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ABSTRACT 3 1)/3/ l

A rigorous derivation and new analytical viewpoint of linear shell
theory are presented which aim at resolving some fundamental difficulties
in elastic shell theory. The approach is based on the concept that the
stress and displacement components in three-dimensional elasticity can be
expanded into infinite series of the Legendre polynomials of a dimensionless
thickness variable, which converge uniformly and rapidly in the thickness
interval. The shell equations are derived through integration of the linear
elasticity equations. The corthogonality property of the Legendre polynomials
uncouples most higher order terms during the integration process. A
minimum number of assumptions are then introduced after the integration
and only when necessary. The a priori Kirchhoff-Love hypothesis is
replaced by a more rigorous accuracy criteria.
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NOMENCLATURE

A, B Metric or Lame coefficients of the midsurface of the shell
C = Eh/(1 - v%), extensional rigidity

D = Eh3/12(1 - v%), flexural rigidity

E elastic modulus

3 e
strain tensor

ij
H, Metric or Lame coefficients or orthogonal curvilinear
coordinates
h thickness
i, j = 1, 2, 3, indices corresponding to x,y,z or §, n, U ‘
respectively :

M, M;,, etc. couple-resultants

Nl’ le, etc. stress-resultants

n nonnegative integers

P, Legendre polynomials of degree n

QI’QZ transverse shearing stress-resultants

R, R, principal radii of curvature of the midsurface

R minimum radius of curvature of the midsurface

t time

UuvVv,w displacement components

u, v, w plate or shell displacement components

Uy Vi W nth coefficients of the Legendre series of U, V, W,

respectively

X, ¥, 2 Cartesian coordinates

, P average rotation of a normal
1’P2 g
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Kl, KZ, Kl, KZ

g..
1]

ij

o{n), 5{n)
1) 1)
+

73j5° %3]

T1r T2

1" =2

expressions of u,v,w

z/(h/2) dimensionless thickness variable

curvilinear coordinates along lines of principal curvature
shear constant

expressions of [31, ﬁz and w,

Poisson's ratio

mass density

stress tensor

weighted stress components

nth coefficient of the Legendre series of O'ij and &ij R
respectively

loading functions at z = h/2 and z = -h/2, respectively
expressions of B and B,

expressions of U, V, W

expressions of U,V

expressions of uand v




INTRODUCTION

As a branch of the well-established theory of elasticity, the theory
of thin elastic shells has been ironically and persistently defying a satis-
factory derivation, free from unnecessary assumptions, approximations
and inconsistency. Despite the considerable amount of reexamination and

rederivation of the shell equations made by numerous authors, some basic

i

difficulties and questions 1* remain unsolved in the foundations of the subject.
Research workers in many fields dealing with shell-type structures may
find themselves confronting scores of linear shell theories which differ
more or less from each other. The choice among these theories has been
left mainly to personal preference because of the lack of a universally
accepted criterion for the numerous, explicit and implicit assumptions involved.
The fact that elastic shell theory is a natural generalization of the
membrane theory has unfortunately led most authors to treat the thin
shell as an elastic "surface' with added bending rigidity, and to give little
emphasis to the fact that the shell thickness, though small compared to
other dimensions, is a finite quantity; in other words, the shell space has
been considered as a small '""neighborhood' of its midsurface; thereof, a

direct connection with the three-dimensional elasticity has never been

*Superscripts refer to references cited at the end of this paper.




established. Under this mathematical model, the elegance of the surface
differential geometry, and more recently, of the tensor calculus, has
diverted most theoretical attention to the abstract construction of the
equations themselves, while leaving the gap between the shell theory
and the three-dimensional elasticity in obscurity. Some recent develop-
ment in attempting to derive shell equations through the general theory
of Cosserat surfaces?: 3 is an evidence of this trend.

While numerous papers have been devoted to the development of

the linear shell theoryl’ 4, 5, 6, the basic approaches employed in these

derivations can be generally summarized into the following four categories.

(D Direct approach, as used by Love’, Fligge8, and other
pioneer investigators, who worked directly on a differential element of
the midsurface in deriving equilibrium and kinematic equations.

(2) Variational methods, as elaborated by E. Reissner?: 10,
Naghdil’ 11, 12, Koiter 13, Saunders 14 and many other authors who favor
the energy methods in which, once the basic assumptions and strain
energy expression are set forth, no further approximations or inconsis-
tencies may creep into the derivation. In addition, all the field equations

and boundary conditions are obtained in a single variational process, which

provides some confidence of analytical unity. However, the question, 'How

satisfactory are the set of initial assumptions and the strain energy

expression for the shell? "remains to be examined by more basic formula-

1,4,5,6

tions. Literature surveys indicate that the variational methods

have beenby far the most fruitfulapproach in thc rederivation of shell theories.




{3) Method of parametric expansion and asymptotic integration,

Green”, E. Reissnerlg‘,

as used by Johnson and E. Reissner 15, Reiss 16,

Gol'denveizerlg, etc. In this method, appropriate quantities in three-
dimensional elasticity are expanded into power series of some small
thickness-parameter, then the shell equations are derived by asymptotic
integration. The results from this approach are admittedly not encourag-
ing both from analytical and from applicational viewpoints.

