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RADIO CERENKOV RADlATlON FROM A PRIMARY COSMIC RAY 
l 

1. Lerche 
Laboratory for Astrophysics ond Space Research 

Enrico Fermi Institute for Nuclear Studies 

The radiation field of a primary cosmic my moving in straight line 

motion in the Earth's atmosphere i s  discussed. The particle i s  taken to have a 

velocity in excess of the velocity of light in the medium, a d  also to have a Larmor 

radius greater than a scale height of the atmosphere. I t  is shown that the polarization 

of the electric vector i s  nearly mdial in the plane perpendicular to the track of the 

cosmic ray. 

It i s  also shown that the radiation i s  detectable at  centimeter 

wavelengths provided a radio telescope of size in excess of about 80 meters i s  used, 

that the integration time of  the receiver i s  about 20 microseconds and that the noise 

temperature i s  less than about 20' K. 



. 1. Introduction -. 
In a rec 

~~ 

\ 

'\ 
t paper (Lerche, 1965) the near field {nchrotron radiati 

was discussed for a primary cosmic ray moving in the Ecrth's atmosphere with a 

velocity exceeding that of light in the medium. It was found that while the resultant 

energy field was strong enough to be observed by radio methods there existed two 

mutually incompatible conditions which made it seem unlikely that this mdiation field 

could be used as a means of detecting high energy cosmic mys. The first condition 

required the velocity, U , of the particle to be greater than C / ~ L  where 

C i s  the velocity of  light in  vacuo and nt i s  the refractive index of 

air. The second condition demanded that the Larmor radius of the primary be less 

than a scale height of the atmosphere in order that the calculation be applicable. 

Using a scale height of about 8 km. it was found that these two conditions were not 

compatible and hence the calculation could not be applied to particles producing 

synchrotron mdiation unless the variation of  refractive index with height was 

allowed for. Since the refractive index becomes very close to unity above one 

atmospheric scale height it seems unlikely that particles wi l l  be able to produce enough 

Cerenkov mdiation for their detection by radio means to be assured. 

It i s  then of interest to consider fast primary cosmic rays which have 

a large Larmor radius compared wi th  the scale height of the atmosphere. In such 

a case we can neglect the effect of the Earth's mognetic field on the particle's 

motion and consider the particle to be moving in  a straight line. We expect intuitively 

that the radiation field from such a particle w i l l  be weaker than that produced by 
the synchrotron effect since the particle i s  not being accelerated so much as seen 
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by an observer at rest. However provided the radiation i s  not too weak we should 

be able to detect i t by radio means, especially since we no longer have the restrictive 

. .  

condition on the Larmor radius which prevented the synchrotron radiation from being 

observed. In this treatment we assumed for simplicity that the refractive index of 

\ 
the medium shows nefther time nor spatial variation. 

2. The Wave Equation 

We choose a Cartesian coordinate system in which the cosmic my moves along the 

I 

1 .  

* 

x-axis with speed U. (> C / @ )  . If the particle has a charge, 9 , then 

the electrostatic potential, p) , satisfies the equation 

where 6 (5) is  the usual Dirac 5 -function. 

The electromagnetic potential, 6) , satisfies a similar equation, - 
name I y 

where the current density, j , i s  given by 
*c 



4 . Thus the electromagnetic potential i s  in the X direction only and 
.. 

Hence the electric field which i s  f o m l l y  given by 

becomes 

(4) 

It i s  clear that in order to find the electric and magnetic fields it i s  

sufficient to find the scalar electrostatic potential. It i s  well known that we can 

write 

In like manner we Fourier analyze the potential $ so that 
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. Substituting for (5) and (6) into (1) leads to the equation 

Since we are assuming that %U >C we may set 

We recognize that (8) i s  the usual definition of the Cerenkov angle 

Using (7) and (8) it can easily be seen that the Fourier component of the potential 

which varies as e i k (x-at) WY Cf , i s  given by 

.( . 

In order to evaluate the double integral in  equation (9) we transform 

to pojpr coordinates in (4, m )  space. Thus we let I = =  a&)) 
m=/" & e  Wealsolet y=ps~nX,  # 

Then (9) becomes 
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Since the integral over @ in (10) i s  periodic with period atr 
then we can set 3= 0 in (10) without loss of generality. Upon doing so 

and making use of the standard expansion theorem 

where &( g) i s  the & s s ~  function of the first kind of order 

argument p , we find that (IO) can be written 

Some care i s  needed in evaluating the integral in (12) because of the singularity in 

the integrand when X= k Y t - 4  . If we compute the integral purely as a prin- 

cipal value integral as shown in  Figure la, i.e. we ignore the pole, then the integral 

i s  a simple Hilbert transform which has been evaluated elsewhere (Erdelyi et al., 1954). -- 
Thus 

