of the tracking servo can be

measured by inserting a signal into "B"3 defining and measuring

the input at "D" and measuring the output differentially between

"B" and "D".

(_) The hold-mode closed loop transfer function can be measured by

inserting a signal into the appropriate minor loop input "A"

and measuring the output at "C". The output will appear inverted.

(a) The hold-mode error function is measured by inserting a signal

into input "A" and measuring the error at "G". The output

is inverted.
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(f) Acquisition behavior can be tested by monitoring one or

both PPO outputs '_" on a strip chart recorder and switching

from hold-mode to track mode. The position controls may

be preset for any desired initial position. An initial

velocity can be provided by injecting a triangular wave

into one axis at point "A" via the input selector.

(g) The force-per-volt constant at the motor can be determined

while in hold-mode by measuring the motor voltage at point

'_" (TPI or TP2_ '_DT" or '_ffTr")3 and applying a known

force against the transfer lens.

(h) Friction in the transfer lens support can be measured in

hold-mode by slowly moving the X and Y position potentiometers

while observing the motor voltage at point "F". The force-

per-volt constant, as determined above_ can be used to convert

the readings to units of force.
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t.II

ill

SECTION IX

CONCLUSIONS

It is commonly recognized that much of the potential advantage of

an optical communications system stems from the high degree of beam direction-

ality that can be attained with lasers. Unfortunately_ it is also commonly

thought that extremes of directionality are the same as near-impossibilities

of pointing and tracking. To be sure_ these are not simple problems_ but

experience is showing that the necessary tools are within the present state of

the art of high-precision optics.

During the course of the Laser/Optics Techniques Program_ it was

shown that_ when suitable design precautions are taken_ helium-neon lasers can

be made to be perfectly suited to the task of filling a wide-aperture diffraction-

limited telescope for transmission from deep space.

It also was shown that the same telescope used for transmission

can be used simultaneously for reception of light from a distant earth beacon

without appreciable interference from the transmit channel. Special dielectric

multilayer techniques were developed for this "optical duplex" function.

The common telescope approach minimizes the boresighting and

alignment problems. It was shown that now focus_ alignment_ and beam offset

requirements all can be managed by straightforward and basically simple

techniques.
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The technology of transfer lens servo drives was advanced by de-

velopment of a special laser tracking and pointing subsystem for the project

breadboard. Techniques were employed which lend themselves to future space

qualification.

The current program is clearly demonstrating in the laboratory

that lasers and high-quality electro-optics are available for use in deep

space communications. Breadboards of working subsystems have taken shape

and experiments at signal levels suitable for deep space optical communica-

tions have been conducted with the hardware.
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