(4) Method of Taylor series expansion, as employed by Vlasov?0,
Kennardzl, and very recently by Kil'chevskiyZB. This method can be
evidently traced back to the plate theory due to Cauchy and Poisson*, which
is based on the expansion of the displacements and stresses in power series
of the thickness coordinate z. As pointed out by St. Venant, * the corre-
sponding series will, as a rule, diverge eventually. From an analytical
viewpoint, the region and nature of the convergence of the Taylor series
in these derivations are indeed uncertain. Furthermore, as remarked by
NaghdiS, this process is essentially '"'regarding the system of three-
dimensional equations as defining an 1initial-value problem (the middle
surface being the initial manifold);' while in the present author's opinion,
they really define a boundary-value problem in the interval -h/2 £ z < h/2.

Bearing in mind the intrinsic relations between the derivation of a

shell theory and the solution of a boundary-value problem, one naturally

*Refer to the historic remarks by Love ' and by NovozhilovZZ. Cauchy and
and Poisson's plate theory was later superseded by Kirchhoff's plate theory.



turns to the various methods of solving a boundary-value problem, among
which the method using series expansion in orthogonal functions outstands.
It can be easily seen that by using orthogonal functions, the two major
difficulties in the Taylor series method are completely removed: First,
while the Taylor series are ''point expansions' and converge only within
some small neighborhood, the series of orthogonal functions are 'interval
expansions, ' which converge uniformly in the entire interval of interest.
Second, while the terms of a power series are not orthogonal to each
other (thus a priori assumptions, i.e., series truncations have to be
introduced before the integration of the three-dimensional equations); the
orthogonality property in the new approach uncouples most high-order
terms during the integration process, and assumptions are then introduced
after the integration and only when necessary.

In the following sections, the new derivation and analytical view-
point of linear shell theory are presented, based on the concept that the
stresses and displacements in three-dimensional elasticity can be expanded
into series of a selected set of orthogonal functions, which converge
rapidly in the thickness interval. The a priori Kirchhoff-Love hypoth-
esis is replaced by more rigorous accuracy criteria. Although the
choice of the coordinate functions can be arbitrary as long as they form
a complete, orthogonal set, the Legendre polynomials evidently are the
most natural and convenient ones, since, as will be seen, they preserve

the definitions of the stress- and couple-resultants.




For the purpose of clarity, we will first illustrate the new approach
by the simpler case of the flat plate, and show that both Mindlin's plate

theor'y23

and classical plate theory can be reproduced without using
Kirchhoff hypothesis on displacements (Eq. 10, Ref. 23). In the subsequent
sections, a second-approximation shell theory is derived and discussed;

then, a first-approximation theory will be proposed in the spirit of Love's

shell theory7.




PLATE THEORY AS TRUNCATED LEGENDRE SERIES SOLUTION

Consider a flat plate referring to Cartesian coordinates x, y, z.
The faces of the plate are the planes z = =+ h/2, where h denotes the
constant thickness. Under arbitrary dynamic load on the faces, the exact
elasticity solutions of the problem are completely described by nine
quantities, namely, six components of the symmetric stress tensor e
where i, j = 1,2, 3 (corresponding to the three directions x, y, z, respec-
tively), and three displacement components U, V, W; all of the nine
quantities are, in general, functions of four independent variables (%, v,
z, t). If we use the superscripts ''+'" to denote the values of the correspond-
ing functions at z = h/2, and '"-' to denote those at z = -h/2, then the

boundary conditions at the faces z = £+ h/2 are given by the prescribed

loads:
— _ .+ I
at z = h/2, 735 —G3J. , j=1,2,3 (1)
atz=-h/2’ 0-3J :0—3_j ’ J = 1)2;3

In addition to (1) and the boundary conditions at the plate edges, the nine
quantities must satisfy nine field equations*, namely, the three equations

of motion:

*Since the six strain components can be very easily eliminated, they are
excluded to avoid complication. Also, the body forces are not included
in the equations of motion, but their inclusion does not change the deriva-
tion essentially.




do oo oo
12 . 22 7732
ox ay dz

= pV (2b)

13 , Bo23 933
9x Jy oz

pW (2¢)

where dot denotes time differentiation, and the six stress-displacement

relations,
1
%—Z =g @11 - voge - vos3) (32)
av _ 1
By E 22 7 v011 7 vo33) (30)
OW _ 1 (o33 - voyy - vopy) (3¢)
- Jz E
dU , 9V _2(1+ v)
‘ By Tax 0 E C12 (42)
OW , aV _ 2(1 + v)
oW + U _2(1+ v) o (4¢)

9x 9z E 13

Now if we define the dimensionless variable { = z/(h/2), then -1 £ £ £ 1

is the thickness interval; the nine quantities can be expanded24 into

infinite series of Legendre polynomials of {

X (n)
O-IJ = z o Pn(g) , I,J = 1, 2,3 (5)




where the coefficients are functions of (x,y,t), and are defined by24

]
(n) _ 3

%ij T (n*'%> J o Pa (Q)d i,j=12,3 (7)
-1

{32 - (n+3) .{'l {i} P, (DY (8)
v _

Note that Py(¢) = 1, Py(f) = £, P,(0) == (3¢% - 1), etc. It is easily seen

NI»—d

that, within a constant factor, the plate stress- and couple-resultants are

nothing but the coefficients crgjo) and o'}

1j
h/2
N, = dz = h (0)
17 01192 = hopyy
-h/2
h/2
N, = / dz = ho' = N
12 = 01202 =00y, = N2
-h/2
2
o = o s -n® (9)
1 139% 7~ 7913
-h/2
h/2
. L, B2
-h/2
h/2
= / d —hz(”—n4 t
M, = o122dz ==~y =Mpy o ete
-h/2

We now define the ''plate displacements'' by

u ug h/2 (U
{v} = {}0}.=ﬁ [ SV ¢az (10)



A3

Fou )
_1
| niz| o, h2fv
=< > = 3 z dz (11)
V) h -h/2 v
P2) w7z

25 "average change

It is seen that (31 and B, are identical to E. Reissner's
of slope of the normal, " but w is somewhat different from the "weighted
average' of W used in his variational deriva’cion?‘5

Theoretically, we can multiply Eqs. (2), (3), and (4) by Pn(g),
n = 0~ oo, then integrate through the thickness, to obtain an infinite number

of equations governing all the coefficients in (5) and (6). The purpose of

deriving a plate theory is to obtain a determinate set of equations governing

the plate stresses and plate displacements defined in (9), (10), and (11).