However, if we deform the path of integration off the real x-axis as 

shown in Figure lb, then the integral becomes 
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Likewise if we evaluate the integral along the path shown in Figure IC we obtain 

To decide which path of integration is appropriate in our case we must employ a 

physical argument. At large distances in the plane perpendicular to the track of 

the primary we require that the potential become a progressive wave propagating 

outwards away from the particle. Thus the phase factor of the wave must have the 

dependence exp ddrhw- at) 
function of the first kind has the property that, as i t s  argument becomes large com- 

. Now it is well known that the Hankel 

pared to unity, the asymptotic expansion has the above form. The Hankel function 

of the first kind of order zero and argument 5 i s  defined by 

Thus it i s  now clear that the appropriate path of integration i s  that 

given in Figure IC and hence (12) becomes 
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. Thus the Four;& component of the electric field with wave number k say 

where the prime denotes differentiation with respect to the argument. 

We can also evaluate the magnetic field since 
~ H = M  rrr =, 

(f fl)=(q)Q ($ $) . The Fourier component of the magnetic field with wave - 
number k ,say (kj f )  , i s  

3. Energy Considerations 

i f  the linear scale size of the system i s  L we can use a quasi- 

plane wave approximation provided 

kz, 1-' , 

in our case with the appropriate scale size being about 'r kk4 

we can use the approximation p!ovided 



-8 - 

Assuming that the observation site i s  chosen sufficiently far from the 

primary cosmic ray for this to hold then the total amount of energy received per 

unit area, say P , can be written 

. 

If  we choose to work with the frequency, $- , instead of the 

wave number, k.  , then the amount of energy received per unit area can be 

written 
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where the frequency, f , has been expressed in terms of the wave number, 

k , through the relation LCIZ = JTf. 

Since most detectors have a fixed bandwidth; the amount of energy 

received per unit area in a given bandwidth i s  normally the interesting and 

observable quantity. Calling this quantity p($) 6f we see that 

I '  

Since we are in the region where the quasi-plane wave approximation is valid we 

may write 

Using the expression for the electric field given in (17) we see that 

Upon doing so we see that (23) becomes 
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The polarization of the radiation in this approximation at a given frequency i s  

given by 

It i s  also clear that the particle always moves ahead of the radiation field. This 

can easily be seen by looking at a point of stationary phase on the wave which 

w i l l  satisfy the equation 

The position of the particle satisfies X =  ut . If we transform to coordinates 

in which the particle i s  a t  rest it can easily be seen that the point of stationary 

phase satisfying the transformed equations lags with respect to the position of the 

primary cosmic ray. Thus the particle i s  always in advance of the Cerenkov shock. 

4. Numerical Estimates 

To obtain some idea of the direction of polarization of the Cerenkov 

radiation and also of the amount of emitted energy per unit area we apply the 

above results to the case where we take the refractive index of the air to be 

-4 Vb = 1 + 3.10 . 



I . 
We can take the polarization of the electric vector as being purely 

radial provided that 

' . -  

j 

I *  

But we already have assumed that so that (26) i s  

automatically satisfied. Hence to a very good approximation we can assume that 

the radiation i s  polarized radially in the plane normal to the path of the primary 

cosmic my. 

IA>Cho'%@-h) c 

We can therefore write that 

Since y c we may replace +aA.g by J(hL-1) and then 

Assuming the primary cosmic ray i s  a proton and inserting the appro- 

priate numerical constants it can easily be shown that 

* 



-12- 

Cmverthg to the mrrna! radio nstr~nomica! mearvrements in terms of flux units 
- 6  

(1 flux unit '=, 10 -2 6 kV!m-2&s)-') we find that (28) becomes 
I 

J 

Since we are using a quasi-plane wave approximation we know that (29) i s  only 

c U h t W  

1 The total amount of  energyzceived in a bandwidth A$- is  just 

From the dependence o f  the radiation on frequency it is  clear that 

we obtain the most energy at the shortest wavelengths. However using a radio tele- 

scope means that we must remain on the long wavelength side of 2 cm. since shorter 

wavelengths are absorbed by water molecules in the atmosphere. Therefore let us 

choose to observe the radiation a t  a wavelength of 3 cm. and choose the bandwidth 

to be &= Id'f , Then the total observed energy per unit area is  just 

If we let 

then we should observe about 1/10 4, U, 

s = 10 to ensure that the quasi-plane wave approximation i s  valid 

from such a primary at an observing 
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4 3 
frequency of 10 Mc/s. With a bandwidth of 10 Mc/s we have to take into account 

the noise signal. Suppose the overall noise temperature from a l l  effects at a given 

frequency i s  "K and that the receiver has a linear size 2 , then 

~ 
. 

