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Minimum comfortable apprca,ch speed criteria for aircraft carrier 
and airfield WR landings are established from closed-loop pilot-vehicle 
analyses. The results are applied to an l?5D-1 airplane modified with an 
ogee shaped wing. Drag characteristics and static longitudinal stability 
are varied and their effects on the predicted approach speeds are deter- 
mined. The analysis indicates that for most of the configurations the 
approach speeds should not differ greatly for the two types of approaches, 
with the largest difference occurring for a low drag, high static margin 
configuration. A reduction in zero-lift drag or an increase in static 
longitudinal stability has an adverse effect on the predicted approach 
speeds. 
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Subecripte: 

db Dive brakes 

E Error 

Q Landing gear 

0 Conditions at ci = 0, as in so, and steady-state values, as in 7. 

P Phugoid 

sP Short period 

Special notee: 

Primes on a transfer function or time constant indicate that it 
has been modified by inner loop closures, the number of primes corre- 
sponding to the number of closures. 

The nOk3tiOn 8 -+se, h -6T signifies that the pilot is con- 
trolling the aircraft's pitch attitude with elevator deflections and 
correcting altitude errors with the throttle. Other piloting techniques 
are represented by similar feedback-oriented symbols. 
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i; Aircraft handling qualities in the approach and landing flight phase 

and criteria for predicting pilot-selected minimum comfortable approach 

speeds have been of considerable interest for many years. Research has 

concentrated on the problems of carrier and jet transport aircraft, and 

has attempted to determine the underlying factors involved in limiting 

approach speeds. In most of the work, flight test and simulation 

techniques have been used. 

Prior to the introduction of high performance jet aircraft into 

military service in the post-World-War-II period, the method of esti- 

mating the approach speed as a fixed percentage of the power-approach 

configuration (gear and flaps down with power for level flight) stall 

speed was generally adequate for establishing carrier aircraft struc- 

tural and arresting gear strength limits. The increased landing speeds 

of the sweptwing carrier aircraft with higher wing loadings which became 

operational in the early 1950's were of considerable concern, and an 

extensive program was undertaken by the NACA to investigate approach 

problems. Reference 1 summarizes in detail a major portion of the flight 

test results and reports the evaluation of various minimum approach speed 

criteria. Additional information, including test pilots' impressions of 

the piloting techniques used during carrier and airfield approaches, is 

contained in Refs. 2 and 3. 

In recent years, the NASA has been investigating approach handling 

qualities of current subsonic and proposed supersonic jet transport 

configurations. Most of the effort has involved ground-based piloted 

simulator studies with emphasis on ILS approaches, although the last 

portion of the approach and the flare landing maneuver are simulated 

for minimum weather visual conditions (Ref. 4). As part of the general 

investigation of supersonic transport configurations and due to the 



continued interest in approach problems, a program is under way at the 

NASA's Ames Research Center to flight test an F5D-1 aircraft modified 

with an ogee-shaped wing planform similar to that of a supersonic trans- 

port under development. The flight tests will establish minimum com- 

fortable approach speeds for several types of landings, including a 

simulated mirror-aided carrier approach and a VFR approach with no 

flight path guidance, and will determine any unique low speed handling 

qualities of this configuration. 

Most of the minimum approach speed criteria evaluated in Ref. 'I 

involved either a fixed percentage of some stall speed (determined from 

the maximum aerodynamic lift coefficient alone, the aerodynamic lift and 

a first-order estimate of the thrust contribution, or flight tests) or 

the minimum speed at which discrete maneuvers could be performed. None, 

however, evolved from considerations of the dynamic problems of the 

closed-loop pilot-vehicle system. Pilots reported that the primary 

factor influencing the minimum approach speed selection was "the ability 

to control altitude or arrest rate of sink,fl and this statement is suffi- 

ciently ambiguous to imply that the problem was difficult to localize in 

simple response terms and probably involved closed-loop pilot-vehicle 

interactions. Theorectical techniques for analyzing the pilot-vehicle 

combination and determining potential control difficulties have been 

developed and refined in recent years (Ref. 5 summarizes much of the 

work) and used to study longitudinal approach and landing problems of 

carrier aircraft (Refs. 5-7) and jet transports. The application of 

these techniques to low speed handling qualities considerations of the 

Ogee Wing F5D-1 airplane was the purpose of the study reported herein. 

The objectives have been to: 

1. Obtain a better understanding of the handling qualities . . 
factors dictating pilot-selected minimum comfortable 
approach speeds and develop, where needed, criteria for 
different types of approaches. 

2. Apply systems-analysis-derived criteria to predict Ogee 
Wing F?D-1 approach speeds in mirror-aided carrier 
approaches and VFR approaches for subsequent evaluation 
by flight tests. 

3. Define considerations for the flight test program which 
might shed additional light on the basic factors of 
importance in approaches. 
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Factors other than closed-loop longitudinal control difficulties 

can influence a pilot's selection of a minimum approach speed; these 

were considered and found not to be limiting for the subject aircraft. 

For example, thrust margin available for go-around capability (Ref. 3) 
and over-the-nose visibility were not found critical for the Ogee Wing 

F5D-1 at speeds well below those considered limiting from closed-loop- 

derived criteria. Tail hook clearance at touchdown appeared to be a 

possible limiting factor, but discussions with a NASA test pilot during 

the course of the study revealed that the F5D-1 is basically a "four- 

wheeler," with initial touchdown contact on the aft wheel occurring 

quite often and not being regarded as a limiting factor. Lateral- 

directional handling qualities parameters showed, on the whole, a 

gradual deterioration with decreasing approach speeds, although sev- 

eral of these parameters, including the Dutch roll damping ratio, in 

fact actually improved at lower speeds. It was recognized that a 

progressive deterioration in the lateral-directional handling qualities 

might eventually result in an unsatisfactory pilot rating, with the 

gradual nature of the changes making it difficult to define a minimum 

comfortable approach speed. However, the generally adequate level of 

the lateral-directional parameters led to the conclusion that lateral- 

directional problems would not be critical or limiting for the Ogee 

Wing F5D-l.* 

In view of these preliminary assessments and findings, the major 

emphasis of the remainder of the study was directed to longitudinal 

closed-loop control. The investigation presented in this report was 

performed prior to and during the initial phases of the flight test 

program. Certain aspects of the aircraft's approach configuration, 

including the center of gravity location and the gross weight, were 
not firmly established, and consequently preliminary estimates were 

*The soundness of this decision was confirmed by recent NASA flight 
tests of the basic FPD-1 (Ref. 8), the results of which were published 
after this conclusion was reached. In these tests the lateral-directional 
stability and control characteristics were found to be acceptable for 
angles of attack up to 25 deg, which is well above the operating range 
of the Ogee Wing F?D-I 'at approach speeds. 
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used in the computations. The validity of the approach speed criteria, 

as applied to the Ogee Wing FJD-1, must await the final pilot-selected 

minimum comfortable approach speeds determined from flight tests, and 

corrections to the predicted speeds should be made if the aircraft's 

flight configuration differs appreciably from that assumed in the 

analysis. 