Exact Equations of Motion for Plates

Multiplying (2) by Pg(L) and integrating through thickness, using
the definitions (9) and (10), we get

ON; 0oN,,

+ . .
__ax + W— + (0'31 - 0'31) = phu (12a)
oN oN
12 2 + - .
™ + —-——ay + (03, - 035) = phv (12b)
o | oyt (933 -033) = phW

Multiplying (2a, b) by P (L) then integrating through the thickness (with the

help of integration by parts), using the definitions (9) and (11), we get:
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oM oM 3
1 12 h , + - h” 3
+ - Q1+ = + = B2 13
% dy 1 > (031 +03) 12 51 (13a)
oM oM 3
12 2 h, + - _ph’ 3

These five equations of motion are exact, which govern the five degrees

of freedom of the gross motion of a '"needle-like" differential element.

All higher equations of motion, which can be obtained similarly, describe
more complicated elastic motion of the normal fibre, for example, the
sixth equation of motion governs the thickness stretch mode. Some
authors (e. g., Ref. 20) have attempted to include an equation of motion
governing the rotation of the differential element about the z-azis; that
this is a trivial identity is evident if we recall that the differential element
has zero moment of inertia about the z-axis.

Constitutive Equations for Plates

Multiplying (3) by PO(Q) and (3a,b) by P(f), and then integrating

through the thickness, we get

du 1 (0)
ox “ER 17 Nz - vhes]
ov _ 1 (0
g}: —EK [NZ - VNl - Vh0'33] )
W we =F% [-v(N] + Np) + hog%)] (14)
op 2
1_12 vhe (1)
Tf—z[Ml- Mz -7 "33]
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(0) (1)

Since 033 and 033 which represent the effects of thickness normal
stress, are not included in the category ''plate stresses', Eq. (9), we
shall introduce the '"generalized plane-stress assumption''.

Plate Assumption 1: For a thin plate, the normal stress 033 has

the following properties*

0'(303) << 0'(101) or 0'%%)
(15)
(1) (1) (1)
33 SOy o2
With the help of Assumption 1, (14) can be rearranged as follows:
N1=c(—a—‘i+vi‘i) (16a)
ox oy
ov Ju
N.=Cc(<4 ,9u 16b)
2 (By Y BX) (
(3[31 8{32) .
=D|—+ v—"
M1 D o v By (17a)
ap op
M D(——2-+v 1) (17b)
2 oy 9x
+ - vh /81.1 8v>
- = - == 4 — 18
w w 1- v \ox oy (18)

where C = Eh/(1 - v%), D = Eh3/12(1 - v?). From (18), it is seen that
Assumption 1 does not imply that the thickness change is negligible (for

v = 0.3, it is nearly -43% of the sum of membrane strains; however, it

*Note, a much better_all.snproxirnation can be obtained by assuming 0_(0) =

I3

035 + o33)/2 and 6533 = (033 - 033)/2,which may be called Assumption
1 for improved plate theory The same concept applies to shell theory also.
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will be found that (18) is uncoupled from the set of plate equations govern-
ing flexural motion. This uncoupling is unfortunately not true for shell
theory.

Now multiplying (14a) by Py(¢) and P (¢), then integrating through

the thickness, we get

1-v du v
N, = = e 1
12 = Nz21 =5 C <8y+ ax) (19)

_1l-vg (351 aﬁz) (20)

M =M =
12 21 2 oy i ox

To determine the equations for the transverse shear stress-resultants

Qj and Qy, we simply integrate (4b, c) through the thickness,

1-v ow , 1 + -
= W4 = - 21
0, >~ C [Bx + h(U U )] (21a)
_1l-v ow 1 _ 4 -
Qz = ——C [———ay+h(v -V )] (21b)

Equations (21a, b) contain the undesirable quantities (UJr - U") and
(VJr - V), which must be removed by some means. Two possible ways
will be used, one leads to the ''shear-constant plate theory' similar to
those derived by E. Reissner?® and by Mindlin23; the other leads to the

classical plate theory due to Kirchhoff.

(A) Shear-Constant Plate Theory

Since P (1) = 1, and P (-1) = (-1, we have, from (6),
- U :2(u1+u3+u5+.,, )

Vi oV =2yt vt gt )

3
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Substituting these into (21a, b), using (11), we get

1- 9 2 )
Q) = Zvc [—a—\i-+[31+-ﬁ(u3+u5+... )} (22a)
_l-v ow 2

Now we introduce the ''shear-constant assumption. "

Plate Assumption 2ZA. The normals of a thin plate remain nearly

straight after deformation, and the antisymmetric part of the slight

deviation from a straight line can be approximated by

= (%‘gwl) (23a)
vyt vgd oo =K (g_;!wz) (23b)

where ¢ is a shear constant to be determined by some physical argument23.