~ . * *  

' f  

1 

the amount of energy received per unit area due solely to noise, say N , i s  

given by 

where 6 i s  Boltzmann's constant. 

We can allow the signal strength to be small compared with the mean 

noise level provided the 'spikes' due to r.m.s. fluctuations in the noise are small 

compared with the signal 'spike'. 

Let us assume that the receiver averages over a time interval 't 

and that reception i s  uniform over the bandwidth sf and nothing i s  

received outside this band. Then i t  can be shown (BruceweII, 1965) that size of 

the r.m.s. fluctuations above the mean noise level i s  

The time the cosmic ray takes to travel one scale height of the atmosphere 

-5 
(- 8 km.) moving at i s  about 2.10 secs. Thus we do not wish to 

integrate the signal for longer than this time or else the assumption that we could 

neglect spatial variations in the refractive index becomes invalid. Hence we set 

2 = 2.10 secs. Knowing also the bandwidth $5 ( E lo3 Mc/s) 

we see that in order that the noise spikes do not swamp the signal spike (lo-' j l U , } j  

U Y C 

-5 
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- we require that 

At a wavelength of 3 cm. it i s  possible to ensure that the noise temper- 

ature from a l l  sources (e.9. background sky, Earth, receiver) i s  at most about 

0 20 K. Thus inserting the appropriate numerical factors we see that a receiver 

of linear size D - 3 45 meters i s  required in order for the signal to be observable 

above the noise fluctuations. If we demand that the noise spikes be a factor 

three less than the signal to ensure signal detection this raises the size of telescope 

required to D > 80 meters. 
cy 

This size of telescope i s  not unreasonable and so we conclude that 

i t  i s  possible to detect primary cosmic rays using radio telescopes. 

To obtain an estimate of the expected number of counts per second 

picked up by the radio telescope we can argue as follows. At  the top of the 

atmosphere the flux of cosmic rays is estimated to be about 1 cm 

Now the radio telescope of linear size 

of about T 3L . Using 9 
2.10 cm . Thus at first sight we might expect about 2.10 counts per second. 

-2 -1 
sec . 

9 has an effective receiving area 

- - 80 meters, this amounts to about 

8 2  8 

However in  passing through the atmosphere the flux of primary cosmic rays i s  

attenuated by absorption and the probability that a particle reach the ground i s  

i s  the scale height of the at- fu QxpI--x/xI) , where % 

mosphere and X i s  the thickness of the atmosphere. Assuming that 

-IS - 120 km and X, - 8 km this gives a decay of ry e A -  
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Hence the number of expected counts now becomes 

8 -15 
2.10 e cow R t S  I src-.' 

b 
which amounts to some 60 counts per second. Since the integration time i s  only 

about 20 microseconds it i s  clear that we can discern the Cerenkov mdiation from 

each individual cosmic my without any danger that the pulses wi l l  overlap. 

It should be remarked that this calculation i s  only applicable to 

primary cosmic rays provided they do not undergo shower formation, nuclear spallation, 

Coulomb scattering or any other process which prevents them moving in straight 

l ine motion. I t  also places a lower l im i t  on the energy of such particles in that 

their Larmor radii must be greater than a scale height of the atmosphere. 

When a primary cosmic my undergoes shower formation this calculation 

can be applied to such a shower in a semi-quantitative manner. Several large 

showers composed of  perhaps a million electrons and an equal number of positrons 

show a 1O?h deviation from charge neutrality. This i s  due to the fact that the 

electrons have longer lifetimes than positrons in the atmosphere. We can treat 

the radiation from the charge excess as an incoherent emission problem at 3 cm. 

wavelength since the shower thickness i s  normally of the order of a meter. The 

front of the shower i s  normally about 50 meters in  radius. Thus provided we are 

sufficiently far from the shower, say 100 meters from the core, we can estimate 

the shower radiation by multiplying (30) by N , where h/ i s  

5 
the number of excess electrons ( - 10 ). Thus for a shower the incoherent 

I 
I 
I 
I 

i 
I 
I I 
I 

I I 
i 
1 
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Since we wish to be about 100 meters away this requires that 

the amount of energy received per unit area i s  of the order of  20 

must be compared with about 6 -f U, 

meter telescope. Thus the shower to noise ratio i s  about 3:l and thus the shower 

should be detectable by means of the incoherent emission. 

S x 5000. Thus 

. This 
4 

from the noise background using an 80 

5. Conclusion 

It has been shown that the Cerenkov radiation from an individual cosmic 

ray is detectable at radio frequencies provided a large enough receiver i s  used 

and provided the noise temperature can be reduced to around 20° K. 

This work was supported in part by the National Aeronautics and Space 

Administration under grant NASA-NsG-96-60. 
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* Figvre Captions 

Figure 1. The possible paths of integration for the integral in Equation (12). 
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