The Douglas F5D-1, a single-place high-performance fighter interceptor 

developed from the F4D-I, is a tailless configuration with a modified 

delta wing. The ogee wing version has leading edge extensions to achieve 

the desired planform and inlet ducts relocated approximately five feet 

forward. Side and plan view drawings of the F?D-I and the ogee wing 

modification are shown in Fig. 1, and the main geometric differences are 

presented below. Reference 8 contains a detailed list of the physical 

characteristics of the basic F5D-1 configuration. 

Basic ED-1 Ogee Wing F‘jD-I 

Wing area, ft2 . . . . . . . . . . . . . . 557 661 

Aspect ratio . . . . . . . . . . . . . . . 2.02 1.70 

Leading edge sweep at fuselage 
or duct, deg . . . . . . . . . . . . . . . 52.5 77 
Minimum leading edge sweep, deg. . . . . . 52.5 55.8 
Mean aerodynamic chord, ft . . . . . . . . 18.25 22.59 
Location of quarter chord, F5D-1 
fuselage station, inches . . . . . . , . . 287.5 246.5 

Longitudinal force and moment coefficient characteristics for the 

approach configuration, obtained from full scale power-off tests in the 

40-ft by 80-ft wind tunnel at the Ames Research Center, are shown in 

Fig. 2. In these tests the trimmer or inboard eleven was not deflected, 

the dive brakes were closed, and the landing gear was down. The moment 

reference is at I5 percent of the basic F5D-1 mean aerodynamic chord 

(0.15 +jJ))' Throughout this report, center of gravity locations are 

specified in terms of CF5D. 

There is no stall break in the lift coefficient data in the angle of 

attack range up to 21 deg, and with the c.g. at 0.15 EF5D the static 

margin is less than 5 percent for trimmed lift coefficients from 0.4 
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to 0.7. The lowest static margin occurs at a trimmed lift coefficient 

of approximately 0.5 and is slightly greater than I percent. Additional 

power-on tests at thrust coefficients of 0.116 and 0.184 indicated no 

pitching moment due to thrust. 

The initial flight test plans called for a landing configuration with 

the gear down, dive brakes closed, trimmer undeflected, a gross weight 

of 19,700 lb, and the center of gravity at about O. 148 to 0.15 E FYI, 
The latter was selected as a nominal location for subsequent analyses. 

Stability and control derivatives and transfer function characteristics 

for this configuration are presented in Appendix A. 

The aerodynamic characteristics of the Ogee Wing F5D-1 in the approach 

flight phase can be altered to some degree by changing the zero-lift drag. 

This is accomplished by extending or retracting the landing gear and dive 

brakes. Based on wind tunnel results, the dive brakes produce an incre- 

mental drag coefficient of &!Ddb = 0.0188, a small nose-up zero-lift 

pitching moment, and no change in the lift coefficient and pitching 

moment coefficient variations with angle of attack up to I3 deg. At 

higher angles of attack with the dive brakes deployed there is a reduc- 

tion in both the lift curve slope and the static longitudinal stability. 

A landing gear drag coefficient increment of XD 
is 

= 0.015 was obtained 

from Ref. 9. These values, which were used in the subsequent analyses, 

were substantiated by preliminary flight test data for the Ogee Wing 

F5D-1 which indicated K!Ddb A 0.02 and ED 
g 

A 0.015. 

6 



smomal III 

A criterion for predicting minimum acceptable carrier approach speeds 

was developed in Refs. 5 and 6 from a closed-loop pilot-vehicle systems 

analysis. Assuming the pilot controlled pitch attitude with the elevator 

(0 - Se) and corrected altitude errors, or deviations from the desired 

flight path, with throttle application (h + ET), it was found that a 

deterioration in altitude tracking performance with increased tightness 

of the pitch attitude loop could occur when the approach speed was reduced 

below a certain value. The simple analytical expression for this effect was 

termed the "reversal parameter," and the criterion speed was that at which 

the parameter changed to a negative sign. Flight test minimum approach 

speeds for five out of seven aircraft limited by "ability to control alti- 

tude or arrest rate of sink" were found to agree closely with the speeds 

predicted theoretically (Ref. 6), and a fixed-base simulator study (Ref. 7) 

performed to test the theory generally supported its validity. 

Reference 6 indicates that the piloting technique assumed in the 

derivation of the reversal parameter does not achieve the best tracking 

performance, and offers several possible explanations for the pilot's 

selection of nonoptimum control feedbacks. In a more recent study of 

carrier landings (Ref. IO), the terminal dispersions due to ship motions 

and atmospheric turbulence were determined for two aircraft control 

methods, the first involving altitude control with throttle and pitch 

attitude control with elevator (h - 6T.( 8 - 6,) and the second using 

altitude and pitch attitude control with elevator and airspeed control 

with throttle (h,e - 6,, u - ET). The former resulted in excessively 

large ramp clearance and touchdown dispersions, and it was concluded that 

the latter piloting technique must be used when approaching the ramp. 

(The airspeed-to-throttle loop stabilizes the slow divergence due to 

h - 6e control when operating on the back side of the drag curve and 

would be essential if this technique were used throughout the complete 

approach. It is not needed during the last few seconds of a carrier 

7 



approach because. the divergence, primarily in airspeed, cannot build 

up to a critical level in the short time periods involved.) The slower 

responding and simpler (two loop closures as opposed to three) h - 6T, 

8 +- 6e method is adequate in the initial approach phases (approach to 

and acquisition of the glide slope beam) where precise altitude error 

information is not available and tight control is not required. Thus, 

although the same piloting technique is not used during all portions of 

the approach, the minimum approach speed should be predictable from an 

analysis of the phase which is most speed-critical. The approach is, or 

should be, made at a constant speed, and if a reversal effect can occur 

during the early phase, this consideration can dictate the minimum speed 

selected for the complete approach. 

The applicability of the reversal parameter criterion for predicting 

approach speeds of the low static margin Ogee Wing -D-l was somewhat 

uncertain, initially, because of the following factors: 

1. In the original derivation of the reversal parameter, only 
the phugoid motions were considered. Assuming the factors 
which limited the approach speed were primarily associated 
with the low-frequency behavior of the pilot-vehicle system, 
neglect of the higher frequency short-period effects seemed 
reasonable and also permitted the development of an approach 
speed criterion in analytical form. For configurations 
having a low static margin, the reduced short-period fre- 
quency might couple or interact with the phugoid mode and 
possibly invalidate the simplified analysis. 

2. Theoretically, for identically zero static margin (M, = 0) 
and no thrust offset, there is no reversal effect, and the 
influences of control actions are completely separated 
(Ref. 7). The 8 t 6e loop does not modify the phugoid 
characteristics and hence does not interact with the outer 
loop throttle control of altitude errors. 

3. A limited series of experiments (Ref. 7) indicated that 
with zero thrust offset a marked reduction in the effects 
of airframe configuration characteristics on pilot rating 
occurred when-M, was reduced from 6.07 to 0.903. 

These uncertainties are removed by the detailed considerations which follow. 