Substituting (23) into (22), we get

o 1-v aw
Ql = > Ck (F;'*'ﬁl) (248.)

1- ow \
QZ = 2" Ck (“é‘;+ (32) (24b)

Altogether, (12), (13), (16), (17), (19), (20), and (24), consist of a deter-
minate set of thirteen plate equations for thirteen unknowns.

From the above analysis, it becomes clear that the shear constant
k» which has been introduced by Timoshenko, E. Reissner, Mindlin, etc.,
through physical intuition, does not arise from some mysterious source,
rather it is a remedy to account for the fact that normals do not remain
straight. Strictly speaking, x should be a different function of (x, y, t) in

(23a) and in (23b), and also depend on loading, but its variation has been
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found to be very small. According to the variational derivation due to
E. Reissner, ¢ = 5/6, while according to a limiting process concerning
. . 23
flexural waves, Mindlin found
K =~ 0.76+ 0.30V
For v = 0.3, this gives ¢ = 0. 85, which agrees favorably with Reissner's
value 0. 833.

(B) Classical Plate Theory

If we neglect the ''rotatory :nertia''termsin (13) to get

oMy Mz 4 N
Q17 % F Ty F20m1t o3 (252)
oM ,, oM
12 2 h, + | -
Q2" 3x oy T2 (932F 932) (25b)

and make an alternative assumption to express $;and B, in terms of w,
we obtain the classical plate theory, from which, the two undesirable
equations (Zla,b) are uncoupled.

Plate Assumption 2B. The plate displacements obey the following

approximate relations

ow ow

= . = - 26
1 ox Pz = -5y (26)
By this assumption, we can eliminate §, and B, from (17} and (20).
2 2
Ml=-13<a W+1ﬁ’§> (27a)
BXZ oy
2 2
MZ:_1)<8‘”+VB‘Z> (27b)
ay? ax
2
My, = -(1- D 2% (28)

0x0y




Altogether, (12), (25), (16), (27), (19), and (28) consist of a determinate
set of eleven equations for eleven unknowns.

It should be noted that, in both plate theories, the in-plane motions
(determined by Ny, N, Ny,, and u, v) are always uncoupled from the

flexural motions. This uncoupling again does not exist in the shell theory.

15
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SECOND-APPROXIMATION SHELL THEORY

In the previous section, the derivation procedure is illustrated by
deriving the plate theory in Cartesian coordinates {x, y, z). Now we
proceed to derive a consistent linear shell theory in orthogonal, curvilinear
coordinates (£, n, L), which are chosen to be the lines of principal curva-
ture of the shell midsurface and its normals. For convenience, we shall
use the same notation as before, since the plate is merely a special case
of the curved shell. The thickness variable z (distance from midsurface)
will be used freely and interchangeably with {, whichever is more con-
venient, since they differ only by a constant factor.

The shell space is defined as the space bounded by the two curved
surface L = £1, or equivalently z = +h/2, where h is the constant thickness,
and by the edges of the shell, if any. Under general dynamic loads on the
two faces, cr;j(g, n, t) on the face z = h/2, and Uéj(g, 7, t) on the face
z = -h/2, the exact elasticity solution, as before, are completely deter-
mined by nine scalar quantities, the symmetric stress tensor O'ij, i,
j =1, 2, 3(referring to the curvilinear coordinates £, m, §, respectively),
and U, V, W, whichare, ingeneral, functions of four independent variables
€, n L t).

The first quadratic form of the orthogonal coordinates can be

written:
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ds? = H%d&,z + H%dnz + H%dzz

2 2 .
=2 (1 +R—Zl-> atl + B2 <1 + f—) dn? + dz2 (29)
2

where Hj, HZ and H3 are the metric or Lame coefficients, A and B the metric

coefficients of the midsurface, Rj and R, the principal radii of curvature.

For future reference we note the formulas
ot _ ([, .,z \oA
Bn R’Z Bn,

0H, 2\ 0B
w0 (R) R o

which may be deduced from the Mainardi-Codazzi relations!!. The nine

field equations.* correspondingto (2), (3), and (4), in the curvilinear
coordinates may be found from Ref. 7 or 26, namely, the three equations

of motion

8(Hpo11)  8(Hyop1)  O(H)Hp031)

ot an oz
8H1 aHd 8H24_ oAU 31
to12 5 PHT13 5 - %22 g 7 PHIHRU (31a)

3(H,o15) O8(Hjo,5) 8(H{H-0;,)
2712) M\ 70) M H030) |

13 on oz
9H, 9H, 9H, .

*As before, the six strain components e;. are eliminated to avoid compli-
cation, and the body forces are not included.
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9¢ on oz
8H, oH, .
..HZO']_I-—B—'Z-—-HIO'ZZ—B—Z—z leHZW (31C)

and the six stress-displacement relations

{ - \ l rl 8U| 1 BA X7 4 W-‘ 1 \ £33\
CHLTTLL/R A 8 T AB an ¢ Ry =gl - vezz - vozz) (52a)
1 1 8V , 1 0B w1l 1 )
(e22 1+z/Ri§ﬁ_+XE € U 'R, =g (722 - Vo - vo33) (320)
oW _ 1
(e33 = )__Z._z E(0'33 - Vo] - vcrzz) (32c¢)
1 1 9V 1 3A
2 =) —— |21 - =
(2e); )1+z/R1[A 9 ~AB 0 ]
1 1 93U 1 9B 2(1 + v)
F—_— e e e V] =L 33
1+z/R2[B bn = AB o ] E_ 12 (332)
re . =), L 1 oW U | _ 201 +wv) 23
(2e13 =) 3, 1+z/Ry{A 3¢ R, |  E 713 (33b)
oV 1 1 8W V| _ 2(1 +v)
=) —+ = el
(2e55=) 57 1+z/R2[B an R, | B 23 (33¢)
If we let
[0>) :l—a—U—--}- 1 Q—A_ +_W_.

—_— A
1 A 3  AB 9n R,

1 oV 1 OB w

2B an ' AB 0% R,



then (32a, b) and (33a) can be written as

E [ 1 v v
= @ +_______@ .
711 1 -v2|l+ z/R] 1L 775 z/R, 2.] t 1 -5 %33 (32a')
o _ E [~ 1 B + v ® + v - (32b')
22 1_‘,2_1+z/R2 2 l+Z/R1 1 1 - v 33
E 1 1
} T Ta- 33a!
"12 2(1+V)[1+z/R1\II1+1+z/R2‘I’2] (33a')

Guided by the form of the equations of motion, and by the definitions
. of the shell stress~ and couple-resultants, we define the '"weighted stress
components" &ij by

o

1j= Ulj(l + Z/Rz),
‘;23':523'“ + z/R,), j=1,2,3 (34)
E3j = 5'3j(1 + z/RyN1 + Z/RZ)’

Note that 513‘ is no longer symmetric. .With the help of (30), introduction of

(34) into (31) yields the equations of motion in the weighted stresses.

B(BF ) B(AF,) B(ABF,) .,
of an oz

AB - ~ oB z z &
+ == G4 - F — = pAB (1 + 2 1+-2-\|U (35a)
Ry 13722 B¢ ( RI) ( Rz)



8(8&1

2) a(AEZZ) a(ABE32) _

9B
+ + + =
Bt an bz “21 58 T
AB ~ ~ dA z z .
+ o -c —=pAB [1 + — 1+— 1)V
2eoms (102) (
R, 23 1 an \ Ri/\ Rz
8(80'13) , B(AUZ3) . B(AB0'33)
14 an dz
AB -~ AB -~ z z 5
-=—c - 5= = pAB |1 + — 1+ =—\W
11 225 °P < ) ( )
R, R, R, R,/
Similarly, the stress-displacement relations can be written

Qe

11

022

owW
oz

Q)

23

- —E 1+Z/R2c1> +ve, | + —2 1 F
Ty _u2|l1+z/R; L 2 l1-v 1+ z/R, 33
1 -vel 1 ] 1
1+ z/R ] -
= E 1¢2+V¢1 + d 1 0'33

21 1 - Y e Y
B E[(l + z/RN(1 + z/Ry) "33 T+ 2/R, 1171+ 2z/R,
~l + z/R ]
= E 2\1/1 +\YZ
2(1 + v) _1+z/R1 |
) E . 1+ z/Rl o
201 +v)| 11+ 2/R, 2
_ E 1+Z/R_2 (1— aw_—'g_) _-U;+a(1+Z/R2)U
T 21 +v) z/R; \A o9& R, R, dz
) E 1+ z/R1 1w v\ V. o(1 + Z/Rl)V
2(1 +v) |1 + z/R2 B 9nm R2 R, dz

(35b)

(35¢)

(36a)

(36b)

"22]

(36c)

(37a)
(37b)

{38a)

(38b)
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The other two equations for 5:31 and 5’32 are not needed.
Now, analogously to the derivation of plate theory, we expand the

weighted stresses into infinite series of Legendre polynomials of &.

G § ’&(i?) PyL), i,j=1,23 (39)
n=0
where
1
&(13‘) = (n +%) f &35 Ppll) dt | (40)
-1

It is seen that, within a constant factor, the shell stress- and couple-

resultants are nothing but the ten coefficients 5(.(.)) (i=1,2,j=1,2,3) and

1)
(1) . .
O'(ij (i, j =1, 2):

~(0)
Ny h/z oy, [(h3y] )
_ z _ ~(0)
le = 0’12 (1 +E§) dz = { ho 12 » (41)
~(0
Ql -h/2 013 hU(l 3)
.
\
(h2 (1)
M; h/2 o] B 911
- (1+—Z—) zdz{ < (42)
M / o 2 h—-b"(l)
12 -h/2 12 6 12
.

and others obtained by interchanging the subscripts 1 and 2. The expansions
of the displacements U, V, W and the definition of the five shell displace-

ments u, v, w, f are the same as (6), (8), (10), and (11).

v ‘32
From the form of the Eqs. {35) through (38), it is evident that the

integration process will be muchniore lengthier than in the case of the flat plate.



However, the basic principle is the same, namely, to uncouEIe all the
higher coefficients and to obtain a set of determinate equations which
govern the ten shell stresses and five (or three for the classical theory)
shell displacements, under minimum number of necessary and consistent
asumptions.

Equations of Motion for Shells

Due to the factors (1 + z/R;) and (1 + z/ R,) in the equations of
motion, the integration process will not uncouple* the coefficients Uy, vy,
W,, and u;, v; which do not belong to the category of shell displacements.

To overcome this difficulty, we now introduce two assumptions.

22

Assumption 1. The thickness h of a thin shell is small compared to

the minimum radius of curvature R so that the quadratic terms of h/R
are negligible compared to unity

(h/R)% < < 1 (43)
From this assumption, all the quadratic or higher terms of (z/R) are also
negligible compared to unity. This assumption should be used both before
and after the integration process to avoid inconsistent retention of small
terms. If werestrictourselvestouse(43) only after integration, detailed
study inciicates that same results will be obtained if all the higher
coefficients, {un, Vi wn}, n 22, are at most of the same order as the

leading terms{uo, Vo> wo}, which is evidently true for physical reasons.