The basic influence of static longitudinal stability on the reversal para- 

meter is developed, and carrier approach speed predictions are made for sev- 

eral drag configurations of the Ogee Wing FYD-1 with different c.g. locations. 
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A. EVALUATIOIVOFTHEREWRSALP~ 
1 mRImSzAzICMARmN cOImwRATIm8 

The reversal phenomenon concerns the effect of the inner attitude 

loop gain on u$, the final closed-loop phugoid frequency at which 

oscillations in altitude will occur. The bandwidth of the outer loop 

is related to u$ and to Go, the value of u$ when the pilot's altitude- 

to-throttle gain is increased sufficiently to cause the final closed- 

loop phugoid damping ratio to be zero. The analytical expression 

describing the reversal phenomenon is based on the following assumptions: 

I . The pilot controls pitch attitude with the elevator and 
altitude with the throttle, and his describing function 
can be approximted by a pure gain in both loops. 

2. The vehicle's short-period dynamics can be neglected. 

3. Throttle deflection does not produce a pitching moment. 

4. The fina; closed-loop phugoid frequency at zero damping 
ratio ' 'Up0 is a convenient and pertinent measure of 
performance. 

The main concern is the validity of Assumption 2 for the low &, 

conditions of interest in the case of the Ogee Wing F5D-I. This is 

resolved by comparing results using only the phugoid dynamics with 

those obtained when both the phugoid and short-period are considered. 

From the reversal parameter derivation (Ref. 63, the square of ";; is 
0 

given by 

1 
('+%I Tk --2VW-K~(&-+f&)] 

0) 

where Ke = Ks,& /-M, and the other terms are vehicle transfer function 

parameters. C,;;,i2 as expressed by Eq 1 can be plotted versus Ke. 

Similarly, (u.$,)~ can be found from mUltilOOp 8 t 6,, h t 6T closures 

using complete transfer function expressions. In this case, the outer 

open-loop transfer function describing the aircraft's altitude response, h, 

9 
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te the pilot-observed altitude error, he, with both the pitch attitude 
and altitude loops closed by pure-gain representations for the pilot * 

(KE~B and Keh respectively) is (Ref. 6) 

e 
h-ST 

* + K6eeNege 

where 

A= (52 + 2sp9f + Sp)(s2 + 2sspcDsps + 6$) 

Neg, = 

sNhgT = -zGT(s + +--) (s2 + 2<h+@ -+ &) 

sNEe& = 

(The gain in the sNgehb expression is that for QT = 0 and is applicable 

for the Ogee Wing F?D-1.) When the inner 0 loop is closed at a particular 

value of the pilot's gain K~,Q, Eq 2 becomes 

-K6ThzsT b + &Js2 + 25&&s + $2) 

h-ST s s2 i- 29$s + u$2 
I( 

s2 -I- 21;;pu$ps f ug 
(3) 

The frequency at which the Bode phase angle of Eq 3 equals -180 deg is u$,. 

Results derived from the complete expressions involving both the 

phugoid and short-period modes and those obtained when only the phugoid 

is considered (using Eq 1) are compared in Fig. 3 for two flight condi- 

tions, one above and one below the reversal, or a(u.$o)2/aK, = 0, speed.* 

The more complete solution yields values of u$, slightly less than those 

determined from Eq 1, but the variation with Q, which is the effect of 

'AThe effects of varying Mc, are included in both methods, since both 
use exact vehicle transfer function parameters. 
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interest, is similar in both cases and hence the reversal speeds are not 

significantly different. (For example, linear interpolation between the 

two speeds shown in Fig. 3 gives less than 1 kt variation in reversal 

speed for the two techniques when pertinent values of G, from 1 to 3, 
are used.) Although with the nominal c.g. location at 0.15 EF5D the 

static margins of the Ogee Wing F5D-.l are quite low, the maneuver margins 

are large enough so that short-period frequencies sre separated from 

phugoid frequencies by about a factor of 10 (see Table A-II) and there 

is no appreciable interaction. Therefore the simplified analysis applies, 

provided that the reversal effect is indeed the applicable limiting 

phenomenon. 

In this connection, the correlation of flight-test approach speeds 

with the simplified reversaI.~parameter lends support to its use in the 

present case. Figure 4 shows the approach regime short-period charac- 

teristics of the seven aircraft used to test the reversal parameter 

criterion. As noted in Ref. 6, the flight-test minimum approach speeds 

agreed rather well with the speeds corresponding to ~(cI$~)~/~KQ = 0 for 

the five aircraft which exhibited reversal. One of these, the F8U-1, 

has a low short-period frequency, about 1 rad/sec, approximately the 

same as that of the Ogee Wing F5D-1. 

These optimistic conclusions regarding the applicability of the 

simple reversal criterion are not conipletely borne out by the results of 

the reduced-& experiments reported in Ref. 7. As shown in Fig. 3,* 

there is no correlation of pilot rating with the reversal parameter for 

the twelve zero thrust offset configurations tested, and the ratings in 

general are insensitive to changes in vehicle dynamics. Four configura- 

tions (C5, C7, C13, and ~16) have quite large negative values of the 

reversal parameter. The median ratings vary between 2.0 and 3.5 and in 

all cases are better than the average results (shown by the solid line 

**In Ref. 7 the data were presented as median pilot rating versus the 
reversal parameter associated with the original high-M, transfer function 
characteristics. Reducing & while normally having a small effect on 
the transfer function factors in the reversal parameter expression, can 
have a pronounced influence on the numerical value of the reversal para- 
meter itself. The reversal parameter values in Fig. 5 were computed from 
transfer function factors which reflected Mc, effects. 
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in Fig. 3) obtained for the high-M, configurations. 

Unfortunately, the low-M, experiments of Ref. 7 were very limited, 

were performed after the high-Q tests, and involved only a single evalu- 

ation of each configuration by each of three participating pilots. In 

the main experiment of.Ref. 7 with high-M, vehicle dynamics, these same 

pilots, when rating the questionable C!?, C7, Cl3, and ~16 configurations, 

delivered average ratings considerably higher than those indicated in 

Fig. 5. However, in tne course of repeated tests, each of the pilots 

also delivered minimum ratings about equal to those shown for all twelve 

configurations. For the most part, these minimum ratings were given 

after considerable learning of the high-M, task and just before the 

low-M, runs. Therefore, the apparent favorable effect of reduced G 

implied by Fig. 5 may actually reflect an improvement in pilot rating 

due to experience and training with the simulated carrier landing task. 

Because of this fact, some uncertainty remains with respect to valid M, 

effects on the reversal phenomenon. 

8. 0FATIC MARGIN EPmcTs m 

The reversal phenomenon associated with 8 -t Se, h t 6T control is 

a low-frequency effect involving the closed-loop phugoid motion of the 

pilot+xLrframe combination. As shown previously, the loop closure 

behavior is adequately described when only the phugoid mode of the vehicle 

transfer functions is used. However, the phugoid characteristics as well 

as the 0/S, numerator factors are influenced by variations in Q, and 

such changes can combine to produce pronounced effects on the reversal 

parameter value and on the associated predicted approach speed. 