*We can derive an alternative shell theory by using the "weighted dis-
lacements, "{U%*, V¥ Wx*}=1U, V, Wi(l + 2/R )1 + z/R;) in place of
U, V, Wi This will make the equations of motion slightly simpler, but

will make the stress-displacement relations much more complex.
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As typical examples,

h/2
[ Se)
l+=+=5+=—+ Wdz
R Rr2 R3
-h/2
—~
w 2 [w w 3 w w
= h w0+£__l_+h__ _0+._2. +h__ _._1_+__3.. + ..
R 6 rRZ2 \12 30 r3 \126 140
NS
THIYOTR e
and
h/2
z Z2
1+ +— + zW dz
R R
-h/2
w W w 2 w w
1
=hz_+£(_2+_£)+L hAER TR
6 R \12 30 r2 \126 140

The results do not depend on whether we apply Assumption | before or after

integration. Therefore, Assumption 1 uncouples all{un, Vi, Wn}: nz3

from the shell equations except the two stress-displacement relations for

Q) and Q,, where U* and v* appear.

Assumption 2. The normals of a thin shell remain nearly straight

after deformation, and the sxmmetric part of the slight deviation from a
straight line can be neglected
fuz va}<<{uor vo} (43)
Now, multiplying (35) by PO(Q) and (35a, b) by P,(%), then integrating

through the thickness, we get:



o
558

9(BN]) 9(ANz;) 3A 9B AB
+

% T e Mz a, Neee TR, O
+ AB(E} - 53,) = phAB [a+%(ﬁl1+§l-g) B, (45a)
O(BN2) + O(AN) + N 8B N 9—‘3+@Q +
5 5y 215 ~ N5, t R, %
+ AB 3, - 3,) = phAB [;; + }T‘; (RLI + K12’> {3’2] (45b)

3(BQ]) 3(AQ;) (Nl NZ)
+ - AB +

__.+—--—
+ ABGY. -53.) =ohaB w2 (L s L) 45
9(BMj) 9(AM>q)
17 . 2l %A BB
ot on 12 on 2 3t
- ABQ. +AB- B Gt +57) = ABQ- B, + LD T I (46a)
1 2931 793 TPAETZ IR T AR R,
9(BM;,) 9(AM,)
12) 9AMp) 8B | 3A
¢ on 2l 3¢ 1 9n
B U L (S [ S U I "
- ABQ, + AB - 3 (71, +73,) =pAB Tz | B, R1+R2 v (46b)

It can be seen that these equations of motion are the same as those

derived by Naghdi in Ref. 11.
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It should be remarked that, though the inertia terms of the equations

of motion are not exact, the left-hand sides of these equations (45) and (46),
are an exact reduction from the elasticity equation. Therefore, in static

cases, the equations of equilibrium are exact.

Constitutive Equations for Shells

Since (36), {37) and (38) also contain the factors (1 + z/Rl) and
(1 + z/R5), we shall apply Assumption 1 to eliminate all quadratic and
higher terms of (z/RI) and (z/R;). In addition, we introduce the ''genera-
lized plane stress assumption' to eliminate the effects of 533.

Assumption 3. The thickness normal stress of a thin shell has

negligible effects on the constitutive equations according to the following

criterion:
h ~(1) ~{0) ~(0) ~(0)
R%33 * "33 59 o+ T
(47)
h ~(0) (1) « =(1) ~(1)
R "33 * %33 %11 * Y22

Note that when R~ oo, (47) reduces to (15).

To write the resulting stress-displacement relations in a legible
form, we define the following quantities, which are similar to
the conventional midsurface strains and curvatures, though we do not

intend to interpret their physical meaning in the conventional manner.

f o dz =%2—+ ! aAv+ il (48a)

%))
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h/2
-1 _Lov, 1 3B ' w
€, = o f <I>2dz =B " + AB 9% u + R, (48b)
-h/2
h/2
| -1 ov 1 8A
W) =3 f \Ifldz A B " AB an u (48c)
-h/2
h/2
21 .1 0%u__1 98B
wy N \Ilzdz =B B AB of v (484)
-h/2
h/2 28 5
% _ 12 _1°%° 1 0A W1
Kl —h f ‘I>1zdz A B¢ +AB an {32 +———th (49a)
-h/2
h/2 9B 2
% _ 12 f _1 %P2 1 8B w1
KZ —h3 o szdz *B o + AB of (31 +——th (49b)
h/2
op
12 1 %2 1 aa
) -=h3 f \Iflzdz " A o " AB n Bl (49c)
-h/2
h/2 5
12 1 9B1 1 8B
T, = — V73 = -
213 h-/[Z 22dz = g on AB of B2 (494)

Since z? = (hZ/IZ)[PO(I;) + ZPZ(Q)], we have, by virtue of Assumption 2

h/2 w
12 2. 2 V2
5 [ etar e v i (50a)
~h/2




h/2
w
f <I>Zzzdz =€, + z -—2

-h/2

ot
[aY]

l

oy
w

h/2

f \Iflzzdz

-h/2

D"lr—'
Wity
n

£

h/2

1z f \Ilzzzdz

b w72

1]

@2
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(50b)

(50c)

(504d)

It is seen that the undesirable unknowns W and w, are involved in (49a, b)

and (50a, b), which will be eliminated later with the help of equation (36c).

Now, multiplying (36a, b) and (37a, b) by Py(L) and by P;(L), then

integrating through the thickness, we obtain

2 -
_ B2 (1 1) ,s
Nl =C [:61 +V€2+1—2-(R2 R]__) Ky

-

(51a)

(51b)

(51c)

(51d)

(52a)

(52b)
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1 -v i 1 ]

h/I12 =3 D _'I'l + ’T2 + <R—2 - EI) Wy (52c)
1-v | 1 1 i

M,, = D7, + 7 +<——-———)w (524)
21 5 |17 2T \R] TR,/ 2

To eliminate W and Wy, we shall find two additional relations from

(36c). Integrating (36c) through the thickness, we get

N, + N, - =— - =% (53a)

Multiplying (36c¢c) by z, then integrating through the thickness (with the help

of integration by parts), we get

h + - v hZ 1 2 53
’—2 ( I ) hWO = E 1\’11 f N‘[Z 12 (RZ I R] ( )

It is now necessary to introduce the following assumption.

Assumption 4. The even terms and odd terms of the Legendre series

of W both converge rapidly so that

W+-W'=2(w1+w3+w5+...) = 2w,y

(54)
1 + -y _ = - =
Z(W + W) Wi (w0+w2+w4+...) Wo T w,
Therefore, (53) can be rewritten as
M M
v 1 2
W T -5 | Ny + Ny - — - == (55a)
2E {1 R, R,
2 [N N
v h 1 2
- M, +m, -R2 (L, T2 55b
W, =M TM, - 5 (Rz Rl) (55b)



Substitution of (51la, b) and (52a, b} into (55b) yields

he
}+ O (ﬁ' 61'2>

Substituting this into {52a, b), we find that the effects of w

_ 2 %
W, = O(h KI,Z

2

by virtue of Assumption 1.

Substituting (5la, b) and (52a, b) into (55a)
and using Assumption 1, we have
W

K
R; Ry

Within the accuracy of Assumption 1, the three equations (55a') and

Zwl
h

h

%
€, + € 12

1 -yt

2

(49a, b) can be rewritten

! v % ("1 "2)
= €, te, -55 \g-+t3—
h 1-v |17 %2 12 \R] "R,
K$=K _ v €l+62
1 1 1 - Rl
e e 17
2 2 1 -v Ry
where
1% 1 aa
K1 "K 3 TAB o P2
_L %% 1 0B
K2 "B "8y TAB 9 "1

Substituting (57a, b) into (51a, b) and (52a, b), (with w, neglected), and

using Assumption 1, we finally get

29

(55b')

is negligible

(55a')

(56)

(57a)

(57b)

(58a)

(58b)
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N, =C +ve +£(_.1___L>K- (51a1)
1 -~ € 271z \R, "R/ “1] a
Z -
= h* _1..__1_) '
Nz = C[ez tve, + 12 (Rl R, sz (51b')
- [ 1 _l_) v 1 v y
MiE Pl e (EZ Ry 17T (R; ' Rz) (ep + &)  (52a7)
— i ‘—1.—-—-1_ v ._1— _]-/_ b '
MZ‘D_K?-’LVKIJ'(R1 RZ) 62'1-V(R2+R1) ‘€1+62’J (52b')

It now remains to derive stress-displacement relations for Q; and Q,

by integrating (38a,b). From(38a)

o =lytcliw (L. 1) +zﬁ(_1___1_) (ii&&-ﬁ%
17772 A 9% \R; RZ"TI1Z\R, R;/\A 9 n R

1 h +_1( _h__) -
+h(l+2 2)U N 1 ’R; U (59)
Note that
1 N R | _h_) - .2
h(l+2RZ)U h(l—ZRZ U ~h(u1+u3+u5+...)
+——1—( + + + ) (60)
RZ U.O uz u4 PR

To eliminate the undesirable quantities U¥ and V¥, we introduce the ''shear-
constant assumption' similar to the plate theory.

Assumption 5. By introducing a shear-constant x, we can neglect

the higher coefficients u, and v, n > 2 in the constitutive equations for Q,

and Q,. With this assumption and the help of (56) and Assumption 1, (59)

can be written:
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1 -v 1 2w u
=Y k|- - —
Q1= —=—Crlx 3+ B R,

2 2 [k K
v _h2(1 1)1 o he (K1 K
- e b o - —_— e + - e | — e —
1-v 12 (RZ Rl) A ot {61 213 (R1 R )}‘l (61a)
-

2
L

A similar equation for Q2 can be easily written

Qﬁzl“’cKr_lmi‘f’_+5 A
< 2 LB an 2 R,

2 2 Kl K
L T—"(—l' i L) 1 58_{61 ‘e, - L(___+_2>} (61b)
The fifteen equations (45a, b, ¢), (46a, b); (51a',b', ¢, d), (52a', b', ¢, d) and
(6la, b) form a determinate set of shell equations which are a direct

reduction from elasticity equations under Assumption 1-5.

Classical Shell Theory

We use the name ''classical shell theory' to designate a shell
theory not involving By and B,. The elimination of f; and B, can be
achieved by neglecting 61 and 52 in the equations of motion, and replacing
Assumption 6 by the following assumption.