The simple zero-thrust-offset reversal parameter expression is (Ref. 6) 

aK, = (4) 

The sign of the reversal parameter is determined by the sign of the Eq 4 
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numerator, which is composed of two terms of approximately equal Ilrtgni- 

tude, the first term normally positive and the second negative. Any con- 

figuration change which increases the magnitude of the first term and/or 

decreases the magnitude of the second term is favorable with regard to 

lowering the predicted apprcach speed. Exact and approximate relations 

for the various transfer function terms in Eq 4 as functions of dimen- 

sional stability and control derivatives (for the'zero-thrust-offset, or 

WI = 0, condition) are 

(5) 

I (6) 
11 

-- = x$&-~Xw 
T@1 TQ2 

1 ‘ET 
. 

- = -xu+ ,zuF 
T% T 

(7) 

(8) 

(9) 

The effect of static margin is indicated by the influence of & in Eqs 5, 

6, and 8 and the corresponding location of the transfer function terms in 

the reversal parameter numerator.* Decreasing the static margin causes 

the following to occur: 

1. CI$ decreases, reducing the magnitude of the second term in 

the reversal parameter numerator, and always producing a 

beneficial lowering of the predicted approach speed. 

-his method of assessing reversal parameter numerator components also 
indicates other beneficial configuration changes. For example, Ref. 6 
noted that the inclusion of X8e was favorable for approach speed predic- 
tions of the F4D-1; without Xce the reversal parameter was negative at 
all speeds tested (Fig. 4). X8e occurs only in Eq 6, and since Ma., Zu, 
XEe, and me are all negative, 
(1 /Tel ) (1 /Te2) 

increasing the mgnitude of X6, increases 
and consequently the first term in the reversal parameter 

numerator. However, it should be noted that the F&D-l has an unusually 
high value of M, in the approach speed region (indicated by the relatively 
large values of mp in Fig. 4) and hence the favorable effect of elevator 
drag is more pronounced for this aircraft. 
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2. [,(l/Te,) + (l/T@)] increases in a favorable manner for 

aft elevator (Zse/Qe > 0) aircraft. 

3. ['(l/Tq)(l/Te)] increases, and this lowers the predicted 

approach speed if [k(&.JMSe) - Xu(ZSe/MSe)] is posi- 

tive. Using the identities -Zu = 2g/Uo, Xu/Zu = CD/CL 

and C q, = (ld4C~, where lg is positive forward, this 

term can be written 

Qe z8e zqj--g-Xu~ = 

and is positive when an aft elevator has a higher lift/drag 

ratio than the airplane itself. 

For the Ogee Wing F?D-1, CL6,/CDSe > CL/CD (see Table A-I) and reducing 

the static margin has a beneficial effect on all three terms. 

It is not possible to generalize in a simple manner the effects of 

static longitudinal stability on the reversal parameter, particularly for 

a canard configuration with CL8,/CDge > CL/CD Or an aft eleVatOr airCE3ft 

with Cae/CDse < CL/CD. The numerator, N, of the reversal parameter can 

be written 

where 

Ma N = A+B&+CMaSZwMq+D & 
Ma-GTzwMq 

A=Z, 

. 

00) 

g% ‘se D = _-- 
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The partial derivative with respect to & is 

(11) 

and it can be seen that the rate of change of the reversal parameter 

numerator with Q depends on I& as well as the other stability and con- 

trol derivatives. A positive value of aN/&& indicates a favorable 

effect of reducing the static longitudinal stability. If & is large 

and hence, from Eq 8, 4 5 -gZu/Uo, Eq 11 becomes 

aN - L B+D 
3% 

(12) 

which, using the previous identities and XE~/Z~~ = -l/q, can be expres- 

sed in nondimensional form as 

C. PREDICTEDAPPROACHSPEEDB FOR- OGEEWINGF!5D-1 

03) 

The previous considerations have shown that the simple reversal 

. parameter (Eq 4) should be applicable to the low static margin Ogee Wing 

F5D-1 and that a significant k effect may exist. Carrier approach speed 

predictions are made for the basic configuration, with the landing gear 

down, dive brakes closed, and a gross weight of 19,700 lb, and for low 

and high drag configurations obtained by changing the gear and dive brake 

positions.* For the nominal c.g. location at 0.15 E 
F5D' 

the reversal 

*It is assumed the landing gear and dive brakes change only the drag 
coefficient and hence only the X, derivative is modified. The incre- 
mental drag coefficients are given in Section II. 
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parameter predicted approach speeds are: 

CONFIGTJRATION GEAR DIVE BRAKES 

Basic.................. Down Closed 

I;ow drag ............... UP Closed 

High drag .............. Down open 

u, (knot 

123 

128 

118 

Static margin effects on the approach speed are shown in Fig. 6 for the 

three configurations. Revised trim characteristics were not determined 

for the different c.g. locations indicated, and except for MO: the dimen- 

sional stability and control derivatives for the nominal 0.15 EF5D loca- 

tion were used in each case to calculate the reversal parameter. 

A change in the zero-lift drag coefficient has an appreciable effect 

on the predicted approach speeds, with a IO knot difference existing 

between the low and high drag configurations. & effects are also 

important, and Fig. 6 indicates that a five percent forward shift in the 

c.g. location (based on EmD and corresponding to 11 inches) for the 

basic configuration raises the predicted approach speed 5.5 knots. 

Approximately the same speed-c.g. sensitivity exists for the high drag 

configuration (Fig. 6~). However, the low drag configuration may have a 

quite large variation of approach speed with static margin, particularly 

for c.g. 's around 0.12 &j,5D. The "exact" variation of predicted apprcach 

speed with c.g. in this case depends strongly on the fairings used in 

Fig. 6b & on the criterion value assigned to the reversal parameter. 

The criterion a(Go)'/aK 0 = 0 was originally chosen (Ref. 6) because it 

was convenient and because finite values other than, but close to, zero 

Irade little difference in the associated speed. This is not true in the 

case of the low drag configuration with c.g. locations forward of the 

nominal 0.15 EF5D position. Figure 6b shows that for the 0.12 E F5D c.g* 
location a criterion change from zero to +O.OOl involves predicted 

approach speed changes of about -18 knots. Flight tests of this particular 
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configuration with c.g. Is forward to the 0.10 E F5D location might be 

especially revealing as to the validity of a specific value of a(u$o)2/aKe 

as a criterion. On the other hand, the shallow slope of the reversal 

parameter versus approach speed curve might reflect itself as difficulty 

on the part of the pilot to define a specific minimum approach speed. 

This, however, would indicate the importance of the reversal phenomenon. 
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SECTI~ Iv 

MPnaAuEsPmMmvI8uAL!lzraETcoRDIzIom 

In VFR approaches the pilot does not have available to him precise 

information on aircraft vertical deviations from the desired flight path. 

The lack of a definite flight path error signal distinguishes the air- 

field VFR case from carrier landings and airfield IFR landings where the 

respective altitude errors are obtained from the optical landing aid and 

the glide slope indicator. The central questions involved in manual VFR 

approaches relate to what information is sensed by the pilot from the 

external field of view (and from cockpit instruments) and how such 

information is used to control the vehicle. 