Assumption 5(Classical). The shell displacements $, and B, in

(53a', b', c,d) and (54a', b', ¢, d} can be approximated by

1 ow
A 0

u

(62)
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Substituting (62) into (49a’', b', ¢, d), we find
arwCasm) s (%) esa
K2=%'§n—(-%%+—%)+ﬁé£(-i%\g+§%) (63b)
never (s SR w e (xR R
EREETAC S SRR A S A (030

Comparing (63) to the equivalent expressions derived by Love (Ref. 7,.
p. 524), we find Love's expression for T is incorrect and must be replaced
by

r=1(r + 1) (64)

2 1 2
This correction has been pointed out by many previous investigators.

The approximation {62) should not be used in the two constitutive
equations for Q1 and QZ’ i.e., (59) or (61), since the purpose of introduction
of this approximation is to uncouple two equations and two unknowns from
the set of shell equations. Therefore, in a classical shell theory, (59)
is not needed because of the absence of ﬁl and BZ from the rest of the
shell equations. In the following discussion, we shall consider a classical

shell theory as a variation of its equivalent ''shear-constant'' shell theory.
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First- Approximation Shell Theory

If the shell deformations do not involve severe bending or flexural

motion with short wave-length, ¥ or more precisely, if

K = O(e /Ry , T 2:;O(m

1,2 1, 2 1, /R) (65)

1,2
then the last terms in (53a’',b', c,d) and(61la, b) canbe neglected by virtue of
Assumption 1. The resulting constitutive equations will be called first-
approximation shell theory, which, if used in compliance with condition
(65), will give the same accuracyas the second-approximation shell theory.
One more remark seems to be appropriate concerning the order
of magnitude of the different terms in the shell equations. All the terms
do not necessarily have the same order of magnitude in all
problems. Some terms may be found quite small in one problem

while becoming important in other cases.

*cf,, Ref. 7, p. 532.
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COMPARISON AND DISCUSSION

Since the equations of motion are well-understood and present
no fundamental questions in the existing literature, the present discussion
will be concentrated on the constitutive equations.

In cpite of the fact that the midsurface displacements have been
abandoned and new definitions for shell displacements introduced, the
constitutive equations appear to possess a striking formal resemblance
to those of the conventional shell theories. 1In fact, except the last terms
of (52a',b'), the constitutive equations are formally identical to the Flugge-
Lure-Byrne equations as discussed by Naghdi in Ref. 1, where some terms
of the order of (hZ/RZ) have also been retained to satisfy exactly some

invariant requirements and the identity

Mj, Mz,
N12+—§1—=N21+—R-—2— (66)

From the viewpoint of the present approach, the shell equations are
merely truncated Legendre series solution to the elasticity equations;
therefore, we shall be satisfied if these invariant requirements, energy

requirements and identities are met within the accuracy of Assumption 1.

On the other hand, the correction terms in (52a', b') obtained
through the rigorous derivation, represent a significant improvement of
the accuracy and consistency of the shell equations. It is clear that these
terms represent the effects of the thickness change, which cannot be

obtained in all the existing derivations based on Kirchhoff-Love hypothesis.
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If we compare the present results with the constitutive equations
derived by Naghdi11 in 1957, through a variational method, we note that
the correction terms in {(52a',b') do exist in his equations for hdl and.hdz;
however, the constitutive equations in Ref. 11, known as Reissner-Naghdi's
theory, also include many other additional terms which are not obtainable
through the present derivation. The details of the comparison are listed
in Table 1. It might be remarked that in a recent numerical investigation,
Klosner and Levine27 compared the eiasticity and shell theory solutions
to a specific boundary-value problem of a cylindrical shell, and found that
the solutions of Reissner-Naghdi's theory have not shown improvement over
those of Flugge's theory and simpler theories. This may be attributed to
the fact that additional and missing terms introduce equivalent numerical
errors.

For a discussion of the constitutive equations due to Novozhilov,
Koiter, Sanders, etc., the reader is referred to Ref 1 where it may
be seen that these theories deviate further from the rigorous second-
approximation than Flugge-Lure-Byrne's theory or Reissner-Naghdi's

theory.
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APPENDIX
CONSTITUTIVE EQUATIONS INCORPORATING THE
EFFECTS OF THICKNESS NORMAL STRESS
In the preceding derivation, the effects of the thickness normal
stress 033 (or 033) have been neglected (Assumption 3) for the sake of
clarity. It can be easily shown, for example, by considering the simple case
of a spherical shell subjected to internal pressure, that the thickness normal
stress is of the order of (h/R) compared to the membrane stress 6(101) and
ot if there are distributed loads on the faces z = +h/2. This makes the
accuracy of Assumption 3 considerably poorer than the other four assump-

tions. To improve this, we may replace it as follows.

Assumption 3 (Improved). The thickness normal stress 033 is

nearly linear in the z-direction and

From this we write the constitutive equations as follows, without giving

the detailed derivation.

Ny

H

2
K2 (1 1 v h, ot , -
C[q T2t (R "R )K] 1oy 27337033

1 1 v (L 2 +
M; =D|k; + vk, + RZ-RI S R; 'R, (e +e€,)| +

v hZ® + -
t15 12733 " 733)
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The accuracy of this shell theory (or the shell theory derived in the
text when no distributed normal loads 0':3::3 are present) is of the order of
(h/R)z, It should be remarked, however, that when we speak of accuracy
of the shell theory compared to the theory of elasticity, we should compare
the shell stresses and displacements to the corresponding terms of the
corresponding Legendre series. For example, we should compare the
transverse shearing stress-resultant Q; only to the elasticity solution
0(103) rather than to 0,3 since all the shell theory solutions are insufficient

to describe the detailed variation through the thickness due to their two-

dimensional nature.
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