A. POSSIBLE PILOTDJG TECHNIQUES 

As noted in Section III, the 8 -+6,, h *CT piloting technique used 

to derive the reversal parameter carrier approach speed criterion applies 

for the initial approach phases where precise altitude error information 

is not available and tight control is not required. To a certain extent, 

this situation corresponds to the VFR approach case, and the 0 b&e, 

h -+6T technique has the attractive feature of being stable on the 

initial portion of the back side of the drag curve, although it may experi- 

ence a reversal phenomenon at lower speeds. If in fact it applies for VFR 

approaches, minimum acceptable speeds should be those predicted by a sign 

change, or reversal, of the parameter a(u$o)2/aKe. However, other con- 

siderations presented in the following development suggest a different 

criterion. 

For airfield IFR landings there is strong evidence that pilots con- 

trol attitude and altitude with the elevator (8,h -Se). This appears 

to be a more natural piloting technique, and on the front side of the 

drag curve can result in stable closed-loop characteristics with good 

tracking performance. On the back side of the drag curve, however, the 
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low frequency zero, l/Thl, in the numerator of the altitude-to-elevator 

transfer function is in the right half portion of the s-plane and the 

outer h -6e closure prcxluces,an instability, occurring predominantly 

in airspeed. This speed divergence can be controlled with an additional . 
U -6T loop. For VtCR landings, there is no direct experimental evidence 

that this piloting technique is used, although it offers good flight path 

control. The closure characteristics of this technique will be examined 

in more detail to determine any limiting behavior similar to the reversal 

phenomenon for the 8 -Se, h -ET technique. 

A representative example is shown in Fig. 7 for the Ogee Wing F5D-1 

at the nominal c.g. of 0.15 cF5D and an approach speed of 131 knots. 

The pilot describing function for the inner pitch attitude loop is 

Y~,Q = KBeee4'3S, with Kg,@ = -0.33 deg/deg, and for the outer altitude 

loop is a pure gain,* Kg,h. The criterion for the final closure is some- 

what arbitrary, and in this case was to set the damping ratio of the 

closed-loop phugoid mode at 0.35. The altitude tracking capability is 

good, with a high crossover frequency and high effective closed-loop 

bandwidth. The free s in the denominator of h/hs is driven near l/Thl 

and the closed-loop instability represented by I/d1 is not dominant in 

the altitude response. 

Table I summarizes the closed-loop dynamics, crossover frequencies, 

and phase margins obtained by constructions similar to Fig.'7 for a series 

of approach speeds; also shown is the pilot's elevator-to-altitude error 

gain required for I!$ -= 0.35. Most of the parameters do not vary appreci- . 
ably with airspeed. *However, there is a gradual reduction in bandwidth 

(revealed by the decreasing crossover frequency) and an increase in the 

magnitude of the inverse time constant of the unstable mode. The latter 

can be stabilized by the pilot with an airspeed-to-throttle loop which 

will not have a major influence on the other closed-loop modes. With the 

*In the frequency region of interest, CD g 0.5 rad/sec, the phase lag 
due to a 0.3 set pilot reaction time delay is only 9 deg and therefore 
is not of significance. 



8,h -6, loops closed, the u -6T transfer function, 

A + y6et3Nt3ge + y6ehNh 6e 

for this series of approach speeds can be approximated by a single first- 

order term, i.e., 

. xsT = 
8,h-+se 

(15) 

Pilot control of this slow divergence is easily achieved, and the pilot's 

throttle-to-airspeed gain required for neutral stability is KgTU = -l/X,~~g~. 

Since QT does not vary with airspeed [XsT G (I/m)TsT], the necessary @ilot 

gain and hence the amount of throttle activity is directly proportional to 

I/$, and increases as the approach speed decreases. Since l/G, is 

approximately proportional to l/Th,, the control difficulty is directly 

related to the low frequency zero in the airframe's altitude-to-elevator 

transfer function. 

If the pilot were able to directly determine precise flight path (or 

altitude) error information in a V??R landing, the above considerations 

would be of direct interest. He nay or may not be able to extract such 

information from the external field of view, and he may be more concerned 

with the terminal conditions at touchdown than with flight path errors. 

Rather than correct altitude errors, even when sensed, the pilot may 

instead merely alter the rate of sink, establishing a new flight path 

with the same terminal point on the runway. In this case, 6 rather than h 

is the appropriate outer loop feedback quantity. To achieve good h track- 

ing performance, the pilot must generate a low frequency lag in the h -6, 

final closure. Consequently, the closed-loop dynamics achieved when a 

e,h +6e technique is used are similar to those obtained for the 8,h -se 

closure. The only apparent significant effect of reduced approach speeds 
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is an increase in the magnitude of the unstable inverse time constant, 

l/G, 3 which again is approximately proportional to I/s.,. 

Whether the pilot maintains tight flight path control with the elevator 

or simply adjusts the rate of sink with elevator, the deterioration in 

closed-loop characteristics is progressive with decreasing approach speeds. 

The most pronounced change is the required increase in throttle activity, 

which is approximately proportional to l/Th,. This result suggests the 

use of the open-loop parameter l/R1 as a possible measure of piloting 

difficulty for VFR approaches. The limiting factor for the 8,h +6e, 

u -6~ piloting technique, however, does not have the distinct behavior 

of the reversal phenomenon associated with e -6e, h -6~ control. 

B. AVAILABLLE ElQERfMENTAL DATA 

The probable maximum negative value of l/Th, acceptable to pilots in 

VFR approaches can be deduced from information contained in Refs. 11 -13. 

Values of I/&, are not presented explicitly in these reports; however, 

the reports do contain aerodynamic and other characteristics required to 

compute them approximately. For a, = 0, from Ref. 14, 

1 -f- 
Th, 

D + cq,+pL + "Lu)] (16) 

[ An additional term, -(l/m)(&/&), is added to Eq 16 when thrust vari- 

ations with speed are significant (Ref. 7).] For CDu and C~ negli- 

gible and using the basic lift equation, L = W = (1 /a PfJgL, 

Also, from Ref. 7, 

07) 

(18) 

where dD/du is the total variation of drag with airspeed for constant 

lift evaluated at the trimmed airspeed. 
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Reference II presents values of (CD/CD - dCD/dCD) at the minimum 

comfortable approach speeds for carrier and airfield landings for 19 air- 

craft types. Drag effects were the predominant reason for limiting the 

approach speed in eight cases, and the data for these are shown in 

Table II, &th l/n, determined by Eq 17. Unfortunately, these particu- 

lar data are not at all convincing as regards the applicability of l/m, 

as a pertinent criterion for determining minimum VFR approach speeds. 

About all they do show is that, where direct comparisons are available, 

the carrier landing approach speed is less than the corresponding VFR 

approach speed. This lack of correlation with I/Th, may be due to dif- 

ferences between the test airplanes as regards throttle force-displacement 

or engine response characteristics, both of which would affect the pilot's 

work load and rating (e.g., Ref. 12) for a given value of l/Th,. If in 

fact such differences exist, although'concrete evidence is lacking, the 

maximum negative value of l/al in Table II might be indicative of a 
/ 

criterion +alue for otherwise "good" control dynamics. 

Fortunately this question does not arise in the data of Ref. 12, which 

reports results of approach and landing flight tests in a given airplane 

using an automatic throttle to change the variation with speed of the 

total X force (thrust minus drag). The primary data related to estab- 

lishing a maximum acceptable negative value of l/x, are in a plot of mean 

pilot rating versus the inverse of the time to double aqlitude of the 

speed instability. The inverse time constant of the speed instability is 

noted in Ref. 12 as 

(19) 

which is approximately l/Th, (Eq 18).* The data (Fig. 10 of Ref. 12) 

stratify into three distinct regions as a function of l/s,. For l/s, 

between zero and about -0.045, mean ratings lie in the band given by 

4.0 + 0.3; for l/Th, between about -0.045 and -0.15, mean ratings are‘ 

distributed about 4.8 + 0.4; for l/n, less than -0.15, ratings increase 

linearly to about 7.0 at l/m, g -0.35. Considering that the first jump 

'AThe relations in Eq'16 -18 are usually very good approximations 
for l/Th,, which is determined exactly by factorization of the h/6, 
transfer function numerator. 
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in rating is indicative of the l/n, effect sought,*these data indicate a 

criterion value of about -0.045, not too much different than the maximum 

negative value (-0.0398) of Table II. 

Reference 13, a fixed-base simulator study of supersonic transport 

longitudinal handling qualities for the approach and landing task, 

indirectly furnishes additional information on acceptable values of I/%, 

for VFR situations. Pilot ratings were obtained for IFR approaches with 

two simulated values of the speed-thrust-required stability parameter 

parameter d(Tr/W)/dV, one being zero and the second -0.0012 per knot. 

l/n, is directly related to this parameter, i.e., 

1 -A dV d(Tr/W) 
ml gdu dV 

where V is in knots and u is in feet per second. The corresponding 
-1 values of l/Thl are zero and -0.023 set . The change from neutral to 

unstable speed-thrust characteristics adversely affected the pilot ratings 

by approximately one rating point on the Cooper scale; and the pilots' 

comments indicated that a small but distinct task was added to the normal 

heavy work load in the IFR approach. For l/Th, = -0.023 set -1 and posi- 

tive static longitudinal stability, pilot ratings were generally 4.0 or 

slightly worse, indicating this value of l/Thl, although unsatisfactory 

for normal IFR operation, is not unacceptable. In the second phase of 

these studies, flare and touchdown evaluations were made in simulated VFR 

conditions. Numerical pilot ratings were not obtained. However, pilots 

commented that the effects of test variables (static longitudinal stability 

and speed-thrust stability) were minimized in the VFR task. Reference 4, 

reporting portions of the same investigation, also states that a review 

of flight experience indicated that in visual landing approaches the 

detaining I/%, as a possible correlating parameter is based on the 
fact that it seems the only logical alternative to the reversal parameter, 
considered as most appropriate for carrier approaches. Since Table II 
clearly shows important differences between carrier and airfield approach 
speeds, it follows that different criteria are involved. 

23 



effect of speed-thrust instability is considerably less disturbing than 

in an IFR situation. It would appear from these results that values of 

l/Thl more negative than -0.023 set -I would be acceptable in VFR approaches. 

Although the flight and simulator data in Refs. 11 -13 do not lead 

conclusively to a single maximum negative level of l/N, which can be 

used as a criterion for predicting Vl?R approach speeds, the range from 

-0.040 to XI.045 set -1 may be a reasonable bound. 

C. PREDIcTED0PEE%FoRTHEOaEE WIXR3mD-1 

The variations of l/G, with approach speed for three Ogee Wing F5D-1 

configurations (basic, low drag, and high drag) are shown in Fig. 8. In 

each case the effect of c.g. location is indicated. It is assumed that 

landing gear and dive brake positions modify only the drag coefficient, 

and c.g. position changes only &. Values of l/Thl are computed from 

dimensional stability and control derivatives using the relationship 

.J- = xS,%PU - ‘S,xuM, + %e[%% - %(k-g)] 
Thl ‘EezuMq - z&(xUMq- %,I - eeZ, 

(21) 

which is the ratio of the last two coefficients in the numerator of the 

altitude-to-elevator transfer function,* with Mu = M& = 0 (Ref. 6). For 

the nominal c-g. location at 0.15 .+5D) the predicted approach speed ranges 

for VFR flight, based on a l/Th, variation from -0.040 to -0.045, are: 

CONFIGURATION GEAR DIVEBRAKES U, (knots) 

Basic.................. Down Closed 123-126 

Low drag............... Up . Closed 126-129 

High drag.............. Down @en 120-122 

*For y. = 0. If the equations of motion are written to include nonzero 
flight path terms, the perturbation in vertical altitude is determined 
from 1; = --wcos y,+usin y. +(Uoco? yo)e. However, the displacement normal 
to the flight path is found from h = U,e-w and is the "effective" alti- 
tude controlled by the pilot. Use of this latter kinematic relationship 
rather than the former is equivalent to setting y. equal to zero. 
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Compared with the reversal parameter approach speed predictions for 

carrier approach, these results indicate the following: 

1. 

2. 

3. 

4. 

For the nominal c.g. location, the difference between the 
approach speeds for the low and high drag configurations 
is less (6-7 knots) than the corresponding increment for 
carrier approaches (10 knots). 

The l/Th, predicted approach speeds for the c.g. at 0.15 EF5D 
are slightly greater than the reversal parameter speeds for 
the basic and high drag configurations, and bracket the 
reversal parameter speed for the low drag configuration. 

Static longitudinal stability effects are smiler, with a 
five percent forward shift in the c.g. location increasing 
the predicted speeds by 2 knots compared to 5.5 knots when 
the reversal parameter criterion is used. 

The low drag, forward c.g. configuration has the largest 
difference in approach speed predictions based on l/x 
and reversal parameter criteria. With the c.g. at 0.1 
the VFR predicted speeds are 128- 

' EF5D~ 
130 knots and the carrier 

approach speeds are 138 + 8 knots based on reversal parameter 
values of zero and +O.OOl. 
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Prediction of minimum comfortable approach speeds based on closed- 

loop pilot--vehicle considerations requires knowledge of the specific 

loop closures made by the pilot. For optically aided carrier landings, 

the information available to the pilot in a completely (or nearly 

full-time) head-up approach is restricted toditch attitude errors .s. ' 
and altitude deviations from the glide path. Assuming the former is 

controlled with the elevator and the latter controlled with throttle, 

a reversal phenomenon may occur with reduction in approach speed, and 

a simple analytical criterion can be used to establish a minimum speed. 

Available data suggest the applicability of this prediction technique 

to the Ogee Wing F?D-1. 

. 

For VFR landings, there is no experimental evidence to directly 

indicate what information is sensed and used by the pilot. However, 

two loop closures are perhaps applicable. The first involves pitch 

attitude and altitude control with the elevator, appropriate for a 0 
"tight" VFR approach. The second assumes control of pitch attitude 

and rate of sink with the elevator in a "loose" VFR situation where 

the pilot is primarily concerned with the point of touchdown rather 

than with lnaintaining accurate glide path control. For both tech- 

niques, an instability, primarily in airspeed, will occur if the 

aircraft is on the back side of the drag curve. This instability 

can be stabilized with an airspeed to throttle loop, but the amount of 

instability and the required stabilizing throttle activity will pro- 

gressively increase with reduced approach speeds. The pilot's throttle 

workload is proportional to the closed-loop instability encountered and, 

in turn, proportional to the open-loop low frequency zero, l/I&,, in 

the altitude-to-elevator transfer function. This open-loop parameter 

appears to adequately represent the control difficulties encountered in 

VFR approaches, and limiting values can be used as a criterion to pre- 

dict minimum comfortable approach speeds in such cases. 
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Airplane drag characteristics have a strong influence on the criteria 

for both types of approaches, and for the Ogee Wing F'JD-1 the increase in 

predicted approach speeds from a high to a low drag configuration for VFR 

approaches is less than the corresponding change for carrier approaches. 

Changes in static longitudinal stability have a more pronounced effect on 

predicted minimum acceptable speeds for mirror-aided carrier approaches 

than for airfield VFR approaches. 

The low drag, forward c.g. configuration of the Ogee Wing F?D-1 offers 

the most promise for revealing differences in predicted approach speeds 

based on the two criteria. 
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Longitudinal nondimensional stability and control derivatives for 

six trimmed lift coefficients with the center of gravity at the nominal 

0.15 cF5D location are presented in Table A-I. The pitch damping 

derivative, Cmq, was obtained from Ref. 93 the other derivatives were 

computed from the full scale wind tunnel data of Fig. 2. Geometric and 

inertial properties used in calculating the dimensional derivatives in 

Table A-I are: 
s = 661 ft2 

C = 22.6 ft 

m= 612 slugs 

W = 19,700 lb 

IYY = 70,600 slug-e2 

Atmospheric density corresponded to sea level standard conditions. The 

steady-state airspeeds are for power-on equilibrium flight at the listed 

trimmed lift coefficients with a flight path angle, yo, of -4 deg. The 

engine net thrust per unit throttle deflection, Tg T, of the F5D-1 was 

not available; therefore numerical values of throttle dimensional 

derivatives and gains of the throttle transfer function numerators are 

normalized with respect to TEE. 

Table A-II contains vehicle numerical transfer function data for 

both elevator and throttle inputs. Transfer functions are based on the 

following longitudinal linearized constant-coefficient equations of 

motion for stability axes: 

(s-x&J + (-xwh + (g cos 7&J = ‘6ese + x8T&r 

wuh + (s - &)w + (-UOS + g sin 70) 8 = zsee6e + zGT6T (A-1 ) 

(-qJu + m&s-4.&w + (ECM&e = %e8e + MsTsT 
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where s is the Iaplace transform variable. The auxiliary equation 

for airplane displacement nom1 to the flight path, h, is 

h = + woe - w> (A-2) 

All transfer functions, including those 

have the same denominator, LL Thus, 

e s) 
4-T 

Ne8e u S) 
4-T 

Nusr 
6e s =- ; ETS a =n; 

where 

A = 

Neg, = 

(s - XlJ 
-z, 
-%l 

(S - xu) 
-z, 
-MU 

x6T 

KS = T z8T 

-x, 

(s - %> 

F%s - %I 

-x, 

b - zw> 

(-%s - %A 

-xw 

for the auxiliary variable h, 

NhSe 
=n ; etc. 

65 cos 70 

(-Uos + g sin yo) 

(s2 - Mqs) 

cos Yo 

sin yo) 

I %J (-KS - b) (s2 - Mqs) 

Nhse = ; Nese - +- NW&, 

(A-3) 

(A-4) 

(A-5) 

(A-6) 
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Nhse = 

b - XlJ -xw g 03s 70 .‘Ee 

-% (s - &) (--Uos + g sin 70) Zfje 

+4 w-w - %I (s2 - MqS) ee 

0 l/s -uo/s 0 

(A-7) 

Coupling numerators (Ref. 15) used in multiloop closures are also pre- 

sented. They are similar to conventional transfer function numerators 

with two mlumns of the characteristic determinant replaced by appropri- 

ate control effectiveness terms. For example, 

Ni$T = (A-8) 
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EXF'ECTS OF APPROACH SPEED ON B,h- 6, PMUMFZXRS 
FORTKF, OGEEWINGFTD-I 

131 

123 

118.5 

114.5 

AIR- 

TYPE 

A 

B 

C 

D 

E 

F 

G 

I 

< 
(rad/sec) 

1.13 0.51 0.50 44 -0.00083 

1.33 0.43 0.43 47 -0.ooog5 

1.40 0.41 0.43 44 -0.00103 

1.41 0.40 0.37 52 -o.ooog8 

TABLEi 

CHARACTERISTICS AT MINIMUM COMFORTABLE APPROACH SPEEDS 
(DATA FROM REF. ii) 

CARRIER LANDING 

LPPROACH 
SPEED 

(knots) 

101 

85 

I28 

1 /%l 

( set --I > 

-0.0113 

-0.0570 

-0.0235 

33 

AIRFIELD LANDING 

120 a.030 o.oogg 

110 -0.011 -0.00~ 

107 0.014 0.0050 

90 -0.og1 q-0385 

160 -0.089 -0.0212 

135 4.141 -o .o3g8 

118 0.046 0.0149 



TAEKE A-I 
OGEE WING F5D-1 NONDIMEXEIONAL AND DIMENSIONAL STABILITY DERIVATIVES 

U, (knots) .................. 
Chrim ...................... 
o+rim (deg) ................. 

6 etrim (deg) ................ 
I& (l/rad) ................. 
CQ., (1 /rad) ................ 
c,, .......................... 

C& (1 /rad) ................. 

cb8, (l/rad) ................ 
CQ-,, (1 /rad) ................. 
(2% (l/rad) ................. 

Cmse (1 /rad) ................ 
X, (l/see) .................. 
Z, (l/see) .................. 

M, (l/see-ft) ............... 

XW (l/set) .................... 

Z, (l/set) .................. 

G (l/set-ft) ............... 
M, (l/set*) ................. 

M# (l/ft) ................... 
Mq (l/set) .... . ............. 

%e (ft/=c*) ............... 

Qj, (ft/sec*) ............... 

Mfje (l/set*) ................ 

XS~/T~~ (ft/sec*-lb) ........ 
Zk/Tb (ft/sec*-lb) ........ 

MST/TsT (1 /set*-lb) ......... 

147 
0.40 

9*5 
4.1 

3.10 

0.756 

0.086 

0.803 

0.103 

-0.0800 

-1.1 

-0.321 

4.0548 

-0.255 
0 

-0.128 

-1.01 

4.00499 

-1.24 

0 

-0.776 
-8.14 

3907 

A.97 
0.00161 

a000271 

0 

31 
0.50 

11.5 

-4.4 

3.01 

0.768 

0.116 

1 .oo 

0.137 
-0.0344 

-1 .1 

4.332 

a0658 

-0.284 

0 

-0.142 

-0.887 

-0.001g1 

-0.423 

0 

-0.691 

-8.62 

,-48.2 

4.08 

0.00160 

-0.00032~ 

0 

23 18.5 14.5 09 
0.56 0.60 0.64 0.70 

12,7 13.5 14.4 15.7 
A.6 -4.7 -4.9 -5*3 

2.92 2.87 2.85 2.81 

0.760 0.756 0.751 0.745 
0.136 0.153 0.174 0.203 

1.15 1.26 1.38 1.55 
0.148 0.155 0.166 0.183 

-0.0740 -0 l 0975 -0.116 -0.138 

-1.1 -1.1 -1.1 -1 .l 

-0.330 -0.326 -0.317 -0.309 
-0.0727 -0.0786 -0.0863 -0.0959 

-0.299 -0.308 -0.317 -0.331 
0 0 0 0 

-0.158 -0.170 a.182 -0.200 

-0.816 -0.776 -0.748 -0.712 

-0.00387 -0.004g1 -0.00563 -0.00637 

4.805 -0.981 -1 .og -1.17 

0 0 0 0 

a.650 -0.625 -0.604 -0.575 
-8.22 -7.96 -7.94 -7.96 
-42.2 -38.8 -35.9 -32.4 

-3059 -3.28 -2.97 -2.63 

0.00159 0.00159 0.00158 0.00157 

~.00035~ -0.00038~ 4 0 00040: -0.000442 

0 0 0 0 



TABLE A-II 

OGEE WING F5D-1 LONGITLJDIEAL TRANSFER FUNCTIONS 

UO (knots) 147 131 * 123 118.5 114.5 109 
Q-trim 0.40 0.50 0.56 0.60 0.64 0.70 

A= [ s2 + 2QlJps + 41 [s2 + *sspwsps + G.*] 

cp --* . . . . . . . . . . . . . . . . . 0.103 0.0634 0.0714 Oeo824 0.0945 0.104 

wp (rad/sec) . . . . . . . . . . 0.143 0.130 0.169 0.185 0.197 0.212 

CsP . . . . . . . . . . . . . . . . . . . 0.639 0.792 0.657 0.603 0.571 0.540 
cosp (r&s=) . . . . . . . . . 1.42 1 .03 1 .15 1.20 i .23 1.24 

NeBe = $,.,b + l/Tel )(s + l/Q21 

AeEe (1 /see*) . . . . . . . . . -4.97 -4.08 -3059 -3.28 -2.97 4.63 
l/Tel (l/set) . . . . . . . . . 0.0220 0.01 gg 0.0139 0*0100 0.00744 0.0011g 

l/To2 (l/set) . . . . . . . . . 0.988 0.911 0.830 0.787 0.759 0.728 
I 

N%e = AI+@ + l/Tul)( s + l/Tu,,b + 1/Tu3) 

Ause (ft/sec*-rad) . . . . -8.14 -8.62 -8.22 -7.96 -7.94 -7.96 
l/Tul (l/set) . . . . . . . . . 0.498 0.447 0.397 0.367 0.344 0.316 

1/Tu2 (l/see) . . . . . . . . . 6.34 5.62 5*39 5.24 5.01 4.74 

l/Tu3 (1 /SEC) . . . . . . . . . -5099 -5.28 3.13 3.03 A.83 A.59 

, 



Table A-II (Continued) 

UO (knots) 147 131 123 118.5 114.5 109 
'Ltrim 0.40 0.50 0.56 0.60 0.64 0.70 

N=T = bsT(s + ~/TuT)[S~ + 2L4.p + 41 

AUsT/TsT (h/see*-lb) . . . . . 0.00161 0.00160 0.00159 0.00159 0.00158 otoo157 
l/Tq (1 /se,) . . . . . . . . . . . . . -0.00767 -0.00768 -0.0140 -0.0177 -0.0211 a0261 

cu . . . . . . . . . . . . . . . . . . . . . . . . 0.635 0.781 0.645 0.593 0.562 0.533 
CY, (rad/sec) . . . . . . . . . . . . . . 1.43 1.03 I .18 1.23 1.26 1.28 

sNhs e = AQ,(s + l/%,)(" + 1/Th2)b + 1/Th3) /i 

Ahse (ft/sec2-rad) . . . . . . . . 59.7 48.2 42.2 38.8 35.9 32.4 
i/Thl (l/SeC) . . . . . . . . . . . . . -0.0123 -0.0276 -0.0455 -0.0585 -0.0699 -0.0903 
l/a2 (l/set) . . . . . . . . . . . . . -4.05 -3.67 -3.35 -3.15 -2.97 4.76 

1/Th3 (1 /set) . . . . . . . . . . . . . 4.85 4.40 4.05 3.84 3.65 3.42 

'jNht5T = AhgTb + l/ThT) [S2 + 2&%s + 41 

AhST/TbT (ft/sec*-lb) . . . . . 0.000271 0.000326 0.0003~g 0.000382 0.000405 o.ooc442 
l/ThT (l /sec) . . . . . . . . . . . . . 1.57 1.46 1.40 1.36 1.33 1.27 
&& . . . . . . . . . . . . . . . . . . . . . . . . 0.350 0.532 0.363 0.316 0.290 6.266 

ah (rad/sec) . . . . . . . . . . . . . . 1 .lO 0.650 o-897 0.990 1.04 1.08 



Table A-II (Concluded) 

31 123 118.5 114.5 

0.50 0.56 0.60 0.64 I 
uo (knots) 
%rim 

109 
0.70 

147 
0.40 

'1 

1 
! 

I 
EJU i Ns,s, = A& + l/T&) 

Aeu/Ts, (ft/sec4-lb) . . . . . . 

1 /Teu (1 /set) . . . . . ..I..... 
-0.00414 

0.684 

4.00800 -0.00653 -0.00573 -0.00521 -0.00470 

0.975 0.893 0.804 0.756 0.723 

sNh u 6e6T = Ah& + l/qq)(” + 1/%~& 

Ahu/TsT (ft2/sec4-lb-rad).. 0.0984 0.0800 0.0704 0.0646 0.0601 0.0545 

1 /Tq (1 bed . . . . . . . . . . . . 4.87 4.42 4.09 3.88 3.69 3.48 
l/T,,, (l/set) . . . . . . . . . . . . -4.09 -3.73 -3.44 -3.25 -3.09 4.9 

sN& = Aehb + l/Teh) 

A,&Th (ft/sec4-lb) ...... -0.00135 -0.00133 -0.0012g -0.00126 -0.00120 -0.00116 
1 /T&, (1 /Se,) ............. 1.57 1.46 1 .40 1.36 1.33 1.27 



Basic F5D-1 

Figure 1. Drawing of T&sic and Modified F>D-1 Airplane 
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Figure 2. Basic Longitudinal Wind Tunnel Data 
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Complete Transfer Function Expressions 

- - Low -Frequency Phugoid Approximation (Eq. I) 

Approach Speed = /3/ knots 
Static Margin i 1.1% 

01 
0 2 4 6 8 IO 

K8e8 M8e 
K8 = -M, 

Approach Speed = 118.5 knots 
Static Margin f 3.4% 

01 I I 1 I I 

0 2 4 6 8 IO 

K&8 M8e 
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Figure 3. Evaluation of Phugoid Apprdximtion 
in Reversal Parameter Derivation 
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Figure 4. Short-Period Characteristics of Aircraft at Low Speeds 
(Data from Ref. 6) 
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42 



xh Speed - Knots 
I50 

.005 

F 
A 
-0 

.005 

i 

.OlO 
t 

130 140 
Approach Speed - Knots 

Figure 6. Reversal Parameter Versus Approach Speed 
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